

CoolThink@JC

Proceedings of International Conference on

Computational Thinking Education 2020

19-21 August 2020

Hong Kong

Funded and Created by

The Hong Kong Jockey Club Charities Trust

Co-created by

The Education University of Hong Kong

Massachusetts Institute of Technology

City University of Hong Kong

Copyright 2020

All rights reserved

Publication of The Education University of Hong Kong

10 Lo Ping Road, Tai Po, New Territories, Hong Kong

ISSN 2664-035X (CD-ROM)

ISSN 2664-5661 (online)

Editors

Siu-cheung KONG

The Education University of Hong Kong, Hong Kong

Heinz Ulrich HOPPE

 University of Duisburg-Essen, Germany

Ting-chia HSU

National Taiwan Normal University, Taiwan

Rong-huai HUANG

Beijing Normal University, China

Bor-chen KUO

National Taichung University of Education, Taiwan

Robert Kwok-yiu LI

City University of Hong Kong, Hong Kong

Chee-kit LOOI

 Nanyang Technological University, Singapore

Marcelo MILRAD

Linnaeus University, Sweden

Ju-ling SHIH

National Central University, Taiwan

Kuen-fung SIN

 The Education University of Hong Kong, Hong Kong

Ki-sang SONG

 Korea National University of Education, South Korea

Marcus SPECHT

 Technical University of Delft, The Netherlands

Florence SULLIVAN

 UMass Amherst, The United States

Jan VAHRENHOLD

University of Münster, Germany

Preface

International Conference on Computational Thinking Education 2020 (CTE2020) is the fourth international conference

organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created

by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.

CoolThink@JC strives to inspire the digital creativity among students and nurture their proactive use of technologies for

social good from a young age. In collaboration with the world’s leading experts and local educators, CoolThink@JC

empowers teachers with high-quality teaching materials, learning platform, and professional development programmes. Since

2016, CoolThink@JC has trained more than 110 teachers from 32 pilot schools and benefited over 20,000 primary students

with CoolThink classes. The CoolThink@JC approach prepares students for a fast-changing digital future through a hands-

on, minds-on, and joyful learning experience. An independent evaluation has found that students participated in

CoolThink@JC grew twice as much in problem-solving skills when compared with non-participating students. Following the

successful implementation of the four-year pilot, the second phase of the CoolThink@JC is launched in 2020, with the aim

of mainstreaming computational thinking education.

CTE2020 is held online on 19-21 August, 2020. Last year, the conference attracted over 600 worldwide scholars, educational

practitioners and policymakers from 17 countries/ regions. The International Teacher Forum is first introduced this year to

reach out to K-12 CT teachers. Under the pandemic, CTE2020 experienced reschedule and has switched from face-to-face to

online mode. With the support from speakers, panelists, IPC Co-chairs, IPC members and paper authors, we have gone through

challenges and are excited to welcome partcipants to join us at the conference to share their research and ideas.

 “Computational Thinking Education” is the main theme of CTE2020 which aims to keep abreast of the latest development

of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT development

in school education. There are 16 sub-themes under CTE2020, namely:

Computational Thinking

Computational Thinking and Coding Education in K-12

Computational Thinking and Unplugged Activities in K-12

Computational Thinking and Subject Learning and Teaching in K-12

Computational Thinking and Teacher Development

Computational Thinking and IoT

Computational Thinking and STEM/STEAM Education

Computational Thinking and Data Science

Computational Thinking and Artificial Intelligence Education

Computational Thinking Development in Higher Education

Computational Thinking and Special Education Needs

Computational Thinking and Evaluation

Computational Thinking and Non-formal Learning

Computational Thinking and Psychological Studies

Computational Thinking in Educational Policy

General Submission to Computational Thinking Education

The conference received a total of 46 submissions (32 full papers, 11 short papers and 3 poster papers) by 107 authors from

19 countries/regions (see Table 1).

Table 1: Distribution of Paper Submissions for CTE2020

The International Programme Committee (IPC) is formed by 98 Members and 13 Co-chairs worldwide. Each paper with

author identification anonymous was reviewed by at least three IPC Members. Related sub-theme Chairs then conducted

meta-reviews and made recommendation on the acceptance of papers based on IPC Members’ reviews. With the

comprehensive review process, 37 accepted papers are presented (12 full papers, 17 short papers and 8 poster papers) (see

Table 2) at the conference.

Table 2: Paper Presented at CTE2020

Country / Region No. of Authors Country / Region No. of Authors

Australia 2 Israel 3

Brazil 5 Malaysia 4

Canada 2 Singapore 10

China 17 South Korea 8

Cyprus 2 Spain 3

Finland 5 Sweden 1

Germany 8 Taiwan 14

Greece 1 The Netherlands 4

Hong Kong 4

3

United States 11

India Total 107

Sub-themes Full Paper Short

Paper

Poster

Paper

Total

CT 1 0 0 1

CT and Coding Education in K-12 3 2 2 7

CT and Unplugged Activities in K-12 1 1 0 2

CT and Subject Learning and Teaching in K-12 0 2 0 2

CT and Teacher Development 1 2 0 3

CT and IoT 0 1 0 1

CT and STEM/STEAM Education 1 2 1 4

CT and Artificial Intelligence Education 1 0 3 4

CT Development in Higher Education 3 2 0 5

CT and Evaluation 0 2 0 2

CT and Non-formal Learning 0 0 1 1

General Submission to CT Education 1 3 1 5

Total 12 17 8 37

On behalf of CoolThink@JC and the Conference Organizing Committee, we would like to express our gratitude towards all

partners and participants for their contribution to the success and smooth operation of CTE2020.

We sincerely hope everyone enjoy and get inspired from CTE2020.

With Best Wishes,

Prof. KONG, Siu-cheung

The Education University of Hong Kong, Hong Kong

Conference Chair of CTE2020

Principal CHU, Tsz-wing

St. Hilary’s Kindergarten and Primary Schools, Hong Kong

Conference Chair of CTE2020

Table of Contents

COMPUTATIONAL THINKING

Full Paper

Computational Thinking Competences in Countries from Three Different Continents in the Mirror of Students'

Characteristics and School Learning

Amelie LABUSCH, Birgit EICKELMANN ... 2

COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12

Full Paper

An Item Response Theory Analysis of the Sequencing of Algorithms & Programming

Nathalia Da Cruz ALVES, Christiane GRESSE VON WANGENHEIM, Jean Carlo Rossa HAUCK, Adriano

Ferreti BORGATTO, Dalton Francisco De ANDRADE .. 9

Computational Thinking and Creativity: A Test for Interdependency

Rotem ISRAEL-FISHELSON, Arnon HERSHKOVITZ, Andoni EGUÍLUZ, Pablo GARAIZAR, Mariluz

GUENAGA ... 15

Towards Using Computational Modeling in Learning of Physical Computing – An Observational Study in

Singapore Schools

Peter Sen-Kee SEOW, Bimlesh WADHWA, Zhao Xiong LIM , Chee Kit LOOI ... 21

Short Paper

Computational Thinkers: Contemporary Approaches and Directions in Computational Thinking for K-12

Education

Steven FLOYD .. 27

Effects of Using Mobile Phone Programs to Control Educational Robots on the Programming Self-Efficacy of

the Third Grade Students（三年級學生使用手機程式控制教育機器人對其程式自我效能表現之研究）

Yi-ting LIN, Ting-Chia HSU .. 31

Poster Paper

Exploring Creativity, Emotion and Collaborative Behavior in Programming for Two Contrasting Groups

Dan SUN, Fan OUYANG, Yan LI, Hongyu CHEN ... 36

Canada’s CanCode Initiative and the Gender Gap in Computer Science Education

Lisa Anne FLOYD .. 38

COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12

Full Paper

Public-Private-Key Encryption in Virtual Reality: Predictors of Students’ Learning Outcomes for Teaching the

Idea of Asymmetric Encryption

Andreas DENGEL ... 41

Short Paper

Comparison of the Learning Behaviors of the Third Grader Students Integrating Robots and the Computational

Thinking Board Game in Singapore and Taiwan（比較新加坡和台灣小學三年級學生整合機器人與運算思

維桌遊之學習行為）

Yi-Sian LIANG, Ting-Chia HSU .. 47

COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12

Short Paper

On the Integration of Learning Mathematics and Programming

Dan KOHEN-VACS, Chronis KYNIGOS, Marcelo MILRAD .. 53

An Empirical Study of Analyzing the Behaviors of the Sixth Grade Students in Learning English Oral

Interaction with Educational Robots（探討六年級學生使用教育機器人學習英語口語互動之行為實證分

析）

Chao-jui HSU, Ting-chia HSU .. 57

COMPUTATIONAL THINKING AND TEACHER DEVELOPMENT

Full Paper

Workshops and Co-design Can Help Teachers Integrate Computational Thinking into Their K-12 STEM

Classes

Sally P. W. WU, Amanda PEEL, Connor BAIN, Gabriella ANTON, Michael HORN, Uri WILENSKY 63

Short Paper

The Effect of Teacher Interventions and SRA Robot Programming on the Development of Computational

Thinking

Nardie FANCHAMPS, Marcus SPECHT, Paul HENNISSEN, Lou SLANGEN ... 69

Preservice Teachers’ Views of Computational Thinking: STEM Teachers vs non-STEM Teachers

Chee Kit LOOI, Shiau Wei CHAN, Wendy HUANG, Peter SEOW, Longkai WU, 73

COMPUTATIONAL THINKING AND IoT

Short Paper

CT-6E Model for Developing the IoT Teaching Activity（運用 CT-6E 模式發展高中生之物聯網教學活動

規劃）

Hsien-Sheng HSIAO, Chung-Pu CHANG .. 78

COMPUTATIONAL THINKING AND STEM/STEAM EDUCATION

Full Paper

A Study on Influential Factors of Primary School Students’ Computational Thinking in Interdisciplinary STEM

Teaching（跨学科 STEM教学中小学生计算思维影响因素研究）

Pinghong ZHOU, Yi ZHANG, Wei MO, Jue WANG .. 84

Short Paper

Confronting Frame Alignment in CT Infused STEM Classrooms

Connor BAIN, Sugat DABHOLKAR, Uri WILENSKY .. 91

CT-based Collaborative Storytelling for Learning Programming Concepts in Python

Nicol Hui Yi PHUAN, Chien-Sing LEE, Ean-Huat OOI .. 95

COMPUTATIONAL THINKING AND ARTIFICIAL INTELLIGENCE EDUCATION

Full Paper

Experiences from Teaching Actionable Machine Learning at the University Level through a Small Practicum

Approach

Natalie LAO, Irene LEE, Hal ABELSON ... 100

Poster Paper

Using Transfer Learning, Spectrogram Audio Classification, and MIT App Inventor to Facilitate Machine

Learning Understanding

Nikhil BHATIA, Natalie LAO .. 106

Computational Thinking and Artificial Intelligence Education: A Balanced Approach Using both Classical AI

and Modern AI

Kwong-Cheong WONG .. 108

Analysis of the Current Situation and Hotspots of Artificial Intelligence Education in China ——Visual

Analysis based on Chinese Literature from 2015 to 2019（中国大陆人工智能教育研究现状及热点分析——

基于 2015 - 2019 年中文文献的可视化分析）

Zhihui GONG, Qiuping HU, Junjie SHANG .. 110

COMPUTATIONAL THINKING DEVELOPMENT IN HIGHER EDUCATION

Full Paper

Teaching Computational Thinking and Python Programming for Business Students: A Preliminary Study of the

Alignment of Teaching and Learning Strategies with Bloom’s Taxonomy of Learning Outcomes

Gabriel Chun-Hei LAI, Ron Chi-Wai KWOK, Joseph Siu-Lung KONG .. 114

Teaching Computational Thinking to Applied Science Majors: What and How

Xu LI ... 119

Developing Computational Thinking Through Tinkering in Engineering Design

Ashutosh RAINA, Sridhar IYER, Sahana MURTHY .. 125

Short Paper

A Comparison of Computational Thinking Approaches in HCI-SEO Design: Implications to Teaching and

Learning STE(A)M

Chien-Sing LEE .. 131

Development of Programming Self-efficacy Scale for University Students in the Information Domain（資訊領

域大學學生程式設計思考程序自我效能量表發展之研究）

Hsien-Sheng HSIAO, Jun-Wei LAI, I-Ning WU, Chung-Pu CHANG .. 135

COMPUTATIONAL THINKING AND EVALUATION

Short Paper

Using Eye-Tracking to Evaluate Program Comprehension

Fabian DEITELHOFF, Andreas HARRER, Benedikt SCHRÖ DER, H. Ulrich HOPPE, Andrea KIENLE .. 140

Learning Behaviors Analysis of the Six Grader Students Integrating Educational Robots with the

Computational Thinking Board Game（小學六年級學生使用教育機器人結合運算思維桌上遊戲之學習行

為分析）

Tzu-Chin ZHOU, Ting-Chia HSU .. 144

COMPUTATIONAL THINKING AND NON-FORMAL LEARNING

Poster Paper

Implementing a Computational Thinking Curriculum with Robotic Coding Activities through Non-formal

Learning

Poh-Tin LEE, Chee-Wah LOW .. 150

GENERAL SUBMISSION TO COMPUTATIONAL THINKING EDUCATION

Full Paper

Investigating the Effects of Gender and Scaffolding tools on the Development of Preschooler’s Computational

Thinking

Kyriakoula GEORGIOU, Charoula ANGELI ... 153

Short Paper

Integrating Computational Thinking in K-12 Education: Exploring Digital Fabrication Activities through

CTPACK Framework

Megumi IWATA, Jari LARU, Kati MÄ KITALO, Kati PITKÄ NEN ... 159

Analysis of Research Status and Trends of Computational Thinking in China Based on Knowledge Graph（基

于知识图谱的我国计算思维研究现状与研究趋势探析）

Hanrui GAO, Yi ZHANG, Wei MO, Xing LI... 163

The Impact of Using Mobile Block-based Programming to Control Robots on the Performance of the Fifth

Grader Students Learning Computational Thinking in Singapore（使用手機積木程式工具操控機器人對新

加坡五年級學生運算思維表現之影響）

Tien-Hsiu JEN, Ting-chia HSU .. 168

Poster Paper

Computational Thinking Implemented in Five Sets of High School Information Technology Textbooks in

Mainland China: Comparative Study of Methods and Strategies（计算思维在中国大陆五套高中信息技术教

材中落实的方法与策略的比较研究）

Ya-Jing GENG, Feng LI.. 173

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

1

Computational Thinking

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

2

Computational Thinking Competences in Countries from Three Different

Continents in the Mirror of Students' Characteristics and School Learning

Amelie LABUSCH1*, Birgit EICKELMANN2

1,2 Paderborn University, Germany

amelie.labusch@upb.de, birgit.eickelmann@upb.de

ABSTRACT

Computational thinking (CT) aspires to be learned by

everyone for active participation in society. However,

differences in students’ learning of computational thinking

within and between educational systems and differences in

competence among students differentiated by social

background and gender emerge. The IEA study ICILS 2018

(International Computer and Information Literacy Study)

addresses this issue by measuring competences in

computational thinking and examining the conditions for the

acquisition of competences in an international comparison.

