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Preface 

 

International Conference on Computational Thinking Education 2020 (CTE2020) is the fourth international conference 

organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created 

by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.  

 

CoolThink@JC strives to inspire the digital creativity among students and nurture their proactive use of technologies for 

social good from a young age. In collaboration with the world’s leading experts and local educators, CoolThink@JC 

empowers teachers with high-quality teaching materials, learning platform, and professional development programmes. Since 

2016, CoolThink@JC has trained more than 110 teachers from 32 pilot schools and benefited over 20,000 primary students 

with CoolThink classes. The CoolThink@JC approach prepares students for a fast-changing digital future through a hands-

on, minds-on, and joyful learning experience. An independent evaluation has found that students participated in 

CoolThink@JC grew twice as much in problem-solving skills when compared with non-participating students. Following the 

successful implementation of the four-year pilot, the second phase of the CoolThink@JC is launched in 2020, with the aim 

of mainstreaming computational thinking education.  

 

CTE2020 is held online on 19-21 August, 2020. Last year, the conference attracted over 600 worldwide scholars, educational 

practitioners and policymakers from 17 countries/ regions. The International Teacher Forum is first introduced this year to 

reach out to K-12 CT teachers. Under the pandemic, CTE2020 experienced reschedule and has switched from face-to-face to 

online mode. With the support from speakers, panelists, IPC Co-chairs, IPC members and paper authors, we have gone through 

challenges and are excited to welcome partcipants to join us at the conference to share their research and ideas.  

 

 

 

 

 

 

 



 

 “Computational Thinking Education” is the main theme of CTE2020 which aims to keep abreast of the latest development 

of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT development 

in school education. There are 16 sub-themes under CTE2020, namely: 

 

Computational Thinking 

Computational Thinking and Coding Education in K-12 

Computational Thinking and Unplugged Activities in K-12 

Computational Thinking and Subject Learning and Teaching in K-12 

Computational Thinking and Teacher Development 

Computational Thinking and IoT 

Computational Thinking and STEM/STEAM Education 

Computational Thinking and Data Science 

Computational Thinking and Artificial Intelligence Education 

Computational Thinking Development in Higher Education 

Computational Thinking and Special Education Needs  

Computational Thinking and Evaluation 

Computational Thinking and Non-formal Learning 

Computational Thinking and Psychological Studies 

Computational Thinking in Educational Policy 

General Submission to Computational Thinking Education 

 

 

 

 

 

 



 

The conference received a total of 46 submissions (32 full papers, 11 short papers and 3 poster papers) by 107 authors from 

19 countries/regions (see Table 1). 

Table 1: Distribution of Paper Submissions for CTE2020 

 

The International Programme Committee (IPC) is formed by 98 Members and 13 Co-chairs worldwide. Each paper with 

author identification anonymous was reviewed by at least three IPC Members. Related sub-theme Chairs then conducted 

meta-reviews and made recommendation on the acceptance of papers based on IPC Members’ reviews. With the 

comprehensive review process, 37 accepted papers are presented (12 full papers, 17 short papers and 8 poster papers) (see 

Table 2) at the conference.  

Table 2: Paper Presented at CTE2020 

 

 

Country / Region No. of Authors Country / Region No. of Authors 

Australia 2 Israel 3 

Brazil 5 Malaysia 4 

Canada 2 Singapore 10 

China 17 South Korea 8 

Cyprus 2 Spain 3 

Finland 5 Sweden 1 

Germany 8 Taiwan 14 

Greece 1 The Netherlands 4 

Hong Kong 4 

3 

United States 11 

India Total 107 

Sub-themes Full Paper Short 

Paper 

Poster 

Paper 

Total 

CT 1 0 0 1 

CT and Coding Education in K-12 3 2 2 7 

CT and Unplugged Activities in K-12 1 1 0 2 

CT and Subject Learning and Teaching in K-12 0 2 0 2 

CT and Teacher Development 1 2 0 3 

CT and IoT 0 1 0 1 

CT and STEM/STEAM Education 1 2 1 4 

CT and Artificial Intelligence Education  1 0 3 4 

CT Development in Higher Education 3 2 0 5 

CT and Evaluation 0 2 0 2 

CT and Non-formal Learning 0 0 1 1 

General Submission to CT Education 1 3 1 5 

Total 12 17 8 37 



 

On behalf of CoolThink@JC and the Conference Organizing Committee, we would like to express our gratitude towards all 

partners and participants for their contribution to the success and smooth operation of CTE2020. 

 

We sincerely hope everyone enjoy and get inspired from CTE2020. 

 

 

With Best Wishes, 

 

Prof. KONG, Siu-cheung 

The Education University of Hong Kong, Hong Kong 

Conference Chair of CTE2020  

 

Principal CHU, Tsz-wing 

St. Hilary’s Kindergarten and Primary Schools, Hong Kong 

Conference Chair of CTE2020 
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ABSTRACT 

Computational thinking (CT) aspires to be learned by 

everyone for active participation in society. However, 

differences in students’ learning of computational thinking 

within and between educational systems and differences in 

competence among students differentiated by social 

background and gender emerge. The IEA study ICILS 2018 

(International Computer and Information Literacy Study) 

addresses this issue by measuring competences in 

computational thinking and examining the conditions for the 

acquisition of competences in an international comparison. 

This allows in-depth analyses to answer the question to what 

extent differences in students' average competences in 

computational thinking can be explained by students' social 

background, their learning of computational thinking tasks 

at school, and their gender. For this purpose, regression 

analyses are carried out using data from three countries from 

three different continents (Republic of Korea, USA and 

Germany). The dependent variables are students' 

competences in computational thinking, their variance is to 

be explained by the independent variables social 

background, learning of computational thinking tasks at 

school and gender. The results show that performance 

differences in favor of students with socially privileged 

background exist in all three countries. Controlled by social 

background and gender, students' learning of computational 

thinking tasks at school shows significant negative 

relationships to their competences in computational thinking 

in the Republic of Korea and Germany. In addition, 

significant performance differences between girls and boys 

in favor of boys under control of social background and 

students' learning of computational thinking tasks at school 

in the USA and Germany show up. 

KEYWORDS 

computational thinking, ICILS 2018, school learning, 

students’ characteristics  

1. INTRODUCTION 
Computational thinking is growing in relevance as a key 

competence of the 21st century (Voogt, Fisser, Good, 

Mishra, & Yadav, 2015). From the perspective of Aho 

(2012), it is seen as a set of thought processes that are used 

to model problems and their solutions in a way that 

algorithmic processing becomes possible. The competences 

in computational thinking thus concern cognitive processes 

that go far beyond the mere application of hardware and 

software. In this understanding, computational thinking 

focuses on problem-solving processes that can be made 

accessible through the development and application of 

algorithms, associated processes of modeling and 

formalization of implementation on a computer or digital 

system. Students develop problem-solving skills in 

computational thinking that are independent of a 

programming language or development environment and 

can include both subject-specific and general aspects of 

problem-solving skills (Labusch, Eickelmann & 

Vennemann, 2019). 

However, computational thinking is differently or even not 

at all anchored in school curricula worldwide. According to 

analyses for the European Commission, computational 

thinking was already anchored in eleven European education 

systems (Bocconi, Chioccariello, Dettori, Ferrari & 

Engelhardt, 2016) as early as 2016, with further countries 

being added since then. In the overview of the different 

approaches in different countries and educational systems, 

also on an international level, three different approaches to 

the curricular anchoring of computational thinking can be 

identified (Eickelmann, 2019): (1) computational thinking 

as a cross-curricular competence, (2) computational thinking 

as part of computer science, and (3) computational thinking 

as an individual subject or learning area. 

However, since the first works by Papert (1980) and Wing 

(2006), a de facto consensus has emerged in theoretical or 

concrete curricular approaches on what is termed 

computational thinking regardless of the form in which the 

curriculum is anchored and how the concept of these 

competences has been developed. For the design of school 

support there is therefore still a need to advance the 

development of generally accepted strategies for describing 

and assessing competences in computational thinking (Barr 

& Stephenson, 2011). In addition, the dynamics of the 

competence area impeded the development of a theoretically 

sufficiently elaborated concept of computational thinking 

over the years, rendering this competence area difficult to 

measure (Grover & Pea, 2013).  

The empirical investigation of computational thinking has so 

far been complicated not least by the diversity of theoretical 

and empirical approaches and the diversity of the definitions 

underlying the often rather smaller studies or even by the 

complete lack of a working definition, and thus the lack of 

an explanation of the theoretical approach (e.g. Curzon, Bell, 

Waite & Dorling, 2019). Although not all curricula 

explicitly mention the field of computational thinking, often 

there are elements that can be assigned to this field. This 

shows that the constructs computational thinking is based on 

are in some places anchored in principle in the curriculum, 

but in many cases have not always been bundled to achieve 

their goals. Only in recent years, several studies emerged in 

an international context which explicitly focus on 

computational thinking. The results of these studies include 

the fact that existing test instruments are partly 

complementary. While the evaluation of items of the Bebras 
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competition (Dagiene & Futschek, 2008) refers to the 

analytic and apply levels of the taxonomy – i.e. general 

analytical thinking – and the evaluation mechanisms of the 

Dr. Scratch environment (Moreno-León & Robles, 2015), 

the Computational Thinking Test (CTt; Román-González, 

2015) with the levels Understand and Remember focuses on 

conceptual knowledge in computational thinking (Curzon et 

al., 2019). 

The IEA (International Association for the Evaluation of 

Educational Achievement) study ICILS 2018 (International 

Computer and Information Literacy Study) closes this gap 

(Fraillon et al., 2019). For the first time, an international 

additional module to investigate competences in 

computational thinking has been introduced. In an 

international comparison, the competences of eighth graders 

have been examined based on the representative student 

sample of ICILS 2018 by means of computer-based student 

tests developed in particular for this area, and the conditions 

for acquiring these competences assessed by background 

questionnaires. As this is an international option to the study, 

only a part of the in ICILS 2018 participating countries, 

including the Republic of Korea, the USA and Germany, 

participate in the additional module (Eickelmann, Bos, 

Gerick, Goldhammer, Schaumburg, Schwippert, Senkbeil, 

& Vahrenhold, 2019; Fraillon, Schulz, Friedman, & 

Duckworth, 2019). 

Within the scope of the additional module of the ICILS 2018 

study, an international group of experts developed a 

theoretical measurement construct for the field of 

computational thinking, which incorporates and evaluates 

existing approaches and concepts in the field of 

computational thinking, and thus combines them. The 

theoretical construct also formed the basis for the 

development of the computer-based test modules used in 

ICILS 2018 (Fraillon et al., 2019). In this construct, a 

distinction is made in the area of computational thinking 

between conceptualizing a problem (strand I) and 

operationalizing a solution (strand II). In ICILS 2018, 

computational thinking is defined as "an individual’s ability 

to recognize aspects of real-world problems which are 

appropriate for computational formulation and to evaluate 

and develop algorithmic solutions to those problems so that 

the solutions could be operationalized with a computer" 

(Fraillon et al., 2019, p. 91). 

A closer look at computational thinking in school reveals, 

for instance, that slightly less than two fifths (39.9%) of 

eighth graders in Germany have, according to their own 

statements, learned to break down a complex process into 

smaller parts at school at least to a medium extent. On 

international average (49.4%), the proportion is significantly 

higher than in Germany, as is the case for Luxembourg 

(47.5%), the Republic of Korea (57.5%), Finland (58.6%), 

Denmark (62.9%) and the USA (70.8%) (Eickelmann et al., 

2019). Differences between the countries can already be 

stated at this point. A systematic investigation of the 

relationship between students' competences in 

computational thinking and their school learning of 

computational thinking in an international comparison is 

lacking. However, this would be important for the further 

development of teaching computational thinking. 

Various studies have also focused on different groups of 

students according to individual student characteristics, in 

particular gender. Román-González, Pérez-González, and 

Jiménez-Fernandez (2017) found a statistically significant 

difference in competences in favor of the male members of 

the test group (t = 5,374; p < 0.01; effect size Cohens d = 

0.31). Atmatzidou and Demetriadis (2016) report that the 

computational thinking skills of girls improved significantly 

after an intervention and that girls and boys ultimately 

achieved the same level of qualification through the 

intervention. In other studies, e.g. by Werner, Denner, 

Campe and Kawamoto (2012) and Yadav et al. (2014), no 

gender differences were found. In ICILS 2018 there are, for 

instance, no differences in average competences in 

computational thinking between girls and boys in the 

Republic of Korea and in Germany, but in the USA of 

7 points in favor of boys. The dependence of student 

competence on their socio-economic background is known 

for other domains, e.g. mathematics and science (OECD, 

2019). In all ICILS-2018-participating countries there are 

striking differences in performance, differentiated by 

students' social background (Eickelmann et al., 2019; 

Fraillon et al., 2019). Other studies do not tend to focus on 

the relationship between students’ competences in 

computational thinking and their social background. 

Bringing all these insights together, it emerges that there is 

a lack of information on how school learning of 

computational thinking relates to competences in 

computational thinking under control of background 

characteristics that have previously been described as 

pervasive. 

In order to investigate this in more depth on an international 

comparative basis, three countries participating in ICILS 

2018 from three different continents were selected: The 

Republic of Korea (Asia), the USA (North America) and 

Germany (Europe). Thereby different educational systems 

are selected, which differ in teaching and culture. 

The current contribution thus deals with the following 

research question: 

To what extent can differences in students' average 

competences in computational thinking be explained by 

students' social background, by learning computational 

thinking tasks at school and by students' gender in three 

countries from three different continents? 

2. STUDY AND METHODS 
The research question will be answered with data from the 

internationally comparative large-scale assessment 

ICILS 2018 (International Computer and Information 

Literacy Study 2018; 2015–2019), which is coordinated by 

the IEA for the second time after ICILS 2013 (Fraillon et al., 

2019). In an international add-on module to the ICILS 2018 

study, the competences of eighth graders in the area of 

computational thinking were also measured for the first time 

in an international comparison (Eickelmann et al., 2019). In 

addition to the students' competences, the theoretical 

framework model of the study also covered the conditions 

for acquiring competences. Information on schools and 

individual prerequisites and processes was collected via 
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background questionnaires for the tested students, teachers, 

school principals and ICT coordinators. 

In each country that participated in ICILS 2018, the 

representative data basis realized via the tests and 

questionnaires was supplemented by information on context 

conditions collected from a national context survey. Nine of 

the ICILS 2018 participants, namely Denmark, Finland, 

France, Germany, Luxembourg, Portugal, the Republic of 

Korea, the USA and the benchmark participant North Rhine-

Westphalia (federal state of Germany), participated in the 

international option computational thinking (Eickelmann et 

al., 2019; Fraillon et al., 2019). For three out of nine 

participants from three different continents – the Republic of 

Korea (N=2.875 students), the USA (N=6.790 students) and 

Germany (N=3.655 students) – in-depth analyses were 

carried out and the results are reported in the following, to 

answer the research question by means of a regression 

analysis. 

Thus, the initial task involved identifying and measuring 

competences in computational thinking, the students' social 

background, their school learning in computational thinking, 

and their gender. They were measured with an 

internationally developed and elaborated set of instruments 

along a theoretical framework model in nine educational 

systems worldwide. The regression analysis comprises four 

models, whereby competences in computational thinking 

represent the dependent variable in regression modeling. 

Computer-based competence tests with a live software 

environment were developed and used to assess the 

competences in computational thinking of students in the 

eighth grade. Each student worked on two 25-minute test 

modules in computational thinking, including, for instance, 

visual coding tasks, nonlinear systems transfer tasks and 

simulation tasks (Eickelmann et al., 2019; Fraillon et al., 

2019). 

In the first two of the four models, the students’ social 

background represents independent variables. In model I, 

cultural capital is taken as an indicator of social background, 

operationalized by the number of books the students’ family 

own at home. In educational research, the number of books 

at home has proven to be a particularly effective indicator of 

the students' cultural capital (Hatlevik et al., 2018). The 

regression analyses refer to the distinction between students 

whose families have a maximum of 100 books (low cultural 

capital) and those who have more than 100 books (high 

cultural capital) at home (Eickelmann et al., 2019). 

Model II incorporates the medium and high HISEI values, 

which consider the economic resources in the parental home 

as a further indicator of social background. The so-called 

International Socio-Economic Index of Occupational Status 

(ISEI; Ganzeboom, de Graaf, Treiman, & de Leeuw, 1992) 

is an internationally standardized set of instruments to 

classify occupations and translate this into income estimates. 

The regression analysis refers to the highest occupational 

status of parents (HISEI). A low HISEI value (below 40 

points) applies to postmen and women, train attendants and 

hairdressers, for example. Police officers, nurses, social 

workers and administrative specialists have a medium 

HISEI value (40 to 59 points). A high HISEI value (60 and 

more points) is allocated, for example, to teachers, 

journalists and lawyers. 

In model III, the internationally developed index (Fraillon et 

al., 2019) for students' learning of computational thinking 

tasks at school (Cronbach's α = .90) is used as an 

independent variable. This index was formed based on a 

scale in the student background questionnaire. Students were 

asked to what extent they have been taught how to do 

different computational thinking related tasks (e.g. to break 

down a complex process into smaller parts) in the current 

school year. To a large extent, To a moderate extent, To a 

small extent, and Not at all were at their disposal as reply 

options. 

In model IV the students' gender - differentiated into male 

and female - was introduced. 

In the following, the unstandardized regression coefficients 

for each of the three countries Republic of Korea, USA and 

Germany are reported in four-step regression models, so that 

it is possible to interpret the content of these coefficients as 

point values by which the average student achievement 

(constant) changes when controlled by social background, 

students' learning of computational thinking tasks at school 

and gender. The coefficient of determination R² as a quality 

measure of linear regression indicates how well the 

independent variables are suited to explain the variance of 

the dependent variable or to predict its values. 

The sampling procedure in ICILS 2018 corresponded to the 

design of a two-stage cluster sample in which standard errors 

of a relevant statistic were estimated using the Jackknife 

Repeated Replication Technique (Rust, 2014). The analyses 

were performed using the IEA IDB Analyzer (Rutkowski et 

al., 2010), which was used as an add-on program to the IBM 

SPSS Statistics 25 software and estimates with 

corresponding student-level sample weights.  

3. RESULTS 
The following three tables show the resulting regression 

models for the Republic of Korea (table 1), the USA 

(table 2) and Germany (table 3). 

Table 1. Regression Model Explaining Differences in 

Students' CT by their Social Background, School Learning 

of CT and Gender in the Republic of Korea. 

 

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 31.7* (6.5) 23.5* (6.2) 23.6* (5.8) 23.6* (5.8)

medium HISEI value - - 16.0* (6.1) 15.7* (6.0) 16.1* (6.1)

high HISEI value - - 26.8* (7.5) 27.6* (7.2) 27.8* (7.2)

students' learning of computational 

thinking tasks at school
B - - - - -0.4* (0.2) -0.5* (0.2)

gender
C - - - - - - -7.8 (4.8)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05). 

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C 
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

Model I Model II Model III Model IV

515.3 510.3 532.0 536.4

.02 .02 .03 .03

©  ICILS 2018
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Table 2. Regression Model Explaining Differences in 

Students' CT by their Social Background, School Learning 

of CT and Gender in the USA. 

 

Table 3. Regression Model Explaining Differences in 

Students' CT by their Social Background, School Learning 

of CT and Gender in Germany. 

 

The first regression model (model I) shows that eighth-

graders with high cultural capital (more than 100 books in 

the home) in the Republic of Korea achieve on average 31.7 

points more in competences of computational thinking than 

those from families with low cultural capital (a maximum of 

100 books in the home). This difference is significant. With 

Model I, 2 percent of the variance in competences in 

computational thinking can be explained for the Republic of 

Korea. In the USA, a significant difference of 62.1 points 

can be observed regarding cultural capital, which is 

substantially higher than in the Republic of Korea. The 

variance explanation is 7 percent. In Germany, there is even 

a significant difference of 64.1 points in cultural capital with 

a variance explanation of 10 percent. 

Moreover, considering the economic resources in the 

parental homes, operationalized via the HISEI (model II), it 

is evident in all three countries that students from 

economically privileged parental homes achieve 

significantly higher scores in computational thinking than 

those living under economically less privileged conditions. 

In the Republic of Korea, the difference in cultural capital is 

reduced to 23.5 points. The difference between students with 

medium HISEI and those with other values is 16.0 points, 

while the difference between students with high HISEI and 

others is 26.8 points. In the Republic of Korea, as in the 

previous model, 2 percent of the variance can be explained 

with model II. In the USA the difference in cultural capital 

is reduced as well, in this case to 44.4 points. The difference 

by the medium HISEI value is 22.5 points and the difference 

by the high HISEI value is 48.0 points. The variance 

explanation of model II in the USA is 9 percent. In Germany, 

the difference according to cultural capital under controlling 

for HISEI is at 48.6 points. The difference between students 

with medium HISEI value and others is 30.2 points and the 

difference between students with high HISEI value and 

others is 51.2 points. The variance explanation for model II 

in Germany is 13 percent. 

Furthermore, taking the index students' learning of 

computational thinking tasks at school into account 

(model III), in the Republic of Korea there is a significant 

difference of 0.4 points. The relation between students’ 

competences in computational thinking and their learning of 

computational thinking tasks at school under control of their 

social background is negative. The involvement of the 

selected index increases the variance explanation of the 

competence to 3 percent. In the USA, there is no 

performance difference regarding students' learning of 

computational thinking tasks at school. The variance 

explanation does not change compared to the previous 

model and still amounts to 9 percent. In Germany, under 

control of the students' social background, a significant 

negative relationship between the students' competences in 

computational thinking and their learning of computational 

thinking tasks at school emerges (-0.7 points). The variance 

explanation increases to 14 percent. 

In the final model IV, the gender of the students is also taken 

as a predictor of competences in computational thinking. 

Under consideration of students' social background and their 

learning of computational thinking tasks at school, there is 

no significant performance difference between girls and 

boys in the Republic of Korea. The overall model thus 

explains 3 percent of the performance differences. The 

performance difference according to cultural capital in the 

Republic of Korea is 23.6 points in model IV as in model III, 

16.1 points in the medium HISEI value and 27.8 points in 

the high HISEI value. With regard to students' learning of 

computational thinking tasks, a significant negative 

relationship to competences in computational thinking of 

0.5 points results under control of social background and 

gender. In the USA, boys under control of social background 

and the learning of computational thinking tasks achieve 

significantly higher competences in computational thinking 

on average by 14.6 points than girls (model IV). The overall 

model thus explains 9 percent of the performance 

differences. The performance difference by cultural capital 

in the USA is 44.2 points in Model IV, 21.9 points in 

medium HISEI value and 46.4 points in high HISEI value. 

Regarding students' learning of computational thinking tasks 

under control of social background and gender there is no 

relationship to competences in computational thinking. In 

Germany, boys under control of social background and the 

learning of computational thinking tasks achieve 13.9 points 

more on average and therefore significantly higher 

competences in computational thinking than girls. The 

overall model explains 15 percent of the differences in 

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 62.1* (3.5) 44.4* (3.2) 43.5* (3.3) 44.2* (3.3)

medium HISEI value - - 22.5* (3.2) 21.8* (3.4) 21.9* (3.3)

high HISEI value - - 48.0* (3.9) 46.9* (4.2) 46.4* (4.3)

students' learning of computational 

thinking tasks at school
B - - - - 0.0 (0.2) 0.1 (0.2)

gender
C - - - - - - -14.6* (3.4)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05). 

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C 
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

Model I Model II Model III Model IV

477.4 466.8 468.5 474.3

.07 .09 .09 .09

©  ICILS 2018

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 64.1* (5.8) 48.6* (5.5) 54.0* (5.6) 54.9* (5.6)

medium HISEI value - - 30.2* (5.9) 24.5* (5.4) 24.8* (5.4)

high HISEI value - - 51.2* (8.0) 45.1* (7.2) 44.3* (7.2)

students' learning of computational 

thinking tasks at school
B - - - - -0.7* (0.3) -0.8* (0.3)

gender
C - - - - - - -13.9* (5.0)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05). 

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C 
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

489.8

.15

©  ICILS 2018

.10

Model II

443.5

.13

Model I

459.2

Model III

480.6

.14

Model IV
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performance. The performance difference according to 

cultural capital in Germany is 54.9 points in Model IV, 

24.8 points at medium HISEI value and 44.3 points at high 

HISEI value. Regarding students' learning of computational 

thinking tasks, there is still a significant negative correlation 

to competences in computational thinking under control of 

social background and gender. This is -0.8 points. 

In summary, there are large differences between and within 

the three countries. For example, there are substantial 

differences in competences in computational thinking by 

high and low cultural capital. The performance is thus 

closely linked to social background. However, this 

difference is not as substantial in the Republic of Korea as 

in the USA and Germany. This is also reflected in the fact 

that only 2 percent of the variance can be explained in 

Model I in the Republic of Korea, but 7 percent in the USA 

and even 10 percent in Germany. Despite the addition of a 

further indicator of social background and under the control 

of cultural capital, the explanation of variance remains the 

same in the Republic of Korea, in the USA it rises to 

9 percent and in Germany to 13 percent. At this point after 

model II, the explanation of variance in the USA's regression 

model no longer alters. Also, there is no relationship 

between students' school learning of computational thinking 

and their competences in computational thinking, not even 

under control of the gender of the students. Although there 

is a performance difference between girls and boys in favor 

of boys, this does not explain any further variance. In the 

Republic of Korea and in Germany, there is a slight but 

remarkable significant negative relationship between 

students' competences in computational thinking and their 

learning of computational thinking tasks at school. This 

results in a slightly higher variance explanation in model III 

according to model II in both countries. In Germany, this is 

further increased by the addition of gender in model IV, 

where under control of social background and students' 

learning of computational thinking tasks at school there is a 

significant difference in performance in computational 

thinking in favor of boys and more variance is explained. In 

the Republic of Korea, no more variance is explained in 

model IV and there is also no difference in performance 

between girls and boys. It can therefore be stated that in 

Germany, it is primarily the student characteristics, but also 

to a certain extent school learning, that play a role in the 

competences in computational thinking. In the Republic of 

Korea, social background and school learning play a role, 

but rather a subordinate one: hardly any variance is 

explained. In the USA, background characteristics play a 

role, but school learning does not. 

4. CONCLUSION 
It is certainly not unexpected that there are different results 

between countries. Common to all three countries is the 

close relationship between competences and social 

background, also remaining under control of other variables. 

This is worrying because a large proportion of the students 

worldwide have less chance of educational success due to 

their social background. It would be advisable to reduce 

differences so that all students – no matter how privileged 

the families are – can successfully participate in society. 

However, the ratio between students' competences in 

computational thinking and their learning of computational 

thinking at school varies across the three countries. While no 

correlation can be found in the USA under control of 

individual student characteristics, it is even slightly negative 

in the Republic of Korea and in Germany. Since an index 

was used for the present analyses, in further in-depth 

analyses it would be necessary to take another look at which 

aspects of computational thinking are particularly beneficial 

in teaching, but nevertheless the teaching of computational 

thinking should in any case be organized in such a way that 

it promotes students’ competences. To this end, in some 

countries it is initially necessary to embed computational 

thinking in school curricula. Another approach might be to 

teach computational thinking in a gender-sensitive way to 

reduce differences in competence between girls and boys. 

Generally speaking, the results show that there is a major 

need for development in all countries, and here it could be 

an objective to work on a number of adjustments in order to 

improve the results over the next few years, particularly with 

a view to ICILS 2023, and to give every student the 

opportunity to have sufficient competences in computational 

thinking in order to participate in society and later acquire a 

good profession. 
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ABSTRACT 

In order to guide computing education in K-12, several 

curricula and standards have been proposed, including the 

prominent K-12 Computer Science Framework. However, 

noting significant differences in content sequencing between 

curriculum guidelines, a question arises as to whether the 

proposed sequence is appropriate for learning. Furthermore, 

an analysis of the difficulty of these concepts is necessary to 

assist scaffold content sequencing or to assign different 

weights to the concepts in student assessment. Therefore, 

this paper presents the results of a large-scale analysis of 

computing concepts difficulty and compares it with the 

standards sequencing proposed by the K-12 Computer 

Science Framework. Our focus is on programming concepts, 

as in practice computing education in K-12 is typically 

approached by teaching algorithms and programming 

concepts. We perform an analysis using Item Response 

Theory based on the automatic assessment of over 88,000 

App Inventor projects with the CodeMaster rubric. The 

results demonstrate that the easiness of some concepts can 

be explained by their inherent characteristics, but also due to 

the characteristics of App Inventor as a programming tool. 

And, although the analysis demonstrates the alignment of 

the content sequencing of the K-12 Computer Science 

Standards with the difficulty, we also observed that some 

concepts related to algorithms and programming are not 

explicitly covered by the framework, such as strings and 

Boolean operators. Thus, the results of this research can be 

used by researchers as well as teachers to improve 

computing education in K-12. 

KEYWORDS 

computational thinking, App Inventor, K-12 computer 

science standards, Item Response Theory 

1. INTRODUCTION 
Computational thinking (CT) is making its way into K-12 

worldwide (Lye & Koh, 2014). Regardless of the area of 

expertise, it is important to know the fundamentals and basic 

principles of computing so that one can perform his activity 

fully. CT refers to the thought processes involved in creating 

algorithmic, or step-by-step, solutions that can be executed 

by a computer (Wing, 2006). In this context, several efforts 

have been made to develop guidelines and curricula for K-

12 computing education. One of the most prominent models 

is the K-12 Computer Science Framework (CSTA, 2016) 

defining standards, the sequencing of CT concepts and 

practices for different educational levels in K-12. The K-12 

Computer Science Framework contains five educational 

levels: 1A (for grades K-2 and ages 5-7), 1B (for grades 3-5 

and ages 8-11), 2 (for grades 6-8 and ages 11-14), 3A (for 

grades 9-10 and ages 14-16), and 3B (for grades 11-12 and 

ages 16-18). 

In practice, computational thinking is commonly taught 

focusing on algorithms and programming concepts and 

related CT practices (Grover & Pea, 2013) being one of the 

main knowledge areas of computing. This comprises the 

competency to develop algorithms to solve problems in a 

language computers can understand including several sub-

concepts in accordance with the K-12 Computer Science 

Framework (Fig. 1).  

 
Figure 1. CT practices and algorithms & programming 

concepts (CSTA 2016). 

Variables refer to storing and manipulating data from 

computer programs. Control concepts specify the order in 

which instructions are executed within an algorithm or 

program (e.g. using loops and/or conditionals). Modularity 

involves dividing complex tasks into simpler tasks and 

combining them to create something complex. Program 

development represents the software engineering process 

that is repeated until acceptance criteria are met (CSTA, 

2016). In addition, several CT practices are related to 

algorithms & programming as presented in Figure 1 (CSTA, 

2016).  Other guidelines and curricula, such as Computing 

at School (CAS, 2015) or the Australian Curriculum, 

Assessment and Reporting Authority (ACARA, 2015), 

cover similar basic concepts and practices. 

In order to introduce programming in K-12, typically visual 

block-based programming environments such as Scratch or 

App Inventor are used (Papadakis et al., 2017). Diverse 

instructional strategies are adopted, including well-

structured exercises such as Code.org, yet, often in a 

constructivist context, a problem-based learning approach 

with open-ended ill-structured programming activities is 

adopted (Law, 2016; Shute et al., 2017). These instructional 

units typically aim at teaching students to create their own 

games or mobile applications to solve real-world issues (Fee 



 

10 

& Holland-Minkley, 2010). In order to assess open-ended 

ill-structured problems, often performance-based 

assessments are performed based on the created software 

artifacts (Alves et al., 2019). These assessments aligned with 

curricula are typically based on rubrics scoring the ability to 

develop a software artifact, and, thus, indirectly inferring the 

achievement of CT practices and concepts (Sherman & 

Martin, 2015). Some CT rubrics have been automatized, 

such as Dr. Scratch (Moreno-León & Robles, 2015) and 

CodeMaster (Alves et al., 2020), allowing to assess students’ 

CT competences in an automated way.  

Yet, although research and practical applications of 

computing education in K-12 is strongly increasing 

worldwide, it seems often to be based on experience rather 

than systematic evidence. Thus, a question that remains is 

related to content sequencing indicating in what order should 

students learn concepts. The relevance of this question is 

also demonstrated by research in this area. In order to 

analyze CT progression, Seiter & Foreman (2013) used 

Scratch projects of students from grades 1-6 to identify how 

CT concepts varied by grade. Franklin et al. (2017) analyzed 

student projects from grades 4-6 in sequence, events, and 

initialization using LaPlaya (a Scratch-like programming 

language). Grover & Basu (2017) analyzed students’ 

misconceptions of loops, variables, and boolean logic from 

grades 6-8 also using Scratch. Lytle et al. (2019) analyzed 

CT progression on the "use-modify-create” lesson using 

Cellular environment (an extension of the block-based 

programming environment Snap!). Rich et al. 

(2017;2018;2019) analyzed K-8 learning trajectories for 

sequence, repetition, conditionals (Rich et al., 2017), 

decomposition (Rich et al., 2018) and debugging (Rich et al., 

2019) in Scratch studies integrating CT into Mathematics. 

But, although there are several studies analyzing some 

aspects of CT using visual programming environments, no 

research focusing directly on content sequencing in relation 

to the K-12 Computer Science Framework and specifically 

with respect to App Inventor has been found. 

Thus, the objective of this study is to analyze the proposed 

sequencing of the K-12 Computer Science Framework 

(CSTA, 2016) based on the observed difficulty of 

programming concepts in App Inventor projects. This 

analysis is enabled by using CodeMaster (an automated 

rubric). Specifically assessing CT in accordance with the K-

12 Computer Science Framework, the CodeMaster 

automated rubric assesses several items related to algorithms 

and programming concepts that can be extracted from the 

source code. 

2. CODEMASTER RUBRIC  
CodeMaster is an automated performance-based assessment 

rubric and grader. It enables an analysis of the code of App 

Inventor programs supported by a free web-based tool 

providing feedback to students and teachers in the form of a 

CT score on programming projects. The model has been 

developed based on a systematic mapping study (Alves, 

2019) following an instructional design process (Branch, 

2010) and the procedure for the rubric definition proposed 

by Goodrich (1996). Evaluation of reliability and construct 

validity indicated that the CodeMaster rubric can be 

regarded as reliable (Cronbach’s alpha α=0.84). With 

respect to construct validity, there also exists an indication 

of convergent validity based on the results of a correlation 

and factor analysis indicating that the rubric can be used for 

a valid assessment of algorithm and programming concepts 

of App Inventor programs as part of a comprehensive 

assessment completed by other assessment methods (Alves 

et al., 2020).  

The CodeMaster rubric is composed of 16 items related to 

algorithm and programming concepts, however, in this 

work, we are considering only items related to the K-12 

Computer Science Standards (Table 1) from levels 1B to 3A, 

and that can be found in apps of the App Inventor Gallery. 

We, thus excluded apps with extensions (as the App Inventor 

Gallery does not allow apps with extensions). Other 

standards, which cannot be automatically assessed, are also 

excluded from our analysis, as they are not present in the 

CodeMaster rubric. 

Table 1. K-12 Computer Science Standards (CSTA, 2017) 

present in CodeMaster rubric. 
Identifier 

 

K-12 Computer Science Standard A&P 

Subconcept 

Practice 

1B-AP-09 Create programs that use variables to store 

and modify data. 

Variables Creating 

Computational 

Artifacts 

1B-AP-10 Create programs that include sequences, 

events, loops, and conditionals. 

Control Creating 

Computational 

Artifacts 

1B-AP-11 Decompose (break down) problems into 

smaller, manageable subproblems to 

facilitate the program development process. 

Modularity Recognizing 

and Defining 

Computational 

Problems 

2-AP-11 Create clearly named variables that 

represent different data types and perform 

operations on their values. 

Variables Creating 

Computational 

Artifacts 

2-AP-13 Decompose problems and subproblems 

into parts to facilitate the design, 

implementation, and review of programs. 

Modularity Recognizing 

and Defining 

Computational 

Problems 

3A-AP-14 Use lists to simplify solutions, generalizing 

computational problems instead of 

repeatedly using simple variables. 

Variables Developing and 

Using 

Abstractions 

Based on these standards, the CodeMaster rubric defines 

items and performance levels for each item. The 

performance levels descriptors of the CodeMaster rubric are 

derived directly from the learning objectives of the K-12 

Computer Science Standards (standards identifiers are 

underlined in Table 2). The performance levels are described 

on ordinal scales, ranging from “criterion is not (or 

minimally) present” to advanced usage of the criterion. 

Table 2. Excerpt from the CodeMaster rubric items adopted 

for this research (Alves et al., 2020). 
Item  Performance Level   

0 1 2 3 

Variables 

 

No use of 

variables. 

Modification or use 

of predefined 

variables. 

1B-AP-09 

Creation and 

operation with 

variables. 

2-AP-11 

- 

Naming Few or no 

names are 

changed 

from their 

defaults. 

10 to 25% of the 

names are changed 

from their defaults. 

2-AP-11 

26 to 75% of the 

names are changed 

from their defaults. 

2-AP-11 

More than 75% 

of the names are 

changed from 

their defaults. 

2-AP-11 

Lists No lists are 

used. 

At least one list is 

used. 

3A-AP-14 

More than one list 

is used. 

3A-AP-14 

Lists of tuples are 

used. 

3A-AP-14 
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Events No type of 

event 

handler is 

used. 

One type of event 

handler is used. 

1B-AP-10 

Two or three types 

of event handlers 

are used. 

1B-AP-10 

More than three 

types of event 

handlers are used. 

1B-AP-10 

Loops No use of 

loops. 

Simple loops are 

used. 

1B-AP-10 

‘For each’ loops 

with simple 

variables are used. 

1B-AP-10 

’For each’ loops 

with list items are 

used. 

1B-AP-10 

Conditional No use of 

conditionals. 

Uses ‘if’ structure. 

1B-AP-10 

Uses one ‘if then 

else’ structure. 

1B-AP-10 

Uses more than 

one ‘if then else’ 

structure. 

1B-AP-10 

Procedural 

Abstraction 

No use of 

procedures. 

One procedure is 

defined and called. 

1B-AP-11 

More than one 

procedure defined. 

1B-AP-11 

There are 

procedures for 

code organization 

and re-use. 

2-AP-13 

The assessment using the CodeMaster rubric is automated 

by performing a static code analysis. The analysis is done by 

counting the kind and the number of command blocks used 

with respect to algorithms and programming concepts, such 

as variables, conditionals, loops, etc. The automated 

assessment is supported by the CodeMaster tool available 

on-line (http://apps.computacaonaescola.ufsc.br:8080/). 

3. RESEARCH METHOD 
Following the Goal Question Metric approach (Basili, 

Caldiera & Rombach, 1994), the objective of this study is 

defined as to analyze the difficulty and sequencing of the 

standards related to CT practices and Algorithms & 

Programming subconcepts from the K-12 Computer Science 

Standards (CSTA, 2017). To achieve this goal, a case study 

is conducted following Yin (2017).  

3.1. Data Collection 

Initially, we collected data in the form of App Inventor 

projects from the AppInventor Gallery. In order to optimize 

the sample size, we downloaded the publicly available and 

accessible apps from the App Inventor Gallery in June 2018. 

As a result, we obtained the source-code from 88,864 App 

Inventor apps. We assessed these projects using the 

CodeMaster tool. Out of the 88,864 downloaded projects, 

88,812 were successfully assessed with the CodeMaster 

rubric. 52 projects failed to be analyzed due to technical 

difficulties. The collected data were pooled in a single 

sample in order to analyze the concepts sequencing (rather 

than a specific app). 

3.2. Data Analysis 

In order to analyze the difficulty and sequencing, we use the 

Item Response Theory (IRT) Gradual Response Model 

proposed by Samejima (1969). IRT allows analyzing item 

properties, such as difficulty and discrimination, using 

falsifiable models. This is done by estimating the 

correspondence between an unobserved latent trait, in this 

case, CT, and observable evidence, in this case, the assessed 

App Inventor apps. The Gradual Response Model assumes 

that items are polytomous and its response categories are 

ordered (such as in CodeMaster rubric). Samejima’s model 

proposes a probabilistic model for parameter estimation that 

is not dependent on a specific set of items and is used to 

determine the probability for someone to receive a specific 

score (or higher), given the level of the underlying latent 

trait, which in this context is CT. 

Adopting IRT, for each item is estimated: the parameter a 

(common to all item categories) and the parameters b’s, 

indicating the distance from adjacent difficulty performance 

levels (see Fig. 2). The dataset was analyzed using the mirt 

package from the R programming language (Chalmers, 

2012). 

 
Figure 2. Difficulty parameters (b’s) for items with 4 

adjacent difficulty performance levels (as in CodeMaster 

rubric). 

Due to the focus on the individual properties of each item, 

IRT allows the placement of items on a scale that 

distinguishes what is easier and harder from the learner's 

point of view. Using the scale, the items order relations are 

compared to the K-12 Computer Science Standards 

sequencing. 

4. ANALYSIS 

4.1. Parameter estimation and scale creation  

Using the Gradual Response Model (Samejima, 1969) the 

parameters of the items are estimated. The metric is 

established by setting population parameters to average = 0 

and standard deviation = 1. Since the CodeMaster rubric 

contains ordinal polytomous items, several b parameters are 

estimated to differentiate the passage from one score to 

another:  

• b2 = represents the difficulty of getting score 1 on any 

item,  

• b3 = represents the difficulty of getting score 2 on any 

item,  

• b4 = represents the difficulty getting score 3 on any item.  

Consequently, items on a 2-point ordinal scale (no 

description for score 3) also do not present a parameter b4 

(example: item variables). In IRT, parameters a and b’s can 

theoretically assume any real value between −∞ and +∞. 

However, a negative value for a parameter is not expected. 

Typically values above 1.0 are considered good, as they 

indicate that the item discriminates well learners with 

different abilities. In this study, parameters b are the main 

indicators to be analyzed, as they indicate the difficulty of 

the item. For parameters b, values close to or within the 

range [-5, 5] are expected, with negative values indicating 

that an item has below average difficulty and positive values 

indicating above average difficulty. 

In general, most items were well estimated, with a parameter 

value above 1 (Table 3). In addition, the values of the 

difficulty parameters (b2, b3, and b4) are within the range [-

5, 5]. Only the item Lists presented parameter b4 slightly 

above 5. Standard errors (SE) of each parameter b presented 

similar results and are in low magnitude, therefore, 

presenting no estimation problem. 

Table 3. Parameters a and b’s estimated with standard 

errors (SE). 
Item a (SE) b2 (SE) b3 (SE) b4 (SE) 

Variables 2.97 (0.02) -0.83 (0.01) -0.01 (0.01) NA 
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Naming 1.68 (0.01) -0.31 (0.01) 0.07 (0.01) 1.89 (0.01) 
Lists 1.24 (0.01) 1.49 (0.01) 2.00 (0.02) 5.20 (0.07) 

Events 2.88 (0.02) -1.65 (0.01) -0.90 (0.01) -0.47 (0.01) 

Loops 1.77 (0.03) 2.14 (0.02) 2.29 (0.02) 2.57 (0.03) 
Conditional 2.32 (0.02) 0.34 (0.01) 0.80 (0.01) 1.57 (0.01) 

Procedural 

Abstraction 

3.18 (0.03) 0.99 (0.01) 1.08 (0.01) 1.19 (0.01) 

Analyzing the results, it can be inferred that obtaining 1 

point for the item Events is easier than in any other item 

since this item has the smallest b parameter (b2 = -1,65). On 

the other hand, obtaining 3 points for item Lists is more 

difficult than any other item, as it presents the highest value 

for a b parameter (b4 = 5.20). 

Based on the estimated difficulty parameters, the items are 

placed on a scale (0.1), i.e. with average = 0 and standard 

deviation = 1 (Figure 3). The scale is an “arbitrary” scale 

where the relations of order between its points are most 

important and not necessarily its magnitude. The items are 

arranged at the scale points according to the estimated 

difficulty parameters (b2, b3, and b4), as presented in Table 

3. For example, the b2 parameter of the item Events is equal 

to -1,65, so it is placed at point -1.5 of the scale. 

 
Figure 3. Placement of the items on the scale. 

From the placement of items on the scale, we can infer that 

an item with a parameter b estimated at 1.5 is 1.5 standard 

deviations above the average ability. Thus, this item is more 

difficult than all items that are placed below point 1.5 at the 

scale. In the context of App Inventor programming, the 

easiest items include events and variables (Figure 3), as 

these items have negative (below average) parameters b. 

These parameters are semantically consistent, as App 

Inventor encourages variable creation and unlimited use of 

events (Turbak et al., 2014). 

The most difficult items include lists and loops. Score 3 for 

the list item has the highest difficulty parameter (Lists b4), 

being the most difficult to achieve among all items. 

Although the loops item is also considered difficult, it is 

noteworthy that loop blocks in App Inventor programs are 

rarely used because many iterative processes that would be 

expressed with loops in other programming languages are 

expressed as an event that performs a single step of the 

iteration every time it is triggered (Turbak et al., 2014). 

Thus, the difficulty parameters of loops may be poorly 

represented through the App Inventor dataset, as more than 

94% of apps are assessed with 0 points in loops (see fig. 4). 

In other visual programming environments, such as Scratch, 

the usage of this concept and consequently the observed 

difficulty may be different. 

 
Figure 4. Frequency of the performance level score for 

each item. 

4.2. Comparison of K-12 Computer Science Standards 

sequencing with estimated IRT parameters  

Based on the results of the scale placement (Fig. 4), we 

analyze the content sequencing proposed by the K-12 

Computer Science Standards (Fig. 5). Here we expect that 

CodeMaster items that are easier should be sequenced on 

early levels (1B or 2) and those that are difficult are 

sequenced on final levels (2 or 3A). 

 
Figure 5. Positioning items on the scale. 

Most of the items are sequenced in accordance with their 

difficulty. For example, easy items are placed on levels 1 and 

2, e.g., events, variables, and naming. Events are widely 

used in App Inventor programs; even simple apps need 

events in order to function properly. Variables are also 

widely used, both as predefined and blocks to create/modify 

user variables. However, there are also some discrepancies 

between the degree of difficulty based on the IRT analysis 

and the placement of standards throughout K-12 (Figure 5). 

Naming (components and procedures) is essential to make 

the program understandable. However, it seems to be much 

harder than obtaining a low-medium performance level (1 or 

2 points) than to obtain a high-performance level (3 points) 

for Naming. In other words, the gap between Naming(2) and 

Naming(3) is bigger than the gap between Naming(1) and 

Naming(2). 

Items with medium difficulty are placed throughout all K-12 

Computer Science Standards levels (1B to 3A), including 

Conditional, Procedural Abstraction and the first 
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performance level for Lists (since Lists(2) and Lists(3) were 

placed together with difficult items). Conditionals include 

“if-then” or “if-then-else”. Although it seems there is no 

difference in using “if-then” (Conditionals(1)), or “if-then-

else” (Conditionals(2)), using more than one “if-then-else” 

(Conditionals(3)) is much harder as it was almost placed 

with difficult items (Fig. 5). Item Lists(1) was the only level 

3A item derived from the K-12 Computer Science Standards 

placed as a medium item. 

Difficult items include Lists(2), Lists(3), Loops and 

Naming(3). Being a level 3A concept in the K-12 Computer 

Science Standards (CSTA, 2017), Lists performance levels 

are expected to be placed together with more difficult items. 

However, Loops are a level 1A concept following the K-12 

Computer Science Standards, yet are placed together with 

difficult concepts. This, on the other hand, may be explained 

by the underrepresentation in the dataset as well as its 

needless use in many cases in App Inventor as stated by 

Turbak et al. (2014). 

5. DISCUSSION 
Considering the difficulty of items, we identified that events 

and variables are the easiest items when programming with 

App Inventor. Items with medium difficulty include 

conditional and procedural abstraction. The most difficult 

items are loops and lists, while the estimated high difficulty 

of loops may be influenced by its infrequent use in App 

Inventor projects. 

Analyzing the proposed content sequencing of curriculum 

guidelines on the example of the CSTA framework, we can 

observe that it is adequately aligned with the difficulty as 

determined via the IRT analysis (with exception of loops). 

For example, the proposal indicates addressing list concepts 

in level 3, being one of the most difficult concepts this is 

appropriate and allows a scaffolding approach.  

However, some concepts related to algorithms and 

programming are not explicitly included in CSTA 

framework/standards, for example, strings and Boolean 

operators, and, thus, were excluded from this analysis. 

Further evolutions of curriculum guidelines could, therefore, 

also explicitly start to include these concepts. 

5.1. Threats to validity 

One risk is related to grouping data from different contexts. 

The App Inventor programs come from various contexts in 

the worldwide App Inventor community, and no additional 

information about the creator history in App Inventor 

Gallery projects is available. As the goal in this work is to 

identify the relationship between standards difficulty, this is 

not considered a problem, although the results should be 

perceived considering that there is no information about 

which context the apps were created. Another threat 

regarding the possibility of generalizing the results is related 

to the sample size and projects of only one programming 

language. As one of the leading visual programming 

environments, App Inventor contains many of the 

algorithmic and programming concepts covered in K-12 

computing education and is similar to other environments, 

such as Scratch. Therefore, this risk is minimized by using a 

significant number of apps (over 88,000). Thus, the sample 

size is considered satisfactory, allowing the generation of 

significant results. Regarding the construct validity, 

measurements were systematically defined and data 

extraction was performed automatically, eliminating errors 

from manual extraction. The statistical technique used for 

the analysis was chosen based on the literature as one of the 

indicated techniques for this purpose. 

6. CONCLUSIONS 
Based on App Inventor projects, we analyzed the difficulty 

of Algorithms & Programming concepts as well as the 

alignment of the content sequencing as proposed by the K-

12 Computer Science Standards. We noticed that the 

sequencing of the standards is consistent with the difficulty 

of the concepts. We also observed that the difficulty of 

achieving performance levels of certain items may depend 

on the specific programming language. For example, the 

loops concept in App Inventor may be more difficult to learn 

since there are other ways to program an iterative process. 

The results of this analysis can be used to systematically 

discuss and improve the pedagogical sequencing of 

curriculum guidelines by adopting scaffolding techniques 

and comparisons with other reference frameworks. 
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ABSTRACT 

Computational Thinking (CT) and creativity are considered 

fundamental skills for future citizens. We studied the 

associations between these two constructs among middle 

school students (N=174), considering two types of 

creativity: Creative Thinking and Computational Creativity. 

We did so using log files from a game-based learning 

platform (Kodetu) and a standardized creativity test. We 

found that the more creative the students were (as measured 

by a traditional creativity test), the more effectively they 

acquired CT. We also found significant positive correlations 

between Computational Creativity and the acquisition of CT 

in some levels of the game, and a positive correlation 

between Creative Thinking and Computational Creativity. 

KEYWORDS 

computational thinking, creativity, game-based learning, 

learning analytics, log analysis  

1. INTRODUCTION 
The exponential growth in the data available from a plethora 

of resources and the significant development of science, 

make it essential for people to adopt skills that complement 

and provide the added value of computing capabilities to any 

field of expertise (Hambrusch, Hoffmann, Korb, Haugan, & 

Hosking, 2009). Both Computational Thinking and 

Creativity have been recognized as essential skills for the 

21st century (Kalelioğlu, Gülbahar, & Kukul, 2016; Sai d-

Metwaly, Noortgate, & Kyndt, 2017) and are crucially 

important for human development (Czerkawski, 2015).  

Computational Thinking (CT) is the conceptual foundation 

required to define and solve real-world problems using 

algorithmic methods to reach solutions that are transferable 

and necessary to various contexts and disciplines (Shute, 

Sun, & Asbell-Clarke, 2017). It is a skill that helps 

improving thinking abilities and provides techniques to 

extract knowledge hidden in the data (Buitrago Flórez et al., 

2017). 

Creativity is a thinking ability that enables problem-solving 

in an innovative manner, and the production of original and 

valuable products (Torrance, 1974). Despite having many 

definitions to this construct, there is an agreement that 

creativity is a multi-dimensional variable comprised of four 

characteristics: (1) Fluency – the ability to generate a large 

number of ideas and directions of thought for a particular 

problem; (2) Flexibility – the ability to think about as many 

uses and classifications as possible for a particular item or 

subject; (3) Originality – the ability to think of ideas that are 

not self-evident or banal or statistically ordinary, but rather 

unusual and even refuted, and (4) Elaboration – the ability 

to expand an existing idea, develop and improve it by 

integrating existing schemes with new ideas (Guilford, 

1950; Torrance, 1965).  

Similar to CT, creativity has been identified as crucial to 

human inventive potential in all disciplines, and it is evident 

that its influence dominates various spheres of life 

(Navarrete, 2013). However, for many years, these two skills 

remained within their content areas - CT was mainly taught 

in the context of Science, Technology, Engineering, and 

Mathematics (STEM) fields, and creativity in the fields of 

design and art. We have come to a point where there is an 

understanding that both can be nurtured and should be 

included across the curriculum from an early age (Beghetto, 

2010; Vygotsky, 2004). Indeed, creativity involves a set of 

thinking tools that overlap with the fundamentals of 

Computer Science—specifically, observation, imagination 

and visualization, abstraction, and creation and 

identification of patterns (Yadav & Cooper, 2017)—which 

can support the development of creativity. For this reason, 

various educational initiatives worldwide have begun to 

establish national K-12 curricula, academic standards, and 

instructional computerized and unplugged activities that 

promote these skills (ISTE, 2017; World Economic Forum, 

2015). 

With the recognition of its importance, CT has been 

integrated into school curricula around the world, and many 

online platforms, especially game-based learning platforms, 

have been developed to support and promote its acquisition 

(Kim & Ko, 2017). Some of these platforms—like 

CodeMonkey™ or Hour of Code™—take advantage of the 

game-based learning approach, which promotes learning 

through fun, interactive and rewarding game-play, in order 

to increase engagement and motivation for learning and to 

improve academic achievements in the long run (Ibanez, Di-

Serio, & Delgado-Kloos, 2014; Kazimoglu, Kiernan, Bacon, 

& MacKinnon, 2012; Vu & Feinstein, 2017). However, 

while encouraging the acquisition of CT in a fun, engaging 

way, these platforms promote efficiency and sometimes 

limit creativity (for example, when not allowing free use of 

coding blocks). This is most evident when a learner submits 

a solution which may be considered as creative, but as it is 

not the most efficient solution anticipated by the platform, 

the learner would not get a full score for it. 

Research on CT and creativity has been conducted from 

different perspectives, looking at both creativity within the 

scope of CT and the influence of the two constructs on each 

other (Miller et al., 2013; Seo & Kim, 2016). However, only 

limited research exists on the relationship between these two 

perspectives. Creativity may be dependent on the learning 
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context and the measuring tool (Reiter-Palmon, Illies, Kobe 

Cross, Buboltz, & Nimps, 2009). Therefore, we explore the 

associations between different measures and perspectives of 

creativity and look for connections between them and CT 

acquisition. 

2. RESEARCH QUESTIONS 
To avoid confusion, we use Creative Thinking to refer to a 

traditional measure of creativity that has no connection to 

the platform being used, and Computational Creativity to 

refer to a measure of how creativity is manifested inside the 

platform, as reflected by the frequency (originality) of a 

given solution among all other solutions (detailed in section 

3.5). To meet our research goal, we formulated the following 

research questions: 

1. What are the associations between the acquisition 

of CT and Creative Thinking? 

2. What are the associations between the acquisition 

of CT and Computational Creativity?  

3. What are the associations between Computational 

Creativity and Creative Thinking? 

3. METHODOLOGY 

3.1. The Learning Platform: Kodetu 

Kodetu is a web app built using Google's Blockly for 

teaching basic programming skills (Eguíluz et al., 2017). 

The environment has three official games, and it is also 

allowing users to create their own games. Each of Kodetu's 

levels presents the user with a challenge in which an 

astronaut should get to a marked destination. The user has to 

define the astronaut's movements using coding blocks in the 

workspace. Each level of the game presents one or more CT 

concepts (e.g., sequences, loops, etc.). Moving to the next 

level is possible only upon completing the current level 

successfully. It should be noted that a user can reset the level 

and solve it again. The system is offered in three languages: 

English, Spanish, and Basque. While the app is being used, 

the system logs any action taken by its users. 

For our broad study, a dedicated game was created in the 

Kodetu platform. The game includes ten levels with 

increased difficulty. In this paper, we present part of our 

work covering levels 1-9. The first four levels are designed 

with the aim of practicing the concept of sequences. Level 1 

presents a trivial level to show how the system works. Level 

2 and 3 involve turns and perspective. Level 4 presents a 

challenge where a long sequence of actions, including more 

than one rotation, is needed to reach the goal. Level 5 limits 

the number of blocks that can be used (i.e., code length) to 

prevent participants from using long sequences and to 

encourage them to take advantage of new code structures of 

loops. Level 6 presents a trivial challenge that deals with 

sequences and loops. Level 7 (Shown in Figure 1) also works 

on sequences and loops with limitation of blocks’ usage. 

Level 8 limits the number of blocks that can be used (i.e., 

code length) to prevent participants from using long 

sequences and to encourage them to take advantage of new 

code structures of conditionals. Level 9 introduces If-Else 

conditionals and requires nested structures and a limited 

number of blocks. Solving the entire set of levels is intended 

to take 30 to 60 minutes. While the platform is being used, 

the system logs any action taken by its users. 

 
Figure 1. An Example Level of Kodetu (level 7) 

3.2. Population and Research Design  

For this study, we analyzed the actions of 174 middle-school 

Spanish students, 11-12 years old (55% boys and 45% girls) 

from two different schools. The students arrived to an 

outreach activity organized by the Faculty of Engineering of 

the University of Deusto and participated in a workshop 

about technology, programming, and robotics. During this 

workshop, the students played the designated Kodetu game 

for about 60 minutes. For the vast majority of the students, 

it was their first encounter with programming experience 

(78%, 136 of 174). In addition, 60% of students (105 of 174) 

reported they have a high affinity for technology.  

Prior to the Kodetu session, all participants completed a pen-

and-paper creativity task (Torrance's TTCT – Figural Test; 

see section 3.4). Data from Kodetu log files were 

triangulated with the data obtained via the creativity task 

using a unique ID for each participant. This ID was produced 

by Kodetu and was written down on the creativity test form 

by the participants. In addition, participants were asked to 

provide demographic data (age, gender), previous 

programming background (yes/no), and affinity to 

technology (1-low to 10-high).  

3.3. Dataset and Preprocessing 

The full log file included 163,137 rows, each representing 

an action taken by a user, including its timestamp, the level 

in which it was taken, its result [Success, Failure, Timeout, 

Error], and the code associated with this action.  

3.4. Research Tool 

We used the Torrance Test for Creative Thinking (TTCT) – 

Figural Test (Torrance, 1974) to assess Creative Thinking in 

four dimensions: fluency, flexibility, originality, and 

elaboration. In this pen-and-paper test, each student was 

presented with a sheet on which 12 identical, empty circles 

were printed. Students were asked to make as many 

drawings as possible using the circles as part of the 

drawings. An eligible drawing used the circle as part of the 

drawing. See examples in Figure 2.  
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Figure 2. Example of Eligible (top row) and Non-eligible 

(bottom row) Drawings from TTCT – Figural Test 

3.5. Variables 

3.5.1. Computational Thinking 

We focused on three variables to measure the acquisition of 

computational thinking, each computed for all levels as well 

as for each level separately. 

• Solution Attempts. 

• Correct Solution Attempts. 

• Average Time [min].  

3.5.2. Creative Thinking 

To score the creativity task, we used eligible drawings only, 

that is, drawings in which the circle was considered an 

important part of the drawing. In order to ensure the 

reliability of determining eligibility, each of the first two 

authors coded 20 sheets for eligibility separately; then, we 

ran an inter-rater reliability assessment using Cohen’s kappa 

and got a satisfying coefficient of 0.81. The authors then 

discussed borderline cases and agreed on guidelines for the 

rest of the coding, which was done by the first author. 

Similarly, each of the first two authors separately coded 20 

sheets for categories and then discussed their codes until full 

agreement achieved. The rest of the coding was done by the 

first author, with frequent discussions throughout this 

process about their very definitions and about splitting and 

merging categories. At the end of this iterative process, the 

final list consisted of 59 categories, e.g., "Emoji", "Sun", 

"Flower", "Signpost".  

Finally, we computed the following four variables (for each 

student): 

• Fluency – Number of eligible drawings; 

• Flexibility – Number of different drawings' 

categories; 

• Originality – Average frequency of the drawing 

categories, across all drawings; 

• Elaboration – Number of ideas/details used in each 

eligible drawing; 

3.5.3. Computational Creativity  

Our analysis focuses on the originality of a correct solution 

as a proxy for creativity. This is due to the fact that the 

Kodetu platform, similarly to many other platforms, does not 

explicitly encourage multiple solutions, and once a level is 

solved, participants are immediately encouraged to move to 

the next level. Therefore, fluency, flexibility, and 

elaboration are not applicable in our analysis.  

The originality is represented by the frequency of this 

solution among all the correct solutions for this level. That 

is, the rarer a solution is, the more creative it is considered. 

When there were multiple correct solutions for an individual 

participant, we calculated the average across her or his 

correct solutions. The originality was calculated for each 

level separately and also aggregated for all Levels.   

4. FINDINGS 

4.1. Descriptive Statistics of the Research Variables 

In order to better understand the associations between 

Computational Thinking, Creative Thinking, and 

Computational Creativity, we first report on descriptive 

statistics of each of the variables. All statistical analyses 

used IBM SPSS version 25. 

4.1.1. Computational Thinking 

We found that among all participants, the average Solution 

Attempts was 6.16 (SD=3.08), and Correct Solution Attempt 

was 1.06 (SD=0.19). The Average Time it took to solve each 

level was 5.13 minutes (SD=11.99).  

Overall, there was an increasing trend in Level Solution 

Attempts, with R2=0.49 for the graph trend line (see Figure 

3), indicating the increasing difficulty of the game. A similar 

trend was found for the Level Average Time, excluding a 

decrease between Level 1 to level 3, which might be related 

to the participants' adaptation to the interface in these initial 

levels. In addition, there is a decrease from level 8 to 9 that 

may be associated with the presentation of the concept of 

conditionals in level 8. 

 
Figure 3. Solution Attempts and Average Time by Level 

When comparing the performance by Gender, we found that 

the average Solution Attempts was greater for girls than for 

boys (M=6.48, SD=3.5, and M=5.93, SD=2.79, 

respectively). The Average Time was also greater for girls 

than for boys (M=3.17, SD=2.96, and M=2.87, SD=2.58, 

respectively). 

4.1.2. Creative Thinking 

As indicated above, Creative Thinking consisted of four 

dimensions (fluency, flexibility, originality, and 

elaboration). Based on normality tests (H.-Y. Kim, 2013), 

we assumed normality (Skewness<0.5 in absolute value) for 
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all dimensions of Creative Thinking except originality. A 

summary of the statistics is presented in Table 1. 

We should comment on the relatively high mean value of 

originality (M=0.89, SD=0.16, N=174). Recall that we 

defined 59 categories of drawings for the TCTT – Figural 

Test. The distribution of the categories was in a "long tail" 

shape; that is, many categories had a very low frequency 

(i.e., were highly original), and only a few had relatively 

high frequency (i.e., were not original). The least original 

category ("Emoji") had a frequency of 75%. 

Table 1. Descriptive Statistics for Creative Thinking 

Variable Average 

(SD) 

Median Skewness 

(SE) 

Fluency  6.96 (3.65) 7 -0.23 (0.18) 

Flexibility  4.25 (2.94) 4 0.48 (0.18) 

Originality  0.89 (0.16) 0.94 -4.43 (0.18) 

Elaboration  2.88 (0.89) 2.83 -0.12 (0.18) 

4.1.3. Computational Creativity 

Among all participants, the Computational Creativity score 

was low, as indicated by an average value of 0.24 

(SD=0.24). No clear trend was observed throughout the 

game (See Table 2). In more than half of the cases, we could 

not assume normality (H.-Y. Kim, 2013), as can be seen 

from the high levels of the Skewness coefficients (that is, 

higher than 1). In most levels, one dominant solution was 

observed despite the existence of several others, as solved 

by a minority of students. Exceptions were levels 7 and 8, 

where only a single solution was observed for the whole 

population, probably because of the design of these levels 

and their block limit. Levels 4 and 6 showed the highest 

variability among participants. 

Table 2. Descriptive Statistics for Computational Creativity 

Level Average 

(SD) 

Median Skewness 

(SE) 

1 0.17 (0.25) 0.9 2.91 (0.18) 

2 0.21 (0.27) 0.11 2.35 (0.19) 

3 0.1 (0.2) 0.05 3.96 (0.18) 

4 0.67 (0.19) 0.7 0.49 (0.19) 

5 0.03 (0.13) 0.02 7.48 (0.18) 

6 0.63 (0.17) 0.67 0.67 (0.19) 

7 0.02 (0.72) - - 

8 0.02 (0.09) - - 

9 0.45 (0.15) 0.42 -1.78 (0.2) 

4.2. Creative Thinking and the Acquisition of 

Computational Thinking  

We tested the correlation between the Computational 

Thinking variables and the Creative Thinking variables. We 

found that Flexibility and Originality were significantly 

negatively correlated with Average Time, with Spearman’s 

ρ taking values of -0.16 and -0.18, respectively, at p<0.05. 

Likewise, we found a significant negative correlation 

between Flexibility and Solution Attempts, with ρ=-0.17, at 

p<0.05. When we examined the correlation between the two 

variables by level, we found five cases – levels 1, 3, 5, 6, and 

7 – which demonstrated significant correlations. Note that 

except for one case (level 1), all correlations were negative 

(findings are summarized in Table 3). These results indicate 

that the more creative the students were (as measured by 

a traditional creativity test), the less time and effort it took 

them to solve the levels in the game.      

Table 3. Correlations between Computational Thinking and 

Creative Thinking by Levels (N=174) 

 Solution 

Attempts 

Correct 

Solution 

Attempts 

Average 

Time 

Fluency 

Level 1 ρ=-0.04 

p=0.62 

ρ=0.04 

p=0.65 

ρ=-0.16* 
 

Flexibility 

Level 1 ρ=-0.04 

p=0.58 

ρ=-0.01 

p=0.94 

ρ=0.15* 

 

Level 7 ρ=-0.18* ρ=0.00 

p=0.96 

ρ=-0.14 

p=0.07 

Originality 

Level 5 ρ=-0.15* ρ=-0.06 

p=0.42 

ρ=-0.04 

p=0.62 

Elaboration 

Level 1 ρ=0.1 

p=0.19 

ρ=-0.15 

p=0.05 

ρ=-0.27** 

 

Level 3 ρ=0.11 

p=0.14 

ρ=-0.15 

p=0.05 

ρ=-0.19** 

 

Level 6 ρ=-0.2** ρ=-0.16* ρ=-0.21** 

* p<0.05, ** p<0.01 

4.3. Computational Creativity and the Acquisition of 

Computational Thinking  

Next, we tested the associations between Computational 

Thinking and Computational Creativity as the latter is 

reflected by the originality of a correct solution in a given 

level compared with all other correct solutions. We did so 

both for the aggregated measures, as well as for each level 

of the game separately. We found that overall, 

Computational Creativity is negatively correlated with 

Solution Attempts, with ρ=-0.17, at p<0.05, and with 

Average Time, with ρ=0.2, at p<0.01. We also found four 

cases – levels 3, 4, 6, and 9 – which demonstrated 
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significant positive correlations, as reported in Table 4. 

These results indicate that the more creative the students 

were in producing a solution, the more time and effort it 

took them to solve levels in the game.    

Table 4. Correlations between Computational Thinking and 

Computational Creativity by Levels (N=174) 

 Solution 

Attempts 

Correct 

Solution 

Attempts 

Average 

Time 

Level 3 ρ=0.14 

p=0.08 

ρ=0.05 

p=0.53 

ρ=0.27** 

Level 4 ρ=0.14 

p=0.06 

ρ=-0.02 

p=0.78 

ρ=0.25** 

Level 6 ρ=0.17* 

 

ρ-0.08 

p=0.28 

ρ=0.11 

p=0.16 

Level 9 ρ=0.18* ρ=0.1 

p=0.27 

ρ=0.33** 

* p<0.05, ** p<0.01 

4.4. Computational Creativity and Creative Thinking  

Finally, we examined the associations between creativity 

related measures: Computational Creativity and Creative 

Thinking. We found a significant positive correlation 

between originality and the aggregated variable of 

Computational Creativity, with ρ=0.2, at p<0.01. In 

addition, when examining these correlations between the 

variables for each level separately, we found that in one case 

– levels 6 – originality was positively correlated with 

Computational Creativity, with ρ=0.19, at p<0.05). These 

results indicate that students who created more original 

drawings in the TTCT task were more creative in the 

game.  

5. DISCUSSION 
Various studies have investigated the associations between 

computational thinking (CT) and creative thinking, 

however, this study is among the pioneers who examine 

these associations with Computational Creativity. In this 

study, we investigated the associations between the 

acquisition of CT by middle-school students who used a 

game-based learning platform, referring to two types of 

creativity – Creative Thinking and Computational 

Creativity. The first was defined by a traditional creativity 

test, not related to CT, while the second by the originality of 

correct solutions within the learning platform. Overall, we 

found interesting associations between the three research 

variables. Two dimensions of Creative Thinking—namely 

flexibility, and originality—were negatively correlated with 

measures of CT. As students were more creative in the 

TTCT task, they needed less time and effort to solve the 

levels in the game. This is in line with an earlier study that 

indicates a positive relationship between standardized 

creativity testing and students' performance (Anwar, Aness, 

Khizar, Naseer, & Muhammad, 2012). Furthermore, these 

findings reinforce the claim that creativity contributes to 

computer science and CT in particular (Kong, 2019; Miller 

et al., 2013). 

Notably, we found that at some level of the game, there was 

a positive correlation between Computational Creativity and 

measures of the acquisition of CT. That is, students who 

provided more unique and original solutions needed more 

time and attempts to solve these levels. This is not surprising 

as producing a creative solution may take more time than a 

"standard" solution (Akinboye, 1982; M. Baer & Oldham, 

2006).  

We also found some intriguing associations between the two 

types of creativity. Computational Creativity was positively 

correlated with the originality dimensions of Creative 

Thinking. These results may imply that creativity is context-

dependent (as the associations were only demonstrated in 

some of the game-levels) as well as transferable from one 

domain to another. This supports the hierarchical model of 

creativity, which integrates both domain-general and 

domain-specific types of creativity (Baer, 2010; Hong & 

Milgram, 2010). It also reflects earlier findings that linking 

TTCT score and creativity in problem-solving in 

programming platforms (Liu & Lu, 2002).  

While the results and insights of this study contribute in 

offering a better understanding of the associations between 

CT and type of creativity, we also want to highlight its 

limitations. First, we analyzed data from a single learning 

platform (Kodetu), and it is possible that our findings were 

a result of some unique characteristics of this platform. 

Specifically, the studied platform does not encourage 

multiple correct solutions and, in some cases, limits the free 

use of coding blocks, which may affect and limit creative 

submission. Furthermore, the analysis is based on students 

from a single country (Spain). Personal and cultural 

characteristics may impact the way creativity is exhibited. 

Therefore, we plan to broaden our perspective by examining 

similar platforms under different conditions and with a more 

multi-cultural view. 

6. REFERENCES 
Akinboye, J. O. (1982). Correlates of Testing Time, Age and 

Sex in the Nigerians’ Performance on the Torrance Test of 

Creativity. Journal of Psychological Researches, 26(1), 1–

5. 

Anwar, M. N., Aness, M., Khizar, A., Naseer, M., & 

Muhammad, G. (2012). Relationship of Creative Thinking 

with the Academic Achievements of Secondary School 

Students. International Interdisciplinary Journal of 

Education, 1(3), 1–4. 

Baer, J. (2010). Is Creativity Domain Specific? In J. C. 

Kaufman & R. J. Sternberg (Eds.), The Cambridge 

Handbook of Creativity (pp. 321–341). New York, NY: 

Cambridge University Press. 

Baer, M., & Oldham, G. R. (2006). The Curvilinear Relation 

between Experienced Creative Time Pressure and 

Creativity: Moderating Effects of Openness to Experience 

and Support for Creativity. Journal of Applied Psychology, 

91(4), 963–970.  

Beghetto, R. A. (2010). Creativity in the Classroom. In 

Kaufman, J. C. & R. J. Sternberg (Eds.), The Cambridge 

Handbook of Creativity (pp. 447–463). New York, NY: 

Cambridge University Press. 

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., 

Restrepo, S., & Danies, G. (2017). Changing a 

Generation’s Way of Thinking: Teaching Computational 



 

20 

Thinking through Programming. Review of Educational 

Research, 87(4), 834–860.  

Czerkawski, B. (2015). Computational Thinking in Virtual 

Learning Environments. Proceedings of E-Learn: World 

Conference on E-Learning in Corporate, Government, 

Healthcare, and Higher Education. Kona, Hawaii, United 

States: Association for the Advancement of Computing in 

Education (AACE), 1227-1231. 

Guilford, J. P. (1950). Creativity. The American 

Psychologist, 5(9), 444–454.  

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & 

Hosking, A. L. (2009). A Multidisciplinary Approach 

towards Computational Thinking for Science Majors. 

ACM SIGCSE Bulletin, 41(1), 183.  

Hong, E., & Milgram, R. M. (2010). Creative Thinking 

Ability: Domain Generality and Specificity. Creativity 

Research Journal, 22(3), 272–287.  

Ibanez, M.-B., Di-Serio, A., & Delgado-Kloos, C. (2014). 

Gamification for Engaging Computer Science Students in 

Learning Activities: A Case Study. IEEE Transactions on 

Learning Technologies, 7(3), 291–301. 

ISTE. (2017). Turn Coders into Computational Thinkers. 

Retrieved July 30, 2017, from 

https://www.iste.org/explore/articleDetail?articleid=936&

category=Innovator-

solutions&article=Turn+coders+into+computational+thin

kers  

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A 

Framework for Computational Thinking Based on a 

Systematic Research Review. Modern Computing, 4(3), 

583–596. 

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. 

(2012). Learning Programming at the Computational 

Thinking Level via Digital Game-play. Procedia 

Computer Science, 9(0), 522–531.  

Kim, A. S., & Ko, A. J. (2017). A Pedagogical Analysis of 

Online Coding Tutorials. In M. E. Caspersen, S. H. 

Edwards, T. Barnes, & D. D. Garcia (Eds.), Proceedings 

of the 2017 ACM SIGCSE Technical Symposium on 

Computer Science Education - SIGCSE ’17. New York, 

NY: ACM, 321–326.  

Kim, H.Y. (2013). Statistical Notes for Clinical Researchers: 

Assessing Normal Distribution (2) Using Skewness and 

Kurtosis. Restorative Dentistry & Endodontics, 38(1), 52–

54.  

Kong, S. (2019). Components and Methods of Evaluating 

Computational Thinking for Fostering Creative Problem-

solvers in Senior Primary School Education. In S. Kong & 

H. Abelson (Eds.), Computational Thinking Education, 

119–142. Singapore: Springer. 

Liu, M.C., & Lu, H.F. (2002). A Study on the Creative 

Problem-solving Process in Computer Programming. 

Paper presented at the International Conference on 

Engineering Education, Manchester, UK. 

Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., 

Shell, D. F., Ramsay, S., & Hazley, M. P. (2013). 

Improving Learning of Computational Thinking Using 

Creative Thinking Exercises in CS-1 Computer Science 

Courses. Proceedings of Frontiers in Education 

Conference, FIE, 1426–1432.  

Navarrete, C. C. (2013). Creative Thinking in Digital Game 

Design and Development: A Case Study. Computer 

Education, 69, 320–331.  

Reiter-Palmon, R., Illies, M. Y., Kobe Cross, L., Buboltz, 

C., & Nimps, T. (2009). Creativity and Domain 

Specificity: The Effect of Task Type on Multiple Indexes 

of Creative Problem-solving. Psychology of Aesthetics, 

Creativity, and the Arts, 3(2), 73–80.  

Said-Metwaly, S., Noortgate, W. Van den, & Kyndt, E. 

(2017). Methodological Issues in Measuring Creativity: A 

Systematic Literature Review. Creativity. Theories – 

Research - Applications, 4(2), 276–301.  

Seo, Y.-H. & Kim, J.-H. (2016). Analyzing the Effects of 

Coding Education through Pair Programming for the 

Computational Thinking and Creativity of Elementary 

School Students. Indian Journal of Science and 

Technology, 9(46), 1–5.  

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). 

Demystifying Computational Thinking. Educational 

Research Review, 22, 142-158 .  

Torrance, E. P. (1965). Scientific Views of Creativity and 

Factors Affecting its Growth. Daedalus, 94(3), 663–681. 

Torrance, E. P. (1974). Torrance Tests of Creative Thinking. 

Bensenville, IL: Scholastic Testing Service. 

Vu, P. & Feinstein, S. (2017). An Exploratory Multiple Case 

Study about Using Game-based Learning in STEM 

Classrooms. International Journal of Research in 

Education and Science, 582–582.  

Vygotsky, L. S. (2004). Imagination and Creativity in 

Childhood. Journal of Russian and East European 

Psychology, 42(1), 7–97. 

World Economic Forum. (2015). New Vision for education 

unlocking the potential of technology. Geneva, 

Switzerland: World Economic Forum. 

Yadav, A. & Cooper, S. (2017). Fostering Creativity through 

Computing. Communications of the ACM, 60(2), 31–33.   

 

  



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y.,  Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht, 

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020. 

Hong Kong: The Education University of Hong Kong. 

21 

Towards using Computational Modeling in learning of Physical Computing – An 

Observational Study in Singapore Schools  

 
Peter, Sen-Kee SEOW1, Bimlesh WADHWA2, Zhao-Xiong LIM3, Chee-Kit LOOI4 

2National University of Singapore, Singapore 

1,3,4 National Institute of Education, Nanyang Technological University, Singapore 

peter.seow@nie.edu.sg, bimlesh@nus.edu.sg, zhaoxiong.lim@nie.edu.sg, cheekit.looi@nie.edu.sg 

ABSTRACT  
Coding for students is no longer just constrained to software 

and screen-based text and graphics. Students today use 

programmable sensors and microprocessors to solve the 

problems around them. The purpose of this research is to 

understand how students conceptualize problems and 

implement solutions with physical computing. Our study is 

driven by the following: 1) find out what Computational 

Thinking (CT) competencies, specifically abstraction, 

decomposition and algorithmic thinking, can be developed 

by students and 2) to what level students develop these 

competencies in carrying out physical computing projects. 

We closely observe how 41 Grade 7 students developed 

solutions for problems they identify in the physical world 

around them. Through doing so, we explore how powerful 

ideas of CT play a role in a project-approach to physical 

computing.  We believe open-ended exploration through a 

project-approach in physical computing should reinforce 

practices where CT skills can grow and flourish. Our 

findings show that much of students’ interaction with 

sensors and devices is at pre-CT level, where students 

simply use pre-existing code fragments or templates. As 

students gain skills and confidence, they can be explicitly 

guided to develop CT skills with new projects of their own 

design justifying their choices. We strongly believe that 

Computational Modeling (CM) could help students develop 

their CT skills e.g. abstraction, decomposition, and 

algorithmic approach much more than the minimally guided 

syntax driven teaching approaches. 

KEYWORDS 
computational thinking, computational models, abstraction, 

physical computing, K-12 

1. INTRODUCTION  
Physical computing, an emerging approach to learning 

computing, teaches students about coding and 

computational thinking through hands-on activities with 

sensors using small computing boards like the micro:bit 

(Rogers, et al., 2017). In Singapore, primary school students 

are introduced to coding through the Digital Maker 

programme with the micro:bit (TNP, 2019).  

The micro:bit is a pocket-sized physical computing device 

that can be input with various codes. The device is designed 

to be visually appealing and tactile, affordable, easy to use, 

interactive, and extensible. The board has a built-in display, 

buttons, motion detection, temperature and light sensing. It 

can be programmed using a desktop PC, laptop or tablet 

running one of several different operating system web-based 

programming environments: a visual block-based editor, 

Python or JavaScript. 

Despite the ease in using the micro:bit to code, it is not 

certain that physical computing will actually improve 

students' understanding of computational thinking (CT). It is 

therefore important for educators to explore the question on 

“what and how do students develop CT competencies when 

they use physical computing devices to interact with the 

physical world?” With this as an over-arching research 

question, we set out to design our observational study in 

Singapore schools. Our aim here is to 1) find out what CT 

competencies, specifically abstraction, decomposition and 

algorithmic thinking, should be developed by students and 

2) to what level, do students develop these in carrying out 

physical computing projects. Furthermore, we want to find 

out if students used any conceptual or computational 

modeling before or while carrying out their physical 

computing projects. We believe our observations would help 

us partially answer our over-arching research question. 

The project-approach to physical computing, an often used 

pedagogy in schools, serves as an open-ended exploratory 

approach to examine the computational thinking 

competencies that students should learn.  We observed that 

among many other factors that inhibit the development of 

CT skills, the inherent complexity of problem and solution 

space could overwhelm students. Additionally, the cognitive 

load in designing and developing their solutions could also 

hinder them in their learning. Therefore, we propose gentle 

scaffolds for developing a sound conceptual model, 

followed by guided Computational Modeling (CM) for 

overall CT skills development. 

2. RELATED WORK  
Our study is informed by the ideas of Computational 

Thinking (Papert, 1972; Wing, 2008), Computational 

Models (Aho, 2012; Denning, 2017; Calder, et. al., 2018), 

learning computing models (Sentence, Waite & Kallia, 

2019) and Physical Computing (O’Sullivan & Igoe, 2004). 

Seymour Papert (1972) described CT as a mental skill 

children develop from practicing programming. In a 2006 

paper, Jeannette Wing (2006) catalyzed a ‘CT for all’ (p. 33) 

movement. It has been debated since then if CT makes better 

problem solvers or if practice of coding can help develop CT 

skills, with claims that everyone can benefit by CT not yet 

being fully substantiated by studies (Guzdial, Kay, Norris, 

Soloway, 2019). Many definitions and role of CT in 

computing as well as in other fields, and overlap of CT and 

computing have followed.  

Denning (2017), in his viewpoint on CT, finds the absence 

of computation models in the post-2006 CT definitions as a 

mistake. He points that key ingredients of CT e.g. 

abstraction, data representations and decomposition are 

used, in order to get a model to accomplish certain task.  He 

encourages teachers to take note of Aho’s reflection about 
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computation as “a process defined in terms of an underlying 

model of computation” (p. 832) and CT as “the thought 

processes involved in formulating problems so that their 

solutions can be represented as computational steps” (p. 

832). Aho suggests the use of the term ‘computation’ in 

conjunction with a well-defined model whose semantics is 

clear and which matches the problem being investigated. He 

added that one could use CT skills to devise computation 

models. 

There is a growing emphasis on teaching computing since 

the idea of CT was proposed by Wing. Countries such as the 

United Kingdom have mandated the integration of 

Computing and Computational Thinking into the National 

curriculum at all levels. Japan is making learning computing 

compulsory for elementary and higher education. 

Introducing computing has expanded from using screen-

based tools such as Scratch to physical computing such as 

the micro:bit. In physical computing, students interact with 

the world through the use of sensors as input and controllers 

as output of computing devices. Computation is done on the 

data from the input sensors like buttons or temperature 

sensor to drive the controllers such as motors or LED lights.  

For students learning to code, they need to deal with the 

complexity of knowing what data they need from the 

environment, how to use the sensors to collect the data, how 

the data is used for computation, what output needs to be 

created and how it should be used. This complexity could 

overwhelm students in designing and developing their 

solutions. In many approaches to introducing coding, 

students are taught using physical computing without 

introducing CT skills. The assumption is that students would 

learn CT skills as a result of the learning coding through 

physical computing. In the pre-CT stage, students may 

encounter difficulties in implementing physical computing 

solutions without using CT skills, such as automating 

machine to interact with the physical world (Fig 1). For 

example, students need to know how to acquire data from 

the environment, process to compute the data, and output to 

the world. Teaching CT skills explicitly to students can help 

students to implement their solutions better as shown in Fig 

2. The teaching of CT skills can bridge some of the 

difficulties students face in learning coding and 

implementing solutions with Physical computing.  

 
Figure 1. Illustration of the difficulties of implementing 

Physical Computing in the classroom without 

involvement of CT 

PRIMM (Sentence, Waite, & Kallia, 2019), a framework for 

teaching programming, focuses on students talking about 

how and why programs work before they tackle writing their 

own programs.  The first element of PRIMM i.e. Predict, is 

about students discussing and predicting what a program 

might do, drawing and writing out what they think will be 

the output in order to develop the vocabulary they need to 

talk about the program. We believe such vocabulary 

development should extend to CM, which is an important 

step in the context of physical computing.  

 

 

 

 
Figure 2. Illustration on how the gap between and CT and 

implementing Physical Computing in the 

classroom is being bridged 

3. CONTEXT OF STUDY 
To understand how CT is applied in learning of physical 

computing through the use of micro:bit in coding, the 

research team observed the micro:bit training sessions and 

interdisciplinary project work lessons of Grade 7 comprising 

of 41 students divided into 10 groups, in a local 

neighbourhood school, over a period of 4 ½  months. The 

purpose of the study was to understand how students 

conceptualised the problems and implemented the solutions 

with physical computing. Additionally, the research aimed 

to 1) find out what CT competencies, specifically 

abstraction, decomposition and algorithmic thinking, 

students should develop and 2) to what level, do students 

develop these in carrying out physical computing projects. 

Students find it exciting when they see their projects come 

to life. Physical computing is therefore very engaging that 

helps them understand how things work in the real world.  

The students followed a project-approach to develop 

physical computing solutions using micro:bit. During the 

micro:bit training sessions, the students are first introduced 

to both the basic and intermediate technical aspects of the 

micro:bit board and makecode editor, where they carry out 

block coding. Thereafter, they are introduced to the 

development environment of the ‘makecode editor’, an 

online visual block-based coding programme, where they 

could develop their codes. Their solutions were expected to 

incorporate sensors to capture data occurring from everyday 

phenomena such as surrounding temperature or sound. The 

process that students undertake in designing their projects 

using the below-mentioned flowchart. 

The entire training sessions and interdisciplinary project 

work lessons seek to complement the Applied Learning 

Programme (ALP) in Robotics and Programming run by the 

school, which aims to empower students with the 

technological and thinking skills that will enable them to be 

innovative and empathetic members of the community. 

(MOE, 2019) 

1 
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(Abstraction, 
Algorithmic 

Thinking) 

Machine 
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Implementing the 

solution  

Pre-CT 

Partial CT 
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Figure 3. Flowchart showing the process students 

undertake 

4. METHODOLOGY AND DATA 

COLLECTION 
The students attended the two micro:bit training sessions (10 

hours in total), and attempted an implementation of the 

design thinking approach where they developed prototypes 

with the micro:bit sensors, servo motors and connecting 

wires. Students worked within their groups for a duration of 

12 weeks, typically meeting once every 2 weeks (see Table 

1).  

Table 1. Table of lesson observation schedule, data 

collected, summary of training session and lessons 
Lesson Description of Activity Data 

Collected 

in lessons 

1 Overview Project Work; Group 

Discussion - Identify Project Topic  

Video 

2 Introduction to micro:bit; Group 

Discussion- Project work Topic  

Video 

3 micro:bit Training (Day 1) Video 

4 micro:bit Training (Day 2) Video 

5 Completion of CT Questionnaire 

Student group discussion on Project (with 

students) 

Video 

6 micro:bit Revision by Trainer  

Student group discussion on Project (with 

Teacher and Trainer) 

Video, 

Audio 

7 Discussion on Project (with Teacher and 

Trainer) 

Video, 

Audio 

8 Presentation of Projects Video, 

Audio 

9 Interviews with Students  Video, 

Audio 

The researchers observed the 10 hours training sessions, in 

order to accustom with the coding curriculum that students 

were being taught. They sought to understand the thought 

and application processes of students when they were 

incorporating coding knowledge and subject content 

knowledge into the various projects they were doing. The 

sessions were filmed and recorded in both audio and video 

format. 

Additionally, we observed the students as they design, code 

and implement their physical computing projects in Lessons 

5 to 7 (see Table 1). We looked out for CT skills application 

in specific milestones of problem formulation, initial design, 

implementation, and demonstration as they carry out their 

projects. The purpose of the activity was to understand how 

students use abstraction, decomposition and algorithmic 

thinking, while conceptualising the problems and 

implementing the solutions with physical computing.   

For data collection, we selected two groups for more detailed 

observation (See Table 2). We followed these two groups as 

they developed their projects and enquired them on their 

actions and decisions. These two groups were selected based 

on the complexity of their projects and recommendations by 

their teachers because they were able to articulate their ideas 

clearly compared to their peers. We recorded the 

presentations they made to classmates on their ideas and 

solutions. After their presentation, we interviewed the group 

members and archived their codes for analysis. 

Table 2. Projects of the two groups of students observed 
Group No No of Students Project 

A 4 Classroom Door Lock 

B 4 Noise Level Detector 

5. ANALYSIS AND FINDINGS 
To evaluate students on their application of their CT skills, 

we developed a set of rubrics for CT skills. The rubrics was 

developed from our literature review of the CT skills and we 

also obtained feedback from practitioners on the levels of the 

rubrics and the skills. For this work, we focused in observing 

three CT skills, namely Abstraction, Decomposition, and 

Algorithmic Thinking (See Table 3). 

In our analysis, we observed the two groups closely as they 

developed their projects with physical computing.  Our 

observations of two groups and the projects that they worked 

on in the following paragraphs. 

Group A worked on a problem of a sensor-operated door-

lock that would open upon motion detection of a contactless 

card. The students were queried about the algorithmic steps 

and meaning of the codes in the micro:bit block. The 

research team hinted to students about thinking logically 

about the codes found in the block and figure out which 

blocks can be matched together to form the required codes. 

We observed that the students lacked the necessary 

knowledge on the type of data and sensor to read the 

contactless card. As a result, the students realized that they 

had to change the sensor from a card scanner to a digital 

keypad with numbers connected to the classroom door, as 

the use of a card scanner had been deemed unfeasible. Even 

with the change, they could not implement the use a digital 

keypad with the micro:bit. 

Table 3. Rubrics for Classroom Observation 
ABSTRACTION – to choose the right amount of detail for the 

problem to be modeled 

Beginner: Able to identify and choose relevant data and information 

for the model and solving the problem 

Intermediate: Beginner + identify relevant data and from multiple 

sources to integrate for developing possible CMs 

Advanced: Intermediate + physically represent through 

modelling and interact with relevant data and information for the 

Students are challenged to find a real world problem around them

Students conceptualise and plan in their groups, applying what they learn 
in their training sessions

Students prototype their solution by incorporating their coding into their 
micro:bit, and coming up with a physical model with an attached micro:bit 

to validate their solution

Students continue their brainstorming, discussion and designing of their 
prototype and coding for the solution in their project work lesson, over the 

entire observation period 

For the final lesson, students present their coding solution and prototype to 
the classroom, explaining how it attempted to mitigate the problems in the 

classroom

Students are further challenged by their teacher on how to further improve 
their micro:bit coding to make the solution more effective
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model from multiple sources + express/articulate what is 

conceptualized in thinking by constructing a model using relevant 

details + translate abstraction into model 

DECOMPOSITION – to breakdown a problem into component 

parts to be understood and solved 

Beginner: Able to break a problem in smaller parts  

Intermediate: Beginner + articulate the relationship between the 

parts  

Advanced: Intermediate + develop a model to understand the 

complex system to facilitate/evaluate problem solving using 

computation 

ALGORITHMIC THINKING – to think in terms of sequences to 

solving the problem 

Beginner: Create a sequence of steps to solve a problem, with 

instructions to execute 

Intermediate: Beginner + Understand how automation works and 

use algorithmic thinking to create a sequence of steps 

Advanced: Intermediate + test the automated steps through a 

breaking down process + identifying how the information changes 

between the steps and refine/optimise the steps + improving the 

creation of sequence of steps in areas such as optimisation, 

efficiency, reusability, readability and re-factoring 

Group B worked on the problem of noise detection in the 

classroom, which would send an alert to the teacher once the 

noise threshold is reached. The team had difficulty in 

conceptualizing their solution with the micro:bit. They 

recognized though that they needed a sound sensor to detect 

sound from the physical environment.  They were able to test 

the sensor input and simulating an alert to the teacher by 

pairing two micro:bits. They however lacked the systemic 

knowledge. For example, they did not think deep enough on 

where to best place the sensor to capture the noise accurately 

or how sound travels could affect the coding and prototyping 

of their project. It showed an inadequate mental model, and 

therefore an inadequate conceptual model of the problem 

and solution i.e. how the sensors interact with the physical 

world, and e.g. sound travels by waves and where they place 

sensors matters.  

We analysed the transcripts of the interview made with the 

students to evaluate the decisions the made with regard to 

the implementation of their solution. We identified how their 

abstraction, decomposition and algorithmic thinking are 

demonstrated from the interview data, as explained by the 

students (See Table 4). This was made in reference to the 

rubrics we developed.  

Table 4. Interview Transcript of students in Group A 

demonstrating the skill of Algorithmic Thinking 

R [Researcher]  

S [Student] 

Dialogue Explanation 

R How did you solve the 

problem? 

 

S 

[06:38] 

We decided to place, 

instead of alerting the 

teacher when it hits the 

second level, we 

decided to show the 

teacher the level all the 

time 

Students decide to give 

remote micro:bit to 

teacher indication of 

real time noise level   

Abstraction – choose 

the relevant data  

Decomposition – break 

down the problem into 

smaller part to show the 

information to the 

teacher 

R Oh show, show the 

teacher the level all the 
 

time is it? How do you 

send the teacher the 

value? 

S We use the radio 

function we send the 

current noise level 

 

R Yes  

S And when the teacher 

receives it, it’ll show on 

the screen  

Abstraction  - choose 

the relevant data and 

information  

The codes developed for the solution and the created artefact 

comprising of the micro:bit board with sensors were 

analysed for students algorithmic thinking, decomposition 

and abstraction competencies (See Figure 4). For example, 

the group with the sound sensor used one micro:bit to read 

the sound level from Pin 1 and control a LED at Pin 0. The 

micro:bit will send the value of the sound level to another 

micro:bit through radio. The students designed such that the 

remote micro:bit will be carried by the teacher and will 

notify the teacher if the level exceeds the noise. The students 

calibrated and tested the actual noise level in their classroom 

that they deemed as noisy. This was the level they chose as 

the trigger to notify the teacher. During testing, the students 

noticed that there was a delay in sending the value to the 

teacher’s micro:bit and the noise level reading was not 

accurate. They did not have time to solve these issues. 

 
Figure 4. Example of code (Sound Sensor) done by 

students using makecode editor in the project design 

We analysed the groups’ work process in developing the 

solution, their completed artefact solution and codes, and the 

interview transcripts. The analysis from the sources were 

triangulated and compared to the rubrics we developed. 

Results showed that most were at best able to achieve only 

the beginner level of the CT skills (see Table 5). However, 

we noted that the acquiring of these skills progressed over 

time and towards the end, most students became more 

competent in them as they engaged in more programming. 

From our observations, we posit that students have 

difficulties in designing a computing solution due to their 

rudimentary CT skills. At the end, the students managed to 

build a prototype of their solution but experienced 

challenges in abstracting the vital data required for the 

solution in the initial stages. This affected their choice of 

sensors to use as input to their solution and difficulties in 
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thinking algorithmically on the computation to obtain the 

automated output. Referring to Table 4, we believe both 

groups worked at pre-CT stage (See Figure 1). The above 

observations are specific to a few projects and students, and 

generalizations would require more studies with more 

students and diverse settings.  

Table 5. Results of skills demonstrated by the two groups 

during the observation 
CT skills Group A (Level 

achieved) 

Group B (Level 

achieved) 

Abstraction Beginner Intermediate 

Decomposition Beginner Beginner 

Algorithmic 

Thinking 

Beginner (students 

who programmed) 

Beginner (students 

who programmed) 

6. DISCUSSION AND 

RECOMMENDATIONS 
Computational Modeling (CM) as per one of the established 

definitions (Calder, et. al., 2018) can help us “translate 

observations into an anticipation of future events, act as a 

testbed for ideas, extract value from data and ask questions 

about behaviours. The answers are then used to understand, 

design, manage and predict the workings of complex 

systems and processes, from public policy to autonomous 

systems.” (p. 2) 

Computational Thinking (CT), on the other hand is a 

generalized problem-solving process that can be applied to a 

wide variety of problems. The steps of CT includes 

formulating a problem in a way that enables us to use a 

machine to solve it. The machine here refers to computer and 

other devices. In the process, data and concepts are 

abstracted and analysed and algorithms are developed for 

automating a solution. 

We believe, that CT definition is not explicit about 

modelling, i.e. representation of abstracted data and 

concepts before algorithms are developed. Here in this 

study, we first observe if indeed classrooms have modelling 

incorporated in the CT lessons. Our findings show that 

students attempt to directly code or develop algorithm once 

they have understood the problem. They do not develop any 

models or use any tools to represent data or concepts. 

Today, visual block-based visual programming platforms 

such as Scratch, Blockly are popular vehicles for 

programming sensors and delivering CT. Even though 

students are quick to pick up the programming constructs, 

conceptual difficulties pertaining to problem and solution 

space, and developing CT skills e.g. abstraction, 

decomposition and algorithmic skills, are often evident. 

From our observation of the work of both groups, we 

surmise that students face difficulties in designing a 

computing solution due to the missing explicit CT exposure 

and almost non-existent CM. They have challenges in 

abstracting the vital data required for the solution and 

thinking algorithmically on the computation to obtain the 

desired output. 

For students, owning an idea serves as a motivation to learn. 

We observed that students identified a problem or 

innovation they wanted to pursue. We found that though 

students were engaged in the maker-rich environments, they 

did not move to thinking computationally and solving 

problems. Much of their interaction with sensors and devices 

is superficial. This is inferred through our interactions with 

students. When we discussed with students about for 

example how sensors were working or how transmission of 

data or signal was from one to another device, we did not 

find them confident of their knowledge of hardware beyond 

what they were using it for. 

However, when we, for example, introduced input-process-

output model, their understanding of the project seemed 

better. They could explain the project better to another 

researcher from our own group as well as to their teachers 

later. We would want them to develop higher order design 

skills through physical computing, not just coding. They 

should understand the iterative nature of finding a solution 

and testing. Open-ended exploration through the project-

approach in physical computing should reinforce practices 

where CT skills grow and flourish. 

Additionally, based on our observations, students have 

difficulty in starting the implementation due to their lack of 

CT and CM in the pre-CT stage. Reasons for such gaps are 

mainly due to the inherent complexity of the problem that 

they are trying to solve, as well as integrating different 

components of the solution involving use of sensors, 

collection of data, computation of data and automating the 

solution.  To scaffold their learning, it is important that they 

are guided through developing a conceptual model, such as 

CT (abstraction and algorithmic skills) and CM (See Figure 

4), leading them eventually towards the CT+CM stage.  

We propose that a CM phase could act as a glue from 

understanding problem to the coding activity (see Figure 4) 

for students to formulate their problems in computational 

steps (Denning, 2017). Execution of computational models 

could be seen as controlling and automating the machine to 

solve the problem computationally. We believe focused 

modeling activities could help students develop their CT 

skills e.g. abstraction, decomposition, and algorithmic 

approach much more than the minimally guided syntax 

driven teaching approaches.  

Based on our observations we suggest concrete steps that can 

be taken to support the development of computational 

thinking.  We believe a project-approach through physical 

computing provides an excellent maker-platform, in which 

students are provided with the opportunity to evaluate and 

manipulate underlying abstractions and mechanisms. It 

gives ample scope of developing CT skills namely 

abstraction, decomposition, and algorithmic thinking. 
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Figure 5. Framework of CM Model for helping students 

understanding CT 

We propose a triad-model for effective and systematic 

development of CT skills. This model describes a pattern of 

engagement (see Figure 5). It is based on the premise that 

computational modeling promotes the acquisition and 

development of CT among students. At the ‘pre-CT’ level, 

students are simply coders. For example, they code using 

pre-existing code fragments or templates, and acquire 

coding skills through a series of iterative refinements. New 

skills and understandings are developed over time and they 

begin to code with increasing levels of sophistication. This 

does develop an understanding of at least a subset of the 

abstraction contained within the problem and solution. We 

observed that most of the students in our study operate at the 

pre-CT level. As students gain skills and confidence, they 

can be explicitly guided to develop CT skills with new 

projects of their own design justifying their choices.  At this 

‘CT’ level, all three key aspects of computational thinking: 

abstraction, decomposition and algorithmic thinking, come 

into play. We observed two groups of students partially 

acquiring CT skills when we explicitly made them think 

about specific issues about their problem or solution. We 

strongly believe that Computational Modeling (CM) could 

act as an effective medium to develop computational 

thinking skills especially in the context of physical 

computing. We propose another level in our framework 

labelled ‘CT+CM’ i.e. using Computational Modeling (CM) 

as a medium to develop CT skills. 

Here are our recommendations for effective delivery of CT 

skills with CM based on this study: 

• Design of a thinking style workshop that could help 

students to develop and strengthen their mental model 

about the problem. It is an important and essential that 

students have the relevant vocabulary of the problem 

domain, and systemic thinking before attempting to 

formulate a solution.  

• Guided team brainstorming sessions could help students 

develop conceptual models for the solution they 

propose. Developing a sound conceptual model at the 

team level could help each individual member to 

strengthen his/her mental model, and sync well with 

team before implementing the solution.  

• Gentle scaffolds could be introduced, e.g. graphic 

organisers for the above, to ease students into 

developing Computation Models. CM could be the glue 

that connects a conceptual solution and actual code. 
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ABSTRACT 

This paper explores contemporary researchers and their 

approaches to computational thinking (CT) for students in 

K-12 education. Computational Thinking (Wing, 2016) is 

used as a focal point of investigation as the views of Barba, 

Papert, Resnick, Kafai, diSessa, Denning, Aho, Wilkerson, 

and Grover are compared. While the varied approaches to 

CT may indicate disagreement on behalf of researchers in 

the field, it can also be a sign of the varied directions in 

which CT, and related concepts, can be taken. As 

educational jurisdictions integrate CT in K-12 curriculum, 

these approaches and directions should be considered by 

educators, policy makers,  and researchers alike. 

KEYWORDS 

computational thinking, computer science, education, K-12, 

K-8 

1. INTRODUCTION 
In March of 2006, the Communications of the ACM 

published Jeanette Wing’s Computational Thinking where 

she was seeking to expand the scope of Computer Science 

education beyond the post-secondary levels. Wing  

articulated the characteristics and importance of a 

“universally applicable attitude and skill set” (Wing, 2006, 

p. 33) called Computational Thinking (CT) which involved 

thinking like a computer scientist. 

The article captured the imagination of educators and 

researchers from around the world (Grover & Pea, 2017) and 

according to Google Scholar, as of December 2019, had 

been cited over 5475 times. Important to note; however, is 

the fact that ideas surrounding the integration of computer 

science (CS) concepts and thought processes in K-12 

education did not begin, and certainly did not end, with 

Wing’s seminal work. A long history exists related to the 

integration of CS concepts in K-12 education and since 

2006, many researchers have expanded on the definition and 

scope of CT, and its role in K-12 education. 

What follows is a summary of the field of CT that 

approaches the subject by presenting the various thought 

leaders and their ideas. These ideas are especially pertinent 

at this time as educational jurisdictions around the world 

explore the integration of CT in the K-12 grades. 

2. THINKING LIKE A COMPUTER 

SCIENTIST 
Jeanette Wing initially defined CT as “solving problems, 

designing systems, and understanding human behaviour, by 

drawing on the concepts fundamental to computer science” 

(Wing, 2006, p. 33). Later, she refined her definition to the 

“thought processes involved in formulating problems and 

their solutions so that the solutions are represented in a form 

that can be effectively carried out by an information-

processing agent.”. While researchers have discussed 

Wing’s initial definition at length, a primary criticism 

surrounds the idea of thinking like a computer scientist.  

In Computational Thinking: I do not think it means what you 

think it means (2016), Lorena Barba explains that Wing’s 

view fails to acknowledge CT as “a source of power to do 

something and figure things out, in a dance between the 

computer and our thoughts”. Viewing the computer as a 

formal tool to understand, and then apply to a problem later, 

takes away its power: “Most people don’t want to be a 

computer scientist, but everyone can use computers as an 

extension of our minds, to experience the world and create 

things that matter to us”. Barba was attempting to move 

discussions away from Wing’s CT, towards an idea that 

would allow students to use computing as a means to create 

new knowledge in a broad number of domains. In order to 

support this view, Barba made reference to several of 

Seymour Papert’s ideas. 

3. CONSTRUCTIONISM AND LOGO 

PROGRAMMING 
Described as the father of educational computing (Stager, 

2016), Papert laid the foundation for how we think about 

learning and teaching with computers (Kafai & Burke, 

2014). 

Before arriving at MIT in 1963, Papert worked closely with, 

and was heavily influenced by, Jean Piaget and his theory of 

cognitive development called constructivism. Papert built on 

Piaget’s ideas by developing his own theory of learning that 

he called constructionism (Stager, 2016). While both 

theories focus on learning being an active process of 

constructing knowledge, and both include the idea that 

children learn new concepts by relating them to things that 

they already know (Ames, 2018), they differ in that 

constructionism acknowledges the importance of culture as 

the source of the materials that students will use to build their 

knowledge (Papert, 1993). Papert believed that in some 

cases the culture provides the learning materials in 

abundance, which facilitates Piagetian learning. In other 

cases; when here is a slower development of a concept, 

Papert saw the “critical factor as the relative poverty of the 

culture in those materials that would make the concepts 

simple and concrete” (Papert, 1993, p. 7). 

It was for this reason that Papert was so enamoured with the 

computer as a learning tool. He felt that the relative poverty 

of a culture could be cured by a computer, the Proteus of 

machines, that can “take on a thousand forms and can serve 

a thousand functions” (Papert, 1993, p. xxi).  

At MIT, Papert developed the Logo programming language, 

which he felt could alter the relationship that students had 
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with computers. Rather than having students be programmed 

by a computer (through computer-based exercises and 

feedback) the Logo programming environment reversed this 

relationship by having the student program the computer 

itself, which essentially meant teaching the computer how to 

think. 

Papert uses the term “mechanical thinking” to describe the 

type of thinking that students are introduced to when 

programming in Logo (Papert, 1993, p. 27). He emphasises 

that by introducing students to mechanical thinking, they 

suddenly become aware of thinking styles, and they begin to 

consider other thinking styles that might exist, as well as 

how and why they might choose between styles. Later, 

Papert uses the term “computational thinking” when 

describing what some of his experiments were trying to 

integrate into everyday life. He acknowledges that the 

visions of these experiments were insufficiently developed, 

but that they will serve as “manifestations of a social 

movement of people interested in personal computation, 

interested in their own children, and interested in education” 

(Papert, 1993, p. 182) 

Papert’s work surrounding computers and education, and his 

development of the Logo programming language, sowed the 

seeds of this social movement. In 2017, Mitch Resnick, a 

former doctoral student of Papert’s, exclaimed “I will be 

happy to spend the rest of my life working to nurture the 

seeds that Seymour sowed” (Resnick, 2017). 

4. COMPUTATIONAL FLUENCY AND 

SCRATCH PROGRAMMING 
Resnick is the director of the Lifelong Kindergarten research 

group at MIT that developed Scratch, the world’s leading 

coding platform for kids. Scratch was deeply inspired by 

Papert’s Logo but “goes beyond Logo by making 

programming more tinkerable, more meaningful, and more 

social” (Resnick, 2014, p. 2). 

In New Frameworks for Studying and Assessing the 

Development of Computational Thinking (2012), Resnick, 

along with co-author Karen Brennan, propose an alternate 

CT framework that includes three key dimensions: concepts, 

practices and perspectives.  

Resnick and Brennan’s CT concepts include the concepts 

that designers engage in as they program (sequences, loops, 

parallelism, events, conditionals, operators, and data). CT 

practices differ to CT concepts in that the practices describe 

the processes of construction that student engage in while 

creating Scratch projects (being incremental and iterative, 

testing and debugging, reusing and remixing, and 

abstracting and modularizing). Finally, CT perspectives, 

describe the evolving understanding that students using 

Scratch exhibit about themselves, their relationship to 

others, and the technological world (expressing, connecting, 

and questioning). Together, the concepts, practices and 

perspectives provide a broader understanding of CT that 

Resnick calls Computational Fluency. 

The impetus for Resnick’s Computational Fluency was an 

attempt to “highlight the importance of children developing 

as computational creators as well as computational thinkers” 

(Resnick, 2018, p.1). Computational Fluency goes beyond 

the problem-solving strategies of CT by including student’s 

creativity and expression with digital tools, and the 

opportunity for students to develop their own voice and 

identity (Resnick, 2018).  

Resnick’s emphasis on having students design digital 

artifacts is well grounded in constructionism and Resnick 

acknowledges the surge of interest in coding and schools 

“provides an opportunity for reinvigorating and revalidating 

the Constructionist tradition in education” (Resnick, 2014, 

p. 7). Resnick and Papert’s views on constructionism are 

thoroughly discussed in Constructionism in practice: 

Designing, thinking, and learning in a digital world, a book 

edited by Resnick and another one of Papert’s influential 

students, Yasmin Kafai. 

5. COMPUTATIONAL PARTICIPATION 
Kafai was a student of Papert’s at the MIT Media Laboratory 

and also contributed to the development of Scratch. Her 

recent work includes Connected code: Why children need to 

learn programming, a book that she co-authored with Quinn 

Burke. 

In Connected Code, Kafai and Burke describe four 

dimensions characteristic of Papert’s constructionist thought 

(social, personal, cultural, and tangible) and explain how 

these dimensions have evolved resulting in a new form of 

programming whereby students can create applications as 

part of a larger community. This programming as a 

participatory process extends CT because “when code is 

created, it has both personal value and value for sharing with 

others” (Kafai & Burke, 2014, p. 17). In From computational 

thinking to computational participation in K-12 Education 

(2016), Kafai argues that CT needs to be reframed as 

Computational Participation moving us “beyond tools and 

code to community and context” (p. 27).  

Kafai’s Computational Participation acknowledges that CT 

is a social practice with a broad reach and that programming 

is now a way to make and be (Kafai, 2016) in the digital 

world (Kafai, 2016). Digital technologies are used for 

functional, political, and personal reasons and therefore all 

students should develop an understanding of interfaces, 

technologies, and systems that they encounter every day in 

order to fully participate in contemporary activities and 

social practices.  

Kafai’s Computational Participation takes a broad view of 

computing and acknowledges its potential impact across a 

wide range of fields. This broad view shares some 

characteristics with Computational Literacy, an idea that 

was developed by Andrea diSessa even before Wing’s CT 

became popular.  

6. COMPUTATIONAL LITERACY 
Andrea diSessa’s work focusses on the idea that computers 

can be the basis of a new form of literacy that is applicable 

to a wide variety of subjects, contexts and domains 

(Weintrop et al., 2016). In 2000, six years before the 

publication of Wing’s Computational Thinking, diSessa 

published Changing Minds, a book in which he “invites us 

to imagine a world in which computational knowledge – the 

prime example is programming – is as widely practiced as 

reading newspapers and novels is today” (Papert, 2006, p. 

240) 
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 In presenting computing as a new form of literacy, diSessa 

advocated for the broad use of computers in schools, and for 

educators to see computing as means of transforming the 

teaching and learning of things that are hard for students to 

learn (Papert, 2006). diSessa uses algebra as an example of 

an epistemological entity that, when first developed, was not 

appreciated as a means of transforming complex and 

difficult ideas into a form that can be grasped by high school 

students (Papert, 2006). He argues that Computational 

Literacy involves computing and computer programming 

concepts being integrated into school subjects in much the 

same way that algebra has become a tool in science, 

mathematics and other subjects. 

In Computational Literacy and “The Big Picture” 

Concerning Computers in Mathematics Education (2018), 

diSessa explains that his use of the term literacy goes beyond 

the idea of simply having a casual acquaintance with 

something. Instead, literacy means the adoption, by a broad 

group or even a civilization, of a “particular infrastructural 

representational form for supporting intellectual activities” 

(diSessa, 2018, p. 4). diSessa continues by criticizing 

Wing’s computer science-centric view of CT 

acknowledging that because literacy is such a massive social 

and intellectual accomplishment, it can’t belong to a single 

professional discipline. 

diSessa concludes Computational Literacy and “The Big 

Picture” Concerning Computers in Mathematics Education 

by providing practical advice: 

There is no single recipe for how computation changes a field 

or subfield. If your pursuits take you in different directions, then 

I suggest here, that will enrich the horizon for all of us. If they 

parallel or extend what I and others who are focused on the big 

picture have already done, perhaps we can converge sooner 

than might be expected (diSessa, 2018, p. 28). 

We should consider this advice as we investigate the views 

and applications of CT shared by other researchers within 

the field. 

7. CT DEFINITIONS AND 

MATHEMATICAL MODELS 
In 2017, Peter Denning published Remaining trouble spots 

in computational thinking, where he explained that CT has 

been major component of computer science since the 1950s 

and so has the idea that CT can benefit people in a variety of 

fields. Unfortunately, Denning claims, recent attempts to 

make CT appealing to fields other than CS have led to 

“vague and confusing definitions of CT” (p. 33). Denning’s 

two main criticisms of Wing’s definition of CT include the 

absence of any mention of computational models as well as 

the suggestion that any sequence of steps constitutes an 

algorithm. Denning prefers, instead, to accept a definition of 

CT proposed by Alfred Aho, which he claims better 

embodies the notion of CT from computer science, 

computational science, as well as other fields such as the 

humanities, law and medicine. 

In 2012, Aho defined CT quite succinctly as “the thought 

processes involved in formulating problems so their 

solutions can be represented as computational steps and 

algorithms” (p. 832). Aho explained that an important part 

of the CT thought processes involve finding the appropriate 

models of computation, and if there are none, then 

developing new ones. This view is exemplified in some of 

the mathematical modelling work by Michelle Wilkerson. 

Wilkerson believes that computer science shares language 

with mathematics that can be used to represent models 

resulting in a description of patterns and processes that can 

make up scientific and engineered systems (Wilkerson & 

Fenwick, 2017). When describing CT, Wilkerson, and co-

author Michele Fenwick, explain: 

While mathematics focuses on quantities, computational 

thinking focuses on processes. Students engaged in the practice 

of computational thinking break a complex problem or process 

up into smaller steps in order to better understand, describe, or 

explain it (Wilkerson & Fenwick, 2017, p. 189). 

Wilkerson works with having students use or build 

computational models and simulations in order to better 

understand scientific and engineered systems. This approach 

to CT would be considered by Shuchi Grover as a good 

example of integration CT in an effort to enable or enrich 

learning in other disciplines. 

8. A TALE OF TWO (OR THREE OR 

FOUR OR FIVE) CTs 
In A tale of two CTs (and a Revised Timeline for 

Computational Thinking) (2018), Grover argues that in 

order to make sense of CT in K-12 education we need to 

distinguish between main two views: computer science 

thinking in CS classrooms and CT in other disciplines. She 

explains that ideally, students will get a chance to experience 

CT in both settings during their K-12 schooling. Grover also 

presents a brief timeline of CT starting with the problem-

solving practices discussed by G. E. Forsythe in 1968 and 

the elements of CS thinking discussed by Donald Knuth in 

the 1980s. 

In regards to Wing, Grover credits her definition of CT for 

igniting K-12 computer science education and for calling 

attention to its role in other disciplines but also 

acknowledges that we should no longer be focused on 

“dreams of CT changing everyday behaviours of those 

who’ve learned this skill in curricular settings”. Instead, we 

should view CT as playing a significant role in CS education 

and playing a role in helping students understand concepts 

within a variety of fields and disciplines. 

9. CONCLUSION – MULTIPLE 

DIRECTIONS 
While the varied approaches to CT may indicate 

disagreement on behalf of researchers in the field, it can also 

be a sign of the varied directions in which this powerful form 

of thinking can be taken. diSessa makes it clear that 

Computational Literacy is distinct from CT and that the field 

should have an analytical frame that can separate these ideas, 

and other CT ideas and movements (diSessa, 2018, p. 17). 

He goes on to explain that “it’s not an issue of choosing 

terms; it is an issue of choosing directions” (diSessa, 2018, 

p. 17).  

When deciding on how to frame an essay on Papert’s ideas, 

Resnick acknowledged that it’s “too simplistic to think that 

you can just take someone’s ideas and put them into practice. 

Seymour was always skeptical about that type of top-down, 
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linear thinking” (Resnick, 2017b). Perhaps varied 

approaches related to computer education and CT are an 

inevitable outcome of the epistemological and practical 

underpinnings of the concept, as well as the nature of K-12 

education. 

As students begin to develop an understanding of “thinking 

like a computer”, or “thinking like a computer scientist”, 

they enter the interesting and sophisticated realm of 

epistemology. To claim that there is one approach to having 

students work within this realm, and one direction for 

educators and researchers to take, discredits the nature of the 

underlining, constructivist theory of knowledge. To claim 

that there is one way to implement CT concepts in the 

various disciplines and grades of K-12 education discredits 

the subjective and responsive nature of teaching and 

learning. 

As we consider CT and K-12 education, we should 

understand that it’s too simplistic to think that we can take 

Wing’s general ideas of CT and put them into practice. The 

varied approaches and directions listed above represent an 

honest and authentic characteristic of a body of knowledge 

whose foundation lies in the constructivist theory of 

learning. There are several common, core principles and 

beliefs that lie at the heart of a number of researcher’s views 

on CT. These should continue to be documented and shared, 

while the subtle differences surrounding the details of CT 

should continue be investigated and celebrated. The 

computer and the mind of a student can “take on a thousand 

forms and can serve a thousand functions”, perhaps the 

varied approaches to integrating CT in K-12 education 

should honour this idea. 
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ABSTRACT 

The purpose of this study is to use mobile phone programs to control educational robots, so as to enhance the computational 

thinking literacy of the third grade students. This study allows learners to use mobile phone applications to drag building 

blocks in order to control and interact with the educational robots. This study also employed the computer program self-

efficacy scale, educational robot attitude scale and cognitive load scale to measure computational thinking ability and 

learning performance. The research results show that learners have significantly improved their computational thinking 

ability after course, and further analysis found that learners' self-efficacy performance of computer programs is significantly 

negatively related to learning anxiety, and learning investment and learning image are significantly positively related. 

KEYWORDS 
computational thinking, educational robot, computer programming self-efficacy 
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摘要 

本研究旨在針對國小三年級學生於課程上使用手機程

式控制教育機器人學習後，其運算思維能力提升之研

究。本研究在課堂上讓學習者使用手機應用程式拖拉

積木程式與教育機器人進行互動，並使用電腦程式自

我效能量表、教育機器人態度量表及認知負荷量表進

行運算思維能力與學習表現之測量，研究結果發現學

習者在學習後其運算思維能力有顯著提升，而進一步

分析發現學習者之電腦程式自我效能表現與學習焦慮

有顯著負相關，學習投入及學習意象有顯著正相關。 

關鍵字 

運算思維；教育機器人；電腦程式自我效能 

1. 前言 

隨著科技發展，電腦資訊能力已成為每個人都必須學

會的技能，而在面對未來越來越多的新興問題挑戰，

可以使用運算思維來進行問題拆解、問題解決（Wing, 

2006），且運算思維能力的應用並不侷限於電腦科技，

而是可以跨領域應用在不同項目內（Barr & Stephenson, 

2011）。在 2008年 Wing學者針對運算思維的研究有提

及運算思維是兒童教育不可或缺的一部分（Wing, 

2008），隨後學者的研究進行方向也朝向兒童的運算

思維教育（García-Peñalvo, 2018; Grover & Pea, 2013; 

Rich, Binkowski, Strickland, & Franklin, 2018），不過要

如何養成運算思維的能力尚待需要更多實證研究來佐

證（Grover & Pea, 2013）。臺灣於 2019 年開始施行之

十二年國民基本教育課程綱要將核心素養列為課程發

展主軸，核心素養是指一個人為適應生活及面對未來

挑戰，所應具備的知識、能力與態度（教育部，

2014），在科技領域部份將運算思維列為學習重點

（教育部，2018），這顯示了運算思維將成為兒童需

要學習的重要能力。 

隨著科技技術的提升，機器人的發展也是一個未來值

得討論的重要議題。越來越多學者提出使用機器人進

行教育的相關研究（Angeli & Valanides, 2019; Berry, 

Remy, & Rogers, 2016; Lye, Wong, & Chiou, 2013），將

機器人當成提升思考邏輯、解決問題及團隊合作能力

的工具是一重要的研究方向（Benitti, 2012），根據

2018 年 Cheng、Sun 與 Chen 學者對於機器人基本應用

的類別統計，教育機器人屬於第二重要的應用領域，

而教育機器人應用的領域大多在 STEAM 教育及語言教

育，同一份研究也指出未來在學齡前及小學使用教育

機器人具有最大的潛力（Cheng, Sun, & Chen, 2018）。

亦有針對使用教育機器人進行運算思維能力的培養研

究指出，學生的運算思維能力在學習過程中皆有增加

（Atmatzidou & Demetriadis, 2016; Chen et al., 2017）。 

綜上所述，運算思維已經是當前教育的發展重點，對

於使用教育機器人進行運算思維能力的提升需要更多

的研究佐證，因此本研究將融合教育機器人及運算思

維，將使用手機應用程式控制教育機器人應用在國小

三年級學童課程上，著重於運算思維能力之學習成效

探討，以期透過本研究的成果，提供給未來期望使用

教育機器人提升學生運算思維能力的教師，在未來課

程設計上能有所啟發。 

2. 文獻探討 

2.1. 運算思維 
運算思維是基於像電腦科學家一樣思考的想法，來解

決問題、設計系統及理解人類行為，利用抽象化、拆

解一個複雜困難的問題，讓它化為一個知道如何解決

的問題（Wing, 2006），運算思維的能力可以用來解決

學習上或生活上的問題（Tsai, Wang, & Hsu, 2018）。

運算思維具有概念化的特性，而其本質在於抽象化，

其中包含著能夠將元素進行交織與結合（Wing, 2008）。

而當學生能夠學習運算思維並將腦海中解決問題的想

法透過電腦實現，學生不僅會成為工具的使用者，更

會成為工具的建造者（Barr & Stephenson, 2011）。

BBC（2017）對運算思維進行了四個面向的分類，分

別是問題拆解、模式識別、抽象化及演算法概念，問

題拆解是指將大問題拆解成各個小問題再針對小問題

進行解決，模式辨別是要找出小問題與小問題之間共

同之處，抽象化是找出問題的關鍵並找出相對關係或

進行模組化，而演算法概念則是最後產生解決問題的

步驟，這些類別並沒有一定的次序，而是不斷循環發

生的（許庭嘉， 2018），ISTE 更於 2018 年提出新的運

算思維標準，認為需要在學生的學習科目中加入運算

思維，讓學生具備解決未來問題的能力（ ISTE，

2018）。  

2.2. 教育機器人 

教育機器人是使用機器人作為一種教育工具（Lye et al., 

2013），無論是教育機器人還是使用機器人進行學習，

皆同時著重於鼓勵學生的參與和探索（Berry et al., 

2016），在任何領域裡面教育機器人作為學習工具是

擁有發展潛力的（Benitti, 2012），Cheng 等 2 名學者在

2018 年發表的研究報告統計了機器人基本應用的類別，

教育機器人屬於第二重要的應用領域。目前大部分教

育機器人應用的教育領域為 STEAM 教育、語言教育、

特殊教育（Pei & Nie, 2018）。學者 Pei 和 Nie（2018）

將教育機器人分為四類，分別是智能助手機器人、虛

擬模擬機器人、多功能套件機器人和非通用教育機器
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人，智能助手機器人是指該機器人集人工智能且具有

智能對話系統可以執行語義識別，虛擬模擬機器人是

具模擬功能較常用於機器人教學，多功能套件機器人

具有各種模組可以自由組合常用於 STEAM 教育，非通

用教育機器人是針對特殊族群所設計的機器人，如自

閉症兒童的教育機器人，除了四種類的機器人，這兩

位學者亦統整出教育機器人的五種特徵，分別為靈活

性、數據化、重複性、人性化、自然互動的。其他研

究有顯示因機器人擁有重複性及互動的特性（Toh, 

Causo, Tzuo, Chen, & Yeo, 2016）。 

2.3. 電腦程式自我效能 

自我效能的概念是由 Bandura 提出，是指個體對於自己

的期望會決定個體評估要付出多少努力與要經歷多久

的困難（Bandura, 1977）。而電腦程式自我效能是學習

者對自己電腦程式能力的看法（Korkmaz & Altun, 

2014），瞭解學生的電腦程式自我效能和其他影響自

我效能的因素（Hasan, 2003），將可以在未來課程設計

上有更多的建議（Psycharis & Kallia, 2017）。電腦程式

自我效能也會和課程表現有關，有研究發現學習程式

的自我效能會受到過去學習程式的經驗影響（Benitti, 

2012; Law, Lee, & Yu, 2010）。Tsai 等 2 位學者則發展

了測量電腦程式自我效能的量表，量表共含有五個構

面，分別是邏輯思維、合作、計算、控制和除錯，而

此份電腦程式自我效能量表也可以針對學生的運算思

維進行評估（Tsai et al., 2018）。 

2.4. 學習焦慮 

焦慮是一種情緒狀態，是一種對於情況感到緊張、害

怕與憂慮的感覺。研究互動機器人的學者認為需要更

關注在個體與機器人進行互動時所產生的焦慮

（Nomura, Suzuki, Kanda, & Kato, 2006），亦有學者則

認為焦慮是衡量學生學習經驗的重要變量，並將學生

與機器人互動時產生的焦慮定義為學生在課程上產生

的恐懼、焦慮和迴避和使用機器人有關，且針對此項

目進行問卷測量題目的設計，用以了解學生對於機器

人出現在課程上會不會產生緊張、不喜歡或受干擾的

感覺（Sisman, Gunay, & Kucuk, 2018）。 

2.5. 學習意向 

針對教育機器人在課程上對學生的影響，學習意向指

的是學生在未來課程中預期與機器人進行的互動

（Sisman et al., 2018）。在一項對於機器人作為輔助學

習的研究中指出，擬人化的機器人可以提高學生的學

習興趣，大多數的學生都喜歡使用類人類機器人進行

學習（Chin, Wu, & Hong, 2011）。而在一項使用機器人

進行英文教學的研究指出，學生在學習過程中很開心，

相信自己正在學習得更好、更有效，從長遠角度來看，

這 會 增 強 他 們 的 學 習 動 機 （ Alemi, Meghdari, & 

Ghazisaedy, 2014）。 

3. 研究方法 

3.1. 研究流程 

本研究實驗對象為 21 位臺北市某國小三年級學生，在

學生課前進行電腦程式自我效能量表前測，並向學生

介紹積木程式及講解機器人操作流程，接著讓學生親

自操作使用手機應用程式，學生需要拉動並堆疊模組

化的積木程式，當學生堆疊出相對應的積木程式後，

置於桌上的機器人則會產生對於堆疊之積木正確與否

的反應，學生可以觀察機器人明白自己所拖拉的積木

是否正確，最後讓學生進行分組競賽活動，藉由分組

競賽讓學生更加熟練積木及機器人操作，課程完成後

再對學生施以電腦程式自我效能量表、教育機器人態

度量表及認知負荷量表進行後測，用以探討學生使用

教育機器人進行課程學習之學習成效。完整研究流程

如圖 1。 

 

圖 1 研究流程圖 

圖 2 則為學生使用手機程式，拉動積木程式方塊進行機

器人操控之介面畫面。 

 

圖 2 手機應用程式介面畫面 

3.2. 測量工具 

本研究使用電腦程式自我效能量表、教育機器人態度

量表及認知負荷量進行學習成效測量。 

電腦程式自我效能量表為 2018 年由 Tsai Meng-Jung、

Wang Ching-Yeh 和 Hsu Po-Fen 發展的量表，在本研究

使用的問卷量表使用三個構面，分別為「邏輯思考」、

「控制」、「除錯」，邏輯思考構面的 Cronbach’s 

alpha 值為 0.80，控制構面的 Cronbach’s alpha 值為 0.82，

除錯構面的 Cronbach’s alpha 值為 0.83，量表各構面皆

具有可接受之信度。 

教育機器人態度量表為 2018 年由 Burak Sisman、

Devrim Gunay 和 Sevda Kucuk 所發展的量表，在本研究

的問卷量表使用三個構面，分別為「學習投入」、

「學習焦慮」、「學習意向」，學習投入構面

Cronbach’s alpha 值為 0.73，學習焦慮構面 Cronbach’s 
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alpha 值為 0.81，意向構面 Cronbach’s alpha 值為 0.53，

量表各構面皆具有可接受之信度。 

認知負荷量表為 1998 年 John Sweller、Jeroen J. G. van 

Merrienboer 和 Fred G. W. C. Paas 發展的量表，在本研

究的問卷使用量表 Cronbach’s alpha 值為 0.83，具有可

接受之信度。 

3.3. 資料分析方法 

本研究使用統計軟體 IBM SPSS Statistics 23，對電腦程

式自我效能量表三構面進行前、後測相依樣本 t 檢定，

用以瞭解學生使用手機程式控制教育機器人後的運算

思維學習成效，並使用 Pearson 相關分析進一步探討學

生電腦程式自我效能表現與教育機器人使用態度及認

知負荷之相關性。 

4. 實驗結果分析 

本研究施測對象為台北市某國小三年級學生，回收之

有效問卷數為 21 份，性別分布為男性 14 位（66.7%），

女性 7位（33.33%）；針對是否有聽過積木程式變項，

有 3 人（14.3%）回答為是，14 人（66.7%）回答為否。 

欲探究學生在電腦程式自我效能表現，將問卷三構面

進行前後測相依樣本 t 檢定分析。根據分析結果發現

（如表 1），三個構面的前測與後測平均值皆有顯著差

異，在「邏輯思考」構面 t（20）= -3.16，p<.05，後測

得 分 （ M=3.79 ， SD=1.04 ） 顯 著 大 於 前 測 得 分

（M=3.08，SD=0.95）；「控制」構面 t（20）= -4.90，

p<.05，後測得分（M=2.81，SD=1.35）顯著大於前測

得分（M=1.44，SD=0.93）；在「除錯」構面 t（20）= 

-3.62，p<.05，後測得分（M=3.29，SD=1.39）顯著大

於前測得分（M=1.98，SD=1.29）。 

欲深入探討學生電腦程式自我效能表現與教育機器人

使用態度、認知負荷之相關性，進行 Pearson 相關分析，

分析結果如表 2。結果發現：電腦程式自我效能表現與

學習焦慮〔r（20）=.62，p<.001〕有顯著負相關；學

習投入及學習意向〔r（20）=.73，p<.001〕則有顯著

正相關。 

5. 結論與未來展望 

實驗結果顯示，學生在使用手機應用程式與教育機器

人進行互動學習後，其運算思維的能力皆有顯著提升，

表示學生使用教育機器人進行運算思維的學習是有效

果的。研究結果符合 Atmatzidou 和 Demetriadis（2016）

及 Chen 等五位學者（2017）對於運算思維及機器人主

題的研究結果，意即使用教育機器人進行運算思維的

能力提升是有成效的。 

為了更加瞭解學生運算思維能力與使用教育機器人之

間的關係，進一步針對量表各構面進行 Pearson 相關性

分析後，結果發現學生的電腦程式自我效能表現與學

習焦慮有顯著負相關，意即學生有較高的電腦程式自

我效能則會有較低的學習焦慮，如學生有較低的電腦

程式自我效能則會有較高的學習焦慮，此研究結果符

合 Bandura 提出的自我效能理論（Bandura, 1977）。 

本研究實驗結果亦呈現學習投入及學習意向之間呈現

正相關性，吻合 Sisman 於 2018 年發展機器人態度量表

時所測得之投入及意向構面間的相關性，也更加顯示

以此量表穩定，可以用來測量學生的學習投入與學習

意向。 

綜合上述對於實驗結果與討論，本研究呈現一個使用

手機應用程式及教育機器人進行教學而提升學生運算

思維能力的例子，實驗成效供給未來期望使用教育機

器人提升運算思維能力的教師，在課程設計上能有所

啟發。由於本研究僅針對臺灣臺北市某國小三年級學

生進行實驗研究，未來研究方向則可以針對不同地區

的學生進行實驗研究，也可以針對不同年齡與性別的

學生進行實驗研究，讓研究更加全面也增加研究的擴

論程度。 
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ABSTRACT 

Studies have reported that acquiring programming skills 

remains a considerable challenge for most novice learners. 

In this study, Minecraft was used to explore its’ effect on 

secondary students’ creativity, emotion, as well as 

collaborative behaviors during programming in groups. Four 

out of twenty secondary students were recruited and 

instructed in the design and development of programming 

project in Minecraft, and pair programming was used to 

foster their collaboration. The results revealed that students’ 

creativity was increased. Their emotion of enjoyment, hope 

and pride towards programming were improved and feeling 

of anxiety were decreased after the intervention. Two groups 

behavior patterns during programming were detected 

through click stream analysis, which revealing five typical 

behaviors (UTP, CIP, DIM, CIM and DBM). This study 

shed light on the dynamic connection between programming 

learning and cultivation of creative ability and positive 

emotion, and how to better integrate learning analytics in K-

12 programming education.  

KEYWORDS 

programming, secondary students, creativity, emotion, 

behavior 

1. INTRODUCTION 
Based on a constructivist approach, programming has been 

suggested as the main strategy to improve computational 

thinking (CT) in schools (Wing & M., 2006). However, past 

experience shows that many students perceive learning 

computer programming as a difficult and boring task, 

teaching programming languages remains a big challenge 

for most school teachers (Barr & Guzdial, 2015). Minecraft 

is acknowledged as a highly popular children’s digital game  

and show its potential in education (Pellicone & Ahn, 2018). 

Cipollone, Schifter, & Moffat (2014) demonstrated that 

Minecraft offers a unique opportunity for students to express 

their creativity. Minecraft also could provide the text-based 

language (Python) learning environment, together with a 

vivid debugging interface. However, less attention has been 

paid to apply Minecraft for programming projects. 

Therefore, the research questions was: What were the 

differences in creativity, emotion and collaborative 

behaviors of two contrasting groups in Minecraft 

programming? 

2. METHOD 

2.1. Research Context 

In this study, Minecraft was utilized as programming 

learning environment. Callaghan (2016) suggested that 

Minecraft could contribute to the enhancement of classroom 

learning, the capacity to collaborate as well as the role of the 

teacher contributed to a learning environment. Besides, 

Python is a language that was designed specifically for 

teaching programming to non-experts. And Python has been 

adopted in Chinese High school Information Technology 

Curriculum Standards. The demonstration of teaching 

Python programming in Minecraft was shown in Figure 1. 

 

Figure 1. Write, run and debug Python in Minecraft. 

2.2. Measuring Instrument 

Firstly, the creativity questionnaire was revised based on the 

measure developed by Welch and McDowall (2010). The 

Cronbach’s alpha value of the questionnaire was .80. 

Secondly, the questionnaire of emotion in programming, 

developed by Goetz, Frenzel, Barchfeld and Perry (2011), 

which is designed to assess various achievement emotions 

experienced by students in academic settings. The 

Cronbach’s alpha value of the questionnaire was .93. 

Thirdly, click stream analysis was adopted to explore 

students’ collaborative behavior during the programming 

process.  

2.3. Experiment participants and procedure 

Based on students’ performance and collaboration during 

the experiment, 2 groups of 4 students of this study were 

selected from 20 seventh graders in a secondary located in 

Hangzhou, Ying and Dai in group 1 and Chen and He in 

group 2.  

The experiment took 12 weeks of one and half hours per 

week. Teacher taught how to program and play with 

Minecraft, and students were learning basic grammar and 

function in Python, with implementing different project-

based programming cases. During the final programming 

project, students were asked to conduct a pair programming 

activities (swordgame), including two students working on 

one computer, with one acted as Driver and the other as 

Navigator. 

3. RESULTS AND DISCUSSION 
Firstly, at the first beginning of the experiment, Ying and 

Dai in group 1 got 80 and 61, while Chen and He in group 2 

got 72 and 50, with an average score of 59 for the whole 

class. After 12 weeks of study, two groups of students all 
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improved individually, on top of that, students in group 2 got 

a much significant enhancement during the study.  

Secondly, it is apparent that all of four students’ emotion 

were strengthened after the experiment, no matter if it is in 

overall performance, or in every aspects of enjoyment, hope 

and pride. Deci et al., (2017) also mentioned that learner’s 

emotion could influence students’ judgement, motivation 

and self-efficacy towards a specific task. However, He in 

group 2 experienced a decrease in anxiety score, which 

means his anxious feeling is rising along with the conducting 

of the class. Therefore, for those students who couldn’t catch 

up at the beginning or those one couldn’t work well with 

partner, the sense of anxiety would also increase with the 

time goes by. 

Thirdly, in terms of students’ behaviors during the 

programming in Minecraft, we incorporated the click stream 

analysis. As it can be seen from Figure 2, the top 2 common 

behaviors are CIP (coding in python) and DIM (debugging 

in Minecraft), the rest behaviors are DBM (distracted by 

Minecraft), CIM (creating in Minecraft) and UTP 

(Understanding the project). Students in groups 1 have spent 

the most of the time in CIP and more likely to write code to 

complete the programming task; whereas the group 2 seems 

to enjoy create building by mouse click (CIM) rather than 

code-writing. Students in group 1 were appeared to be more 

concentrated on programming, because of the shape of the 

behavior CIP, DIM for group 1 are much more dense than 

group 2, whereas the group 2 students’ behavior are much 

scattered, and they have spent more time in analyzing the 

question and were quite easy to get distracted by the game 

in Minecraft.  

 

Figure 2. Time-series analysis of programming procedure  

4. CONCLUSION AND IMPLICATION 
In this study, Minecraft, a creative sandbox game platform, 

was used as learning environment to teach programming. 

The experimental data showed that the students’ creativity 

and emotion toward programming were significantly 

improved after the intervention, revealing the benefits of the 

proposed approach. In addition to that, students’ behaviors 

(UTP, CIP, DIM, CIM and DBM) were detected through 

click stream analysis. 

Beside, this study contributes to providing new empirical 

evidence for the valuableness of enhancing creativity in 

programming education. Besides, researchers mentioned 

that positive emotion could influence students’ intrinsic 

motivation, such students tend to be more creative and 

competitive (Deci et al., 2017), and this study also shed light 

on the dynamic connection between emotion and 

programming learning, and find a positive impact on how 

students’ perceive programming knowledge. 

On top of that, different behavior patterns were found 

between two contrasting groups, with one group worked 

peacefully and the other were having conflict. Except for 

partners’ skill and personalities which are most emphasized 

in previous research (Hung & Young, 2017), this study also 

revealed that partners’ emotion towards the task will 

influence each other, which will results in mutual success or 

cruel failure.  
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ABSTRACT 

Initiatives are being implemented around the world to 

support youth with developing digital literacy skills and 

computational thinking. Many of these initiatives aim to 

close gender gaps in the area of science, technology, 

engineering and math (STEM). In Canada, CanCode is a 

federal initiative that provides funds for non-profit 

organizations to support K-12 teachers and their students 

with developing computational thinking and digital skills. 

Through the CanCode funding, organizations aim to 

increase representation of girls in high school computer 

science classes and post-secondary programs. There are 

many common approaches that are implemented by 

organizations including setting-up coding clubs, supporting 

teachers in K-8, adjusting high school STEM and computer 

science courses and organizing coding and robotics 

competitions. Literature suggests best practices and 

recommendations for such approaches in order to close the 

gender gap in computer science education. Initiatives such 

as CanCode are a starting point to ensure all young people, 

including girls, have the skills to be active contributors to the 

digital age. 

KEYWORDS 

computational thinking, computer science, K-12 education, 
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1. INTRODUCTION 
Initiatives around the world are being implemented to 

support students with developing computational thinking as 

it is “increasingly important that people have an 

understanding of the algorithmic, computational nature of 

problem-solving involving digital technology” (UNESCO, 

2018, p. 26). One such initiative in Canada is CanCode, 

through which many non-profit organizations have received 

funding to “support opportunities for Canadian students 

(kindergarten to grade 12) to learn digital skills including 

coding, data analytics, and digital content development” 

(Government of Canada, 2019). CanCode was first launched 

in September, 2017, providing $50 million in funding and 

reached over 1.3 million students as well as 61,000 teachers 

across Canada (Government of Canada, 2019). It has since 

been extended with an additional $60 million over the next 

two years aiming to advance “an agenda to build Canada as 

a world-leading innovation economy that will create good 

jobs and grow the middle class” (Government of Canada, 

2019).  

As part of the assessment criteria to receive funding, 

organizations must have “demonstrated an ability to reach 

traditionally underrepresented groups including girls, 

Indigenous youth, and/or youth with disabilities” 

(Government of Canada, 2019). Common approaches used 

by the nonprofit organizations funded by CanCode to narrow 

the gender gap in the areas of computer science and STEM, 

as well as relevant research and recommendations are 

described in this paper. 

2. THE GENDER GAP AND FUNDED 

INITATIVES  
The Canadian government “recognizes the critical role that 

gender equality has in building a strong economy that works 

for everyone” (Government of Canada, 2018, p. 218). 

Diversity is important for a nation as it is known to help 

drive innovation, and results in more effective problem 

solving (Foster, 2019; Kafai & Burke, 2014; Margolis & 

Fisher, 2002). The Canadian government has made “targeted 

investments, partnerships, and innovation and advocacy 

efforts that have the greatest potential to close gender gaps 

and improve everyone’s chance for success” (Government 

of Canada, 2018, p. 243). Although many interventions and 

actions are being taken by organizations with the CanCode 

funding to close the gender gap, “no single action can be 

recognized as a perfect solution” (Council of Canadian 

Academics, 2015, p. 122).  

2.1. Coding Clubs 

Many of the organizations that have received funding will 

be supporting teachers with starting and maintaining after 

school coding clubs (Government of Canada, 2019). Clubs 

tend to be flexible, allowing for youth to focus on their 

interests and also encouraging collaboration beyond the 

classroom walls, creating agency (Kafai & Burke, 2014). 

Kafai and Burke (2014) acknowledge however, that true 

“computational participation cannot be achieved if only a 

select few join the clubhouse” (p. 133). While there are 

equity issues associated with clubs that are held beyond the 

school day, those who lead such clubs can attempt to develop 

“more inclusive out-of-school science learning practices” 

(Dawson, 2017, p. 544). Ideally, teachers will begin to 

incorporate coding into their classroom, so that “what 

happens inside and outside classrooms becomes more fluid” 

(Kafai & Burke, 2014, p. 133). 

2.2. Developing Digital Skills in High School 

The CanCode initiative is meant to also support 

improvement of high school courses related to digital 

literacy and to increase the number of girls enrolled in 

computer science and STEM programs. Kafai and Burke 

(2014), Foster (2019), Margolis, Fisher and Miller (1999), 

and Master, Cheryan and Meltzoff (2016) recommend that 

new directions for designing activities as well as the tools 

used in K-12 educational computing efforts, are required in 

order to broaden not only participation, but also perceptions. 

Most often, curriculum is misleadingly and unnecessarily 

highly technical – when it should really be shown to be 

relevant to many aspects of the world (Margolis et al., 1999). 

Intentionally changing high school classrooms can create a 

greater sense of belonging for girls and possibly reduce the 

gender disparities observed in STEM courses (Master et al., 
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2016). Incorporating mentor and peer support programs in 

high schools has also been shown to encourage girls to stay 

in computer science courses (Council of Canadian 

Academics, 2015). This is worth investing in, as there have 

been “positive signs that learning computer science in high 

school is correlated with a greater likelihood” of girls to 

pursue “computer science in postsecondary study” (K–12 

Computer Science Framework, 2016, p. 25). 

2.3. Early Exposure – Supporting Teachers in K-8 

Grades K through 8 provide an opportunity to expose 

everyone to computer science, which is seen as “critical to 

reducing current gender disparities” (Master et al., 2016, p. 

424), as it might prompt girls to consider computer science 

courses at the high school and post-secondary levels. 

Interventions starting as early as the primary grades engage 

girls early, teaching about the many applications of 

computer science, and providing hands-on activities which 

might help to reduce the gender gap (Council of Canadian 

Academics, 2015). While robotics kits are popular and 

commonly used by funded organizations, Kafai and Burke 

(2014) recommend that a variety of digital designs, 

animations and stories that incorporate different materials 

and contexts should also be shared with students.  

In planning their activities for the youngest learners, 

organizations should consider not just how to spark the 

interest of girls in computer science, but also why they are 

not interested in the first place (Gaymes San Vicente, 2014). 

Some advocates argue that by designing computer science 

activities that might better fit into girls’ interests, existing 

stereotypes are being reinforced, but as Kafai and Burke 

(2014) counterargue, “these tensions are productive because 

they open up conversations and question fairly narrow 

perceptions about computation” (p. 101). Master et al. 

(2016) share in their study that girls’ lower sense of 

belonging “could be traced to lower feelings of fit with 

computer science stereotypes” (p. 424). Incorporating 

computer science and STEM into K through 8 classes 

through creative and less technical means, could help to shift 

the gender disparity that is currently seen in high school 

computer science classes and beyond.  

2.4. Coding and Robotic Competitions and Hackathons 

In many cases, hackathons and coding and robotic 

competitions have been used by the funded organizations to 

draw youth interest in computer science. Traditionally, such 

competitions have been established as part of  “creative 

computing and engineering cultures in K-12 schools” (Kafai 

& Burke, 2014, p. 95), but they have not reached everyone. 

In fact, such competitions are expensive, tend to draw mostly 

boys, and do not seem to increase participation much 

amongst girls and minorities (Kafai & Burke, 2014). There 

are many other ways to broaden participation, including 

collaborative experiences, sharing circles and culturally 

responsive making opportunities (Kafai & Burke, 2014, p. 

102).  

3. CONCLUSION 
The approaches and related research outlined in this paper 

indicate that initiatives such as CanCode can provide hope 

for narrowing the gender gap observed in the area of 

computer science and STEM. The non-profit organizations 

involved with CanCode seem to be incorporating many 

research-based practices outlined in literature and additional 

recommendations have been highlighted. The CanCode 

program offers a starting point to ensure that all young 

people, including girls, have the opportunity to contribute to 

the digital age by becoming authors and creators, rather than 

solely consumers of technology. 
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ABSTRACT 

With networks being an omnipresent part of children’s lives, 

questions about safe communication in these networks 

emerge. While the concept of symmetric encryption can be 

taught in simple and gamified ways, asymmetric encryption 

as the key idea of secure communication in distributed 

networks is hard to understand for children and existing 

approaches to simplify the idea still have their flaws. This 

paper presents a virtual reality designed around a medieval 

love story where letters are encrypted, decrypted, and signed 

by using magic potions that are either public or private. A 

study with 78 students revealed that the key factors for 

learning in this virtual environment were presence, 

emotions, and previous knowledge while neither the effect 

of the used technology nor the effect of the students’ 

motivation on their learning outcomes were significant. 