This allows in-depth analyses to answer the question to what

extent differences in students' average competences in

computational thinking can be explained by students' social

background, their learning of computational thinking tasks

at school, and their gender. For this purpose, regression

analyses are carried out using data from three countries from

three different continents (Republic of Korea, USA and

Germany). The dependent variables are students'

competences in computational thinking, their variance is to

be explained by the independent variables social

background, learning of computational thinking tasks at

school and gender. The results show that performance

differences in favor of students with socially privileged

background exist in all three countries. Controlled by social

background and gender, students' learning of computational

thinking tasks at school shows significant negative

relationships to their competences in computational thinking

in the Republic of Korea and Germany. In addition,

significant performance differences between girls and boys

in favor of boys under control of social background and

students' learning of computational thinking tasks at school

in the USA and Germany show up.

KEYWORDS

computational thinking, ICILS 2018, school learning,

students’ characteristics

1. INTRODUCTION
Computational thinking is growing in relevance as a key

competence of the 21st century (Voogt, Fisser, Good,

Mishra, & Yadav, 2015). From the perspective of Aho

(2012), it is seen as a set of thought processes that are used

to model problems and their solutions in a way that

algorithmic processing becomes possible. The competences

in computational thinking thus concern cognitive processes

that go far beyond the mere application of hardware and

software. In this understanding, computational thinking

focuses on problem-solving processes that can be made

accessible through the development and application of

algorithms, associated processes of modeling and

formalization of implementation on a computer or digital

system. Students develop problem-solving skills in

computational thinking that are independent of a

programming language or development environment and

can include both subject-specific and general aspects of

problem-solving skills (Labusch, Eickelmann &

Vennemann, 2019).

However, computational thinking is differently or even not

at all anchored in school curricula worldwide. According to

analyses for the European Commission, computational

thinking was already anchored in eleven European education

systems (Bocconi, Chioccariello, Dettori, Ferrari &

Engelhardt, 2016) as early as 2016, with further countries

being added since then. In the overview of the different

approaches in different countries and educational systems,

also on an international level, three different approaches to

the curricular anchoring of computational thinking can be

identified (Eickelmann, 2019): (1) computational thinking

as a cross-curricular competence, (2) computational thinking

as part of computer science, and (3) computational thinking

as an individual subject or learning area.

However, since the first works by Papert (1980) and Wing

(2006), a de facto consensus has emerged in theoretical or

concrete curricular approaches on what is termed

computational thinking regardless of the form in which the

curriculum is anchored and how the concept of these

competences has been developed. For the design of school

support there is therefore still a need to advance the

development of generally accepted strategies for describing

and assessing competences in computational thinking (Barr

& Stephenson, 2011). In addition, the dynamics of the

competence area impeded the development of a theoretically

sufficiently elaborated concept of computational thinking

over the years, rendering this competence area difficult to

measure (Grover & Pea, 2013).

The empirical investigation of computational thinking has so

far been complicated not least by the diversity of theoretical

and empirical approaches and the diversity of the definitions

underlying the often rather smaller studies or even by the

complete lack of a working definition, and thus the lack of

an explanation of the theoretical approach (e.g. Curzon, Bell,

Waite & Dorling, 2019). Although not all curricula

explicitly mention the field of computational thinking, often

there are elements that can be assigned to this field. This

shows that the constructs computational thinking is based on

are in some places anchored in principle in the curriculum,

but in many cases have not always been bundled to achieve

their goals. Only in recent years, several studies emerged in

an international context which explicitly focus on

computational thinking. The results of these studies include

the fact that existing test instruments are partly

complementary. While the evaluation of items of the Bebras

3

competition (Dagiene & Futschek, 2008) refers to the

analytic and apply levels of the taxonomy – i.e. general

analytical thinking – and the evaluation mechanisms of the

Dr. Scratch environment (Moreno-León & Robles, 2015),

the Computational Thinking Test (CTt; Román-González,

2015) with the levels Understand and Remember focuses on

conceptual knowledge in computational thinking (Curzon et

al., 2019).

The IEA (International Association for the Evaluation of

Educational Achievement) study ICILS 2018 (International

Computer and Information Literacy Study) closes this gap

(Fraillon et al., 2019). For the first time, an international

additional module to investigate competences in

computational thinking has been introduced. In an

international comparison, the competences of eighth graders

have been examined based on the representative student

sample of ICILS 2018 by means of computer-based student

tests developed in particular for this area, and the conditions

for acquiring these competences assessed by background

questionnaires. As this is an international option to the study,

only a part of the in ICILS 2018 participating countries,

including the Republic of Korea, the USA and Germany,

participate in the additional module (Eickelmann, Bos,

Gerick, Goldhammer, Schaumburg, Schwippert, Senkbeil,

& Vahrenhold, 2019; Fraillon, Schulz, Friedman, &

Duckworth, 2019).

Within the scope of the additional module of the ICILS 2018

study, an international group of experts developed a

theoretical measurement construct for the field of

computational thinking, which incorporates and evaluates

existing approaches and concepts in the field of

computational thinking, and thus combines them. The

theoretical construct also formed the basis for the

development of the computer-based test modules used in

ICILS 2018 (Fraillon et al., 2019). In this construct, a

distinction is made in the area of computational thinking

between conceptualizing a problem (strand I) and

operationalizing a solution (strand II). In ICILS 2018,

computational thinking is defined as "an individual’s ability

to recognize aspects of real-world problems which are

appropriate for computational formulation and to evaluate

and develop algorithmic solutions to those problems so that

the solutions could be operationalized with a computer"

(Fraillon et al., 2019, p. 91).

A closer look at computational thinking in school reveals,

for instance, that slightly less than two fifths (39.9%) of

eighth graders in Germany have, according to their own

statements, learned to break down a complex process into

smaller parts at school at least to a medium extent. On

international average (49.4%), the proportion is significantly

higher than in Germany, as is the case for Luxembourg

(47.5%), the Republic of Korea (57.5%), Finland (58.6%),

Denmark (62.9%) and the USA (70.8%) (Eickelmann et al.,

2019). Differences between the countries can already be

stated at this point. A systematic investigation of the

relationship between students' competences in

computational thinking and their school learning of

computational thinking in an international comparison is

lacking. However, this would be important for the further

development of teaching computational thinking.

Various studies have also focused on different groups of

students according to individual student characteristics, in

particular gender. Román-González, Pérez-González, and

Jiménez-Fernandez (2017) found a statistically significant

difference in competences in favor of the male members of

the test group (t = 5,374; p < 0.01; effect size Cohens d =

0.31). Atmatzidou and Demetriadis (2016) report that the

computational thinking skills of girls improved significantly

after an intervention and that girls and boys ultimately

achieved the same level of qualification through the

intervention. In other studies, e.g. by Werner, Denner,

Campe and Kawamoto (2012) and Yadav et al. (2014), no

gender differences were found. In ICILS 2018 there are, for

instance, no differences in average competences in

computational thinking between girls and boys in the

Republic of Korea and in Germany, but in the USA of

7 points in favor of boys. The dependence of student

competence on their socio-economic background is known

for other domains, e.g. mathematics and science (OECD,

2019). In all ICILS-2018-participating countries there are

striking differences in performance, differentiated by

students' social background (Eickelmann et al., 2019;

Fraillon et al., 2019). Other studies do not tend to focus on

the relationship between students’ competences in

computational thinking and their social background.

Bringing all these insights together, it emerges that there is

a lack of information on how school learning of

computational thinking relates to competences in

computational thinking under control of background

characteristics that have previously been described as

pervasive.

In order to investigate this in more depth on an international

comparative basis, three countries participating in ICILS

2018 from three different continents were selected: The

Republic of Korea (Asia), the USA (North America) and

Germany (Europe). Thereby different educational systems

are selected, which differ in teaching and culture.

The current contribution thus deals with the following

research question:

To what extent can differences in students' average

competences in computational thinking be explained by

students' social background, by learning computational

thinking tasks at school and by students' gender in three

countries from three different continents?

2. STUDY AND METHODS
The research question will be answered with data from the

internationally comparative large-scale assessment

ICILS 2018 (International Computer and Information

Literacy Study 2018; 2015–2019), which is coordinated by

the IEA for the second time after ICILS 2013 (Fraillon et al.,

2019). In an international add-on module to the ICILS 2018

study, the competences of eighth graders in the area of

computational thinking were also measured for the first time

in an international comparison (Eickelmann et al., 2019). In

addition to the students' competences, the theoretical

framework model of the study also covered the conditions

for acquiring competences. Information on schools and

individual prerequisites and processes was collected via

4

background questionnaires for the tested students, teachers,

school principals and ICT coordinators.

In each country that participated in ICILS 2018, the

representative data basis realized via the tests and

questionnaires was supplemented by information on context

conditions collected from a national context survey. Nine of

the ICILS 2018 participants, namely Denmark, Finland,

France, Germany, Luxembourg, Portugal, the Republic of

Korea, the USA and the benchmark participant North Rhine-

Westphalia (federal state of Germany), participated in the

international option computational thinking (Eickelmann et

al., 2019; Fraillon et al., 2019). For three out of nine

participants from three different continents – the Republic of

Korea (N=2.875 students), the USA (N=6.790 students) and

Germany (N=3.655 students) – in-depth analyses were

carried out and the results are reported in the following, to

answer the research question by means of a regression

analysis.

Thus, the initial task involved identifying and measuring

competences in computational thinking, the students' social

background, their school learning in computational thinking,

and their gender. They were measured with an

internationally developed and elaborated set of instruments

along a theoretical framework model in nine educational

systems worldwide. The regression analysis comprises four

models, whereby competences in computational thinking

represent the dependent variable in regression modeling.

Computer-based competence tests with a live software

environment were developed and used to assess the

competences in computational thinking of students in the

eighth grade. Each student worked on two 25-minute test

modules in computational thinking, including, for instance,

visual coding tasks, nonlinear systems transfer tasks and

simulation tasks (Eickelmann et al., 2019; Fraillon et al.,

2019).

In the first two of the four models, the students’ social

background represents independent variables. In model I,

cultural capital is taken as an indicator of social background,

operationalized by the number of books the students’ family

own at home. In educational research, the number of books

at home has proven to be a particularly effective indicator of

the students' cultural capital (Hatlevik et al., 2018). The

regression analyses refer to the distinction between students

whose families have a maximum of 100 books (low cultural

capital) and those who have more than 100 books (high

cultural capital) at home (Eickelmann et al., 2019).

Model II incorporates the medium and high HISEI values,

which consider the economic resources in the parental home

as a further indicator of social background. The so-called

International Socio-Economic Index of Occupational Status

(ISEI; Ganzeboom, de Graaf, Treiman, & de Leeuw, 1992)

is an internationally standardized set of instruments to

classify occupations and translate this into income estimates.

The regression analysis refers to the highest occupational

status of parents (HISEI). A low HISEI value (below 40

points) applies to postmen and women, train attendants and

hairdressers, for example. Police officers, nurses, social

workers and administrative specialists have a medium

HISEI value (40 to 59 points). A high HISEI value (60 and

more points) is allocated, for example, to teachers,

journalists and lawyers.

In model III, the internationally developed index (Fraillon et

al., 2019) for students' learning of computational thinking

tasks at school (Cronbach's α = .90) is used as an

independent variable. This index was formed based on a

scale in the student background questionnaire. Students were

asked to what extent they have been taught how to do

different computational thinking related tasks (e.g. to break

down a complex process into smaller parts) in the current

school year. To a large extent, To a moderate extent, To a

small extent, and Not at all were at their disposal as reply

options.

In model IV the students' gender - differentiated into male

and female - was introduced.

In the following, the unstandardized regression coefficients

for each of the three countries Republic of Korea, USA and

Germany are reported in four-step regression models, so that

it is possible to interpret the content of these coefficients as

point values by which the average student achievement

(constant) changes when controlled by social background,

students' learning of computational thinking tasks at school

and gender. The coefficient of determination R² as a quality

measure of linear regression indicates how well the

independent variables are suited to explain the variance of

the dependent variable or to predict its values.

The sampling procedure in ICILS 2018 corresponded to the

design of a two-stage cluster sample in which standard errors

of a relevant statistic were estimated using the Jackknife

Repeated Replication Technique (Rust, 2014). The analyses

were performed using the IEA IDB Analyzer (Rutkowski et

al., 2010), which was used as an add-on program to the IBM

SPSS Statistics 25 software and estimates with

corresponding student-level sample weights.