KEYWORDS 

virtual reality, computer science unplugged, cryptography, 

immersive learning 

1. INTRODUCTION 
Secure transmission of information is a relevant topic for 

modern communication: Since the rise of the internet in the 

1970s, distributed networks consisting of numerous parties 

communicating with each other had to tackle the challenge 

of encryption and decryption to ensure the privacy of the 

participants in the network. A key idea that emerged with the 

rise of distributed communication networks characterized by 

participants that never met before is the asymmetric 

encryption/decryption. Public and private key algorithms 

(e.g. Diffie-Hellman key exchange, see Diffie and Hellman 

1976 or RSA encryption/decryption, see Rivest, Shamir, and 

Adleman 1978) pose the main idea how distant parties can 

communicate securely without any prior contact even if a 

third party, the man in the middle, intercepts the (encrypted) 

messages in the network.  

With questions on privacy and communication in their 

digital environment, teaching some of these concepts can 

help children to achieve a better understanding of their 

digital everyday surroundings. The basic idea of encryption 

and decryption can be explained easily, e.g. showing the 

Caesar encryption/decryption method as an idea of 

symmetric encryption. In further discussions, the children 

can talk about the problem that participants need a safe way 

of exchanging keys before starting the encrypted 

communication and explore possibilities to do this. In this 

paper, we explore the possibility of visualizing the idea of 

asymmetric encryption in a metaphorical way using a virtual 

reality game about a medieval love story and analyze what 

factors contribute to the students’ learning outcomes.  

2. METAPHORS FOR PUBLIC-PRIVATE 

 KEY ENCRYPTION/DECRYPTION 
While the mathematical concept of one-way functions that 

underlies the idea of asymmetric encryption can be quite 

abstract to explain for children, various metaphorical 

approaches have been developed to teach this concept. 

Explanatory ideas include the use of locks and keys (UC 

Computer Science Education 2008), the mixture of colors 

(Art of the Problem 2012), as well as boxes which can be 

locked and unlocked in two different ways (Fekete and Morr 

2018) to explain the underlying concept to students.  

The original Computer Science Unplugged activity (UC 

Computer Science Education 2008) uses a box to send a 

chocolate bar through a network with a man in the middle. 

A student is given a box that contains a bar of chocolate (as 

a metaphor for the message that somebody else wants to 

read). The box has to be sent to another participant in the 

network (a simple queue of students, one of them being a 

man in the middle). The students explore ideas of how the 

box can be locked so that the target person can open the lock 

while the man-in-the-middle cannot. The students have to 

deal with the challenge that the key has to remain private and 

cannot be sent through the network. In this scenario, a 

solution can be to send the locked box to the target person, 

the target person adds her own lock to box (so that the box 

is now locked twice) and sends the box back to the sender. 

The sender unlocks his/her own lock and sends the box back 

again so that the target person, once receiving the box, can 

unlock his/her own lock and get the chocolate. While the 

underlying idea of the Computer Science Unplugged activity 

engages students to think about the problem in a 

metaphorical and fun way without having to understand the 

underlying mathematical functions behind the key and the 

lock, the metaphor fails to explain both signing and 

encrypting. The metaphor also struggles with the physical 

characteristics of a key (that it can not lock something by 

itself as it would be needed for signing a message) and those 

of a lock (that, usually, one would not distribute locks).  

Another idea tries to mix colors (Art of the Problem 2012) 

in order to simulate a secure key exchange: First, each 

participant has a secret color. Two students, A and B, who 

want to start an encrypted conversation agree publicly on a 

color and add their own private colors to it. They exchange 

the new colors (one with A’s private color and one with B’s 

private color) are exchanged publicly. After receiving the 

mixed color, again, A and B each add their own private color 

to it. The received color represents the secret key for their 

communication. Doing so, the parties exchanged a secret 

color without ever meeting each other in person. The 

mixture of colors is a good idea for introducing a key 

exchange (like the Diffie-Hellman key exchange) as it 

explains the idea of a one-way-function in a simple and 
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engaging way but its applications for really encrypting and 

decrypting messages are limited. Further, the realization 

often fails in reality as the amount of color has to be 

measured exactly for the activity to work.  

IDEA provides IKEA-like manuals for concepts related to 

Computational Thinking. In their manual for public-private 

key encryption/decryption (Fekete and Morr 2018), they 

present a box that can be locked in two directions as a 

metaphor for the key pair used in a public-private- 

communication. If the box is locked in one direction with the 

public key, it can only be unlocked by using the private key. 

If it is locked using the private key, it can only be unlocked 

in the other direction with the public key, as both keys only 

turn the lock in one direction. The metaphor is very close to 

the actual principle of a secure communication involving 

public-private-key encryption/decryption and is also capable 

of explaining the idea of signing a message. But its practical 

application is limited as it is difficult to actually build a box 

like this for activities where the students can explore the 

possibilities of encrypting and decrypting messages.  

While there are some approaches of visualizing networks 

and communication in networks in non-immersive virtual 

environments (Voss et al. 2013; Sturgeon, Allison, and 

Miller 2009) and basic concepts of IT security in immersive 

virtual realities (Puttawong, Visoottiviseth, and Haga 2017), 

none of them focus on the idea of asymmetric encryption. 

As shown before, metaphors can contribute to students’ 

understanding but have often some constraints or flaws for 

carrying out the metaphors in real activities/tasks for 

students. Virtual reality technology can provide a useful tool 

to get rid of the constraints of the actual reality (Bricken 

1990) in order to create engaging learning environments.  

3. THE DESIGN OF FLUXI’S CRYPTIC 

POTIONS 
The approach for our immersive EVE Fluxi’s Cryptic 

Potions, which was developed using Unity, combines the 

original Computer Science Unplugged activity, where the 

students communicate in an unknown network and send 

each other messages (or chocolate bars) with the mixing 

colors idea. Our medieval setting takes the player into a 

castle chamber where he/she encounters Fluxi, a carrier 

dragon, who delivers messages to and from the student. The 

player receives a letter from a friend, Nikolay, who asks the 

player if he/she will be at Sir Dance-A-Lot’s (the 

metaphorical man-in-the-middle) party this evening. Fluxi 

asks the player to reply to Nikolay by telling him that he/she 

wants to attend but has not received an invitation yet. Fluxi 

brings the letter to the post office (simulating the network 

structure) and returns with an encrypted response. Fluxi 

explains that the post office provides each participant of the 

network with two cryptic potions: a private and a public 

potion. While all potions cipher messages, the encryption 

can only be reversed by using the corresponding other 

potion. The public potion of each participant is stored 

publicly in the post office and everyone can get a copy of it. 

In contrast, the recipe of the private potion is secret and only 

known by the user. After explaining the benefits of this 

asymmetric encryption process, he instructs the user to 

decrypt Nikolay’s message by using his/her private potion. 

 
Figure 4. Fluxi's Cryptic Potions 

Nikolay informs the player that Princess Isolde, Prince 

Charming, and Fluxi’s aunt Gertrude will be at the party as 

well. He notes that the player always wanted to dance with 

one of them and that he/she should write a letter to the person 

of interest. But Nikolay also warns the player that Sir Dance-

A-Lot wants to dance with all of them which is why the 

communication should be kept secret and, therefore, all 

messages should be encrypted. The player writes a new, 

encrypted letter to Nikolay (with Nikolay’s public potion) 

and agrees that it would be a good idea to encrypt the 

messages. After delivering this letter to the post office, Fluxi 

returns with the invitation of Sir Dance-A-Lot. The 

invitation seems to be ciphered as well, and Fluxi explains 

that Sir Dance-A-Lot signed the invitation so that everyone 

knows that the message must be from him. After reasoning 

why this process is secure (in terms of authentification), the 

player adds Sir Dance-A-Lot’s public potion to the letter in 

order to decipher it. The player writes a message saying that 

he/she will attend the party and signs the letter with his own 

private potion. After delivering the letter, Fluxi asks the 

player who it is he/she wants to dance with. As the dialogues 

and letters are quite similar and the tasks stay the same, we 

will present the scenario for a player who chose Prince 

Charming. The player writes a message to Prince Charming 

asking him for a dance. Fluxi gets the prince’s public potion 

from the post office and explains that this potion can encrypt 

letters for Prince Charming and decipher signed letters from 

him as well. The player encrypts the message with Prince 

Charming’s public potion (to avoid Sir Dance-A-Lot reading 

it) and gives the letter to Fluxi. After returning from the post 

office, Fluxi gives the player a signed response from Prince 

Charming: He does not believe the player’s authenticity as 

the player encrypted the message for Prince Charming, but 

did not sign it. Hence, the player has to rewrite his/her letter, 

encrypt it with Prince Charming’s public potion and sign it 

with his/her own private potion. After resending the letter, 

Fluxi returns with a signed and encrypted reply from Prince 

Charming, telling the player that the prince waited an 

eternity for this question and would be glad to dance with 

him/her.  

The controls in Fluxi’s Cryptic Potions were gaze-based via 

point-and-click. The player could pick up potions and letters, 

write new messages, and talk to the dragon. The player could 

not move or teleport, resulting in him/her staying in the same 

room all the time. In all technological settings, the player sat 

on a chair, simulating the same position as in the EVE. 
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4. LEARNING IN IMMERSIVE 

ENVIRONMENTS 
Necessary to consider the factors influencing learning 

outcomes, especially when teaching and learning with 

immersive technology like virtual reality, e.g. immersion as 

a quantifiable description of technology (Slater et al. 1999) 

and presence as the feeling of ’being there’ (e.g. Biocca 

1997). Dalgarno and Lee (2010) identify representational 

fidelity (the display of the environment, the display of view 

changes and object motion, the object behavior, the 

representation of the user, the provided spatial audio, and the 

kinesthetic and force feedback) and the learner interaction 

(embodied actions, embodied verbal and non-verbal 

communication, control of environment attributes and 

behavior, and construction/scripting of objects and 

behaviors) as affordances of 3D learning environments. 

These characteristics of EVEs can induce the construction of 

identity, a sense of presence, and co-presence inside of the 

user. These user characteristics, in turn, affect the learning 

benefits (spatial knowledge representation, experiential 

learning, engagement, contextual learning, and collaborative 

learning) through the afforded learning tasks provided by 3D 

EVEs. By combining Dalgarno and Lee’s framework with 

the idea of presence being a person-specific, unique 

characteristic of EVEs (for a discussion about this, see 

Mikropoulos 2006), Dengel and Mägdefrau (2018) 

introduce the Educational Framework for Immersive 

Learning (EFiL, Fig. 2). The EFiL localizes the factors 

immersion and presence in the educational supply-use-

framework for the explanation of scholastic learning 

presented by Helmke (2014) and provides a solid basis for 

explaining learning outcomes in immersive and non-

immersive EVEs: According to the EFiL, learning activities 

in EVEs "are determined through the (immersive) learning 

potential [including motivation, cognitive factors, and the 

emotional state  of  the  learner],  the  context  of  the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

learner, the perception of the didactical, immersive and 

content quality of the instructional materials at a certain 

level of presence and the interpretation of these materials. 

The factors influencing immersive learning are related 

among each other and (especially in scholastic 

environments) affected by the family and the teacher of the 

learner" (Dengel and Mägdefrau 2018, p. 614). Dengel 

(2020) notes that the EFiL can be used as a framework for 

explaining learning in EVEs in general, but, in order to 

understand the relations between the factors, one has to 

consider already established research from the educational 

sciences and psychological research.  

The potential of immersive media has been acknowledged 

for the use in Computer Science Education (Dengel, 2019): 

By taking on the idea of Computer Science Unplugged 

(introduced by Bell and Fellows, see e.g. Bell, Rosamond, 

and Casey 2012), the concept of Computer Science 

Replugged thinks of ways to integrate immersive technology 

to enhance existing Computer Science Education activities 

and to generate new activities in virtual environments while 

preserving most of the key characteristics of an Unplugged 

activity (kinaesthetic, fun and engaging with a sense of story 

to the activities, see Bell et al. 2009): "By using immersive 

technology, the induced feeling of presence can provide a 

perception of non-mediation and, therefore, a first-hand 

experience" (Dengel, 2019, p. 2).  

5. METHOD 
By following the assumptions of the EFiL (cognitive 

abilities are modeled through the previous scholastic 

performance in German, which is the students first language, 

and Maths) and the constraints of the factors’ relations 

formulated by Dengel (2018), it is hypothesized that  

(1) The level of immersion predicts the user’s level of 

physical presence.  

(2) The user’s emotional state predicts his/her sense of 

physical presence (a: Stronger positive emotions 

Figure 2. The Educational Framework for immersive Learning (EFiL) by Dengel and Mägdefrau, 2018 
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increase presence. b: Stronger negative emotions 

decrease presence.). 

(3) The user’s motivation predicts his/her pre-test 

performance (a: Intrinsic motivation increases pre-

test performance b: Extrinsic motivation decreases 

pre-test performance.) 

(4) A higher sense of presence predicts a higher post-

test performance. 

(5) A better result in the student’s pre-test predicts a 

better post-test performance.  

(6) The user’s cognitive abilities predict his/her post-

test performance (a: A higher previous scholastic 

performance in German increases post-test 

performance. b: A higher previous scholastic 

performance in Maths increases post-test 

performance.).  

As noted in section 4, the factors marked as independent 

variables here are related to each other. For the path analysis 

approach presented in this study, the relations suggested by 

popular theories like the Expectancy-Value-Theory (Ryan 

and Deci 2000), the Control-Value-Theory (Pekrun 2000), 

and meta-studies like Hattie (2008) were considered for 

formulating the research model.  

5.1. Sample and Procedure 

78 students (36 female, 4 missing values) between the age 

of 13 and 16 from different classes of an Austrian school 

took part in the study. Asymmetric encryption was not part 

of their computer science classes before. Their performances 

in the subjects Maths (M = 2.51, SD = .91) and German (M 

= 2.42, SD = .92), which could be reported anonymously by 

the students on their parents’ notice, were average (with 1 

being the highest and 6 the lowest grade).  

A week after completing the pre-test and the motivation 

questionnaire, the students took part in the experiment in 

groups of four to six which were assigned to different 

technology settings. This study was part of a bigger study, 

providing three EVEs in total. First, they filled out an 

emotional state questionnaire and then waited until the next 

VR experience was available. Each student was provided 

with another technology for each EVE. After completing 

each VR experience, they filled out the corresponding 

presence questionnaire and post-test.  

5.2. Instruments 

An adapted version of the Slater-Usoh-Steed presence 

questionnaire (Slater, Usoh, and Steed 1994) was used 

where the mean score was calculated out of six questions on 

a seven-point Likert scale (M = 4.14, SD = 1.56, α = .91). 

Further, an emotional state questionnaire of Titz (2001) was 

used, assessing academic emotions on a 6-point Likert scale 

(positive emotions: M = 2.91, SD = .98, α = .73; negative 

emotions excluding fear: M = .69, SD = .68, α = .68). The 

context motivation questionnaire assessed intrinsic 

motivation (M = 3.10, SD = 1.02, α = .85), identified 

motivation (M = 3.34, SD = .97, α = .79), introjected 

motivation (M = 2.39, SD = 1.07, α = .76), and extrinsic 

motivation (M = 2.70, SD = 1.02, α = .65) for learning in the 

subject Computer Science (original version by Hanfstingl 

(Hanfstingl et al. 2010), adapted and evaluated for the 

subject Computer Science by Dengel, 2020) on a 5-point 

Likert scale. For the path analysis, only intrinsic motivation 

and extrinsic motivation were analyzed as they tended to 

show the greatest difference in motivation for learning 

computer science between the students. The pre- and post-

tests were the same and assessed the students’ understanding 

skills: The first task and the second task asked the students 

to explain why a specific key was used in order to 

sign/encrypt a message, resulting in a performance test of 

four points total. The students scored better in the post-test 

(M = 1.83, SD = 1.20, α = .68) than in the pre-test (M = 1.32, 

SD = 1.16; the pre-tests scale reliability was not calculated 

as the tasks were supposed to be new to the students). A third 

task where the student had to insert the correct keys into 

blanks was removed due to a reduction of the overall scale 

reliability of the post-test. The Fluxi’s Cryptic Potions EVE 

was presented with three different technologies: a laptop, a 

mobile VR (using a Moto Z smartphone and a Daydream 

View headset), and an HTC Vive.  

5.3. Results 

While there were no outliers in the sample’s results, the 

results of the post-test, the pre-test, the extrinsic motivation 

scale, the negative emotions scale, and the scholastic 

performances in German and Maths were not equally 

distributed (Shipiro-Wilk method, p < .05). Non-parametric 

analysis was used where it was applicable.  

An ANOVA could show significant differences (F = 22.68, 

p < .0005) between the induced levels of presence for the 

different technologies (laptop: M = 3.11, SD = 1.23; Mobile 

VR: M = 4.07, SD = 1.54; HTC Vive: M = 5.40, SD = .93). 

A Gabriel (used because of slightly varying group sizes) 

post-hoc test could show that presence in the laptop setting 

at a significance level of p < .05 from the Mobile VR setting 

and at a significance level of p < .0005 from the HTC Vive 

level. The level of presence was significantly different from 

the Mobile VR level as well (p < .01). A multiple linear 

regression model including immersion, positive emotions, 

and negative emotions as predictors of presence was 

calculated, but only immersion was included as the only 

predictor of presence with β = .63, p < .0005) A predictive 

effect of positive emotions and negative emotions on 

presence was not significant (this relation will be explored 

further in the path analysis).  

To predict the pre-test performance, another multiple linear 

regression model [corrected R2 = .06, F (2, 70) = 3.27, p < 

.05] was calculated, including intrinsic motivation (β = .12, 

p > .05) and extrinsic motivation (β = -.23, p > .05).  

The students’ post-test performance could be predicted 

[corrected R2 = .26, F (4, 59) = 6.59, p < .0005] by the factors 

presence (β = .24, p < .05), pre-test performance (β = .50, p 

< .0005), the previous scholastic performance in German (β 

= .29, p < .05) and the previous scholastic performance in 

German (β = -.27, p < .05).  

As noted in section 4, the factors that predict learning 

achievement are related to each other. Therefore, a path 

analysis was calculated, integrating suggested relations 

within and between the different theoretical constructs. 
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The path analysis showed good fit indices (Chi2 p = .30, 

RMSEA = .041, CFI = .968, TLI = .946, SRMR = .073). 

Figure 3 shows the correlations between and predictive 

effects of the different factors. Intrinsic motivation and 

extrinsic motivation are correlated negatively; scholastic 

performances in German and in Maths are correlated 

positively; positive and negative emotions are correlated 

negatively. A higher scholastic performance in German 

predicts lower positive emotions; a higher scholastic 

performance in Maths predicts higher positive emotions; a 

higher scholastic performance in German predicts higher 

negative emotions (these effects are inverse in the path 

analysis due to the fact that the best scholastic performance 

is grade 1, the worst is grade 6). A higher level of immersion 

predicts a higher level of presence. Presence, pre-test 

performance, as well as scholastic performances in German 

and Maths predict the post-test performance.  

5.4. Discussion 

Regarding the hypotheses, H1, The level of immersion 

predicts the user’s level of physical presence, can be 

maintained as the ANOVA and the post-hoc tests show 

significant differences. H2, The user’s emotional state 

predicts his/her sense of physical presence (a: Stronger 

positive emotions increase presence. b: Stronger negative 

emotions decrease presence.) could not be verified as 

emotions were not identified as predictors of presence. 

Regarding H3, The user’s motivation predicts his/her pre-

test performance (a: Intrinsic motivation increases pre-test 

performance b: Extrinsic motivation decreases pre-test 

performance.), the sample was too small to find significant 

effects, this hypothesis has to be investigated further. H4 

assumed that A higher sense of presence predicts a higher 

post-test performance. The effect of presence on post-test 

performance was found to be significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, presence poses an important predictor of learning 

outcomes for the presented EVE. H5, A better result in the 

student’s pre-test predicts a better post-test performance, 

could be verified as well in this study and can be maintained. 

For H6, the user’s cognitive abilities predict his/her post-test 

performance (a: A higher previous scholastic performance 

in German increases post-test performance. 

b: A higher previous scholastic performance in Maths 

increases post-test performance.), both subhypotheses can 

be maintained as the study showed significant effects of the 

previous scholastic performance on the post-test learning 

outcomes.  

Even though some of the results are not significant (as 

assumed, due to the small sample size), the general idea of 

the EFiL, which was used for the selection of the hypotheses, 

was found to be true: Presence is an important predictor of 

learning outcomes and is influence by immersion. Even 

though the learning outcomes are influenced by many 

factors, the level of immersion is not one of them.  

6. CONCLUSIONS 
Teaching the basic idea of asymmetric encryption using VR 

technology has the opportunity that it is possible to realize 

metaphors and analogies that are impossible to carry out in 

the physical reality. Still, using metaphors for explaining 

general ideas is tricky: It is the role of the teacher to explain 

the metaphor/analogy before or after the activity. 

Furthermore, if the teacher uses the EVE as an introduction 

to asymmetric cryptography in advanced classes, dealing 

with computational complexity and mathematical 

background becomes crucial as well. Doing so, VR 

experiences should be seen as an addition to existing 

teaching methods, not as substitutes. They have to be 

included at the right point in the learning process in order to 

show their potential. While the VR activity was effective in 

terms of learning outcomes, it is, by now, not possible to 

conclude that using the VR environment has benefits over 

Figure 3. Path Analysis Showing Effects between Intrinsic Motivation (MotInt), Extrinsic Motivation (MotExt), 

Scholastic Performances in German and Maths, Positive Emotions (EmoPo), Negative Emotions (EmoNe), Presence 

(Pres), Immersion (Imm), Pre-Test Performance (PerfPre), and Post-Test Performance (PerfPost)  

Levels of Significance: *p<.05; **p<.01; ***p<.001 
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real activities. In addition, the EVEs can be enhanced in 

multiple ways: Providing possibilities to interact with other 

students, for example to send each other secret messages or 

to intercept other students’ messages and try to decrypt them 

would make the EVE more fun and motivating while adding 

more interaction possibilities. That said, using VR in 

cryptography education has its merits, but also poses 

challenges for the teacher. Future studies could focus on 

exploring the benefits and challenges of using this 

metaphorical VR representation in comparison to real 

activities or traditional learning approaches. Having this in 

mind, it would also be interesting to explore, what other 

topics in CS education can benefit from the use of immersive 

technology in the classroom and how immersive technology, 

in general, can enhance learning.  
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ABSTRACT 
The purpose of this study is to explore the use of educational robots and computing thinking board games by primary and 

middle school students in different countries, and to explore whether there are differences in learning behaviors during the 

learning process. It was found that the primary school students in Singapore had the highest number of behaviors in irrelevant 

courses, and the same textbook content was applied to the primary three in Taiwan. It can be seen that Taiwanese students 

tend to spend time talking with competitors. This phenomenon can increase students' oral communication and enhance their 

learning fun during the discussion. Singaporean students rank first in behaviors that are not related to the course. It is 

speculated that the content of the textbooks may be too difficult, which may lead to restrictions on communication. This study 

suggests that textbooks can be moved to other grades in Singapore in the future to help Singaporean students improve the 

same learning effectiveness as Taiwanese students. 
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比較新加坡和台灣小學三年級學生整合機器人與運算思維桌遊之學習行為 
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摘要 
本研究旨在探討不同國家小三學生使用教育機器人結

合運算思維桌遊，探討學習過程中的學習行為是否有

差異。結果發現新加坡小學的學生在無關課程的行為

次數居所有行為之冠，而相同教材內容應用在台灣小

三上，發現與組外對談的行為次數居所有行為之冠。

可見台灣學生傾向花時間和競爭同儕對話，此現象可

增加學生進行口語交流，在討論過程中提升他們對學

習的有趣性。新加坡學生在與課程無關學習的行為位

居之冠，推測可能教材內容太難，導致溝通形成限

制。本研究建議未來可將教材移至新加坡其他年級，

幫助新加坡學生提升與台灣學生相同學習成效。 

關鍵字 
行為分析；教育機器人；運算思維；桌上遊戲 

1. 前言 
在數位時代中，每個人都應該具備運算思維能力

（ Korkmaz, Ç akir, & Ö zden, 2017 ） 。 運 算 思 維

（Computational thinking, CT）是學習者的基本技能，

也是評估教育的關鍵因素（Zhong, Wang, Chen, & Li, 

2016）。運算思維是新一代學習者必須掌握的一套解

決問題的技能，才能在充滿由軟體驅動物體的數位時

代中蓬勃發展（ Román-González, Pérez-González, & 

Jiménez-Fernández, 2017）。 

有學者發現機器人活動是一種有效的教學策略，可以

提高人們對機器人的興趣，提高自我效能及與機器人

一起教學，發展出對科學概念的理解並促進運算思維

能力的發展（Jaipal-Jamani & Angeli, 2017）。機器人技

術可以被當作是創造許多科學教育方法的〝工具〞，

例如探究式學習和解決問題（Altin & Pedaste, 2013）。

越來越多的使用社交技能的人型機器人在教育領域中

的科學教育、特殊教育和外語教育等（Sisman, Gunay, 

& Kucuk, 2019）。 

有學者發現，遊戲式學習可以幫助學習者避免無聊，

因而獲得新的學習體驗環境（Rawendy, Ying, Arifin, & 

Rosalin, 2017）。過去二十年中，遊戲式學習的環境已

經發展成為功能強大的學習工具，也引起了各種教育

利益相關者期大的興趣（Groff, 2018）。透過遊戲式學

習、問題導向學習、視覺化程式設計是可以潛在地幫

助學習者在程式設計課程入門中有良好的技術表現

（Topalli & Cagiltay, 2018）。 

根據上述所提到的教育機器人已經應用於教育領域

上，而遊戲式學習可以幫助學習者獲得一個新的學習

環境，故本研究試圖探討對於在不同國家的學習者利

用教育機器人進行遊戲式學習，在學習過程中的行為

是否有所差異，並且針對遊戲式學習的過程進行行為

序列分析。本研究將探討的研究問題為：不同國家的

學習者，利用教育機器人進行遊戲式學習之間行為分

析的差異為何？ 

2. 文獻探討 

2.1. 運算思維 

運算思維主要是一種思維和行動方式，可以透過使用

特定的技能加以展示，然後成為一個可以做基礎評估

CT 實作本位測量的技能（Shute, Sun, & Asbell-Clarke, 

2017）。可以將運算思維簡單地定義為能夠使用電腦

解決生活中產生問題所必須具有的知識、技能和態度

（Korkmaz et al., 2017）。 

CT 主要用在程式設計和電腦科學的活動，也還依些研

究與其他主題有關。同時，大多數研究在 CT 活動中採

用專題式學習、問題導向學習、合作學習和遊戲式學

習（Hsu, Chang, & Hung, 2018）。 

2.2. 教育機器人 

教育機器人的配件及一些特殊學習和教材的使用是目

前科技必備的。學者也已經證明，當應用在自然數學

的學科和科技教育領的學科連結時，學習效果會提高

（Ospennikova et al., 2015）。 

教育機器人（Educational Robotics, ER）的概念不應該

只關注在分開、獨立的主題，反而應該作為一種綜合

方法應用，以促進對不同領域和領域的整體理解和接

受（Kandlhofer & Steinbauer, 2016）。教育機器人技術

是用在學習、運算思維、程式設計和工程學的一種轉

換工具，在 K-12 教育當中被視為 STEM 學習的關鍵因

素（Eguchi, 2014）。 

2.3. 遊戲式學習 

隨著新流行的技術發展，教育界很快開始探索如何將

遊戲用於教學上（Godwin-Jones, 2016）。對於教育遊

戲的設計，遊戲的挑戰應該可以跟上學習者的成長能

力和學習，以辨認可遊戲式學習學習環境中可以持續

學習（Hamari et al., 2016）。 

在學校環境中整合遊戲式學習的主要的挑戰之一是幫

助學習者將遊戲中學習到的知識與學校中所學習到的

知識連繫在一起（Barzilai & Blau, 2014）。有學者發現

遊戲式學習已經成功的應用，也發現遊戲式學習的可

以降低考試焦慮和增加參與度（Kiili & Ketamo, 2018）。 
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3. 研究方法 

3.1. 研究對象 

本次實驗共 54 名三年級學習者參加這項研究。一組為

新加坡某國小三年級 26 名學習者學習第二語言

（Second Language, L2），過程中使用的教材語言為華

語文；另一個為台灣北部某國小三年級 28 名學習者學

習外語（Foreign Language, FL），過程中使用的教材語

言為英語，兩組皆沒有玩過運算思維桌遊，皆利用教

育機器人進行組內合作學習。 

參與者平均年齡為 9 歲。為了保護實驗對象，實驗中的

實驗對象們的參與皆得到了父母的同意，並在研究過

程中隱藏他們的個人資訊來保護實驗對象。此外，他

們知道參加是自願的，過程中若有不適可以隨時退出

研究。 

3.2. 序列分析之編碼系統 

為了探討學習者在遊戲式學習過程中的學習行為，針

對被觀察者的行為詳實記錄下來，並參考相關研究之

編碼系統。在學習過程中將學習狀況分為三類：運算

思維行為、語言行為和其他行為，如表 1 所示。  

  表 1 行為編碼：組內競賽活動之行為分析編碼 

類別 代碼 意義 範例 

運算

思維

編碼 

PP(People&People) 組內對談 同組的兩個

人在對談 

PC(People 

Commnication) 
組外對談 與別組在對

談 

PR(People & Robot) 使用機器人 掃描卡牌使

機器人移動 

ID(Individual 

Decision) 
個人使用任務

卡 

使用石頭、

砂土…等，

放置任務卡

上 

CD(Cooperation 

Decision) 
共同使用任務

卡 

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉…

等) 

PM(Physical 

Message) 
姿體表達 行為左右

轉、手勢左

右轉…等 

AG(Abstraction 

General) 
資料簡化或用

其他方式表達 

單程式方法

便迴圈方式

表達 

語言

編碼 

LI(Learning 

Interaction) 
被觀察者正在

練習口語互動 

自己口語互

動 

PLI(People learning) 正有其他人在

指導被觀察者

口語互動 

教師教觀察

者學習口語

互動 

NS(No Speaking) 不會口語互動 沒有講任何

語言 

YS(Yes Speaking) 會正確口語互

動 

單字、句型

接正確 

LT(Listen to teacher) 聽教師講解 教師講解遊

戲規則 

其他 

IM(Irrelevant 

Message) 
無關課程 發呆、離開

座位…等 

SP(Separate) 組內做不同的

事 

各做各的事 

4. 研究結果 

本實驗將學習者利用教育機器人進行遊戲式學習的學

習過程，進行行為分析的比較。依據影片紀錄，學習

者的行為經過編碼及後續的序列分析，各獲得 494 個及

6588 個行為編碼，本研究進一步對 54 名學習者提出的

70282 種編碼進行行為頻率計算如表 2 所示。 

表 2 兩國學習者之遊戲式學習行為出現比率 

編碼 新加坡 台灣 

次數 百分比(%) 次數 百分比(%) 

PP 58 11.98% 764 14.25% 

PC 67 13.84% 1123 20.94% 

PR 74 15.29% 763 14.23% 

ID 0 0.00% 85 1.58% 

CD 6 1.24% 313 5.84% 

AT 56 11.57% 795 14.82% 

PM 0 0.00% 537 10.01% 

AG 0 0.00% 0 0.00% 

LI 18 3.72% 348 6.49% 

PLI 42 8.68% 116 2.16% 

NS 0 0.00% 0 0.00% 

YS 0 0.00% 0 0.00% 

LT 37 7.64% 408 7.61% 

IM 89 18.39% 2 0.04% 

SP 37 7.64% 109 2.03% 

根據上表，新加坡小學的學習者中，前五名行為依序

為無關課程（IM）、使用機器人（PR）、與組外對談

（PC）、組內對談（PP）、使用卡牌（AT），而在台

灣小學的學習者中，前五名行為依序為與組外對談

（PC）、使用卡牌（AT）、組內對談（PP）、使用機

器人（PR）、姿體表達（PM）；由此可知，學習者在

使用教育機器人進行遊戲式學習時，皆會使用使用機

器人（PR）、與組外對談（PC）、組內對談（PP）、

使用卡牌（AT）。唯一的差別為新加坡小學的學習者

較常做一些與課程無關（IM）的事情，而台灣小學的

學習者較專注在課堂上，並會透過肢體表達（PM），

完成任務。 

4.1. 行為分析 

為確保過程的一致性，以相同性質背景的人員，各分

配50%的影片進行分析。在定量分析後，針對結果比較

每個碼之間的關聯性並繪成行為編碼圖，箭頭方向為

起始編碼至目標編碼，線上數字即表示該轉換行為關

係的 Z值，Z值大於 1.96 代表著行為序列達到顯著水準

（p<0.05）（Bakeman & Gottman, 1997），如圖 1、圖
2 所示。 
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圖 1 新加坡小學學習者之行為編碼圖 

 
圖 2 台灣小學學習者之行為編碼圖 

從圖 1 中可以發現，學習者的行為模式可以分為有三個

獨立的關聯性。這三個關聯分別為 CD-PP-CD（共同使

用任務卡、組內對談、共同使用任務卡）；SP-PC（即

各做各的和與別組組員對談）；PLI-LI（即正有其他人

在指導被觀察者如何說（英語）和被觀察者正在練習

口語互動（自己說英語））。為當學習者在進行合作

使用任務卡（CD）後會與組員討論（PP），接著在一

起合作使用任務卡（CD），而當有其他人在指導學習

者口語互動（PLI）後，學習者會透過指導的過程後練

習口語互動（LI），另外，當學習者兩兩一組在做不一

樣的事（SP）時，會意識到似乎該回到課堂中，並與

組外的組員進行討論（PC）。 

從圖 2 中可以發現，學習者的行為模式可以分為有三個

獨立的關聯性。這三個關聯分別為 ID-CD（即個人使用

任務卡和合作使用任務卡）； IM-PLI-LI（即無關課

程、正有其他人在指導被觀察者如何說（英語）、被

觀察者正在練習口語互動（自己說英語））；LI-PLI

（即被觀察者正在練習口語互動（自己說英語）和正

有其他人在指導被觀察者如何說（英語））。當學習

者在進行合作使用任務卡（CD）後會與個人使用任務

卡（ ID），而當有其他人在指導學習者口語互動

（PLI）後，學習者會透過指導的過程後練習口語互動

（LI），若學習者講述的不正確的話，教師會進一步的

指導學習者口語互動，另外在學習者若在做無關課程

（IM）的事的時候，教師將會再次指導學習者進行口

語互動。 

從兩國的行為分析編碼圖來看，新加坡小學的學習者

會共同合作思考完畢後與組員討論並一起完成任務；

而台灣小學的學習者較傾向於獨立思考的部分，不過

當學習者獨立思考後，會再與組員討論並共同完成任

務。這部分可以說明利用教育機器人進行遊戲式學習

的過程，可以增加學習者的合作力。另外，兩國小學

的學習者之中，當有其他人在指導學習者口語互動

時，學習者會接著練習口語互動，值得注意的事，台

灣小學的學習者若講述錯誤的口語的話，指導者將會

再次指導學習者進行口語互動，這幫助學習者更完整

且更快速的完成任務。 

5. 結論與未來展望 

隨著科技應用的興起，教育機器人也跟著盛行，教育

機器人已經越來越多地融入在從幼兒時期到高等教育

的教育領域當中，教育機器人活動將與課程的學習目

標或技能的發展中，保持一致性，例如：協作、解決

問題、創造力、批判性思維和運算思維（Komis, 

Romero, & Misirli, 2016）。近年來，因為行為分析的的

認可和對行為分析服務的需求已經大大提升，透過閱

讀材料並按照課程領域分類（例如：倫理學、行為主

義、單科研究方法），以便為新程式開發和語言翻譯

工作提供資源（Pastrana et al., 2018）。故本研究利用教

育機器人進行遊戲式學習幫助學習者學習，並透過行

為分析編碼表觀察學習者的行為，發現兩國小學的學

習者之中，當有其他人在指導學習者口語互動時，學

習者會接著練習口語互動，值得注意的事，台灣小學

的學習者若講述錯誤的口語的話，指導者將會再次指

導學習者進行口語互動，這可以幫助學習者更加完整

且更快速的完成任務。 

在學習過程中，本研究發現新加坡小學的學習者在無

關課程（IM）的部分佔據第一名，推測可能是因為新

加坡小學的學習者在校內華語分班的部分較為後段

班，而教材內容所使用的華語部分可能對新加坡小學

的學習者來說較為困難，導致學習者遇到問題時不敢

詢問不知道該如何做，才會做出與課程無關的事情，

故本研究建議未來可以朝著將將教材更改為適合學習

者的內容，並針對調整整體教學流程，幫助學習者達

成提升學習成效的部分。 
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ABSTRACT 

In the field of education, there has been recent attention and 

call for transdisciplinary approaches related to learning 

mathematics and programming in schools. Despite the 

advent of theory and tools for such an approach, there is still 

a lack of a common ground and implicitness in the 

understanding of what exactly this would entail amongst 

teachers and curriculum designers. In this paper, we present 

a theoretical discussion in the light of our ongoing efforts to 

develop a more elaborated and precise language 

representing educational and epistemological values for 

integrating mathematics and programming. Accordingly, we 

provide an overview of our previous research efforts in this 

field followed by an elaborated example describing our 

approach. We conclude with a discussion addressing the 

pedagogical potential of our proposed ideas compared to the 

previous ones.  

KEYWORDS 

constructionism, subject matter integration, computational 

thinking, mathematics, programming 

1. INTRODUCTION AND RATIONALE  
The value of interdisciplinarity is a recurrent issue in 

educational settings and often at the core of the rationale for 

designing and implementing innovation in schools. The 

fields of Science, Technology, Engineering and 

Mathematics (STEM) for instance have been a subject for 

the application of integrative approaches to teach these 

different areas. Spite of these efforts, there have been many 

diverse understandings and views on the nature of STEM 

and on how to put together an educational activity where 

students generate joint meanings from two distinct domains 

while engaged in an interesting relevant activity. A number 

of underlying questions regarding the perception, the scope 

and the implementation of interdisciplinary educational 

activities remain implicit. For instance, is it more valuable 

to forge two - way connections between STEM disciplines 

at first? Is there a sense of thinking of one discipline as the 

field of application of another? Is there a sense in perceiving 

of one discipline serving the learning of another in an 

activity where both co-exist? For instance, what value does 

the practice of de-composing problems into simpler ones 

have in mathematics and in programming?  

In this paper, we look closely at one example of such an 

interdisciplinary approach regarding mathematics, 

programming and computational thinking (CT). How can a 

mathematics teacher integrate a programming activity in 

their attempt to engage students in mathematical meaning 

making? Conversely, how can a computer science teacher 

can help students to write algorithms and programs 

employing the necessary mathematics concepts to do so? 

How can one discipline serve the understanding of the other 

and how can we design activities where students develop 

meanings jointly for concepts lying on both domains? To 

address some of these issues we review interdisciplinary 

approaches to learning mathematics and programming while 

trying to develop a more articulated view to think about the 

challenge of integrating them. Accordingly, we decompose 

the problem in three more focused ways of thinking about it, 

i.e. on how to design activities where one domain serves the 

other and vice versa and on how to think of the joint learning 

of these two domains. We use a special case for each of these 

sub-problems to analyze the different issues involved. Our 

proposed approach can be employed by teachers to design 

and think of activities integrating the two subjects in uni-

disciplinary or interdisciplinary settings.  

2. PROGRAMMING AT THE SERVICE 

OF MATHEMATICAL MEANING 

MAKING  
It has been a long time now since a connection was made 

between learning to program and learning mathematics. This 

connection was firstly elaborated as early as in the 1960's by 

Seymour Papert as a theory of learning mathematics which 

he called 'Constructionism', i.e. the generation of 

mathematical meaning through programming a computer 

(Papert, 1980). Back then, programming was not yet 

perceived to have some value as a learning subject in general 

education. Indeed, Papert saw Constructionism as a 

mathematical learning activity involving the construction of 

and the tinkering with a digital artifact. He perceived of such 

an artifact as a public entity which can be shared, changed, 

discussed over. Such an artifact is thus never considered as 

'complete' or as 'unquestionable', it is always under reform 

and improvement and it can be considered either as an object 

in itself or as a building block for higher order constructions 

(Kynigos, 2015). So, the initial connection between 

mathematics and programming in the field of education, 

rather than addressing a two-way connection, referred to the 

latter servicing the former, so to speak. Papert (1980) 

focused on the issue of the learning of mathematics by 

writing a computer program. He and others defined the 

Turtle as a means to create contours affording potentials to 

employ ideas from Euclidean and Cartesian Geometries. In 

addition, these affordances were proposed as absolute 

position and heading commands were included (Kynigos, 

1992).  

3. BIG IDEAS FROM MATHEMATICS  
Papert coined the term 'big ideas' in mathematics to draw 

attention to some generic mathematical concepts which can 

be used as tools for solving problems in Turtle Geometry and 
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understanding the underlying structure of computational 

objects (Papert, 2000). Some examples of big mathematical 

ideas include generalization, fractions, ratio and proportions. 

Some of these ideas concepts related to angles, rate of 

change, periodicity. Others address class of objects defined 

by their properties as well as orientation in space. In this 

promising early work, programming was nevertheless 

considered in the role of servicing mathematical meaning-

making. Not much attention was given to educational design 

aspiring on optimized intertwinement between learning 

mathematics and programming. An exception to this was 

Brian Harvey who developed his Berkeley Logo and a 3-

volume book about 'programming Logo style' where Turtle 

Geometry only features as one chapter, the rest addressing 

issues of LISP-like learning to program (Sinclair & Moon, 

1991). For more than a decade, substantial research was 

carried out with a focus on learner's mathematical meaning-

making through programming. However, even though this 

resulted in the elaboration of a lot of potential yielded by 

children's expressions, explanations and exchanges, it also 

raised a debate as to the applicability and the effectiveness 

of such activity regarding the demands made by schooling 

and sustained educational institutions (Noss & Hoyles, 

1996). This debate has hence remained unresolved. 

Moreover, in the 90s the interest in learning to program 

withered as if it had become obsolete in the wake of the 

spread of multimedia interfaces and the internet in its early 

form, drawing attention to individuals and collectives' use of 

digital media rather than their creations with tools affording 

constructionist activity. 

3.1 Intertwining Applied CT with Math Challenges  

Jansen et al., (2018), address the need to re-think what are 

the big programming ideas in connection to CT in a way 

parallel to the quest for the definition of mathematical big 

ideas which began back in the 80's. They take an 

epistemological point of view searching to define those big 

ideas in the foundational work of Turing, i.e. related to the 

process of learning to solve problems in the way computers 

do. But then again, there are few efforts re-connecting the 

learning of mathematics and programming. This is despite 

the recent elaboration of the wider value of approaches to 

STEM where technology and mathematics feature in a 

transdisciplinary setting which affords such efforts. 

Furthermore, in mathematics education, attention has 

progressed from highlighting the value of students' learning 

of mathematical concepts and ideas as an end in itself. There 

is now more emphasis on the learning of mathematics to 

involve the adoption of higher order mathematical 

processes. That is, to develop a disposition to mathematize 

their world by seeking for patterns, creating generalizations, 

looking for expression economy (Noss & Hoyles, 1996). In 

the same sense, with respect to programming and 

computational thinking, Wing (2006) has articulated the 

value of broadening the view of programming from the 

learning of concepts and techniques to the adoption of 

computational practices and strategies. As is well known in 

the Computational Thinking Education (CTE) community 

addressed the educational point of CT and programming to 

involve not only computational concepts but also practices 

and strategies (Jansen et al., 2018), i.e. higher-order problem 

solving competences such as abstraction, decomposition and 

pattern recognition.   

3.2 Mathematical Problem Solving Applied by CT  

In the past decade, the situation seems to have swung again 

and programming has drawn new attention but in a new 

guise, that of CT as a fundamental 21st century competence 

for all citizens, involving concepts, practices and 

dispositions regarding user constructions with digital media 

(Grover & Pea, 2018). Programming is seen in this context 

as a central feature of CT involving specific concepts (like 

e.g. conditionals, loops, variables, recursion). In addition, it 

involves strategies and practices as well as thinking 

processes such as problem solving and posing, analysis and 

decomposition, design, evaluation, refinement and iteration 

(Wing, 2006). In its current form, programming as an 

element of CT has been perceived with little connection to 

mathematical learning. So, what happened to the debate as 

to how programming can inspire mathematical meaning 

making? And furthermore, how can this debate connect to a 

broader debate about connections between mathematics and 

programming from an epistemological and educational point 

of view? 

4. READRESSING THE PROGRAMMING 

- MATHEMATICS CONNECTION 
As stated earlier in this paper, we reconsider the kinds of 

connections between mathematics and programming which 

we feel as worth re-visiting in the wake of attention to CT as 

a 21st century competence. We do this in an attempt to 

highlight mathematical and programming concepts in 

contexts where they have equivalent value and use and to 

consider the extent to which dispositions, practices and 

strategies attributed to these two domains may in fact be 

thought of as mutually compatible and worth integrating. 

Accordingly, we elaborate on a few examples that address 

the connectivity between mathematical concepts and 

thinking processes integrating with the engineering kind of 

mathematics required to write a computer program. We 

proceed and describe an overview of a few cases where we 

focus transdisciplinary challenges concerning mathematics, 

computational thinking which is later programmatically 

implemented on CT implementations used for coping with 

mathematical challenges from across domains. We use them 

as a starting point for later addressing our current effort and 

illustrate transdisciplinary approaches of applied CT in 

service in service of mathematics. 

4.1 Overview of our previous efforts 

We elicit our current research efforts and ask the question of 

what kind of mathematics is necessary in order to learn to 

program (see, for instance, Sinclair and Moon, 

1991).  During our previous efforts, we addressed different 

mathematical challenges adapted for different study levels 

(Jansen et al., 2018; Kynigos, 2015). Accordingly, we 

explored how these mathematical challenges could be coped 

in terms of computational thinking as well as how they could 

be implemented programmatically. To illustrate our efforts, 

we selected two mathematical cases from across domains. 

The 1st case corresponds to students attending primary 

schools coping with simple math challenges. The 2nd case 
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concerns high-school students coping with higher level of 

math consisting of geometry challenges. For each of the 

cases, students were required to analyze the math challenges 

and seek for algorithmic concepts to solve them. Next, they 

were presented with an applied tool to code this algorithmic 

concept. The coding environment was adapted according to 

students’ level of study. Thus, young students used Visual 

Computer Language (VLC) as a graphical approach offering 

intuitive and clear view of the proceedings according along 

the computer program. The high-school students used 

Python representing a more traditional coding approach 

offering richer programming options which are optimized to 

the math challenge they coped with. As illustrated, for both 

cases, we used the same transdisciplinary approach 

consisting of postulation of math challenge followed by 

employment of CT to conceptualized on possible 

approaches to cope with challenges. Finally, these concepts 

were formulated as applied programs solving the math 

challenge. In the next subsection we present the current 

phase of our research while illustrating this approach in the 

context of solving geometry challenges while combining 

core CT concepts using MaLT2. 

4.2 Programming to learn Mathematics  

In this case we bring our current phase of our efforts to 

further explore new ways to use and learn mathematical 

ideas through programming. Consider for example the 

following four ways to construct a circle with the Logo 

based programming language in MaLT2.   

 

Intrinsic Circle 

;creates a polygon approximation of a circular curve using 

Instrinsic Geometry only 

to circlea :a :n 

repeat :n [fd :a rt 360/:n] 

end 

circlea 6 60 

Intrinsic Circle using a Euclidean property 

;creates a polygon approximation of a circular curve using 

a Euclidean property for radius 

 

to circleb :r :n 

repeat:n [fd (2*pi*:r)/:n rt 360/:n] 

end 

circleb 50 36 

 

Euclidean Circle 

;uses the Euclidean definition of points equi-distant to the 

centre 
to circlec :r :n  

repeat :n [pu fd :r pd point pu bk:r pd rt 360/:n] 

 end  
circlec 100 36  

to point 

 fd 2 bk 2  

end 

Cartesian Circle 

;uses a Cartesian function for each quadrant  
to circle :r 
upright :r :r 

upleft :r :r 

downright :r :r 
downleft :r :r 

pu home pu 

end 

to upright :r :x 
if :x=0 [stop] 

pu 

setx :x 
sety sqrt ((:r*:r) - (:x*:x)) 

pd 

fd 1 
upright :r :x-1 

end 

Each of these uses different mathematical properties coming 

from distinct geometrical systems to construct the same 

figure. The first one constitutes a polygon approximation of 

a circle and does not employ Euclidean elements such as 

center or radius nor Cartesian/Algebraic ones such as circle 

functions. The second one employs a Euclidean property 

relating the circumference to the diameter in order to 

nevertheless construct a polygon - circle in intrinsic 

Geometry - style. The third uses the equidistance to the 

circle's center point Euclidean definition. The fourth 

constructs four quadrants (only one is written here for space 

economy) using Cartesian positioning primitives and the 

circle function. A pedagogical approach engaging students 

with the distinctions between these definitions and 

constructions would potentially be particularly rich for the 

respective mathematical meaning-making distinguishing 

amongst the geometrical systems employed (Kynigos, 

1992). In these cases, the students would need to be able to 

use computational ideas such as structured programs, 

variables, loops, not to mention recursion. But these 

concepts would be just tools to focus on and consider the 

mathematics in a mathematics course.  

4.3 Distinguishing between approaches  

In this subsection, we focus on how to distinguish between 

the presented approach while emphasizing that even in the 

case where we have the same programming tool and the 

same problem, there can be different approaches to it, here 

corresponding to the ideas described in previous sections. 

We give an example of two very different solutions to the 

problem of constructing a program to create a generalized 

parallelogram which however can never be a square. The 

problem was given by a teacher in year 8 of a mathematics 

class. His students proposed the following program to 

construct a generalized parallelogram as follows:  

to parallelogram :a :b :c  

repeat 2 [ fd :a rt :c fd :b rt 180-:c] 

end 

This procedure expresses the class of objects 'parallelogram' 

since it contains variables for the independent linear and 

angular elements, expresses the property of equality by 

means of a loop to repeat half the figure twice and the 

angular dependency by means of a linear function between 

two consecutive avatar turns. The students were asked to 

solve the above problem after having constructed and 

discussed this procedure. They found many solutions mostly 

from the following kind:  

to parallelogram :x :c 

repeat 2 [forward :x right :c forward :x+20 right 180-:c] 

end 

In this solution, the students imposed an otherwise 

redundant functional relation between two consecutive 

linear elements of a parallelogram. The definition of a 

parallelogram implies that there must be no dependency 

between the length of two consecutive sides. The students 

solved the problem of constructing a parallelogram which 

can never be a square by imposing a functional relationship 

between those lengths which makes it impossible for a 
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property of the square to apply, i.e. that the lengths can never 

be equal since they must have a difference of 20. So here, 

the big aim, is represented by a generalized property of a 

geometrical figure combined with the idea of function and 

generalized number.  

To parallelogram: a: b: c  

If: c <90 repeat 2 [fd: a rt: c fd: b rt 180-: c] 

 If: c> 90 repeat 2 [fd: a rt: c fd: b rt 180-: c]  

End 

This response to a task was set by the authors during a 

programming course to learn how to program geometrical 

figures in MaLT2 (Kohen & Milrad, 2019). Here, the 

program generates a parallelogram in every case except for 

the value of a turn which allows the generation of a 

rectangle. It thus avoids the generation of a square by 

imposing a higher order negation of generating a rectangle. 

It could be argued that this solution fits better into 'the way 

in which a computer would resolve the problem' since the 

problem was worded - create a program to construct a 

generalized parallelogram which can never become a square. 

But here, the mathematical concept needed in order to 

construct the program looks like it's in the service of a 

computational idea, that of conditionals. It is necessary to 

know that of the turns cannot be 90 degrees then the figure 

cannot be a rectangle and therefore it cannot become a 

square. So, these are two correct solutions but one employs 

a mathematical idea of imposing a redundant linear 

relationship between two linear elements of the model and 

the other employs a computational idea - a conditional to 

simply exclude the creation of a square by means of 

excluding only the two values which would yield a 

rectangle.  

5. DISCUSSION - CONCLUSION 
In this paper we have presented a few examples with 

different approaches illustrating how mathematics and 

programming can be integrated in various ways. Our goal is 

to help curriculum designers to place joint programming and 

mathematics activities in either of the respective curricula or 

consider them in trans-disciplinary educational activities 

including post-normal science perspectives which focus on 

larger socio-scientific issues. For a computer science 

teacher, integrating mathematics at the service of 

programming concepts could be a way in to including 

mathematics into the teaching of programming before 

considering mathematics as the object of programming, i.e. 

starting from the approach shown in 4.1 to move to the one 

in 4.3. Conversely for a mathematics teacher a progression 

from 4.2 to 4.3 could be appropriate. In both cases being 

explicit about the positioning and the role of the two subjects 

would help designing activities which make more sense to 

students. This kind of discussion may help clarify 

educational policy and curriculum design issues related to 

implementation aspects in schools. What kinds of domains 

are rich in opportunities for them to develop CT practices 

and strategies in the context of using big ideas either in 

mathematics or in programming? What kinds of specific 

connections can be pedagogically engineered between such 

ideas from each domain, for instance between functional 

relations and generalized number from mathematics and 

variables and model animation properties from computer 

science? These are current and future directions in which we 

are focusing our research efforts on.  

6. REFERENCES 
Grover, S. & Pea, R. (2018). Computational Thinking: A 

Competency whose Time has Come. Computer Science 

Education: Perspectives on teaching and learning. 

London: Bloomsbury Academic, 19-37. 

Jansen, M., Kohen-Vacs, D., Milrad, M. (2018). A 

Complementary View for better Understanding the Term 

Computational Thinking. Proceedings of the International 

Conference on Computational Thinking Education 2018. 

Hong Kong: The Education University of Hong Kong, 2-

7. 

Kohen, D., & Milrad, M. (2019). Computational Thinking 

Education for In-Service Elementary Swedish Teachers: 

Their Perceptions and Implications for Competence 

Development. Proceedings of the International 

Conference on Computational Thinking Education 2019. 

Hong Kong: The Education University of Hong Kong, 

109-112. 

Kynigos, C. (1992). The Turtle Metaphor as a Tool for 

Children Doing Geometry in Learning Logo and 

Mathematics. Cambridge, MA: MIT press. 

Kynigos, C. (2015). Constructionism: Theory of Learning or 

Theory of Design? Selected Regular Lectures from the 

12th International Congress on Mathematical Education. 

Cham: Springer, 417- 438.  

Noss, R., & Hoyles, C. (1996). Windows on mathematical 

meanings: Learning cultures and computers. Dordrecht: 

Kluwer. Science and Technology, 3(3), 249-262.  

Papert, S. (1980). Mindstorms: Children, Computers, and 

Powerful Ideas. New York: Basic Books.  

Papert, S. (2000). What’s the Big Idea? Toward a Pedagogy 

of Idea Power. IBM Systems Journal, 39(3.4), 720-729. 

Sinclair, K., & Moon, D. (1991). The Philosophy of LISP. 

Communications of the ACM, 34(9), 40–47. 

Wing J. M. (2006). Computational Thinking. 

Communications of the ACM, 49(3).

 



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y.,  Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht, 

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020. 

Hong Kong: The Education University of Hong Kong. 

57 

An Empirical Study of Analyzing the Behaviors of the Sixth Grade Students in 

Learning English Oral Interaction with Educational Robots 
 

1Chao-jui HSU, 2Ting-chia HSU* 

1,2National Taiwan Normal University, Taiwan 

god26275001@gmail.com，ckhsu@ntnu.edu.tw  

 

ABSTRACT 
This study attempted to explore the learning behaviors of the six grade students using educational robots on the learning units 

of oral interaction in English. This study provided the application of smart phone for controlling the action of the robots and 

ask the students to orally interact with partners so as to put the objective learning sentences into practice. Then, the foreign 

language interactive behaviors were recorded and observed during the period of collaborative learning tasks. The participants 

were 18 English as Foreign Language (EFL) learners whose age were from 11 to 12. The research results showed that exercise 

of expressing opinions in English with objective learning sentence is the most frequent behaviors in the learning process, 

implying that the game of the educational robots did not preclude the students from naturally using English oral presentation 

to achieve the purpose of communication, so as to reduce the foreign language learning anxiety. 

KEYWORDS 
foreign language learning anxiety, educational robot game, English oral interaction 
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摘要 
本研究旨在探討國小六年級學生使用教育機器人在英

語口語互動學習單元之學習行為分析。本研究提供手

機應用程式來控制機器人行動，並要求學生和同伴用

英語口語互動以實際演練學習的目標句型，然後錄影

和觀察學生在合作學習的任務期間，所進行的外語互

動行為。參與者由 18名 11-12歲以英語作為外語學習的

學習者所組成。研究結果顯示，在學習過程中，學生

練習使用學習目標的句型練習英語表達意見的部份是

很常出現的行為，代表教育機器人遊戲並不會讓學生

排斥自然使用英語口說達成溝通目的，減少外語焦

慮。 

關鍵字 
外語學習焦慮；教育機器人遊戲；英語口語互動 

1. 前言 
資訊技術是世界設施的基礎。在這種社會背景下，教

育像任何生產或服務部門一樣，都受到技術的影響。

面對這種環境，教育系統必須使年輕人適應數位世

界，因此，在學校中，我們應該訓練語言和數位素

養 ， 否 則 他 們 將 成 為 數 位 文 盲 García-Peñalvo 

（2018）。運算思維作為一種使用電腦技術解決問題

的方法，已成為主流，因為許多政府正在提高兒童的

程式設計能力。但是，除了所掌握的程式設計能力

外，對於程式設計如何影響其他方面的研究較少

（Moreno-León & Robles, 2015）。 

在全球化和社會文化的趨勢背景下，移民和英語的傳

遞讓英語學習者的社會和教育背景有多樣性。由於英

語是一種國際語言，因此，如果不特別注意英語教學

的背景，就不能做出有效的教學決策（McKay & 

Bokhorst-Heng, 2017）。數十年來在東亞國家中，英語

教育有普及和重要性的狀況，台灣和其他東亞國家已

開始在高等教育領域推廣英語中等教學（English‐

medium instruction, EMI）。在 EMI 教室中通過英語進

行交流是英語作為外語學習者（English as a foreign 

language, EFL）的基本要求，但這可能是一個挑戰。因

為說外語是一個複雜的過程，包含語言能力，口語技

巧和策略運用（Chou, 2018）。第二語言焦慮一直是經

驗和理論上不斷關注的對象。出於理論和實踐的考

慮，該領域的許多研究都檢查了焦慮與第二語言成就

之間的關係（Teimouri, Goetze, & Plonsky, 2019）。焦

慮對於外語學習格外重要，因為焦慮可能會阻礙學習

者與他人交流（Horwitz, Horwitz, & Cope, 1986）。學者

們已經表明在語言學習中考慮焦慮的重要性。因此，

越來越多的研究人員嘗試整合多種學習策略和技術來

減輕學生在學習英語時的焦慮（Hwang, Hsu, Lai, & 

Hsueh, 2017）。Benitti （2012）指出，機器人教學是一

個很好教學工具，並且也非常容易吸引學生的注意

力。為了使學習語言過程更具刺激性，老師需要在開

發活動時投入大量思想，以保持學生的興趣並實現短

期目標，從而增強自信心並降低焦慮水平（Alemi, 

Meghdari, & Ghazisaedy, 2014）。 

基於上述提到越來越多研究者想透過不同的學習策略

來降低學生的學習焦慮，並且機器人教學容易吸引學

生注意力。因此本研究將探討對國小六年級的學生，

以英語做為學習單元，提供了手機應用程式及教育機

器人，輔助學生學習運算思維的概念，同時透過課堂

活動遊戲與機器人互動，來觀察學生在學習行為中的

過程。 

2. 文獻探討 

2.1. 外語焦慮（Foreign language anxiety） 

多數的外語學習者在學習外語過程中感到焦慮（Elaldi, 

2016）。英語作為外語教學（EFL）在亞洲面臨許多挑

戰，例如缺乏互動式語音環境、強調考試成績以及存

在外語焦慮的問題（Yen, Hou, & Chang, 2015）。EFL

學習者不願在課堂上講英語，這是外語背景下常見的

問題（Hamouda, 2013）。學生在學習英語時表現出許

多問題和困難，如語法，詞彙和發音等，這些通常被

認為會妨礙 EFL 學習者的難題（Hashemi & Abbasi, 

2013）。學生必須被告知他們不是唯一一個在學習外

語時遇到焦慮的人。學生認為自己英語能力低，並且

缺乏信心和準備，以及害怕犯錯和得到負面評價，所

以相當多的學生不願回應老師（Hamouda, 2013）。大

多數學習者在外語學習中都有一定程度的焦慮，例如

發音困難，被老師立即糾正問題，不理解老師所提出

的問題。焦慮會對學習第二語言或外語的過程產生負

面影響，老師與學生普遍認爲焦慮是學習的障礙

（Horwitz et al., 1986）。焦慮的主要原因主要都是對互

動、自尊心低、缺乏自信、缺乏準備和擔心失敗等因

素（Marwan, 2016; Melouah, 2013）。 

總和以上的敘述，語言表現不足以及被其他人評價為

負面的恐懼最有可能引發年輕學習者的焦慮（Liu & 

Chen, 2014）。老師和課程設計者應該提出一些教學活

動，以幫助學習者減少焦慮（Al-Khasawneh, 2016）。

為了幫助減少學習者的焦慮，英語老師應該需要知道

EFL學習者中存在著外語焦慮，並在課堂上表現出同情

心。老師需要應對學生的外語焦慮，並防止學生迴避

課堂參與（Park & French, 2013）。學校環境和情境項

目，也可能會影響學生的焦慮水平，因此老師應該提

供安全和有吸引力的環境（Henter, 2014）。 
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2.2. 運算思維與教育機器人 

教育機器人技術可以做為一種工具，提供學生參與和

發展運算思維的機會（ I. Lee et al., 2011; Repenning, 

Webb, & Ioannidou, 2010）。許多學校也開始在引入一

些教育機器人讓學生體驗不一樣的學習環境，提升和

建立更高階的運算思維的能力，並幫助學生解決複雜

的問題（Blanchard, Freiman, & Lirrete-Pitre, 2010）。 

關於運算思維的教學，在過去的研究中，已經有學者

接受將教育機器人作為教導學生運算思維的方法（Bers, 

Flannery, Kazakoff, & Sullivan, 2014; Botički, Pivalica, & 

Seow, 2018）。教育機器人是一種功能強大和具有高彈

性的教學工具，機器人的技術通常都包含了科學、數

學、資訊和科技的學科，被視為一門跨學科的活動，

並為各個年級的學生帶來了重大的好處。有研究人員

表示，針對 4-6 歲的兒童可以建立簡單的機器人專案項

目，進而熟悉工程技術和程式語言的思考模式，同時

還能建立運算思維的能力（ Bers et al., 2014 ）。

Penmetcha （2012）研究了教育機器人對大學生探索機

器人技術與開發程式語言和演算法思維之間的相關影

響，結果表示，無論學生的背景如何，機器人活動都

能作為媒介落實整合運算思維的目的，並可以教更高

層面的抽象化和程式設計概念。機器人教學活動具有

改善課堂教學的巨大潛力，能讓學生從被動學習的身

分，轉換為主動學習者，進而形成主動與同儕互動並

建立良好關係。許多研究指出，教育機器人的課程對

學生批判性思考、問題解決能力以及認知能力有正面

影響（Atmatzidou & Demetriadis, 2012; Blanchard et al., 

2010）。其他研究也有指出教育機器人如何提升學生

學習的方式以及學生的動機、合作和創造力（Eguchi, 

2010; Khanlari, 2013）。 

3. 研究方法 

3.1. 研究對象 

本研究針對學生在英語學習中的行為進行編碼，實驗

對象台灣北部某國小六年級的學生，平均年齡為 11-12

歲，有 18 位學生，過程中使用的教材語言為英語，學

生需要使用手機來操控教育機器人，透過手機的應用

程式拖拉積木程式，將積木程式層層堆疊，藉此來操

控教育機器人，學生可以透過機器人的反應及行為，

來得知自己所拉的積木程式與自身預期教育機器人的

反應是否一樣，來觀看學生在英語學習過程中的行

為。 

3.2. 序列分析之編碼系統 

為了探討學習者在學習過程中的學習行為，本研究針

對學生的學習行為記錄為 log 檔並進行編碼，並參考相

關研究編碼來進行編碼，使用 GSEQ軟體進行分析分析

學生在學習行為之間進行的活動結果，以探討學生的

行為模式。在學習過程中將學習狀況分為三類：運算

思維行為、語言行為和其他行為，如表 1 所示。  

表 1 行為分析編碼表 

類別 代碼 意義 範例 

運算

思維

編碼 

PP(People&People) 組內對談 同組的兩個

人在對談 

PC(People 

Commnication) 
組外對談 與別組在對

談 

PR(People & Robot) 使用機器人、

手機 

操控手機拖

拉積木程式

使機器人移

動 

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉等) 

PD: 

1.ID(Individual 

Decision) 

2.CD(Cooperation 

Decision) 

組內當中: 

1.個人(ID)使

用任務卡 

2.共同(CD)使

用任務卡 

 

使用任務卡

放置石頭、

砂土…等 

PM(Physical 

Message) 
姿體表達 行為左右

轉、手勢左

右轉…等 

AG(Abstraction 

General) 
資料簡化或用

其他方式表達 

單程式方法

便迴圈方式

表達 

語言

編碼 

LI(Learning 

Interaction) 
被觀察者正在

練習口語互動 

自己口語互

動 

PLI(People learning) 正有其他人在

指導被觀察者

口語互動 

教師教觀察

者學習口語

互動 

NS(No Speaking) 不會口語互動 沒有講任何

語言 

YS(Yes Speaking) 會正確口語互

動 

單字、句型

接正確 

其他 

LT(Listen to teacher) 聽教師講解 教師講解遊

戲規則 

IM(Irrelevant 

Message) 
無關課程 發呆、離開

座位…等 

SP(Separate) 組內做不同的

事 

各做各的事 

4. 研究結果 

本實驗將學習者利用教育機器人進行英語的學習過

程，進行行為分析的比較。依據影片紀錄，學習者的

行為經過編碼及後續的序列分析後，共獲得 1542 個行

為編碼，本研究進一步對 18 名學習者提出的各種編碼

進行行為頻率計算，如表 2 所示。 
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表 2 學習者之學習行為出現比率 

編碼 次數 百分比（%） 

PP 118 7.65% 

PC 175 11.34% 

PR 594 38.52% 

ID 13 0.84% 

CD 98 6.35% 

AT 99 6.42% 

PM 103 6.67% 

AG 0 0.00% 

LI 110 7.13% 

PLI 17 1.10% 

NS 0 0.00% 

YS 0 0.00% 

LT 80 5.18% 

IM 38 2.46% 

SP 97 6.29% 

根據上表，可以看出學習者中，出現前五名行為依序

為使用機器人（PR）佔了 38.52%、與組外對談（PC）

佔了 11.34%、與組內對談（PP）佔了 7.65%、說英語

互動（LI）佔了 7.13%、姿體表達（PM）佔了 6.67%，

由此可知，學生在使用教育機器人進行英語學習時，

使用機器人（PR）、與組外對談（PC）、組內對談

（PP）、說英語互動（LI）、姿體表達（PM）等行為

是最常出現的動作。 

4.1. 行為分析 

進行上述行為的次數分析以後，將針對分析結果比較

每個行為碼之間的關係圖，並畫製成行為編碼圖。箭

頭方向為起始行為編碼至目標行為編碼，上方的數值

表示從起始行為至目標行為關係的 Z 值，Z 值大於 1.96

代表著行為序列達到顯著水準（p<0.05）（Bakeman & 

Gottman, 1997），如圖 1 所示。 

 
圖 1 小學六年級學生之行為編碼圖 

從圖 1 中可以發現，學生的行為模式可以分為三個行為

的連動性。這三個連動分別為 AT-CD（即使用手牌、

和合作使用任務卡）；PM-ID（即姿體表達和與個人使

用任務卡）；LI-PLI（即學生正在練習口語互動（自己

說英語）  和有其他人在指導被觀察者如何說（英

語））。每當學生在使用手牌時（AT），會與同組的

學生一起使用任務卡（CD）;並且學生會透過模仿機器

人的行為，進行姿體表達（PM），接著會個人使用任

務卡（ID）來取得任務相關的道具;另外，當學習者練

習口語表達後，會有其他人來指導學習者的口語互動

的部分。 

5. 結論與未來展望 

近年來，因為對不同學習者的行為分析需求已經大幅

提升，故本研究利用教育機器人輔助學習者學習，並

透過行為分析編碼表來觀察學習者的行為，先前的研

究表示，機器人可以成為動機的重要來源，在以人為

基礎的學習方法上也能具有很大的優勢，可以減少焦

慮程度並為語言學習者提供更加輕鬆的氛圍（S. Lee et 

al., 2011）。一些針對英語教師的教學建議：情境因

素，即學校環境和情境項目，可能會影響學生的焦慮

水平，因此教師應提供安全和有吸引力的環境

（Henter, 2014）。多媒體環境可以減少學生的焦慮，

並提供較少壓力的課堂環境。除此之外，多媒體工具

使英語教師能夠幫助學生提高英語表現並降低他們的

語言焦慮（Huang & Hwang, 2013）。當學生開始在外

語課堂上感到安全時，他們自然會開始說話。總之，

所有外語教師都需要激勵學生;鼓勵他們說話;並允許他

們犯錯而不受懲罰（Atas, 2015）。 

本研究透過教育機器人輔助工具，來探討學生在使用

手機應用程式以及說英語的過程，並對學生的行為進

行分析，實驗結果顯示，在學習過程中，透過教育機

器人的輔助，學生在英語口說的部份是很常出現的動

作，代表學生在英語口說的部份並不排斥，為了完成

課堂上提供的任務卡，是可以在上課中與同學進行英

語口說互動。接著分析了學生之間的行為關聯，發現

學習者正在練習英語口說的時候，會有其他人指導被

觀察者如何說，代表學生在練習英語口說時，如果學

習者有錯誤的話會有指導老師指導學習者進行英語互

動，這可以使學習者更知道英語口說哪裡需要改進與

修正。 
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ABSTRACT 
This work aims to help high school STEM teachers integrate 

computational thinking (CT) into their classrooms by 

engaging teachers as curriculum co-designers. K-12 teachers 

who are not trained in computer science may not see the 

value of CT in STEM classrooms and how to engage their 

students in computational practices that reflect the practices 

of STEM professionals. To this end, we developed a 4-week 

professional development workshop for eight science and 

mathematics high school teachers to co-design 

computationally enhanced curriculum with our team of 

researchers. The workshop first provided an introduction to 

computational practices and tools for STEM education. 

Then, teachers engaged in co-design to enhance their science 

and mathematics curricula with computational practices in 

STEM. Data from surveys and interviews showed that 

teachers learned about computational thinking, 

computational tools, coding, and the value of collaboration 

after the professional development. Further, they were able 

to integrate multiple computational tools that engage their 

students in CT-STEM practices. These findings suggest that 

teachers can learn to use computational practices and tools 

through workshops, and that teachers collaborating with 

researchers in co-design to develop computational enhanced 

STEM curriculum may be a powerful way to engage 

students and teachers with CT in K-12 classrooms. 

KEYWORDS 
computational thinking, STEM education, K-12, teacher 

professional development, curriculum design 

1. INTRODUCTION 
Initiative to incorporate computational thinking (CT) in K-

12 education face challenges on several fronts, particularly 

in the United States. CT education often takes place within 

computer science courses, which may limit access to those 

who traditionally take computing courses (Heinz, Mannila, 

& Färnqvist, 2016). Moreover, there is a dearth of K-12 

teachers trained in computer science and technologies 

(Advocacy Coalition, 2018; Cuny, 2012).  

In order to address the systemic barriers to CT education, 

researchers argue for the integration of CT in K-12 STEM 

classes (Wilensky, Brady, & Horn, 2014). Integrating CT in 

STEM classes can broaden access to computational practices 

for all students, as STEM classes are required in middle and 

high school. Further, students’ use of computational tools 

has been shown to deepen learning in mathematics and 

science domains (e.g., Brady et al., 2016; Wilensky, 2003). 

Weintrop and colleagues (2016) organize computational 

thinking practices in mathematics and science classrooms 

into four strands: data practices, modeling and simulation 

practices, computational problem-solving practices, and 

systems thinking practices. In this paper, we focus on 

modeling and simulation (using, modifying, and creating 

computational models) and data practices (collecting, 

visualizing, and analyzing data). Engaging in these CT-

STEM practices can help students develop science and 

mathematics content understanding through authentic 

STEM practices used in modern science (Weintrop et al., 

2016).  

Integrating CT in STEM classes further addresses the 

shortage of teachers trained in computer science by shifting 

the focus to training STEM teachers in the computational 

tools and practices relevant to their associated fields. This 

shift requires both curriculum designers and teachers to 

reimagine classroom practices and to learn how to 

incorporate computational methods and tools (Ball & 

Forzani, 2009; Windschitl et al., 2012). We address this shift 

using a Design Based Implementation Research (DBIR) 

framework (Penuel et al., 2011) that supports teachers in 

professional development and integration of 

computationally enriched STEM units. Over multiple years 

of partnering with teachers and schools, our team has shifted 

from providing day-long professional development to 

ongoing teacher-driven support. Through these design 

iterations, we have sought to support teacher ownership, 

agency, and comfort in teaching with computational tools.  

In the latest design iteration, we position teachers as active 

co-designers in modifying their existing STEM curricula to 

include computational tools and practices. Our approach 

foregrounds teachers’ views on how the curriculum aligns 

with teaching strategies and expectations for student 

learning (Allen & Penuel, 2015; Coburn, 2005; Penuel et al., 

2009). Researchers serve as computational experts and work 

alongside teachers to develop new computationally enriched 

STEM curricula that align with individual teacher’s views 

and goals. The co-design process aims to (1) help teachers 

develop an understanding of CT and (2) empower teachers 

to integrate and teach CT in their STEM courses. In this 

paper, we present the results of a month-long professional 

development in which high school teachers co-design CT-

STEM curricula with researchers. We investigate the 

research questions: (1) What did teachers learn about CT 

through a 4-week professional development? and (2) How 

did teachers integrate CT into their curriculum?  

2. METHOD 
To investigate our research questions, we developed the CT-

STEM Summer Institute (CTSI), a 4-week professional 

development workshop that positioned teachers and 

researchers as co-designers of curriculum. Teachers and 
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researchers formed design teams by subject area: three 

biology teachers (pseudonyms: Betty, Briana, Brooke); one 

chemistry teacher (Carrie); three physics teachers (Penny, 

Peter, Philip); and one mathematics teacher (Matt). The 

eight participants teach high school science or mathematics 

in four U.S. public schools (2 urban and 2 suburban). 

Teachers received $1000 U.S. dollars per week of 

participation in CTSI and were asked to create a CT-STEM 

curriculum for their classroom that would be implemented 

in the following school year. Seven graduate students and 

one post-doctoral researcher were assigned to work with 

teachers based on their prior experience working with 

specific subject areas and participating teachers.  

Table 1. Overview of Professional Development Activities 

over Four Weeks of CTSI, Organized by Day. 
Week Monday Tuesday Wednesday Thursday Friday 

1 Pre-survey 

Introductions  

Demo CT 

Lesson  

Computational 

Models and 

CT-STEM 

Practices  

Computational 

Tools  

Computational 

Tools  

Unit planning 

Reflection 

Work from 

home   

2 + 3 Work from 

home  

 

Review 

partner’s 

work  

Discuss 

feedback  

 

Co-design (2-

3 hours) 

Co-design (2-3 

hours) 

 

CT-STEM 

Workshop 

Co-design (3.5 

hours) 

 

Reflection  

Work from 

home  

4 Work from 

home  

 

Review 

partner’s 

work  

Discuss 

feedback  

 

Co-design (2-

3 hours) 

Co-design (3 

hours) 

 

CT-STEM 

Workshop 

Co-design (3.5 

hours) 

 

Reflection  

Post-survey 

Post-interview 

Co-design (1 

hour) 

Curriculum 

Showcase 

Table 1 shows an overview of activities during the 4-week 

professional development. Teachers and researchers met in-

person for 14 days from 10am-3pm, with one hour for a 

catered lunch.  

The first week of CTSI (4 days) comprised of workshops led 

by the researchers. Each workshop introduced 

computational practices and tools by engaging teachers in 

lessons designed for students. Each lesson demonstrated 

how computational tools can engage students in CT-STEM 

practices while learning disciplinary content. For example, 

one lesson (https://tinyurl.com/IntroToCT) first asked 

teachers to use, modify, and debug a series of computational 

models that simulate how fire spreads through a forest 

(http://tinyurl.com/netlogofire;  Wilensky, 1997) using 

NetLogo, a multi-agent programmable modeling 

environment (Wilensky, 1999). Next, teachers collected and 

analyzed ‘density vs. percent burned’ data using CODAP 

(https://codap.concord.org/; Common Online Data Analysis 

Platform), a web-based data analysis environment. Then, 

they posed research questions about other variables that may 

affect the spread of fire and discussed how scientists use 

such computational models. Finally, teachers reflected on 

the pedagogy of CT-STEM practices and how they may use 

computational models and/or data analysis tools with 

students.  

In addition to NetLogo and CODAP, teachers engaged in 

Unplugged CT activities, which teach CT without 

computing tools (e.g., writing loops on paper), and 

NetTango, a blocks-based programming interface for 

exploring NetLogo Web models (Horn et al., 2014), in the 

context of a chemistry unit on molecular particle collisions. 

The last three weeks of CTSI provided co-design time for 

teams of teachers and researchers to sit together as they 

worked on computational models and units. Teams engaged 

in approximately 24 hours of in-person co-design time. On 

Fridays and Mondays, teams worked from home and 

communicated via email as needed. Each team reviewed 

each other’s work on Monday afternoons and discussed the 

feedback on Tuesdays. In addition, teams engaged in 

supplemental CT-STEM workshops that focused on CT 

tools or pedagogy on Wednesdays and participated in a 

reflection session on Thursdays. Each co-design team 

differed in how they collaboratively built models and 

curricula materials (Kelter et al., 2020). 

At the end of CTSI, the teachers and researchers showcased 

their co-designed CT-STEM curriculum in an event open to 

the community: https://tinyurl.com/CTSI2019Expo. All 

teachers also responded to pre/post surveys and post-

interviews, as described below. 

2.1. Data Sources 

To assess what teachers learned from CTSI (RQ1), the 33-

item pre/post surveys asked teachers to rate on a 5-point 

Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree): 

their perception of CT (Adapted from Cabrera et al., 2018) 

and comfort with CT-STEM practices. Further, in the post-

interview, we asked teachers what they learned from CTSI.  

To assess how teachers integrated CT into their curriculum 

(RQ2), we asked teachers to describe their curriculum in the 

post-interview and examined the computational tools and 

practices used in their CT-STEM curriculum. 

3. RESULTS 
3.1. What Teachers Learned about CT 
To address RQ1 (what teachers learned about CT through 

professional development), we first analyzed teachers’ 

ratings on the pre-/post-survey. Due to the small sample size, 

we qualitatively compare differences from pre to post. Note 

that Brooke did not complete the pre-survey (4.8 average 

across all categories on post-survey) and Philip did not 

complete the post-survey (4.4 average on pre-survey).  

Table 2. Average Pre/Post Survey Response by Category. 
 CT 

Value 

CT in 

STEM 

CT 

Integration 

Modeling 

Practices 

Data 

Practices 

Overall  

Pre 4.1 4.1 4.1 3.8 3.0 3.7 

Post 4.3 4.6 4.4 4.2 4.0 4.2 

As shown in Table 2, teachers were more likely to agree or 

strongly agree on all item categories on the post-survey, 

compared to the pre-survey. That is, after the professional 

development, teachers reported that they understood the role 

of CT in STEM education and valued CT to a greater degree. 

Teachers also reported higher confidence in their ability to 

identify and integrate computational modeling and data 

practices into their teaching.  

Next, we analyzed the post-interview responses to: “What 

have you learned from CTSI?” We qualitatively reviewed 

responses of all eight teachers to identify themes mentioned 

by multiple teachers. Below, we present teachers’ responses 

with the four themes underlined: computational thinking, 

computational tools, coding, and collaboration. 

https://tinyurl.com/IntroToCT
http://tinyurl.com/netlogofire
https://codap.concord.org/
https://tinyurl.com/CTSI2019Expo
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3.1.1. Computational thinking 

Two teachers described learning about CT: Briana (see 

Section 3.1.3) and Peter. Peter described different levels of 

CT practices in how they affect students’ thinking: 

I think being able to see the different domains of 

computational thinking and the different levels was 

important. That at one level, it's just: Can you use a model? 

Can you change a model? Right? Can you collect data? Can 

you represent data? That's one level, but then can you dig in 

deeper? Can you change a model? Can you design a model? 

Can you manipulate data and represent it in different ways? 

Those are deeper levels that the goal is to try to push down 

as far as you can to get the kids’ thinking, at a really deep 

level. So that's one thing that I've learned about 

computational thinking itself.  

Peter learned that CT can engage students in more 

procedural thinking, such as using models and collecting 

data, as well as more deep conceptual thinking, such as 

changing and designing their own models. His goal now is 

to focus on “push[ing]” students’ thinking “at a really deep 

level” because “the different levels [are] important.”  

3.1.2. Computational tools 

Four teachers stated what they learned about specific 

computational tools (Peter, Matt, Philip, and Carrie). Peter 

and Matt listed different computational tools that they 

learned about and plan to use in their classroom. 

Additionally, Matt discussed how the computational tools 

can help students engage in math as professionals do: 

I'd never heard of CODAP or NetLogo or NetTango or any 

of those. So for me, it just gave me some tools that I can use 

in stats and hopefully geometry to present math in a relevant 

way to today's learners. I think it will help me answer the 

question: Why are we learning this? When am I ever going 

to have to use this? ‘Cause it'll be easy to show them, this is 

what actual researchers are using. ‘Here's what actual 

statisticians are using, rather than we're using the calculator 

because that's what the AP exam requires you to use.’  

Philip and Carrie, who had prior experience building models 

or implementing CT-STEM lessons, both stated that they 

became aware of new tools. Carrie added that she was “very 

excited that [she’s] integrating some CODAP this 

year...[She] already see[s] other possible places in [her] year 

that [she] can use [CODAP].” Even though the workshops 

only aimed to help teachers integrate tools into their CT-

STEM curriculum, teachers identified CT tools as resources 

they can use for other lessons in their classroom. 

3.1.3. Coding/programming 

In contrast to the four teachers above who seemed “excited” 

and comfortable integrating computational tools into their 

classrooms, three of the female teachers mentioned learning 

about coding in general because they had little or no prior 

experience (Betty, Penny, Briana). For example, Betty said 

she cannot “code anything” but learned how code works and 

how to explain it to her students:  

I knew nothing about coding […] I cannot code anything, 

maybe a tiny little change I can make, but I at least see now 

what goes into it and I think I'll be better at explaining things 

to the kids. 

Although Betty feels she can only make “a tiny little change” 

in code, another teacher Penny discussed learning “a lot” 

about coding by building NetLogo models for her 

curriculum and participating in the introductory workshops: 

I never knew anything about NetLogo before and I've now 

learned a lot about NetLogo and modified or helped build 

some simulations. And that's largely my first and only 

exposure to coding. So that's relatively new...I thought a 

couple of the coolest things that we did were within the first 

week workshops you have for us: the forest fires 

simulation....that was the first thing where we really looked 

at the code behind it- and why aren't the trees burning? And 

I thought that was fun. As well as just seeing the emergent 

phenomena in that throwing in the same density doesn't 

always result in the same forest burn rates. So that was cool 

for me.  

While Penny learned that coding was “fun” and “cool” in the 

first week, Briana stated that she learned to love coding in 

the second week as she started writing her curriculum and 

now wants to learn more about how to build models herself. 

She also mentions learning about all four themes stated 

across teachers (computational thinking, computational 

platforms/tools, coding, and collaboration): 

I learned more about what computational models are, what 

computational thinking is. I learned how to incorporate that 

into my classroom and my lessons more easily. 

Collaboration is so important. I learned a little bit of how to 

do some coding and learned different modalities that can be 

used for different platforms that can be used for different 

types of analysis....the second week, my Aha moment was I 

think that creating models is way cooler than writing 

curriculum...I thought I hated the coding process. At first, I 

was like it's gonna be terrible, but when I actually learn the 

foundation/fundamentals, I was like: well this is actually 

really cool: how a line I write can completely change how 

something else works. So that was an Aha moment for me is 

that I would love to learn more about how to do that. 

3.1.4. Collaboration 

Lastly, four teachers mentioned the value of collaboration 

in their curriculum design process (Briana, Betty, Brooke, 

Carrie). Betty learned that “a whole team of people” 

contribute to constructing computational models: 

I learned that the value of co-design is very important. Yeah, I'm 

just more comfortable with using NetLogo...I think just 

understanding that things have to be coded, like preferences have 

to be put in there. Someone put that in ‘cause I'm like: how do these 

models know to do this? So you have to actually do some of the 

research ahead of time, then put it in. And you need a whole team 

of people. It's not- a computer programmer doesn't know the 

science necessarily, so you need a scientist with a computer 

programmer to work together. I love that. I love that idea. 

Betty learned that “co-design is very important” because 

models involve collaborative design decisions from experts 

from different fields. Similarly, Brooke noted that she 

benefited from collaborating and brainstorming with the 

researcher in her team who had a different expertise:  

It's just been really nice to have the time to sit down and have 

conversations around some of this stuff. That's giving me time to 

dig into the content, research more about what actually- I want it 

to be about think a little bit more deeply about like the alignment 
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of the unit itself. And that's just been really great to have 

[researcher] there to say: Okay, this is the idea. What might fit 

well? And he'll be like: ‘Oh, you could do this or you could do that.’ 

Or just that piece of brainstorming around expertise that I don't 

have.  

In addition to brainstorming, Carrie also mentioned that “[h]aving 

a researcher with us the whole time was so beneficial” because she 

could get help on her questions right away from a collaborator 

sitting right next to her. 

3.1.5. Summary of what teachers learned from CTSI 

In sum, teachers generally learned more about CT after 

CTSI. Some of them learned about computational tools and 

practices that they can integrate into their classroom. Other 

teachers with limited CT experience learned coding so that 

they can engage in and explain CT to their students. Further, 

multiple teachers mentioned collaboration, which supported 

them in building and integrating computational tools and 

practices into a CT-STEM curriculum. 

3.2. How Teachers Integrated CT 

To assess how teachers integrated CT into their curriculum 

(RQ2), we analyzed how teachers used computational 

practices and tools in their CT-STEM curricula. We first 

describe their curriculum below and then discuss their use of 

CT-STEM practices (summarized in Table 3):  

1. Experimental Design and Computational Thinking: 8-

day AP Biology unit that uses a physical lab, CODAP, 

NetTango, and NetLogo to conduct experiments on 

animal behavior, further described below (Betty) 

2. Evolution Part II: Natural Selection (Darwin's Finches 

and The Case of the Rock Pocket Mouse): 20-day 

Freshmen Biology unit that uses CODAP and NetLogo 

models to collect and analyze data on the mechanisms 

of natural selection (Briana) 

3. Climate Change in the Great Lakes: 10-day 

Environmental Science unit that uses Unplugged 

activities, CODAP, and NetLogo models to investigate 

various environmental factors and make sense of 

climate change models (Brooke) 

4. Energy in Chemical Reactions: 13-day Chemistry unit 

that uses NetLogo and CODAP to explore changes in 

energy when bonds break and form during chemical 

reactions (Carrie) 

5. Charge Interactions: 8-day Physics unit that uses a 

physical lab, CODAP, NetLogo, and PhET simulations 

to explore the behavior of charges in electricity and 

magnetism, further described below (Penny and Peter) 

6. 1-D Kinematics Motion Maps: 3-day Physics unit that 

uses NetLogo and NetTango to analyze and draw 

velocity in kinematics motion maps, building on 

Philip’s 1-D Kinematics NetLogo model, further 

described below (Penny and Peter) 

7. 1-D Kinematics and Newton's Laws: six Physics 

lessons that use CODAP, NetTango, and NetLogo to 

collect and analyze data through writing formulas and 

generating graphs on kinematics and Newton’s Laws, 

implemented throughout the fall semester (Philip) 

8. Descriptive Statistics: 8-day AP Statistics unit using 

Python notebooks and Unplugged activities to generate 

formulas, data tables, and plots that describe various 

real-world datasets (Matt) 

Table 3. CT-STEM Practices Targeted in Curriculum 
 Curricular Unit 

(see Section 3.2) 

1 2 3 4 5 6 7 8 

Modeling and simulation practices 

Using computational models (CMs) to 
understand a concept 

x x x x x x x x 

Using CMs to find and test solutions x x x   x x  

Designing CMs x    x    

Assessing CMs x x x x x  x  

Constructing CMs x x   x    

Data practices 

Collecting data x x x x x x x  

Manipulating data x x x x x  x x 

Analyzing data x x x x x  x x 

Visualizing data x x  x x x x x 

Creating data x x x x x x   

The descriptions of CT-STEM curriculum show that all 

teachers integrated several computational tools into their 

curricula to teach disciplinary content. In addition, Table 3 

shows that all CT-STEM curricula targeted multiple CT-

STEM modeling and data practices. To better understand 

how teachers integrated computational practices and tools, 

we present three example curricula (#1, #5, #6) below.  

Biology. Betty, with her co-design partner, developed 

Experimental Design and Computational Thinking (#1) for 

her AP Biology course. She described it as: “really about 

scientific design and inquiry.” In the unit, students design 

experiments to find the preferred habitat conditions of the 

pill bug (rolypoly). Betty decided that students start with a 

physical lab experiment using two connected chambers, one 

damp and one dry. The students place 10 pill bugs and 

observe change in population of the two chambers over time. 

After the physical experiment, students then explore, modify 

and recreate the animal behavior experiment digitally using 

NetLogo and NetTango models.  

Betty also explained that her unit engages students in 

multiple CT-STEM data practices: “the kids learn how to set 

up a controlled experiment, how to collect data, how to make 

graphs, and it's also where we start to teach them how to 

analyze some of that data.” She integrated these data 

practices with the CT-STEM practice of using models:  

[My class uses] the computational model to learn about the 

importance of sample size because we only get to use 10 

rolypolies and then when we do Chi Square, we don't always 

get good answers. And then we looked it up, they're like: oh, 

you need at least 30, for your sample size...So with the 

model, they can say: oh, what happens if we have 20 

rolypolies, 40 rolypolies?  

Betty wanted students to not only use models but modify 

them based on a physical lab: “[students] are now also 

learning how to change the model. So the first model just has 

wet and dry, and then in the second activity, they actually 

changed the code and add their variable, like the one that 

they tested in class.” Specifically, Betty wanted students to 

learn “that the model is actually coded by a human, based 

on things that actually happened in real life,” as she herself 

learned at CTSI (see Section 3.1.4). Her integration of 

NetTango block-based programming makes this design 

decision particularly salient: “[students] build their chamber 

using NetTango. Then they put the rolypolies in and all the 
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rolypolies escape because they didn't tell them to stay within 

the chamber.”  

Although Betty expressed that she “cannot code anything” 

(see Section 3.1.3), her CT-STEM curriculum is the only 

unit that integrates all modeling and data practices into 

science content (see Table 3) and forefronts CT in its title.  

Importantly, after Betty taught this unit in the fall, classroom 

observations and an interview suggests that this unit helped 

students learn science content and engage in CT-STEM 

practices because Betty discussed coding and  CT in context 

of disciplinary science content, as a result of the professional 

development (Peel et al., 2020).  

Physics. Peter and Penny, who work at the same school, 

developed two units together for their general Physics 

classes. With their co-design partners, they designed Charge 

Interactions (#5), which focused on “electrostatics: electric 

charge, Coulomb's law, electric fields” (Peter), and a short 

unit on 1-D Kinematics Motion Maps (#6). 

The electrostatics unit first asks students to engage in 

physical lab experiment with sticky tape and then explore a 

NetLogo library model on electrostatics (Sengupta & 

Wilensky, 2005), which was modified with researchers to fit 

the curriculum. Penny described the unit as primarily 

focused on the model and how the code works:  

Most of it is around the simulation and specific questions 

asking them to observe particular behaviors or how things 

happen using their prior knowledge to try to explain why 

those are things that are happening. And then a few 

questions asking them to look at the code and, fine, where 

did we program in that the electron should repel from each 

other? Like where did we program in that the conductor's 

color is gray. Could you change that? 

Then, students use CODAP to understand Coulomb’s Law, 

as Peter explained: “If we really want them to come up with 

Coulomb's law, which is our goal, then you have to keep one 

thing constant and vary another. And CODAP lets you do 

that really quickly. So that's why we chose that.” Finally, 

students examine a PhET simulation of charges.  

Penny and Peter finished their first unit in Week 3, and then 

modified Philip’s 1-D Kinematics NetLogo model for the 

motion maps unit (#6). Peter saw this short unit as a way to 

help students dynamically see changes in velocity: 

“[students] don't often see the map being drawn, as 

something moves. I think that the simulation that we put 

together does that and sort of bridge that gap between what 

we want them to see and what they actually see.” The unit 

also asks students to build their own motion map using 

NetTango, as Peter explained: “The NetTango thing is a way 

to help kids gain more control over making a motion 

map…they have that ownership of the whole process and I 

think they'll be able to internalize what's going on better.”  

As of this writing, Penny and Peter have not yet 

implemented their Charge Interactions unit, but classroom 

observations of students engaging with the 1-D Kinematics 

Motion Maps unit showed that both teachers encouraged 

students to not only understand the science content, but to 

“explore the code” and “try to break the model.”  

4. DISCUSSION 
Results from our qualitative study suggests that engaging 

high school STEM teachers in workshops and co-design of 

CT-STEM curricula in a 4-week professional development 

can help them develop an understanding of CT and integrate 

CT into their classroom. We are particularly encouraged by 

the fact that although these eight teachers already valued CT 

at the beginning of the workshop because they chose to 

participate in the professional development, all teachers 

reported even more favorable perceptions of CT and greater 

confidence in integrating it into their classroom at the end of 

the professional development. Teachers shared in post-

interviews that they learned not only about CT and 

computational tools for their classroom, but also about 

coding in general and the value of collaboration in the co-

design process. Due to the relatively recent emergence of CT 

in STEM for K-12 teachers, particularly in the United States, 

this work takes one step towards understanding where 

teachers may need particular support when learning about 

CT and how to help teachers integrate CT into their 

classroom practices. 

Our analysis of co-designed curriculum showed all teachers 

were able to integrate multiple computational tools that 

engage their students in CT-STEM practices. Teacher 

interviews and classroom observations show that teachers 

designed and implemented activities that reflect what they 

personally learned about coding, computational tools, and 

CT during the professional development. For example, Betty 

learned that computational models involve design decisions 

made by people and thus engaged her students in designing 

computational models where they write code for the 

behaviors that they expect to see. Further, because Penny 

found it “fun” and “cool” to see the code behind a model to 

understand how it works, she encouraged her students to 

similarly explore and break the code. 

Taken together, these findings suggest that teachers 

benefited from both parts of our professional development: 

workshops in Week 1 and co-design in Weeks 2-4. 

Particularly, learning about specific computational tools and 

how to use them in the context of disciplinary content was 

important for four of the eight teachers, who reported being 

“excited” about integrating the tools into their classrooms. 

However, three of our teachers had little experience with 

coding and may not have the ability to integrate new 

computational tools into their classroom without the 

additional support provided in Weeks 2-4. At the end of the 

professional development, these three teachers reported 

learning to be comfortable with code and one teacher, 

Briana, even learned to love coding in the second week when 

she began working side-by-side with researchers to co-

design curriculum. Moreover, multiple teachers viewed 

researchers as valuable thinking partners with expertise in 

CT. Hence, co-design may be an effective way to help 

teachers in integrate CT into their curriculum, particularly 

those with little or no CT experience. This finding aligns 

with prior work which showed that teachers’ confidence in 

CT and ability to reach their curricular goals grew over a 

multi-week process of working with researchers as co-

designers (Wu et al., 2020). We propose that additional 

research support integration of CT in K-12 by positioning 

teachers not only as learners of CT in workshops or 
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trainings, but as co-designers and collaborators who can 

augment existing STEM disciplinary content with CT in 

their classroom.  

This work has the potential to engage more K-12 teachers 

and students in computational practices and tools by 

integrating CT into existing K-12 STEM classrooms. 

Through one summer professional development, teachers 

were empowered to develop and implement eight 

computationally enhanced STEM curricula for up to three 

weeks in mathematics and science classrooms. Our 

observations of these classrooms showed that the teachers 

talked about their experience during the 4-week professional 

development and leveraged what they learned about CT to 

help students become more comfortable with CT and engage 

in CT-STEM practices. Additional professional 

developments will help us identify what factors contribute to 

our success, beyond those specific to our eight teachers. This 

will help us scale this work to a larger population using in-

person and online support on CT integration. By helping 

more teachers understand CT and computational tools, we 

can empower K-12 STEM teachers to engage their students 

in authentic scientific practice while also broadening 

participation in computing. 
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ABSTRACT 
The implementation of programming in primary education is 

currently receiving a considerable amount of attention in the 

context of developing 21st century skills and digital literacy. 

The application of programmable robots is a playful integration 

of developing programming skills and computational thinking. 

Once pupils understand the basics of robot programming, they 

can solve challenging new programming tasks themselves 

without the teacher taking over too much of the learning 

process. It is therefore worthwhile to investigate the extent to 

which teachers’ instructional approach and guiding 

interventions influence the development of pupils’ 

computational thinking. Furthermore, programming robots 

have some special affordances for educational purposes as 

robots typically have to be programmed to interact with their 

environment. Little evidence is known to which extent 

programmable robots using the SRA-approach contribute to the 

development of computational thinking skills among primary 

school pupils. The use of Sense, Reason and Act (SRA) 

programming includes the application of loops, routines and 

conditionals when controlling actuators on the basis of sensory 

information with which the robot can anticipate changes in the 

environment. Our findings indicate that teachers versus 

students experience the way of teaching (perceived monitoring 

and scaffolding) significantly different when programming 

robots. We make recommendations as to which competences 

the guiding teacher needs. It is also shown that programming 

robots using an SRA-approach contribute to the development of 

specific characteristics (reformulating problems, problem 

decomposition, abstraction, algorithms and procedures & 

parallelisation) of computational thinking. 

KEYWORDS 

programming, sense-reason-act, robotics, computational 

thinking, teacher interventions 

1. INTRODUCTION 

In all educational sectors from primary school to higher 

education one key question is how to integrate the development 

of computational thinking in the curriculum. Little is known 

about the possibilities and impact and there are many questions 

such as: what contribution does learning to program make to 

cognitive development, what is the relationship between 

programming and computational thinking, and what is the 

influence of the teacher's actions in this regard (McCombs, 

Lauer, & Peralez, 1997; Morehead & LeBeau, 2005).  

Computational thinking is the ability to solve complex 

problems using the basic concepts of computer science (Wing, 

2006). The integration of programming in education is a way to 

stimulate the development of computational thinking among 

pupils and requires specific teacher competences (Lye & Koh, 

2014). In our explorative research project we therefore 

investigate to what extent the way of providing instruction and 

teacher interventions (e.g. asking questions, giving a hint, 

showing/following, taking over) during teaching programming 

influences the development of computational thinking (e.g. 

algorithmic thinking, problem decomposition, debugging, 

parallel thinking). 

Sense, Reason and Act (SRA) programming is a special 

approach of programming. It requires the creation of programs 

that implement control structures using sensors and actuators 

with the application of variables, loops and conditionals, for 

example when using programmable robots (Slangen, 2016). 

The SRA-loop is the process whereby detection (sensing) 

continuously generates new information that is entered into a 

logic reasoning component (reason), which subsequently leads 

to the resulting actions (act) (Lith, 2006). 

Robots programmed using the principle of SRA can react to 

changes in their environment on the basis of sensory 

information. This requires pupils to think anticipatively in the 

task solution. Programming according to the principle of sense-

reason-act requires problem-solving skills and abstract 

thinking. Pupils' programming of robots based on the SRA-

principle requires skills related to creative thinking and critical 

thinking, such as: analysing, elaborating, causal reasoning, 

synthesizing, imagining, etc. This requires the teacher to 

provide a pedagogical space to apply these skills in practice. 

This demands an environment that is strongly linked to inquiry-

based learning (Slangen, 2016; Valcke, 1985). 

Teaching to program SRA needs special teacher strategies and 

competences and is more than just a transfer of knowledge 

(Slangen, 2016). Moreover, very few teachers have the 

experience and skills to conduct this kind of activity (Breed, 

2003). Bers, Ponte, Juelich, Viera, and Schenker (2002) have 

found that teachers who start with a constructivist instructional 

approach when teaching programming, quickly revert to a more 

directive way of teaching to provide guidance to learners when 

solving complex problems. Slangen (2016) recommends that 

teachers best support such a learning process by means of a 

scaffolding-based approach and to design a learning 

environment to support children in their explorations and to 

scaffold learning (Sullivan & Bers, 2016). In that sense learning 

to program is more effective when the learner can construct his 

own knowledge from guided programming experiences. It is the 

teacher who has to set up a well-defined learning space and 

should apply appropriate guidance that allows pupils to gain a 

deeper understanding of how to program (Fanchamps, Slangen, 

Hennissen, & Specht, 2019). Thus, learning must be active; 

pupils must construct knowledge assisted by guidance from the 

teacher and best also with feedback from other pupils (Buitrago 

Flórez et al., 2017). Furthermore, in order to become familiar 

with complex programming such as SRA, a scaffold is required 

or a research-based structure must be followed. 

Previous research shows that teacher interventions during 

programming lessons influence pupils' decision making skills 
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in solving programming problems (Fanchamps, 2016), and 

have a positive effect on the development of computational 

thinking skills of primary school pupils (Pat‐El, Tillema, 

Segers, & Vedder, 2013). Teachers often intervene in a 

directive style; they start from their own insight and often 

provide an overload of information too quickly (Petrou & 

Dimitrakopoulou, 2003). For teachers, it seems difficult to be 

reluctant when pupils have to solve a problem using 

programming (Valcke, 1985). This reluctance on the teachers’ 

part seems to be an important prerequisite for pupils to be able 

to learn inquisitively and to take problem-solving action when 

working with programming environments (Slangen, 2016). 

Furthermore, in programming education there is a need for 

different teacher behaviour (Sentance & Csizmadia, 2017). It is 

expected that teachers who provide guidance using a 

scaffolding based approach (asking questions, providing help 

when needed and in the way needed) will be able to get pupils 

further in the development of programming than teachers who 

use a more direct approach. 

Considering previous research, we were interested to explore 

the following research questions: 

1. To what extent does the teacher's own estimated 

instructional approach correspond with the pupils' 

perception of that instructional approach?  

2. Which instructional approach (directive instruction - 

scaffolding) do teachers mainly use to influence the 

learning of programming in a robotics SRA learning 

environment?  

3. To what extent does SRA-programming with Lego 

Robots contribute to the development of 

computational thinking skills? 

2. METHOD 

To investigate our research questions we used a pretest-posttest 

design. This includes a) among pupils pre-measurement of 

computational thinking skill and, for teachers, the extent of their 

own self-assessment of support, b) a robotics-intervention, and 

c) a post-test among pupils measuring computational thinking 

skills and the extent to which teacher support is perceived. 

During the execution, the instructional approach used by the 

teacher and the type of interventions were recorded. Among 

pupils, the ability to program was measured and the level of 

quality of the constructed program was assessed. We also 

measured the difference in terms of the support provided by the 

teacher and how it was perceived by the pupils. 

2.1. Participants 

This exploratory research was conducted among pupils and 

teachers of a Dutch primary school. Programming sessions with 

both primary school teachers and primary school pupils were 

organised. To make an inventory of the instructional 

approaches used, and in order to measure which interventions 

were mainly applied by the teachers, we chose to incorporate 

pupils and teachers from grade 3 to grade 8 in this research. We 

would like to indicate that that these Dutch grade levels 

correspond with age 6 to 12.  

2.2. Materials 

We used Lego Robots EV-3 as a SRA programming 

environment. This environment offers possibilities to control a 

robot using sensors and actuators. The programming of this 

environment is characterized by visual programming by means 

of drag and drop command blocks. By manipulating the 

programming variables per block and putting them in a specific 

order, pupils construct their program. This visually 

programming environment is also suitable for use in primary 

education (Korkmaz, 2018).    

In order to reflect the self-assessment of the teacher’s 

pedagogical level of support, and to determine how pupils 

experienced this support as such (research question 2), the 

Assessment for Learning questionnaire was used (Pat‐El et al., 

2013). This validated questionnaire, consisting of a separate 

teacher part and a specific pupil part, which measures 

individually the perception of both teachers and pupils, is based 

on a 5-point Likert scale (range from “completely disagree” – 

“completely agree”) and consists of two categories: 

"Experienced monitoring/supervising the learning process" 

(Perceived monitoring - 16 items) and "Experienced 

level/application of scaffolding" (Perceived scaffolding - 12 

items). This questionnaire includes questions such as: "The 

teacher provides opportunities to set learning objectives" and 

"The teacher provides hints to help understand the subject". 

The questionnaire is deliberately presented to both teachers 

(teacher version) and pupils (pupil version), so that the 

perception of teachers can be tested against the perception of 

pupils. This allows, by monitoring differences in teaching and 

learning, to visualise the influence of a different pedagogical 

approach (in this case a directive approach compared to a 

scaffolding approach). 

In order to measure an effect on computational thinking among 

pupils (research question 3) the validated Computational 

Thinking test (Román-González, Pérez-González, & Jiménez-

Fernández, 2017) was used as a pre- and post-measurement 

among pupils. This questionnaire consists of 28 questions in 

which pupils have to link programming commands to various 

situations (and vice-versa), measuring characteristics of 

computational thinking. 

2.3. Procedure 

After teachers followed three training sessions provided by the 

researcher, in which they learned how to program Lego EV3 

robots, the teacher independently and without the intervention 

of the researcher taught five programming lessons using the 

Lego environment. In these 5 lessons the teacher guided the 

pupils, who worked together in pairs, to solve various robotics 

programming problems. Pupils were confronted with 20 

programming problems that became more and more difficult. 

The teacher specified the task the robot had to perform using 

the computer program created by pupils. The teacher used a 

personal instructional approach and his or her own interventions 

to guide pupils through the learning process. 

By means of observation to determine which instructional 

approach (directive instruction or scaffolding) the teacher has 

used and what kind of interventions the teacher has applied 

(asking questions, giving a hint, showing/following or taking 

over the learning process), the researcher recorded a) the type 

of instructional approach and which type / to what extent 

interventions have been used by the teacher to identify what the 

effect was (research question 1), and b) the extent to which 

SRA-programming by pupils has been applied in solving 

programming problems. 

3. RESULTS AND DATA-ANALYSIS 

Examination of the results of the first research question 

concerning the influence of the instructional approach on 

learning to program indicates that the instructional approach of 
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the teacher is of great influence. An analysis of the observations 

shows that pupils from grade 1 to grade 6 are perfectly capable 

of functionally programming Lego Robots by using the 

computer program provided. Pupils who have been guided 

according to a scaffolding approach frequently make use of the 

knowledge they have already acquired during new 

programming tasks are further advanced in a problem-solving 

approach compared to guidance according to a directive 

instructional approach.  

Further indications show that teachers who use a scaffolding 

based instructional approach mainly promote a self-

management and problem-solving, self-analytical capacity of 

learners, and in particular use questioning and hints. Teachers 

who use a directive instructional approach mainly promote 

procedural thinking, initiate functional programming and 

enhance pupils’ success experience, and mainly make use of 

showing/following and taking over the learning process, and 

ask few questions.  

The results concerning the second research question about the 

extent to which the teacher's estimated instructional approach 

matches the student's perception of that instructional approach, 

show a difference in estimation (Table 1).  

Table 1. Assessment for Learning Questionnaire 
  Perceived monitoring (16 items) 

Group n M SD range Mdn 

Teacher 13 3.93 .45 3.75 – 4.75 3.94 

Pupil 21 3.68 .45 2.75 – 4.50  3.75 

 Perceived scaffolding (12 items) 

Group n M SD range Mdn 

Teacher 13 4.15 .32 3.58 – 4.58 4.17 

Pupil 21 3.76 .32 3.25 – 4.42 3.75 

Note. n = number of respondents; M = average; SD = standard deviation; 
range = spread in measurement; Mdn = median  

Pupils do not value the teachers’ instructional approach as 

highly as the teachers themselves. Table 1 shows that the 

averages (M) on both categories (monitoring, scaffolding) of 

the questionnaire are very different and the difference for 

perceived scaffolding is statistically significant t (32) = 1.57, p 

= 0,001, 95% CI [0,15, 0,62]. This is indicatively more accurate 

to deduce from the median (Mdn), which for pupils in both 

categories is significantly lower, and from the range, in which 

the distribution of pupils' results is more dispersed. A closer, 

more detailed study of the collected questionnaires makes it 

quantitatively visible that teachers respond to more questions 

with the answer "agree" and "completely agree", but that pupils 

give significantly lower scores for this, i.e. they experience the 

teachers approach differently. A comparison in perception 

between the two research groups is quite striking and can be a 

fundamental ground for the accompanying teacher to take a 

critical look at applied instructional approach and interventions 

used during programming lessons. 

The answer to the third research question on the extent to which 

SRA-programming contributes to the development of 

computational skills can be found in Table 2.  

Although not significant, the measured results (Table 2) show 

an increase in the characteristics of computational thinking 

skills (reformulating problems, problem decomposition, 

abstraction, algorithms and procedures and parallelisation) 

among pupils. In the post measurement, pupils solve more tasks 

correctly and therefore show a higher level of computational 

thinking skill compared to the pre-measurement. The 

computational thinking characteristics "completion", 

"debugging" and "sequencing" show in the post measurement a 

higher average score (M), a lower standard deviation (SD) and 

less spread in the measured values (range). Based on these 

results, the conclusion can be drawn that by application of SRA-

programming pupils develop a higher level of computational 

thinking skills. 

Table 2. Development of Computational Thinking Skills 
 

 Pre-test  (n = 21) 

Variable M SD range Mdn 
Total (28) 1.01 .36 0.25 – 1.42 1.13 

CT-skill 

completion 

.33 .11 0.08 – 0.50  0.33 

CT-skill 
debugging 

.19 .11 0.00 – 0.33 0.11 

CT-skill 

sequencing 

.49 .19 0.17 – 0.75 0.46 

 Post-test (n = 21) 

Variable M SD range Mdn 

Total 1.14 .22 0.83 – 1.50 1.13 

CT-skill 
completion 

.35 .09 0.25 – 0.50 0.33 

CT-skill 
debugging 

.25 .10 0.08 – 0.42 0.10 

CT-skill 
sequencing 

.54 .13 0.25 – 0.67 0.58 

Note. Variable = measurable value; Total = number of questions correct 

CT-questionnaire; completion = completed by CT; debugging = 
reformulate problems; sequencing = sequence; M = average; SD = 

standard deviation; range = spread in measurement; Mdn = median 

4. CONCLUSION AND DISCUSSION 

This research helps teachers who want to implement 

programming lessons in the classroom. Because learning to 

program seems to depend on the instructional approach and the 

appropriate interventions, the question arises whether a more 

directive instruction or a scaffolding-based approach is more 

appropriate for teaching programming. This requires a more 

inquiry-based approach for pupils, and for teachers knowledge 

of scaffolding and the guidance to be used as well as the type of 

interventions to be applied. The necessary competences can be 

developed through training and further experience. 

This research makes the effect of the type of teacher 

intervention visible when teaching programming robots in the 

classroom. The results also contribute to sharpening the 

definition of what computational thinking means for the 

development of primary school pupils. It leads to four 

recommendations:  

• First, LEGO Robotics can be used as a programming 

learning environment.  

• Second, specific programming lessons can increase 

classroom yields.  

• Third, SRA-programming contributes to the 

development of computational thinking skills of 

primary school pupils with a transfer to other 

disciplines and educational areas/other primary school 

subjects.  

• Fourth, a thorough implementation of teaching 

programming in the classroom requires a further 

professionalisation of the teacher on scaffolding and 

guidance with specific interventions. 
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4.1. Limitations and further directions 

Despite the limited number of respondents in this study, a 

measurable development (although not significant) in 

computational thinking skills has been demonstrated. In follow-

up research, larger numbers of respondents will be used for 

which it is expected that significant results can be demonstrated. 

It is also worthwhile to investigating whether other types of 

programming environments generate the same yields.    

The indications from this research show that it is relevant for 

teachers to become more aware of the fact that the nature of 

support is important to help pupils further in SRA-

programming. This means, on the one hand, that teachers need 

to have their own content programming insights and, on the 

other hand, that they can also use guidance skills.  

In order to further develop the construct of the SRA approach 

theoretically, it is relevant to further investigate and develop the 

relationship between computational thinking and SRA 

programming. 
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ABSTRACT 

This study was performed to explore the views of preservice 

teachers of computational thinking (CT) through a pilot 

survey. A total of 329 preservice teachers from the National 

Institute of Education Singapore took part in this pilot 

survey. These preservice teachers were trained to teach 

STEM and non-STEM subjects. The overall findings 

showed that the preservice teachers do not yet have an 

adequate understanding of CT. Most of them perceived CT 

as logical thinking or reasoning. This is followed by no idea 

or no understanding or not sure, using ICT or computer, 

coding or programming, problem-solving and so forth. 

Besides that, STEM preservice teachers had different views 

of CT compared to non-STEM preservice teachers. These 

initial views of CT among the preservice teachers can serve 

to inform the design of teacher preparation programs, 

policies and syllabus materials to support the preservice 

teachers to infuse CT into their future teaching practices. 

KEYWORDS 

computational thinking, preservice teacher, view, pilot 

survey 

1. INTRODUCTION 
In Singapore, developing computational capabilities is one 

of the key enablers for the Smart Nation initiative. Several 

programs have been conducted to introduce and enhance 

computational thinking (CT) skills and coding abilities 

among the Singaporean, from pre-school students to adults. 

Nevertheless, one of the main concerns is how to best 

prepare and support teachers to incorporate CT into their 

teaching in the classroom (Yadav, Hong, & Stephenson, 

2016). We are a research group that explores the design of 

new programs to train the preservice teachers and in-service 

teachers in CT. A recent program that has been implemented 

was CTFest: Sharing and Learning about CT which 

sponsored by a grant from the Google Data Centre 

Community Fund. During the CTFest, featured talks and 

discussions were held for the teachers to learn about the best 

practices in the teaching of CT. The attendees included 

teachers of computer science, computer programming and 

applications, computing, design and technology, and 

computing-related Applied Learning Programmes; 

colleagues from Curriculum Planning & Development 

(CPDD) of MOE, polytechnics lecturers and Singapore 

Science Centre. Industry partners were also invited to 

exhibit their work in computing education. 

Educational experiences are needed for the teachers from all 

levels to prepare them well to teach CT concepts effectively. 

Knowing the standpoints of preservice teachers towards CT 

can serve as applicable resources for creating teacher 

preparation programs, policies, and syllabus materials to 

support the teachers to integrate CT into their teaching 

practices (Rich, Yadav, & Schwarz, 2019). Thus, this study 

is intended to determine preservice teachers’ views of CT 

through a pilot survey. It is led by these research questions: 

(a) How do preservice teachers view computational 

thinking? 

(b) What are the differences in the view of computational 

thinking between STEM and non-STEM preservice 

teachers? 

2. LITERATURE REVIEW 
CT has the potential to promote problem-solving skills and 

capabilities among the students as they start to think in new 

ways (Yadav et al., 2014). Therefore, the students should be 

taught to understand computational procedures and develop 

skills for representing and abstracting information (Lu & 

Fletcher, 2009). Hemmendinger (2010) also claimed that the 

aim of teaching CT was “to teach them how to think like an 

economist, a physicist, an artist, and to understand how to 

use computation to solve their problems, to create, and to 

discover new questions that can fruitfully be explored” (p. 

4). Yadav et al. (2011) asserted that teacher education was 

one discipline where CT would have a noteworthy effect on 

K-12 education. This was because if the preservice teachers 

were able to present their CT ideas in the teaching, the 

students would have the superior experience of computing 

in general.  

Some works have been executed to determine how 

preservice teachers view CT. For instance, Chang and 

Peterson (2018) accomplished a study to identify the 

perceptions of CT among preservice teachers. The 

preservice teachers define CT as an important literacy, with 

elements of thinking in a logical series and steps, thinking 

for solution and creating strategies, and demonstrating 

thinking.  Furthermore, Bower and Falker (2015) conducted 

a study to investigate the understanding of CT among 

preservice teachers. The results indicated that almost one-

third of the preservice teachers regarded CT as problem 

solving using technology, and utilizing technology. Another 

study was done by Yadav et al. (2014) to evaluate the 

understanding of CT among preservice teachers. The 

preservice teachers perceived that CT as heuristics and 

problem solving, algorithms, use of computers or 

technology, and critical thinking.  

3. METHOD 

3.1. Respondents 
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329 preservice teachers in the National Institute of 

Education, Singapore who participated in this study. They 

had just completed their year-long teaching training courses, 

and were about to go to school for their practicum before 

graduation as a teacher. They were trained to teach at least 

two subjects. Most of them (n=147, 44.7%) had the 

curriculum subject of English Language / Literature / 

General Paper. This is  followed by the subjects of Mother 

Tongue (n=92, 28%), Mathematics (n=82, 24.9%), Science 

(n=59, 17.9%), History / Social Studies / Geography / 

Economics (n=76, 23.1%), Art / Music / Drama (n=21, 

6.4%), Computer Applications (n=3, 0.9%), Principles of 

Accounts (n=3, 0.9%), Elements of Business Skills (n=2, 

0.6%), Character and Citizenship Education (n=2, 0.6%), 

Social Studies (n=1, 0.3%), and French (n=1, 0.3%). 121 of 

them were trained to teach STEM subjects including 

Mathematics, Science, and Computer Applications. We 

considered them as STEM preservice teachers if they were 

trained and prepared to teach at least one STEM subject. 

Meanwhile, 208 of them were trained in teaching non-

STEM subjects. All of these preservice teachers were 

required to attend a one and half hour long CT introductory 

session as part of their Beginning Teacher Orientation 

Programme. 

3.2. Pilot Survey 

At the beginning of the session program on CT, the 

respondents had to complete a pilot survey which consisted 

of two questions.  The first question was in multiple-choice 

format, and the second question was open-ended. The first 

question was “What subject areas have you been prepared to 

teach?” and the second question was “What is your current 

understanding of computational thinking?” The respondents 

answered the questions using google forms. The responses 

of the second question were analyzed using an open coding 

approach to identify the preliminary analytic categories. If 

the responses contained multiple features, they were put 

under two or more categories, for instance ‘Problem solving 

with the use of computers’ was included in the categories of 

‘problem-solving’ and ‘using ICT/computer’ (Bower & 

Falkner, 2015). 

4. FINDINGS 

4.1. Preservice Teachers’ Views of CT 

Table 1 presents the views of CT among preservice teachers. 

In Table 1, we notice that the majority of the preservice 

teachers perceived that CT was logical thinking or reasoning 

with a total frequency of 80. It was surprising that a number 

of preservice teachers (n=43) did not have any idea or 

understanding of CT. Most of them (n=38) also regarded CT 

involve the use of ICT or computer. 32 of the respondents 

viewed CT as coding or programming. Besides that, the 

preservice teachers also thought that CT was related to 

problem-solving, with a frequency of 30 and CT was 

systematic or systematic thinking with the frequency of 19. 

They deemed that CT was thinking or thinking process 

(n=13), computation or calculation (n=10), and algorithm 

(n=10). This is followed by mathematics (n=8), analytical 

thinking or analytical thinking (n=8), and programming 

(n=8). Six of the respondents conceived that CT was  step 

by step and thinking like a computer. Methodical thinking 

and analysis were perceived as CT with a frequency of 4 

respectively. Furthermore, CT was also considered as 

computing skills or principles (n=3), sequencing or 

sequential thinking (n=3), artificial intelligence (n=3), 

structured or structured thinking (n=2), and using software 

(n=2). The other CT views with a frequency of 1 were 

including stepwise thinking, thinking like a bot, thinking 

like a coder, rational thinking, IT-related thinking, 

engineering-related and so on.   

Table 1. Preservice Teachers’ views of CT 

No CT Views  Frequency 

1 Logical thinking/reasoning 80 

2 No idea/No understanding/Not sure 43 

3 Using ICT/computer 38 

4 Coding/Programming 32 

5 Problem solving 30 

6 Systematic/Systematic thinking 19 

7 Thinking/Thinking Process 14 

8 Computation/Calculation 10 

9 Algorithm 10 

10 Mathematics 8 

11 Analytical/Analytical thinking 8 

12 Steps/Step by step 6 

13 Thinking like a computer 6 

14 Methodical thinking 4 

15 Analysis 4 

16 Computing skills/principles 3 

17 Sequencing/Sequential thinking 3 

18 Artificial intelligence 3 

19 Structured/Structured thinking 2 

20 Using software 2 

21 Algorithmic thinking 1 

22 Strategy 1 

23 Robots 1 

24 JavaScript 1 

25 Out of box thinking 1 

26 Recursion  1 

27 Stepwise thinking 1 

28 Giving instructions 1 

29 Rational conclusions 1 

30 Commands 1 

31 Thinking like a bot 1 

32 Thinking like a coder 1 

33 Thinking like a machine 1 

34 Numbers 1 

35 Higher order thinking 1 

36 Excel 1 

37 Statistics 1 

38 Permutation 1 

39 Combinations 1 

40 Configurations 1 

41 Decision making 1 

42 Directions for machines 1 

43 Computer terminology 1 

44 Technical 1 

45 Algebraic thinking 1 

46 Binary codes 1 

47 Iterations 1 

48 Processing thoughts effectively 1 
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49 Thinking procedurally 1 

50 Procedure 1 

51 Mathematical thinking 1 

52 Rational thinking 1 

53 Memory work 1 

54 Managing complexity 1 

55 Using models 1 

56 Proactive thinking 1 

57 ICT lesson 1 

58 IT-related thinking 1 

59 Optimization 1 

60 Function 1 

61 Graph theory 1 

62 Standardized thinking 1 

63 Solutions 1 

64 Making teaching easier 1 

65 Engineering-related 1 

4.2. Comparison of the view of CT between STEM and 

non-STEM preservice teachers 

Based on Table 1, the views of CT that had a frequency of 2 

or more than 2 were included in the analysis to compare the 

differences in the view of CT between STEM and non-

STEM preservice teachers. From Table 2 and Figure 1, it can 

be observed that more STEM preservice teachers (28.9%) 

viewed CT as logical thinking or reasoning than non-STEM 

preservice teachers (21.6%). Most of the non-STEM 

preservice teachers (15.9%) did not know about CT 

compared to that of STEM preservice teachers (8.3%). 

When compared to non-STEM preservice teachers, the 

STEM preservice teachers were more likely to consider CT 

as coding or programming (10.7%), systematic or systematic 

thinking (8.3%), thinking or thinking process (5.0%), 

computation or calculation (5.0%), mathematics (2.5%), 

analytical or analytical thinking (3.3%), steps or step by step 

(3.3%), thinking like a computer (2.5%), methodical 

thinking (1.7%), and using software (0.8%). The percentage 

for the non-STEM preservice teachers for these ten CT 

views was 9.1%, 4.3%, 3.8%, 1.9%, 2.4%, 1.9%, 1.0%, 

1.4%, 1.0%, and 0.5% respectively. In the contrast, the 

STEM preservice teachers were less likely to regard CT as 

using ICT or computer (10.7%), algorithm (1.7%), analysis 

(0.8%), computing skills or principles (0.8%), and 

sequencing or sequential thinking (0.8%). The percentage 

for non-STEM preservice teachers was higher than STEM 

preservice teachers for these five CT views, i.e. 12%, 3.8%, 

1.4%, 1.0%, and 1.0%. Both STEM and non-STEM 

preservice teachers deemed CT as problem-solving which 

had the same percentage of 9.1%. Non-STEM preservice 

teachers considered CT as artificial intelligence and 

structured or structured thinking with a percentage of 1.4% 

each, but there was 0% for the STEM preservice teachers.  

Table 2. Comparison of views of CT between STEM and 

non-STEM preservice teachers 

CT Views STEM Non-

STEM 

Logical thinking/reasoning 28.9 21.6 

No idea/No understanding/Not sure 8.3 15.9 

Using ICT/computer 10.7 12 

Problem solving 9.1 9.1 

Coding/Programming 10.7 9.1 

Systematic/Systematic thinking 8.3 4.3 

Thinking/Thinking Process 5 3.8 

Computation/Calculation 5 1.9 

Algorithm 1.7 3.8 

Mathematics 2.5 2.4 

Analytical/Analytical thinking 3.3 1.9 

Steps/Step by step 3.3 1 

Thinking like a computer 2.5 1.4 

Methodical thinking 1.7 1 

Analysis 0.8 1.4 

Computing skills/principles 0.8 1 

Sequencing/Sequential thinking 0.8 1 

Artificial intelligence 0 1.4 

Structured/Structured thinking 0 1.4 

Using software 0.8 0.5 

 
Figure 1. Comparison of views of CT between STEM and 

non-STEM preservice teachers 

5. DISCUSSIONS AND CONCLUSION 
The overall findings demonstrated that preservice teachers 

did not have a sufficient understanding of CT. This indicated 

that a lack of awareness of how CT skills can be 

incorporated into their teaching practices, thus implying that 

more work needs to be put in to expose them to knowledge 

and practices about the integration of CT in the classrooms. 

The majority of preservice teachers perceived that CT as 

logical thinking which is analogous with the result of a study 

from Chang and Peterson (2018) where CT is seen as 

thinking in logical steps. The preservice teachers had 

comparable responses with the study of Sands, Yadav and 

Good (2018) where CT involved problem-solving, logical 

thinking, thinking like a computer, mathematics, using ICT 

or computer, coding or programming, and algorithm. CT 

was regarded as problem solving and mathematics which is 

also consistent with the finding of Rich, Yadav and 

Schwarz’s (2019) study. The preservice teachers were 

capable to determine the types of thinking connected with 

CT, such as analytical thinking, mathematical thinking, 

logical thinking, and structured thinking, which is 

compatible with the study of Bower and Falkner (2015). By 

referring to Table 1, some of the preservice teachers were 

able to identify the concepts and elements that related to CT, 
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for example, algorithmic thinking, iterations, function, using 

models, sequencing or sequential thinking, and thinking 

procedurally. However, there were some responses in Table 

1 that did not relate to CT or had no clear meaning, such as 

JavaScript, configurations, memory work, solutions, and 

graph theory.  

Preservice teachers, regardless of STEM and non-STEM, 

ought to have similar thoughts about CT. However, in this 

study, it was found that the STEM preservice teachers had 

different views of CT compared to non-STEM preservice 

teachers. Unlike the non-STEM preservice teachers, the 

STEM preservice teachers were more likely to perceive CT 

as logical thinking or reasoning, coding or programming, 

systematic or systematic thinking, thinking or thinking 

process, computation or calculation, analytical or analytical 

thinking, steps or step by step, thinking like a computer, 

methodical thinking, and using software. On the other hand, 

the STEM preservice teachers were less likely to regard CT 

as using ICT or computer, algorithm, analysis, computing 

skills or principles, and sequencing or sequential thinking. 

More non-STEM preservice teachers did not have an idea or 

understanding concerning CT. This is most likely because 

STEM preservice teachers may have more exposure to 

Computing courses in their tertiary education before joining 

the preservice teaching course. Both STEM and non-STEM 

preservice teachers had the same response for CT as 

problem-solving. Two remarkable differences of view of CT 

between STEM and non-STEM preservice teachers were the 

artificial intelligence and structured or structured thinking as 

none of the STEM teachers gave these responses. This could 

attributed to non-STEM teachers perception that CT is 

related to the use of technology.  

In some countries such as the United Kingdom, efforts have 

been made to integrate CT into all subjects at all levels, If 

teachers have pre-conceptions of CT that differ from the 

concepts of CT, it would be difficult to require teachers to 

integrate CT into the curriculum, Our findings of this study 

can serve as useful resources to help create teacher 

preparation programs, policies, and syllabus materials to 

help the preservice teachers to embed CT into their future 

classrooms. It is proposed to implement more teacher 

preparation programs on CT for the preservice teachers to 

help them to be more familiar with the CT concepts and have 

a better grasp on how CT can be employed in their future 

teaching. The teacher preparation programs play an 

important role in making a large-scale shift towards 

embedding CT into K-12 education. Hence, preservice 

teachers should have opportunities to experience CT during 

their preservice courses. During the course, tangible or 

practical examples of how to integrate CT into different 

subject areas should be provided. Future research needs to 

include a bigger sample of participants with diverse 

demographics. Besides, this pilot survey does not tell us 

much about the views of preservice teachers in detail. In 

future research, we can further investigate where the 

teachers are getting their ideas about CT from through in-

depth interviews and elaborate on them.  
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ABSTRACT 

Information technology is developing rapidly, and there is a large demand for scientific and technological talents, such as the 

Internet of Things, Big data, Artificial Intelligence, etc. Therefore, how to cultivate the next generation with information 

technology concept and program implementation technology ability and computational thinking ability has become a very 

important and urgent problem to be solved in countries around the world. This study proposes that a set of IoT teaching 

activities using the CT-6E model will be developed. Through 8 weeks of inquiry learning and practical teaching, students will 

learn the concepts of the Internet of Things, explore applications in life, write programs and assemble electronic components, 

and make IoT topics that integrate various modules. In addition, an empirical study is planned to explore whether this course 

can more effectively improve students' IoT learning effectiveness, computational thinking ability, and self-efficacy than 

traditional courses. 
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摘要 

資訊科技發展快速，有大量物聯網、大數據、人工智

慧等科技人才需求，因此如何培育具備資訊科技概念

和程式實作技術能力、運算思維能力的下一代，成為

各國相當重要且急迫需要解決的問題。本研究提出將

發展出一套運用CT-6E模式之物聯網教學活動，透過八

週的探究學習及實作教學，讓學生學到物聯網的概念、

探索生活中的應用、動手撰寫程式並組裝電子元件，

最後實作出整合各模組的物聯網專題。並規劃一實證

研究，來探討經由此課程能否比一般課程更有效地提

升學生的物聯網學習成效、運算思維能力及自我效能。 

關鍵字 

物聯網；運算思維；自我效能；6E模式 

1. 前言 

科技發展一日千里，隨著物聯網（ Internet of Things, 

IoT）、大數據（Big Data）、人工智慧（Artificial 

Intelligence, AI）等技術發展（Identifies Top 10 Strategic 

IoT Technologies and Trends, 2018），未來五年「通訊

暨物聯網裝置」、「大數據分析」與「資料服務」等

產業，每年人才需求大於 10,000 人（國發會，2017）。

面臨快速發展的科技現況及全球化競爭時代來臨，如

何強化國家人才能力的培養及產業競爭力，為重要之

議題（PwC, 2019）。因此台灣教育部（2019）調整了

《十二年國民教育科技領域課程綱要》，將「資訊科

技」設為國、高中階段之必修科目，強調學生培養運

算思維（Computational Thinking, CT）能力的重要性。 

過去大多數研究在 CT 教學活動中採用專題導向式學習、

問題專題導向式學習及合作學習（Hsu, Chang, & Hung, 

2018），代表這種讓學生透過步驟探究進行學習是有

效的策略。6E 模式是一種以學生為中心，同樣為藉由

步驟讓學生探究學習的教學策略（Barry, 2014），過程

中規劃使學生容易增加信心及成就感的實作練習，可

改善學生在程式設計課程上，自我效能低落的問題。 

本研究發展出一套運用CT-6E模式的物聯網教學活動，

能夠更加地提升學生的物聯網學習表現、運算思維及

自我效能，進而培育更多具有未來競爭力的相關人才。

研究問題如下： 

（1）如何發展 CT-6E模式的物聯網教學活動？ 

（2）如何評估學生在 CT-6E 模式與一般教學模式上的

學習成效差異？  

2. 文獻探討 

2.1. 物聯網教學 

在物聯網教學環境中，學生將學習到數理科學與工程

教育的跨領域知識，同時會獲得科技應用與程式設計

等實作機會（Kortuem, Bandara, Smith, Richards, & Petre, 

2012）。 

Mavroudi、Divitini、Gianni、Mora 與 Kvittem（2018）

的研究中，教學者使用體驗式學習策略，讓學生扮演

物聯網應用設計師，發想以智慧城市為主題的創意題

目和解決方案。最後的調查結果發現，參與者認為學

習物聯網知識、智能城市概念和獲得解決問題的技能

等方面都非常令人滿意。 

2.2. 運算思維 

運算思維由 Wing（2006）提出，後續許多研究陸續發

表出不同的定義或概念組合。本研究採過去學者或電

腦科學組織在定義運算思維時所提到的概念中，較廣

為人知的四大概念（ Angeli et al., 2016; Barr & 

Stephenson, 2011; CSTA, 2011; Google for Education, 2015; 

Grover & Pea, 2013; Hsu, Chang, & Hung, 2018; Selby & 

Woollard, 2014），其定義如下： 

1.分解：將資料、程序或問題分解為更小、易於處理的

部分。 

2.模式識別：觀察出資料中的模式、趨勢和規律。 

3.抽象化：識別並提取可表達主要概念的相關訊息。 

4.演算法設計：創建一程序性指令，用於解決相似的問

題或執行一個任務。 

Lai、Chen、Lai、Chang與 Su（2019）將運算思維納入

物聯網應用的課程規劃中，讓學生通過理解問題並分

析解決步驟來找到不同領域問題的解決方案，結果發

現能夠有效地提高學生的學習興趣和表現。 

2.3. 自我效能 

Bandura（1997）說明自我效能是個人在不同情境下的

信心、信念程度。自我效能將會影響學生在解決問題

時所表現出的努力程度（ Gandhi & Varma, 2009; 

Psycharis & Kallia, 2017）。 

Tsai 等人（2019）根據 Berland 與 Lee（2011）的運算

思維框架，發展出一個更加泛化的自我效能量表，用

以檢驗學生的程式設計自我效能感，有益於教育者或

課程設計者在教學實踐和教育研究中應用。 
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2.4. 6E模式 

6E 模 式 是 由 美 國 國 際 科 技 與 工 程 教 師 學 會

（ International Technology and Engineering Educators 

Association, ITEEA）在 2013 年提出，包括六大步驟：

參與（engage）、探索（explore）、解釋（explain）、

實作（engineer）、深化（enrich）、評量（evaluate），

教師扮演輔助的角色，讓學習者透過探究的過程，理

解真實情境的問題，經由思考、設計並實作出解決方

案（Barry, 2014）。 

Chen等人（2019）運用 6E模式發展出四軸飛行器實作

活動，讓學生動手寫程式、連結控制板與馬達，透過

藍芽控制，實驗結果表明，能夠有效地提升學生的學

習成效。Hsiao 等人（2019）則是運用 6E 模式發展出

S4A機器人實作課程，實驗結果表明，學生的學習成效

和運算思維能力均有所提高。 

2.5. 文獻評析 

經由前述文獻整理與探討可知，以物聯網為主題的教

學活動或課程能夠培養學生的資訊科技各領域概念及

運算思維；運用 6E 模式發展之課程，能夠提升學生在

物聯網相關課程上的學習成效。因此，本研究欲將運

算思維的概念融入課程，並與 6E 模式個步驟做搭配，

最後發展出共八週之物聯網教學活動，以及後續實證

研究規劃。 

3. 教學設計與教案規劃 

3.1. 物聯網課程 

課程以物聯網為主軸，分為三個學習階段，學習階段

一：進行物聯網基礎教學，帶領學生學習 Arduino程式

設計和電子元件；學習階段二：進行物聯網進階教學，

讓學生透過每週的模組實作，學習更多感測器應用、

網路通訊功能、雲端服務串接等，共有四個模組：

「自動照明裝置」、「自動風扇開關」、「危害氣體

偵測器」、「智慧門鎖」；學習階段三：進行「智慧

家庭」物聯網專題實作，學生應用前兩階段所學得之

知識與技能，整合各模組之功能，組裝房屋並設置模

組，完成最終的專題作品。各階段之學習內容說明如

表 1所示。 

表 1 學習內容說明 

項目 學習內容 

Arduino入門 
認識 Arduino、Arduino開發環境介紹、程

式語言、基礎電路、電子元件 

程式設計入門 
Arduino控制結構、資料型態、變數、運

算子、序列阜、條件式、迴圈、函式 

自動照明裝置 訊號處理、紅外線感測器監控、LED 

自動風扇開關 電壓調節、溫溼度感測器監控、風扇模組 

危害氣體偵測 
CO感測器數據監控、蜂鳴器控制、Wi-Fi

無線通訊、ThingSpeak平台串接 

智慧門鎖 
磁簧開關控制、伺服馬達控制、串接

IFTTT服務、LINE通知訊息發送 

人工智慧 微軟 AI認知服務（影像、語音、語言） 

智慧家庭 雷切房屋組裝、模組設置與整合、多感測

解決方案 裝置監控 

3.2. 教學策略 

本研究將運算思維四大概念與 6E模式的六步驟做對

應，提出「CT-6E模式」，每週之教學活動皆使用以此

進行課程設計，圖 1為教學策略執行內容圖，說明各步

驟中教師教學和學生學習的方式。 

 
圖 1 CT-6E模式執行內容圖 

學習階段二，每個模組之教學內容皆對應運算思維四

大概念，表 2以「自動照明裝置」為例說明之。 

表 2 教學內容與 CT概念對照表 

CT概念 說明 

分解 
問題拆解為(1)偵測人的距離，判斷是否靠

近；(2)自動開啟照明 

模式 

識別 

˙ 感測器會回傳一範圍區間之數值資料 

˙ 經過換算可用以衡量受測物之距離 

˙ 觀察並定義出人是否靠近的距離範圍 

抽象化 
˙ 使用紅外線感測器取得受測物之距離 

˙ 使用 LED燈作為照明裝置 

演算法

設計 

˙ 將任務以程序表示，如：取得感測器數值

→是否在某距離內→點亮燈數秒 

˙ 畫流程圖並用程式實作出來 

4. 研究方法 

4.1. 研究架構 

採用準實驗研究法，探討不同教學模式之物聯網教學

活動，對於學生物聯網學習表現、運算思維及自我效

能之影響。研究架構圖如圖 2所示。 

 
圖 2 研究架構 

4.2. 研究對象 

將以台北市某所高級中學一年級學生為實驗對象，實

驗組、對照組各 2個班，每個班 40個人，共 160人。
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每個班學生 2 人為一組，共分 20 組參與實驗教學和專

題實作。 

4.3. 實驗設計與實施 

實驗含前後測共 10 週，每週有 100 分鐘，第一週進行

物聯網學習表現、運算思維和自我效能之前測，並說

明上課規範與計分方式。第二週與第三週為學習第一

階段，接受物聯網基礎教學，學習 Arduino程式設計和

電子元件。第四週至第七週為學習第二階段，接受物

聯網進階教學，讓學生透過每週的作品實作，學習更

多感測器應用、網路通訊功能、雲端服務串接等。第

八週與第九週為學習第三階段，進入連續兩週之物聯

網專題實作。第十週課程活動結束後，進行物聯網學

習表現、運算思維和自我效能之後測。圖 3為本研究之

實驗設計流程說明。 

 
圖 3 實驗流程 

4.4. 研究工具 

4.4.1物聯網學習表現測驗卷 

本研究將自行編製物聯網學習表現測驗卷，內容包括

物聯網、電子電路、感測器、程式設計等。將請兩位

有教學經驗之資訊科技老師進行專家審查，達到內容

效度標準；將於某高中進行預試，剔除內部一致性系

數未達.5之題項。  

4.4.2 國際運算思維測驗 

採用國際運算思維能力測驗（ International Bebras 

Contest），挑選近五年題庫中，符合「分解」、「模

式識別」、「抽象化」、「演算法設計」概念之題目

進行編制。題目皆設計為情境式，讓學習者利用自己既

有的知識及運算思維概念進行解題。  

4.4.3 自我效能量表 

採用 Tsai 等人（2019）發展之程式設計自我效能量表

（Computer Programming Self-Efficacy Scale, CPSES）分

為邏輯思維、演算法、偵錯、控制和合作等五個構面，

共 16題，以李克特六點尺度計分，整體之 Cronbach’s α

為 0.96，各構面 α值的範圍從.84到.96，具有高度的內

部一致性。  

4.5. 預期成果 

透過準實驗研究法來探討兩者對於高中生物聯網學習

表現、運算思維和自我效能之影響。使用共變數分析，

比較實驗組與對照組在物聯網學習表現、運算思維和

自我效能之結果。並預期運用CT-6E模式之實驗組，在

物聯網學習表現、運算思維和自我效能上，都能顯著

高於一般教學模式的對照組。 
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ABSTRACT 

This study explores the relationship among learners' metacognition, learning motivation and engagement and Computational 

Thinking in interdisciplinary STEM teaching. A questionnaire survey was carried out in a primary school of Wuhan Economic 

Development Zone. 593 samples were collected from 6 classes in grade 3, 4 and 5 of the primary school. The results of 

structural equation model analysis showed that: (1) metacognition, learning motivation, engagement and computational 

thinking were significantly positively correlated; (2) the direct and indirect effects of Metacognition on Computational 

Thinking were significant. Indirect effect includes two paths: through the partial mediating role of learning participation and 

through the chain mediating role of learning motivation and engagement; (3) the direct effect of learning motivation on 

Computational Thinking is not significant, but it can affect Computational Thinking through the mediating role of 

engagement. This conclusion provides the relevant strategy reference for the cultivation of students' computing thinking 

ability.  
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摘要 

本研究探讨在跨学科 STEM教学中学习者的元认知、学

习动机、参与度与计算思维之间的关系。研究在武汉

市经济开发区某小学开展问卷调查，收集了该小学三

年级、四年级、五年级共计 6 个班 593 份样本，结构方

程模型分析结果显示：（1）元认知、学习动机、参与

度与计算思维两两之间均显著正相关；（2）元认知对

计算思维影响的直接效应和间接效应均显著。间接效

应为通过学习参与度的部分中介作用和通过学习动机

与参与度的链式中介作用；（3）学习动机只能通过参

与度的中介作用影响计算思维。这一结论为培养学生

的计算思维能力提供了相关策略参考。 

关键词 

计算思维；元认知；学习动机；参与度 

1. 问题的提出 

计算思维（Computational Thinking，简称 CT）是 21 世

纪的关键技能之一。美国国际教育技术协会（ISTE）

确定的 21 世纪学生标准包括解决问题、合作、创造力

和批判思维等高级技能，计算思维直接与这些技能相

关。Wing（2006）认为计算思维是利用计算机科学的

基本概念来解决问题，设计系统并理解人类行为，与

编程和数学思维有着密切的联系。此外，计算思维涉

及问题解决过程中复杂和高阶的技能，是一种通过分

解、抽象、泛化、算法设计、调试和迭代等技能思考

和采取行动的方式，被认为有助于在各个领域发展知

识和理解概念，具有发展问题解决技能的巨大潜能。

由于计算思维的重要性，许多国家将计算思维纳入 K12

教育中，并且关注促进学生计算思维能力提升的教学

方法和研究设计。为了提高学生的能力，将计算思维

和 STEAM 课程相结合是恰当的选择，同时考虑这两个

领域可能共享的大量主题材料，因为通过跨学科整合

有助于提升学生的问题解决能力（ISTE，2016）。在

计算思维教育中如何让学生参与有意义的学习以培养

他们有用的思维技能和数字能力还需进一步探索。 

为此，在面向计算思维培养的K12教育和培训过程中确

定有效的影响因素非常重要。但是在跨学科整合的

STEM 课程中，对哪些因素显著影响学生计算思维的发

展、计算思维与其他变量之间关系的相关研究较少。

本研究从变量间链式中介关系的角度，探讨个体内部

心理变量元认知、学习动机、参与度如何影响计算思

维。即研究主要探讨经过跨学科整合的 STEM课程教学

后，检验学生在问题解决过程中计算思维技能与其学

习动机、参与度、元认知等变量之间的关系。 

2. 文献综述与研究假设 

2.1. 文献综述 

2.1.1. 计算思维的培养及其影响因素 

计算思维目前没有统一的定义。最早 Papert通过关注儿

童在 LOGO 环境中进行编程开发的过程性思维提出了

计算思维的想法。Wing认为 CT不仅涉及编程，还具有

使用计算机科学的基本概念来理解人类行为的技能。

在 2010 年，她重新引入“计算思维”一词，认为计算思

维是解决问题及其解决方案所涉及的思想过程，以便

以一种可用信息处理代理有效执行的形式来表示解决

方案（Wing, 2006）。Brennan 和 Resnick 提出了一个框

架，从 CT 概念、CT 实践和 CT 观点三个维度对 CT 进

行概念化（Brennan & Resnick, 2012）。 

张屹等构建了以计算思维培养为核心，以计算机编程

作为载体，跨学科 STEM整合培养学生计算思维的理论

框架。该理论框架分为学科内容层（STEM）、跨学科

大概念层（即凝练抽象与具体、数量与比例、图式与

模式、结构与功能、原因与结果等）和学习思维三层

（张屹, 李幸, 黄静等, 2018）。 

目前培养学生计算思维能力的课程有编程、数学、自

然科学、社会科学和语言艺术，根据计算思维技能而

不仅仅是程序设计或编程教学来培养学生的问题解决、

抽象思维、程序思维及类似能力。Durak和 Sarıtepeci对

安卡拉的 156 名公立学校学生计算思维能力影响因素的

研究表明，教育水平、数学成绩、对数学课程的态度

和对科学课程的态度是影响计算思维的主要因素

（Durak & Saritepeci, 2018）。也有相关研究结果表明

在计算思维教育中对编程更感兴趣的学生会认为编程

更有意义，具有更大的创作自我效能感和更大的编程

自我效能感。此外，在面向计算思维技能培养的视频

游戏中认知和态度对学生会有影响。以上相关研究显

示，影响计算思维的因素既有认知层面的（态度、兴

趣、自我效能感等），也有知识层面的因素，如成绩。 

2.1.2. 面向问题解决的元认知与计算思维 

元认知概念最早由美国儿童心理学家弗拉维尔提出，

是指个体关于自己的认知过程、结果以及任何相关事

物的知识，另一方面指个体对自己认知过程的主动监

控、结果的调整以及对整个过程的协调。许多研究强

调计算思维是一种认知过程，将其描述为解决问题的

方法，强调元认知在计算思维过程中的作用，并且通

过关注计算机信息的自动化来了解计算思维与其他思

维方式的不同之处。Aho 认为计算思维是解决问题的思

维过程，其解决方案可以表示为计算步骤和算法（Aho, 
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2012）。从心理学的角度出发，形成问题的心理表征、