3. RESULTS
The following three tables show the resulting regression

models for the Republic of Korea (table 1), the USA

(table 2) and Germany (table 3).

Table 1. Regression Model Explaining Differences in

Students' CT by their Social Background, School Learning

of CT and Gender in the Republic of Korea.

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 31.7* (6.5) 23.5* (6.2) 23.6* (5.8) 23.6* (5.8)

medium HISEI value - - 16.0* (6.1) 15.7* (6.0) 16.1* (6.1)

high HISEI value - - 26.8* (7.5) 27.6* (7.2) 27.8* (7.2)

students' learning of computational

thinking tasks at school
B - - - - -0.4* (0.2) -0.5* (0.2)

gender
C - - - - - - -7.8 (4.8)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

Model I Model II Model III Model IV

515.3 510.3 532.0 536.4

.02 .02 .03 .03

© ICILS 2018

5

Table 2. Regression Model Explaining Differences in

Students' CT by their Social Background, School Learning

of CT and Gender in the USA.

Table 3. Regression Model Explaining Differences in

Students' CT by their Social Background, School Learning

of CT and Gender in Germany.

The first regression model (model I) shows that eighth-

graders with high cultural capital (more than 100 books in

the home) in the Republic of Korea achieve on average 31.7

points more in competences of computational thinking than

those from families with low cultural capital (a maximum of

100 books in the home). This difference is significant. With

Model I, 2 percent of the variance in competences in

computational thinking can be explained for the Republic of

Korea. In the USA, a significant difference of 62.1 points

can be observed regarding cultural capital, which is

substantially higher than in the Republic of Korea. The

variance explanation is 7 percent. In Germany, there is even

a significant difference of 64.1 points in cultural capital with

a variance explanation of 10 percent.

Moreover, considering the economic resources in the

parental homes, operationalized via the HISEI (model II), it

is evident in all three countries that students from

economically privileged parental homes achieve

significantly higher scores in computational thinking than

those living under economically less privileged conditions.

In the Republic of Korea, the difference in cultural capital is

reduced to 23.5 points. The difference between students with

medium HISEI and those with other values is 16.0 points,

while the difference between students with high HISEI and

others is 26.8 points. In the Republic of Korea, as in the

previous model, 2 percent of the variance can be explained

with model II. In the USA the difference in cultural capital

is reduced as well, in this case to 44.4 points. The difference

by the medium HISEI value is 22.5 points and the difference

by the high HISEI value is 48.0 points. The variance

explanation of model II in the USA is 9 percent. In Germany,

the difference according to cultural capital under controlling

for HISEI is at 48.6 points. The difference between students

with medium HISEI value and others is 30.2 points and the

difference between students with high HISEI value and

others is 51.2 points. The variance explanation for model II

in Germany is 13 percent.

Furthermore, taking the index students' learning of

computational thinking tasks at school into account

(model III), in the Republic of Korea there is a significant

difference of 0.4 points. The relation between students’

competences in computational thinking and their learning of

computational thinking tasks at school under control of their

social background is negative. The involvement of the

selected index increases the variance explanation of the

competence to 3 percent. In the USA, there is no

performance difference regarding students' learning of

computational thinking tasks at school. The variance

explanation does not change compared to the previous

model and still amounts to 9 percent. In Germany, under

control of the students' social background, a significant

negative relationship between the students' competences in

computational thinking and their learning of computational

thinking tasks at school emerges (-0.7 points). The variance

explanation increases to 14 percent.

In the final model IV, the gender of the students is also taken

as a predictor of competences in computational thinking.

Under consideration of students' social background and their

learning of computational thinking tasks at school, there is

no significant performance difference between girls and

boys in the Republic of Korea. The overall model thus

explains 3 percent of the performance differences. The

performance difference according to cultural capital in the

Republic of Korea is 23.6 points in model IV as in model III,

16.1 points in the medium HISEI value and 27.8 points in

the high HISEI value. With regard to students' learning of

computational thinking tasks, a significant negative

relationship to competences in computational thinking of

0.5 points results under control of social background and

gender. In the USA, boys under control of social background

and the learning of computational thinking tasks achieve

significantly higher competences in computational thinking

on average by 14.6 points than girls (model IV). The overall

model thus explains 9 percent of the performance

differences. The performance difference by cultural capital

in the USA is 44.2 points in Model IV, 21.9 points in

medium HISEI value and 46.4 points in high HISEI value.

Regarding students' learning of computational thinking tasks

under control of social background and gender there is no

relationship to competences in computational thinking. In

Germany, boys under control of social background and the

learning of computational thinking tasks achieve 13.9 points

more on average and therefore significantly higher

competences in computational thinking than girls. The

overall model explains 15 percent of the differences in

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 62.1* (3.5) 44.4* (3.2) 43.5* (3.3) 44.2* (3.3)

medium HISEI value - - 22.5* (3.2) 21.8* (3.4) 21.9* (3.3)

high HISEI value - - 48.0* (3.9) 46.9* (4.2) 46.4* (4.3)

students' learning of computational

thinking tasks at school
B - - - - 0.0 (0.2) 0.1 (0.2)

gender
C - - - - - - -14.6* (3.4)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

Model I Model II Model III Model IV

477.4 466.8 468.5 474.3

.07 .09 .09 .09

© ICILS 2018

b (SE) b (SE) b (SE) b (SE)

cultural capital
A 64.1* (5.8) 48.6* (5.5) 54.0* (5.6) 54.9* (5.6)

medium HISEI value - - 30.2* (5.9) 24.5* (5.4) 24.8* (5.4)

high HISEI value - - 51.2* (8.0) 45.1* (7.2) 44.3* (7.2)

students' learning of computational

thinking tasks at school
B - - - - -0.7* (0.3) -0.8* (0.3)

gender
C - - - - - - -13.9* (5.0)

constant

R²

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A
 0 - maximum of 100 books; 1 - more than 100 books.

B
 international index (M = 50, SD = 10).

C
0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018

489.8

.15

© ICILS 2018

.10

Model II

443.5

.13

Model I

459.2

Model III

480.6

.14

Model IV

6

performance. The performance difference according to

cultural capital in Germany is 54.9 points in Model IV,

24.8 points at medium HISEI value and 44.3 points at high

HISEI value. Regarding students' learning of computational

thinking tasks, there is still a significant negative correlation

to competences in computational thinking under control of

social background and gender. This is -0.8 points.

In summary, there are large differences between and within

the three countries. For example, there are substantial

differences in competences in computational thinking by

high and low cultural capital. The performance is thus

closely linked to social background. However, this

difference is not as substantial in the Republic of Korea as

in the USA and Germany. This is also reflected in the fact

that only 2 percent of the variance can be explained in

Model I in the Republic of Korea, but 7 percent in the USA

and even 10 percent in Germany. Despite the addition of a

further indicator of social background and under the control

of cultural capital, the explanation of variance remains the

same in the Republic of Korea, in the USA it rises to

9 percent and in Germany to 13 percent. At this point after

model II, the explanation of variance in the USA's regression

model no longer alters. Also, there is no relationship

between students' school learning of computational thinking

and their competences in computational thinking, not even

under control of the gender of the students. Although there

is a performance difference between girls and boys in favor

of boys, this does not explain any further variance. In the

Republic of Korea and in Germany, there is a slight but

remarkable significant negative relationship between

students' competences in computational thinking and their

learning of computational thinking tasks at school. This

results in a slightly higher variance explanation in model III

according to model II in both countries. In Germany, this is

further increased by the addition of gender in model IV,

where under control of social background and students'

learning of computational thinking tasks at school there is a

significant difference in performance in computational

thinking in favor of boys and more variance is explained. In

the Republic of Korea, no more variance is explained in

model IV and there is also no difference in performance

between girls and boys. It can therefore be stated that in

Germany, it is primarily the student characteristics, but also

to a certain extent school learning, that play a role in the

competences in computational thinking. In the Republic of

Korea, social background and school learning play a role,

but rather a subordinate one: hardly any variance is

explained. In the USA, background characteristics play a

role, but school learning does not.

4. CONCLUSION
It is certainly not unexpected that there are different results

between countries. Common to all three countries is the

close relationship between competences and social

background, also remaining under control of other variables.

This is worrying because a large proportion of the students

worldwide have less chance of educational success due to

their social background. It would be advisable to reduce

differences so that all students – no matter how privileged

the families are – can successfully participate in society.

However, the ratio between students' competences in

computational thinking and their learning of computational

thinking at school varies across the three countries. While no

correlation can be found in the USA under control of

individual student characteristics, it is even slightly negative

in the Republic of Korea and in Germany. Since an index

was used for the present analyses, in further in-depth

analyses it would be necessary to take another look at which

aspects of computational thinking are particularly beneficial

in teaching, but nevertheless the teaching of computational

thinking should in any case be organized in such a way that

it promotes students’ competences. To this end, in some

countries it is initially necessary to embed computational

thinking in school curricula. Another approach might be to

teach computational thinking in a gender-sensitive way to

reduce differences in competence between girls and boys.

Generally speaking, the results show that there is a major

need for development in all countries, and here it could be

an objective to work on a number of adjustments in order to

improve the results over the next few years, particularly with

a view to ICILS 2023, and to give every student the

opportunity to have sufficient competences in computational

thinking in order to participate in society and later acquire a

good profession.

5. REFERENCES
Aho, A.V. (2012). Computation and Computational

Thinking. Computer Journal, 55(7), 833–835.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing

Students’ Computational Thinking Skills through

Educational Robotics: A Study on Age and Gender

Relevant Differences. Robotics and Autonomous Systems,

75, 661–670.

Barr, V., & Stephenson, C. (2011). Bringing Computational

Thinking to K-12: What is Involved and What is the Role

of the Computer Science Education Community? ACM

Inroads, 2(1), 48–54.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., &

Engelhardt, K. (2016). Developing computational thinking

in compulsory education – Implications for policy and

practice. Luxembourg: Publications Office of the

European Union.

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2019).

Computational Thinking. The Cambridge Handbook of

Computing Education Research. Cambridge: Cambridge

University Press, 513–546.

Dagiene, V., & Futschek, G. (2008). Bebras International

Contest on Informatics and Computer Literacy: Criteria for

Good Tasks. Informatics education – Supporting

computational thinking. ISSEP 2008. Lecture notes in

Computer Science. Berlin, Germany: Springer, 19-30.

Eickelmann, B. (2019). Measuring Secondary School

Students’ Competence in Computational Thinking in

ICILS 2018 – Challenges, Concepts and Potential

Implications for School Systems around the World.

Computational Thinking Education. Singapore: Springer,

53-64.

Eickelmann, B., Bos, W., Gerick, J., Goldhammer, F.,

Schaumburg, H., Schwippert, K., Senkbeil, M., &

Vahrenhold, J. (Eds.) (2019). ICILS 2018 #Deutschland.

7

Computer- und informationsbezogene Kompetenzen von

Schülerinnen und Schülern im zweiten internationalen

Vergleich und Kompetenzen im Bereich Computational

Thinking [ICILS 2018 #Germany. Students' computer and

information literacy in second international comparison

and competences in computational thinking]. Münster,

Germany: Waxmann.

Fraillon, J., Schulz, W., Friedman, T., & Duckworth, D.

(2019). Assessment Framework of ICILS 2018.

Amsterdam: IEA.

Ganzeboom, H.B.G., de Graaf, P.M., Treiman, D.J., & de

Leeuw, J. (1992). A Standard International Socio-

economic Index of Occupational Status. Social Science

Research, 21(1), 1–56.

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38–43.

Hatlevik, O.E., Throndsen, I., Loi, M., & Gudmundsdottir,

G.B. (2018). Students’ ICT Self-efficacy and Computer

and Information Literacy: Determinants and

Relationships. Computers & Education, 118, 107–119.

Labusch, A., Eickelmann, B., & Vennemann, M. (2019).

Computational Thinking Processes and their Congruence

with Problem-solving and Information-processing.

Computational Thinking Education. Singapore: Springer,

65-78.

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A Web

Tool to Automatically Evaluate Scratch Projects.

Proceedings of the Workshop in Primary and Secondary

Computing Education. New York, USA: ACM, 132-133.

OECD (2019). PISA 2018 Results (Volume II): Where All

Students Can Succeed. Paris, France: PISA, OECD

Publishing.

Papert, S. (1980). Mindstorms: children, computers, and

powerful ideas. New York: Basic Books, Inc. Publishers.

Román-González, M. (2015). Computational Thinking Test:

Design Guidelines and Content Validation. Proceedings of

the 7th Annual International Conference on Education and

New Learning Technologies (EDULEARN 2015).

Valencia, Spain: IATED Academy, 2436–2444.

Román-González, M., Pérez-González, J.-C., & Jiménez-

Fernandez, C. (2017). Which Cognitive Abilities Underlie

Computational Thinking? Criterion Validity of the

Computational Thinking Test. Computers in Human

Behavior, 72, 678–691.

Rust, K.F. (2014). Sampling, weighting and variance

estimation in international large-scale assessment. In L.

Rutkowski, M. von Davier & D. Rutkowski (Eds.),

Handbook of international large-scale assessment.

Background, technical issues and methods of data analysis

(pp. 117–153). London: Chapman & Hall/CRC Press.

Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M.

(2010). International Large-Scale Assessment Data: Issues

in Secondary Analysis and Reporting. Educational

Researcher, 39(2), 142–151.

Werner, L., Denner, J., Campe, S., & Kawamoto, D.C.

(2012). The Fairy Performance Assessment: Measuring

Computational Thinking in Middle School. Proceedings of

the 43rd ACM technical symposium on Computer Science

Education, 215–220.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33–35.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,

J.T. (2014). Computational Thinking in elementary and

secondary teacher education. ACM Transactions on

Computing Education, 14(1), 1–16.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational Thinking in Compulsory

Education: Towards an Agenda for Research and Practice.

Education and Information Technologies, 20(4), 715–728.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

8

Computational Thinking and

Coding Education in K-12

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

9

An Item Response Theory Analysis of the Sequencing of

Algorithms & Programming Concepts

Nathalia da Cruz ALVES1*, Christiane GRESSE VON WANGENHEIM2*, Jean Carlo Rossa HAUCK3*,

Adriano Ferreti BORGATTO4, Dalton Francisco de ANDRADE5

1,2,3,4,5Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis/Brazil

nathalia.alves@posgrad.ufsc.br, c.wangenheim@ufsc.br, jean.hauck@ufsc.br, adriano.borgatto@ufsc.br,

dalton.andrade@ufsc.br

ABSTRACT

In order to guide computing education in K-12, several

curricula and standards have been proposed, including the

prominent K-12 Computer Science Framework. However,

noting significant differences in content sequencing between

curriculum guidelines, a question arises as to whether the

proposed sequence is appropriate for learning. Furthermore,

an analysis of the difficulty of these concepts is necessary to

assist scaffold content sequencing or to assign different

weights to the concepts in student assessment. Therefore,

this paper presents the results of a large-scale analysis of

computing concepts difficulty and compares it with the

standards sequencing proposed by the K-12 Computer

Science Framework. Our focus is on programming concepts,

as in practice computing education in K-12 is typically

approached by teaching algorithms and programming

concepts. We perform an analysis using Item Response

Theory based on the automatic assessment of over 88,000

App Inventor projects with the CodeMaster rubric. The

results demonstrate that the easiness of some concepts can

be explained by their inherent characteristics, but also due to

the characteristics of App Inventor as a programming tool.

And, although the analysis demonstrates the alignment of

the content sequencing of the K-12 Computer Science

Standards with the difficulty, we also observed that some

concepts related to algorithms and programming are not

explicitly covered by the framework, such as strings and

Boolean operators. Thus, the results of this research can be

used by researchers as well as teachers to improve

computing education in K-12.

KEYWORDS

computational thinking, App Inventor, K-12 computer

science standards, Item Response Theory

1. INTRODUCTION
Computational thinking (CT) is making its way into K-12

worldwide (Lye & Koh, 2014). Regardless of the area of

expertise, it is important to know the fundamentals and basic

principles of computing so that one can perform his activity

fully. CT refers to the thought processes involved in creating

algorithmic, or step-by-step, solutions that can be executed

by a computer (Wing, 2006). In this context, several efforts

have been made to develop guidelines and curricula for K-

12 computing education. One of the most prominent models

is the K-12 Computer Science Framework (CSTA, 2016)

defining standards, the sequencing of CT concepts and

practices for different educational levels in K-12. The K-12

Computer Science Framework contains five educational

levels: 1A (for grades K-2 and ages 5-7), 1B (for grades 3-5

and ages 8-11), 2 (for grades 6-8 and ages 11-14), 3A (for

grades 9-10 and ages 14-16), and 3B (for grades 11-12 and

ages 16-18).

In practice, computational thinking is commonly taught

focusing on algorithms and programming concepts and

related CT practices (Grover & Pea, 2013) being one of the

main knowledge areas of computing. This comprises the

competency to develop algorithms to solve problems in a

language computers can understand including several sub-

concepts in accordance with the K-12 Computer Science

Framework (Fig. 1).

Figure 1. CT practices and algorithms & programming

concepts (CSTA 2016).

Variables refer to storing and manipulating data from

computer programs. Control concepts specify the order in

which instructions are executed within an algorithm or

program (e.g. using loops and/or conditionals). Modularity

involves dividing complex tasks into simpler tasks and

combining them to create something complex. Program

development represents the software engineering process

that is repeated until acceptance criteria are met (CSTA,

2016). In addition, several CT practices are related to

algorithms & programming as presented in Figure 1 (CSTA,

2016). Other guidelines and curricula, such as Computing

at School (CAS, 2015) or the Australian Curriculum,

Assessment and Reporting Authority (ACARA, 2015),

cover similar basic concepts and practices.

In order to introduce programming in K-12, typically visual

block-based programming environments such as Scratch or

App Inventor are used (Papadakis et al., 2017). Diverse

instructional strategies are adopted, including well-

structured exercises such as Code.org, yet, often in a

constructivist context, a problem-based learning approach

with open-ended ill-structured programming activities is

adopted (Law, 2016; Shute et al., 2017). These instructional

units typically aim at teaching students to create their own

games or mobile applications to solve real-world issues (Fee

10

& Holland-Minkley, 2010). In order to assess open-ended

ill-structured problems, often performance-based

assessments are performed based on the created software

artifacts (Alves et al., 2019). These assessments aligned with

curricula are typically based on rubrics scoring the ability to

develop a software artifact, and, thus, indirectly inferring the

achievement of CT practices and concepts (Sherman &

Martin, 2015). Some CT rubrics have been automatized,

such as Dr. Scratch (Moreno-León & Robles, 2015) and

CodeMaster (Alves et al., 2020), allowing to assess students’

CT competences in an automated way.

Yet, although research and practical applications of

computing education in K-12 is strongly increasing

worldwide, it seems often to be based on experience rather

than systematic evidence. Thus, a question that remains is

related to content sequencing indicating in what order should

students learn concepts. The relevance of this question is

also demonstrated by research in this area. In order to

analyze CT progression, Seiter & Foreman (2013) used

Scratch projects of students from grades 1-6 to identify how

CT concepts varied by grade. Franklin et al. (2017) analyzed

student projects from grades 4-6 in sequence, events, and

initialization using LaPlaya (a Scratch-like programming

language). Grover & Basu (2017) analyzed students’

misconceptions of loops, variables, and boolean logic from

grades 6-8 also using Scratch. Lytle et al. (2019) analyzed

CT progression on the "use-modify-create” lesson using

Cellular environment (an extension of the block-based

programming environment Snap!). Rich et al.

(2017;2018;2019) analyzed K-8 learning trajectories for

sequence, repetition, conditionals (Rich et al., 2017),

decomposition (Rich et al., 2018) and debugging (Rich et al.,

2019) in Scratch studies integrating CT into Mathematics.

But, although there are several studies analyzing some

aspects of CT using visual programming environments, no

research focusing directly on content sequencing in relation

to the K-12 Computer Science Framework and specifically

with respect to App Inventor has been found.

Thus, the objective of this study is to analyze the proposed

sequencing of the K-12 Computer Science Framework

(CSTA, 2016) based on the observed difficulty of

programming concepts in App Inventor projects. This

analysis is enabled by using CodeMaster (an automated

rubric). Specifically assessing CT in accordance with the K-

12 Computer Science Framework, the CodeMaster

automated rubric assesses several items related to algorithms

and programming concepts that can be extracted from the

source code.

2. CODEMASTER RUBRIC
CodeMaster is an automated performance-based assessment

rubric and grader. It enables an analysis of the code of App

Inventor programs supported by a free web-based tool

providing feedback to students and teachers in the form of a

CT score on programming projects. The model has been

developed based on a systematic mapping study (Alves,

2019) following an instructional design process (Branch,

2010) and the procedure for the rubric definition proposed

by Goodrich (1996). Evaluation of reliability and construct

validity indicated that the CodeMaster rubric can be

regarded as reliable (Cronbach’s alpha α=0.84). With

respect to construct validity, there also exists an indication

of convergent validity based on the results of a correlation

and factor analysis indicating that the rubric can be used for

a valid assessment of algorithm and programming concepts

of App Inventor programs as part of a comprehensive

assessment completed by other assessment methods (Alves

et al., 2020).

The CodeMaster rubric is composed of 16 items related to

algorithm and programming concepts, however, in this

work, we are considering only items related to the K-12

Computer Science Standards (Table 1) from levels 1B to 3A,

and that can be found in apps of the App Inventor Gallery.

We, thus excluded apps with extensions (as the App Inventor

Gallery does not allow apps with extensions). Other

standards, which cannot be automatically assessed, are also

excluded from our analysis, as they are not present in the

CodeMaster rubric.

Table 1. K-12 Computer Science Standards (CSTA, 2017)

present in CodeMaster rubric.
Identifier

K-12 Computer Science Standard A&P

Subconcept

Practice

1B-AP-09 Create programs that use variables to store

and modify data.

Variables Creating

Computational

Artifacts

1B-AP-10 Create programs that include sequences,

events, loops, and conditionals.

Control Creating

Computational

Artifacts

1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to

facilitate the program development process.

Modularity Recognizing

and Defining

Computational

Problems

2-AP-11 Create clearly named variables that

represent different data types and perform

operations on their values.

Variables Creating

Computational

Artifacts

2-AP-13 Decompose problems and subproblems

into parts to facilitate the design,

implementation, and review of programs.

Modularity Recognizing

and Defining

Computational

Problems

3A-AP-14 Use lists to simplify solutions, generalizing

computational problems instead of

repeatedly using simple variables.

Variables Developing and

Using

Abstractions

Based on these standards, the CodeMaster rubric defines

items and performance levels for each item. The

performance levels descriptors of the CodeMaster rubric are

derived directly from the learning objectives of the K-12

Computer Science Standards (standards identifiers are

underlined in Table 2). The performance levels are described

on ordinal scales, ranging from “criterion is not (or

minimally) present” to advanced usage of the criterion.

Table 2. Excerpt from the CodeMaster rubric items adopted

for this research (Alves et al., 2020).
Item Performance Level

0 1 2 3

Variables

No use of

variables.

Modification or use

of predefined

variables.

1B-AP-09

Creation and

operation with

variables.

2-AP-11

-

Naming Few or no

names are

changed

from their

defaults.

10 to 25% of the

names are changed

from their defaults.

2-AP-11

26 to 75% of the

names are changed

from their defaults.

2-AP-11

More than 75%

of the names are

changed from

their defaults.

2-AP-11

Lists No lists are

used.

At least one list is

used.

3A-AP-14

More than one list

is used.

3A-AP-14

Lists of tuples are

used.

3A-AP-14

11

Events No type of

event

handler is

used.

One type of event

handler is used.

1B-AP-10

Two or three types

of event handlers

are used.

1B-AP-10

More than three

types of event

handlers are used.

1B-AP-10

Loops No use of

loops.

Simple loops are

used.

1B-AP-10

‘For each’ loops

with simple

variables are used.

1B-AP-10

’For each’ loops

with list items are

used.

1B-AP-10

Conditional No use of

conditionals.

Uses ‘if’ structure.

1B-AP-10

Uses one ‘if then

else’ structure.

1B-AP-10

Uses more than

one ‘if then else’

structure.

1B-AP-10

Procedural

Abstraction

No use of

procedures.

One procedure is

defined and called.

1B-AP-11

More than one

procedure defined.

1B-AP-11

There are

procedures for

code organization

and re-use.

2-AP-13

The assessment using the CodeMaster rubric is automated

by performing a static code analysis. The analysis is done by

counting the kind and the number of command blocks used

with respect to algorithms and programming concepts, such

as variables, conditionals, loops, etc. The automated

assessment is supported by the CodeMaster tool available

on-line (http://apps.computacaonaescola.ufsc.br:8080/).

3. RESEARCH METHOD
Following the Goal Question Metric approach (Basili,

Caldiera & Rombach, 1994), the objective of this study is

defined as to analyze the difficulty and sequencing of the

standards related to CT practices and Algorithms &

Programming subconcepts from the K-12 Computer Science

Standards (CSTA, 2017). To achieve this goal, a case study

is conducted following Yin (2017).

3.1. Data Collection

Initially, we collected data in the form of App Inventor

projects from the AppInventor Gallery. In order to optimize

the sample size, we downloaded the publicly available and

accessible apps from the App Inventor Gallery in June 2018.

As a result, we obtained the source-code from 88,864 App

Inventor apps. We assessed these projects using the

CodeMaster tool. Out of the 88,864 downloaded projects,

88,812 were successfully assessed with the CodeMaster

rubric. 52 projects failed to be analyzed due to technical

difficulties. The collected data were pooled in a single

sample in order to analyze the concepts sequencing (rather

than a specific app).

3.2. Data Analysis

In order to analyze the difficulty and sequencing, we use the

Item Response Theory (IRT) Gradual Response Model

proposed by Samejima (1969). IRT allows analyzing item

properties, such as difficulty and discrimination, using

falsifiable models. This is done by estimating the

correspondence between an unobserved latent trait, in this

case, CT, and observable evidence, in this case, the assessed

App Inventor apps. The Gradual Response Model assumes

that items are polytomous and its response categories are

ordered (such as in CodeMaster rubric). Samejima’s model

proposes a probabilistic model for parameter estimation that

is not dependent on a specific set of items and is used to

determine the probability for someone to receive a specific

score (or higher), given the level of the underlying latent

trait, which in this context is CT.

Adopting IRT, for each item is estimated: the parameter a

(common to all item categories) and the parameters b’s,

indicating the distance from adjacent difficulty performance

levels (see Fig. 2). The dataset was analyzed using the mirt

package from the R programming language (Chalmers,

2012).

Figure 2. Difficulty parameters (b’s) for items with 4

adjacent difficulty performance levels (as in CodeMaster

rubric).

Due to the focus on the individual properties of each item,

IRT allows the placement of items on a scale that

distinguishes what is easier and harder from the learner's

point of view. Using the scale, the items order relations are

compared to the K-12 Computer Science Standards

sequencing.