计划和选择解决方案的适当策略、检查错误和调试、

思考如何改进等组成了元认知的计划、评价和监控部

分。 

相关研究者强调元认知和计算思维的关系。 Resnick 提

出，建构性的学习环境需要为学习者提供迭代设计解

决方案并反思自己学习过程的机会，以促进学习计算

思维技能（Resnick, 2007）。Yasemin Allsop 认为计算

思维是一个认知过程，受元认知实践的监管，涉及一

系列计算概念的应用，包括对学习行为的利用（Allsop, 

2019）。牟连佳等立足计算思维的元认知视角，认为

在整个计算思维的心理操作序列中，学习者有机会试

用元认知监控信息特性、陈述性和程序性知识以及认

知经验，以维持个体在各种情境下解决问题的动机

（指计算思维）（牟连佳等，2015）。为此，学习者

的元认知对其计算思维的发展具有一定的影响作用。 

此外，一些研究者对元认知与学习动机的关系进行了

探究。汪玲等借助于结构方程模型中的路径分析方法，

得到元认知受动机变量的调节和制约，动机变量（如

学业自我概念、考试焦虑、掌握定向、内部归因等）

对元认知活动具有“供能”作用的结论（汪玲和郭德俊，

2003）。Ghaleb 等人的研究表明，掌握目标的学生可

能拥有掌握信息所需的高级元认知技能和策略；使用

高级元认知最终会提高学习动机（Ghaleb , Ghaith & 

Akour, 2015）。为此，学习者的元认知与其学习动机

会相互作用和相互促进。 

2.1.3. 学习动机与计算思维 

动机是使个人从事某种特定行为的内在力量，是激发、

引导和维持行为的内部过程，是使学习者开始行动、

维持行动，并决定其行动的方向（格雷德勒，2007）。

具有强烈学习动机的学生会运用更高级的认知活动，

学习和记忆更多的内容。一个相信完成一项任务具有

更大影响力的人将会有更多的内在动力，并且更有可

能为完成任务而付出努力。计算思维教育具有使学生

从技术的使用者转换为技术的生产者的潜能。相关研

究表明，培养学生计算思维的教学方法主要有游戏教

学法、探究式学习、基于问题的学习和建构主义以及

配对编程，需要创建基于任务的学习环境以增强动机

和认知成果（Belland, Kim & Hannafin, 2013）。在这些

教学方法下构建的高阶思维培养环境能促进学生进行

信息处理、反思活动的计算实践。为此，学习动机能

够正向影响计算思维能力水平。 

2.1.4. 参与度与计算思维 

参与度是学生参与学习活动过程中所表现出的行为强

度（如付出的时间与努力程度）与情绪的质量（如享

受或厌倦学习过程）。目前，被普遍认同的学习参与

度包括认知参与、行为参与和情感参与。相关研究表

明，学习动机是影响学习投入的关键因素，参与度来

自学生的动机，内在动机可以预测参与度，学生的内

在动机和学生的自我效能感高度相关，倾向参与的学

生具有内在动机（Dunn & Kennedy, 2019）。参与度是

自主学习成功的关键因素之一，K. Sharma 等认为协作

和参与能在学生参与面向计算思维培养的编程活动中

对学生的学习态度起有效的调节作用，该研究强调为

儿童设计高度协作和参与的编码活动的重要性，并指

出参与度可以调节参与意向与认知学习之间的关系

（Sharma, Papavlasopoulou & Giannakos, 2019）。计算

思维作为一种解决问题的学习方式，通过简化、嵌入

转换或模拟等来重构和解决问题，学生积极且可持续

的参与对于面向计算思维培养的教学来说非常重要。

促进适应性和参与度，为所有年龄的学习者提供计算

思维发展的内在动力是关键。 

综上所述，国内外已有相关研究主要探讨计算思维培

养过程中学生的元认知、学习动机、参与度的重要性

与关联性，而对学生的元认知、学习动机和参与度如

何以及在多大程度上影响计算思维水平的问题研究较

少。本研究将建立计算思维能力培养的影响因素模型，

并通过数据对此理论模型进行验证分析。 

2.2. 研究假设 

本研究旨在探究跨学科 STEM课程学习中学习者的计算

思维水平与学习者内在心理变量即学生的元认知、学

习动机和参与度的关系，进而探讨影响学生计算思维

能力的因素，研究假设模型如图 1 所示，参与度在元认

知、学习动机和计算思维之间起着中介作用。

 
图 1  研究假设模型 

研究模型中每条路径的研究假设为： 

H1：在面向计算思维培养的教学中学生的元认知会正

向影响其学习动机和计算思维； 

H2：在面向计算思维培养的教学中学生的学习动机会

正向影响其参与度； 

H3：在面向计算思维培养的教学中学生的元认知会正

向影响其计算思维； 

H4：元认知会通过参与度影响计算思维，参与度是元

认知和计算思维的中介变量； 

H5：学习动机会通过参与度影响计算思维，参与度是

学习动机和计算思维的中介变量； 

H6：元认知会通过学习动机和参与度影响计算思维，

学习动机和参与度在元认知和计算思维之间起着链式

中介效应。 

3. 研究设计 

本研究是促进小学生计算思维培养研究项目的一部分。

在该项目研究中强调跨学科整合的 STEM课程设计及其

对学生计算思维能力培养的重要性。在项目开始前期

对教师进行基于设计的跨学科 STEM教学培养学生计算
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思维能力的相关培训，在学期结束后对学生的计算思

维能力及其学习动机、元认知、参与度等进行后测。 

3.1. 研究工具 

本研究借鉴国内外已有的相关量表，通过改编量表、

质性访谈等方法设计调查问卷。问卷共分五部分，包

括四个子量表，分别为计算思维子量表、元认知子量

表、参与度子量表、学习动机子量表。每个量表的题

目以李克特五级量表形式进行设定（非常不同意=1，

不同意=2，一般=3，同意=4，非常同意=5），得分越

高表明学习者某一维度的水平越高。 

3.1.1. 计算思维量表 

本 研究参 考 Korkmaz2017 提 出的计 算思维 量表

（Korkmaz, Ç akir & Ö zden, 2017），在此基础上进行改

编，形成包括创造力、算法思维、批判性思维、问题

解决和合作能力等五个维度的计算思维量表。其中创

造力维度包括 8 个指标、算法思维维度包括 5 个指标、

批判性思维包括 5 个指标、问题解决能力包括 6 个指标、

合作能力包括 8 个指标。在本研究中该量表的一致性系

数 Coronhach’α 为 0.912。 

3.1.2. 元认知量表 

本研究中元认知量表采用的是 Schrawhe 和 Dennison 编

写的元认知水平问卷（Schraw & Dennison, 1994），包

括认知知识和认知调节两个维度，其中认知知识包括

陈述性知识、程序性知识和条件性知识，认知调节包

括计划、信息管理、监控、调节和评价等。本研究根

据需要编制了五个题目，对学生的认知知识和认知调

节进行测量，其中认知知识 2 个题目，认知调节 3 个题

目。在本研究中该量表的一致性系数 Coronhach’α 为

0.858。 

3.1.3. 学习动机量表 

本研究中学习动机量表参考期望——价值动机理论而

设计，该理论认为个体对当前学习任务价值的知觉程

度，是学习投入和学习成就的有力预测因素（Wigfield 

& Eccles, 2000）。问卷主要从能力信念、对成功的期

望和任务价值（包括当前学习任务的实用性、重要性

与趣味性）等维度来考察学习者的动机情况。本研究

根据需要编制了 7 个题目，其中任务价值 3 个题目，能

力信念 2 个题目，对成功的期望 2 个题目，在本研究中

该量表的一致性系数 Coronhach’α 为 0. 780。 

3.1.4. 参与度量表 

本研究中参与度测量采用的是 Barbara A. Greene、

Miller等人（Greene, 2015）编制的学生认知参与测量问

卷以及 Reinhard Pekrun 等人（Pekrun, Goetz &  Frenzel, 

2011）编制的情感参与测量问卷。问卷主要从认知参

与、情感参与两个维度来测量学习者在课堂中认知和

情感的投入程度。该问卷共包含 7 个题目，其中认知参

与 3 个题目，情感参与 4 个题目，问卷采用李克特量表

进行自我评定（1=非常不同意，5=非常同意），得分

越高表明学习者在课堂学习中的参与效果越好。在本

研究中该量表的一致性系数 Coronhach’α 为 0.799。 

3.2. 调研样本 

采用分层随机抽样法，在湖北省武汉市经济开发区某

小学的三年级、四年级和五年级共计六个班进行问卷

调查，前测回收问卷 773 份，后测回收问卷 720，剔除

无效样本，进行前后测配对后获得的有效配对样本为

593 份。其中男生 280 名（47.2%），女生 313 名

（52.8%）。三年级学生 189名（31.9%），四年级学生

211 名（35.6%），五年级学生 193 名（32.5%）。本研

究被试所在各个年级都接受面向计算思维培养的跨学

科 STEM课程教学，包括基于单学科的 STEM课程、基

于统整课程和社团课的跨学科 STEM 课程教学。 

3.3.  数据处理与分析 

研究采用有中介的结构方程模型对数据进行建模和统

计分析。首先，利用 SPSS22.0 工具对问卷数据进行预

处理和基本描述性统计分析，删除一些不合理的数据。

然后，利用 AMOS21.0工具构建结构模型，对测量模型

部分进行验证性因素分析，对结构模型部分进行路径

分析。最后，利用 Bootstrap 法对模型的中介效果进行

检验和分析。 

4. 研究结果与分析 

4.1. 测量模型的信度和效度检验 

本研究包含元认知、学习动机、参与度和计算思维四

个潜在变量，每个潜在变量下设有相应的外显测量指

标。为了保证模型的有效性，需要先对模型的信度和

效度进行检验。信度检验采用克隆巴赫信度系数

（Cronbach’s α）和组合信度（CR 值）对测量模型进行

信度分析。效度检验采用平均方差萃取量（AVE 值）

检验收敛效度以及 AVE 的平方根检验区分效度，AVE

体现的是潜变量解释测量指标变异量的程度。 

通过 SPSS22.0 软件计算问卷的整体一致性信度系数，

问卷整体 Cronbach’s α 系数为 0.946，大于 0.9 表明问卷

整体一致性较好。通过 AMOS21.0软件对模型参数进行

估计，计算出各测量模型的因子负荷量，在此基础上

进一步计算组合信度和区分效度，具体分析结果如表 1

所示。 

表 1 中的数据分析结果表明，本模型中各潜变量的组合

信度值在 0.752-0.913 之间（CR 值>0.7），表明本模型

的信度达到要求，模型的内在质量理想。从观察变量

的标准化因子负荷值可知，所有观察指标的估计值都

在 0.539-0.891 之间，所有显变量在潜变量上的因子载

荷 t 值从 13.036 到 25.929 之间，达到显著性水平（Z 值

大于 1.96），且无负的误差变异数，表明模型符合拟合

评价标准，平均方差萃取量（AVE）值在 0.505-0.678

之间（均大于 0.5），表明测量模型具有良好的收敛效

度。 

此外，AVE 的平方根值若大于潜在变量间的相关系数，

则表示各潜在变量之间具有区别效度。如表 2 所示，元

认知与学习动机正相关（r=0.392，p<0.01），元认知

与参与度正相关（r=0.345，p<0.01），元认知与计算

思维正相关（r=0.562，p<0.01），参与度与学习动机

正相关（r=0.555，p<0.01），计算思维与学习动机正
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相关（r=0.650，p<0.01），计算思维与参与度正相关

（r=0.667，p<0.01）。各潜在变量的 AVE 的平方根值

（即斜对角线的值）大于大多数潜在变量间的相关系

数，说明测量模型具有较好的区别效度。 

表 1  信度和效度分析表 

 

注：N=593，*P<0.05，**P<0.01，***P<0.001， 组合

信度 ， 为指标变量在潜变量上的标准

化参数估计值，为观察变量的误差变异量。 

表 2  各变量均值、标准差、相关系数及区别效度分析 

 

注：N=593，*P<0.05，**P<0.01，***P<0.001，斜对角

线粗体字为 AVE 的平方根值。 

4.2. 模型整体拟合效果与假设检验 

研究采用 AMOS 软件中的极大似然法进行模型的拟合，

得到的拟合度指标数据显示：卡方值/自由度＝2.984；

渐进残差均方和平方根 RMSEA＝0.057；标准化残差均

方和平方根 SRMR＝0.037；良适性适配指标 GFI＝

0.947；基准线比较指标 IFI＝0.972、TLI＝0.963、CFI

＝0.972。上述各指标表明，研究的模型为可接受模型。

为了验证研究假设是否成立，模型拟合过程中，根据

修正指数对模型进行了适当修正，修正后的模型路径

如图 2 所示。图中显示的是路径系数显著的路径，即研

究假设成立的路径，而不显著的路径表明研究假设不

成立，所以在图中没有显示。 

 
图 2  学习者元认知、学习动机、参与度对计算思维的

影响 

图 2 所示的结构模型中变量关系显示，在面向计算思维

培养的 STEM课程中，学习者的元认知对学习者的学习

动机有显著影响（β=0.636，P<0.001）；学习者的元认

知（ β=0.717 ， P<0.001 ）、学习动机（ β=0.234 ，

P<0.001）对学习者的参与度均有显著影响。其次，学

习 者 的 元 认 知 （ β=0.514 ， P<0.001 ） 、 参 与 度

（β=0.437，P<0.001）对其计算思维水平有显著影响。

而学习者的学习动机对计算思维影响的路径系数因参

数检验的显著性概率值不显著（P>0.05）被移除。 

4.3. 中介效应分析 

研究参考温忠麟等研究者提出的中介效应检验方法，

采用 Bootstrap 法进行中介效应检验。该方法根据标准

误的理论概念，将样本容量很大的样本当作总体，进

行有放回抽样（抽样次数可以自己定），从而得到更

为准确的标准误。本研究使用 AMOS 进行 Bootstrap 的

中介效应检验，将样本量设置为 1000，选择 95%的置

信区间，观察有偏置信区间（Bias-corrected percentile 

method）估计的上限和下限值是否包含 0，如果包含 0，

则中介效应不显著，如果不包含 0，则中介效应显著

（温忠麟和叶宝娟, 2014）。中介效应分析显示各中介

路径的上限和下限值及效应值如表 3 所示。 

表 3   Bootstrp 法估计的中介效应及效应值 

 

中介效应的分析结果表明（如表 4 所示），元认知可直

接作用于计算思维，直接效应为 0.514，占总效应的

57.6%；学习参与度和学习动机在元认知与计算思维之

间起到了部分中介作用，中介效应值 0.378，占总效应

的 42.4%。具体来看，中介效应由两条路径产生的间接

效应组成：通过元认知——学习参与度——计算思维

产生的间接效应 1（0.313），通过元认知——学习动机

——学习参与度——计算思维产生的间接效应 2

（0.065）。间接效应 1 的 Bootstrap95%有偏置信区间

[0.142，0.375]和间接效应 2的 Bootstrap95%有偏置信区

间[0.142，0.375]均不包含 0，表明两个中介效应显著，

间接效应分别占总效应的 35.1%和 7.3%。 

此外，学习动机影响计算思维过程中，由于学习动机

对计算思维的路径系数未达到显著性水平，所以学习

动机未能直接作用于计算思维，学习参与度在学习动

机和计算思维之间起到了完全中介效应，其间接效应

值为 0.102，表明学习动机对计算思维的影响完全通过

中介变量学习参与度起作用，学习动机对计算思维没

有直接影响。 

5. 讨论与启示 



 

89 

5.1. 讨论 

本研究探讨 STEM教育中个体内部心理变量元认知、学

习动机、参与度与计算思维之间的相互影响关系。研

究发现，元认知对学生计算思维能力影响的直接效应

和间接效应都显著。其中的间接效应通过两条中介作

用途径产生：第一，通过学习参与度的独立作用；第

二，通过学习动机和参与度的共同作用。其次，学习

动机对学生计算思维能力培养的直接效应不显著，间

接效应显著，间接效应通过参与度的独立作用产生。 

5.1.1. 学生的元认知与计算思维的关系 

根据本研究的分析结果看，学生的元认知对计算思维

能力有正向显著的直接影响。由于元认知涉及个体在

解决问题过程中动机、策略和目标等的自我监控，这

与计算思维的本质内涵即利用计算机来解决问题的思

维过程联系尤为密切，在计算机科学中大多数算法选

择问题代表了一个经典的元认知任务。学习思维方式

将提高学生的创造性学习技能，并提高他们解决问题

和抽象等技能的能力。为此，在本研究构建的模型中

元认知成为预测计算思维水平的重要因素，有效提高

学习者的元认知技能将能使他们更成功的掌握计算技

能。 

5.1.2. 参与度在元认知和计算思维之间的中介效应分析 

本研究结果表明，参与度作为学习者主动学习的重要

特征，对学生计算思维能力有正向显著的直接影响，

并且是元认知影响计算思维的重要途径，其中介效应

达到 35.1%，这意味着元认知对计算思维的影响，有

35.1%是通过提高学生的参与度来达成的。在面向计算

思维能力培养的 STEM课程中学生积极、可持续地参与

活动和学习过程非常重要。尤其是在融入编程等活动

的课程中参与度是一个不可忽视的变量，当学生面对

复杂的问题解决产生负面情绪时时，需要采用恰当的

元认知策略激发学生的参与度，促进学生进行有效的

协作、问题解决和批判性思维，达到培养计算思维的

能力。 

5.1.3. 学习动机和参与度在元认知和计算思维之间的链
式中介效应分析 

学习者的主动学习除了体现在参与度上，还体现在学

习动机上。研究结果发现学习动机不能直接影响计算

思维，但是能够通过学生的参与度对计算思维产生正

向的显著影响。此外，学习动机也受元认知的正向影

响，并且学习动机和参与度在元认知与计算思维之间

形成了链式中介效应。这表明学习者元认知技能的掌

握能在学习动机上起着积极的促进作用，即促进学习

者对任务价值的理解和期望、提升学习者的能力信念，

进而表现出积极的参与，并促进计算思维能力的提升。 

5.2. 启示 

本研究发现在跨学科 STEM教学中，学习者的元认知、

学习动机和参与度等内部心理变量对计算思维能力的

提升有正向显著的影响。学习者对认知和元认知的监

控、调节，加强学生对计算概念的理解、反思，培养

学生在问题解决过程中的元认知技能，能促进动机状

态的调节，进而带动学生的认知参与和情感参与，提

升学生的计算思维能力。 

本研究也存在某些局限性，需要在以后的研究中加以

改进，本研究仅考虑的学习者内部心理变量对计算思

维能力的影响，未考虑学习者的性别、年龄、先前知

识经验对计算思维能力的影响，另外在计算思维能力

培养中相较于传统的教学，基于设计的 STEM教学更有

自己的特色，不同干预策略的影响效果还需进一步研

究。 

6. ACKNOWLEDGMENT 
本研究受 2018 国家自然科学基金项目“促进小学生计算

思维培养的跨学科  STEM+C 教学理论与实证研究

（71874066）” 资助。 

7. 参考文献 

张屹, 李幸, 黄静等（2018）。基于设计的跨学科 STEM 

教学对小学生跨学科学习态度的影响研究。中国电化

教育，(7)，81-89。 

牟连佳、李丕贤和邵洪艳（2015）。计算思维与巴斯

德象限——计算思维融入信息技术教育的研究框架。

科技创新导报，(25)，20-23。 

汪玲和郭德俊（2003）。元认知与学习动机关系的研

究。心理科学，26(5)，829-833。 

格雷德勒（2007）。学习与教学: 从理论到实践。中国

轻工业出版社。 

温忠麟和叶宝娟（2014）。中介效应分析: 方法和模型

发展。心理科学进展，22(5)，731-745。 

Aho, A. V. (2012). Computation and Computational 

Thinking. The Computer Journal, 55(7), 832-835. 

Allsop, Y. (2019). Assessing Computational Thinking 

Process Using a Multiple Evaluation 

Approach. International Journal of Child-computer 

Interaction, 19, 30-55. 

Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A 

Framework for Designing Scaffolds that Improve 

Motivation and Cognition. Educational Psychologist, 

48(4), 243–270. 

Brennan, K., & Resnick, M. (2012, April). New Frameworks 

for Studying and Assessing the Development of 

Computational Thinking. Proceedings of the 2012 annual 

meeting of the American Educational Research 

Association, Vancouver, Canada, 1, 25.  

Dunn, T. J., & Kennedy, M. (2019). Technology Enhanced 

Learning in Higher Education; Motivations, Engagement 

and Academic Achievement. Computers & 

Education, 137, 104-113. 

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the 

Relation between Computational Thinking Skills and 

Various Variables with the Structural Equation Model. 

Computers & Education, 116, 191-202.  

Ghaleb, A. B., Ghaith, S., & Akour, M. (2015). Self-efficacy, 

Achievement Goals, and Metacognition as Predicators of 



 

90 

Academic Motivation. Procedia-Social and Behavioral 

Sciences, 191, 2068-2073.  

Greene, B. A. (2015). Measuring Cognitive Engagement 

with Self-report Scales: Reflections from over 20 Years of 

Research. Educational Psychologist, 50(1), 14-30.  

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A Validity 

and Reliability Study of the Computational Thinking 

Scales (CTS). Computers in Human Behavior, 72, 558-

569.  

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, 

R. P. (2011). Measuring Emotions in Students’ Learning 

and Performance: The Achievement Emotions 

Questionnaire (AEQ). Contemporary educational 

psychology, 36(1), 36-48.  

Resnick, M. (2007, June). All I Really Need to Know (About 

Creative Thinking) I Learned (By Studying How Children 

Learn) in Kindergarten. Proceedings of the 6th ACM 

SIGCHI conference on Creativity & cognition. ACM, 1-6.  

Schraw, G., & Dennison, R. S. (1994). Assessing 

Metacognitive Awareness. Contemporary educational 

psychology, 19(4), 460-475. 

Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). 

Coding Games and Robots to Enhance Computational 

Thinking: How Collaboration and Engagement Moderate 

Children’s Attitudes?. International Journal of Child-

Computer Interaction. 

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value 

Theory of Achievement Motivation. Contemporary 

educational psychology, 25(1), 68-81.  

Wing, J. M. (2006). Computational Thinking. 

Communications of the ACM, 49(3), 33–35. 



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y.,  Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht, 

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020. 

Hong Kong: The Education University of Hong Kong. 

91 

Confronting Frame Alignment in CT Infused STEM Classrooms 

 
Connor BAIN1*, Sugat DABHOLKAR2, Uri WILENSKY3 

1,2,3 Northwestern University, United States 

connorbain@u.northwestern.edu, sugat@u.northwestern.edu, uri@northwestern.edu 

 

ABSTRACT 

While the Next Generation Science Standards (NGSS) have 

presented computational thinking (CT) as an integral part of 

scientific inquiry, little work has been done to explicitly 

enable this connection in classrooms. We report on the 

efforts of one such design-based implementation research 

project which, with participation from local teachers, has 

been implementing CT infused STEM units in biology and 

chemistry classrooms. Using teacher reflections facilitated 

by an external evaluator, research field notes, and 

interviews, we identify possible issues of frame alignment in 

our implementations–that CT practices, particularly using 

computational models, were valued but would not enable 

students to gain a deeper understanding of scientific content. 

We then use this analysis and Schulman’s definition of 

teacher case knowledge to design a new element of the 

project that aims to enable teachers to promote collaborative 

scientific practice using computational models in the 

classroom that we call Lesson 0. We conclude with the 

discussion of a pilot implementation of this new lesson. 

KEYWORDS 

computational thinking, STEM education, teacher learning, 

computational modeling 

1. INTRODUCTION 
For many years, Computational Thinking (CT) practices 

have tended to only be featured in standalone computer 

science (CS) courses, resulting in unequal access for 

students from historically underrepresented groups in CS, 

such as women and racial minorities (Margolis & Fisher, 

2003). However, in our increasingly computational world, 

CT has become a necessary and integral part of nearly every 

discipline, particularly STEM disciplines (Weintrop et al., 

2015). In recent years, the Next Generation Science 

Standards (NGSS) have made clear that using computational 

thinking (CT) is a cornerstone of modern science education 

(Quinn et al., 2012; Wilensky, Brady & Horn, 2014). By 

embedding CT practices into high school STEM classrooms 

like biology, chemistry and physics, we can simultaneously 

improve access to CT for all students, particularly those 

underrepresented in CS, while also providing a more 

authentic STEM experience for students in these classes. 

This work is part of a research practice partnership between 

a Midwestern U.S. research university and a network of 

urban high schools in a large Midwestern U.S. city. In this 

paper we analyze and discuss the experiences of 6 teachers 

who taught one of our CT-embedded curricula during the 

academic year in the 2nd iteration of a design-based 

implementation research (DBIR) project, where research 

and practice are collaborative, iterative, and systematically 

analyzed (Fishman et al., 2013). We identify shortcomings 

of our previous curricular design and professional 

development program that may have caused an issue in 

frame alignment between scientific inquiry and CT. We then 

propose a new introductory lesson to our curricula which 

attempts to address these differences by framing CT as an 

authentic part of scientific inquiry. 

2. THEORETICAL FRAMEWORK 
The character of CT practices in the science disciplines is 

not yet well understood, nor is how to create curriculum and 

assessments that develop and measure these practices 

(Grover & Pea, 2013). To address this gap, our group has 

explicitly characterized core CT practices through a 

taxonomy of CT practices in STEM (Weintrop et al., 2016). 

The taxonomy consists of practices related to Data, 

Modeling and Simulation, Computational Problem-Solving, 

and Systems Thinking. We translated our taxonomy into a set 

of learning objectives and used these to guide the 

development of the two CT science curricular units, one 

biology and one chemistry, used in this study. Our curricular 

approach, which aligns with that of the NGSS, emphasizes 

figuring out core ideas through engaging in CT practices, 

rather than treating the dimensions separately (NRC, 2012).  

In this manner, we see frame alignment as one of the major 

roadblocks to integrating CT into STEM classes (Farrell et 

al., 2018). Frame alignment refers to “the linking of two 

ideologically congruent but structurally unconnected frames 

regarding a particular issue or problems” (Benford & Snow, 

2000, p. 624). While NGSS embeds CT as one of its core 

practices, competing frames of promoting scientific 

discourse in the classroom, integrating CS for all ideas, and 

even simply encouraging student agency in using CT for 

inquiry can all be vying for precedence in a teacher’s 

sensemaking of new curricula. 

3. METHODS 
As part of the second iteration of the DBIR project, 6 

teachers, 2 biology and 4 chemistry across 2 high schools, 

implemented one of our two week (10 class period) 

curricular units during the 2016-2017 school year. The two 

schools (one urban and one suburban) were all located near 

a large Midwestern U.S. city. Each of the teachers had at 

least five years of experience in their respective subject. 

Prior to their implementation, each of the six teachers 

participated in a professional development program which 

defined CT practices in STEM, familiarized the teachers 

with the curricular units they would implement through 

selective enactment, and allowed teachers to review and 

redesign the curricula with edits and tweaks based on their 

particular classroom needs.  

3.1. CT Science Curricular Units 

Both the chemistry and biology curricular units were 

explicitly designed to teach traditional subject matter 
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content through the enactment of CT practices. The units 

focused on helping students develop practices for Modeling 

and Simulation through exploring NetLogo (Wilensky, 

1999b) models. NetLogo models were chosen because the 

agent-based representations in this modeling environment 

make complex systems phenomena (like population 

dynamics in ecosystems), more accessible (Wilensky, 

2001). The chemistry unit covered the basics of the Ideal Gas 

Laws through exploring how micro-level particle 

interactions give rise to the macro-level effects like pressure 

and temperature (Wilensky, 1999a). The biology unit 

focused on the principles of ecosystems and evolution with 

students designing and interacting with models of 

competition between species to discover how ecosystems 

reach equilibrium. 

 
Figure 1. A chemistry model of gas particles colliding with 

the walls of a box which gives rise to the emergent 

phenomenon known as pressure (link blinded for review). 

In both units, students explore the relationship between 

micro elements of the models and how they give rise to 

system level effects. Students observe trends within their 

data, use models to make and test predictions, and follow the 

steps of scientific inquiry in order to construct a deeper 

understanding of these phenomena (Wilensky & Reisman, 

2006). These units are intentionally designed so that students 

engage in CT practices as part of an authentic scientific 

inquiry experience (NRC, 2012). The units are presented in 

the form of guiding questions, which encourage students to 

use either their prior knowledge or the exploration of a 

computational model to engage with the curricular content. 

3.2. Data Collection 

Data collection took place across twenty-two classes 

amongst our 6 teachers. Class periods were videotaped 

resulting in around 118 hours of video data. In addition, at 

least one researcher attended each class period and recorded 

written field notes. Because the curricula were hosted on our 

website, all student responses were recorded digitally). 

Finally, the teachers participated in interviews with an 

external evaluator about their experience with the 

professional development program and curricular 

implementation. For this paper, we use these teacher 

reflections and field notes to discuss frame alignment issues 

and motivate our new design efforts to mitigate those.   

 
Figure 2. A biology model which allows students to 

manipulate behaviors of wolf and moose and 

reason about their emergent population 

dynamics (link blinded for review). 

4. RESULTS 
We had theorized that the students would emergently 

collaborate using this shared curriculum and computational 

models, with the teacher acting as a facilitator and modeling 

classroom talk (McNeill & Pimentel, 2010). In this manner, 

students would be participating in teams for scientific 

discovery–to discover the core ideas of gas laws and 

ecosystem stability. Computational models have been 

shown to be fruitful for this sort of classroom-level 

knowledge building (Wilkerson et al, 2007). In addition, in 

a pre-survey, 484 of 526 student participants agreed with the 

statement “People who have careers in science or computing 

need to work well in teams.” In essence, we expected that 

students would use the computational models of anchoring 

phenomena for classroom talk and construct knowledge at 

the classroom level. 

While we did see episodes of students debating 

computational methodologies in order to solve problems, we 

rarely saw classroom-level discussions of using a 

computational model for scientific inquiry.  Some teachers 

facilitated classroom discussions at the end of each period 

on the “takeaways” (i.e. “organisms can compete indirectly 

if they are sharing a finite resource”) for the day–an activity 

they classified as “usual practice” in their classrooms. 

Although these takeaways served as fruitful points of 

classroom discussion, none of the teachers explicitly talked 

about CT practices in these wrap-up discussions. In fact, one 

chemistry teacher Veronica saw the CT and chemistry 

content in direct conflict with each other.  

I felt that, if the purpose is for them to see CT within content, 

yeah, but content was—I don’t think it was as cohesive. Like 

the idea [was supposed to be], “Okay, so we’re gonna teach 

gas laws and incorporate CT.” It was more, “We’re using 

that law to teach you computational—to teach you how to—

to show you how models work.” 

Even the most experienced teacher in our study Ulyana, who 

was the head of the biology department at her school, 
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admitted that her number one concern during her 

implementation was to teach her students the biology 

content of the unit. Francine, another chemistry teacher 

made a similar comment,  

I like the use of models in the classroom... I would have liked 

to see more of them walking away with more of the typical 

expectations for gas laws that you would expect students to 

get in those kind of conversations, but I like the use of models 

and the learning that they had with the models. 

As such, Francine followed up the two-week 

implementation with a lecture-based repeat of gas laws to 

each of her classes. Her interview suggested she saw the 

models as a way of reinforcing a concept rather than an 

introductory or exploratory instrument. While each of our 

teachers saw the need to have CT embedded in the 

classroom, there was no indication that they saw our 

curricular approach, emphasizing figuring out core ideas 

through engaging in CT practices, as aligned with their 

content-specific goals. 

While we believed our curricular design would help teachers 

elicit student thinking about both content and CT, from these 

results, we see that there was a significant discrepancy 

between how our team and how the teachers/students saw 

the alignment between content and the computational 

models and activities. We became interested in how to 

address this lack of frame alignment and whether we could 

design an introductory lesson that would provide a frame 

from which all the goals could be seen as aligned. In the rest 

of the paper, we describe our proposed solution. 

5. PROPOSED SOLUTION AND PILOT 

OUTCOMES 
Our analysis of teacher reflections revealed that the lack of 

clarity about connections between content and CT to the 

students and teachers may have led to the lack of 

collaboration and discussion related to CT practices and 

scientific inquiry. To use Schulman’s (1986, pg. 11) term, 

we had provided teachers with a small amount of case 

knowledge–a parable which conveyed CT practices as the 

norm of the scientific community–without providing the 

associated prototype and precedent (1986). We used this 

framing from Schulman to design a new preparatory element 

for each of the curriculum we call Lesson 0: How to Learn 

with Computational Models (see it here: link removed for 

blinding). The lesson is meant to be used by both teachers 

and students as a sort of rehearsal of learning with 

computational models in order to get ready for the more 

discipline specific content coming later in each curriculum. 

New science standards and reforms articulate a commitment 

to greater student agency with a disciplinary focus: that 

students should take on increased responsibilities for 

deciding what to figure out in science classrooms and how 

(Berland et al., 2016). In our curricular implementations, 

these frames seemed to conflict with the frame of CT as a 

way of scientific inquiry. As such, Lesson 0 is designed with 

three main principles: 1. Scaffold students into discussions 

of how scientists use models; 2. Engage students with 

computational models as a method of scientific 

experimentation; 3. Demonstrate how to develop new 

understandings of using a computational model. 

The lesson centers on a computational model of a forest fire 

and is divided into four sections meant to make explicit the 

ways in which computational models can be used to explore 

scientific concepts and engage in scientific inquiry 

practices.  It was designed to scaffold teacher and student 

sensemaking with Schulman’s (1986) three types of case 

knowledge in mind. In Step 1 (Using models to learn 

science), we make explicit the precedent that scientists use 

models, and specifically computational models, as methods 

of inquiry. In Step 2 (A not-so-sneak peek into the code), we 

encourage classroom-level discussion of debugging as a 

parable, establishing discussions about the code behind 

computational models are a valued norm of a CT classroom. 

In Step 3 (Systematically investigating the spread of 

wildfire), we present an implementation of a prototype of 

scientific inquiry, where students make hypotheses, design 

computational experiments, and draw conclusions based on 

the computational models. Finally, in Step 4 (Constructing 

knowledge by engaging in scientific inquiry practices), we 

further enforce the parable of the classroom as an arena for 

knowledge construction through discussion of both 

experimental conclusions as well as computational model 

design. 

We implemented this new lesson with a group 8 High School 

science teachers at a Computational Thinking in STEM 

workshop hosted at a large Midwestern U.S. University. The 

second author served as the instructor, taking on the role as 

teacher educator. Teachers were asked to “play-as” students 

with the teacher educator serving as the teacher with the goal 

of the teachers entering into a participatory relationship with 

the lesson.  

Ulyana, the same teacher from the prior iteration of the 

study, was one of the participants in this workshop. In 

addition to participating in the lesson as a student during the 

workshop, she also implemented the very same lesson in her 

classroom as the very first lesson of her biology unit. When 

asked about her experiences teaching the unit in this new 

iteration, Ulyana reflected upon her new understanding of 

what it meant to use computational models in the learning 

process: 

So...in my head, my models were always the ones I did with 

very physical models. I never thought about using 

computational models until I met you guys. And those are 

even more important, because they can then use those 

computational models. That it can be seamless that you can 

take the concepts that you're already going to teach and put 

them into this model...and show the kids the value of 

computational models. Yeah, I mean, they were I felt like 

they what I learned is that they were [doing] what a real 

scientist would do in collecting the data. 

In addition to seeing students participate in the practice of 

real science, Ulyana singled out how framing debugging and 

code inspection as an expected classroom practice, as is done 

in Lesson 0, allowed students to interact with models in a 

deep way: 

…we are going into the code and fixing any problem there 

was so yeah, the kids, I can see that you could put a bug in, 
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and the kids can fix it. And sometimes there were bugs in 

accidentally, and we still had to fix so and that it isn't like 

the end of the world is a win. It's just a code. You fix the 

code. So nothing was ever really broken. 

She also remarked how her students performed well on her 

typical AP-style assessments after completing the CT 

curricula: “So, they not only learned how to use a 

computational model, they learned the content I needed for 

their AP test.” In short, Ulyana saw the computational 

models as opportunities for students to engage 

simultaneously in both science and CT. In the coming 

months, additional teachers will be implementing a similar 

curricular structure featuring Lesson 0 as the beginning of a 

CT infused STEM unit. We hope to continue to analyze 

student and teacher data to further learn how we can refine 

Lesson 0 to support CT as a normal classroom practice. 

6. CONCLUSIONS 
In this paper, we presented an analysis of data from an 

iteration of DBIR project that suggested that frame 

alignment was an obstacle in our goal of allowing students 

to use computational models to discover core disciplinary 

content ideas. We then presented a modification to our 

curricula: a prepended lesson to help both teachers and 

students better understand how computational models might 

serve as tools (and objects) of scientific inquiry. In order to 

assist teachers in integrating CT into STEM classrooms, we 

see a need to provide explicit prototypes, precedent, and 

parables in order to help teachers align the seemingly 

competing frames of teaching expected content, scientific 

inquiry practices, and computational thinking. We see 

Lesson 0 as one possible method of allowing both teachers 

and students to make sense of how these frames align in 

service of a new form of scientific learning. 
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ABSTRACT  
With Industrial Revolution 4.0, the need to develop 

interdisciplinary skills has been highlighted in many 

curricula globally. Programming skills is one of the core 

skills. Aiming to develop creativity and computational 

thinking skills through collaborative storytelling using 

blocks of Python codes in a system called FunPlay Code; 

technology acceptance factors have been identified in an 

earlier study. This paper presents the initial developed 

prototype. A work-in-progress, future work involves user 

testing and further development, possibly, involving more 

open co-design.  

KEYWORDS 
FunPlay Code, computational thinking, Python, storytelling, 

collaborative 

1. INTRODUCTION 
Industries and trends are constantly changing and evolving. 

The Fourth Industrial Revolution (IR4.0) further poses an 

ever-looming potential threat of the loss of certain jobs in 

the foreseeable future. To address these concerns, much 

emphasis has been included in curricula to encourage the 

learning of programming concepts and principles and to 

develop programming skills to cope with the immense 

growth of technology in the 21st century.  

In addition, Deloitte and other TechTrend analysts have 

encouraged developing flexibility and transfer. For instance, 

Stubbings in PricewaterhouseCooper’s (PwC) 2018 analysis 

report, agrees with the general sentiments of countries and 

industries. She notes that “The secret for a bright future 

seems to lie in flexibility and in the ability to reinvent your-

self.” As such, in her projection of the future of work in 

2030, she emphasizes the need to broaden mindsets and 

perspectives across different knowledge branches. “Think 

about yourself as a bundle of skills and capabilities, not a 

defined role or profession”.   

1.1. Problem Statement 

The scenarios introduced earlier imply that we need to be not 

only predictive but also adaptive and agile across 

disciplines. It is no longer adequate to concentrate only on a 

single way of thinking, learning and even working. There is 

a need to bridge the gap between the Arts/Humanities and 

the ever-expanding field of technology. This applies to every 

field from education, to art, fashion and even politics.  

Scratch and Alice (Figures 1a and 1b) are examples of such 

endeavours. They combine graphical blocks but remove the 

obstacle of traditional programming code syntax and 

debugging-oriented graphical user interface. In that way, 

programming is made more understandable, clearer, 

accessible and more appealing to a broader audience.  

 

Figure 1a. Scratch User Interface   

 
Figure 17b. Alice User Interface 

Lee and Jiang’s (2019) study further assesses computational 

thinking skills of students’ fractal Scratch projects based on 

Dr. Scratch’s assessment rubric.  Findings indicate that the 

main difference between experts and novices is abstraction, 

different perspectives and different types of media. This 

confirms the viability of combining both logical thinking 

and design thinking through collaborative storytelling. 

Furthermore, in line with computational thinking, the 

experimental playground needs to be programming-related.  

The hypothesis is that since stories are logic-based, they may 

provide an easier and more interesting entry for novices. 

Furthermore, if eventually computational art comes into the 

picture, it may be even more motivating.  

1.2. Project Objectives 

This system is developed pursuant to Lee and Jiang’s (2019) 

study and Lee and Ooi’s (2019) FunPlay Code 

conceptualization study. It is intended as collaboration 

between three universities, two in Malaysia and one in 

China. Lee and Ooi’s (2019) study seeks to identify design 

factors, which would encourage young people to code, given 

a collaborative storytelling system. Findings indicate that 

perceived ease of use, perceived usefulness and social 

factors are likely to influence technology adoption.  

This Python-based application, FunPlay Code for the Web, 

aims to narrow the gap between design and science by: 

a) encouraging youth to think logically and motivating 

them to adopt and/or adapt codes to create their own 

digital stories in a more creative way;  

b) encouraging re-evaluation and/or reframing and/or  
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c)  traversal between the Arts/Humanities and Science. 

Correspondingly, in this FunPlay Code Python-based Web 

application, participants can: 

a) continuously create stories or blocks of stories or 

contribute to others’ stories or blocks of stories in 

Python codes;  

b) compile the whole ‘story’ and run upon request; 

c) allow users to ‘like,’ comment and share a specific 

story, or part of it onto the user’s own homepage;  

d) reframe the codes to form another perspective to fit their 

objectives; recreating something new.  

1.3. Project Solution 

Python is the intended language when utilizing FunPlay 

Code. To make the integration of the project less 

complicated, the Application Programming Interface (API) 

will also be coded in Python. In order to allow the use of 

Object-Relational Mapping in Python, Krebs’ (2017) 

SQLAlchemy will be used.  

1.4 Project Approach 

The initial collaborative storytelling system utilizes social 

media and intelligent recommendation of resources (Wong 

& Lee, 2011). It does not involve learning of codes. FunPlay 

Code’s design challenge is to tell experiences using codes, 

to imitate social media functions such as like, share, 

comment, reuse and modify others’ codes to create a 

continuous logical collaborative story. Preliminary user 

requirements reported in Lee and Jiang (2019) stress on 

perspectives and abstraction. Lee and Ooi (2019) indicate 

the importance of human factors to technology adoption.  

Hence, Agile Methodology is used to carry out this project. 

It is chosen as it allows opportunities to assess the project’s 

direction and allows room for change throughout its 

development (Gonçalves, 2019). 

1.5 Scope of the Project 

FunPlay Code will be a platform that allows participants to 

create their own digital stories, adapt and reuse codes. It also 

allows editing of existing codes and functions to like, share, 

comment. The program must also be able to recognise 

patterns and the semantics of programming logic. It should 

however, only allow Python codes.   

2. LITERATURE REVIEW 
In 2013, ‘Higher Order Thinking Skills’ (HOTS) are 

emphasized in the Malaysian curricula across primary, 

secondary and tertiary education to transform education 

from the traditional ‘drill-and-kill’ method of learning to 

nurturing flexible, inventive mindsets (Rajaendram, 2018). 

The importance of HOTS has increased since then. Some 

theoretical foundations are presented below.  

2.1. Creative Learning  

Creative thinking can be seen via Problem-Based Learning. 

“Psychological research and theory suggest that by having 

students learn through the experience of solving problems, 

they can learn both content and thinking strategies” (Hmelo-

Silver, 2004). She states that in Problem-Based Learning, a 

student learns not only through facts and textbooks. Instead, 

it is centered on addressing complicated questions that have 

no fixed answers. Furthermore, students are encouraged to 

work cooperatively in order to determine what they need to 

solve the problem.  

In his paper Sowing the Seeds for a More Creative Society, 

Resnick (2007) opines that success does not fully depend on 

one’s knowledge. It also depends on one’s “ability to think 

and act creatively”. He thus urges modern-day students to 

learn to “think creatively, plan systematically, analyse 

critically, work collaboratively, communicate clearly, 

design iteratively, and learn continuously”. This gives rise to 

the “creative thinking spiral” (Figure 2), to guide them to 

“imagine” more, in multiple iterations. 

 
Figure 7 Creative Thinking Spiral 

2.2. Computational Thinking (CT) 

Another aspect of creativity is highlighted by Wing (2006). 

Wing describes computational thinking as a necessary skill 

for everyone, from young children to working adults, even 

if they are not in the Information Technology field.  

CT involves asking questions that are frequently 

encountered in software patterns and even software 

development: What is the problem in this situation? How 

difficult is it to solve this problem? What is the optimum 

method to solve it? These are questions that build the 

theoretical foundations of computer science. They can also 

function as a set/list to solve an existing issue. It allows us 

to break down large numbers of probabilities and 

information into smaller, digestible portions.  

“Computational thinking is thinking recursively. It is 

parallel processing. It is interpreting code as data and 

data as code.” 

“Computational thinking is using abstraction and 

decomposition when attacking a large complex task or 

designing a large complex system.” 

Wing’s definitions help to form the bases of what the system 

should do. By mapping computational thinking to how a user 

would relate to the flow of the software, it would help 

enhance user’s experience and assist them in understanding 

code logic. It also makes it easier to weigh the benefits and 

consequences of choices that we make.  

2.3. Waterfall Methodology  

The Waterfall Methodology does not allow room for the 

development to adapt to changes, when it is far into the last 

stages. For the FunPlay Code project, Waterfall 

Methodology would not be recommended as there is a high 

probability of changes to the functional requirements in the 

future. Since the project would be a collaboration between 

multiple universities, changes due to feedback are much 

expected especially later in the development process.  
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2.4. Agile Development Methodology 

Agile Methodology centres around the ability to accept and 

adapt to change. It allows software development to progress 

and smoothly work through uncertainties faced. According 

to Gonçalves (2019), there are four vital values to Agile 

Development: 

• Focus on individuals and interactions, less, on the 

development processes and the tools. 

• Prioritize properly functioning software over overly 

thorough documentation. 

• Build cooperative relationships between customer and 

developer more than contract negotiation. 

• Enable flexible development and responsiveness to 

change, not just follow a strict plan and schedule. 

With values that heavily emphasize cooperation and 

collaboration between the developing team and the client, it 

allows potential for the development team to respond to a 

client’s feedback throughout the development process. This 

is especially important since FunPlay Code is mainly a 

collaborative project between Universiti Tunku Abdul 

Rahman and Sunway University at this point.  

3. METHODOLOGY  

3.1. Development Methodology 

The first objective of FunPlay Code for Web is to build a 

platform that can act as a bridge between the Arts/ 

Humanities and Science. The methodology selected for this 

project is the Dynamic Systems Development Model 

Methodology (DSDM). DSDM is an agile iterative, 

incremental framework (Buehring, 2019). DSDM is chosen 

because DSDM focuses on a project’s specific goals and 

objectives; shaping the project’s development around its 

goals.  

For instance, besides the set functions of creating, 

contributing, deleting and social sharing of digital stories, 

DSDM allows sufficient space for improving and adding 

features without compromising the main key features of the 

software. This is done by specifically prioritising each 

requirement with DSDM’s principle of using MoSCow: 

keeping track of a requirement’s priority by labelling them 

with ‘MUST’, ‘SHOULD’. ‘COULD’ and ‘WILL NOT’. 

Thus, the flow of the project development would focus on 

fulfilling the requirements before moving on to what the 

software is further capable of. 

Furthermore, since FunPlay Code is intended to be 

interactive and used by users who may have little to no 

Information Technology knowledge, it is vital that the 

interface of the software be easily navigational and 

understandable to the users. DSDM’s principle of 

prototyping ensures that for every prototype created, users 

would be involved to test it in order to ensure it is 

functioning and ‘user-friendly’; allowing early discovery of 

flaws and bugs, room for change and possibilities and 

software development grows over time.  Hence, as DSDM 

allows user involvement, and changes to be implemented 

during development, the outcome should be better. 

3.2. Development Tools 

Software development tools are used by developers for the 

purpose of accomplishing a specific task such as compiling, 

testing, maintenance or debugging. The subsections below 

state and describe the tools used for this project. 

Development tools are ReactJS and GitHub.  

GitHub is good for tracking as it is possible to list down a 

series of functions that the software must have and should 

have by using a feature called GitHub Issues. This relates to 

the DSDM’s principle of prioritising features to ensure that 

the project meets its stated requirements. The way that 

GitHub Issues function is by creating an ‘issue’ and 

specifically tagging them (Figure 3) with certain labels.  

 
Figure 3. GitHub Issues obtained from ROBINPOWERED 

GitHub would ease the load of project documentation. As 

project development grows, it becomes easier to forget 

smaller notes or minor bug fixes. Bigger loads mean more 

things to remember, and with GitHub feedbacks, notes can 

be made as reminders and flagged once completed. This 

ensures that most problems can be tracked and recalled 

more easily rather than leaving it to manual documentation. 

As everything would be stored and noted on GitHub, these 

would help developers check if what is done during 

development matches the requirements. 

4. PROJECT INITIAL SPECIFICATION 
FunPlay Code for Web is a web-based application that 

allows users to create their own digital stories and contribute 

to digital stories created by others. The software must allow 

sharing, commenting and ‘liking’ of stories.  

4.1. System Requirements 

4.1.1. Login 

4.1.2. Create Digital Stories 

4.2.3.  Contribute to Digital Stories 

4.2.4. View Digital Stories 

4.2.5. Share Digital Stories 

4.2.6.  Like and Comment on Digital Stories 

A sample use case description is presented in Table 1.  

Table 1. ‘Create Digital Stories’ Use Case Description 
No. 2 

Use Case Name Create Digital Stories 

Actor(s) User with Account 

Short Description Authorized Users (users with a valid account) 

can create new digital stories. 

Trigger User clicks the “create” button 

Preconditions Action only valid for users with existing account 

Flow 1. User logs into account 
2. User clicks ‘Create New Story’ 

5. INITIAL PROTOTYPE DESIGN 
The initial prototype design is as illustrated in Figures 5a, b, 

c. This initial prototype has not been tested yet by users as 

we are concerned with technology acceptance factors 
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identified earlier in Lee and Ooi (2019). Further 

development is for Android (Vegean, Lee & Ooi, 2019) and 

user testing. Figure 5d shows a sample screenshot of 

FunPlay Code for Android.  

 

Figure 5a. Home Screen  

 

Figure 5b. Create Screen 

 

Figure 5c. View Screen 

     

Figure5d. Sample screens from the Android version 

6. CONCLUSION 
The world demands innovation, creativity; a combination of 

design, and logic. With the theoretical foundations and 

methodologies in mind, we hope to minimize mental blocks 

involving more open co-design and to appreciate the power 

of computer science and its relevance in diverse aspects of 

our daily lives. FunPlay Code’s success/failure will depend 

partly on socio-technological factors but we hope it would 

develop further.   
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ABSTRACT 
Machine learning (ML) courses have traditionally been 

taught through a math-first approach. They generally begin 

by establishing mathematical theories behind ML, such as 

the perceptron algorithm, logistic regression, and 

backpropagation, and then use these building blocks to 

motivate more complex structures such as neural networks. 

Such educational resources may not be sufficient or 

preferable for audiences who wish to use ML to build useful 

artifacts but do not have a strong mathematical or 

programming background. In this paper, we introduce a new 

framework for teaching actionable ML that combines three 

components in a Use-Modify-Create progression: (1) 

technical modules taught through hands-on labs, (2) a 

capstone project, and (3) supplemental lectures for new 

areas of research. This framework was applied in two 

iterations of a semester-long practicum at Massachusetts 

Institute of Technology (MIT) as a beginner-accessible 

course aimed at helping a broad range of students gain the 

ability to ideate and implement independent ML projects. 

We present the curriculum, student projects, pre and post-

course survey responses, assignment grades, reflective 

discussions, and learnings from both iterations of the course. 

Our results indicate that the proposed actionable 

pedagogical framework for ML along with the content and 

practices of the course were effective for increasing students’ 

practical self-efficacy in ML and computational identity as 

developers of ML applications. The findings of this study 

illuminate patterns of interaction with ML systems that 

support a practical approach to teaching ML in order to 

increase knowledge acquisition, future learning ability, and 

motivation in beginner students. 

KEYWORDS 
machine learning, deep learning, actionable pedagogical 

framework, experiential learning, small practicum 

1. INTRODUCTION 
As artificial intelligence (AI) and machine learning (ML) 

have gained prevalence in public education over the past 

decade, many interpretations of the two terms have been 

presented. We define ML as models trained on large 

amounts of data to inductively find patterns while AI also 

includes algorithms crafted from general deductive 

principles to solve specific problems (e.g. alpha-beta 

pruning and minimax); and deep learning as a subtopic of 

ML that uses neural networks with more than one hidden 

layer (Lao, Lee, & Abelson, 2019). In order for an ML 

system to “work”, it is dependent on the availability of high 

quality data, scientific insights on features, appropriate 

model architectures, and computational processing power. 

Instead of being generally deterministic programs, ML 

results in powerful statistical algorithms that can be hard to 

debug and understand on a detailed level, such as when 

analyzing a single error in a large neural network (Shapiro, 

Fiebrink, & Norvig, 2018). Therefore, it may not be the most 

effective to teach ML in the style of other algorithms courses 

if we want to educate critical thinkers from a wide variety of 

backgrounds. In designing our teaching framework, our 

questions were: 

• Can students with no/minimal ML or CS experience 

quickly apply ML to interesting and suitable problems 

without being explicitly taught the underlying 

mathematical theories? 

• What human and computational resources are needed 

for an introductory, projects-based ML course? 

This paper serves as an experience report that describes the 

pedagogical learnings from designing and implementing a 

small-scale, project-focused practicum that was successful 

at helping students of various technical backgrounds 

develop self-efficacy as machine learning project creators 

(Lao, Lee, & Abelson, 2019). 

2. BACKGROUND 

2.1. Theoretical vs. Practical Approaches 

Most current ML courses teach the mathematics of ML 

during lessons (e.g. the perceptron algorithm or linear 

regression), and ask students to work on proofs or math-

heavy problems for homework, which may involve 

translating the relevant math into code (Dror & Ng, 2018; 

see also Mohri, 2018). However, such methodologies may 

not work well for students who do not yet have a strong 

foundation in probability, calculus, or linear algebra. In 

contrast, practicums are often run as laboratory classes 

where students work on assignments and projects during 

class time with the support of mentors and/or teaching 

assistants. This Deep Learning Practicum course is an 

example of an ML practicum targeted towards university 

students of a broad range of backgrounds that takes a 

practical approach—its focus is on the “doing and use of 

ML” and the creation of personal projects and applications. 

2.2. Experiential Learning: Use-Modify-Create 

In experiential learning, or “learning through reflection and 

doing” (Kolb, 2014), learning can be elicited through direct 

manipulation of objects or systems as “objects to think with” 

(Papert, 1980). In our course design, experiential learning 

exercises are combined with a capstone project through the 

Use-Modify-Create Progression (Lee et al., 2011). We posit 

that Use-Modify-Create can help students deepen 

understanding of ML concepts and master practical skills: (1) 

students use ready-made ML models within fast-response 
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and user-friendly interfaces to develop high-level intuitions 

about training, testing, and the importance of data, (2) 

students manipulate the models directly to understand how 

architectural modules, hyperparameters, and datasets impact 

results for different problems, (3) students scope a problem 

suitable for ML and create their own application. 

This methodology can now be applied to ML due to the 

creation of libraries that support in-browser ML experiments 

such as TensorFlow.js (Smilkov et al., 2019), and user-

friendly applications such as Teachable Machine (Stoj.io et 

al, 2018) and ModelBuilder (Google, 2018). These tools 

allow students to modify powerful ML models (either 

through a user interface or code) and test the results in real-

time, which enable novices to quickly gain experience 

through direct manipulation of ML systems. Students can 

quickly iterate through building a model, inputting data, 

training the model, and analyzing results. Furthermore, these 

“laboratory” experiences with ML systems provide students 

with experiences that directly relate to the future of work at 

the human-machine frontier. 

2.3. Self-Efficacy and Engagement 

This practicum's framework for teaching actionable ML 

incorporates several mechanisms for engagement: 

empowering students, creating meaningful experiences 

through scaffolded, inquiry-based learning, and authentic 

learning opportunities (Wu & Huang, 2007). The framework 

also emphasizes self-efficacy, a belief in one's chances of 

successfully accomplishing a task and producing a favorable 

outcome (Bandura, 1977). Students with high self-efficacy 

develop deeper interests in the tasks at hand and are more 

motivated to learn challenging material (Bandura et al., 

2001). Recent work shows that self-efficacy is developed 

and strengthened through seeing others like themselves 

succeed, being persuaded by respected friends and advisors, 

and reflecting on one's own capabilities (Bandura, 2004). As 

such, our framework was designed to emphasize 

collaborative work, work with near-peer mentors, and 

exposure to ML professionals of diverse demographics 

(gender, age, and race/ethnicity). 

3. INSTRUMENTS AND ASSESSMENT 
The data sources used to analyze the course’s impact 

included anonymous responses to pre and post surveys and 

analysis of capstone projects. At the time of the study, there 

were no validated instruments for measuring self-efficacy in 

ML. We created our post survey instrument based on 

validated instruments for measuring self-efficacy in general 

sciences, including Children's Science Curiosity Scale 

(Harty & Beall, 1984) and Modified Attitudes Towards 

Science Inventory (Weinburgh & Steele, 2000). 

4. DEEP LEARNING PRACTICUM V1 
The first version of the course ran for 1.5 hours 2x a week 

over a 15-week semester in spring 2018 at Massachusetts 

Institute of Technology (MIT). The course did not count 

towards core undergraduate requirements and was an 

elective course. In pre-registration, the instructors 

emphasized that the course was meant for students who did 

not feel comfortable working with ML and not experts 

hoping to gain advanced techniques. Class size was 

restricted due to the personalized, project-based nature of 

instruction. Twelve students completed the course. 

During the course, instructors aimed to ground theoretical 

constructs of ML in hands-on applications that spanned 

different topics. Six genres were covered in the pilot that 

included predictive and generative applications of ML. The 

order of genres followed the historical development of ML, 

and naturally presented a progression in the sophistication of 

ML models. There were 3 starter topics followed by 3 

advanced topics. The instructors gave short explanatory 

technical lectures (<15 min.) with in-class exercises in 

TensorFlow.js that students ran on their own laptops. The 

activities often leveraged existing datasets, pre-built models, 

and web-based tools for ML. For each set of exercises, 

students were asked to discuss their findings with a partner 

or with the class. Student teaching staff provided technical 

and instructional support. Weekly take-home assignments 

provided an extension to the environment and the exercises 

introduced during class.  

The last 9 weeks of class focused on capstone projects and 

guest lectures (GLs) from ML professionals and researchers. 

Students chose a problem that personally interested them 

and was suitable for an ML application. Mentors were paired 

to each project. A week-by-week map of the version 1 

curriculum is presented in Table 1. 

Table 1. V1 of the curriculum annotated with the 

ITEST Use-Modify-Create progression per week. 

wk. Topics Progression 

1 
K-Nearest 

Neighbors 

Use: Teachable Machine 

webapp (Stoj.io et al, 2018). 

Modify: Confidence algorithms 

in source code. 

2 
Multilayer 

Networks 

Use: Model Builder webapp 

(Google, 2018). Modify: Starter 

TensorFlow.js and HTML code 

for programming multilayer 

networks. 

3 

Convolutional 

Neural 

Networks 

(CNNs) 

Use: Model Builder webapp, 

filter visualization webapp 

(Harley, 2015), Fast Style 

Transfer webapp (Nakano, 

2018). Modify: Starter code for 

programming CNNs. 

4 

Generative 

Models and 

Embeddings 

Use: Embedding Projector 

webapp (TensorFlow, 2018), 

Latent Space Explorer 

(deeplearn.js., 2018). Modify: 

Feature projection functions in 

Latent Space Explorer source 

code. 

5 

Generative 

Adversarial 

Networks 

(GANs) 

Use: GAN Playground webapp 

(Nakano, 2017). Modify: 

Starter TensorFlow.js and 

HTML code for programming 

GANs. 

6 

Recurrent 

Neural 

Networks 

(RNNs) and 

Long Short-

Term Memory 

(LSTMs) 

Use: RNN text generation 

webapp (Karpathy, 2015), 

SketchRNN webapp (Ha, 

Jongejan, & Johnson, 2019). 

Modify: Architecture and 

parameters in webapp source 

code. Create: Music generation 
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RNN application through 

TensorFlow Python notebook. 

7 
Project 

Overview 

Create: Students scoped and 

presented 3 project ideas. 

8 Spring Break 

Create: Teams/individuals 

worked on the project proposal 

writeup. 

9 

Project Mentor 

Matching, GL: 

Healthcare 

Create: Teams submitted 

proposals and were matched 

with industry mentors. 

10 

GL: Fairness, 

GL: Testing and 

Training Tools 

Create: Teams work on 

projects. 

11 
GL: 

Interpretability 

Create: Teams work on 

projects. 

12 

Project 

Midpoint 

Checkpoint 

Presentations, 

GL: Art & 

Music 

Create: Teams presented 5-

minute project progress reports 

in class, received feedback. 

13 
GL: People + 

AI Research 
Create: Work on projects. 

14 

Final 

Presentation 

Dress 

Rehearsal, GL: 

Adversarial 

Examples 

Create: Teams presented a 

practice run of their final 10-

minute project presentations in 

class, received feedback. 

15 

Final 

Presentation 

Showcase, 

Project Writeup 

Due 

Create: Present projects in 

front of industry professionals 

and submit project writeups in 

the form of instructional blog 

posts. 

4.1. Student Demographics 

Of the 12 students, there were 2 (17%) second-years, 4 (33%) 

third-years, 5 (42%) fourth-years, and 1 (8%) graduate 

student.  Nine (75%) majored in EE/CS, 1 in Math, 1 in Math 

& Physics, and 1 in Humanities. There were 3 black women, 

3 Asian men, 2 Asian women, 2 white women, and 1 white 

man. Ten students (83%) had basic exposure to AI or ML, 

but wrote in the pre- survey that they wanted to take another 

introductory course because they did not feel that they could 

build practical applications. All students had at least some 

coding experience, but only 8 (67%) had experience in 

JavaScript. 

4.2. Teaching Staff and Industry Mentors 

There were 6 student staffers who helped debug in-class 

exercises for each topic, answer questions, and lead 

reflective discussions that directed towards learning goals 

for the exercises. For the 9 projects in the class, 3 of the staff 

mentored 1 project each and 3 mentored 2 projects each. 

There were 9 industry mentors. We reached out to 

companies and researchers in the area to ask for volunteers 

who have experience with ML projects. We invited all 

volunteers to a mixer with the students after project teams 

had formed. At the beginning of the mixer, each mentor gave 

a brief overview of their expertise and each student team 

summarized their project goals. After the mixer, student 

teams submitted their preferences for mentors and were 

matched. Mentors met with teams during the beginning and 

middle of their project cycles to help with high level ideas, 

resources, and project scoping. 

4.3. Capstone Projects 

Within this “Create” stage of the course, students marshaled 

the tools and techniques at their disposal along with 

mentorship to create capstone projects. Students were 

instructed to choose a project that they were personally 

interested in, but were also cautioned that a realistic project 

implemented well and evaluated thoroughly is better than a 

half-implemented ambitious project with no result. Projects 

could be a real-world Application of ML, an Exploration 

of properties of neural networks, or a Replication of an ML 

paper. To scaffold project scoping, students were given a “3 

Ideas” assignment in which they presented 3 project ideas in 

class. For each idea, students defined a “Safe” goal that they 

were confident they could achieve by the end of the semester, 

a “Target” goal that they hoped to achieve, and a “Stretch” 

goal that would be good to achieve if extra time was 

available.  

Students had the option of finding a project partner after the 

presentations. There were 9 projects consisting of 3 pair 

projects and 6 solo projects. 7 projects were in the 

Application category, 1 in Replication, and 1 in both 

Application and Exploration. All teams achieved their Safe 

goals. One team continued working on their project after the 

class ended and was able to publish a paper. 

4.4. Learnings for V2 

Feedback was obtained through surveys and a discussion-

style post-mortem on the last day of class. Due to the small 

class size, quantitative analyses are not presented to preserve 

anonymity. Overall, students loved the interactive lab style 

of the modules in the class. Two students with no prior 

JavaScript experience felt that the course was surprisingly 

JavaScript-independent, although some coding experience 

was helpful. Students felt that the small class size was 

beneficial in creating an environment that made them feel 

comfortable speaking during the open reflective discussions 

that accompanied in-class exercises. Nearly every student 

felt that there was not enough time for project 

implementation, but students also said that it was the most 

valuable and enjoyable part of the course. Students 

suggested that the course should cover data collection, data 

processing, and using external computational resources to 

better scaffold the projects. Students enjoyed the guest 

lectures and thought that they helped “put what we learned 

into a much bigger picture.” Students noted that some guest 

lectures may have been useful before starting their final 

projects and would have provided additional context for 

project choices. 

Several students said that the course demystified ML and 

made it more approachable. Two students mentioned their 

increased concern over bias in ML algorithms as well as a 

deeper understanding of how to resolve some of these issues: 

“Before this course, I thought of computer programs more 

linearly – as if [programmers] were mostly in control of a 

program's results. Now I have a much greater 

understanding of how ML programs can be biased and 

unfair... I learned the importance of providing good, varied 

input data and how this data can have significant impact on 

a network and ultimately the world.” 
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5. DEEP LEARNING PRACTICUM V2 

5.1. Changes from V1 

The second version of Deep Learning Practicum was offered 

at MIT in fall 2018, the semester following the pilot. There 

were 6 main changes from version 1: (1) the final project 

was introduced at the beginning of the semester and ran in 

parallel to the modules portion of the course, (2) there were 

two additional scaffolding workshops for the final project 

(data mining and using computing clusters), (3) students 

were required to have a partner for their project unless given 

permission, (4) guest lectures were more interspersed 

throughout the course instead of all at the end, (5) the staff-

to-student ratio decreased from 6:12 to 6:26, and (6) an 

additional unit on reinforcement learning was added. The 

full set of version 2 curricula, lectures, assignments, and 

final projects can be found online at http://mit.edu/6.s198 

(Lao & Abelson, 2018). A weekly summary of the version 2 

curriculum is presented in Table 2 (Lao, Lee, & Abelson, 

2019). 

Table 2. V2 of the curriculum annotated with the 

ITEST Use-Modify-Create progression per week. 

wk. Topics Progression 

1 

K-Nearest 

Neighbors, 

Transfer Learning 

Module from version 1 wk. 1 

with more emphasis on 

transfer learning techniques. 

2 

Multilayer 

Networks, Project 

Overview 

Module from v1 wk2. 

Create: Scope 3 ideas for 

capstone final project. 

3 
CNNs, GL: 

Adversarial Attacks 

Module from v1 wk3. 

Modify: Starter adversarial 

attack TensorFlow code on 

CNNs. 

4 

3 Ideas Project 

Workshop, Data 

Mining Workshop 

Use: Kaggle to find datasets 

(Kaggle Inc., 2019). Modify: 

3 project ideas based on 

feedback. Create: Web 

scraping scripts using 

Beautiful Soup (Python 

Software Foundation, 2019). 

5 

Generative Models 

and Embeddings, 

Computational 

Resources 

workshop, Project 

Mentor Matching 

Module from v1 wk4. Use: 

Holyoke Computing Cluster 

tutorial (MGHPCC, 2018). 

6 GANs Module from v1 wk5. 

7 

Project Data 

Review, 

Reinforcement 

Learning 

Use: Metacar webapp 

(thibo73800, 2019), OpenAI 

Gym webapps (OpenAI, 

2019). Modify: TensorFlow 

starter code for RL. Create: 

Data review document to 

describe project dataset 

details. 

8 RNNs and LSTMs Module from v1 wk6. 

9 
Informal Project 

Checkpoint 

Create: Work on projects and 

discuss progress with staff. 

10 

GL: Art & Music, 

GL: People + AI 

Research 

Create: Finish project 

proposal. 

11 
Formal Project 

Checkpoint 

Create: Work on projects and 

show basic working demo to 

staff. 

12 

GL: Healthcare, 

Project Practice 

Lightning Talks 

Create: Present 2-minute 

project lightning talks, receive 

feedback for final showcase. 

13 Office Hours Create: Work on projects. 

14 
Final Presentation 

Showcase 

Create: Presented capstone 

projects to an audience of 

varying ML experience with 

lightning talks, then individual 

booths. 

15 
Project Writeup 

Due 

Create: Submit project 

writeups in the form of 

instructional blog posts. 

5.2. Student Demographics 

Of the 26 students, there were 5 (19%) second-years, 6 (23%) 

third-years, 11 (42%) fourth-years, 3 (12%) graduate 

students, and 1 (4%) post-doc. Twenty students (77%) 

majored in EE/CS, 2 in Architecture, 2 in Physics & EECS, 

1 in Materials Science & Engineering, and 1 in Biological 

Engineering & Math. There were 9 Asian women, 6 Asian 

men, 5 white men, 3 Hispanic men, 1 black woman, 1 white 

woman, and 1 black man. Similar to V1, 21 students (81%) 

had basic exposure to AI or ML, but commented that they 

wanted to participate in the course due to self-perceived lack 

of ability to apply theory and math in building practical 

applications. 

5.3. Capstone Projects 

For V2 of the course, students were asked to work in groups 

of two for the final project due to the decrease in the staff-

student ratio. Students started work on the projects in wk. 2 

of the course, so they had not been exposed to all of the topic 

modules. The instructors were concerned that students may 

avoid later topics and tried to mediate this by giving 

lightning talks and sample use cases for the topics that would 

be presented later. There were 14 projects, all of which 

completed their Safe goal. All three project categories were 

represented with the majority being Application projects. 

More projects bridged multiple project categories than in V1, 

likely due to students having more time. 

The first project workshop was the 3 Ideas Workshop during 

wk. 4, which changed in format from the pilot due to the 

increased number of students: The staff ran two 30-minute 

sessions of guided group presentations. For each session, the 

class was divided into four groups of 5-6 students based on 

shared project topic interests. One to two staffers led each 

group, where students took turns presenting their 3 ideas. 

During the final 30 minutes of the class, students were 

encouraged to talk to others they had met and form groups. 

After the 3 Ideas Workshop, there were two workshops 

given on project skills: data collection and how to connect 

to computing resources. There was also a data review 

checkpoint assignment due in wk. 7 to confirm that students 

had completed data collection and processing in a timely 

manner. 

5.4. Post Survey Responses 

The post survey was emailed out after the course ended and 

received 17 responses (65%). Demographic results indicated 

that the participants were representative of the class in terms 

of grade level, major, gender, and ethnicity. Table 4 presents 

the responses to all linear scale questions, where 5 = 

http://mit.edu/6.s198


 

104 

“Strongly agree” or “Completely confident” and 1 = 

“Strongly disagree” or “No confidence.” 

Table 4. Means and standard deviations of post survey 

linear scale question responses. 

 Item Mean S.D. 

1 
I felt that I was successful in this 

class. 
4.4 0.6 

2 
I am proud of what I was able to 

accomplish in my final project. 
4.2 0.8 

3 

I will be able to complete an ML 

project (of a similar level and scale 

to my final project) on my own. 

4.6 0.5 

4 
In this class, I saw people like me 

succeed at learning ML 
4.2 0.6 

5 

When I saw people like me succeed 

in ML, it made me feel that I could 

succeed as well. 

4.3 0.7 

6 

How confident do you feel about 

describing your project to a non-

technical person? 

4.6 0.5 

7 
The project work made me feel 

uncomfortable 
1.6 0.9 

As a follow-up to Question 1, we asked “What did you use 

to determine your sense of success in the class?”. The 

majority of responders attributed their sense of success to 

work on the final project (94%) and understanding of the 

concepts presented in class (88%). Responses to “Which of 

the following elements from the course did you use in your 

project work?” also indicated that the modules and 

workshops were helpful. More than half of responders said 

they used concepts/architectures from the units (82%), used 

independent researching skills [developed] through the 

assignments (59%), or used the 3 Ideas Workshop to [help] 

improve or refine [their] project idea (59%). 

When asked “How can you see yourself using the tools, 

techniques, and methods presented in the class?”, all 

responders gave multiple use cases. The most prevalent were: 

Applying ML to new domains (82%); Be(ing) able to talk 

about it with experts (77%); Being able to talk about it with 

non-experts (77%); Using it for fun (65%); Developing my 

final project further (65%); Using it [for] another class 

(65%); and Using it as part of a job (65%). 

When asked “How did your views on ML change through 

taking this course?”, 53% mentioned a “personal realization 

of the easy application potential of ML”; 18% had 

“increased enjoyment of the field”; 18% wrote “realizing 

limitations of ML”; and 12% were “excited…the field is 

rapidly evolving”. 

6. DISCUSSION 
The course aimed to help students with some coding 

background and none to novice AI or ML knowledge gain 

self-efficacy in ML. In general, students highly enjoyed the 

course, felt that it helped demystify ML, and were 

encouraged to pursue independent, personal ML projects in 

the future. We felt that both iterations of the course were 

successful in our goals, with V2 allowing students more time 

for projects. Survey responses from V2 indicate that 

successful completion of capstone projects most heavily 

influenced development of self-efficacy in ML, and that the 

modules portion of the course was successful at preparing 

students for the projects. While our results are promising, we 

recognize limitations to replication: there was a high staff-

to-student ratio and many students had exposure to ML/AI 

before the course (although we found no significant 

difference in performance between students of varying 

levels of ML and coding backgrounds). 