4. ANALYSIS

4.1. Parameter estimation and scale creation

Using the Gradual Response Model (Samejima, 1969) the

parameters of the items are estimated. The metric is

established by setting population parameters to average = 0

and standard deviation = 1. Since the CodeMaster rubric

contains ordinal polytomous items, several b parameters are

estimated to differentiate the passage from one score to

another:

• b2 = represents the difficulty of getting score 1 on any

item,

• b3 = represents the difficulty of getting score 2 on any

item,

• b4 = represents the difficulty getting score 3 on any item.

Consequently, items on a 2-point ordinal scale (no

description for score 3) also do not present a parameter b4

(example: item variables). In IRT, parameters a and b’s can

theoretically assume any real value between −∞ and +∞.

However, a negative value for a parameter is not expected.

Typically values above 1.0 are considered good, as they

indicate that the item discriminates well learners with

different abilities. In this study, parameters b are the main

indicators to be analyzed, as they indicate the difficulty of

the item. For parameters b, values close to or within the

range [-5, 5] are expected, with negative values indicating

that an item has below average difficulty and positive values

indicating above average difficulty.

In general, most items were well estimated, with a parameter

value above 1 (Table 3). In addition, the values of the

difficulty parameters (b2, b3, and b4) are within the range [-

5, 5]. Only the item Lists presented parameter b4 slightly

above 5. Standard errors (SE) of each parameter b presented

similar results and are in low magnitude, therefore,

presenting no estimation problem.

Table 3. Parameters a and b’s estimated with standard

errors (SE).
Item a (SE) b2 (SE) b3 (SE) b4 (SE)

Variables 2.97 (0.02) -0.83 (0.01) -0.01 (0.01) NA

12

Naming 1.68 (0.01) -0.31 (0.01) 0.07 (0.01) 1.89 (0.01)
Lists 1.24 (0.01) 1.49 (0.01) 2.00 (0.02) 5.20 (0.07)

Events 2.88 (0.02) -1.65 (0.01) -0.90 (0.01) -0.47 (0.01)

Loops 1.77 (0.03) 2.14 (0.02) 2.29 (0.02) 2.57 (0.03)
Conditional 2.32 (0.02) 0.34 (0.01) 0.80 (0.01) 1.57 (0.01)

Procedural

Abstraction

3.18 (0.03) 0.99 (0.01) 1.08 (0.01) 1.19 (0.01)

Analyzing the results, it can be inferred that obtaining 1

point for the item Events is easier than in any other item

since this item has the smallest b parameter (b2 = -1,65). On

the other hand, obtaining 3 points for item Lists is more

difficult than any other item, as it presents the highest value

for a b parameter (b4 = 5.20).

Based on the estimated difficulty parameters, the items are

placed on a scale (0.1), i.e. with average = 0 and standard

deviation = 1 (Figure 3). The scale is an “arbitrary” scale

where the relations of order between its points are most

important and not necessarily its magnitude. The items are

arranged at the scale points according to the estimated

difficulty parameters (b2, b3, and b4), as presented in Table

3. For example, the b2 parameter of the item Events is equal

to -1,65, so it is placed at point -1.5 of the scale.

Figure 3. Placement of the items on the scale.

From the placement of items on the scale, we can infer that

an item with a parameter b estimated at 1.5 is 1.5 standard

deviations above the average ability. Thus, this item is more

difficult than all items that are placed below point 1.5 at the

scale. In the context of App Inventor programming, the

easiest items include events and variables (Figure 3), as

these items have negative (below average) parameters b.

These parameters are semantically consistent, as App

Inventor encourages variable creation and unlimited use of

events (Turbak et al., 2014).

The most difficult items include lists and loops. Score 3 for

the list item has the highest difficulty parameter (Lists b4),

being the most difficult to achieve among all items.

Although the loops item is also considered difficult, it is

noteworthy that loop blocks in App Inventor programs are

rarely used because many iterative processes that would be

expressed with loops in other programming languages are

expressed as an event that performs a single step of the

iteration every time it is triggered (Turbak et al., 2014).

Thus, the difficulty parameters of loops may be poorly

represented through the App Inventor dataset, as more than

94% of apps are assessed with 0 points in loops (see fig. 4).

In other visual programming environments, such as Scratch,

the usage of this concept and consequently the observed

difficulty may be different.

Figure 4. Frequency of the performance level score for

each item.

4.2. Comparison of K-12 Computer Science Standards

sequencing with estimated IRT parameters

Based on the results of the scale placement (Fig. 4), we

analyze the content sequencing proposed by the K-12

Computer Science Standards (Fig. 5). Here we expect that

CodeMaster items that are easier should be sequenced on

early levels (1B or 2) and those that are difficult are

sequenced on final levels (2 or 3A).

Figure 5. Positioning items on the scale.

Most of the items are sequenced in accordance with their

difficulty. For example, easy items are placed on levels 1 and

2, e.g., events, variables, and naming. Events are widely

used in App Inventor programs; even simple apps need

events in order to function properly. Variables are also

widely used, both as predefined and blocks to create/modify

user variables. However, there are also some discrepancies

between the degree of difficulty based on the IRT analysis

and the placement of standards throughout K-12 (Figure 5).

Naming (components and procedures) is essential to make

the program understandable. However, it seems to be much

harder than obtaining a low-medium performance level (1 or

2 points) than to obtain a high-performance level (3 points)

for Naming. In other words, the gap between Naming(2) and

Naming(3) is bigger than the gap between Naming(1) and

Naming(2).

Items with medium difficulty are placed throughout all K-12

Computer Science Standards levels (1B to 3A), including

Conditional, Procedural Abstraction and the first

13

performance level for Lists (since Lists(2) and Lists(3) were

placed together with difficult items). Conditionals include

“if-then” or “if-then-else”. Although it seems there is no

difference in using “if-then” (Conditionals(1)), or “if-then-

else” (Conditionals(2)), using more than one “if-then-else”

(Conditionals(3)) is much harder as it was almost placed

with difficult items (Fig. 5). Item Lists(1) was the only level

3A item derived from the K-12 Computer Science Standards

placed as a medium item.

Difficult items include Lists(2), Lists(3), Loops and

Naming(3). Being a level 3A concept in the K-12 Computer

Science Standards (CSTA, 2017), Lists performance levels

are expected to be placed together with more difficult items.

However, Loops are a level 1A concept following the K-12

Computer Science Standards, yet are placed together with

difficult concepts. This, on the other hand, may be explained

by the underrepresentation in the dataset as well as its

needless use in many cases in App Inventor as stated by

Turbak et al. (2014).

5. DISCUSSION
Considering the difficulty of items, we identified that events

and variables are the easiest items when programming with

App Inventor. Items with medium difficulty include

conditional and procedural abstraction. The most difficult

items are loops and lists, while the estimated high difficulty

of loops may be influenced by its infrequent use in App

Inventor projects.

Analyzing the proposed content sequencing of curriculum

guidelines on the example of the CSTA framework, we can

observe that it is adequately aligned with the difficulty as

determined via the IRT analysis (with exception of loops).

For example, the proposal indicates addressing list concepts

in level 3, being one of the most difficult concepts this is

appropriate and allows a scaffolding approach.

However, some concepts related to algorithms and

programming are not explicitly included in CSTA

framework/standards, for example, strings and Boolean

operators, and, thus, were excluded from this analysis.

Further evolutions of curriculum guidelines could, therefore,

also explicitly start to include these concepts.

5.1. Threats to validity

One risk is related to grouping data from different contexts.

The App Inventor programs come from various contexts in

the worldwide App Inventor community, and no additional

information about the creator history in App Inventor

Gallery projects is available. As the goal in this work is to

identify the relationship between standards difficulty, this is

not considered a problem, although the results should be

perceived considering that there is no information about

which context the apps were created. Another threat

regarding the possibility of generalizing the results is related

to the sample size and projects of only one programming

language. As one of the leading visual programming

environments, App Inventor contains many of the

algorithmic and programming concepts covered in K-12

computing education and is similar to other environments,

such as Scratch. Therefore, this risk is minimized by using a

significant number of apps (over 88,000). Thus, the sample

size is considered satisfactory, allowing the generation of

significant results. Regarding the construct validity,

measurements were systematically defined and data

extraction was performed automatically, eliminating errors

from manual extraction. The statistical technique used for

the analysis was chosen based on the literature as one of the

indicated techniques for this purpose.

6. CONCLUSIONS
Based on App Inventor projects, we analyzed the difficulty

of Algorithms & Programming concepts as well as the

alignment of the content sequencing as proposed by the K-

12 Computer Science Standards. We noticed that the

sequencing of the standards is consistent with the difficulty

of the concepts. We also observed that the difficulty of

achieving performance levels of certain items may depend

on the specific programming language. For example, the

loops concept in App Inventor may be more difficult to learn

since there are other ways to program an iterative process.

The results of this analysis can be used to systematically

discuss and improve the pedagogical sequencing of

curriculum guidelines by adopting scaffolding techniques

and comparisons with other reference frameworks.

7. ACKNOWLEDGMENTS
We would like to thank all researchers from the MIT App

Inventor team, who provided support for the access to the

App Inventor Gallery. This study was financed in part by the

Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior - Brasil (CAPES) - Finance Code 001 and by the

Conselho Nacional de Desenvolvimento Científico e

Tecnológico - Brasil (CNPq), entities of the Brazilian

government focused on scientific and technological

development.

8. REFERENCES
ACARA (2015). Australian Curriculum, Assessment and

Reporting Authority. Retrieved June 9, 2019, from

https://www.acara.edu.au/

Alves, N. da C., Gresse von Wangenheim, C., & Hauck, J.

C. R. (2020). A large-scale evaluation of a rubric for the

automatic assessment of algorithms and programming

concepts. Proceedings of the 51st ACM Technical

Symposium on Computer Science Education. ACM.

Alves, N. da C., Gresse von Wangenheim, C., & Hauck, J.

C. R. (2019). Approaches to assess computational thinking

competences based on code analysis in K-12 education: A

systematic mapping study. Informatics in Education,

18(1), 17-39.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The

goal question metric approach. Encyclopedia of Software

Engineering, 528-532. Wiley.

Branch, R. M. (2010). Instructional Design: The ADDIE

Approach. New York: Springer.

CAS (2015). Computing at School. Retrieved June 9, 2019,

from https://www.computingatschool.org.uk/

Chalmers R. P. (2012). Mirt: A multidimensional item

response theory package for the R Environment. Journal

of Statistical Software, 48(6), 1–29.

https://www.acara.edu.au/
https://www.computingatschool.org.uk/

14

Computer Science Teachers Association (2016). K-12

Computer Science Framework. Retrieved August 9, 2019

from https://k12cs.org/

Computer Science Teachers Association (2017). CSTA K-12

Computer Science Standards, Revised 2017. Retrieved

August 9, 2019 from http://www.csteachers.org/standards

Fee S. B., & Holland-Minkley, A. M. (2010). Teaching

computer science through problems, not solutions.

Computer Science Education, 20(2), 129-144.

Goodrich, H. (1996). Understanding Rubrics. Educational

Leadership, 54(4), 14–18.

Grover, S., & Pea, R. (2013). Computational thinking in K–

1: A review of the state of the field. Educational

Researcher, 42(1), 38–43.

Grover, S., & Basu, S. (2017). Measuring student learning

in introductory block-based programming: Examining

misconceptions of loops, variables, and Boolean Logic.

Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 267-272.

ACM.

Law, B. (2016). Puzzle games: A metaphor for

computational thinking. Proceedings of the 10th European

Conference on Games Based Learning, 344-353.

Academic Conferences and Publishing International Ltd.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through programming:

What is next for K-12? Computers in Human Behavior,

41(C), 51–61.

Moreno-León J., & Robles, G. (2015). Dr. Scratch: A web

tool to automatically evaluate Scratch projects.

Proceedings of the 10th Workshop in Primary and

Secondary Computing Education, 132–133. ACM.

Papadakis, S., Kalogiannakis, M., Orfanakis, V., & Zaranis,

N. (2017). The appropriateness of Scratch and App

Inventor as educational environments for teaching

introductory programming in primary and secondary

education. International Journal of Web-Based Learning

and Teaching Technologies, 12(4), 58-77.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., &

Franklin, D. (2017). K-8 learning trajectories derived from

research literature: Sequence, repetition, conditionals.

Proceedings of the 2017 ACM Conference on

International Computing Education Research, 182-190.

ACM.

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin,

D. (2018). Decomposition: A K-8 computational thinking

learning trajectory. Proceedings of the 2018 ACM

Conference on International Computing Education

Research, 124-132. ACM.

Rich, K. M., Strickland, C. T., Binkowski, T. A., & Franklin,

D. (2019). A K-8 debugging learning trajectory derived

from research literature. Proceedings of the 50th ACM

Technical Symposium on Computer Science Education,

745-751. ACM.

Samejima, F. A. (1969). Estimation of latent ability using a

response pattern of graded scores. Psychometric

Monograph, 34(4, Pt.2), 17.

Seiter K., & Foreman, B. (2013). Modeling the learning

progressions of computational thinking of primary grade

students. Proceedings of the Ninth Annual International

ACM Conference on International Computing Education

Research, 59–66. ACM.

Sherman, M., & Martin, F. (2015). The assessment of

mobile computational thinking. Journal of Computing

Sciences in Colleges, 30(6), 53–59.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).

Demystifying Computational Thinking. Educational

Research Review, 22, 142-158.

Turbak, F., Sherman, M., Martin, F., Wolber, D., & Pokress,

S. C. (2014). Events First Programming in App Inventor.

Journal of Computing Sciences in Colleges, 29(6), 81-89.

Wing, J. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33-36.

Yin, R. K. (2017). Case Study Research: Design and

Methods (6th Ed.). Thousand Oaks: SAGE Publications.

https://k12cs.org/
http://www.csteachers.org/standards

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

15

Computational Thinking and Creativity: A Test for Interdependency

Rotem ISRAEL-FISHELSON1*, Arnon HERSHKOVITZ2*, Andoni EGUÍLUZ3, Pablo GARAIZAR4,

Mariluz GUENAGA5

1,2School of Education, Tel Aviv University, Israel
3,4,5 Faculty of Engineering, University of Deusto, Bilbao, Spain

rotemisrael@tauex.tau.ac.il, arnonhe@tauex.tau.ac.il, andoni.eguiluz@deusto.es, garaizar@deusto.es,

mlguenaga@deusto.es

ABSTRACT

Computational Thinking (CT) and creativity are considered

fundamental skills for future citizens. We studied the

associations between these two constructs among middle

school students (N=174), considering two types of

creativity: Creative Thinking and Computational Creativity.

We did so using log files from a game-based learning

platform (Kodetu) and a standardized creativity test. We

found that the more creative the students were (as measured

by a traditional creativity test), the more effectively they

acquired CT. We also found significant positive correlations

between Computational Creativity and the acquisition of CT

in some levels of the game, and a positive correlation

between Creative Thinking and Computational Creativity.

KEYWORDS

computational thinking, creativity, game-based learning,

learning analytics, log analysis

1. INTRODUCTION
The exponential growth in the data available from a plethora

of resources and the significant development of science,

make it essential for people to adopt skills that complement

and provide the added value of computing capabilities to any

field of expertise (Hambrusch, Hoffmann, Korb, Haugan, &

Hosking, 2009). Both Computational Thinking and

Creativity have been recognized as essential skills for the

21st century (Kalelioğlu, Gülbahar, & Kukul, 2016; Sai d-

Metwaly, Noortgate, & Kyndt, 2017) and are crucially

important for human development (Czerkawski, 2015).

Computational Thinking (CT) is the conceptual foundation

required to define and solve real-world problems using

algorithmic methods to reach solutions that are transferable

and necessary to various contexts and disciplines (Shute,

Sun, & Asbell-Clarke, 2017). It is a skill that helps

improving thinking abilities and provides techniques to

extract knowledge hidden in the data (Buitrago Flórez et al.,

2017).

Creativity is a thinking ability that enables problem-solving

in an innovative manner, and the production of original and

valuable products (Torrance, 1974). Despite having many

definitions to this construct, there is an agreement that

creativity is a multi-dimensional variable comprised of four

characteristics: (1) Fluency – the ability to generate a large

number of ideas and directions of thought for a particular

problem; (2) Flexibility – the ability to think about as many

uses and classifications as possible for a particular item or

subject; (3) Originality – the ability to think of ideas that are

not self-evident or banal or statistically ordinary, but rather

unusual and even refuted, and (4) Elaboration – the ability

to expand an existing idea, develop and improve it by

integrating existing schemes with new ideas (Guilford,

1950; Torrance, 1965).

Similar to CT, creativity has been identified as crucial to

human inventive potential in all disciplines, and it is evident

that its influence dominates various spheres of life

(Navarrete, 2013). However, for many years, these two skills

remained within their content areas - CT was mainly taught

in the context of Science, Technology, Engineering, and

Mathematics (STEM) fields, and creativity in the fields of

design and art. We have come to a point where there is an

understanding that both can be nurtured and should be

included across the curriculum from an early age (Beghetto,

2010; Vygotsky, 2004). Indeed, creativity involves a set of

thinking tools that overlap with the fundamentals of

Computer Science—specifically, observation, imagination

and visualization, abstraction, and creation and

identification of patterns (Yadav & Cooper, 2017)—which

can support the development of creativity. For this reason,

various educational initiatives worldwide have begun to

establish national K-12 curricula, academic standards, and

instructional computerized and unplugged activities that

promote these skills (ISTE, 2017; World Economic Forum,

2015).

With the recognition of its importance, CT has been

integrated into school curricula around the world, and many

online platforms, especially game-based learning platforms,

have been developed to support and promote its acquisition

(Kim & Ko, 2017). Some of these platforms—like

CodeMonkey™ or Hour of Code™—take advantage of the

game-based learning approach, which promotes learning

through fun, interactive and rewarding game-play, in order

to increase engagement and motivation for learning and to

improve academic achievements in the long run (Ibanez, Di-

Serio, & Delgado-Kloos, 2014; Kazimoglu, Kiernan, Bacon,

& MacKinnon, 2012; Vu & Feinstein, 2017). However,

while encouraging the acquisition of CT in a fun, engaging

way, these platforms promote efficiency and sometimes

limit creativity (for example, when not allowing free use of

coding blocks). This is most evident when a learner submits

a solution which may be considered as creative, but as it is

not the most efficient solution anticipated by the platform,

the learner would not get a full score for it.

Research on CT and creativity has been conducted from

different perspectives, looking at both creativity within the

scope of CT and the influence of the two constructs on each

other (Miller et al., 2013; Seo & Kim, 2016). However, only

limited research exists on the relationship between these two

perspectives. Creativity may be dependent on the learning

16

context and the measuring tool (Reiter-Palmon, Illies, Kobe

Cross, Buboltz, & Nimps, 2009). Therefore, we explore the

associations between different measures and perspectives of

creativity and look for connections between them and CT

acquisition.

2. RESEARCH QUESTIONS
To avoid confusion, we use Creative Thinking to refer to a

traditional measure of creativity that has no connection to

the platform being used, and Computational Creativity to

refer to a measure of how creativity is manifested inside the

platform, as reflected by the frequency (originality) of a

given solution among all other solutions (detailed in section

3.5). To meet our research goal, we formulated the following

research questions:

1. What are the associations between the acquisition

of CT and Creative Thinking?

2. What are the associations between the acquisition

of CT and Computational Creativity?

3. What are the associations between Computational

Creativity and Creative Thinking?

3. METHODOLOGY

3.1. The Learning Platform: Kodetu

Kodetu is a web app built using Google's Blockly for

teaching basic programming skills (Eguíluz et al., 2017).

The environment has three official games, and it is also

allowing users to create their own games. Each of Kodetu's

levels presents the user with a challenge in which an

astronaut should get to a marked destination. The user has to

define the astronaut's movements using coding blocks in the

workspace. Each level of the game presents one or more CT

concepts (e.g., sequences, loops, etc.). Moving to the next

level is possible only upon completing the current level

successfully. It should be noted that a user can reset the level

and solve it again. The system is offered in three languages:

English, Spanish, and Basque. While the app is being used,

the system logs any action taken by its users.

For our broad study, a dedicated game was created in the

Kodetu platform. The game includes ten levels with

increased difficulty. In this paper, we present part of our

work covering levels 1-9. The first four levels are designed

with the aim of practicing the concept of sequences. Level 1

presents a trivial level to show how the system works. Level

2 and 3 involve turns and perspective. Level 4 presents a

challenge where a long sequence of actions, including more

than one rotation, is needed to reach the goal. Level 5 limits

the number of blocks that can be used (i.e., code length) to

prevent participants from using long sequences and to

encourage them to take advantage of new code structures of

loops. Level 6 presents a trivial challenge that deals with

sequences and loops. Level 7 (Shown in Figure 1) also works

on sequences and loops with limitation of blocks’ usage.

Level 8 limits the number of blocks that can be used (i.e.,

code length) to prevent participants from using long

sequences and to encourage them to take advantage of new

code structures of conditionals. Level 9 introduces If-Else

conditionals and requires nested structures and a limited

number of blocks. Solving the entire set of levels is intended

to take 30 to 60 minutes. While the platform is being used,

the system logs any action taken by its users.

Figure 1. An Example Level of Kodetu (level 7)

3.2. Population and Research Design

For this study, we analyzed the actions of 174 middle-school

Spanish students, 11-12 years old (55% boys and 45% girls)

from two different schools. The students arrived to an

outreach activity organized by the Faculty of Engineering of

the University of Deusto and participated in a workshop

about technology, programming, and robotics. During this

workshop, the students played the designated Kodetu game

for about 60 minutes. For the vast majority of the students,

it was their first encounter with programming experience

(78%, 136 of 174). In addition, 60% of students (105 of 174)

reported they have a high affinity for technology.

Prior to the Kodetu session, all participants completed a pen-

and-paper creativity task (Torrance's TTCT – Figural Test;

see section 3.4). Data from Kodetu log files were

triangulated with the data obtained via the creativity task

using a unique ID for each participant. This ID was produced

by Kodetu and was written down on the creativity test form

by the participants. In addition, participants were asked to

provide demographic data (age, gender), previous

programming background (yes/no), and affinity to

technology (1-low to 10-high).

3.3. Dataset and Preprocessing

The full log file included 163,137 rows, each representing

an action taken by a user, including its timestamp, the level

in which it was taken, its result [Success, Failure, Timeout,

Error], and the code associated with this action.

3.4. Research Tool

We used the Torrance Test for Creative Thinking (TTCT) –

Figural Test (Torrance, 1974) to assess Creative Thinking in

four dimensions: fluency, flexibility, originality, and

elaboration. In this pen-and-paper test, each student was

presented with a sheet on which 12 identical, empty circles

were printed. Students were asked to make as many

drawings as possible using the circles as part of the

drawings. An eligible drawing used the circle as part of the

drawing. See examples in Figure 2.

17

Figure 2. Example of Eligible (top row) and Non-eligible

(bottom row) Drawings from TTCT – Figural Test

3.5. Variables

3.5.1. Computational Thinking

We focused on three variables to measure the acquisition of

computational thinking, each computed for all levels as well

as for each level separately.

• Solution Attempts.

• Correct Solution Attempts.

• Average Time [min].

3.5.2. Creative Thinking

To score the creativity task, we used eligible drawings only,

that is, drawings in which the circle was considered an

important part of the drawing. In order to ensure the

reliability of determining eligibility, each of the first two

authors coded 20 sheets for eligibility separately; then, we

ran an inter-rater reliability assessment using Cohen’s kappa

and got a satisfying coefficient of 0.81. The authors then

discussed borderline cases and agreed on guidelines for the

rest of the coding, which was done by the first author.

Similarly, each of the first two authors separately coded 20

sheets for categories and then discussed their codes until full

agreement achieved. The rest of the coding was done by the

first author, with frequent discussions throughout this

process about their very definitions and about splitting and

merging categories. At the end of this iterative process, the

final list consisted of 59 categories, e.g., "Emoji", "Sun",

"Flower", "Signpost".

Finally, we computed the following four variables (for each

student):

• Fluency – Number of eligible drawings;

• Flexibility – Number of different drawings'

categories;

• Originality – Average frequency of the drawing

categories, across all drawings;

• Elaboration – Number of ideas/details used in each

eligible drawing;

3.5.3. Computational Creativity

Our analysis focuses on the originality of a correct solution

as a proxy for creativity. This is due to the fact that the

Kodetu platform, similarly to many other platforms, does not

explicitly encourage multiple solutions, and once a level is

solved, participants are immediately encouraged to move to

the next level. Therefore, fluency, flexibility, and

elaboration are not applicable in our analysis.

The originality is represented by the frequency of this

solution among all the correct solutions for this level. That

is, the rarer a solution is, the more creative it is considered.

When there were multiple correct solutions for an individual

participant, we calculated the average across her or his

correct solutions. The originality was calculated for each

level separately and also aggregated for all Levels.

4. FINDINGS

4.1. Descriptive Statistics of the Research Variables

In order to better understand the associations between

Computational Thinking, Creative Thinking, and

Computational Creativity, we first report on descriptive

statistics of each of the variables. All statistical analyses

used IBM SPSS version 25.

4.1.1. Computational Thinking

We found that among all participants, the average Solution

Attempts was 6.16 (SD=3.08), and Correct Solution Attempt

was 1.06 (SD=0.19). The Average Time it took to solve each

level was 5.13 minutes (SD=11.99).

Overall, there was an increasing trend in Level Solution

Attempts, with R2=0.49 for the graph trend line (see Figure

3), indicating the increasing difficulty of the game. A similar

trend was found for the Level Average Time, excluding a

decrease between Level 1 to level 3, which might be related

to the participants' adaptation to the interface in these initial

levels. In addition, there is a decrease from level 8 to 9 that

may be associated with the presentation of the concept of

conditionals in level 8.

Figure 3. Solution Attempts and Average Time by Level

When comparing the performance by Gender, we found that

the average Solution Attempts was greater for girls than for

boys (M=6.48, SD=3.5, and M=5.93, SD=2.79,

respectively). The Average Time was also greater for girls

than for boys (M=3.17, SD=2.96, and M=2.87, SD=2.58,

respectively).

4.1.2. Creative Thinking

As indicated above, Creative Thinking consisted of four

dimensions (fluency, flexibility, originality, and

elaboration). Based on normality tests (H.-Y. Kim, 2013),

we assumed normality (Skewness<0.5 in absolute value) for

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Levels

Solution Attempts Average Time (min)

18

all dimensions of Creative Thinking except originality. A

summary of the statistics is presented in Table 1.

We should comment on the relatively high mean value of

originality (M=0.89, SD=0.16, N=174). Recall that we

defined 59 categories of drawings for the TCTT – Figural

Test. The distribution of the categories was in a "long tail"

shape; that is, many categories had a very low frequency

(i.e., were highly original), and only a few had relatively

high frequency (i.e., were not original). The least original

category ("Emoji") had a frequency of 75%.

Table 1. Descriptive Statistics for Creative Thinking

Variable Average

(SD)

Median Skewness

(SE)

Fluency 6.96 (3.65) 7 -0.23 (0.18)

Flexibility 4.25 (2.94) 4 0.48 (0.18)

Originality 0.89 (0.16) 0.94 -4.43 (0.18)

Elaboration 2.88 (0.89) 2.83 -0.12 (0.18)

4.1.3. Computational Creativity

Among all participants, the Computational Creativity score

was low, as indicated by an average value of 0.24

(SD=0.24). No clear trend was observed throughout the

game (See Table 2). In more than half of the cases, we could

not assume normality (H.-Y. Kim, 2013), as can be seen

from the high levels of the Skewness coefficients (that is,

higher than 1). In most levels, one dominant solution was

observed despite the existence of several others, as solved

by a minority of students. Exceptions were levels 7 and 8,

where only a single solution was observed for the whole

population, probably because of the design of these levels

and their block limit. Levels 4 and 6 showed the highest

variability among participants.