We believe that the following 4 components of the course 

best contributed to its success: First, while the modules did 

not teach all of the skills and concepts students needed for 

every type of ML project, we hypothesize that the hands-on, 

exploratory lab work for each application helped students 

feel more comfortable playing with new architectures. This 

encouraged students to conduct research and learn on their 

own – 3 teams from V2 (21%) even applied methods not 

taught in the class to their projects. Second, TensorFlow.js 

allowed beginners to dive directly into exploring complex 

and visually appealing ML applications – modifying ML 

models in the browser allowed for near-instantaneous 

feedback and reduced infrastructure problems. Third, 

mentors for each project greatly assisted students in properly 

scoping problems and finding resources. Fourth, the blog 

post style for the final project writeup helped students learn 

disciplinary sharing norms, situate their work in the 

community, and identify with other ML developers, 

enthusiasts, and researchers. Thirteen of the 14 projects from 

V2 shared their project blog posts publicly on the web (Lao 

& Abelson, 2018). 

In replicating this course, the advanced modules (wk. 4+) 

can be replaced based on the types of projects instructors 

want to encourage (e.g. more types of RNNs, LSTMs, and 

GANs for an arts-focused ML class). Additionally, we found 

that transfer learning was extremely useful – students were 

able to adjust and retrain high quality pre-built models with 

great results for repurposed use instead of spending a long 

time trying to create (often ineffective) models from scratch. 

We recommend encouraging students to research and 

experiment with different architectures as often as possible. 

Many of the students without coding experience also 

suggested that a version of the course could be adapted for 

high school students. 
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ABSTRACT 
Recent advancements in deep learning have brought 

machine learning and its many applications to the forefront 

of our everyday lives. As technology has become more and 

more integrated into our educational curriculum, researchers 

have focused on creating deep learning tools that allow 

students to interact with machine learning in a way that 

incites curiosity and teaches important concepts. Our 

research contribution focuses on applying transfer learning 

and spectrogram audio classification methods to teach basic 

machine learning concepts to students. We introduce the 

Personal Audio Classifier (PAC), a web interface that allows 

users to train and test custom audio classification models 

that can classify 1-2 second sound bites recorded by the user. 

We also contribute a custom App Inventor extension that 

allows users to use the output of the web interface to create 

App Inventor applications that rely on their trained custom 

audio classification model.  

KEYWORDS 
machine learning, transfer learning, App Inventor 

1. INTRODUCTION 
From personal voice assistants to self-driving cars, machine 

learning applications have permeated every aspect of our 

daily lives. Much of these advances are thanks to the 

subfield of machine learning known as deep learning, a field 

primarily concerned with building large neural networks to 

perform specialized tasks. Yet as researchers began to make 

significant advancements in deep learning during the past 

decade, it became clear that computational complexity, 

training time, and esoteric development tools could pose as 

a deterrent to widespread development of deep learning 

applications. Transfer learning was born out of this 

deficiency, spurred by Yosinski’s work (Yosinki, 2014) on 

transferable features in deep neural networks. 

1.1. Transfer Learning 

Transfer learning is a machine learning method where an 

existing deep learning model is used as the starting point to 

train a model specialized for a slightly different task. The 

ability to start with a pre-trained model allows new 

developers to apply deep learning to solve novel problems 

without the vast compute and time resources normally 

needed to train neural networks from scratch. While the 

conventional model-training process is likely only 

accessible to researchers or institutions with deep pockets, 

the result is one that should be available to developers of all 

levels and even students of any age. Transfer learning has 

allowed for just this, giving machine learning enthusiasts 

around the world the ability to build their own models using 

complex models as a starting point. 

 
Figure 1. Transfer learning starts with a pre-trained model 

and fine-tunes the output layers to specialize towards a new 

task. 

1.2. TensorFlow.JS and App Inventor 

Wwe introduce two important technologies, Tensorflow.js 

(Tensorflow.js, 2015) and MIT App Inventor (MIT App 

Inventor, 2010), that this project utilizes to help students 

develop exposure to machine learning concepts without 

requiring a deep computer science background. 

Tensorflow.js is a Javascript machine learning library that 

has recently found success in the niche bridging machine 

learning implementation and educational tools. It allows for 

deep learning models to be trained and run right in the 

browser, and when combined with a well-designed web GUI, 

can hide the complexities of programming syntax while still 

allowing users to interface with machine learning models. 

Similarly, MIT App Inventor is a free open-source web 

platform that allows users to create mobile applications via 

a drag-and-drop interface, requiring little to no 

programming experience while still offering rich application 

functionality. App Inventor also offers the ability to add 

custom extensions to any app, allowing us to build an audio 

classification extension that students could upload and use 

to help build his private diary app. With these two 

technologies, we’ve created a web app that blends PIC (Tang, 

2018) and Teachable Machine (Google, 2019), allowing 

users to train an audio classification model that can 

recognize 1-2 second audio clips. After using this web app 

to train a custom model, users will be able to download this 

model and plug it into MIT App Inventor as an extension to 

build apps with custom audio-classification functionality. 

2. APPROACH 

3.1. Personal Audio Classifier 

We present a web application (Personal Audio Classifier, or 

PAC) that allows users to train a custom audio classifier 

using Tensorflow.js within the browser. The application is 

available to the public at https://c1.appinventor.mit.edu. 

This section will detail the basic functionality, as well as the 

machine learning tools that were used to implement an in-

browser audio classifier. First, users are prompted to add 

custom labels that the classifier will attempt to differentiate 

between. Users can then record an unlimited number of 

audio clips for each label that will be used to train the 
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internal model. Each audio clip is one second long, and 

client side JavaScript is used to up-sample each audio clip to 

384,000 Hz. Each element in the audio buffer is passed 

through a Fast Fourier Transform to draw the audio 

frequencies onto a single pixel sliver of our output 

spectrogram. This spectrogram provides a visual 

representation of the recorded audio bite, and is attached to 

the corresponding label so that the user can view each audio 

clip in the browser.  

 
Figure 2. The label view allows users to add custom labels 

and record corresponding audio clips. Audio clips are up-

sampled  

and converted to spectrograms in the browser. 

After inputting a number of labels and recording the 

corresponding audio clips, the user is prompted to train a 

custom model using their provided training data, specifying 

hyperparameters like Learning Rate, Optimizer, Epochs, and 

Training Data Fraction. The web application then proceeds 

to load a pretrained ImageNet model (MobileNet) and train 

a custom machine learning model in the browser using the 

activations outputted from passing the training data through 

the pretrained model. After experimenting with a variety of 

model architectures, we decided to standardize the custom 

model to have a single convolutional layer, a single flatten 

layer, and two dense layers. The output of the model is then 

passed through a SoftMax layer to generate probabilities that 

correspond to the user-inputted labels.  

A separate page allows the user to use this custom trained 

model as a classifier, recording audio clips that are passed 

back through the model and assigned to one of their original 

labels. The corresponding label confidences are displayed 

after each clip is recorded, and we aggregate the test results 

so the user can analyze the success of their custom classifier, 

and even download the custom model for use in the App 

Inventor extension. 

 

 

 

 

 

 

Figure3. The test view allows users to record and  

classify audio clips that are converted to spectrograms 

 and passed through the custom classifier. 

 
Figure 4. The test view also provides the aggregated results 

 from classifying user-recorded audio clips. 
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ABSTRACT 

This paper presents an approach to AI education, which 

combines both Classical AI and Modern AI. It argues that 

this approach can enhance students’ computational thinking 

through explicit programming. The applicability of this 

approach is illustrated with the design of a short course 

aimed at introducing AI to secondary school students. 
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1. INTRODUCTION 
In recent years, in responding to the international call for 

incorporating computational thinking and AI into school 

education, many school educators have started to design AI 

courses for their students; see, e.g., (Holmes, Bialik, & Fadel, 

2019) and (Touretzky, Gardner-McCune, Martin, & Seehorn 

2019). However, these AI courses tend to teach exclusively 

Modern AI (which is based on Machine Learning, 

particularly Deep Learning), at the expense of Classical AI 

(which is based on symbolic logic). This tendency is hardly 

surprising, given that Deep Learning is currently the most 

powerful and high-profile approach to AI, and has generated 

a lot of hype. However, it is my contention that Classical AI 

still has its merits in AI education and we should take a 

balanced approach, combining both Classical AI and 

Modern AI. There are several advantages for adopting this 

balanced approach, the main one being that Classical AI is 

better than Modern AI in teaching computational thinking to 

school students. 

2. CLASSICAL AI VS MODERN AI 
Classical (Symbolic) AI, also called GOFAI (“Good Old-

Fashioned AI”), was born in the now famous Dartmouth 

Conference of 1956 (Haugeland, 1989). It is also called the 

Logic-Based AI as it is based on symbolic logic, and its idea, 

according to John McCarthy, one of the pioneers of AI, is 

that “an agent can represent knowledge of its world, its goals 

and the current situation by sentences in symbolic logic and 

decide what to do by inferring that a certain action or course 

of action is appropriate to achieve its goals” (Minker, 2000, 

p. 39). One distinctive feature of Classical AI is that 

intelligence is explicitly programmed, say in the form of a 

comprehensive list of if-then-else rules. Consequently, the 

designer of a Classical AI system needs to think carefully 

through all the possible combinations and devise a rule-

based system that can make decisions by traversing through 

the pre-defined rule path. In stark contrast, Modern (Sub-

symbolic) AI is based on Machine Learning, which can be 

defined, according to Andrew Ng, as “the process of 

inducing intelligence into a system or machine without 

explicit programming”. Deep Learning is just a particular 

type of Machine Learning that deals with powerful 

algorithms inspired by the biological structure of the human 

brain, so-called deep neural networks, to endow machines 

with intelligence. Consequently, the designer of a Modern 

AI system does not need to encode the system with a 

comprehensive list of all possible rules; all he does is let the 

system learn on its own from the data.  

Based on modelling logical reasoning, Classical AI, had, in 

its early years, developed systems that successfully solve 

interesting and important problems in specialized domains 

(Neapolitan & Jiang, 2018, p. 4), e.g., the rule-based expert 

system MYCIN and the rule-based chatbot ELIZA, both in 

the restricted medical domain. Despite these early successes, 

Classical AI in its traditional form is now widely agreed to 

have failed in building true artificial intelligence (Miracchi, 

2019, p. 594). In stark contrast, Modern AI, powered by 

Deep Learning, has, in recent years, made extraordinary 

advances in a broad range of varied pattern recognition 

tasks, including classification, object detection, speech 

recognition, etc. – though, importantly, reasoning tasks still 

elude Deep Learning (Skansi, 2018, p. 13). As a result, 

Modern AI has recently replaced Classical AI as the most 

promising technology to realize true artificial intelligence.  

However, Modern AI has its drawbacks, one of which 

concerns explainability (or interpretability) – it is still not 

very clear as to exactly how a problem is being solved, 

especially for Deep Learning, since deep neural nets are still 

poorly understood mathematically, though Explainable AI 

or Interpretable AI is a hot research topic (Molnar, 2019). 

Consequently, most users often treat a Modern AI system as 

a black box. But this is unacceptable when the decision 

provided by the system affects the person, e.g., a medical 

diagnosis, in which the reasoning behind the decision is also 

important (Kelleher, 2019, p. 245). In stark contrast, the 

inner working of a Classical AI system, due to its being 

explicitly programmed, is fully explainable. 

3. A BALANCED APPROACH TO AI 

EDUCATION 
Based on the aforementioned differences between Classical 

AI and Modern AI, I hereby propose a balanced approach to 

teaching AI, chiefly in school education. This approach 

combines both Classical AI and Modern AI. While the 

inclusion of Modern AI hardly needs justification – it is, 

after all, the focal point where all the current fascination and 

excitement about AI lie, the inclusion of Classical AI, a 

widely regarded out-of-fashion approach, demands some 

justifications and explanations. All in all, there are four 

reasons (or advantages) for teaching Classical AI in school 

education: the pedagogical reason, the practical reason, the 
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historical reason, and the philosophical reason. First, and the 

foremost, unlike Modern AI, which is often treated as a 

black box by the learner, Classical AI by its very nature 

requires explicit programming from the learner. This 

therefore can provide a valuable chance for students to 

practice programming when building a Classical AI system, 

e.g., a rule-based expert system or chatbot. Consequently, 

teaching Classical AI can help train and enhance students’ 

computational thinking skills. Second, unlike Modern AI, 

which is based on advanced mathematics, Classical AI is 

based simply on symbolic logic (Kowalski, 2011) which, by 

its logical nature, should be more accessible to school 

students. Evidence, e.g., (Yuen, Reyes, & Zhang, 2019), has 

shown that school students can learn symbolic logic 

effectively through logic programming. Third, Classical AI 

is an important part of the history of AI. It had made many 

achievements in the past years, which are regarded as the 

milestones in the human’s quest for artificial intelligence, 

e.g., ELIZA, the Logic Theorist, the General Problem 

Solver, MYCIN, and Deep Blue, just to name a few. All 

these should be told to the students of AI so that they can 

have a more complete picture of the development of AI as a 

discipline. Fourth, the fact that Classical AI has been good 

at reasoning tasks and Modern AI has been good at pattern 

recognition tasks has made philosophers speculate that 

reasoning is inherently rule-based and cannot be learned. So 

perhaps Classical AI and Modern AI are complementary to 

each other and one can never replace the other.  

4. THE COURSE 
To illustrate its applicability, I designed a short course using 

this approach. The goal of this course is to introduce AI to 

Form 3 and Form 4 students who have had some experience 

in programming (e.g., Scratch). The duration of the course is 

15 hours, divided into two main parts, with the first part 

about Classical AI and the second part about Modern AI; see 

Figure 1. In the first part, the instructor teaches students how 

to program in the logic programming language Prolog. With 

support from the instructor, students are then asked to 

implement a simple rule-based expert system in Prolog 

(Bramer, 2013), and a simple ELIZA-like rule-based chatbot 

(O'Keefe, 1990). The second part of the course teaches 

students the basic ideas of neural networks (which can be 

introduced as extensions of linear regression). With support 

from the instructor, students are asked to implement a 

shallow, and then a deep, neural network in R to recognize 

handwritten digits (Liu & Maldonado, 2018), which 

involves very little coding, and to build a deep learning 

chatbot without coding using a free online platform. At the 

end of the course, the students will be able to compare and 

contrast the two different approaches to AI, thereby 

enhancing their understanding of both.  

5. CONCLUSION AND FUTURE WORK 
I have proposed a balanced approach to AI education in 

school. This balanced approach has the advantage that 

students can learn computational thinking through explicit 

programming in Classical AI. As planned, this short course 

will be delivered to a cohort of secondary school students. 

Feedback about this approach will then be collected and 

evaluation followed.  

 Part 1. Classical AI 

1.1 The History of AI 

1.2 Programming in Prolog 

1.3 Implementing an Expert System and a Chatbot 

 

 Part 2. Modern AI 

  2.1   Implementing a Shallow Neural Network and a 

Deep 

Neural Network for Handwritten Digit Recognition 

  2.2   Building a Deep Learning Chatbot 

  2.3  The Future of AI 

Figure 1. Contents of the course 
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ABSTRACT 

The rapid development and widespread application of artificial intelligence have attracted great attention from the education 

community. The integration of artificial intelligence and education has played a huge role in educational reform in mainland 

China. The article takes 7 major journals of educational technology majors in mainland China as data sources and uses a 

bibliometric method to visually analyze articles on the subject of "artificial intelligence education" from 2015 to 2019, and 

summarizes research on artificial intelligence education in mainland China. Status and research hotspots. Through analysis, 

it is found that research on artificial intelligence education in mainland China mainly focuses on how to develop education in 

the era of artificial intelligence, how to organize teaching, how students learn, and the application of artificial intelligence 

education supported by new technologies.  
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摘要 

人工智能的迅速发展和广泛应用已经引起了教育界的

极大关注，人工智能与教育的融合对中国大陆的教育

变革起到了巨大的作用。文章以中国大陆 7 本教育技术

学专业重要期刊为数据源，采用文献计量的方法对

2015-2019 年以“人工智能教育”为主题的文章进行了可

视化分析，总结梳理中国大陆人工智能教育研究的现

状及其研究热点。通过分析发现，中国大陆对人工智

能教育的研究主要集中在人工智能时代教育如何发展，

教学如何组织，学生如何学习以及新技术支持下的人

工智能教育应用研究。 

关键词 

人工智能；人工智能教育；教育应用 

1. 前言 

国务院印发的《新一代人工智能发展规划》指出，随

着人工智能的快速发展，教育呈现出深度学习、跨界

融合、人机协同、群智开放、自主操控等新特征，人

工智能技术在教育中的应用越来越重要（高丹阳，

2019）。近年来，人工智能技术与教育的融合，也推

动了中国大陆的教育教学变革，智能教育、学习分析、

机器学习、计算思维等正不断渗透并影响着教育教学

系统。在此背景下，研究中国大陆教育技术学领域所

关注的人工智能教育热点问题，有希望为推动人工智

能与教育的融合创新提供借鉴和指导。 

2. 关键词聚类分析 

1. 数据来源和研究工具 

本研究的数据来源于中国大陆 7 本教育技术学重要期刊，

分别是《中国电化教育》、《电化教育研究》、《中

国远程教育》、《开放教育研究》、《现代教育技

术》、《现代远程教育研究》和《远程教育杂志》，

时间范围是 2015 年 1月——2019 年 12月，检索条件是

主题为“人工智能教育”，经过剔除其中新闻稿、征稿通

知等文章，共得到 287 篇文献。研究选择对教育技术学

专业的重要期刊进行分析，目的是总结和梳理教育技

术研究者近五年所关注的人工智能教育问题，希望对

后续开展人工智能教育研究的学者提供参考和借鉴。 

2. 关键词聚类结果 

利用 CiteSpace 对文献数据进行关键词聚类分析，可以

帮助探索该研究领域的研究热点和研究前沿。研究将

时间分割定为 1 年，将引文关键词作为网络节点进行分

析，聚类图谱收集了排名前 50 的关键词。经过聚类计

算后模块值(Q 值)为 0.485，平均轮廓值(S 值) 大于 

0.5377，意味着划分出来的图谱结构是显著的。出现频

次排名前 10 的关键词及其中心度如表 1 所示。中心度

指一个结点担任其它两个结点之间最短路的桥梁的次

数。一个结点充当“中介”的次数越高，它的中心度就越

大。 

表 1 频次排名前 20 的关键词 

序号 频次 中心度 关键词 

1 148 0.46 人工智能 

2 25 0.3 智能教育 

3 22 0.24 教育信息化 

4 20 0.21 智慧教育 

5 16 0.14 大数据 

6 14 0.12 教育应用 

7 13 0.11 学习分析 

8 11 0.1 个性化学习 

9 11 0.08 教育信息化 2.0 

10 10 0.08 计算思维 

关键词共现图谱是指根据所引文献中关键词共现的情

况绘制，两个关键词出现在同一篇文献中即视为一次

合作，主要依据关键词共现频次矩阵。在“人工智能教

育”领域中，利用谱聚类算法，共生成 9 个主要的聚类，

分别是: 教育信息化、智能教育、计算思维、学习分析、

人工智能教育应用、教育、创客教育、人才培养和知

识图谱。聚类后的共现关键词图谱如图 3 所示。 

 

图 1 聚类后的共现关键词图谱 

由 CiteSpace 基于聚类关键词生成的时间线图也可视化

地表现了这一现状。基于关键词和聚类的时间线图如

图 4 所示。基于聚类关键词生成的时间线图可以显示出

每个聚类里关键词的发展情况。例如计算思维这一类

的发展情况可以概括为由计算思维到智能技术再到儿

童编程教育。 
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图 2 基于关键词聚类的时间线图 

3. 人工智能教育的研究热点和前沿分析 

通过关键词聚类结果和对高被引文献进行内容分析，

进一步将中国人工智能教育的研究现状总结归纳为理

论探索和应用研究两方面，理论探索主要研究人工智

能对教育产生的影响、作用机制，以及国内人工智能

教育的发展路径等。应用研究体现为新技术支持下的

人工智能教育应用现状及对策研究，例如大数据、学

习分析、计算思维和机器学习等。 

1. 人工智能教育理论研究 

通过聚类，我们发现教育信息化、智能教育、智慧教

育等内容在人工智能教育的研究中占有极大的比重，

而这类研究主要集中在在如今的技术环境下人工智能

时代教育如何发展，教学如何组织，学生如何学习以

及中国大陆人工智能教育发展的过程和趋势等内容。

例如，钟绍春讨论了人工智能时代推进教育信息化 2.0，

实现教育创新发展的方向与目标、实施路径、面临的

机遇和挑战。并从技术支持教与学瓶颈性问题的解决

策略出发，构建促进策略实施的智慧支撑系统，设计

基于智慧系统的教学活动实施方案等（钟绍春，

2018）。贾积有认为从教育的本质特征和人工智能的

研究领域来分析人工智能与教育的关系，可以发现教

育是提高人的自然智能的过程和系统；人工智能是在

机器上实现的教育，人工智能必将对人类的教育与学

习方式产生重大影响（贾积有，2018）。吴永和从人

工智能+教育的孕育条件、特征、作用三方面阐述了

“人工智能+教育”的内涵，从应用形态、技术架构、业

态趋向等要素构建了“人工智能+教育”的生态系统，并

阐述了“人工智能+教育”的人才培养体系（吴永和，

2017）。 

2. 新技术支持下的人工智能教育应用研究 

在关键词聚类图谱中，我们发现大数据、学些分析、

计算思维、5G 等关键词也占有极大的比重。伴随着人

工智能技术的不断发展和成熟，新技术支持下的人工

智能教育应用也逐渐走进教育研究者的视野。大数据

领域的研究主要集中在大数据时代教育教学的变革，

教育技术研究新范式的提出以及基于大数据分析的学

科教学路径等。学习分析技术是测量、收集、分析和

报告有关学生的学习行为以及学习环境的数据，用以

理解和优化学习及其产生的环境的技术（顾小清，

2012），学习分析技术可作为教师教学决策、优化教

学的有效支持工具，也可为学生的自我导向学习、学

习危机预警和自我评估提供有效数据支持，还可为教

育研究者的个性化学习设计和增进研究效益提供数据

参考。随着图形化编程和机器人编程教育的不断普及，

计算思维的培养也受到了来自学者和一线教师的持续

关注，目前计算思维的研究主要集中在理论探索和培

养方案研究两方面。理论探索主要讨论了计算思维的

概念演变、构成要素、测评方式等。培养方案研究则

关注中小学计算思维培养模式及课程实践，同时还有

一部分学者关注基于大学信息技术基础课程的计算思

维培养和发展研究。 

4. 总结 

为促进教育信息化的不断深化，还需对人工智能教育

进行深入研究，促进教育和人工智能的深度融合，构

建信息化学习环境和数字化学习资源，借助新技术创

新教育研究范式，探讨新技术在教育教学中的应用。

需要指出的是，研究还存在一些不足，文献数据只选

择了教育技术学领域的期刊文章，大量其他学科领域

的文章未予采用，在研究热点的总结上可能存在偏差。

在人工智能教育的研究热点和前沿分析上，阅读的文

献基数较小，存在一定的主观性和概括性。人工智能

在和教育融合的过程中，会不断出现值得探讨的问题，

我们期待能通过人工智能提升教师的教学，加强学生

的学习，丰富教育研究的手段，让教育一直充满新的

活力。 
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ABSTRACT 
Teaching computational thinking for business students at the 

University level has been challenging because business 

students normally have little and/or heterogenic computer 

programming background. Also, there are very few 

literature that examines the alignment of appropriate 

teaching and learning theories/strategies with different 

levels of cognitive processes/learning outcomes for teaching 

business students computational thinking. This preliminary 

study is to address these gaps by proposing and exemplifying 

an alignment of six teaching and learning strategies with the 

six levels of the Bloom’s taxonomy of learning outcomes for 

teaching business students, with different computer 

programming background, Python programming at the 

University level. University lecturers could use these six 

proposed teaching and learning strategies as a guideline to 

design their course contents and materials for teaching 

business students Python programming at the University 

level. Further research direction was discussed. 

KEYWORDS 
computational thinking, Python programming, Bloom’s 

Taxonomy, teaching and learning strategies 

1. INTRODUCTION 
Technology has been blooming and improving over the past 

decade, computational thinking and programming 

experience has become highly desirable skillsets required by 

business industries. There are many programming languages 

in the market, such as C++, Java, Matlab, etc. However, 

Python stands out from other programming languages and is 

growing in recent years. 

Therefore, many business schools have been trying to 

include Python into their curriculum to teach business 

students computational thinking concepts and programming 

skills. This raises the question of how to teach students, 

especially business students, to learn Python effectively. 

There are plenty of literature introducing various teaching 

and learning theories and strategies in general subjects such 

as marketing and economics, but teaching Python is 

comparatively new in business schools. In particular, 

teaching computational thinking for business students at the 

University level has been challenging. 

More specifically, one of the greatest challenges of teaching 

Python is that students are having heterogenic programming 

experience. Students may have experiences with different 

programming languages prior to taking a Python 

programming class. For instance, some students may have 

learned different programming languages, while other 

students may have never learned any programming language 

at all. This makes it difficult for lecturers to prepare teaching 

materials for students with differing levels of programming 

experience. The heterogenic background of students poses a 

challenge for lecturers to prepare class content or the 

syllabus of the course, which definitely has an impact on 

students’ learning experience. Thus, it is important to 

investigate ways to manage the class to fit a wide range of 

students. 

Wang and his colleagues (2017) have written a paper about 

teaching computer programming with Python for industrial 

and systems engineers. The paper basically illustrates the 

experiences of teaching and learning Python with an 

academic setting. It also shows some analyses regarding the 

learning preference of students with different background 

like gender, class standing, and attendance differences. For 

instance, Wang and his colleagues find that the learning 

performance is slightly different for female and male 

students. Yet, while Wang et al. solely provide statistics 

about the relationship between learning experience and 

different attributes of students, no teaching theory is 

proposed or examined. To extend this line of research on 

teaching Python, this preliminary study is to address these 

gaps by proposing and exemplifying an alignment of six 

teaching and learning strategies with the six levels of the 

Bloom’s taxonomy of learning outcomes for teaching 

business students, with different computer programming 

background, Python programming at the University level. 

2. THE BLOOM’S TAXONOMY 
In this study, the revised Bloom’s Taxonomy (2001) was 

applied to adopt a set of teaching and learning strategy for 

teaching business students Python at the University level in 

the Semester A of the academic year of 2019/20. The revised 

Bloom’s Taxonomy is an ordering of cognitive processes 

and learning outcomes, which is based on earlier version of 

Bloom’s Taxonomy (1956) created by Bloom and 

Krathwohl. Bloom’s Taxonomy had been used as a guide in 

learning, teaching, and assessing learning outcomes for the 

past 50 years or so. It illustrates the cognitive path of 

learning from the beginning to a more advanced level of 

thinking with respect to the ordering of cognitive processes 

and learning outcomes. The Bloom’s Taxonomy has also 

been a staple in teacher training and professional 

preparation, especially for a class of students with 

heterogenic background, addressed by this study. 
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Table 5. The proposed alignment of the six teaching 

and learning strategies with Bloom’s taxonomy 

of learning outcomes. 

3. PROPOSED ALIGNMENT OF SIX 

TEACHING AND LEARNING 

STRATEGIES WITH BLOOM’S 

TAXONOMY OF LEARNING 

OUTCOMES 
In the revised Bloom’s Taxonomy, six cognitive 

processes/learning outcomes are identified, including 

remembering, understanding, applying, analysing, 

evaluating, and creating. In this study, we propose and 

exemplify an alignment of six levels of the Bloom’s 

taxonomy of learning outcomes with six teaching and 

learning strategies for teaching business students 

computational thinking and Python programming at the 

University level. The alignment table is illustrated in Table 

1. The concept of the proposed alignment will be illustrated 

by giving an example of the learning and assessment task in 

regard to each of the teaching and learning strategies in the 

following sub-sections. The given examples are adopted and 

modified from a textbook of the python course (Schneider, 

2016). 

3.1. Remembering: Learn-by-typing 

In this paper, learn-by-typing is defined as learning by 

typing the given codes to recall the learned computational 

thinking and programming concepts and syntaxes to 

complete simple programming tasks. An example of the 

learning and assessment task in regard to this teaching and 

learning strategy is shown below: 

Type the following lines of code and run to determine the 

output. 

listA = [5, -3, 6, 33, -10] 

listA.sort() 

print (listA) 

In general, students are required to type out codes and 

display the output. This teaching and learning strategy is 

appropriate for students with no computational thinking and 

programming experience. 

3.2. Understanding: Learn-by-appreciating-examples 

In this paper, learn-by-appreciating-examples is defined as 

learning by reading, appreciating and comparing the given 

examples of codes based on the computational thinking 

concepts. An example of the learning and assessment task in 

regard to this teaching and learning strategy is shown below: 

Identify the pros and cons of the following two sets of codes 

with the same expected output. 

Expected output: 

0123456789012345678901234567890123456789012345678

9 

week no  event \ holiday                    date 

2        day following mid-autumn festival  14/09 

5        national day                       01/10 

5        graduation date                    02/10 

6        chung yeung festival               07/10 

First set of code: 

print ("0123456789"* 5) 

print("{0:<9s}{1:<36s}{2:>5s}".format("week no", 

"event\holiday", "date")) 

print("{0:^9s}{1:<36s}{2:>5s}".format("2", "day 

following mid-autumn festival", "14/09")) 

print("{0:^9s}{1:<36s}{2:>5s}".format("5", 

"national day", "01/10")) 

print("{0:^9s}{1:<36s}{2:>5s}".format("5", 

"graduation date", "02/10")) 

print("{0:^9s}{1:<36s}{2:>5s}".format("6", "chung 

yeung festival", "07/10")) 

Second set of code: 

Bloom’s Taxonomy: Levels and 

Definitions 

(Anderson & Krathwohl, 2001) 

Proposed 

Teaching 

and 

Learning 

Strategies 

Proposed 

Definitions 

Remembering Memorize and 

recall learned 

materials like 

basic concepts, 

terminology, 

and facts. 

Learn-by-

typing 

(Mitamura et 

al., 2012) 

Learn by typing the 

given codes to recall 

the learned 

computational 

thinking and 

programming 

concepts and 
syntaxes to complete 

simple programming 

tasks. 

Understanding Establish 

understanding 

of learned 
materials by 

comparing, 

translating, 

interpreting 

main concepts. 

Learn-by-

appreciating-

examples 
(Guibert et 

al., 2004) 

Learn by reading, 

appreciating and 

comparing the given 
examples of codes 

based on the 

computational 

thinking concepts. 

Applying Apply learned 

knowledge to 
tackle practical 

problems in 

certain 

situation. 

Learn-by-

modifying-
open-

sourced-

codes (Saeed 

et al., 2011) 

Learn by exploring 

and modifying the 
open-sourced and/or 

given codes to 

complete the 

computational 

thinking and 

programming tasks. 

Analyzing Break down 

information to 

identify and 

make 

inferences on 

relationship or 

causes of 

different 

factors. 

Learn-by-

partial-

coding 

(Garner, 

2002) 

Learn by breaking a 

complex program 

into sub-programs 

(modules) and 

making use of the 

given partially 

completed codes to 

complete the 
complex 

computational 

thinking and 

programming tasks. 

Evaluating Make 

judgment and 
decisions after 

considering 

factors 

interfering the 

situation.  

Learn-by-

debugging 

(Lee, 2014) 

Learn by evaluating 

flaws of the given 
codes and make 

corrections based on 

computational 

thinking concepts. 

Creating Gather ideas 
and 

information to 

propose valid 

alternative 

solutions. 

Learn-by-
problem-

solving 

(Chao, 2016) 

Learn by creating 
programs with 

designated purposes 

to solve problems or 

provide alternative 

solutions based on 

computational 

thinking concepts. 



 

116 

print ("0123456789"* 5) 

print ("week 

no".ljust(8),"event\holiday".ljust(33),"date".rju

st(7)) 

print('2'.center(7), '  day following mid-autumn 

festival'.ljust(35), '14/09'.rjust(8), sep="") 

print('5'.center(7), '  national day'.ljust(35), 

'01/10'.rjust(8), sep="") 

print('5'.center(7), '  graduation 

date'.ljust(35), '02/10'.rjust(8), sep="") 

print('6'.center(7), '  chung yeung 

festival'.ljust(35), '07/10'.rjust(8), sep="") 

In general, students are required to appreciate and compare 

given sets of codes to identify their pros and cons. This 

teaching and learning strategy is appropriate for students 

with limited computational thinking and programming 

experience. 

3.3. Applying: Learn-by-modifying-open-sourced-codes  

In this paper, learn-by-modifying-open-sourced-codes is 

defined as learning by exploring and modifying the open-

sourced and/or given codes to complete the computational 

thinking and programming tasks. An example of the learning 

and assessment task in regard to this teaching and learning 

strategy is shown below: 

Write a program that requests a person to input his/her 

first name, last name, hourly rate and number of hours 

worked in Company ABC. Then the program calculates 

and displays person’s gross exactly same output as below: 

Enter your first name: Tai Man 

Enter your last name: CHAN 

Enter hourly rate: 55 

Enter number of hours worked: 40 

The gross pay for Tai Man CHAN: $ 2,475.00 

Tips: Please modify the function given below for 

calculating the gross pay in Company ABC that employees 

should be paid “time-and-a-half” for work in excess of 30 

hours in a week. 

The function for calculating the gross pay in Company 

DEF, paying “time-and-a-half” for work in excess of 40 

hours in a week is given below: 

def calGrossPay(rate, hours): 

  if hours <= 40: 

    grossPay = rate * hours 

  else: 

    grossPay = (rate * 40) + (1.5 * rate * (hours 

- 40)) 

return grossPay 

In general, students are required to modify the given set of 

codes (acts as open-sourced and/or given codes), and 

complete the program. Thus, students do not have to spend 

too much time on writing the entire program from scratch. 

This teaching and learning strategy is appropriate for 

students with limited computational thinking and 

programming experience. 

3.4. Analyzing: Learn-by-partial-coding 

In this paper, learn-by-partial-coding is defined as learning 

by breaking a complex program into sub-programs 

(modules) and making use of the given partially completed 

codes to complete the complex computational thinking and 

programming tasks. An example of the learning and 

assessment task in regard to this teaching and learning 

strategy is shown below: 

There are missing lines of code in the following program, 

please fill in the missing lines of code to complete the 

program with no errors. 

## totalScore.py 

def aboutSystem(): 

    print ("This program calculates your total 

score and letter grade.") 

    print ("Please input your mid-term, and 

final-exam score.") 

    print ("This program is made by CHAN Tai Man, 

12345678") 

## Task 1: Please add a line of missing code here  

    midterm = float(input("Enter your mid-term 

score: ")) 

    ## Task 2: Please add a line of missing code 

here    

    totalScore = midterm*0.3 + exam*0.7 

    return round(totalScore,2) 

## letterGrade.py 

def getLetterGrade(total): 

    if total >= 90: 

        return "A" 

    elif total >= 80: 

        return "B" 

    ## Task 3: Please add a line of missing code 

here    

        return "C" 

    elif total >= 60: 

        return "D" 

    else: 

        return "F" 

## getYourGrade.py 

from totalScore import aboutSystem 

from totalScore import getTotalScore 

## Task 4: Please add a line of missing code here     

aboutSystem() 

total = getTotalScore() 

letter = getLetterGrade(total) 

 

## Task 5: Please complete the missing code below 

print ("Your total score is " + _______ + ", and 

your letter grade is "_________ "." ) 

In general, students are given a set of incomplete coding and 

were asked to fill in lines of codes or fill in the blanks to 
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complete the program. This teaching and learning strategy is 

appropriate for students with considerable computational 

thinking and programming experience. 

3.5. Evaluating: Learn-by-debugging 

In this paper, learn-by-debugging is defined as learning by 

evaluating flaws of the given codes and make corrections 

based on computational thinking concepts. An example of 

the learning and assessment task in regard to this teaching 

and learning strategy is shown below: 

In the following lines of code, identify all errors. 

line = (“The”, “only”, “way”, “to”, “do”, 

“great”, “work”, “is”, “to”, “hate”, “what”, 

“you”, “do”) 

line[9] = “love” 

print (“ ”.join(line)) 

In general, students are asked to find out flaws and error of 

the codes provided. This teaching and learning strategy is 

appropriate for students with considerable computational 

thinking and programming experience. 

3.6. Creating: Learn-by-problem-solving  

In this paper, learn-by-problem-solving is defined as 

learning by creating programs with designated purposes to 

solve problems or provide alternative solutions based on 

computational thinking concepts. An example of the 

learning and assessment task in regard to this teaching and 

learning strategy is shown below: 

Mr. Lee just started his own business with very limited 

budget. Although it is a small store, he has lots of products 

needed to be managed. Without a store management 

system, it is very difficult for him to keep track on his 

product in store and carry out any stock control.  Yet, he 

does not have spare money to purchase one. To help Mr. 

Lee to solve this business problem, you are asked to create 

a program using Python that can perform basic store 

management function, including creating invoice table in a 

database file, insert data into the invoice table in a 

database file, make query and request information 

corresponding to certain criteria. The entities and the data 

types should be included in the system are shown in the 

table below. 

 

In general, students are asked to solve a business problem by 

using computational thinking and programming skills. This 

teaching and learning strategy is appropriate for students 

with rich computational thinking and programming 

experience. 

4. FEEDBACKS FROM STUDENTS AND 

INSTRUCTORS 
All six teaching and learning strategies were addressed and 

demonstrated through examples from the learning and 

assessment tasks given to students of the Python course in 

the Semester A of the academic year of 2019/20. After the 

semester was ended, we collected feedbacks from both 

business students and instructors about the Python course. 

Some of the comments were captured and shown in the 

following subsections. 

4.1. General Comments from Students 

Some feedbacks are captured from the students of the 

Python course via an e-learning platform and presented in 

the following: 

• I like this course as it provides a basic knowledge of 

Python, which help me understand how python works. 

• I can catch up the lesson because of the uploaded 

examples and exercise. It is easy for me to follow the 

class. I think the examples, exercise and assignment are 

really useful for me to understand the chapter. 

• Also, source codes are given to us, so we do not have to 

work from scratch, but to understand how to apply the 

programming languages to different scenarios. 

• More actual examples and application of alternating 

items in a text file and analyzing the Data in a CSV File 

with a List as personally they are the most challenging 

sections in the course, but they are useful and essential 

skills applied on workplace. 

4.2. General Comments from Instructors 

Some feedbacks are captured from the instructors of the 

Python course via an interview, and presented in the 

following: 

• Students were from a wide range of programming 

experiences. Some students had rich experience in other 

programming languages and struggled to accommodate 

the syntax that they learned in other programming 

courses to Python programming syntax. Examples and 

open-sourced codes help students to accommodate in 

using Python programming language.  

• Students appreciated practical examples and scenarios 

that can solve problems or facilitate works for people in 

business settings. The assignments for problem solving 

also showed how students utilize open source code, 

acquired programming knowledge, and their creativity to 

provide alternative solution for the situations. 

• At the beginning of the course, students needed more 

time for each assignment, even for those who had some 

programming training prior to the course. But as the 

course goes on, students with experience in 

programming started to overcome their legacy, they tried 

to help students who are new to programming. As 

students begin to help each other, collective 

programming happens which lowers the workload and 

burden from the teaching assistants’ perspective. Time 

used for each assignment significantly decreased. 



 

118 

• A fixed marking scheme is preferred at the beginning of 

the course as to ensure students to learn the correct 

syntax of Python. Yet, after students get used to writing 

programming language, especially for those students 

with previous programming experience, they tried to 

combine or implement what they have learned in 

previous programming courses to the Python class, 

which leads to unexpected learning outcomes. Thus, 

fixed marking schemes might not be applicable at this 

point of the course. 

5. CONCLUSION AND FUTURE WORK 
To conclude, the main contribution of this paper is to 

propose and exemplify an alignment of a set of six teaching 

and learning strategies with the six levels of the Bloom’s 

taxonomy of cognitive processes / learning outcomes 

(Anderson & Krathwohl, 2001) for teaching Python 

programming for business students (with different computer 

programming background) at the University level. 

University lecturers could use these six proposed teaching 

and learning strategies as a guideline to design their course 

contents and materials for teaching Python in the University 

level. 

In this paper, feedback from both instructors and students 

are captured. Most of the comments are positive towards the 

proposed teaching and learning strategies, which indicated 

that the teaching and learning strategies are useful for better 

students’ learning experiences, especially for those without 

computer programming background. 

For the future research direction, empirical studies with 

large sample size and more robust measurement are 

suggested for examining the effectiveness of the six 

proposed teaching and learning strategies of teaching Python 

programming for students of different majors and computer 

programming backgrounds. 
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ABSTRACT 

Since Jeannette Wing proposed Computational Thinking 

(CT) as a fundamental skill to everyone (Wing, 2006), CT 

has become a phenomenon. In addition, it has been verified 

by program accreditation and employer requirements that 

undergraduate students in STEM need to develop higher-

order thinking and metacognitive skills in problem solving. 

Thus, in our institution we intended to teach CT to students 

in Applied Science majors and support them to master the 

CT skill. While developing a CT course, we noticed that 

there was little agreement on what and how to teach CT.   In 

this paper, we examine the CT course and provide a review 

that addresses two questions: 1) What to teach CT and 2) 

how to teach CT effectively.  More specifically, we present 

the course topics covered in the CT course and describe six 

teaching strategies we utilized to engage students in learning 

and doing CT.  While analyzing the course development 

reflectively, we become informed to continually improve the 

course in order to teach CT effectively in future. 

KEYWORDS 

computational thinking, course development, Applied 

Science majors, problem solving, student-centered learning 

1. INTRODUCTION 
Undergraduate students in STEM need to develop higher-

order thinking and metacognitive skills in problem solving, 

which is verified by program accreditation documents and 

employer requirements. In addition, since Jeannette Wing 

proposed Computational Thinking (CT) as a fundamental 

skill to everyone (Wing, 2006), CT has become a 

phenomenon. According to Hu (2011), CT is present not 

only because of the nature of computation but also because 

of the way how people think critically—people gain 

different kinds of critical thinking capabilities through 

variety of means in CT.  In our institution, we intend to teach 

and promote CT explicitly, and believe that every student in 

Applied Science disciplines such as Informatics, Cyber 

Operations, and Network Operations must master the CT 

skill.  In the Applied Science programs, students can use the 

CT course as a critical thinking course to meet their Bachelor 

degree requirement.   

How to support students to develop the CT skill? Research 

works done on thinking processes convinced that thinking 

skills were most effectively taught when teaching them 

directly and deliberately (Bono, 1992). Guzdial (2008) also 

pointed out “the metaphors and ways of thinking about 

computing must be explicitly taught.”  To exploit the idea to 

teach CT explicitly, we developed a CT course and offered 

it to students in the Applied Science programs.  By viewing 

CT as a skill in general, we intend to teach CT by supporting 

students to acquire CT as competencies over time with 

practice but not facts or information compiled during the 

student learning process.  

While developing the course, we found that even though CT 

had drawn a lot of attentions and become a popular subject, 

there was little agreement on what should be taught and how 

to teach CT effectively.  For our CT course development, we 

designed the course by investigating literatures and 

resources on CT as well as the prior skills and knowledge of 

students who we intended to teach and support. Especially, 

in our approach we used Kansanen’s didactic triangle 

(Kansanen, 1999) as a framework to design and evaluate the 

course content, considering what and how students would 

learn, what instructor’s roles would be, and how students, 

instructor, and course content should work together using a 

student-centered approach to deliver the course.   

In particular, to engage students into the teaching/learning 

process, we applied the preference matrix focusing on the 

two key dimensions including “make sense" and “get 

involved" to develop the CT course.  The preference matrix 

method is based on an observation (Paxton, 2006): If an 

individual can “make sense" of and “get involved” in the 

course learning environment, the individual prefers the 

environment and then it is likely that the person will spend 

time within the environment; As a side effect of “make 

sense" and “get involved", learning will take place, which 

leads the individual to function effectively and have a 

productive learning.   Moreover, we strongly believe that 

students are able to acquire the CT skill through hands-on 

projects.  Therefore, we utilized problem-based learning 

(PBL) to engage students with hands-on projects, and 

students actively involved in doing CT practice persistently 

during the course delivery terms.  

To summarize what and how we did, we centered our 

teaching on engaging and supporting students so that 

students conducted their learning by solving problems in 

multiple projects throughout every course delivery term.  In 

parallel with the problem-solving activities, the course 

supported students to direct a self-regulated learning that 

refers to “the process whereby learners personally activate 

and sustain cognitions, affects, and behaviors that are 

systematically oriented toward the attainment of personal 

goals” (Zimmerman & Dschunk, 2011). Additionally, the 

course utilized writing, which provided one of the best ways 

to help learn the active, dialogic thinking skills according to 

Bean and Weimer (2011). 

In this paper, we examine the course development and focus 

on addressing two questions: 1) What should be taught in 

order to support students to develop the CT skill, and 2) what 

are the effective teaching strategies, i.e., how we can teach 

and promote CT to the Applied Science majors effectively 

during the learning process.  While developing the course, 
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we have persistently and reflectively touched on the two 

questions.  Section Course Topics presents the covered CT 

topics when delivering the course in our institution.   Section 

Teaching Strategies focuses on two aspects: 1) Practice CT 

skills by solving problems; and 2) explicitly guide learners 

to promote meta-cognitive awareness and conduct guided 

learning on CT.  Section Findings presents four course 

deliveries by an instructor and discusses the impacts of 

course topics and teaching strategies on student learning.  

Finally, Section Conclusions concludes the study. 

2. COURSE TOPICS  
Among the CT literatures, we couldn’t find a clear-cut 

definition of CT.  In this paper, we highlight a definition 

Wing presented in a later paper (Wing, 2011), where she 

defined CT as “the thought process involved in formulating 

problems and their solutions so that the solutions are 

represented in a form that can be carried out by an 

information-processing agent.”  The CT course development 

was based on the fact that CT uses a set of concepts drawn 

from Computer Science (CS) to solve problems and design 

systems.  To help students to understand and practice CT, 

we designed the course for students to develop a foundation 

of CT concepts and techniques, practice the various CT 

tools, and eventually synthesize them in critical thinking and 

problem solving. 

When developing the course, we didn’t intend to come up 

with an ultimate definition of CT to students.  Instead, we 

explored various definitions and guided students to identify 

recognizable CT concepts such as abstraction, simulation, 

and algorithm design. While introducing multiple CT 

definitions, we highlighted Wing’s arguments and 

definitions on CT so that students could see how the 

definitions, concepts, techniques and tools are related and 

put together.  More specifically, we proposed a list of course 

topics including introduction to computational thinking, 

algorithm design, programming languages, data abstraction, 

programming in Python, thinking Object Oriented (OO), 

abstraction, simulation, shell programming in UNIX, and 

theory of computation. 

First, we started the class with the instruction topic to allow 

students develop insight on what is CT, what are available 

CT definitions by researching CT literatures in ACM digital 

library and other online resources addressing CT. Students 

compared, analyzed, and identified the concepts and skills 

between the CT definitions and from what aspects people 

think about CT.  After the introduction topic, student learned 

algorithm representation and creation in pseudo code that 

was written in Python style.  (Python was used as the 

primary programming language in class.) After the 

algorithm topic, students learned variables and expressions, 

control structures, programming paradigms, and data 

structures in Python and bash.  While students were 

acquiring knowledge on the essential concepts and 

techniques in programming languages, they also utilized and 

practiced programming to explore meanings of the CT 

concepts as well as problems such as Caesar cypher coding 

and random walking.  Later, students further studied how to 

think in terms of objects, form communities by putting the 

objects/agents to act together, and design systems based on 

system behaviors and agent responsibilities. While 

exploring OO programming in Python, students used Python 

code to conduct simulation, and analyzed the steps of a 

simulation study.  In addition, student studied theory of 

computation to understand what computers can do and what 

they cannot do in practice.  

Through the course, we intended to support students to 

define and identify CS terms and concepts in CT; analyze 

and estimate what and how computers do; program 

operations in at least two programming languages (Python 

and bash); and apply CT to solve problems and design 

systems in practical applications.  Among the topics, we 

emphasized concepts including algorithm, programming, 

and abstraction in a problem-solving context.  When 

approaching problems, students needed to apply abstractions 

and make transitions among the different levels of 

abstractions.  Students learned to use, analyze, and create 

algorithms by applying tools such as decomposition and 

generalization along with others such as planning and 

evaluations.   

We introduced programming quite early in the course so that 

students were able to use programming as a vehicle to 

practice CT rigorously. Through programming, students 

were able to realize the power of computing by bridging the 

gap between informally expressed problems and formal 

solutions. They learned to invent formalisms by coming up 

with operations they designed and implemented.  While 

programming, students approached to write procedures and 

functions in imperative program modules and later moved to 

program objects and classes using OO programming 

paradigm.   

Note that in the course development we viewed CT as a skill 

rather than a set of knowledge facts.  Such view was 

remarkable to guide our course development when we were 

deciding how to assess student learning while addressing the 

various concepts, techniques, and tools.  We believe the 

course topics must be relevant and make sense to students 

regarding CT, and the CT skill must be acquired and 

constructed while students are doing CT and deeply 

involved in the learning process.  Therefore, we carefully 

designed the learning assessment focusing on skill 

acquisition and CT development among students. To 

accomplish the learning goals, we used quizzes, online 

discussion, and programming/writing assignments. In 

particular, we included a final project where students needed 

to solve a problem.   

3. TEACHING STRATEGIES  
To effectively teach CT, we employed multiple teaching 

strategies to build a student-centered learning environment 

focusing on problem solving and guided learning with 

student self-awareness. 

3.1. Problem Solving and Skill Construction 

According to Lu and Fltscher (2009), CT provides a 

conceptual way to “systematically, correctly, and efficiently 

process information and tasks” to solve problems.  We argue 

that CT is a skill that students acquire so that they can think 

like computer scientists to approach problem solving.  Even 

though problem-solving skills are not specific to CT, as John 
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Dewey (1916) rooted critical thinking in the students’ 

engagement with a problem, we recognized that problem 

solving was relevant to engaging and promoting CT, and 

intensively employed problems to stimulate thoughts and 

inspire learning while developing the CT course.   

3.1.1.  Strategy 1: Scaffold with Progression Model 

During the learning process, we guided students to learn 

using a progression model composed of three steps: use, 

modify and create. We intended to use the model as a pattern 

of engagement to support student learning and maintain a 

level of challenge while avoiding too much learning anxiety.  

To practice a tool such as data abstraction, students used data 

structures such as arrays, lists, and dictionaries, to approach 

pre-defined tasks including file processing and behavior 

simulation. Then, we provided code that approached a 

problem with an incomplete solution.  Students needed to 

modify the given code, trace execution steps, and 

empirically explore data structures being practiced in order 

to approach a complete solution. For the last step of the 

progression model, students needed to create customized 

data structures while approaching a problem.  When 

designing the course content, we carefully conducted 

scaffolding the course materials to support student learning 

using the three-step progression model.  

3.1.2. Strategy 2: Break Down and Synthesize 

To align with the root of CT in problems, while introducing 

CT to students during the first topic, we referenced and 

shared the operational definition of CT introduced by 

International Society for Technology in Education (ISTE).  

The definition defines CT as a problem-solving process with 

characteristics including: formulating problems in a way that 

enables us to use a computer and other tools to help solve 

them; logically organizing and analyzing data; representing 

data through abstractions such as models and simulations; 

automating solutions through algorithmic thinking; 

identifying, analyzing, and implementing possible solutions 

with the goal of achieving the most efficient and effective 

combination of steps and resources; and generalizing and 

transferring this problem-solving process to a wide variety 

of problems. The operational definition provides a 

breakdown of CT skills for both the instructor and the 

students to identify and connect the key concepts and means 

in CT.  Our objectives to teach CT consist of the acquisition 

of the ability to apply the CS concepts and techniques 

flexibly and creatively in a variety of contexts and situations. 

The course intentionally introduced the means and tools in 

CT such as algorithms, data structures, abstractions, thinking 

Object Oriented, and programming so that students were 

equipped with tools when they were approaching problems 

designed in the course assignments and the final project. The 

set of assignment problems was well structured and designed 

to promote learning in purposeful and engaging activities.  

The final project was to support students to synthesize their 

learning on CT and transfer the CT skill to problem solving.   

3.1.3. Strategy 3: Abstract to Solve Problems 

While referencing the ISTE operational definition of CT, the 

course development focused on the core CT skills identified 

by Selby and Woollard (2013), including abstraction, 

algorithmic thinking, decomposition, evaluation, and 

generalization. According to Kramer (2007), abstraction is 

the key to computing. In the CT course, we guided students 

to explore how to use abstraction to model problems and 

create solutions. To highlight the concept, we explicitly 

taught abstraction as a topic after introducing procedural and 

algorithmic thinking. In addition, when exploring CT from 

multiple aspects, students experienced practicing multiple-

level abstractions with other tools such as programming and 

simulation. We also followed what Hazzan (2008) suggested 

that we should educate students to move between 

abstractions consciously.  In particular, in our course 

development, we applied instructional scaffolding strategies 

to teach the various levels of abstractions involved in CT 

including data representation, procedures, objects, and 

problem solving.   

3.2. Guided Learning and Self-Awareness  

According to Kaplan & Kaplan (1983), the single most 

effective step one can take in improving the process of 

sharing knowledge is understanding and respecting the 

cognitive requirements of the intended recipient.  The CT 

course development supported learners to promote 

metacognitive awareness, and built multiple channels for 

students and the instructor to interact and facilitate the 

student-centered learning process.  

3.2.1. Strategy 4: Set Up Learning Goals and Objectives  

While designing the CT course, we were aware that students 

needed to be coached to become self-regulated learners.   

The CT course development carefully presented the learning 

goals for students to accomplish from the beginning and 

throughout the course term.  For each learning topic such as 

algorithm or programming, there were learning objectives 

and activities explicitly instructed to students.   During the 

learning process, we used the course goals and module 

learning objectives to support students to monitor and assess 

their learning persistently. At the beginning of each course 

term, we informed every student and expected him or her to 

be proactive and reflective.  While the student was 

progressing the learning process, he or she needed to 

constantly evaluate instructor/peer feedbacks and comments 

as well as learning performances, and gradually the student 

adjusted his or her learning approaches to master the CT 

skill, and developed self-regulated learning skills on 

thinking computationally.  

3.2.2. Strategy 5: Engage to Read Critically  

To effectively approach each subject covered in the CT 

course, students needed to read critically to gain essential 

conceptual knowledge and comprehension.  Additionally, 

we aimed to support students become engaged readers on the 

CT topics.  Our reading-engagement models emphasized on 

students’ motivational beliefs such self-efficacy, interest, 

and value (Guthrie & Humenick, 2004).   First, the course 

had a required textbook to cover algorithm, programming 

languages, data structures, and theory of computation.  For 

more practical subjects such as programming in Python and 

bash, we provided hands-on notes and an online interactive 

book to guide reading and practice programming.  In 

addition, we provided optional reading materials including 

podcasts, videos, and Voice Thread slides available online.  

To make sure students get involved in reading, we utilized 
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reading-quizzes, practice assignments, and online 

discussions.     

3.2.3. Strategy 6: Write Reflectively and Persistently  

Hazzan (2008) suggested conducting reflections and stated 

that reflection “increases one’s awareness of the objects with 

which one thinks, and may therefore systematically and 

consciously lead one to think …” We exploited writing and 

reflections as two primary means to guide students to deepen 

their understanding on the CT concepts and develop the CT 

skill iteratively. To implement the writing strategy to teach 

CT, we deliberately required students to conduct weekly 

reflective writing to recognize, evaluate, and refine their 

learning on CT as well as stages of problem solving. To 

guide the weekly reflective discussion, we designed a set of 

scaffolding online-discussion questions with the expectation 

that student would write and unfold the computational 

concepts that form the foundation of CT. Moreover, in their 

reflective writing, students described their learning state and 

provided details for the instructor to monitor student 

learning.  

4. FINDINGS 
The CT course developments aimed to support a student-

centered, participatory approach to teach and learn CT skills.  

We present what we found in the below subsections.  

4.1 Course Deliveries  

The course was initiated in 2013.  Since then, we offered the 

course annually and in 2017 we started to offer it two times 

each year.  In this paper, we would like to discuss the most 

recent four course deliveries offered by one single instructor.  

Table 1 presents the overview of the four course deliveries. 

In spring 2016 and spring 2017, we offered the course using 

16 weeks.  In spring 2016, 26 enrolled the class, one 

dropped, and one failed to pass it.  In spring 2017, 31 

enrolled, two dropped and two failed the course.  In fall 

2017, we offered the same course within 7.5 weeks.  There 

were 31 students enrolled, one dropped, and two failed.  In 

summer 2019, the course was offered within 7.5 weeks.  

There were 15 students enrolled and one student failed. 

Based on the Teacher-Course-Evaluation (TCE) reports 

collected by the end of each term, the teaching effectiveness 

is 4.65 over 5 in spring 2016, 4.32 in spring 2017, 4.65 over 

5 in fall 2017, and 4.57 in summer 2019.   The TCE numbers 

are positive to indicate that our teaching on CT has been 

effective.   

Table 1. Overview of Course Deliveries 

 
Enrollment/ 

Dropped/Failed  

No. Of 

Weeks 
TCE 

SP 2016 26/1/1 16 4.65 

SP 2017 31/2/2 16 4.32 

FA 2017 31/1/2 7.5 4.65 

SU 2019 15/0/1 7.5 4.57 

Since we employed programming as the primary means to 

carry out abstraction and automation while students were 

practicing the CT skill, we asked student input at the 

beginning of each term so that we were aware of their prior 

knowledge and experiences on programming.  Due to a new 

and quickly growing Cyber Operations program developed 

in our institution, we’ve learned that more students enrolled 

in the course with little CS or programming experience. In 

2016, about 40% of the students who enrolled the course had 

very little programming experience prior to the class.  In 

spring and fall 2017, the numbers were about 60% and 75%.  

In summer 2019, only one of the 15 students had prior 

programming experience.   

By monitoring student performance data and how students 

conducted their learning process, we observed that usually 

students were able to identify the CT concepts rapidly.  For 

the reading quizzes, which we designed to assess how 

students understood the CT concepts, all 25 students who 

completed the course had passing grades (C or better) in 

spring 2016, one of the 29 students in spring 2017, two of 

the 30 students in fall 2017, and two of the 15 students in 

summer 2019 failed to pass the reading quizzes.  For the 

online discussion component, which we employed to assess 

how students explained and applied the CS concepts in 

writing, only two of the 23 students didn’t pass the online 

discussion component in spring 2016, four of the 29 students 

didn’t pass in spring 2017, and four of the 30 students failed 

the online discussion in fall 2017.  In summer 2019, one 

student failed online discussion.  

In addition to analyzing student learning performance on 

reading quizzes and online discussions, we also investigated 

how students conducted CT to solve problems.  Based on 

student learning performances on the assignment questions, 

which required students to apply and synthesize the means 

and tools in CT to address, we found three students in spring 

2016, seven students in spring 2017, three students in fall 

2017 and two students in summer 2019 failed to pass the 

assignments.  In fall 2017, we started to provide a few more 

problem-solving hints on the coding assignments based on 

student questions and feedback comments we collected from 

students enrolled in spring 2017.   The revision certainly 

helped students in fall 2017 to succeed their assignments. In 

summer 2019, we tried adding more programming 

components to support students practice Object Oriented 

(OO) programming and simulation, which followed a 

suggestion from the Cyber Operation program.  The new 

added programming activities to employ OO programming 

paradigm certainly provided more practice for students to 

think OO and program simulation more rigorously.   

However, we also observed that the additional OO 

programming paradigm introduced in the short summer term 

generated more confusion between procedural and OO 

programming. And two students failed their programming 

assignments in the past summer.   

Although students reported that practicing CT in the 

assignments and the final project increased their 

professional skills, it was obvious that students had 

difficulty on synthesizing the CT means and tools into their 

final project.  In 2016, three of the 25 students who 

completed the course failed the final project even though 

two of the three students still completed proposing their 

projects and reported their progress on project development.   

In spring 2017, seven students didn’t complete the final 

project but six of them completed their proposals and 

progress reports. In fall 2017, we delivered the course using 

7.5 weeks, half of the time that we spent to deliver the course 

in the previous two spring terms.  We found six students 

were not able to propose their projects and another six 
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students didn’t submit their project posters. In summer 2019, 

based on our collected 7.5-week teaching experiences, we 

updated the final project by asking students to solve a single 

problem.  In the revised final project, the program statement 

was provided and students needed to model the problem and 

implement their solution in Python. However, based on the 

final project submissions, the revision didn’t improve 

student learning performance: only two thirds of the students 

created and implemented solutions to the problem, and the 

other five students failed to approach the final-project 

problem. Note that since the final project was the designated 

final exam, which contributed 15% of the overall grade, 

some students chose not to complete their final projects due 

to their busy schedules during the final exam period, 

especially if they felt satisfied with their accumulated 

grades.  Thus, the performance data on the final project 

might be depressed to represent how students learned to 

employ CT to solve problems.  Nevertheless, by analyzing 

the learning data and student comments in fall 2017 and 

summer 2019, we think that the shorter terms didn’t work 

well as the longer ones for students to transfer their CT skill 

into problem solving while approaching the final project.   

4.2 Discussion  

Based on TCE reports and comments at the online 

discussion forums, students reported that they enjoyed and 

engaged in reading the course materials, and they liked how 

the course used the online discussions in conjunction with 

the assignments and reading quizzes to make all work 

together, and the online reflective writing contributed to 

establish a safe environment where students felt like they 

could be open and not get criticized. As they built the 

supportive, inclusive learning community, most students 

were willing to put more efforts to deal with the learning 

challenges even though they admitted several of the course 

topics could be overwhelming.  

The course topics covered programming in Python and bash, 

which we essentially intended to provide two problem-

solving contexts to tackle abstractions and automate 

execution of algorithms.  Programming was a focal point in 

the CT course development to carry out important concepts 

and skills in authentic contexts of use.  Even though students 

perceived programming as the most challenging subject, we 

observed that programming was engaging for students, 

especially for students who had little or none programming 

experience, to master as a means to express algorithms and 

accomplish abstractions and automations.  However, we 

were also aware and let students well informed that 

programming and CT are not equivalent and programming 

is but one context for the practice of CT (Voogt, Fisser, 

Good, Mishra, & Yadav, 2015).  

Note that we utilized programming in our course rightly 

after CT was introduced and students finished the topic 

algorithm. We delayed programming later than introducing 

CT so that students could acquire a bare model of CT first 

instead of being overwhelmed with programming and 

programming languages since the beginning.  Considering 

the students in the Applied Science disciplines had various 

programming experiences and some of them had none, we 

were concerned that premature attempts to introduce 

programming with CT simultaneously could lead to 

confusions on understanding CT and failures to see the 

relevancy of the other course topics to CT.   We believe such 

arrangement was fruitful---the writing reflections affirmed 

that students were able to understand CT and connect the CT 

skill to the various topics we practiced during each delivery 

term.  

One critical learning component in the course development 

was the programming assignment part, which was designed 

based on Problem Based Learning (PBL).  In PBL, it is 

common to give students a large ill-defined problem and let 

students figure out how to resolve it.  Such practice is useful 

for students to practice tolerating ambiguities, to identify 

and formally define problems.  However, to avoid 

overwhelming students, we carefully provided well-defined 

problems in each programming assignment so that the 

assignment problems were able to promote learning with 

purposes and challenges.  Student learning performance was 

mostly positive while students were practicing CT in the 

assignments.  The learning reflections and TCE comments 

also indicated that students were challenged and deeply 

engaged in resolving the problems computationally.     

Nevertheless, for the 16-week deliveries and the first 

shorter-term delivery, we asked students to propose 

problems and create solutions in their final projects.  We 

found that students had hard time to transfer the topics 

including programming into problem solving in their project 

development, especially when they were in charge of 

modeling their own problems of interest.  In the most recent 

summer-term delivery, even with the provided problem 

statement describing a task to extract networking frame data, 

student performance data indicated that students were 

challenged significantly when they needed to synthesize 

various tools in CT as well as programming to create the 

problem solutions.   

On the other hand, it was obvious, based on the student 

reflections and TCE comments, that the use-modify-create 

model helped student to make progress and acquire the CT 

skill and competencies gradually. Even for the shorter terms 

including fall 2017 and summer 2019, most students 

commented that the course delivery paced well. For students 

who had no prior programming experience or just returned 

back to school, their input including midterm surveys 

regarding learning progression was positive.  However, 

since programming has been used as the primary means to 

express problem models and implement solutions, for 

students who hadn’t done any rigorous programming before, 

creating a sound and complete solution to a problem was an 

intimidating challenge.   Especially, based on the learning 

performances on the final project in the four course 

deliveries, we found that the complexity to move around the 

multiple-level abstractions when solving a complex problem 

and/or conducting a self-regulated project learning on the 

final project required time and practice for students to move 

around and gradually generalize and transfer the CT skill 

between problem contexts.  

We found that the learning reflections we conducted were 

definitely helpful for students to retain their knowledge 

cognitively and ensure the whole learning make sense to 

students.  During the learning process, the writing provided 

reliable, persistent learning traces for the instructor to 
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support student learning. The student reflections revealed 

the various backgrounds of the Applied Science majors.  

While reflecting what they were learning, students also 

brought up different knowledge and skill frameworks, which 

led to acquire the CT skill in different manners.  

Additionally, the learning reflections effectively involved 

both students and the instructor to be aware of the learning 

obstacles as well as critical issues to address.  It was not 

unusual to see some students described that they couldn’t 

continue due to certain programming bugs they confronted 

or they had no clue on how to approach a problem. In 

response to such reflections/questions, the instructor would 

guide their thinking, point out learning materials to refresh a 

review, and set up meetings to discuss the issues if 

necessary.  Moreover, their peers often recommended 

problem-solving approaches or external materials/tips they 

found helpful.  Last but not the least, since the course 

development required persistent learning reflections, writing 

became part of the systematic process for students to 

regulate and monitor their learning.  Students became better 

communicators by transmitting and receiving messages 

clearly and reading the input from their peers and the 

instructor.  

5. CONCLUSIONS 
To draw our conclusions, we present and provide a review 

on a course development that intends to promote and teach 

CT to students in Applied Science disciplines. In particular, 

we address the questions including what and how to teach 

CT by identifying six effective teaching strategies.   Our 

investigation focuses on the course content, students, and the 

instructor as well as relationships among the various 

learning components.  Based on student learning outcomes 

and performances, we conclude that the course development 

is promising to engage and teach students to acquire CT as a 

skill to solve problems computationally.  While we become 

more informed by analyzing and reflecting on the course 

development, we hope the course design and teaching 

strategies could be useful for our colleagues when they teach 

similar courses in their institutions.  
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ABSTRACT 

Artefact creation as part of constructionist approaches 

towards learning has seen an increase pertaining to the 

growth and ease of availability of design tools. Projects that 

involve artefact creation allows the learner to experience the 

problem solving process while being situated in a real-life 

context. Tinkering is one such approach to problem-solving. 

In this paper, we present a design of our tinkering 

intervention for teaching and learning of computational 

thinking. The intervention is a composition of four major 

components, namely the Pedagogy, Problem, Resources and 

Mentor. The proposed Explore-Solve-Evolve pedagogy 

incorporates aspects of constructionism, progressive 

formalisation, learning situated in a real-life context and 

immediate feedback for reflection. Lego Mindstorm is 

provided as a building resource, and an app seamlessly 

provides information about the resources. The mentor 

encourages the learners towards exploration and play with 

the resources in the problem space and scaffolds them with 

strategies to overcome challenges. A proposed study has 

been discussed to further understand the development of CT 

with tinkering. The paper is concluded with presenting the 

mapping between the phases of our intervention and the 

three dimensions of the CT framework. 

KEYWORDS 

computational thinking, tinkering, intervention, robotics 

1. INTRODUCTION 
Computational thinking has been defined as “The thought 

processes involved in formulating problems and their 

solutions so that the solutions are represented in a form that 

can be effectively carried out by an information-processing 

agent” (Brennan & Resnik, 2012). Computational thinking 

has been taught not only through programming but also 

through activities like playing games, building a robot to 

solve challenges, creating e-textiles and range of activities 

that involve concepts of computational thinking. The idea is 

to be able to express yourself using computational artefacts 

which have been identified as an essential aspect of 

computational literacy. While developing artefacts, learners 

also deal with failure in physical components and 

compatibility issues that can be frustrating. However, they 

are an essential part of solving problems where one is often 

required to use of computational thinking, not limited to just 

writing code (which has been termed as the material aspect 

of CT). In addition to the material aspects of CT (which is 

the how), learning-environments that include artefact 

building as a part of the problem-solving process also focus 

on the social (which is the where and whom) and extends it 

to the cognitive aspects ( which describe the why). Building 

artefacts to solve a given problem situates the problem-

solving process in a physical context that is closer to an 

authentic scenario. 

One such practice that includes artefact creation with 

problem-solving is tinkering. It has been considered as a 

novice and expert practice which sets it apart from most of 

the classroom practices (Danielak, 2014). It does not make 

tinkering better or worse but it does make it an authentic 

professional practice (Berland, 2016). Tinkering provides 

the opportunity to work in a realtime environment with 

immediate feedback on actions taken hence making it a 

potential means for developing computational thinking. We 

believe that tinkering with robotics kits like Lego 

Mindstorm provide a medium and opportunities for the 

development of computational thinking. We are interested 

in the ways that tinkering activities with programmable 

tangible robotics kits, like the Lego Mindstorm, can support 

the development of computational thinking in students in 

higher education which is highly dependent on learning of 

programming languages (Brennan & Resnick, 2012). 

2. THEORETICAL BASIS 

2.1. CT Framework 

Computational-Thinking has further been classified into CT 

Concepts that learners develop while learning to program 

like loops, conditionals, sequences, parallelism, data 

structures, operators, event handling, procedures and 

initialisation. CT Practices that learners repeatedly 

demonstrate in the programming process like problem 

formulation, problem decomposition, abstracting and 

modularising, algorithmic thinking, reusing and remixing, 

being iterative and incremental, testing and debugging. CT 

Perspective’s talk about the Learners’ understanding of 

themselves and their relationships with others and the world 

of technology, also termed as Computational Identity 

(Brennan & Resnik, 2012). It also includes programming 

empowerment as well as provides a perspective of 

expressing, connecting and questioning with programming. 

The elements of CT as mentioned earlier in its three 

dimensions have also been included in the operational 

definition of CT for K-12 education by the International 

Society for Technology in Education and Computer Science 

Teachers Association (ISTE & CSTA, 2011). 

2.2. Tinkering Practice 

The growing availability design tools have led to a 

commitment to learning through design activities in a 

constructionist approach (Harel & Papert) to a level of 

learning that highlights the importance of young people 

engaging in the development of external artefacts (Kafai & 

Resnick, 1996). Besides, progressive formalisation 

(Bransford, Brown & Cocking, 2000) requires teaching to 

be designed to encourage students to build on their informal 

ideas in a gradual, structured manner that enables them to 

acquire the concepts and procedures of the discipline. 

Moreover Learning situated in a real-life context (Bransford, 

Sherwood, Hasselbring, Kinzer, & Williams, 1990) enables 
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a better understanding of abstract concepts by establishing 

there need in a real-life context using everyday examples. In 

addition to situated learning, play becomes an essential tool 

for learning in real-life context as it allows experimentation 

with the available resources and one's ideas in the actual 

problem space with just in time feedback that enables 

reflection. It also allows one to take multiple perspectives on 

an action and its impact, which is an essential social skill for 

the development of the mind (Bailey, 2002). Tinkering has 

been addressed to be at the intersection of all the above 

(Roque, Rusk & Blanton, 2013). A definition of tinkering 

calls it as a playful, experimental, iterative style of 

engagement, in which people are continually reassessing 

their goals, exploring new paths, and imagining new 

possibilities (Honey & Kanter, 2013). Here play has been 

referred to as experimental play. Tinkering provides a 

multitude of possible paths taken progressively while 

situated in problem space working with immediate 

feedback. 

2.3. Explore-Solve-Evolve Pedagogy 

Based on our synthesis from the literature on tinkering for 

problem-solving, we have identified a few operational 

aspects of tinkering as Exploration, Play and Reflection. 

Exploration is used to determine the affordances or can 

do’s of the available resources and possible solution or want 

to do for the problem at hand. Play is used to determine if a 

solution could emerge by mapping the can do’s and want to 

do’s. Reflection is used to overcome states 

of stuck and fixation that arise due to unexpected 

contingencies (exception violation (Schank, 1983)) or 

failure. Using strategies like questioning, repurposing, 

reflective strategies on productive failure (Kapur, 2008) 

provide the means to overcome such challenges. Reflection 

on the tinkering trajectories to enable modification of 

understanding and learning about the problem space. 

We used the above operational aspects along with tinkering 

frameworks like Spark, Sustain and Deepen (Honey & 

Kanter, 2013), and Think, Make and Improve (Martinez & 

Stager, 2013) to derive a three-phase pedagogy named 

Explore, Solve and Evolve for taking a tinkering approach 

to computational thinking. The features of free exploration 

to capture intrinsic motivation have been incorporated in the 

explore phase. Progressive formalisation has been 

implemented in all the three phases of explore, solve and 

evolve. In explore learners start with small problems situated 

in context robotics, which requires them to interact with the 

physical space using the components of the robotics kits to 

solve the problem. In the problem given in the solve phase 

allows the learners to build their solutions with small 

component problems solved in the previous phase. This 

method also allows the reuse and iteration of previous 

solutions. Finally, in evolve, the learners frame and solve a 

problem to advance the solution they develop in the solve 

phase. The learning environment comprises of building 

resources and some pre-build solution of similar problems.  