Table 2. Descriptive Statistics for Computational Creativity

Level Average

(SD)

Median Skewness

(SE)

1 0.17 (0.25) 0.9 2.91 (0.18)

2 0.21 (0.27) 0.11 2.35 (0.19)

3 0.1 (0.2) 0.05 3.96 (0.18)

4 0.67 (0.19) 0.7 0.49 (0.19)

5 0.03 (0.13) 0.02 7.48 (0.18)

6 0.63 (0.17) 0.67 0.67 (0.19)

7 0.02 (0.72) - -

8 0.02 (0.09) - -

9 0.45 (0.15) 0.42 -1.78 (0.2)

4.2. Creative Thinking and the Acquisition of

Computational Thinking

We tested the correlation between the Computational

Thinking variables and the Creative Thinking variables. We

found that Flexibility and Originality were significantly

negatively correlated with Average Time, with Spearman’s

ρ taking values of -0.16 and -0.18, respectively, at p<0.05.

Likewise, we found a significant negative correlation

between Flexibility and Solution Attempts, with ρ=-0.17, at

p<0.05. When we examined the correlation between the two

variables by level, we found five cases – levels 1, 3, 5, 6, and

7 – which demonstrated significant correlations. Note that

except for one case (level 1), all correlations were negative

(findings are summarized in Table 3). These results indicate

that the more creative the students were (as measured by

a traditional creativity test), the less time and effort it took

them to solve the levels in the game.

Table 3. Correlations between Computational Thinking and

Creative Thinking by Levels (N=174)

 Solution

Attempts

Correct

Solution

Attempts

Average

Time

Fluency

Level 1 ρ=-0.04

p=0.62

ρ=0.04

p=0.65

ρ=-0.16*

Flexibility

Level 1 ρ=-0.04

p=0.58

ρ=-0.01

p=0.94

ρ=0.15*

Level 7 ρ=-0.18* ρ=0.00

p=0.96

ρ=-0.14

p=0.07

Originality

Level 5 ρ=-0.15* ρ=-0.06

p=0.42

ρ=-0.04

p=0.62

Elaboration

Level 1 ρ=0.1

p=0.19

ρ=-0.15

p=0.05

ρ=-0.27**

Level 3 ρ=0.11

p=0.14

ρ=-0.15

p=0.05

ρ=-0.19**

Level 6 ρ=-0.2** ρ=-0.16* ρ=-0.21**

* p<0.05, ** p<0.01

4.3. Computational Creativity and the Acquisition of

Computational Thinking

Next, we tested the associations between Computational

Thinking and Computational Creativity as the latter is

reflected by the originality of a correct solution in a given

level compared with all other correct solutions. We did so

both for the aggregated measures, as well as for each level

of the game separately. We found that overall,

Computational Creativity is negatively correlated with

Solution Attempts, with ρ=-0.17, at p<0.05, and with

Average Time, with ρ=0.2, at p<0.01. We also found four

cases – levels 3, 4, 6, and 9 – which demonstrated

19

significant positive correlations, as reported in Table 4.

These results indicate that the more creative the students

were in producing a solution, the more time and effort it

took them to solve levels in the game.

Table 4. Correlations between Computational Thinking and

Computational Creativity by Levels (N=174)

 Solution

Attempts

Correct

Solution

Attempts

Average

Time

Level 3 ρ=0.14

p=0.08

ρ=0.05

p=0.53

ρ=0.27**

Level 4 ρ=0.14

p=0.06

ρ=-0.02

p=0.78

ρ=0.25**

Level 6 ρ=0.17*

ρ-0.08

p=0.28

ρ=0.11

p=0.16

Level 9 ρ=0.18* ρ=0.1

p=0.27

ρ=0.33**

* p<0.05, ** p<0.01

4.4. Computational Creativity and Creative Thinking

Finally, we examined the associations between creativity

related measures: Computational Creativity and Creative

Thinking. We found a significant positive correlation

between originality and the aggregated variable of

Computational Creativity, with ρ=0.2, at p<0.01. In

addition, when examining these correlations between the

variables for each level separately, we found that in one case

– levels 6 – originality was positively correlated with

Computational Creativity, with ρ=0.19, at p<0.05). These

results indicate that students who created more original

drawings in the TTCT task were more creative in the

game.

5. DISCUSSION
Various studies have investigated the associations between

computational thinking (CT) and creative thinking,

however, this study is among the pioneers who examine

these associations with Computational Creativity. In this

study, we investigated the associations between the

acquisition of CT by middle-school students who used a

game-based learning platform, referring to two types of

creativity – Creative Thinking and Computational

Creativity. The first was defined by a traditional creativity

test, not related to CT, while the second by the originality of

correct solutions within the learning platform. Overall, we

found interesting associations between the three research

variables. Two dimensions of Creative Thinking—namely

flexibility, and originality—were negatively correlated with

measures of CT. As students were more creative in the

TTCT task, they needed less time and effort to solve the

levels in the game. This is in line with an earlier study that

indicates a positive relationship between standardized

creativity testing and students' performance (Anwar, Aness,

Khizar, Naseer, & Muhammad, 2012). Furthermore, these

findings reinforce the claim that creativity contributes to

computer science and CT in particular (Kong, 2019; Miller

et al., 2013).

Notably, we found that at some level of the game, there was

a positive correlation between Computational Creativity and

measures of the acquisition of CT. That is, students who

provided more unique and original solutions needed more

time and attempts to solve these levels. This is not surprising

as producing a creative solution may take more time than a

"standard" solution (Akinboye, 1982; M. Baer & Oldham,

2006).

We also found some intriguing associations between the two

types of creativity. Computational Creativity was positively

correlated with the originality dimensions of Creative

Thinking. These results may imply that creativity is context-

dependent (as the associations were only demonstrated in

some of the game-levels) as well as transferable from one

domain to another. This supports the hierarchical model of

creativity, which integrates both domain-general and

domain-specific types of creativity (Baer, 2010; Hong &

Milgram, 2010). It also reflects earlier findings that linking

TTCT score and creativity in problem-solving in

programming platforms (Liu & Lu, 2002).

While the results and insights of this study contribute in

offering a better understanding of the associations between

CT and type of creativity, we also want to highlight its

limitations. First, we analyzed data from a single learning

platform (Kodetu), and it is possible that our findings were

a result of some unique characteristics of this platform.

Specifically, the studied platform does not encourage

multiple correct solutions and, in some cases, limits the free

use of coding blocks, which may affect and limit creative

submission. Furthermore, the analysis is based on students

from a single country (Spain). Personal and cultural

characteristics may impact the way creativity is exhibited.

Therefore, we plan to broaden our perspective by examining

similar platforms under different conditions and with a more

multi-cultural view.

6. REFERENCES
Akinboye, J. O. (1982). Correlates of Testing Time, Age and

Sex in the Nigerians’ Performance on the Torrance Test of

Creativity. Journal of Psychological Researches, 26(1), 1–

5.

Anwar, M. N., Aness, M., Khizar, A., Naseer, M., &

Muhammad, G. (2012). Relationship of Creative Thinking

with the Academic Achievements of Secondary School

Students. International Interdisciplinary Journal of

Education, 1(3), 1–4.

Baer, J. (2010). Is Creativity Domain Specific? In J. C.

Kaufman & R. J. Sternberg (Eds.), The Cambridge

Handbook of Creativity (pp. 321–341). New York, NY:

Cambridge University Press.

Baer, M., & Oldham, G. R. (2006). The Curvilinear Relation

between Experienced Creative Time Pressure and

Creativity: Moderating Effects of Openness to Experience

and Support for Creativity. Journal of Applied Psychology,

91(4), 963–970.

Beghetto, R. A. (2010). Creativity in the Classroom. In

Kaufman, J. C. & R. J. Sternberg (Eds.), The Cambridge

Handbook of Creativity (pp. 447–463). New York, NY:

Cambridge University Press.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A.,

Restrepo, S., & Danies, G. (2017). Changing a

Generation’s Way of Thinking: Teaching Computational

20

Thinking through Programming. Review of Educational

Research, 87(4), 834–860.

Czerkawski, B. (2015). Computational Thinking in Virtual

Learning Environments. Proceedings of E-Learn: World

Conference on E-Learning in Corporate, Government,

Healthcare, and Higher Education. Kona, Hawaii, United

States: Association for the Advancement of Computing in

Education (AACE), 1227-1231.

Guilford, J. P. (1950). Creativity. The American

Psychologist, 5(9), 444–454.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., &

Hosking, A. L. (2009). A Multidisciplinary Approach

towards Computational Thinking for Science Majors.

ACM SIGCSE Bulletin, 41(1), 183.

Hong, E., & Milgram, R. M. (2010). Creative Thinking

Ability: Domain Generality and Specificity. Creativity

Research Journal, 22(3), 272–287.

Ibanez, M.-B., Di-Serio, A., & Delgado-Kloos, C. (2014).

Gamification for Engaging Computer Science Students in

Learning Activities: A Case Study. IEEE Transactions on

Learning Technologies, 7(3), 291–301.

ISTE. (2017). Turn Coders into Computational Thinkers.

Retrieved July 30, 2017, from

https://www.iste.org/explore/articleDetail?articleid=936&

category=Innovator-

solutions&article=Turn+coders+into+computational+thin

kers

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A

Framework for Computational Thinking Based on a

Systematic Research Review. Modern Computing, 4(3),

583–596.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L.

(2012). Learning Programming at the Computational

Thinking Level via Digital Game-play. Procedia

Computer Science, 9(0), 522–531.

Kim, A. S., & Ko, A. J. (2017). A Pedagogical Analysis of

Online Coding Tutorials. In M. E. Caspersen, S. H.

Edwards, T. Barnes, & D. D. Garcia (Eds.), Proceedings

of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education - SIGCSE ’17. New York,

NY: ACM, 321–326.

Kim, H.Y. (2013). Statistical Notes for Clinical Researchers:

Assessing Normal Distribution (2) Using Skewness and

Kurtosis. Restorative Dentistry & Endodontics, 38(1), 52–

54.

Kong, S. (2019). Components and Methods of Evaluating

Computational Thinking for Fostering Creative Problem-

solvers in Senior Primary School Education. In S. Kong &

H. Abelson (Eds.), Computational Thinking Education,

119–142. Singapore: Springer.

Liu, M.C., & Lu, H.F. (2002). A Study on the Creative

Problem-solving Process in Computer Programming.

Paper presented at the International Conference on

Engineering Education, Manchester, UK.

Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E.,

Shell, D. F., Ramsay, S., & Hazley, M. P. (2013).

Improving Learning of Computational Thinking Using

Creative Thinking Exercises in CS-1 Computer Science

Courses. Proceedings of Frontiers in Education

Conference, FIE, 1426–1432.

Navarrete, C. C. (2013). Creative Thinking in Digital Game

Design and Development: A Case Study. Computer

Education, 69, 320–331.

Reiter-Palmon, R., Illies, M. Y., Kobe Cross, L., Buboltz,

C., & Nimps, T. (2009). Creativity and Domain

Specificity: The Effect of Task Type on Multiple Indexes

of Creative Problem-solving. Psychology of Aesthetics,

Creativity, and the Arts, 3(2), 73–80.

Said-Metwaly, S., Noortgate, W. Van den, & Kyndt, E.

(2017). Methodological Issues in Measuring Creativity: A

Systematic Literature Review. Creativity. Theories –

Research - Applications, 4(2), 276–301.

Seo, Y.-H. & Kim, J.-H. (2016). Analyzing the Effects of

Coding Education through Pair Programming for the

Computational Thinking and Creativity of Elementary

School Students. Indian Journal of Science and

Technology, 9(46), 1–5.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).

Demystifying Computational Thinking. Educational

Research Review, 22, 142-158 .

Torrance, E. P. (1965). Scientific Views of Creativity and

Factors Affecting its Growth. Daedalus, 94(3), 663–681.

Torrance, E. P. (1974). Torrance Tests of Creative Thinking.

Bensenville, IL: Scholastic Testing Service.

Vu, P. & Feinstein, S. (2017). An Exploratory Multiple Case

Study about Using Game-based Learning in STEM

Classrooms. International Journal of Research in

Education and Science, 582–582.

Vygotsky, L. S. (2004). Imagination and Creativity in

Childhood. Journal of Russian and East European

Psychology, 42(1), 7–97.

World Economic Forum. (2015). New Vision for education

unlocking the potential of technology. Geneva,

Switzerland: World Economic Forum.

Yadav, A. & Cooper, S. (2017). Fostering Creativity through

Computing. Communications of the ACM, 60(2), 31–33.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

21

Towards using Computational Modeling in learning of Physical Computing – An

Observational Study in Singapore Schools

Peter, Sen-Kee SEOW1, Bimlesh WADHWA2, Zhao-Xiong LIM3, Chee-Kit LOOI4

2National University of Singapore, Singapore

1,3,4 National Institute of Education, Nanyang Technological University, Singapore

peter.seow@nie.edu.sg, bimlesh@nus.edu.sg, zhaoxiong.lim@nie.edu.sg, cheekit.looi@nie.edu.sg

ABSTRACT
Coding for students is no longer just constrained to software

and screen-based text and graphics. Students today use

programmable sensors and microprocessors to solve the

problems around them. The purpose of this research is to

understand how students conceptualize problems and

implement solutions with physical computing. Our study is

driven by the following: 1) find out what Computational

Thinking (CT) competencies, specifically abstraction,

decomposition and algorithmic thinking, can be developed

by students and 2) to what level students develop these

competencies in carrying out physical computing projects.