We believe the features of the pedagogical design and the 

element of the learning environment based on tinkering 

which has been aligned to the operational elements of CT 

aided with an explicit reflection on the action will lead to the 

development of CT among the students. The problems that 

have been chosen align to the High school curriculum of 

various educational boards in India.

Table 1. Summary of the pedagogy with its mapping to available resources and activities to be performed. 

Pedagogy  Problem 

Resources Activities  

Building Information Learner Mentor 

Explore 

Small problems that are a 
part of the challenge for the 

next phase. E.g. build a 

chases with wheels.  

With the focus on use of 
basic individual resources 

and their affordances. E.g. 

Connecting motors and the 
EV 3 brick. 

Using the AR component 
view from the app for 

affordances of the 

individual resources.  

Interaction with 
resources while 

solving problems to 

understand their 
affordances. 

Encourage 
exploration and 

play with 

resources  

Solve 

One open-ended challenge 

that is derives from problems 
of “Explore” phase with 

opportunities for reuse.  E.g. 

build a wheeled bot that can 
move and turn. 

With the focus on combined 

use of the resources and their 
interactions with each other. 

E.g. Mounting the EV3 on 

the chassis and building the 
turning mechanism. 

Additionally, information 

about the interaction of 
different resources and 

available use cases.  
Scaffolds for techniques 
for getting unstuck 

Determining the sub 

problems and primary 
functional modules. 

Use pre-built solutions 

from previous phase 

Additionally, 

provide prompts 
and scaffolds for 

techniques like 

reflection and 
productive failure.  

Evolve 

Additional challenge to 
increase the complexity of 

the previous challenge 

requiring the need of 
abstraction modularization 

and iteration. E.g. Make the 

bot avoid obstacles 

Use of additional complex 
resources to enhance 

capability of the current 

build. E.g. Adding IR, 
Ultrasonic sensors and 

building a parallel process 

of obstacle detection.  

Similar as above  Frame the new 
problem, choose the 

sub problems and 

address the sub 
problems while using 

techniques to 

overcome challenges 

Indirect guidance 
using instances 

from the previous 

phases.  
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3. INTERVENTION DESIGN 
The Tinkering environment for learning with CT comprises 

of the problem whose potential solutions derives from CT. 

Available resources allow free exploration, have a low floor 

and high ceiling and align to the constructs of computational 

thinking. Both the problem and the resources ensure the 

requirement of tinkerability (Resnick & Robinson, 2017). 

The pedagogy encompasses features like progressive 

formalisation, alignment to intrinsic motivation, guided 

reflection. Finally, a mentor provides scaffolds for the use of 

strategies like re-purposing, question-posing and reflection 

for working with expectation violation and productive 

failure. A summary of the entire intervention is as presented 

in table 1. 

3.1. Problems 

Though any problem with its corresponding resources could 

be provided in a tinkering based learning environment, we 

choose Lego Mindstorm Robotics kit and design a maze that 

would have to be solved as a part of the activity. This activity 

provides enough freedom to the learners for designing the 

robot as per their choice to solve a given maze. Keeping 

progressive formalisation in mind the problems are divided 

into two categories. The first category of problems is toy 

problems that help the learners to explore the resources 

available in Lego Mindstorm and get used to them. E.g. one 

of the problems requires the learners to determine the 

volume of the room given the Lego Mindstorm EV3 brick 

and the ultrasonic sensor. The objective of this problem is 

for the learners to understand the usage of ultrasonic sensors 

and also to be able to build a quick prototype and use the 

data representation features of the EV3 brick. Additionally, 

they are being exposed to the concept of input and output of 

data using physical sensors, or what we call they are getting 

a sense of the kind of output the sensor can provide. Though 

this question requires them to work with the ultrasonic 

sensor, the mentor encourages them to use all possible 

actuators and sensors to get a sense of the devices. Similarly, 

one of the problems requires the learners to build a two-

wheel powered bot and a four-wheel powered bot to 

determine the use cases of each configuration. These 

problems are candidate sub problems to the bigger problem 

that the participants will solve in the next phase.  

In the second phase “Solve” we provide them with a maze 

that their bot has to navigate. The maze is an NxN matrix 

where obstacles have been places, and the bot must follow 

the unblocked edges and reach the destination. The learners 

are given the maze along with the edges that will be blocked. 

This problem becomes a standard path traversal problem 

where the learner must sequence a set of instructions, and 

the sequence would determine the path that is traversed by 

the bot. The length of the edges are standard; hence the 

learners must determine the distance the bot would move 

and code it accordingly. Though the length is the same 

distance would vary based on the bot they have built or the 

motor parameters they are using. Thought a hard-coded 

solution is not the ideal solution for this problem, the 

problem the idea is to take the learners through this journey 

to understand the different solutions and challenges they 

pose and evolve them towards building using constructs to 

build better / dynamic/efficient solutions. 

In the third phase named “evolve,” they are given a new 

challenge where they are to program and modify the robot 

in such a way that it could traverse the maze even if the 

obstacle locations have not been determined initially. They 

could add markers on the obstacles for the bot to identify and 

take action accordingly. The objective here is to allow the 

learners to understand the concept of functions and 

modularisation so their bot can take decisions based on the 

maker. This problem evolves the learners to thinking in 

terms of higher-order CT concepts while providing them 

with the freedom of incorporating their idea of how to 

implement them.  

3.2. Resources 

Resources in the learning environment refer to the 

components of the learning environment. These are divided 

into building resources and information resources. Building 

resources refer to raw building materials, fabricated building 

materials and electronic components. As an example, in our 

case, the building resources would consist of the Lego 

Mindstorm kit and a few other resources like tape cardboard 

etc. Further classification of the components could be done 

based on their nature of use and other characteristics. 

 

 

 

 

 

 

 

 

 

Figure 1. Building Resources and Mobile Application 

The information-seeking resource consists of repositories of 

information on a mobile application. The mobile app also 

has an interface to interact with the learning environment 

using Augmented Reality. The learners work in the problem 

space with the available tools and resources to find solutions 

to the problem at hand. Prior knowledge of affordances of 

tools and resources available for tinkering through a problem 

or ability to acquire such information in the time of need is 

a challenge for learners who intend to take a tinkering 

approach. Gathering this information from manuals and 

online resources frequently requires switch context, which 

inhibits or discourages explorations with the unknown 

components. Hence this app will enable the learners to seek 

information about problem statements, help them track their 

session, provide information about components. The app 

will have a different section for the different phases of the 

pedagogue. The app will also act as a platform where 

prompts and scaffolds will be presented. The apps also 

enable delivering just in time information by presenting 

information in an augmented manner to ensure 

seamlessness, as seen in Figure 2 below.  

3.3 Pedagogy 

The pedagogy has evolved from our explorations with 

tinkering and literature (Honey & Kanter, 2013) (Martinez 

& Stager, 2013). The initial motive is building curiosity into 

the mind of the learners by exposing them to various 

complex solutions and stories about solving them. The 

learners are guided to explore and play with the available 
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solutions to build their understanding of the environment. 

One of the intended ways of doing it is by starting with 

candidate subproblems of the main problem that they will be 

solving in the second phase. These subproblems are 

introduced as primary problems for exploration with simple 

resources to interact with and gradually increase the 

complexity of the problems and the use of resources.  

Figure 2. AR Component view of the Lego EV3 brick. 

The motive is to encourage exploration of the resources for 

indented use. At the end of this activity, the students should 

have an understanding of the different components of the 

robot, their function, and how they can be 

arranged/combined to achieve a more significant function. 

In the second phase, they are given a problem to solve within 

the same environment. Initially, the learners are mentored to 

find a starting point and then are left free to begin working 

on the starting point of their choice. Here the learners 

interact with the building resources based on their 

understanding from the previous phase of the problem. The 

disposition that learner should take is of experiencing what 

would happen than predict the outcome by observing or 

thinking about challenges. With practice, one may be able to 

predict the outcome by mentally experimenting with the 

problem space. This experience will later give rise to the 

needs of the solution or what kind of function/behaviour 

would be required by the solution. Another challenge they 

might face is of being stuck. Stuck is to be interpreted as the 

state when the participants are not able to ask the right 

questions. Being in one state but still being able to ask the 

right questions is still considered the state of flow. In the 

stuck state, the role of the mentor is to guide the participants 

to ask the correct questions. The app acts as the repositories 

of information about building resources and examples. Some 

necessary information maybe even augmented using the app 

on the resources for a quick understanding. The learns may 

record their progress on their app as a medium intended for 

logging. This can also be used by the learners to reflect and 

make decisions. The final part of this phase of the workshop 

is to enable reflection on the solutions the learners have built 

from the problem they were provided. The reflection would 

be triggered by posing questions regarding the requirements 

of the problem. The type of question to be posed. The 

learners will also be encouraged to use their logs to aid this 

reflection process. These reflections will be recorded by 

learns in the app. The objective of reflection is to make the 

explicit realisation of the CT elements and connect them to 

the activities performed by this. It ensures the development 

of an understanding of the use of CT as per the three 

domains. 

This stage, the learners will evolve their solution to either 

enhance their capabilities or refine its function or 

performance. One of the objectives is to introduce them 

towards abstraction of primary function and their 

modularisation. Also, expose them to parallelism. In this 

phase, the mentor will be available only on demand as the 

mentor does not take an active role in the solution process. 

The purpose of the mentor would be to observe learners 

actions to monitor their approaching. The mentor may 

choose to intervene in some situations mentioned in the 

mentor's guide. The intervention would be limited to 

directing the learner's approach by asking broad questions. 

The objective of this phase is to determine if the learner can 

initiate explorations, make observations and ask questions 

about it. The mentor may choose to allow the learns to exit 

without building the refined solution if enough evidence of 

the objective is available. These will be available as 

guidelines to the mentor. In the final stage of the workshop, 

the mentor will trigger reflections among the learners on the 

entire actions to develop an understanding and use of the 

elements of CT. 

3.4. Mentor 

The Mentor is more of a facilitator to observe the activities 

and the process the students are following. The motive of 

doing this is to help them reflect on their actions. Guide them 

towards exploration and play. Guide them the overcome 

challenges by identifying the reasons. The reasons could 

vary from not being able to construct the intended the 

solutions, not being able to use the resources at hand, not 

being able to identify resources and/or the corresponding 

affordances or unpredicted behaviour. To direct the students 

to the flow state, the mentor themselves must become a 

genuine participant of the activity. They should try to figure 

out what is the problem. The mentor can probe using 

questions like what seems to be the challenge? What seems 

to be your approach? If the learner can answer mapping to 

solving a problem and changing the design, then the learner 

is actually in the flow state. To probe further, the instructors 

could explicitly ask "Which questions are you trying to 

answer?" if the participant shows signs of frustration or 

seems to have given up. These would be responses like I do 

not know what to do next, I have tried many things. It will 

not work. This cannot be solved. The Mentors could guide 

them by asking questions as stated above that would help 

them proceed with the approach. The participants could 

respond with answers that talk about the loss of interest or 

boredom like I am getting bored, and I do not feel interested 

in doing the same. I am not able to think more. The mentors 

could guide them towards skipping the current challenge and 

work on a different aspect or just ask them to take a break. 

If the mentor feels the participant is struggling due to lack of 

information, they may guide them towards the information. 

The objective is to make them realise that such information 

can be looked at. 

The mentor should be able to take a multi-level view to 

weight between the more significant problem and the 

problem they are stuck. The criticality of the current problem 

for the more significant problem can help determine to 

solution approach. If it is critical, we need to find a way to 

work it out or if not, can we manage to solve the bigger 

problem without the problematic component at hand. The 

mentor should guide the students via open-ended prompts 

describing the behaviour of the component at hand. The 
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prompts should target misconception or refer to some other 

project and explaining the function of the component and 

have them try it. Another way of doing this is by posing 

questions starting with What are they trying to achieve? 

Why are they doing it this way? How will it achieve what 

they intend to achieve? When and where does this help to 

solve the bigger picture?  

3.5 Proposed Study 

The study is targeted at High school students who have just 

started using programming languages and do not have 

exposure to Lego Mindstorm robotics kits. This version of 

the study will be done with one individual per kit. We plan 

to introduce elements of collaboration in later studies. The 

objective of the study is to explore the use of tinkering as a 

strategy for learning elements of CT. Will the tinkering 

learning environment designed with an alignment of CT 

elements lead to explicit learning of CT in its three 

dimensions? This will us with a deeper understanding of the 

alignment and the features that may or may not work as 

intended. 

The study is based on the Explore, Solve and Evolve 

pedagogy and distributed over three days. On the first day, 

the learners will be introduced to Lego kit using the 

candidate sub-problems. They start with problems to 

introduce them to the EV3 brick along with the sensor and 

the motor functions. Similarly, they will be given problems 

that lead them to explore the construction blocks and beams. 

The learners are allowed to dismantle a few prebuilt bots. In 

the final part of the day, they would be given problems that 

would require them to code, either the prebuilt bots or the 

bots they have built. The day would end with the mentor 

asking the learners about the kind of bots they would want 

to build and making them reflect on their observations and 

understanding of the building resources. 

On the second day in the “Solve” phase, the learners would 

be provided with the challenge of solving a static maze. 

They could reuse the bots from the previous day or build 

new ones. At the start of this session, the learners will try to 

find out the essential requirement of traversing the maze. 

The bot will have to perform two functions which are 

moving on clear lines and turning to avoid obstacles. The 

mentors may lead the participants to play in the problem 

space to physically experience the problem by manually 

navigating the maze using a non-motorised bot. Once the 

participants have realised the essential functions, the 

instructor will facilitate the participants in realising the 

needs from the previous exercise and then try to translate 

them into functions and behaviour for their solutions. Once 

the desired behaviours have been achieved, learners can 

move forward to the next essential objective. Learners may 

perform as many numbers of trials on the maze and only 

when they determine or the time is done, they would require 

to demonstrate their solution. The learner determines the 

final demonstration beforehand. If the learner finishes before 

the time the mentor asks them to improve the efficiency in 

terms of time taken by the bot to complete the maze. The day 

ends with the mentors making the learners reflect on the 

solution trajectories. The reflection will be carried out 

through activities where the learner would be told about the 

CT elements, and they would map it to their solution 

strategies and later determine one use-case for their 

application. 

On the third and final day called “Evolve,” the learners are 

required to solve a similar maze, but they would not know 

where the obstacles would be placed. In this case, the 

obstacles would have a provision to place markers. The 

learner could use these markers to make the bot respond with 

a specific action like turning left or right. In this phase, the 

mentors will gradually reduce the scaffolds and prompt 

limited to making them recall things they did on the previous 

day, so they can make associations from what they learned. 

To increase the complexity of the problem, the standard 

length between the nodes may vary. The mentor facilitates 

reflection by having the learners talk about their experience 

and pointing out key actions they performed and having 

them articulate what they exactly did and what did they 

achieve. The mentor may ask learners to demonstrate the use 

of CT concepts that could be implemented if a given 

behaviour was to be achieved? Once the reflection session is 

over the learner are given scenario-based MCQ. 

4. CT IN TINKERING 
In this paper, we present the design of an intervention and a 

proposed study to explore the use of tinkering as a means for 

developing an operational level understanding of the 

different dimensions of CT. In the explore phase, activities 

that emphasise the interaction with the sensors and the EV3 

brick help the learners to understand with programming is 

and empowers them with the opportunities of being able to 

program physical objects. Constructing small artefacts 

exposes them to CT concepts of operators, procedures etc. 

In the solve phase, the learners are introduced to sub-

problem generation and encouraged to reuse and remix 

solutions from the previous phase adding a few more CT 

concepts. In the evolve phase, the learners are made to 

reflect on the iterative and incremental way of solving 

problems. The slight increase in complexity of the problem 

introduces them concepts of abstraction modularisation of 

the turning function. They also learn about parallel 

processing to achieve the motion and obstacle detection 

function. Table 1 below provides a summary of the mapping 

between the activities performed in the tinkering 

environment and operational elements of CT from the CT 

Framework. Table 2 also presents the distribution based on 

the three dimensional CT framework aligned to the essential 

phases of our tinkering pedagogy. We believe that by such 

an alignment of dimensions of CT with our tinkering 

pedagogue, the learners will be able to develop an 

operational understanding of using CT for solving problems.
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Table 2. Activities done in different phases of the pedagogy and their mapping to dimensions of CT. 

Phases  Activity CT Concepts CT Practices CT Perspectives 

Explore 

Interaction of sensors with the environment 

Finding their affordances 
Making moving bots, right left turns 

Stopping and moving on obstacle 

Operators, Procedures, 

Data structures 

Problem Formulation, 

Questing 

Programing empowerment, 

Perspective of expressing. 

Solve 
Use pre-built solutions from previous phase 
Determining the subproblems and primary 

functional modules 

Sequencing, Event 
handling 

Problem Decomposition, 
Algorithmic Thinking, 

Reusing Remixing 

Connecting Questioning 

Evolve 

Using the learning from explore about sensors 
functions and bot motion 

Evolving the solution to a modular approach. 
Achieving obstacle detection while moving 

Loops, Conditionals 
Parallelism 

Iterative Incremental, 
Abstracting Modularising 

Connecting Questioning 

5. CONCLUSION 
As present above, we proposed intervention for teaching 

computational thinking (CT) as a part of the high school 

curriculum. The first component of the intervention is 

problems that provide learners with opportunities to use CT. 

We have used problems with robotics. The second 

component of our intervention are resources to work with. 

We have chosen Lego Mindstorm and a few everyday 

materials for construction. Our application provides 

information about the resources textually, visually 

seamlessly using augmented reality. The third aspect of our 

intervention is that the Explore-Solve-Evolve pedagogy 

ensures a rich, authentic problem-solving experience for the 

learners. Reflections after each phase introduce the learners 

to the concepts, practices and perspectives of computational 

thinking. The mentor assumes the role of a noncontributing 

companion by scaffolding the learner towards exploration 

and play using strategies like question posing. They mentor 

learners with strategies to overcome challenges and 

reflection to ensure an explicit understanding of learns 

action.  

The question that we pose to ourselves is that “Will the 

tinkering learning environment designed with an alignment 

of CT elements lead to the development of such an 

understanding of CT in its three dimensions?” Before we 

could aim at answering this question, this study will provide 

us with a deeper understanding of the alignment and the 

features that may or may not work as intended. With an 

evolved Tinkering enabled learning environment we plan to 

conduct more studies using techniques to evaluate the 

learning of CT as reported in the literature (Kong & Abelson, 

2019) to be able to determine the impact of using a tinkering 

approach towards developing computational thinking.  
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ABSTRACT 

Search engine optimization has often been through tagging          

(metadata descriptions) and appropriate placement of these 

metadata in inherent document structures e.g. XML. This 

paper presents a complement whereby the structure and 

information design based on design thinking and 

computational thinking results in more effective scoping of 

user requirements and leaner, agile design. This form of 

human-computer interaction-search engine optimization is 

much used in successful e-commerce websites due to Data 

Science. Comparison between the standard 4 CT aspects 

approach and Brennan and Resnick’s 3 CT aspects approach 

and implications to STE(A)M teaching and learning are 

investigated through a meta-analysis of two Project 

Management course assignments.  Significance of the paper 

is direct link and greater specificity between design thinking, 

computational thinking, human-computer interaction, 

Project Management and search engine optimization within 

an entrepreneurial project management framework.  

KEYWORDS 

design thinking, computational thinking approaches, design 

optimization, STE(A)M, higher education 

1. INTRODUCTION 
The trends in project management (PMI, 2017) highlight the 

need for first, entrepreneurial project managers who are able 

to think and decide not only quickly but also analytically and 

judiciously, by utilizing and managing frameworks and 

diverse decision support tools. This leads to judicious 

application of agile project management as well as 

hybridization of project management methodologies from 

different industries to promote different ways to build things 

and enhance processes and outcomes.   

Analytical, judicious thinking and the ability to synthesize 

are characteristic of creative thinking (Arnold, 1959). 

Arnold’s (1959) Theory of the Creative Process regards the 

creative process as:  

a) applicable to several domains to a certain extent;  

b) dependent on the processes a person follows;  

c) a search and problem-solving process aimed at better  

     meeting basic human needs;  

d) influenced by meta-cognitive processes, which identifies  

    and regulates creative progress.  

Another two trends which are increasingly gaining attention 

are man-machine collaboration and gamification. If 

designed well, these can sustain e-commerce, supply chain 

and growth.  Hence, there is a need to train students to design 

through modelling and computational thinking. The 

question is how to scaffold generative deep thinking?  

 

1.1 Objective 

Computational thinking (CT) commonly emphasizes four 

aspects (Figure 1a). A critical CT concern is also to link with 

real-life applications, scenarios. A real-life example of 

decomposition and algorithmic thinking (Olaf can rearrange 

parts of himself) in CT is in Figure 1b.  

  
Figure 1a. Four key aspects     Figure 1b. Example of CT 

For this paper, implementations of the popularly accepted 

four CT aspects and Brennan & Resnick’s (2012) 3 CT 

aspects: computational concepts, computational practice 

and computational perspectives are juxtaposed and the 

implications to teaching and learning are compared. For both 

case scenarios, project management knowledge areas are 

integrated within an entrepreneurial framework.  

Both studies/systems aim to increase Search Engine 

Optimization (SEO), sustainability and interactivity. For the 

standard 4 CT aspects, we choose to focus on an e-commerce 

website that sells furniture, Furnitize (Chew, Chee, Wong, 

Hiew, 2017). Patterns (templates), with decomposition 

(parts of objects), abstraction (different levels of details) and 

algorithmic thinking (processes to create the simulated 

desired interior) using the software.  For Brennan and 

Resnick’s CT aspects, we choose an e-commerce-

crowdsourcing recycling website, The Enchantress (Yew, 

Lim & Sugumar, 2017), which questions how we define 

fashion, diverse perspectives of fashion design as well as 

entrepreneurial possibilities.  

2. RELATED WORK 
In this section, we present the design factors considered. To 

scaffold goal-based contextual thinking, goal-based 

scenarios (GBS) proposed by Schank, Fano, Bell and Jona, 

(1993) recommends the use of mission as overriding goal. 

The mission can be reflected in themes and these can be 

adapted into different cover stories with variations in 

situations, roles and challenges. These cover stories 

consequently, result in interrelated smaller missions. This is 

necessary to mediate from easy to difficult situations, roles 

and challenges. 

Schank, Fano, Bell and Jona’s (1994) GBS finds support in 

design thinking. Design thinking focuses on context, 

empathy and user experience as starting points. As a Human-

Centered Design methodology, design thinking incorporates 
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consumer insights as the first design space (Dym & Little, 

2003). Apple is a representative example of systemic 

solutions, partly emotional and partly cognitive, within 

knowledge-based ecosystems. 

Brennan and Resnick’s (2012) CT aspects are concepts, 

practice and perspective. Examples of concepts are events, 

conditions, sequence, and loops. These are similar to 

information system’s conceptual schema, conditions, data 

flow. Practice in incremental improvement and testing are 

akin to pilot, alpha-beta testing, reusing and remixing 

strategies/assets. Practice in abstracting and modularizing is 

pattern-based. Perspectives are expressive, connecting and 

questioning, to encourage meaningful iterations. These 

researches point out that more needs to be understood in 

terms of how design and computational thinking helps to 

develop creativity among designers, in higher education.  

3. METHODOLODGY 
The students are not Computer Science students. Hence, 

Brennan and Resnick’s (2012) perspectives is first utilized. 

Students are asked to identify which current trends and 

issues in project management they find interesting from the 

PM Institute’s Pulse of the Profession (2017) report. Project 

Management and HCI concepts are integrated with 

information systems analysis and design (ISAD) constrained 

by impact on society and sustainability of products/services. 

ISAD provides the computational thinking aspects, e.g. 

patterns (templates), decomposition, abstraction (different 

levels of details) algorithmic thinking (processes/data flow), 

prototyping and user testing. 

4. SYSTEM DESIGN & DEVELOPMENT  
Project Management considerations are first applied for 

systems analysis and design. This is followed by 

Waterfall/agile methodology for systems development.  

4.1. Furnitize’s design factors 

For Furnitize (Chew, Chee, Wong, Hiew, 2017), the first 

Project Management consideration is Project Integration 

Management. Their design factors for Furnitize are 

extracted as follows: 

a) User satisfaction, behaviors 

Fayad and Paper’s (2015) Technology Acceptance Model 

(TAM): perceived usefulness, perceived ease of use, and 

intentions; add four predictor variables to the original TAM: 

expectations, process satisfaction, outcome satisfaction, and 

e-commerce use – to extend TAM from measuring 

intentions to measuring actual behavior.  Expectations (ease 

of use, usefulness), customer satisfaction (process and 

outcome satisfaction) and intention (e-commerce use) as 

design guidelines are thus utilized. 

b) Cross-sell and Up-sell 

Choosing which products to offer to which customers to 

maximize the marketing return on investment and to work 

around business constraints is complex but necessary to 

retain customers (Salazar, Harrison & Ansell, 2007).  

i) Market segmentation analysis, purchase acquisition trees 

and survival analysis can be applied in many contexts; 

ii) Lim and Lee’s (2010) study on online analytics using 

classification and association rule mining. 

c) Social Media and influencers 

d) Gamification 

Gamification, is transforming business models. It 

integrates game mechanics into non-game environments to 

motivate participation, engagement, and loyalty.  

Gamification works because it leverages on our motivations 

and desires for community, feedback, achievement, reward  

(Yang, Asaad & Dwivedi, 2017).  

The derived system requirements are in Table 1.  

Table 1. System requirements 

Company 

strategies 

Company services 

Increase 

customers’ 

satisfaction, 

confidence, 

and loyalty 

• Customer relationship management 

system (live chat, social media, forum, 

subscribe, membership, news)  

• Customize: allow customers to have their 

own experiments with concepts (design 

their own floor plan, own decoration 

using templates, tutorials)  

• Google analytics, Gamification (future) 

Increase 

variety of 

products, 

cost, time 

 

• Joint venture with other companies  

• Delivery system (Supply Chain Delivery 

System) 

• Agent, to save cost and time  

• Installation and renovation services 

The outcome of Project Integration is in Figure 2a.  

 

Figure 2a. Wing’s 4 CT aspects: Furnitize 
https://pailekchew963.wixsite.com/mysite 

The second round of considerations are Project Scope 

Management, Project Time management, Project Cost 

Management and Project Quality Management. The 

outcome from this second round of considerations is 

illustrated in the choice of floor plans, and customization of 

interior design and furniture selection. Examples shown 

(Figures 2b, c, d) are customized screenshots, using the open 

source RoomSketcher software.  

 
Figure 2b. Customizable System 

http://www.bunchball.com/gamification/game-mechanics
https://pailekchew963.wixsite.com/mysite
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Figure 2c. Interior Design and Furniture Selection 

 

Figure2d. Forum 

To confirm feasibility, a third round of considerations are 

factored in. These are Human Resource Management, 

Communication Management, Risk Management, 

Procurement Management and Stakeholder Management. 

This layered-iterative methodology reflects agile principles.    

4.2 Evaluation (user perception)  

The user testing questionnaire is designed based on generic 

human-computer interaction (HCI)/TAM principles. 

HCI/TAM principles, optimize search. Findings extracted 

from the report are presented in Table 2 below.  

Table 2. User testing findings 

 

 

 

 

 

4.3. The Enchantress’ design factors  

Inspired by Starbucks’s gamified crowdsourcing ideation 

system, The Enchantress (Yew, Lim & Sugumar, 2017) is a 

crowdsourcing platform. Their proposition is to encourage 

the community to develop a new habit i.e., to recycle.  To 

encourage and to sustain such new habits, would require not 

only time scheduling and task load considerations, but also, 

development of new perspectives through new value 

propositions. The Enchantress (Figure 3) piques imagination 

to the highest of what fashion is or can be. Hence, it’s like a 

nested loop of perspectives. 

 

Figure 3. Brennan & Resnick’s 3 CT aspects:  

The Enchantress 

4.4. Evaluation (user perception) 

Technology acceptance by users has also been promising 

though there are challenges as not everyone is interested in 

design. Nevertheless, due to its social innovation orientation 

of conserving the environment by encouraging product 

innovation and entrepreneurship, it is still worth a try. To 

sustain, a knowledge management framework has been 
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investigated (Yew & Lee, 2019). Findings are promising but 

indicates the need for smart partnerships.  

5. IMPLICATIONS AND CONCLUSION 

Prior research is aimed at investigating how we can scaffold 

generative/deep processing, i.e., how we can design deep 

reflective questions, which would contribute towards pattern 

recognition, theorizing, knowledge construction, and 

subsequently, creativity and transfer of learning along with 

the development of epistemic agency. 

Both systems indicate that inter-disciplinarity in realistic 

ecosystems aimed at meeting real needs are the most 

effective motivators, confirming the efficacy of goal-based 

scenarios. Interestingly, design factors are similar and the 

two most important are the supply chain and cross-sell and 

up-sell; and the ultimate goal: sustainability.  

These findings confirm success factors identified in Lee and 

Wong (2014; 2015; 2017; 2018):  

a) design thinking (viability and sustainability of 

innovations) and computational thinking; [2015] 

b) design as search/SEO/navigational structure (Interaction 

Design Institute); [2014] 

c) Project Management (PM) grounded in Information 

Systems Analysis and Design and correspondingly, the 

Technology Acceptance Model (TAM), PMI; [2017] 

d) marrying PM-TAM concepts with human-computer 

interaction metrics enhances design 

e) marrying the above within a knowledge management 

framework ensures cycles of innovation.  [2018] 

The implications to teaching and learning are, first, the four 

key CT aspects are more oriented towards Computer Science 

projects in diverse contexts, with heavier research and Data 

Science underpinnings.  Brennan and Resnick’s (2012) 3 key 

CT aspects naturally have research and Data Science 

underpinnings, but are more easily understood and do-able 

for the masses, given Resnick’s years of creativity research 

e.g. Scratch. Reducing entry level/cognitive access, fun, 

community engagement, overlay Computer Science/Data 

Science underpinnings. It is also easier for the masses to 

develop and transform value propositions.  

Furthermore, adaptations are based on different centralities 

in design. Interestingly, Furnitize leans more towards 

structure, behavior, and function first whereas The 

Enchantress leans towards function, behavior, structure 

first. Hence, juxtaposing the 4 CT aspects against the 3 CT 

aspects highlight their complementarity based on goal-based 

scenarios, HCI and TAM principles to different contexts and 

spectrum of abilities in education.   
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ABSTRACT 

The purpose of this study was to develop a self-efficacy scale for students in the field of information studentss about 

programming thinking procedures. The questionnaire consisted of 21 questions which divided into three dimensions such as 

"importance", "confidence" and "anxiety". The research object is the college students who have taken programming courses 

in Taiwan. There were 208 participants from northern, central, and southern Taiwan. The statistical methods used in this 

research include descriptive statistics, item analysis, exploratory factor analysis and Cronbach α internal consistency analysis. 

The internal consistency coefficient of the scale is between .950 and .957 and the validity of the construction is verified by 

factor analysis. On the whole, the scale has good reliability and validity.  
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摘要 

本研究旨在發展與編制資訊領域大學生對於程式設計

思考程序自我效量表，量表包括「重要性」、「信

心」、「焦慮」三個構念共 21題，作答方式採用 Likert

十一點量尺。研究對象為臺灣修習過程式設計課程的

大學生，以立意抽樣臺灣北、中、南部的 208 位大學生

為預試樣本。本研究所使用的資料分析方法包括描述

性統計、項目分析、探索性因素分析、Cronbach α 內部

一致性分析。量表的內部一致性係數介於.950 至.957 之

間，並以因素分析來驗證建構效度，整體而言，本量

表具有良好的信度與效度。 

關鍵字 

程式設計；資訊領域；程式設計；自我效能；程

式設計自我效能量表 

1. 前言 

程式設計教育近年來在全球掀起一股浪潮，世界各國

皆致力於推動程式設計教育，將程式設計納入課綱當

中，這不僅是為了大量需求的科技人才，更是為了培

養學生問題解決、創造性思考、勇於犯錯等能力，以

及因應未來的數位生活（王令宜，2017）。美國前總

統歐巴馬在 2016 年時提出「全民電腦科學教育」

（Computer Science for All），讓全美的學生都能享有

完整的電腦科學教育，具備基本的程式編寫能力，以

因應新科技下急遽加速的未來，確保每一位學童都能

夠站在公平競爭的起跑點。 

程式設計教育可以讓學生根據程式語言的語法、語言

結構與設計技巧來解決問題（Schollmeyer, 1996）。然

而，學生在學習程式語言上時常會遭遇到許多困難，

首先要將問題的描述轉換為邏輯，再由邏輯轉換為程

式碼，這個過程對初學者來說是困難的（Sengupta, 

2009；Saeli, Perrenet, & Jochems, 2011），此外，程式

設計的初學者還需要記得許多抽象、不易理解的語法

及命令，容易導致學習上的困難（Kelleher & Pausch, 

2005；Lahtinen, Ala-Mutka, & Jarvinen, 2005）。學生的

自我效能會影響其面對困難時的態度，相信自己能力

的學生會勇於面對困難的任務，並將其視為需要解決

的挑戰（Bandura, 1994）。自我效能是一種心理概念，

它可以評估個人的心理狀態，自我效能會影響學生的

活動選擇，包括學生將花費多少精力或時間來解決特

定的任務和情況（Bandura, 1997）。Moos 與 Azevedo

也在 2009 年指出在程式設計課程中，學生的自我效能

與學習表現有著密切關係（Tsai, Wang, & Hsu, 2019）。 

過往有相關研究曾開發出用於評估程式設計自我效能

的量表。如 Ramalingam 與 Wiedenbeck（1998）發展由

四個構面組成的調查問卷，來評量初新手學習 C++程式

語言的自我效能；Askar 與 Davenport（2009）以及

Govender 與 Basak（ 2015）皆基於 Ramalingam 與

Wiedenbeck（1998）的量表來改編，以評量學生學習

Java程式語言的自我效能。從上述研究可以發現，多數

都是針對特定的程式語言的學習感受進行測量，鮮少

針對程式設計的解決問題流程、運算思維概念的自我

效能量表（Tsai, Wang, & Hsu, 2018） 

因此在新科技不斷推陳出新，變化快速的當代，本研

究將改善前述相關研究缺乏，發展一個不限特定程式

語言環境的自我效能量表，並參考 Tritrakan、Kidrakarn 

與 Asanok（2017）所提出程式設計的程序，編撰出學

習程式設計的七個步驟，來測量學生在學習程式設計

七個步驟的自我效能。本研究參考 Carberry、Lee 與

Ohland （2010）所開發的「工程設計自我效能問卷」

進行改編，發展「程式設計思考程序自我效能量表」，

未來希望透過此一量表來探究大學生在程式設計學習

過程中態度之影響。 

2. 研究方法 

2.1. 研究工具 

2.1.1. 預試量表之設計與架構 

本研究蒐集學習程式設計時，學習態度、自我效能、

態度傾向等相關文獻，根據文獻資料歸因出學習程式

設計的影響自我效能的因素（Carberry, Lee, & Ohland, 

2010），逐步形成完整之「程式設計學習態度」之核

心構面，包括「重要性」、「信心」、「焦慮」三構

念及 21 題項，並參考 Tritrakan、Kidrakarn 和 Asanok

（2017）專家程式設計思考程序（Expert programming 

design thinking and procedure），發展出程式設計 7 步驟，

包含（1）定義問題、（2）思考架構、（3）釐清資料、

（4）設計演算法、（5）程式撰寫、（6）測試與除錯、

（7）完成發表。經歷本研究團隊 3 次討論與字句修正，

完成此量表，本量表採用李克特式十一點量表分別以

「0」至「10」代表「低」至「高」，各構面之平均分

數愈高代表學習者對此構面之態度愈高。 

2.1.2. 預試量表編制 

完成測驗題目初稿編制後，本研究邀請 3 位教授程式設

計領域的專家學者對量表進行專家審查，審查與討論

的重點為：（1）審查初始量表題項之歸類與重要性；

（2）審查題項的題意與文字內容，提供題項之文字修

改意見。 
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經專家審查完後，本研究將程式設計思考程序自我效

能量表進行預試。在回收預試資料後，為了檢視檢驗

測量題項是否適切，透過項目分析，以瞭解各題項之

鑑別力與同質性，根據分析結果將不適合的題項刪除

或修改；透過探索性因素分析，以瞭解各題項的聚斂

情形。 

預試結果經項目分析與探索式因素分析後，本研究正

式問卷按照自我效能之三項核心構面與程式設計 7 步驟

發展出 21 題項與個人基本資料 5 題（性別、年齡、學

校、學系、年級），如表 1 所示。 

表 1 設計思考程序自我效能量表因素名稱與題目分布 

量表名稱 
因素 

名稱 
題號 

題

數 

設計思考程

序自我效能

量表 

重要性 
1、4、7、10、13、

16、19 
7 

信心 
2、5、8、11、14、

17、20 
7 

焦慮 
3、6、9、12、15、

18、21 
7 

2.2. 研究對象 

本研究預適量表發放對象為資訊領域且在修習過程式

設計課程的大學生。本研究以立意抽樣的方式進行，

在臺灣的北、中、南十一所大學中進行預試施測。預

試使用電子問卷發放，施測 208 份，回收 208 份，回收

率為 100%。 

2.3. 探索性因素分析 

本研究經過專家審閱量表後進行預試數據收集後，項

目分析結果，21 題項 CR 值均顯著水準（p <.001）；同

質性檢定結果均為高度相關，故此 21 項均保留。進行

因素分析前，為了瞭解取樣的適切性，首先使用 KMO

和 Bartlett’s 球形檢定來判定是否做因素分析。結果

KMO 值=.889> .8，且 Bartlett’s 球形檢定的 p 值達顯著

（p=.000<.001），根據 Kaiser（1974）指出的判斷標準，

KMO 值大於.70，且 Bartlett 球形檢定達顯著水準，適

合作因素分析。採用正交轉軸之最大變異法萃取出三

個構面。結果如表 3，每一題項的因素負荷量皆大於.5，

無須刪題。各構面的特徵值皆大於 1，且總解釋變異量

（%）達 79.24，顯示具足夠之效度。 

表 2 設計思考程序自我效能量表項目分析表 

題號 
因素負荷量 共同

性 重要性 信心 焦慮 

IM1 .77   .65 

IM2 .89   .84 

IM3 .82   .73 

IM4 .86   .80 

IM5 .86   .79 

IM6 .91   .84 

IM7 .86   .77 

CO1  .80  .76 

CO2  .89  .81 

CO3  .83  .77 

CO4  .91  .85 

CO5  .90  .83 

CO6  .87  .83 

CO7  .85  .75 

AN1   .85 .74 

AN2   .88 .80 

AN3   .90 .80 

AN4   .93 .87 

AN5   .92 .86 

AN6   .87 .77 

AN7   .88 .78 

特徵值( ) 5.62 5.54 5.48 

 

解釋變異量
(%) 

26.78 26.38 26.08 

累積解釋變

異量(%) 
26.78 53..17 79.24 

各構面

值 

.950 .955 .957 

總量表

值 

.898 

3. 結論與建議 

本研究建立一套「程式設計思考程序自我效能量表」，

根據項目分析、探索性因素分析結果顯示，此一量表

具有良好信效度。後續本研究將擴大規模發放正式問

卷，期望本量表可以幫助大學資訊領域教師在程式設

計課程規劃時，能夠了解學生在思考流程中是否遭遇

困難、也能了解學生經由學習後對於程式設計思考的

自我效能是否有所提升。 
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ABSTRACT 

Computational thinking has been identified as an essential 

problem-solving skill in the information age. Although more 

specialized, programming is an essential manifestation of 

computational thinking, and in turn, source code 

comprehension is a vital subskill of programming. The study 

reported here compares the effects of different source code 

examples on source code comprehension and different 

learning hints as a starting point for a dynamic learner 

support system. Our analysis relies heavily on using eye 

tracking data in combination with specific data models and 

visualizations. This form of behavioral analytics is 

complemented with answers to comprehension questions to 

assess the effects of these hints with different code examples. 

Our findings indicate that syntax highlighting is of limited 

benefit for better comprehension, and a dynamic 

highlighting of the scope of code blocks and variables is less 

used than expected. 

KEYWORDS 

eye tracking, program comprehension, computational 

thinking, learning analytics 

1. INTRODUCTION 
In a society permeated by digital representations and tools in 

professional and everyday life, the desirable general 

knowledge of science, technology, engineering, and 

mathematics (STEM) must be combined with more meta-

level skills like critical thinking, adaptive problem solving, 

and creativity. As argued by Wing, "computational 

thinking" (CT) is an important ingredient in this context 

(Wing, 2006). Although CT cannot be reduced to 

programming, programming is an activity that both builds 

on CT and can support the development of CT. Accordingly, 

it has been argued that there is an overall value in learning 

basic concepts and skills of programming. However, 

programming is a complex cognitive activity (Pea & 

Kurland, 1984). When learning to program, comprehending 

source code is the priority.  

Eye tracking is more and more integrated into the process of 

analyzing learners and creating better support systems 

(Njeru & Paracha, 2017). Additionally, it is a powerful 

ingredient in the context of learning analytics (Greller & 

Hoppe, 2017). 

In this paper, we describe the analysis of comprehension 

problems participants encounter while reading source code 

and answering comprehension questions. Especially, the 

detection of common reading patterns may reveal 

differences in computational thinking and understanding 

among participants. 

2. ANALYSIS APPROACH 
The basis of every eye tracking analysis is fixation hits on 

specific regions. In the source code examples, AOIs are 

placed around every code line (line model) or every 

important workspace area (workspace model). (Deitelhoff, 

Harrer & Kienle, 2019b) These are marked with letters, in 

the line model from top to bottom, with additional AOIs for 

the question and answer areas, and in the workspace area 

model with A = answer, C = code, and Q = question. 

Additionally, we label non-hits with "_", to identify gaps in, 

e.g., transitions. 

We used the recorded eye tracking data to calculate fixations 

based on the raw data. The fixation calculation is done with 

an I-VT filter (Velocity-Threshold Identification) with a 

maximum radius of 60 pixels, a minimum fixation duration 

of 60 ms, and a maximum of 55 missing gaze samples to 

count as a fixation. 

For analyzing the reading behavior of participants, we are 

using a top-down approach with predefined patterns. Two 

global patterns are, e.g., the Linear Scan and Jump Control, 

also known as Story Order Reading (SOR) and Execution 

Order Reading (EOR) (Busjahn et al., 2015). SOR is a 

reading pattern from top to bottom, like a story in a normal 

text, while EOR follows the program execution. Besides, we 

use one visualization to show the fixation order of AOIs 

(Deitelhoff, Harrer & Kienle, 2019a). Furthermore, we use 

our analysis tool CodeSight, which provides the feature to 

search for eye movement patterns (fuzzy search). 

3. RESEARCH QUESTION 
Previous research has shown the effects of different source 

code examples on reading patterns, and of syntax 

highlighting as a form of learning hint. Some studies found 

effects for novices or in general (Asenov, Hilliges & Müller, 

2016); some do not (Hannebauer, Hesenius & Gruhn, 2018). 

The highlighting is used as a visual cue for programmers to 

decrease the time required for mental execution. Novices 

tend not to use/ignore the highlighting or misinterpret the 

meaning completely. The objective of our study was to 

investigate the effect of learning hints on the outcome of 

source code comprehension processes. Additionally, we 

analyzed how learners use and perceive the source code 

examples. In summary, we tested the following research 

questions and hypotheses. 

    HAnswer-Quality We examined how the answer quality differs 

between the various source code examples and learning 

hints. We assume that more complex code examples have 

less correct answers overall and that learning hints influence 

the answer quality. 



 

141 

 
Figure 5. The study prototype with the code example “Bubble” and with syntax highlighting. 

    HAnswer-Quality We examined how the answer quality differs 

between the various source code examples and learning 

hints. We assume that more complex code examples have 

less correct answers overall and that learning hints influence 

the answer quality. 

    HPatterns-Answer-Quality We found the patterns Story Order 

Reading (SOR), Execution Order Reading (EOR), and 

Flicking in the visualized AOI-DNAs. We assume that the 

presence of these patterns is correlated to more correct 

answers. 

    HWorkspace-Area-Switches We analyzed, which visual context 

switches between important workspace areas of the study 

prototype are common between learners. We propose that 

different context switches, and therefore comprehension 

strategies, are visible. A different perception of the 

workspace can lead to different approaches in solving the 

comprehension questions, which may affect CT strategies. 

4. STUDY PROTOTYPE 
We used three code examples Bubble, GCD, and Vehicle as 

stimuli. They correspond to the algorithms Bubble Sort, 

Greatest Common Divisor, and a class that represents a 

Vehicle with methods like accelerating and decelerating. 

The complexity of these code examples varies between 

complex (Bubble), medium (GCD), and easy (Vehicle), 

assessed with the help of researchers involved in education, 

learning analytics, and teaching. Error! Reference source 

not found. shows an example screenshot for the Bubble 

source code. To measure how successful participants 

comprehend the source code, we asked the following 

comprehension questions:  

Bubble "What does the list look like after two runs of the 

outer loop?" 

GCD "To which values are the variables 'number1' and 

'number2 set after three runs of the loop?" 

Vehicle "To which values are the objects 'vOne' and 'vTwo' 

set at the end of the program?" 

The code examples are fixed in their order (Bubble → GCD 

→ Vehicle), but with varying hints. We distinguish between 

passive and active learning hints. The first is always 

available, and the latter needs to be used actively by the 

participant. The hint Syntax Highlighting highlights the Java 

code is passive and helps to navigate the code and focusing 

on parts like variable assignment and logic (see figure 1). 

The second hint, called Dynamic, allows learners to focus a 

variable or curly bracket with the mouse to highlight the 

scope of either the usage of the variable or the, of a source 

code block. Therefore, this hint is active. The third hint, 

called Plain, is our control group without any hints. 

5. DATA BASIS & ANALYSIS RESULTS 
In this section, we report the results of our quantitative and 

qualitative analysis of every hypothesis. As the data basis, 

we recorded n = 24 participants from the nearby University 

campus, out of which seven were females and 17 males, with 

a mean age of 26.29 (SD = 4.28). The participants were all 

Computer Science students (semesters 1-10). 

5.1. Answer Quality 

The overall correct answers for the Bubble source code are 

12, for the GCD again 12, and for the Vehicle 5. Therefore, 

the Vehicle code example seems to be more complex. This 

result is contrary to our assumption, from an algorithmic 

perspective, that the GCD is the most complex code 

example. It seems that many participants had problems with 

the object-oriented task. If we additionally consider the time 

limit of every code example, we can confirm our impression 

that many participants had problems with the Vehicle task. 

Four participants exceeded the time limit for the Bubble 

source code, 2 for GCD, and 9 for the Vehicle. 

The data also shows that the syntax highlighting learning 

hint is balanced for the correct/incorrect answers. Syntax 

highlighting seems not to be an essential factor related to 

answering a comprehension question. Complex code is still 

complicated. However, the difference between the dynamic 

learning hint and the plain code examples are indecisive for 

the Bubble and GCD code examples. For the first code, plain 

has a more significant effect on correct answers than the 

dynamic learning hint (5 to 3 participants). This result is 

reversed for the GCD code examples, with a more 

substantial effect for the dynamic help on correct answers (2 

to 6 participants). This is positive for the dynamic learning 

hint of the GCD code example and interesting for the Bubble 

code example. Overall, this needs a more in-depth analysis, 

how often the dynamic learning hint was used across code 

examples. For the Vehicle code, both conditions with the 

dynamic help and the plain text seems to have no positive 

effect on the comprehension result. Again, this needs to be 

analyzed further on how often the dynamic learning hint was 

used. 
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Figure 6. AOI-DNAs for the participants 1 and 15 for the code examples Bubble, GCD, and Vehicle. 

5.2. Reading Patterns to Answer Quality 

As a first step, we are visualizing the gaze patterns of 

participants in our analyzing platform CodeSight to reveal 

the reading behavior. The visualization, in the form of our 

AOI-DNAs, shows some similarities between the 

participants. We describe our findings for participants 1 and 

15 as examples. Error! Reference source not found. shows 

the AOI-DNAs for both participants for all three code 

examples. The visualization uses a grayscale color coding 

for visualization of the source code lines from 1-n for the 

line AOI model. The parts with, e.g., loops and methods, are 

brighter, and the main method is darker. The question area 

is light purple, whereas the answer area is light green. 

For the Bubble code example, both participants almost 

immediately start with reading the question, followed by 

reading the main method and a SOR phase subsequently. 

Afterward, the answer and code fragments are read 

alternately. For the GCD code example, participants again 

start with the question, followed by reading some parts of 

the code. Afterward, participants, like 1 and 15, are 

alternately reading the answer and sections of the code, with 

participant 15 reading the main method more often. For the 

Vehicle code example, participant 15 focuses more on the 

question in the beginning, while participant 1 reads the code, 

mostly the main method, first. Afterward, both participants 

read parts of the code and the answer area.  

Our analysis platform CodeSight supports searching for eye 

movement patterns based on regular expressions, to find 

common patterns linked to the assumption that they have 

advantages for comprehending source code. For our 

analysis, we searched for the Execution Order Reading 

(EOR) and Flicking patterns. The SOR pattern is already 

visible with the grayscale visualization and, because of the 

length and diversity, hard to search for directly. The patterns 

EOR and Flicking should show advantages for the 

participant for answering the comprehension question 

correctly. Searching for patterns is dependent on an 

appropriate regular expression. The expressions are based on 

the character labels for the AOIs. Therefore, we are 

describing the transitions we found with these labels. For the 

EOR, we are searching for AOI transitions like F|G|H|I → 

E|D (Bubble), E|H|D → C (GCD), and T|U → C|D|E or Y|Z 

→ M|N|O (Vehicle) whereas the vertical separators are used 

only to indicate the different AOIs within the patterns 

visually. For the Bubble code example, the pattern search 

revealed, that the patterns F|G|H|I → E are often present in 

the AOI-DNAs. These eye movement patterns are essential 

because they encode reading and comprehending the loop 

structures. The fuzzy pattern search also shows that most of 

these patterns, especially F → E, and G → E, are visible for 

participant 1 with a far better comprehension result 

compared to participant 15. Reading and tracking the loop 

structures is vital for comprehending the Bubble example. 

For GCD, the second code example patterns like E|H|D → 

C|D are important. We found multiple hits for E|D → C and 

H → C|D. These are important patterns for the while loop 

and jumps from the two branches within the if statement to 

the while loop. Both necessary for comprehending the 

structure and behavior of the GCD algorithm. As for the 

Bubble code, we found differences between the two 

participants. Reading and tracking the loop and the if 

structures are vital for comprehending the GCD example. 

These results are also true for the Vehicle code example. We 

identified important patterns like T|U → C|D|E, X → G|H|I, 

or Y|Z → M|N|O. These are encoding (a) jumps from the 

main method, were, among other things, constructors are 

called, to the constructor definitions, and (b) jumps from the 

for loop in the main method with method calls to the 

corresponding method definitions. In contrast to the other 

two code examples, we found only a small amount of pattern 

matches for both participants. 

5.3. Workspace Switches 

First, we analyzed the overall fixation time for the source 

code examples and the distribution of these durations on the 

three AOIs in the workspace AOI model. The overall 

fixation time for the question area is the highest for the 

Bubble source code. This result is not a surprise, because 

sorting an array takes many fixations and thereby time to 

complete. The highest fixation time for the Vehicle source 

code without any help is too as expected and in line with our 

other analysis. The Vehicle example is the most difficult one 

according to the participants, and the plain condition without 

any additional help amplified this difficulty level. For the 

Bubble source code example, the most fixation time spent 

on the code AOI with the dynamic learning hint. For the 

GCD code example, the most fixation time spent again on 

the code AOI, but this time with the syntax learning hint 

available. The fixation time results for the Bubble and GCD 

code examples are a bit surprising. We assumed that for the 

syntax and dynamic learning hints, these values should drop. 

One reason could be the lower usage rates we see in the data. 

Another possible reason is, that for the syntax learning hint 

transitions and therefore fixations are getting higher, 

because participants can read the source code much better, 

and for the dynamic learning hint transitions and fixations 

between the source code and answer area are higher because 

participants getting help from emphasized variables which 

helps them answer the question. 
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5.4. Overall Comprehension Problems 

Overall, we find more comprehension problems in the 

Vehicle code example than in the other two code examples. 

We visually analyze the fixation distributions on the stimuli. 

For that reason, we superimpose the fixations on top of the 

source code examples. In three cases, it is noticeable that 

these participants do not have enough fixations on the for 

loop in the main method. Therefore, it is explainable why 

these participants failed the source code comprehension 

questions. But overall, the fixation distribution is equally 

good or bad compared to the other two code examples. We 

assume that this difference has to do with object-oriented 

programming because the Vehicle example uses a class with 

methods, which are called in the loop within the main 

method. 

After the participants did the comprehension tasks, we asked 

them in the conclusive interview the question, among others, 

if they can identify the source code examples. Not on a 

specific algorithmic level, but in a more meta-level way. The 

specific question in the interview was: “What was the aim of 

the individual program codes?”. For the code examples 

Bubble and GCD, the participants could answer this 

question very specifically most of the time (70%). Whereas, 

the answers for the Vehicle code example were much less 

precise. In most of the cases (> 80%), the participants could 

only tell that it has something to do with “a vehicle, which 

can be controlled”. 

Besides, we analyze the duration time and fixation count of 

every participant on the AOIs. Therefore, we can count the 

overall durations and fixation counts per source code line. 

The results show that the duration of important areas of the 

source code examples is no decisive factor for a correct 

comprehension question. For the Bubble source code, 

important areas are D and E for the loop, F for the if 

statement, and G, H, and I for swapping the values of two 

array elements. Participants with a (very) high fixation 

duration, and these AOIs are not answering the 

comprehension question more correctly overall. The inner 

loop (AOI-E) of the bubble sort seems to be the most 

important one regarding the answers, but for the other AOIs, 

the results are inconclusive, which is a bit different for the 

GCD and Vehicle code examples, whereas the fixation 

duration on important AOIs seems to have an impact on the 

answer quality of the source code comprehension. In 

contrast to our expectation, we found that the fixation 

duration is not a good predictor of comprehension success. 

This result is quite different for the fixation counts. We can 

summarize that a participant, who fixates an important AOI 

more often, gives overall more correct answers for the 

comprehension questions, which is especially true for the 

GCD and Vehicle code examples and source code elements 

like loops and if statements. 

6. SUMMARY & DISCUSSION 
To our surprise, the Vehicle code example was the most 

difficult one, regarding the answers of participants. We 

initially assumed that the Bubble code is the most complex 

one, regarding the complexity of the program structure 

(nested loops). However, the study showed that many 

participants have problems with the object-oriented code, no 

matter which learning hint was available. 

The dynamic learning hint was less used than expected. We 

thought that our target group, with knowledge in 

programming and therefore, development environments 

would use this hint more frequently. Overall, the hint may 

be useful for the GCD example but ambiguous for the other 

two code examples. This finding needs more in-depth 

analysis and a specific study if the dynamic learning hint is 

a candidate for the dynamic learner support system. 

Regarding the reading patterns on both used AOI models, 

we found common patterns across all participants, code 

examples, and learning hints. The analysis showed that these 

patterns form groups. Furthermore, a first analysis showed 

that these patterns are not the distinguishing factor for the 

answer quality of participants.  
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ABSTRACT 
This study aimed at integrating computational thinking board game with robots, so that learners put computational thinking 

process into practice when they completed the tasks on the board game by controlling the action of the robots. The participants 

were the sixth-grade students in Singapore. Two students divided into a team collaborated with each other and competed with 

the other team composed of two students. This study developed a table of the behavioral coding schema according to the 

observations of the students’ behaviors.  From analyzing the overall learning behaviors of the students, this study evaluated 

and found the learning behavioral patterns of the students in the learning circumstances. 
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摘要 

本研究旨透過運算思維桌上遊戲與機器人，讓學習者

透過控制機器人在桌遊上面完成任務，來實際練習運

算思維的歷程。本研究使用手機積木程式來控制桌遊

上面機器人的動作，以新加坡小學六年級學生為受測

對象，並以二人為一組的合作學習模式和另外二個人

的小組進行對戰。本研究根據學生的行為內容進行行

為編碼表，並且觀察學習者的完整學習過程，藉此來

評估即發現學習者在此學習情境下的學習行為模式。 

關鍵字 

運算思維；桌上遊戲；機器人；合作學習；行為分析 

1. 前言 

近年來，學習運算思維的概念變得非常重要，而且被

認為是在數位時代不可或缺的一種技能 Kalelioglu

（2016），甚至許多國家已經把運算思維的概念引入

到 K-12的課程當中（Grover & Pea, 2013），不論是在

資訊科技、數學、社會研究和程式設計，都有涉及到

運算思維的概念（Barr & Stephenson, 2011），運算思

維在當今社會的重要性，不言而喻。 

許多研究也保持著讓每個人都要學習運算思維的想

法，但大多數都是使用機上程式設計來學習運算思維

的邏輯，因為透過程式設計，能夠實作運算思維中的

結構化、抽象化、問題拆解等能力，但這種抽象的程

式設計邏輯，並不適用在每個學習者身上，如果無法

引起學習者的動機，只會降低學習者的學習意願。 

所以，本研究使用運算思維桌上遊戲，以遊戲式學習

的教學策略，藉以提高學習者的學習態度與動機，此

外，本研究還觀察學習者在學習過程中的所有行為，

並且開發行為編碼表，以序列行為分析的方式，觀察

學習者認知或行為的變化，希望找出學習者行為之間

的關聯性，以便找到更好的教學方法或策略，提升學

習者的學習成效和表現。 

所以綜上所述，學習運算思維已經是全球趨勢，身處

在一個資訊爆炸的時代，幾乎人人都需要一點運算思

維的概念，本研究希望透過桌上遊戲式學習結合安譜

機器人，搭配手機應用程式控制的教學策略，並從中

把運算思維的抽象概念與程式設計的邏輯結合，藉以

吸引學習者的注意力，激發學習者的動力及效率，進

而讓學習者獲得更好的學習成效。 

2. 文獻探討 

2.1. 運算思維 

運算思維，就是一種用電腦的邏輯來解決問題的思

維，雖然至今對於運算思維的定義還沒有一個統一的

答案（Zhao & Shute, 2019），最早的定義由學者

Jeannette Wing在 2006年時提出，Wing（2006）認為運

算思維是利用電腦科學的基本概念進行問題解決、系

統設計與人類行為理解的思維模式，而在 2010 年時

Wing 更進一步提出運算思維是提出問題及其解決方案

所涉及的思維過程（Wing, 2010）。 

Wing（2006）認為電腦運算思考的技巧，並不只是電

腦科學家或是一些相關人員的專利，而是每一個人都

應該要具備的素養和能力，因為運算思維和我們日常

生活的關係越來越密切，舉凡醫療、購物、交通、社

交網路等等，都包含在其中，所以具有運算思維的能

力更能夠有效的解決日常生活中遇到的問題。。現在

最被大家所接受的是 Google 在自己的教育網站中所提

出的（Google, 2016），把運算思維分成心理的思考過

程，共有 11項定義，在本研究有涵蓋到的部分如： 

抽象化：為定義主要概念去識別並萃取相關資訊，演

算法設計：設計出有順序的指令以解決問題或完成任

務，自動化：利用電腦或機器執行重覆性的任務，解

析：將資料、過程、問題拆解成較小、較容易處理的

部分，平行化：同時處理大任務時，也同時處理較小

的任務以有效達到解決問題目的， 

2.2. 遊戲式學習 

遊戲，既可以指人的一種娛樂活動，也可以指這種活

動過程。一般是以娛樂為目的，有時也有教育目的。

法國社會學家 Caillois（1957）定義了遊戲是有以下特

性的活動：有趣、獨立性、不確定性、虛構、無生產

性和受規則的約束，遊戲的分類有很多項，例如：數

位遊戲、桌上遊戲，本研究是使用桌上遊戲當作教具

進行教學活動。 

學者 Hogle（1996）提出遊戲對於學習有下列優點：可

引發內在動機並提高興趣，遊戲中好奇與期望、控制

與互動性以及故事情節的幻想性等特性，都可提高學

習者的學習興趣和內在動機（ Dichev & Dicheva, 

2017）。在保留記憶方面，相較於傳統的課程，模擬

遊戲在記憶保留方面有較好的效果（Acquah & Katz, 

2020）。並且能提供練習及回饋，許多遊戲學習軟體

提供練習的機會，讓學習者可以反覆的操作，並獲得

即時的回饋，讓學習者可以自我評估學習成效，促進

學習目標的達成。提供學習者高層次的思考，將教學

內容融入遊戲當中，讓學習者不斷的在遊戲中解決問

題、做決定，學習者要能夠整合自己所學，以找到解

決方式。教學內容將不斷的重複進入學習者記憶中，

是最好的學習形式。 

遊戲式學習可以積極激發學生在課堂上的行為

（Simões, Redondo, & Vilas, 2013）中，遊戲式學習將激

勵他們付出更多的努力在這門科目上。遊戲式學習也

可以顯著增強學生在合作學習中的參與度（Hew, 

Huang, Chu, & Chiu, 2016）。Lin and Davidson-Shivers 
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（1996）的研究中發現採用遊戲式學習後，學生的最

終成績得到了顯著提高。Ebner and Holzinger（2007）

的研究中表示，大多數學生，他們參與過遊戲式學習

之後會去主動進行遊戲式學習。所以根據上述研究，

可以通過遊戲式的學習環境來培養學生的學習成就以

及課堂參與度。 

2.3. 序列行為分析 

序列分析，或者稱行為序列分析是將研究對象的行為

資料進行編碼，依照行為出現的先後順序，找出一個

行為接著另外一個行為出現的頻率，並以二項式檢定

計算編碼與編碼之間的轉換是否有達到顯著性的一種

方法（Sackett, 1980）。 

序列行為分析的目的是為了瞭解學習者在學習過程

中，依照研究者實施不同的教學策略，觀察學習者認

知和行為改變當中的交互作用，並且了解哪些行為對

於學習者來說是有意義的學習，以及學習者行為反應

之間的關聯性。 

行為序列分析也在不同的領域中使用（Bakeman, 

1997），過去也早有過將教育遊戲結合行為分析的研

究（Barab et al., 2009），而本研究也是探討以遊戲式學

習的教學方法觀察學習者的行為過程，就從這邊可以

將學習者行為轉換，分析究竟哪些是屬於比較明顯的

議題，藉此了解何種學習行為促使學習動機提升，了

解學習者學習的認知成果，並藉此找到更好的教學策

略與方法（Chang et al., 2014）。 

2.4. 合作學習 

合作學習，是一種有系統性的教學策略（ Slavin, 

1985），讓學習者在小組與同儕之間相互學習，分享

大家的觀點並共享成果（Parker, 1985），這種以學習

者為主角的教學過程裡，除了個人的努力之外，每位

成員也要有所貢獻，以達到共同設定的目標，而老師

在其中只扮演引導者和協助者的角色（ Joe Cuseo, 

1992）。 

合作學習大都包含下列五項要素（Johnson, Johnson, & 

Holubec, 1994），積極互相依賴是指學習者能知覺到自

己與小組是榮辱與共的，因此組內的每一個成員都要

一起努力，以完成任務（Nattiv, 1994）。面對面的助長

式互動是組內學習者可以相互助長彼此學習的成效，

例如鼓勵組內的其他同儕、努力完成任務、達成共同

目標。個人責任是指如果個人的表現不好，小組的表

現也不會好。因此，合作學習除了注重小組的整體表

現外，更重要的是個人的表現。在合作學習下，學生

就會察覺到個人的努力與小組相關，所以反而會更督

促自己。人際與小組技能是學習者之間如果有好的協

同合作，將會有高品質、高效率的學習成效。在合作

學習的情境下，彼此之間互動磨合，發生衝突無法避

免，所以要教導學習者：相互信任、良好溝通、相互

接納、化解衝突。團體歷程是指給予學生適當的時間

及去檢討小組的運作狀況，強調自我檢視的重要性，

並檢視組員在過程中哪裡需要改進的一種反思過程。 

所以綜合合作學習可以帶來的好處。比如：可以幫助

學生提升深度學習和批判性思考的能力（Munir, 

Baroutian, Young, & Carter, 2018），促進學生擁有更高

的學習成效、提高學生的社會競爭力，讓學生獲得更

好的學程成就等等。 

3. 研究方法 

3.1. 實驗對象 

本次實驗由 25 位來自新加坡中的一所小學六年級學

生，13名男生 12名女生，這些學習者的平均年齡為 11-

12 歲，教學課程主要是以遊戲式學習配合機器人，以

手機應用程式控制機器人的行為，讓學習者學習運算

思維的概念，釐清運算思維的抽象意義，進而提高學

習者的學習成效。 

3.2. 行為編碼表 

本實驗透過遊戲式學習的教學策略，記錄學習者在實

驗過程中的所有行為，並將資料進行編碼，行為編碼

表如表 1所示，分析學習者在實驗過程的所有行為，並

探討行為之間的關聯性。 

表 1 行為編碼表 

類別 代碼 意義 範例 

運算思維

編碼 

PP(People&People) 組內對談 同組的兩個人在

對談 

PC(People 

Commnication) 
組外對談 與別組在對談 

PR(People & Robot) 使用機器人 掃描卡牌使機器

人移動 

ID(Individual Decision) 個人使用任務卡 使用石頭、砂

土…等，放置任

務卡上 
CD(Cooperation 

Decision) 
共同使用任務卡 

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉…等) 

PM(Physical Message) 姿體表達 行為左右轉、手

勢左右轉…等 

AG(Abstraction 

General) 
資料簡化或用其他

方式表達 

單程式方法便迴

圈方式表達 

其他 

LI(Learning Interaction) 被觀察者正在練習

口語互動 

自己口語互動 

IM(Irrelevant Message) 無關課程 發呆、離開座

位…等 

SP(Separate) 組內做不同的事 各做各的事 

3.3. 評估工具 

本次實驗使用 Robots city 桌上遊戲配合安譜機器人進

行，加上手機應用程式，並以程式設計的邏輯控制機

器人的行為，在本次實驗透過觀察學習者的行為並開

發編碼表，研究學習者的行為資料進行編碼，並利用

序列分析之殘插表的 Z分數檢定來解釋編碼與編碼之間

的轉換是否有達到顯著性的關聯。 

學習者自行搭建完所需之場景後，接著教師便會指派

APP的關卡任務，讓學習者自行設計機器人的動作如圖

1，進行通關任務。 
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圖 1 學習者使用手機 APP自行設計安譜機器人的行為 

4. 實驗設計與結果 

本次實驗的樣本為新加坡小學六年級的學生，旨在以

遊戲式學習的教學策略下配合安譜機器人，並使用手

機應用程式，以程式設計的邏輯控制機器人的行為，

藉以讓學習者了解運算思維的抽象概念，並觀察學習

者在實驗過程中的所有行為，透過序列行為分析，了

解學習者在學習過程中發生的行為順序之間的關聯

性，從而瞭解學習者學習的認知成果。 

實驗流程如圖 2所示，一開始時在教師進行間單的講解

之後，學習者便可以自行搭建 Robots city所需之場景，

接著教師便會指派不同的 APP 任務讓學習者依照指示

通關，並將學習者以 3~4人一組，進行分組競賽，藉此

來評估學習者在遊戲式學習的教學策略下中是否了解

運算思維的概念。 

 
 圖 2 實驗流程 

透過 GSEQ分析後的 Z分數的結果為表 2所示，其中

若 Z分數大於 1.96則表示行為間有顯著關係。 

表 2 Z分數分配表 

 

使用遊戲式學習搭配安譜機器人，並以手機應用程式

導入程式設計的邏輯，用來控制機器人的行為，對學

生的行為進行分析，圖 3 為 Z 分數比較表的視覺化呈

現，在實驗過程中的行為，會發現同一組學習者在與

另一組交換意見過後，會與自己同組的成員進行討論

PC→PP。 

而在操作手機應用程式控制機器人時，學習者一開始

在還沒有任何問題的拆解時便會先操控手機 APP，進

行一些簡單的演算法步驟，爾後開始遇到問題時才會

進行拆解，接著才會再次操作手機 APP，讓機器人進

行正確的動作進而完成這次的指派任務 PR→AT→ID→

PR。 

 
圖 3 Z分數比較表 

5. 結論與未來展望 

在本研究主要探討桌上遊戲式學習結合安譜機器人，

並從中導入運算思維的概念，還進一步結合了手機應

用程式的教學策略，讓學習者透過本研究之系統了解

運算思維的抽象概念。除此之外，本研究還開發行為

編碼表，紀錄學習者在研究過程中的所有行為，分析

學習者在實驗過程中的哪些行為有顯著差異，研究結

果顯示，同一組學習者在與另一組交換意見過後，會

與自己同組的成員進行討論 PC→PP。研究推論，因為

在各組別之間進行討論時，也會想要了解其他組別討

論出來的意見，所以會想要跟其他組別進行交流，彼

此交換完意見後，自己組員分享其他組的觀點，讓討

論的過程更加完善。 

另一方面，而在操作手機應用程式進行程式設計操控

機器人的行為時，學習者一開始在還沒有任何問題的

拆解時便會先操控手機 APP，進行一些簡單的演算法

步驟，爾後開始遇到問題時才會進行拆解，接著才會

再次操作手機 APP，讓機器人進行正確的動作進而完

成這次的指派任務 PR→AT→ID→PR。研究推論，因

為學習者可能第一次接觸到手機、平板、機器人等裝

置，所以學習者一拿到裝置時，出於好奇，會先自己

使用看看，讓機器人進行一些簡單的演算法步驟，而

後才會開始進行問題拆解，想好如何設計機器人的行

為，在遊戲化的過程中完成這一次的指派任務，從這

裡也可以發現，使用本研究的學習者在遊戲過程中確

實累積了一些運算思維中的演算法設計、自動化、問

題解析等概念。然而，在本研究中仍存在部分限制，

本研究中的研究對象為新加坡國小六年級的學生，沒

有包含所有區域之學生，未來可以將相同年級的學生

納入研究，探討彼此之間是否存在差異。 

綜上之結論提出以下之建議，本研究使用 Robots city桌

上遊戲，讓學習者可以透過遊戲式學習培養運算思維

的概念，並搭配手機應用程式，以程式設計的邏輯控

制機器人的行為，藉以分析學習者在研究過程中的行

為，所以未來的研究可以嘗試使用別種科技工具，也

建議可以與不同科目或導入不同的教學策略，分析學

習者在過程中會不會有其他的行為達到顯著差異，還

可以進一步探討學習者的學習成效，如此一來更能夠

幫助學習者進行更有效的學習，也可以幫助教師找到

更有效的教學策略，提高教學品質。 
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ABSTRACT 

This paper shares the implementation of a robotic coding 

curriculum for the students to develop Computational 

Thinking skills through non-formal learning at a secondary 

school in Singapore. These after-school activities are 

implemented for students who are members of the school’s 

Infocomm Club.  The students learn to program the robotic 

balls using block-based coding and apply problem solving 

skills in their projects using recycled materials for green 

environment. The projects are also designed for the students 

to apply Mathematics and Science concepts.  

KEYWORDS 

non-formal learning, coding, computational thinking, 

curriculum, implementation. 

1. INTRODUCTION 
At the Bukit View Secondary School, 38 students of the 

Infocomm Club are between age 12 and 17 years old. These 

students acquire Computational Thinking skills (Wing, 

2006) through non-formal learning in the after-school 

activities (Lee et al., 2019).  

The Infocomm Club runs various programmes for the 

students to learn coding such as Scratch programming 

(Maloney et al., 2010), Python programming (Rashed & 

Ahsan, 2012) and MIT’s App Inventor (Wagner et al., 

2013). A new Robotic Ball Coding Programme has been 

implemented to excite the students through coding of the 

Sphero balls (www.sphero.com) using block programming. 

2. RATIONALE FOR USING ROBOTIC 

BALLS 
There are various electronics platform available for the 

teaching of coding to infuse Computational Thinking skills. 

In the new programme, teachers of the school’s Infocomm 

Club facilitate the students to code on robotic ball as it comes 

with built-in sensors such as accelerometer (measure 

motion), gyroscope (measure tilt angles), light sensor 

(measure luminosity), infrared sensor (measure relative 

distance between robotic balls) and compass sensor 

(measure orientation in real-world directions).  

Other microprocessor boards usually require motors and 

wheels to be attached for movement. With robotic balls, the 

students can now focus on coding activities to move or rotate 

these balls without other hardware accessories. 

3. THE ROBOTIC BALL CODING 

CURRICULUM 
Under the Robotic Ball Coding Programme, the students 

learn through activities which make use of the built-in 

sensors of the Sphero robotic balls such as the accelerometer 

sensor, gyroscope sensor and control its sound and LED 

lights. The students also create prototypes such as maze and 

tractor vehicles using recycled materials for green 

environment including card boards, ice-cream sticks and 

paper cups. Table 1 shows the topics and activities of the 6-

week Robotic Ball Coding Curriculum with projects on 

Music, Mathematics and Science.  

Table 1. Robotic Ball Coding Curriculum. 
Week Topic Activity 

Week 1 Introduction and 

Loop Statements  

Navigate the Robotic Ball 

through a maze. 
Week 2 Variables and 

Conditional if-else 

Statements 

Create games with the built-in 

sensors. 

Week 3 More fun with if-

else Statements 

Create a futuristic Robotic Ball 

using the Accelerometer Sensor. 

Week 4 Mathematics 
Project 

Control the LED lights based on 
the Gyroscope Sensor’s axes of 

rotation. 

Week 5 Music Project Synchronize the Robotic Ball 
dancing with a song. 

Week 6 Science Project Build a tractor vehicle and 

explore force and motion. 

4. IMPLEMENTATION OF THE 

ROBOTIC BALL CODING 

CURRICULUM 
The students learn to program the robotic balls using Sphero 

Edu App installed on the iPads. This app allows students to 

code through Draw Programming, Block Programming and 

Text Programming using Javascript (Sphero Edu, 2019). 

As the Infocomm Club comprises of both junior and senior 

members, the students are taught the Block-based 

Programming (Kelleher & Pausch, 2005; Weintrop & 

Wilensky, 2017) which is easier to learn than Text 

Programming. A block program code using the Sphero Edu 

App is shown in Figure 1. 

 

Figure 1. Block program code using Sphero Edu App. 

To infuse more elements of fun, a Sphero Race Competition 

is held and the students are required to code their robotic 

balls to move through a race course where speed, inertia and 

obstacles have to be taken into account. After each stage, the 

students are allowed to improve their program code. Figure 
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2 shows the final stage of the race with 2 Sphero balls in the 

competition. 

 

Figure 2. Final stage of the Sphero Race Competition. 

5. SURVEY RESULTS 
After the 6-week Robotic Ball Coding Programme, a survey 

was conducted for the 38 students of the Infocomm Club. 

95% of the students enjoyed coding activities on robotic 

balls. 87% of the students have expressed that they can 

develop Computational Thinking skills to solve real-world 

problems as shown in Figure 3. Similarly, 87% of the 

students also expressed that they can apply Mathematics and 

Science concepts in the coding activities as shown in Figure 

4. Some students have faced challenges in testing and 

debugging the errors in their programs. 

 

Figure 3. Survey Question 1: I can develop Computational 

Thinking to solve real-world problems with 

robotic balls. 

 

Figure 4. Survey Question 2: I can apply Mathematics and 

Science concepts in the coding activities. 

At the end of the programme, some students gave the 

following feedback: 

“I am able to use coding to control the ball.” 

“I like the coding when the balls start dancing.” 

“I can apply Mathematics and Science in the coding.” 

“I like making the ball move to a light source.” 

“I can use the raw motors to make the balls bounce like 

crazy.” 

6. CONCLUSION 
This paper shares the rationale, curriculum and 

implementation of Computational Thinking with robotic 

coding activities on Sphero balls through non-formal 

learning at the school’s Infocomm Club. The 6-week 

programme enables students to develop Computational 

Thinking through block-based coding with built-in sensors 

and create prototypes using recycled materials. The survey 

results show that the students are motivated as they find 

coding with Sphero balls to be fun and they could apply 

Science and Mathematics concepts in their projects. Future 

study will explore on coding with projects that involve 

integration of knowledge from various subject matters. 
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ABSTRACT 

A large body of literature emphasizes the importance of 

effective integration of computational thinking at preschool 

education (Ching, Hsu, & Baldwin, 2018) as it is enlisted in 

the 21st century skills (Lye & Koh, 2014). Nonetheless, the 

factors related to the development of computational thinking 

are under investigation (Román-González, Pérez-González, 

Moreno-León, & Robles, 2018). Consequently, the study 

herein investigated the impact of scaffolding and gender in 

the development of one hundred and eighty children’s 

computational thinking. The results indicated strong 

interaction (p<0.000) between the aforementioned factors 

and the advancement of computational thinking producing 

practical suggestions for the preschool educators and the 

computing community in general. 

KEYWORDS 

computational thinking, scaffolding tools, gender, young 

children, robotics 

1. INTRODUCTION 
Science, technology, engineering and mathematics (STEM) 

are the cornerstones of our society that upon them its healthy 

development is constructed (Chabbott & Ramirez, 2000). 

However, there is an oppressive shortage of human 

resources in the aforementioned areas and simultaneously a 

declining trend in the number of students choosing STEM 

courses (Bøe, Henriksen, Lyons, & Schreiner, 2011). In 

addition it is predicted that by 2020, the 50% of STEM jobs 

will be in computing (ACM Pathways Report, 2013). 

Computational thinking is a fundamental concept of 

computer science emerging from its basic principles and 

practices (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 

2013) while at the same time improves computing education 

since it derives methods from different disciplines (Guzdial, 

2008). In environments where computation thinking has 

been used as a tool for learning STEM content it has been 

shown to synergistically deepen learning of the STEM topics 

and computing concepts (Sengupta et al., 2013). 

Computational thinking is being described as a key set of 

skills (Guzdial, 2008; Wing, 2008) involved in problem 

solving (Bocconi et al., 2016). Its core elements are: 

abstraction, generalization, decomposition, algorithmic 

thinking and debugging (detection and correction of errors) 

(Angeli et al., 2016). It is discussed in the computing 

community that is of great importance the development of 

computational thinking to be realized within school contexts 

and furthermore to be integrated in the curricula (Grover & 

Pea, 2018). Although several empirical studies have been 

conducted studying the development of computational 

thinking in elementary and high school settings however, the 

research area of the development of computational thinking 

in preprimary education is still in its infancy (Bers, Flannery, 

Kazakoff, & Sullivan, 2014).  

The teaching and the development of computational 

thinking especially in the early childhood education is 

mainly being implemented with the use of the robotics (Bers 

et al., 2014). Recent studies support the introduction of 

robotics in preprimary education since they reported that the 

active manipulation of the various robotics tools can 

enhance the learning experience of the children. In addition 

the use of robotics can advance the development of cognitive 

skills (Papert, 1980); social skills and engineering design 

skills (Bers, 2008). 

Programming is theorized as a teaching approach 

interwoven with the learning of robotics (Papert, 1980) 

supporting the implementation of cognitive tasks directly 

correlated to the development of computational thinking 

(Lye & Koh, 2014). in this study the design pattern of Papert 

(1993) “low floor and high ceiling” was embraced which is 

considered suitable for programming educational robots 

(Resnick & Silverman, 2005). 

Among the contributing factors that are directly connected 

to the development of computational thinking is gender 

since there are consistent findings in the literature that 

support the claim that gender differences influence student 

learning (Duckworth & Seligman, 2006) and school 

achievements (Sousa & Tomlinson, 2011). More 

specifically neuroscience studies recite that these differences 

are interwoven with the fact that girls’ and boys’ brain have 

morphological variances resulting to more cortical areas 

devoted to verbal functioning and visual-spatial information 

processing respectively (Baron-Cohen, 2004). Accordingly 

girls are better at verbal and sensory memory and boys at 

visual memory (Bonomo, 2011), justifying the fact that girls 

are excelling in complex tasks of reading and writing 

whereas boys in tasks which involve mental rotation (Maeda 

& Yoon, 2013). 

Another factor which is scrutinized in the present study is 

scaffolding. It is well documented in the literature that the 

use of scaffolding is imperative in education especially, 

when learning is accompanied by technological tools 

(Azevedo & Hadwin, 2005). Moreover scaffolding 

provision is essential especially for young students (Belland, 

2014) since in its absence students may fail to complete the 

task (Van de Pol, Volman, & Beishuizen, 2010). Studies 

connected scaffolding with the theory of the cognitive load 

due to the fact that scaffolding tools support the reduction of 

cognitive load that is being imposed to student during 

learning (Myhill & Warren, 2005) while at the same they 

improve the acquisition of cognitive skills (Reid-Griffin & 

Carter, 2004).  
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2. RESEARCH PURPOSE  
Very little research has been conducted exploring gender 

differences and the impact of different types of scaffolding 

tools in young children’s robotics and programming abilities 

(Angeli & Valanides, 2019; Sullivan & Bers, 2013) most 

likely because the use of robotics and programming in early 

childhood classrooms is relatively new. 

The research aim  is two folded as it focus on investigating 

the effects of different scaffolding tools on children’s 

computational thinking in preprimary education and at the 

same time it examines whether the two different types of 

scaffolding tools have a different impact on boys’ and girls’ 

performance on the scores of computational thinking.  

3. THEORITICAL BACKGROUND 

3.1. Participants 

The participants were one hundred and eighty preschoolers, 

ranging in mean age from five to six years old. The 

researchers obtained written consent from their parents to 

participate in the study.  

3.2. Research Materials 

3.2.1. Problem-solving Tasks  

Three different problem-solving tasks, corresponding to 

three different research phases, were designed for the 

children to program and direct the Bee-Bot into different 

paths. Children had twenty minutes at their disposal to 

complete each problem-solving task. The first problem-

solving task engaged children into an exploration of the 

commands of the programming language of the Bee-Bot and 

it consisted of thirteen subtasks. The second task consisted 

of five subtasks aiming to teach children how to formulate 

sequences of commands in increasing levels of complexity. 

Finally the third task comprised of five subtasks that were 

used to evaluate children’s computational thinking. 

3.2.2. Modeling-Based Scaffolding  

This scaffolding tool is a representation of the floor mat, the 

robotic toy Bee-Bot and the programming commands all in 

reduced size. The child thought about the algorithm and 

constructed a representation of it using the model that was 

used to support his/hers endeavor to guide the Bee-Bot into 

the task’s path.  

3.2.3. Code Structure-Based Scaffolding 

This type of scaffolding included small laminated cards 

representing each of the Bee-Bot commands and a larger 

laminated card and was developed to simulate the way the 

code is being written while programming. For this reason the 

participants were asked to choose the cards and attached 

them in the larger card in the order they believed it was the 

correct one. With this way they formed a sequence of 

commands that visualize the algorithm and then tested it.   

3.3. Research Procedures  

Research procedures consisted of three research phases that 

were administered in three consecutive days. All of the 

research phases were conducted individually for each 

participant. The first day, during Phase 1, all the children 

became acquainted with the basic commands of the Bee-Bot 

and small sequences of commands.  

On the following day, during Phase 2, the children were 

randomly divided into three equivalent groups as shown in 

Table 1. In the first experimental group, children used the 

modeling-based scaffolding tool, while in the second 

experimental group, they used the code structure-based 

scaffolding tool. The last group of children constituted the 

control group where they worked with no scaffolding tool. 

During this phase, children learned small codes that 

comprised sequences of commands with a minimum length 

of four commands and a maximum of seven. Children were 

evaluated for their initial attempts to solve the problem 

solving task. More specifically, children developed a 

sequence of commands and used it by pressing the 

corresponding buttons.  Then, they observed which path 

Bee-Bot would follow and if the path was not correct, they 

had the opportunity to try again. During the last phase, Phase 

3, the scaffolding tools were withdrawn and children’s 

performance was assessed while trying to carry out the third 

problem-solving task.  

Table 1. Participants’ Distribution into the Two 

Experimental Groups and the Control Group According to 

Their Gender 

3.4. Data Analysis 

This study used a total of one hundred and eighty hours of 

video data. The entire process of the individualized 

instruction that resulted from children’s interactions with the 

Bee-Bot was videotaped, transcribed and analyzed over one 

year period. Many researchers propose various software for 

coding recorded data however their use was not applicable 

in the present study. The reason for this is that the human 

interpretation process of the data was deemed necessary in 

this research since the robotic device (Bee-Bot) that was 

used in the herein study, is designed to support a playful 

learning process (Bers et al., 2014) and in such learning 

environments, children's actions are coded by researchers 

(Basu, Biswas, & Kinnebrew, 2017). Consequently, the 

researchers had to observe the videotaped videos and record 

the actions of the children corresponding to the command’s 

choices. Specifically, the researcher recorded which buttons 

the children selected in their various attempts to solve the 

problem of each teaching intervention. Following, the 

research data were analyzed using the method of process 

coding (Saldaña, 2015), which is considered to be ideal 

when the observed actions of the participants include 

problem solving (Corbin & Strauss, 2008). At first, four 

videos from each group were coded from two researchers to 

ensure validity and afterwards researchers' coded videos 

independently. 

Groups Participants 

Control Group 60 Boys Girls 

37 23 

Model-Based Scaffolding  60 Boys Girls 

35 25 

Code-Based Scaffolding  60 Boys Girls 

26 34 

Total 180 96 82 



 

155 

4. Results  

4.1. Computational Thinking Assessment Rubric    

The researchers collected data from all the one hundred and 

eighty students for each problem-solving task and then 

identified whether students solved the tasks correctly on 

their first attempt or whether they required more attempts. 

Based on the analysis, a rubric was created that scores 

students’ total effort along two aspects: (a) number of 

attempts and (b) the ability to complete the tasks step by 

step.  

4.2. Computational Thinking  

The picture emerging from the descriptive statistics shown 

in Table 3 indicates an advantage of male participants. In all 

groups, during the initial and final assessment of the 

computational thinking in Phase 2 and Phase 3, boys seem 

to outperform girls. A 2 X 3 analysis of variance was 

conducted to determine whether there was statistically 

significant difference between boys and girls on the different 

forms of scaffolding strategies during the assessment of 

computational thinking in Phase 2. The results revealed that 

only the use of scaffolding tool (F (2, 179) = 49.26, p < 

0.000) was statistically significant for the scores of 

computational thinking. In order to detect the differential 

performance on the computational thinking regarding to 

scaffolding tools, the researchers performed post-hoc LSD 

comparisons. The results showed that both modeling-based 

scaffolding and code structure-based scaffolding 

outperformed the control group.  

Table 2. Descriptive Statistics of Children’s Computational 

Thinking in Phase 2 for each Scaffolding tool and Gender 
Research Phase2 

 Mean SD Ν 

Modeling-Based Scaffolding  

Girls 246,08 17,94 25 

Boys 239,40 43,81 35 

Total 485,48 61,75 60 

Code Structure-Based Scaffolding 

Girls 226,11 39,75 34 

Boys 230,13 22,92 26 

Total 456,24 62,67 60 

Working without Scaffolding (Control Group) 

Girls 156,60 57,11 23 

Boys 180,21 44,00 37 

Total 336,81 101,11 60 

During the third research phase boys outperformed girls in 

all groups (Table 4). In addition, the children who belonged 

in the control group scored higher than the children who 

belonged in the two scaffolding groups. A 2 X 3 analysis of 

variance was conducted to investigate the differences 

between boys and girls and the different forms of scaffolding 

strategies used in the previous research phase. The findings 

showed that only gender had a significant main effect (F (1, 

179) = 12.82, p < 0.000) in the computational thinking score, 

revealing that the intervention produced significantly higher 

gains for the male participants. 

Table 3. Descriptive Statistics of Children’s Computational 

Thinking in Phase 3 for Each Scaffolding tool and Gender 
Research Phase2 

 Mean SD Ν 

Modeling-Based Scaffolding  

Girls 164,60 41,05 25 

Boys 202,09 58,91 35 

Total 366,69 99,96 60 

Code Structure-Based Scaffolding 

Girls 168,61 57,73 34 

Boys 195,76 53,86 26 

Total 364,37 111,59 60 

Working without Scaffolding (Control Group) 

Girls 175,86 52,01 23 

Boys 206,59 47,02 37 

Total 382,45 99,03 60 

5. DISCUSSION  
Interventions that are being implemented with the use of 

robotics and contemplate the development of computational 

thinking have become increasingly popular within the 

school system (Grover & Rea, 2018). This study brings into 

focus a large contributor to the discussion of how to integrate 

the development of computational thinking in preprimary 

education, a notion affecting the computing community in 

general. In this study the authors investigated and 

documented gender differences in educational robotics 

instruction. Unlike Sullivan and Bers (2013) that reported no 

gender differences regarding the performance on robotics 

and on the development of computational thinking of young 

children respectively, the findings of the herein study are in 

line with findings of the studies of Angeli and Valanides 

(2019) and Román-González et al. (2018) that reported that 

boys outperformed girls during the assessment of the 

development of the computational thinking. 

This result could be justified by a range of factors that are 

studied in the study herein.  The gender disparities on the 

development of computational thinking might be related to 

the spatial ability of the participants, since the majority of 

this study’s problem-solving tasks required the formation of 

sequences of commands that comprised the spatial referents 

“left” and “right”. Researchers cited that especially in tasks 

that involve mentally rotation of figures (Maeda & Yoon, 

2013), that the stereotype threats are often particularly 

noticeable for female, the task’s performance may be 

attributed to a lack of ability. Mental rotation requires the 

operation of visual-spatial working memory (Hyun & Luck, 

2007) which is being influenced by the cerebral cortex and 

is larger in boys than girls supporting the fact that boys' 

learning is improved through visual-motor experiences 

(Bonomo, 2011). Indeed, some studies have shown evidence 

that males, with their better visual-spatial working memory, 

are likely to perform better in visual-motor tasks than girls 

(e.g. Maeda & Yoon, 2013) resulting to this study’s 

observed male advantage on task’s performance. 

Alternatively, another possible interpretation of the strong 

effect of gender in our data might be related to the 

scaffolding tools used for the development of the 

computational thinking. More specifically the modeling and 

code structure-based scaffolding tools may have contributed 

to a lack of engagement of the female participants resulting 

to their lower performance on the problem solving tasks in 

comparison with their male counterparts. A different type of 

scaffolding tool including storytelling activities might have 

showed different results (Kelleher, Pausch, & Kiesler, 

2007). More precisely girls that used storytelling showed 

more evidence of engagement with programming and 

expressed greater interest in future use of coding than girls 
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who did not have storytelling support. Findings obtained by 

Angeli and Valanides (2019) report the importance of 

gender oriented scaffolding tools. In their study, higher 

means in the computational thinking scores were found in 

the male and female group that used manipulative-based and 

collaborative writing activity respectively.  

No significant differences were found between female and 

male attrition from robotics activities during Phase 2. 

However, significant differences were found between the 

experimental groups and the control group: in scaffolding 

salient condition the performance of children was 

substantially better from the performance of children in the 

control condition. Specifically children who had been 

provided with scaffolding outperformed children that had no 

scaffolding. These results are consistent with previous work 

by Jonassen (1992) and more contemporary work by Angeli 

and Valanides (2004) that showed the necessity of 

scaffolding techniques, such as, external memory systems to 

facilitate students’ learning with technological tools. In 

addition the results of the herein study are collinear with the 

results of studies that outlined that necessity of scaffolding 

especially when students of preschool education use 

technological tools (Azevedo & Hadwin, 2005) since the 

cognitive load that is being imposed to students during 

learning is reduced (Van Merriënboer, Kirschner, & Kester, 

2003).  

The observed low scores of the children of the control group 

on the measurement of computational thinking, during the 

second research phase, are caused from their difficulties that 

they encountered while visualizing the procedure needed to 

execute a program (Fessakis, Gouli, & Mavroudi, 2013). 

Children’s problems with the visualization of the commands 

sequences can be attributed to children’s misconceptions 

situated in the mental rotation (Sarama & Clements, 2009). 

More specifically children are not able to correctly 

discriminate their left and right body parts; use and apply the 

word left and right; label the directions correctly as ‘left’ or 

‘right’ (Sarama & Clements, 2009). However children with 

appropriate scaffolding can understand and use the concept 

of left and right correctly (Shusterman & Spelke, 2005) 

while being engaged in activities that include concepts 

strongly correlated with the rotation such the use of 

commands that directed the floor robot to turn right or left. 

Therefore the use of the scaffolding tools materialized the 

visualization of the algorithm used to program the floor 

robot and supported the learning of computational practices 

(Lye & Koh, 2014) that enabled children to excel in the 

problem-solving learning environment. 

These findings have a number of implications of both 

theoretical and practical significance. Regarding the 

theoretical significance, this study contributes to the 

literature addressing gender effects on computational 

thinking achievement by examining the contribution of 

scaffolding tools on children’s computational thinking 

development during preprimary education. This study 

extends previous findings in gender differences in visual 

spatial memory providing additional data indicating that 

gender differences in visual spatial working memory 

appears also in younger ages.  

Despite the fact that adults can use visualization effectively 

in many tasks (Wohldmann, Healy, & Bourne, 2007) it is 

clear that this strategy is not available for children resulting 

to an incensement of their cognitive load. The role of 

scaffolding in educational robotic settings should be 

communicated since scaffolding assist students to 

successfully complete a complex task (Belland, 2014).  

It has been reported that early childhood educators lack of 

competence and confidence while teaching robotics 

therefore they need training and resources (Bers, Seddighin, 

& Sullivan, 2013). Therefore, in regards with the practical 

implications, this study provides insights integrating 

computational thinking with the use of robotics into teaching 

practices of preschool education verifying the effectiveness 

of scaffolding tools as an instructional design framework for 

the development of computational thinking. At the same 

time this study contributes to the resources for professional 

development which are considered crucial for the curricular 

changes.  

Furthermore the herein results document that engaging 

children into problem solving tasks with robotics, constitutes 

a beneficial instructional method that advances 

computational thinking in early childhood settings. There is 

a great necessity to design environments that encourage and 

enhance computational thinking from a young age through 

meaningful playing. By introducing robotics activities that 

include problem solving to the early education curriculum, 

the play experiences of the children can be enhanced.  

In conclusion, the authors in the herein study accomplished 

to: (a) integrate computational thinking into the learning of 

programming with robotics, (b) propose a set of learning 

activities that provide low-high ceiling problem solving 

tasks at preschool level and (c) advocate the use of specific 

scaffolding tools for supporting the development of 

computational thinking. 

6. LIMITATIONS AND FUTURE 

DIRECTIONS 
Our analyses provide critical insight into the association 

between the trend of gendered attrition with robotics 

activities and the development of computational thinking. 

Nonetheless, a number of limitations should also be 

considered. The findings obtained during the last research 

phase, when the scaffolding tools were withdrawn, reported 

that the differences on the scores on the assessment of the 

computational thinking among the experimental and control 

groups were not statistically significant. This result can be 

attributed to a number of reasons. Firstly, the duration and 

the number of the lessons proved to be inadequate to enable 

the transfer of knowledge as other researchers concur (e.g 

Bers et al., 2014). In regards of children’s computational 

thinking development, it has been established by researchers 

that developing cognitive skills in young children requires 

sustained and immersive effort (Bers et al., 2014). Lastly, to 

trigger the augmentation of the pedagogical gains of the 

scaffolding is essential that the scaffolding to gradually fade 

out (Van de Pol et al., 2010). Therefore future research effort 

should focus on expanding the duration of the interventions. 
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While prior research has shown gender variation in 

computational thinking task’s performance at elementary 

and high school level showing relative advantages for male 

students (e.g. Atmatzidou & Demetriadis, 2016) little is 

known about which cognitive strategies are directly linked 

with gender differences in attrition with robotics activities 

and most importantly, what factors contribute to female fully 

engaged in robotics activities. In addition gaining a better 

understanding and addressing the underlying causes of 

gender disparities to the development of young children’s 

computational thinking will likely require focusing on 

different skills of computational thinking: abstraction and 

debugging. 

Another possibility requiring further exploration is whether 

particular groups of children benefit more substantially from 

interventions that include a focus on their cognitive style. In 

this context, robust research that can shed further light on the 

relationship of young children’s cognitive style is needed 

(Georgiou & Angeli, 2019). 

A dimensional approach will be of interest in future research 

investigating different levels of competence - for example, 

whether gender-related attitudes are associated with 

computational thinking skills or whether a threshold effect 

is observed. These questions have important implications for 

formulating and evaluating interventions targeting to 

advance computational thinking. Future intervention 

research should also test the mechanisms through which any 

effect of positive computational thinking growth on learning 

occurs. For example whether gender disparities impact on 

the development of computational thinking via social 

pathways such as teacher-student interactions.  
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ABSTRACT 
This paper presents the preliminary study of integrating 

computational thinking (CT) into K-12 education.  In order 

to successfully integrate CT into school curriculum, we need 

to enhance teachers’ understanding on CT. In this paper, we 

explore the possibilities for widening teacher’s CT 

understanding by merging CTPACK framework, which 

combines CT in technological pedagogical content 

knowledge (TPACK). Aim of the study is to understand how 

CT intersects with elements of TPACK in the context of ill-

structured digital fabrication activities. We examined three 

cases where 7th-9th grade students visited a makerspace as 

part of school curriculum. Through interviews and 

observations, we found that CT was interconnected with 

technological knowledge and pedagogical knowledge 

highlighting the use of advanced technologies and 

pedagogical propositions of the context, learning by doing. 

We also found vague connections between CT and content 

knowledge (subject matters). The study urges further 

research on CTPACK framework which potentially enhance 

integration of CT in K-12 education. 

KEYWORDS 
computational thinking, ill-structured problem-solving, 

digital fabrication, TPACK, CTPACK 

1. INTRODUCTION 

1.1. Computational Thinking in K-12 Education and 

Emerging CTPACK Framework 

Currently, there is a growing need in educational contexts to 

develop students’ ability to deal with non-routine and 

abstract tasks (Kirschner, 2002). One of the important skills 

to confront ill-structured problems in this digitalized society 

is Computational Thinking (CT). CT refers to a way of 

solving complex problems by applying the set of thinking 

skills, practices and approaches which are fundamental to 

computer science (Wing, 2006). CT leads to understanding 

how computer works as well as possibilities and limitations 

of technologies, which is vital for taking advantage of 

technology-infused social world (Denning & Tedre, 2019).  

Wing (2006) encourages to apply CT in K-12 education 

describing CT as “a fundamental skill for everyone, not just 

for computer scientists” (p.33). Previous studies have 

identified needs for further research to enhance integration 

of CT in K-12 education. Those research needs include 

combining CT with other subject studies, and teachers’ 

professional development to synthesize CT with existing 

contents and pedagogical strategies (Howland, Good, 

Robertson, & Manches, 2019; Mäkitalo, Tedre, Laru, & 

Valtonen, 2019). 

Mäkitalo and colleagues (2019) propose CTPACK 

framework to support integration of CT into school 

curriculum. CTPACK framework combines CT in the 

framework of technological pedagogical content knowledge 

(TPACK). TPACK framework, introduced by Mishra and 

Koehler (2006), has been used in educational contexts to 

integrate technologies, pedagogies and subject matters in 

teaching and learning. CTPACK represents skill set for 

teachers to guide development of CT through subject study 

with appropriate technologies and pedagogy in K-12 

educational contexts (Mäkitalo et al., 2019). Although 

CTPACK is still an emerging framework, it has potential to 

enhance integration of CT in educational contexts. 

1.2. Aim of the Study 

The aim of this study is to understand how elements of CT 

intersects with technological pedagogical content 

knowledge (TPACK). CTPACK framework supports the 

integration of CT in K-12 education by 1) recognizing CT as 

part of aspects which teachers need to consider in order to 

position CT as an objective of learning at K-12 schools and 

2) providing practical framework to combine CT with 

teachers’ existing practices of designing and implementing 

learning activities. Results contribute in advancing practices 

of integration of CT in K-12 education and establishing 

applicable CTPACK framework. 

1.3. Digital Fabrication as a Context to Integrate CT in 

K-12 Education  

We use ill-structured digital fabrication activities as contexts 

to integrate CT in K-12 school curriculum. Previous studies 

showed digital fabrication, a process of making artefacts 

with digital technologies, is a potential context to develop 

CT (Borges, de Menezes, & da Cruz Fagundes, 2017; Iwata, 

Pitkänen, Laru, & Mäkitalo, 2019). In K-12 education, 

digital fabrication can be used to learn different subjects, 

such as mathematics, physics, art, and history (e.g., Blikstein, 

2013; Pitkänen & Iwata, 2019).  

The theory underlies digital fabrication in educational 

contexts is constructionism (Blikstein, 2013). 

Constructionism emphasizes individuals learn effectively in 

interactions with the physical and social environment, such 

as making personally meaningful artefacts and publicly 

sharing objects (Papert & Harel, 1991). Pitkänen, Iwata, and 

Laru (2019) emphasize teachers’ significant roles and the 

needs of pedagogical views in designing and implementing 

ill-structured digital fabrication activities. Although digital 

fabrication activities tend to be student-centered, effort to 

support students’ learning based on pedagogical 

understanding is necessary. There are less studies which 

utilize TPACK framework in digital fabrication in formal 

education. However, Smith (2013) applied TPACK 
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framework to examine afterschool digital fabrication 

activities. She analyzed instructional strategies related to 

each element of TPACK as well as in pairs and a 

combination of three. Results showed encouraging technical 

resourcefulness as technological knowledge, utilizing 

constructionism approach as pedagogical knowledge, and 

developing multiple modes of literacy as content knowledge 

(Smith, 2013). Thus, this study shows the importance of 

developing all areas. Integrating CT into TPACK framework 

provide the tool for teachers to better understand the holistic 

perspective of CT. 

2. RESEARCH METHODS 

2.1. Research Context and Cases  

The context of the study is a makerspace in Finland. The 

makerspace offers digital fabrication facilities, such as 3D 

printers, laser cutters, vinyl cutters and programmable 

microcontrollers. The makerspace arranges digital 

fabrication activities for school visitors. We focus on three 

cases of school visits where 7th-9th grade students engaged in 

digital fabrication activities at the makerspace in 2016. 

Student groups from three different schools visited the 

makerspace as part of multidisciplinary learning module, 

which emphasizes integrating multiple subject domains 

(Finnish National Agency for Education, 2016). Overview 

of the cases and differences were as follows: 

Case I (School A): 12 students (9th grade) accompanied by a 

teacher worked on digital fabrication projects for five days. 

The projects were, for example, electronic controlled lock, 

jukebox game, and music car. Students had autonomy of 

what to make with only a few requirements, such as using a 

microcontroller.  

Case II (School B): 20 students (7th-8th grade) and two 

teachers visited the makerspace for three days. Students 

developed project ideas, such as Finland 100 years calendar, 

Finland 100 years history wheel, and Finland flag day clock, 

based on the theme provided by teachers and requirement of 

using a microcontroller. 

Case III (School C): 9 students (9th grade) with two teachers 

visited the makerspace for five days. Students had initial 

project ideas as visiting the makerspace was a part of the 

ongoing project: designing a playhouse for the school 

community. 

Table 2. Summary of Technologies Used in the Activities. 
Technologies School A School B School C 

Design tool 
Inkscape, 

Tinkercad 
Inkscape 

Inkscape, 

SketchUp 

Electronics 

Arduino Uno, 

servos, 

buttons, 

piezoelectric 

buzzer 

Arduino 

Uno, servos 
 

Programming Arduino Arduino  

Machines 
Laser cutter, 

3D printer 
Laser cutter 

Laser cutter, 

vinyl cutter, 

sewing 

machine 

Students used different technologies during the activities 

(see Table 2). All the projects were implemented as 

collaborative projects, where students worked together on 

one project as a group. Activities were run by two facilitators 

who work at the makerspace. The facilitators’ main role was 

to provide instructions of basic operations of facilities and 

digital tools and to help students when they had problems in 

the processes. Teachers’ role at the makerspace was mainly 

observing activities and general time management. 

2.2. Data Collection and Analysis  

Data was collected through 1) observation, 2) semi-

structured informal interviews with teachers, students and 

facilitators during or after the activities, and 3) two semi-

structured focus group interviews with teachers (focus group 

interview I) and facilitators (focus group interview II). 

During the observation, we took notes and photos focusing 

on overall structure, contents and instructions of the 

activities. In the semi-structured informal interviews, we 

asked about their perspectives on the digital fabrication 

activity. The interviews were recorded in video and audio. 

In data analysis we focused on how CT was seen and 

described in relation to each element of TPACK framework. 

The main data for this study was focus group interviews. 

Observation data was used to deepen understanding of the 

contexts and to refine the research design and questions. 

Data was analyzed through theory-driven approach. We 

coded the data based on definitions of CT (Barr, Harrison, 

& Conery, 2011), which have been used in K-12 contexts, 

as well as each element of TPACK framework (Mishra & 

Koehler, 2006). We performed matrix coding analysis to see 

how CT and each element of TPACK framework are 

interconnected. NVivo software was used to support data 

analysis process. 

3. RESULTS 
Table 3 shows CTPACK elements, which represent 

connections of CT and TPACK, identified in focus group 

interviews. CT was mainly discussed in relation to each 

TPACK element: technological, pedagogical and content 

knowledge separately. Also, CT was discussed together with 

technological pedagogical knowledge as a pair. 

3.1. CT and Technological Knowledge: Advanced 

Technologies and Mechanics for Developing CT 

Teachers and facilitators mentioned that students’ CT was 

developed through the following processes: 1) programming 

of microcontrollers, 2) machining, including preparing files 

in a certain format and operating machines correctly, and 3) 

making artefacts which have mechanical function. These 

results are in line with our previous study (Iwata et al., 2019), 

yet provide new insights of how CT intersects with 

technologies together with other elements of TPACK (see 

later sections). 

3.2. CT and Pedagogical Knowledge: Solving Complex 

Problems through Learning by Doing 

Students used CT in the processes of learning by doing. 

Constructionism, which underlies digital fabrication, 

encouraged solving complex problems while they were 

working on the projects. In the iterative processes of 

complex problem-solving, students analyzed the possible 

solutions to improve the next design cycle. 
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School B had a unique division of roles among groups. Two 

groups worked collaboratively on one project by dividing 

the tasks: one group was responsible for outer design and 

another group for inside mechanics of the product. Although 

communication load between design and mechanics groups 

increased, in this way, students were able to focus on 

specific aspects of complex ill-structured digital fabrication 

activity. A student from School B explained as follows: 

There was two groups working for the same product, but 

both had own tasks. We had to decide all those dimensions 

together, between two groups, that the product will be right 

size. It wasn’t hard, we get along well, and we managed to 

do right everything. (Student, informal interview) 

Table 3. CTPACK Elements in Focus Group Interviews. 

CTPACK elements 

Focus group 

interview I  

n(total)a=8,387 

n(CT)b = 944 

Focus group 

interview II 

n(total)=6,328 

n(CT) = 826 

CCc nd CC n 

CT Technological 

knowledge 

35.8%   

 

187 64.6% 268 

CT Pedagogical knowledge 34.7%  181 11.3% 47 

CT Content knowledge 0.0%  24.1% 100 

CT Technological 

Pedagogical knowledge 

29.5% 154 0.0%  

CT Technological Content 

knowledge 

0.0%  0.0%  

CT Pedagogical Content 

knowledge 

0.0%  0.0%  

CT Technological 

Pedagogical Content 

knowledge 

0.0%  0.0%  

Total 100% 522 100% 415 

a Total number of words in the focus group interview; b Number of words 

regarding CT; c Coding coverage: percentage of the number of words 

coded at the node; d Number of words at the node. 

3.3. CT and Content Knowledge: Applying Multiple 

Subjects in Complex Problem-Solving 

The activities included multiple school subjects, such as 

math, physics, art, craft and English, as well as programming 

and coding (cf. Pitkänen & Iwata, 2019). One facilitator 

highlighted applying CT and school subjects in the context 

of digital fabrication as follows: 

Computational thinking it’s best applied to a little bit larger 

design problems, really have to divide your work into pieces 

that you have to solve piece by piece. But maybe at schools 

the curriculum is just their subjects, they are not linked 

together. But in [the makerspace] when we make a device, 

we have several subjects we have to combine into one device. 

(Facilitator, focus group interview) 

In complex problem-solving in digital fabrication, which 

requires using knowledge of multiple school subjects, CT 

can be effectively developed.  

3.4. CT and Technological Pedagogical Knowledge: 

supporting development of CT with technologies 

and pedagogy 

In the case of School A, facilitators arranged a short lecture 

where they explained how logic ports on microcontroller 

work. Having lecture to theoretically understand logic port 

function effectively supported students in learning CT. 

Using microcontroller enhanced students’ learning by 

enabling to apply theoretical knowledge of logical port 

functions into practices.  

Teachers from School C explained that they used a digital 

mind map tool to support the students in ideation process. It 

helped logically organize and analyze their ideas. Teacher 

from School C reflected as follows: 

In a start point…. the students made that mind map very 

quickly, just some words, and after two days, they have to 

make second mind map, and they just know that, “now I have 

so much more ideas to go through in this week”. Also, they 

recognized the whole process and the whole project, what to 

do, and what we need, and how to solve the different kind of 

problems and so on. (Teacher, focus group interview) 

In different phases of the project, the mind map tool helped 

students to generate ideas, to understand whole processes of 

the project, and to organize small steps required to complete 

the project. 

4. DISCUSSION 
CT and pedagogical knowledge were highlighted by two 

means: 1) Pedagogical approach of learning by doing 

enhanced developing CT. Students faced complex problems 

in the processes of making artefacts. Smith (2013) describes 

constructionism and learning by doing as the core of 

pedagogical knowledge in digital fabrication. 2) Dividing 

responsibilities may support dealing with complex problems. 

Digital fabrication project in few day activity tends to give 

heavy workload for K-12 students (Pitkänen & Iwata, 2019). 

Distribution of responsibility allows focusing on a small part 

of the whole project. Activities can be designed considering 

complexness which contributes to the development of CT, 

as well as students’ limited capacity. Dividing responsibility 

may be effective in providing balanced workload. 

We found two factors in which CT intersects with 

technological pedagogical knowledge: 1) Advanced 

technologies enhance feedback process of learning by doing, 

which contributes to developing CT. By using technological 

tools and machines, students can get feedback of their trial 

quickly, which resulted in encouraging trial and errors 

(Pitkänen & Iwata, 2019). As Papert (1980) described 

computer as an “object-to-thing-with” (p. 23), students 

develop CT through interacting with technological tools. 2)  

Technologies helped the process of supporting students’ 

thinking process during ill-structured activities.  

Results show that neither teachers nor facilitators discussed 

intensively how subject matters directly relate to CT. One of 

the potential reasons is that three cases of makerspace visit 

were implemented as part of schools’ multidisciplinary 

learning module. Thus, teachers did not intend to let students 

learn specific aspects of subject matter. Based on the results, 

it is a challenge to widen teachers’ understanding about CT, 
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because of the lack of long-term design and discussion about 

the skills and competencies of CT – from the holistic 

perspective (Denning & Tedre, 2019) and it’s relation to 

technology, pedagogy and content. Another possible reason 

is that cognitive demand of the activity was high, thus 

participants had only limited room to focus on subject 

matters during the activities. Pitkänen et al. (2019) argue 

potential challenges which students face during ill-

structured digital fabrication activities due to high cognitive 

demand. Cognitive demand in digital fabrication activities 

can be increased by digital tools and machines with which 

students and teachers are not familiar. In addition, ill-

structured activity design with minimal instructions might 

contribute to increasing cognitive demand. 

Limitations of the study are in data collection and analysis 

processes. In the interviews, we did not ask questions 

focusing on learning of subject matters. It might affect to 

results of vague connection between CT and content 

knowledge. In data analysis, we used operational definition 

of CT introduced by Barr et al. (2011). However, aspects of 

CT in the definition are not directly related to processes of 

digital fabrication. Using a definition of CT which takes the 

research context (digital fabrication) into account, such as 

Borges et al. (2017), may increase reliability of results. 

5. CONCLUSION  
This paper presented preliminary study examining the 

current practices of digital fabrication activities for K-12 

students to understand how CT and elements of TPACK are 

interconnected. We found connections of CT and part of 

TPACK elements. Results provide the basis for 

understanding the role of CT  in ill-structured digital 

fabrication activities. Further, CTPACK framework provide 

practical solutions to connect CT in subject matter with 

appropriate technologies and pedagogy in order to widen 

teachers’ understanding about CT. In future study, CTPACK 

framework can be used as a tool to develop digital 

fabrication activities to integrate CT in school curriculum.  

To examine applicability of CTPACK, students with broader 

grade levels can be chosen as participants, and data can be 

analyzed considering different level of subject studies, 

students’ age, sex, and background.  
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ABSTRACT 
The study analyzed the literature of computational thinking （CT） in CNKI by using the Knowledge Graph, and analyzed 

the main characteristics and the level of the research field of CT in China by using the keyword word frequency co-occurrence 

analysis method. The results show that the research on CT in China gradually returns to the rational state. Drag-and-drop 

programming for children provides an opportunity for the development of computational thinking in primary and secondary 

schools. The training of computational thinking mainly relies on programming, information technology, mathematics and 

other science and engineering courses. This paper sorts out the development of computational thinking, and puts forward 
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CT; Exploration of the development of learners' CT from multiple perspectives; Enhancement of the awareness of in-service 
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摘要 

本研究利用知识图谱对中国知网中计算思维文献分析，

通过关键词词频共现分析法探析我国计算思维研究领

域的突出特性和层次深度。研究发现：我国计算思维

相关研究逐步回归理性状态；适合儿童的拖拽式编程

为中小学计算思维的培养带了契机；计算思维培养主

要依托编程、信息技术、数学等理工科课程，研究主

题多为课程模式的构建。本文梳理了计算思维发展脉

络，为未来的研究发展提出了启示：引入标准化的定

量或定性计算思维评价方法；多角度探究学习者计算

思维的培养；增强一线教师对计算思维的认知，探究

一线教师计算思维培养模式与方法。 

关键词 

知识图谱，计算思维，计算思维研究演变 

1. 引言 

2014年 3月，教育部发布的《关于全面深化课程改革落

实立德树人根本任务的意见》（以下简称《意见》）

以及 2017 版《普通高中信息技术课程标准》（以下简

称《课标》）等文件为计算思维相关研究在我国的快

速发展提供了契机。为了解我国计算思维研究现状和

趋势，研究者运用 CiteSpace 文献计量工具对中国知网

中计算思维相关文献进行分析，探析计算思维领域研

究发展脉络，梳理现有研究及现有研究的不足为计算

思维的进一步研究提供支点。 

2. 问题提出 

周以真教授认为计算思维并非计算机专业人员的特有，

计算思维等同于听、说、读、写，是每个人都需要掌

握的日常生活技能之一，是运用计算机概念抽象问题

模型，形成解决方案，再由信息处理代理自动化有效

执行的过程（Wing, 2006；Wing, 2008）。目前计算思

维的定义可分为两个方面，第一：计算思维是一种必

备的思维能力，指的是形成问题及其结果方案时所设

计的思维过程，使得解决方案能够快速有效的执行

（Sysło & Kwiatkowska, 2013）；计算思维包括计算科

学中的概念和思维过程，这些思维和过程将有助于学

习者面对不同领域的问题时形成相应的解决方案

（Mannila, Dagiene, Demo et al, 2014）；第二：计算思

维是问题解决、系统设计的过程或方法，关注的重点

是利用计算机学科的基本概念来理解人类的行为

（Korkmaz, Ç akir & Ö zden, 2017）；还有学者认为计算

思维是用计算机实现问题解决的方法，能够使用抽象、

迭递归等计算机学科概念来处理和分析数据，可以自

动化的将相关概念和技能跨领域的应用（Barr & 

Stephenson, 2011）。计算思维最后指向学习者在信息

社会中解决问题的一种普适的基本能力，强调运用计

算机科学的基础概念进行问题求解、系统设计的思维

过程和行动，在问题解决的过程中，学生不仅要能够

熟练的运用可供选择的工具，还要掌握计算思维，运

用计算思维，成为问题解决方案的思考着和设计者、

成为新型问题解决工具的开发者与迁移者。基于此，

本研究探究以下问题，以期为接下来的研究提供支点：

（1）我国计算思维的研究现状如何？（2）如何随时

间变化？（3）研究热点、研究领域以及层次深度如何？

（4）结合国外研究前沿为我们带来什么样的启示？ 

3. 研究设计 

3.1. 研究方法 
CiteSapce 可以用于寻找某一学科领域的研究进展和当

前的研究前沿，能够将一个知识领域的演变历程呈现

在一张图上。CiteSpace 中关键词或特征词图谱配合突

现词功能使用可以帮助人们研究热点及热点的演变

（陈悦、陈超美和刘则渊等，2015）。本研究利用了

聚类视图和时间线视图结合的功能，构建计算思维关

键词图谱和计算思维关键词时间线图谱，分析计算思

维研究热点及随时间研究热点的转变，并对关键词结

果进行聚类，分析计算思维研究领域及对应的研究深

度。 

3.2. 数据来源 

计算思维又称为“运算思维”，因此，以“计算思维”或

“运算思维”为主题词，以中国知网中的期刊文献为研究

对象，对时间不进行限制的情况下进行精确检索，得

到记录为 3231 条，经初步分析发现 2010 年及以前文献

较少，近 5 年文献数量较多，主题相关度高，依据本文

研究目的为考察计算思维领域目前研究现状与趋势，

将时间节点设置成 2014年 1月 1号到 2019年 6月 1号，

对近 5-6 年内关于“计算思维”或“运算思维”的文献进行

检索，共检索出 2572 条结果，经过人工筛选，剔除与

主题无关、关键词混淆、会议通知等无效记录，剩余

2354 条记录。 

4. 研究结果与分析 

4.1. 计算思维研究热点分析 

4.1.1. 计算思维研究文献时间分布图 

计算思维的研究与我国重要文件和报告的提出呈显明

显的相关性。如图 1 所示，11-14 年文献数量增加幅度
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较大，14-17 年文献数量无显著性变化，17 年之后文献

数量又有了小幅度增加，从 19 年上半年的形势来看应

该跟 18 年大致持平。其中文献数量急剧增加的年份为

12 年、13 年和 17 年，结合文献发表周期等现实情况，

２０１０年发布的 《九校联盟（Ｃ９）计算机基础教

学发展战略联合声明》强调了高等教育中计算机基础

教育培养学习者计算思维的重要性，并提出了相应的

课程体系建设和课程目标（董荣胜，2010）,《课标》

将计算思维培养列入了课程培养目标范围之内等文件

内容的发布推动了相关研究的发展。 

 
图 1 计算思维研究文献时间分布图 

4.1.2. 计算思维研究热点分析 

关键词是了解文献的主题、内容等关键内容的重要线

索，关键词的中心度和出现的频次，代表了一段时间

内该领域研究者的关注热点。本研究运用 CiteSpace 对

知网中 2014年到 2019年 6月 1号的 2354条数据进行可

视化分析。Time Slicing 设定为“2014-2019”；Years Per 

Slice 设定为 1 年；Node Types 设置为关键词；Selection 

Criteria 设定为 Top N=50，运行 CiteSpace，高频关键词

节选如表 1 所示。中心度最高的为“计算思维”，为 0.51；

其次分别是信息技术、计算思维能力、核心素养、信

息技术课程，分别为 0.09、0.08、0.08、0.08。由此可

见，在该网络中，计算思维能力、信息技术课程、核

心素养培养、编程语言是计算思维发展过程的主要关

注点。 

表 1 计算思维研究领域高中心度词汇节选 

序号 词频 中心度 年份 关键词 

1 1929 0.51 2014 计算思维 

2 110 0.09 2014 信息技术 

3 83 0.08 2014 计算思维能力 

4 69 0.08 2017 核心素养 

5 55 0.08 2014 信息技术课程 

CiteSpace 关键词的聚类功能可以显示具体研究领域的

热点与发展趋势。如图 2 所示，计算思维关键词聚类图

谱网络节点共有 138 个， 598 条网络连线，网络密度为

0.0633。相关领域从研究主题上可以划分为计算思维、

信息技术、程序设计、计算机基础教学、教学模式以

及教学改革等；从研究层次上主要集中在高等教育研

究、基础教育研究领域，其中基础教育研究中大多以

信息技术课程为依托，计算思维在高等教育中的研究

主要以大学计算机基础课程教学为依托。近五年关于

计算思维的研究在课程方面有关于课程体系改革，课

程模式探索以及教学方法等方面的研究，依托的课堂

多为计算机或编程等相关课程，注重学习者 21 世纪核

心素养、高阶思维能力等方面的培养。 

 
图 2 计算思维关键词频次聚类图普 

4.2. 计算思维研究热点、领域等随时间发展的转变 

时间线视图从时间维度对关键词进行聚类，分析聚类

之间的关系和某个聚类中文献的历史跨度。设置时间

切片为 1 年，构建关键词实时间线视图聚类，如图 3 所

示。 

 
图 3 计算思维关键词时间线聚类视图 

由图 3 可以清晰的看出计算思维各个研究热点聚类的发

展脉络，从中我们可以看到，计算思维相关研究大致

聚为 6 类，分别是核心素养、计算机基础、教学改革、

计算思维、计算思维能力、计算机。 

4.2.1. 类#0 核心素养 

《意见》中第一次提出加快“核心素养体系建设”的指导

意见，将核心素养体系放在了深化课程改革、落实立

德树人目标的基础地位。有上图聚类可知，在计算思

维研究领域研究者们对学习者“信息素养”持续关注，并

在 15 年左右“学科核心素养”出现。期间编程教育、项

目学习等学习方式也一直强调核心素养的培养，计算

思维的培养与核心素养的培养持续关联。 

4.2.2. 聚类#1 和聚类#5 计算机基础和计算机 

计算思维自提出之日，研究者们便希望能够运用计算

机学科的概念和原理去理解问题和解决问题。计算机

基础教学的核心任务是计算思维能力的培养（何钦铭、 

陆汉权和冯博琴，2010）。在此聚类中可看出，从基

础教育的信息技术到高等教育的大学计算机均为研究

者们的关注点。其中随时间发展，中小学阶段以及高

中阶段的信息技术课程、scratch编程、人工智能等逐渐

被研究者关注，计算思维的培养也逐步深入基础教育

中去，逐渐关注中小学学生创造力等高阶思维的培养。 
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4.2.3. 聚类#2 教学改革 

由聚类图可知，教学改革这一聚类从学科角度看主要

集中在在信息技术课程、编程教育、跨学科教育等方

面；从改革内容和形式来看主要集中在教学模式的探

索、课程体系的架构、课程设计与建设等方面。逐步

引入新工科、互联网等学科领域，目的指向应用型人

才以及学习者计算思维等高阶能力的培养。 

4.2.4. 聚类#3 和聚类#4 计算思维和计算思维能力 

研究者们对计算思维定义及其培养的关注一直持续不

下。“抽象”这一单独的概念维度在 2016 年出现被研究

者们关注，计算思维的培养开始出现根据不同年龄阶

段学习者的特征开展计算思维培养，不同年龄阶段学

习者所接受的计算思维培养内容和层次不同。 

5. 研究结论与启示 

5.1. 研究结论 

本研究得到的主要结论如下： 

（1）计算思维研究领域受权威机构的指导意见影响。

研究热点、研究情况受国家层面或权威机构发布的相

关政策与文件影响较大，政府层面或权威机构发布的

多个指导性文献有效推动了我国对计算思维的培养向

各教育阶段的过渡，教育领域的研究者们针对计算思

维从基础教育到高等教育均展开了大量的相关研究。

计算思维目前研究热度处于平稳状态，相关文献数量

不再急剧增长，相关研究从萌芽时期经历奠基时期和

混沌时期逐步回归理性状态。 

（2）计算思维的培养主要依托理工科课程。高等教育

中主要依托计算机基础课程及程序设计课程，基础教

育中主要为信息技术课程、数学课程以及编程兴趣班。

高等教育中以计算机课程为依托，计算思维最主要的

培养方式是通过代码的编写以及代码逻辑的学习来实

现计算思维的培养。随着教育理念和教育技术的发展，

人工智能、创客教育、拖拽式编程为中小学计算思维

的培养带了契机（孙立会和周丹华，2019）。 

（3）计算思维的研究主题多围绕培养模式的构建。计

算思维研究主题近五年来大多围绕各阶段的信息技术

课程进行，研究主题涉及计算思思维概念的介绍与界

定、计算思维发展的教学模式的构建和教学活动的设

计、相关课程案例的探讨等，也多处提及课程改革，

关于哪些活动环节、资源形式影响学习者计算思维能

力发展及如何评价学习者计算思维发展的相关研究较

少。 

5.2. 研究启示 

计算思维的发展与习得将会帮助学习者运用计算机科

学的理念和知识去理解世界，为其工作和学习带来便

利，是未来人才培养的重要目标之一，结合研究结论

及国际前沿演技，本研究提出以下反思建议： 

（1）引入量表、测试题、理论模型等标准化的定量或

定性计算思维评价方法。正确有效的评价反馈才能促

进更好的教学，那么计算思维如何评价？评价什么？

怎么评价？仍是相关学者需要思考的问题。有效的计

算思维评价可以科学合理的评估学习者的起点水平、

认知结构、学习态度以及学习进步等，以便实施个性

化教学干预（Román-González Marcos，Pérez-González 

Juan-Carlos et al, 2018）。 

（2）多角度探究学习者计算思维的培养。我国研究者

对于计算思维培养的研究大多依托于中小学信息技术

课程以及大学的计算机课程，主要的方式是通过程序

设计来实现计算思维的培养，计算思维是一种每个人

都要具备的思维模式，是一种运用计算机科学概念理

解世界、解决问题的方式或方法，计算思维的培养不

仅可以依托于程序设计。计算思维的培养更要从多个

角度探究学习活动方式、教学资源形式对学习者计算

思维发展的影响（Zhao & Shute, 2019）。 

（3）增强教师对计算思维的认知，开展主题为计算思

维理念与培养方法的教师培训。教师是培养学习者计

算思维能力培养的直接执行人，教师素质能力的高低

是影响学习者的关键因素（Liying Xia & Baichang 

Zhong, 2019）。构建面向学习者计算思维培养的教师

发展培训模式，开发指导教师设计并实施计算思维培

养课程的资源体系等是落实计算思维培养教学目标的

前提与根本。 

6. 基金项目 

国家自然科学基金 2018 面上项目 促进小学生计算思维

培养的跨学科 STEM+C 教学理论与实证研究 71874066； 
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ABSTRACT 
This study attempted to cultivate the students to apply computational thinking process to solving the problems when the 
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results found that the students made significant progress both in the competence of computational thinking and the proficiency 

of conditional sentences in Chinses through the game-based learning tasks with robots. 
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使用手機積木程式工具操控機器人對新加坡五年級學生運算思維表現之影響 
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摘要 

本研究藉由透過手機或平板和教育機器人的程式編輯

器連線，透過編寫積木程式來操控機器人的互動內容，

培養學生透過運算思維歷程來解決教育機器人互動遊

戲中所遇到的問題。實驗對象為新加坡五年級的小學

生，利用積木程式控制機器人使用華語進行互動，研

究結果發現透過機器人的遊戲式學習任務，可以提升

學生在學習運算思維上的成效，同時提升學生的華語

文條件複句能力。 

關鍵字 

運算思維；機器人；遊戲式學習 

1. 前言 

在科技快速變遷的資訊化社會中，運算思維逐漸成為

每個 人必備的基 本技能（ Yadav, Mayfield, Zhou, 

Hambrusch, & Korb, 2014），運算思維與其相關的概念，

例如：編寫程式碼、電腦程式設計、運算法思維等等，

在 教 育 領 域 受 到 越 來 越 多 的 關 注 （ Bocconi, 

Chioccariello, Dettori, Ferrari, & Engelhardt, 2016），培

養學生運算思維的能力，成為教育領域的熱門課題。 

近年來，世界各國為了因應此趨勢，並培養出在數位

時代具備重要能力的人才，相繼提出新的資訊教育政

策，將科技融入教育，而台灣於 2014 年頒佈的《十二

年國民基本教育課程綱要總綱》也正式於 2019 年開始

實行，其中資訊科技領域之課程即是以培養學生運算

思維之素養為主軸，重視跨領域統整、溝通與團隊合

作之能力，強調學習內涵須注重與生活的連結，而不

宜再局限於單純的學科知識及技能（王佳琪, 2017）。 

儘管教育隨著時代不斷地變化，但遊戲一直是教育不

可或缺的一部分，教育遊戲的概念已在當今的教育界

中得到應用（Donmus, 2010），根據眾多研究支持遊戲

對學習的積極影響，越來越多的研究人員致力於開發

教育遊戲（Qian & Clark, 2016），學者 Reinders 和

Wattana （2015）表示遊戲可以激勵人們，降低學習中

的情感障礙，並鼓勵外語或第二語言（L2）的互動。 

因此，本研究將探究使用手機應用程式與教育機器人

相互配合，讓華語作為第二語言學習的國小生，利用

手機應用程式中模組化的程式設計工具操作教育機器

人，學習華語邏輯與文法規則，並從遊戲中培養運算

思維與分析的能力，使得學生在遊戲過程中，能夠運

用運算思維解決所遇到的問題，並且釐清華語文法上

基本觀念。 

2. 文獻探討 

2.1. 運算思維 

運算思維（Computational Thinking, CT）是使用電腦和

訊息科學必不可少的概念，經常被用來解決問題、設

計和評估複雜的系統，並理解人類的推理和行為

（Buitrago Flórez et al., 2017）。Korkmaz、Ç akir 和

Ö zden （2017）認為可以將「運算思維」簡單地定義為

具有能夠使用電腦解決生產中的生活問題所必需的知

識、技能和態度，這種思維方式對電腦科學以及幾乎

所有其他領域都具有重要意義（Buitrago Flórez et al., 

2017）。（Wing, 2006）表示一旦學生掌握了運算思維

的概念，便可以將其應用於電腦科學以外的領域。 

在過去的十年中，運算思維和相關的概念例如：編寫

程式碼、電腦程式設計、運算法思維，在教育領域受

到越來越多的關注（Bocconi et al., 2016），隨著世界各

國政府在學校課程中引入這些技能，通過電腦程式設

計來發展運算思維技能是教育的一個主要焦點

（Moreno-León, Robles, & Román-González, 2016），運

算思維被認為是一種普遍的能力，應將其添加到每位

孩子的分析能力中，作為他們學校學習的重要組成部

分（Voogt, Fisser, Good, Mishra, & Yadav, 2015）。 

然而，運算思維需要透過訓練和指導，不是自然而然

產生的 （Sanford & Naidu, 2016），儘管程式設計對年

輕學生非常有吸引力，且具有很好的實踐或經驗，但

是在程式設計方法或運算思維過程中發展學生的邏輯

思維能力和解決問題的能力可能更有趣（García-

Peñalvo, 2018）。 

2.2. 機器人 

機器人一直受到越來越多的關注，並且機器人在教育

中的許多方面被認為是有前途的教學手段（Cheng, Sun, 

& Chen, 2017）。機器人程式可以吸引人的學習環境，

以獲取核心的運算思維能力（Witherspoon, Higashi, 

Schunn, Baehr, & Shoop, 2017）。在世界範圍內，經濟

和技術要求等因素都在積極促進程式設計教育（Noh & 

Lee, 2019）。教育機器人程式已在大多數發達國家中流

行，並且在發展中國家也越來越流行（ Miller & 

Nourbakhsh, 2016）。 

如今，教育機器人已經開始走進校園和家庭，改變了

傳統的教學方式（Jin, Xie, Ma, & Ye, 2019）。機器人技

術的發展具有與教育系統整合的巨大潛力，機器人技

術在中小學生中變得越來越普遍（Besari et al., 2016）。

機器人技術用於在各個教育階段的學生中教授問題解

決、程式設計、設計、物理、數學甚至音樂和藝術

（Miller & Nourbakhsh, 2016）。 

2.3. 電腦程式自我效能 

自我效能與人們本身對完成任務或目標能力的信念有

關（Bandura, 2006）。目標設定理論表明，困難的目標
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可以提高許多任務的績效，但是當目標難以實現時，

目標可能會產生挫折感和動力不足，結果也會降低績

效（Baron, Mueller, & Wolfe, 2016）。 

隨著對電腦系統的日益依賴以及新技術的引入日漸迅

速，用戶對技術的接受度仍然是一個重要的問題（Mun 

& Hwang, 2003）。現代技術的發展及其對當今日常生

活的擴展已是不爭的事實，電腦的廣泛使用使得有必

要對這些技術進行培訓，例如：電腦自我效能、自我

概 念 、 態 度 、 動 力 和 需 求 （ Paraskeva, Bouta, & 

Papagianni, 2008）。Karsten 與 Roth （1998）的研究結

果顯示，電腦自我效能感的測量提供了有用的證據，

表明通過培訓的過程，學生能夠更有效地提升使用電

腦的能力。 

2.4. 遊戲式學習 

近年來，對基於數位遊戲式學習（Digital Game-Based 

Learning, DGBL）有效性的系統評估越來越引起人們的

興趣（All, Castellar, & Van Looy, 2015），有鑑於眾多

研究支持遊戲對學習的積極影響，越來越多的研究人

員致力於開發教育遊戲，以促進學生在學校 21 世紀技

能的發展（Qian & Clark, 2016）。電腦遊戲已向許多方

向發展，許多研究和系統涉及遊戲結構中的“樂趣”和

“愉快”等不同的元素，以提高學習者在教育學習領域的

動力（Al-Azawi, Al-Faliti, & Al-Blushi, 2016）。技術的

進步導致教學方法的不斷創新，例如：在課堂教學中

使用平板電腦（TPC）已被證明可以有效地吸引和激發

學生的興趣，並提高他們參與學習活動的意願（Hung, 

Sun, & Yu, 2015）。遊戲可以激勵人們，降低學習中的

情感障礙，並鼓勵外語或第二語言（L2）的互動

（Reinders & Wattana, 2015）。 

2.5. 合作學習 

在過去的幾年中，有關課堂合作學習技術的研究一直

在增加，在這種學習中，學生以小組形式工作，並根

據小組的表現獲得獎勵或認可（Slavin, 1980）。在精

心組織的小組中合作工作的學生可以最大限度地利用

自己和彼此的學習（Smith, 1996）。通過鼓勵學習者共

同努力解決問題，了解他人的觀點並合作尋找創造性

和關鍵性的解決方案，這些經歷可以幫助認知和協作

技能的發展（Lee et al., 2016）。通過合作組織努力，

有大量證據表明學生將取得更高的成就，能夠學習更

多，使用更高層次的推理策略，建立更完整和複雜的

概念結構以及更準確地保留學習的訊息，建立更多的

支持性和積極關係，其中也包括人際關係，並以更健

康的方式發展，心理健康、自尊、應對壓力和逆境的

能力皆會有所提升（Smith, 1996）。 

3. 研究方法 

3.1. 實驗對象 

本次實驗對象為 52 位將華語作為第二語言學習的新加

坡某國小五年級學生，性別分布為男性 30 位（58%），

女性 22 位（42%），主要是透過手機應用程式與教育

機器人相互配合使用，使學習者能夠運用運算思維並

釐清華語文法上基本觀念，同時提升學習者的學習成

效。 

3.2. 研究工具 

本研究使用機器人華語文句子學習單與電腦程式自我

效能量表進行學習成效測量： 

3.2.1. 機器人華語文句子學習單 

本研究使用的機器人華語文句子學習單測驗學習者的

華語能力，學習單內容取自與課文內容程度相同之華

語教材，總共分為四大題，第一部份以詞語組成為主，

第二部份選擇出正確的拼音，第三部份找出最適合的

詞語填入句子中，最後第四部份偏重圖片識別部份。 

3.2.2. 電腦程式自我效能表現量表 

此量表用以個人對於自己電腦能力的自我判斷。採用

Tsai, Wang 與 Hsu（2019） 所編製之「電腦程式自我效

能表現量表」上的得分來決定，得分越高，表示其所

具有的電腦程式自我效能表現越高，反之則越低。此

量表包含三個構面分別為「邏輯思考」、「控制」與

「除錯」，「邏輯思考」構面 4 題，「控制」與「除錯」

構面各 3 題，合計 10 題。作答形式採用李克特的五等

選項，「1」表示強烈反對，「5」表示堅決同意；各

分量表加總取平均值即為各分量表分數，並分別進行

前後測驗的比較。 

3.3. 研究程序 

本次實驗的實驗對象為 52 位將華語作為第二語言學習

的新加坡某國小五年級學生，施測地點為班級教室進

行施測，採團體施測的方式。使用手機應用程式與教

育機器人相互配合使用，主要的目的是希望讓華語非

母語的國小生利用模組化程式設計工具學習華語邏輯

與文法規則，並透過相互合作學習，共同努力解決在

學習過程中所面臨的問題，使學生能夠運用並釐清華

語文法上基本觀念。 

如圖 1 表示，在實驗開始之前，使用機器人華語文句子

學習單與電腦程式自我效能表現量表，先對學生施行

前測，評估基本的華語及運算思維能力，接著進行小

組施測介紹並教授課程內容，經教學課程後，開始分

組完成實驗內容，每組使用手機應用程式（操作介面

如圖 2 所示）與教育機器人達成目標並完成實驗。待所

有組別皆完成實驗，開始進行全班的團體競賽的施測

介紹，藉由團體競爭的競爭方式提高學生的學習成效。

全班競賽施測結束後，要求學生填寫與前測相同難易

度的機器人華語文句子學習單與電腦程式自我效能表

作為後測，了解實驗結果與學習成效是否有進步。 
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圖 1 實驗流程 

 
圖 2 使用手機積木程式工具操控機器人之介面 

4. 研究結果 

本研究欲探究學生之成績，使用機器人華語文句子學

習單進行前後測的成績測驗，並且將前後測的成績以

相依樣本 t 檢定分析發現，由表 1 得知，學生之後測與

前測之平均值有顯著差異，t（51）= -6.203，p<.05。後

測成績（M=76.35，SD=13.64）顯著地大於前測成績

（M=60.13，SD=23.26），由此可見學生透過手機應用

程式與教育機器人相互配合學習華語，對於學習成效

是有顯著增加的。 

本研究欲探究學生在電腦程式自我效能之表現，將問

卷分為「邏輯思考」、「控制」與「除錯」三個構面，

將前後測以相依樣本 t 檢定進行分析發現，學生三構面

後測與前測之平均值皆有顯著差異。 

由表 2 得知，在「邏輯思考」構面 t（51） = -6.12，

p<.05，後測成績（M=3.99，SD=0.81）顯著地大於前

測成績（M=3.07，SD=1.09）；在「控制」構面 t（51） 

= -4.97，p<.05，後測成績（M=3.95，SD=0.94）顯著地

大於前測成績（M=2.96，SD=1.41）；在「除錯」構面

t（51） = -6.94，p<.05，後測成績（M=3.92，SD=0.83）

顯著地大於前測成績（M=2.79，SD=1.10），由此可見

學生透過手機應用程式與教育機器人相互配合學習華

語，能夠顯著提升運算思維的能力。 

5. 結論與未來展望 

在過去的十年中，運算思維和相關的概念例如：編寫

程式碼、電腦程式設計、運算法思維，在教育領域受

到越來越多的關注（Bocconi et al., 2016），隨著世界各

國政府在學校課程中引入這些技能，通過電腦程式設

計來發展運算思維技能是教育的一個主要焦點

（Moreno-León, Robles, & Román-González, 2016），而

使用手機應用程式中模組化的程式設計工具，是為了

培養學習者使用電腦邏輯來解決問題的運算思維

（Buitrago Flórez et al., 2017），強化資訊科技能力。 

在本項研究中，使用手機應用程式中模組化的程式設

計工具操作教育機器人，學習運算思維與華語文法規

則。研究結果顯示，學習者在經教學課程並分組完成

實驗內容後，將前後測以相依樣本 t 檢定進行分析發現，

使用機器人華語文句子學習單進行前後測的成績測驗

之平均值有顯著差異，後測成績顯著地大於前測成績，

表示學習者透過手機應用程式與教育機器人相互配合

學習，確實能夠增加學習者學習華語的學習成效。並

且，學習者在「邏輯思考」、「控制」與「除錯」三

構面後測與前測之平均值皆有顯著差異，由此可見學

習者透過手機應用程式與教育機器人相互配合學習華

語，對於運算思維是確實有顯著提升的。 

雖然本研究結果顯著，研究者認為華語的文法規則與

語法多變性遠遠大於目前手機應用程式中模組化的程

式設計工具所設計的內容，故希望未來可以朝向擴增

系統的資料庫、增加不同課文內容以及語法規則等邁

進，用以充實學習內容的深度與豐富度。 

本研究之所以設計手機應用程式與教育機器人相互配

合，是為了透過遊戲式學習激勵學習者，降低學習者

在學習過程中的情感障礙（Reinders & Wattana, 2015），

並鼓勵學習者增加在華語學習上的互動，使得學習者

在遊戲過程中，能夠運用運算思維解決所遇到的問題，

並且釐清華語文法上基本觀念。研究者認為，未來在

研究上，建議也能透過教學增加學習者的學習動機以

及提升整個課程的滿意度，使得未來研究方向可以更

加完整。 
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ABSTRACT 

The rapid development and popularization of information technology has changed people's behavior and thinking 

characteristics. Among them, computational thinking is considered to be an indispensable basic ability in life, and 

computational thinking has been identified as the core literacy of the information technology discipline at the K-12 stage. 

Implementation and teaching methods are of concern to educational researchers and front-line teachers. Based on the 

development of computational thinking and computational thinking education, this article focuses on the core concepts and 

training methods of computational thinking, and refers to the 2017 high school information technology curriculum standards 

in China, and determines the teaching materials to implement calculations from the orientation and training methods of 

computational thinking. The four dimensions of thinking are used to compare the implementation of computational thinking 

in 5 Chinese textbooks, and corresponding teaching suggestions are provided to provide theoretical and practical references 

for the cultivation of computational thinking in students. 
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摘要 

信息技术的快速发展与普及改变了人们的行为方式和

思维特征，其中计算思维被认为是生活中不可或缺的

基本能力，并且计算思维被确定为 K-12 阶段信息技术

学科的核心素养，其落实和教学方法被教育研究者和

一线教师所关注。本文在梳理计算思维和计算思维教

育发展历程的基础上，围绕计算思维的核心理念、培

养方式，并参照我国 2017 年高中信息技术课程标准，

从计算思维培养指向性和培养方式确定了教材落实计

算思维的四个维度，由此来比较五套我国大陆教材计

算思维落实情况，并提出相应教学建议，为学生计算

思维的培养提供理论和实践的参考。 

关键词 

计算思维；高中信息技术；教材比较；教学建议 

1. 前言 

各个国家均将计算思维纳入其 K-12 课程标准中，并被

认为是数字化生存一种普适能力。2017 年，我国在新

修订的高中信息技术课程标准中将“计算思维”确定为信

息技术学科核心素养的一项核心内容，为教材的编写

和教师教学提供了标准和依据。那么在教材中，计算

思维是通过什么方式来落实的，教师如何利用教材来

培养学生计算思维的就显得尤为重要。 

2. 新课标视角下信息技术学科计算思维落实

的方法与策略 

2.1. 计算思维的内涵 

新课标将计算思维素养的内涵界定为：在信息活动中，

能够采用计算机可以处理的方式界定问题、抽象思考、

建立结构模型、合理组织数据；通过判断、分析与综

合各种信息资源，运用合理的算法形成解决问题的方

案；总结利用计算机解决问题的过程与方法，并迁移

到与之相关的其他问题解决中。 

2.2. 计算思维的表现 

课程标准将计算思维的具体表现总结为在解决问题过

程中的形式化、模型化、自动化和系统化四个方面。 

2.3. 计算思维再教材中的落实的方法 

本文从计算思维培养的指向性（“教计算思维”和“学计

算思维”）和方法（“插电”和“不插电”）两个维度建立

坐标轴，如图 1，确定了“插电教计算思维”、“不插电

教计算思维”、“插电用计算思维”、“不插电用计算思维”

这四个比较维度，基于此对教材中计算思维的落实进

行梳理与分析。 

 

 

 

 

图 2  计算思维比较维度 

3. 五套信息技术教材中计算思维落实的比较 

 “插电教计算思维”在教材中体现为运用计算机等电子

设备，在体验程序设计与编码中学习计算机语言、程

序设计与编码，软件工具的操作方式等；“不插电教计

算思维”体现为通过叙述性课文形式、思考讨论、思维

可视化的方式来让学生学习程序设计概念、方法和工

具、算法的设计与描述等；“插电用计算思维”主要是让

学生在用计算机等设备来实现算法、实现问题解决的

关键步骤，在真实情境中体验利用计算机来解决问题；

“不插电用计算思维”是在真实情境的项目活动中，将大

问题分解成小问题、运用抽象化、模型化、系统化的

思维来迭代和优化问题的解决方案，从而优质、高效

地解决问题。 

本文根据图 1 的分类，选择对人民教育出版社（人教

版）、上海科技教育出版社（沪教版）、广东教育出

版社（粤教版）、浙江教育出版社（浙教版）和教育

科学出版社（教科版）出版的五本《数据与计算》模

块内容中计算思维的落实进行比较，具体比较结果如

图 2 所示。 

 

 

 

 

 

 

 

 

图 2  计算思维落实的比较 

对五本教材进行比较发现，人教版和教科版对四种落

实计算思维的方式设计的较为均衡，沪教版、粤教版

以及浙教版比较看重“通过不插电教计算思维”的方式。

其中五本教材也存在共性，即“通过插电的方式用计算

思维”的内容在教材中所占比例较低，可以看出新教材

真正落实了计算思维不是编程教育的核心理念。并且

教材中都尝试通过用项目化学习的方式让学生用计算

机解决问题的方式，即在一个完整的系统中将大问题
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分解为子问题，让学生在子问题中进行形式化、模型

化与自动化的不断迭代。 

4. 基于计算思维的教学建议 

4.1. 共性建议 

各教材的共同目标就是培养创造性思维，提高问题解

决能力与效率。故教师要结合教材优势和自身教学经

验，加强学生抽象思维和逻辑思维的培养。要合理安

排教学活动，让学生在独立分析思考、协作解决问题

的过程中将知识转化为能力，结合运用“插电”和“不插

电”的方式，充分全方位地发展学生思维。最后，要有

效对学生进行评价。 

4.2. 个性建议 

通过以上落实计算思维的比较研究的结果可以看出，

五套信息技术教材存在个性化差异，根据此种情况，

教师在使用不同教材时，要结合教材特点，进行相应

教学设计，以保证教学的有效开展以及学生计算思维

的稳步提升。 

5. 总结 

本文通过厘清计算思维在教育中应用的基础上，构建

了计算思维在教材中落实的比较方式，通过此方式选

择了五套正在进行试点使用的大陆教材，比较其计算

思维落实的情况，为后续教材的修改、教师的教学以

及计算思维的实践应用提供有价值的借鉴。 
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