We closely observe how 41 Grade 7 students developed

solutions for problems they identify in the physical world

around them. Through doing so, we explore how powerful

ideas of CT play a role in a project-approach to physical

computing. We believe open-ended exploration through a

project-approach in physical computing should reinforce

practices where CT skills can grow and flourish. Our

findings show that much of students’ interaction with

sensors and devices is at pre-CT level, where students

simply use pre-existing code fragments or templates. As

students gain skills and confidence, they can be explicitly

guided to develop CT skills with new projects of their own

design justifying their choices. We strongly believe that

Computational Modeling (CM) could help students develop

their CT skills e.g. abstraction, decomposition, and

algorithmic approach much more than the minimally guided

syntax driven teaching approaches.

KEYWORDS
computational thinking, computational models, abstraction,

physical computing, K-12

1. INTRODUCTION
Physical computing, an emerging approach to learning

computing, teaches students about coding and

computational thinking through hands-on activities with

sensors using small computing boards like the micro:bit

(Rogers, et al., 2017). In Singapore, primary school students

are introduced to coding through the Digital Maker

programme with the micro:bit (TNP, 2019).

The micro:bit is a pocket-sized physical computing device

that can be input with various codes. The device is designed

to be visually appealing and tactile, affordable, easy to use,

interactive, and extensible. The board has a built-in display,

buttons, motion detection, temperature and light sensing. It

can be programmed using a desktop PC, laptop or tablet

running one of several different operating system web-based

programming environments: a visual block-based editor,

Python or JavaScript.

Despite the ease in using the micro:bit to code, it is not

certain that physical computing will actually improve

students' understanding of computational thinking (CT). It is

therefore important for educators to explore the question on

“what and how do students develop CT competencies when

they use physical computing devices to interact with the

physical world?” With this as an over-arching research

question, we set out to design our observational study in

Singapore schools. Our aim here is to 1) find out what CT

competencies, specifically abstraction, decomposition and

algorithmic thinking, should be developed by students and

2) to what level, do students develop these in carrying out

physical computing projects. Furthermore, we want to find

out if students used any conceptual or computational

modeling before or while carrying out their physical

computing projects. We believe our observations would help

us partially answer our over-arching research question.

The project-approach to physical computing, an often used

pedagogy in schools, serves as an open-ended exploratory

approach to examine the computational thinking

competencies that students should learn. We observed that

among many other factors that inhibit the development of

CT skills, the inherent complexity of problem and solution

space could overwhelm students. Additionally, the cognitive

load in designing and developing their solutions could also

hinder them in their learning. Therefore, we propose gentle

scaffolds for developing a sound conceptual model,

followed by guided Computational Modeling (CM) for

overall CT skills development.

2. RELATED WORK
Our study is informed by the ideas of Computational

Thinking (Papert, 1972; Wing, 2008), Computational

Models (Aho, 2012; Denning, 2017; Calder, et. al., 2018),

learning computing models (Sentence, Waite & Kallia,

2019) and Physical Computing (O’Sullivan & Igoe, 2004).

Seymour Papert (1972) described CT as a mental skill

children develop from practicing programming. In a 2006

paper, Jeannette Wing (2006) catalyzed a ‘CT for all’ (p. 33)

movement. It has been debated since then if CT makes better

problem solvers or if practice of coding can help develop CT

skills, with claims that everyone can benefit by CT not yet

being fully substantiated by studies (Guzdial, Kay, Norris,

Soloway, 2019). Many definitions and role of CT in

computing as well as in other fields, and overlap of CT and

computing have followed.

Denning (2017), in his viewpoint on CT, finds the absence

of computation models in the post-2006 CT definitions as a

mistake. He points that key ingredients of CT e.g.

abstraction, data representations and decomposition are

used, in order to get a model to accomplish certain task. He

encourages teachers to take note of Aho’s reflection about

22

computation as “a process defined in terms of an underlying

model of computation” (p. 832) and CT as “the thought

processes involved in formulating problems so that their

solutions can be represented as computational steps” (p.

832). Aho suggests the use of the term ‘computation’ in

conjunction with a well-defined model whose semantics is

clear and which matches the problem being investigated. He

added that one could use CT skills to devise computation

models.

There is a growing emphasis on teaching computing since

the idea of CT was proposed by Wing. Countries such as the

United Kingdom have mandated the integration of

Computing and Computational Thinking into the National

curriculum at all levels. Japan is making learning computing

compulsory for elementary and higher education.

Introducing computing has expanded from using screen-

based tools such as Scratch to physical computing such as

the micro:bit. In physical computing, students interact with

the world through the use of sensors as input and controllers

as output of computing devices. Computation is done on the

data from the input sensors like buttons or temperature

sensor to drive the controllers such as motors or LED lights.

For students learning to code, they need to deal with the

complexity of knowing what data they need from the

environment, how to use the sensors to collect the data, how

the data is used for computation, what output needs to be

created and how it should be used. This complexity could

overwhelm students in designing and developing their

solutions. In many approaches to introducing coding,

students are taught using physical computing without

introducing CT skills. The assumption is that students would

learn CT skills as a result of the learning coding through

physical computing. In the pre-CT stage, students may

encounter difficulties in implementing physical computing

solutions without using CT skills, such as automating

machine to interact with the physical world (Fig 1). For

example, students need to know how to acquire data from

the environment, process to compute the data, and output to

the world. Teaching CT skills explicitly to students can help

students to implement their solutions better as shown in Fig

2. The teaching of CT skills can bridge some of the

difficulties students face in learning coding and

implementing solutions with Physical computing.

Figure 1. Illustration of the difficulties of implementing

Physical Computing in the classroom without

involvement of CT

PRIMM (Sentence, Waite, & Kallia, 2019), a framework for

teaching programming, focuses on students talking about

how and why programs work before they tackle writing their

own programs. The first element of PRIMM i.e. Predict, is

about students discussing and predicting what a program

might do, drawing and writing out what they think will be

the output in order to develop the vocabulary they need to

talk about the program. We believe such vocabulary

development should extend to CM, which is an important

step in the context of physical computing.

Figure 2. Illustration on how the gap between and CT and

implementing Physical Computing in the

classroom is being bridged

3. CONTEXT OF STUDY
To understand how CT is applied in learning of physical

computing through the use of micro:bit in coding, the

research team observed the micro:bit training sessions and

interdisciplinary project work lessons of Grade 7 comprising

of 41 students divided into 10 groups, in a local

neighbourhood school, over a period of 4 ½ months. The

purpose of the study was to understand how students

conceptualised the problems and implemented the solutions

with physical computing. Additionally, the research aimed

to 1) find out what CT competencies, specifically

abstraction, decomposition and algorithmic thinking,

students should develop and 2) to what level, do students

develop these in carrying out physical computing projects.

Students find it exciting when they see their projects come

to life. Physical computing is therefore very engaging that

helps them understand how things work in the real world.

The students followed a project-approach to develop

physical computing solutions using micro:bit. During the

micro:bit training sessions, the students are first introduced

to both the basic and intermediate technical aspects of the

micro:bit board and makecode editor, where they carry out

block coding. Thereafter, they are introduced to the

development environment of the ‘makecode editor’, an

online visual block-based coding programme, where they

could develop their codes. Their solutions were expected to

incorporate sensors to capture data occurring from everyday

phenomena such as surrounding temperature or sound. The

process that students undertake in designing their projects

using the below-mentioned flowchart.

The entire training sessions and interdisciplinary project

work lessons seek to complement the Applied Learning

Programme (ALP) in Robotics and Programming run by the

school, which aims to empower students with the

technological and thinking skills that will enable them to be

innovative and empathetic members of the community.

(MOE, 2019)

1

Computational

Thinking
(Abstraction,
Algorithmic

Thinking)

Machine
(Algorithms to

control and

automate)

Implementing the

solution

Pre-CT

Partial CT

23

Figure 3. Flowchart showing the process students

undertake

4. METHODOLOGY AND DATA

COLLECTION
The students attended the two micro:bit training sessions (10

hours in total), and attempted an implementation of the

design thinking approach where they developed prototypes

with the micro:bit sensors, servo motors and connecting

wires. Students worked within their groups for a duration of

12 weeks, typically meeting once every 2 weeks (see Table

1).

Table 1. Table of lesson observation schedule, data

collected, summary of training session and lessons
Lesson Description of Activity Data

Collected

in lessons

1 Overview Project Work; Group

Discussion - Identify Project Topic

Video

2 Introduction to micro:bit; Group

Discussion- Project work Topic

Video

3 micro:bit Training (Day 1) Video

4 micro:bit Training (Day 2) Video

5 Completion of CT Questionnaire

Student group discussion on Project (with

students)

Video

6 micro:bit Revision by Trainer

Student group discussion on Project (with

Teacher and Trainer)

Video,

Audio

7 Discussion on Project (with Teacher and

Trainer)

Video,

Audio

8 Presentation of Projects Video,

Audio

9 Interviews with Students Video,

Audio

The researchers observed the 10 hours training sessions, in

order to accustom with the coding curriculum that students

were being taught. They sought to understand the thought

and application processes of students when they were

incorporating coding knowledge and subject content

knowledge into the various projects they were doing. The

sessions were filmed and recorded in both audio and video

format.

Additionally, we observed the students as they design, code

and implement their physical computing projects in Lessons

5 to 7 (see Table 1). We looked out for CT skills application

in specific milestones of problem formulation, initial design,

implementation, and demonstration as they carry out their

projects. The purpose of the activity was to understand how

students use abstraction, decomposition and algorithmic

thinking, while conceptualising the problems and

implementing the solutions with physical computing.

For data collection, we selected two groups for more detailed

observation (See Table 2). We followed these two groups as

they developed their projects and enquired them on their

actions and decisions. These two groups were selected based

on the complexity of their projects and recommendations by

their teachers because they were able to articulate their ideas

clearly compared to their peers. We recorded the

presentations they made to classmates on their ideas and

solutions. After their presentation, we interviewed the group

members and archived their codes for analysis.

Table 2. Projects of the two groups of students observed
Group No No of Students Project

A 4 Classroom Door Lock

B 4 Noise Level Detector

5. ANALYSIS AND FINDINGS
To evaluate students on their application of their CT skills,

we developed a set of rubrics for CT skills. The rubrics was

developed from our literature review of the CT skills and we

also obtained feedback from practitioners on the levels of the

rubrics and the skills. For this work, we focused in observing

three CT skills, namely Abstraction, Decomposition, and

Algorithmic Thinking (See Table 3).

In our analysis, we observed the two groups closely as they

developed their projects with physical computing. Our

observations of two groups and the projects that they worked

on in the following paragraphs.

Group A worked on a problem of a sensor-operated door-

lock that would open upon motion detection of a contactless

card. The students were queried about the algorithmic steps

and meaning of the codes in the micro:bit block. The

research team hinted to students about thinking logically

about the codes found in the block and figure out which

blocks can be matched together to form the required codes.

We observed that the students lacked the necessary

knowledge on the type of data and sensor to read the

contactless card. As a result, the students realized that they

had to change the sensor from a card scanner to a digital

keypad with numbers connected to the classroom door, as

the use of a card scanner had been deemed unfeasible. Even

with the change, they could not implement the use a digital

keypad with the micro:bit.

Table 3. Rubrics for Classroom Observation
ABSTRACTION – to choose the right amount of detail for the

problem to be modeled

Beginner: Able to identify and choose relevant data and information

for the model and solving the problem

Intermediate: Beginner + identify relevant data and from multiple

sources to integrate for developing possible CMs

Advanced: Intermediate + physically represent through

modelling and interact with relevant data and information for the

Students are challenged to find a real world problem around them

Students conceptualise and plan in their groups, applying what they learn
in their training sessions

Students prototype their solution by incorporating their coding into their
micro:bit, and coming up with a physical model with an attached micro:bit

to validate their solution

Students continue their brainstorming, discussion and designing of their
prototype and coding for the solution in their project work lesson, over the

entire observation period

For the final lesson, students present their coding solution and prototype to
the classroom, explaining how it attempted to mitigate the problems in the

classroom

Students are further challenged by their teacher on how to further improve
their micro:bit coding to make the solution more effective

24

model from multiple sources + express/articulate what is

conceptualized in thinking by constructing a model using relevant

details + translate abstraction into model

DECOMPOSITION – to breakdown a problem into component

parts to be understood and solved

Beginner: Able to break a problem in smaller parts

Intermediate: Beginner + articulate the relationship between the

parts

Advanced: Intermediate + develop a model to understand the

complex system to facilitate/evaluate problem solving using

computation

ALGORITHMIC THINKING – to think in terms of sequences to

solving the problem

Beginner: Create a sequence of steps to solve a problem, with

instructions to execute

Intermediate: Beginner + Understand how automation works and

use algorithmic thinking to create a sequence of steps

Advanced: Intermediate + test the automated steps through a

breaking down process + identifying how the information changes

between the steps and refine/optimise the steps + improving the

creation of sequence of steps in areas such as optimisation,

efficiency, reusability, readability and re-factoring

Group B worked on the problem of noise detection in the

classroom, which would send an alert to the teacher once the

noise threshold is reached. The team had difficulty in

conceptualizing their solution with the micro:bit. They

recognized though that they needed a sound sensor to detect

sound from the physical environment. They were able to test

the sensor input and simulating an alert to the teacher by

pairing two micro:bits. They however lacked the systemic

knowledge. For example, they did not think deep enough on

where to best place the sensor to capture the noise accurately

or how sound travels could affect the coding and prototyping

of their project. It showed an inadequate mental model, and

therefore an inadequate conceptual model of the problem

and solution i.e. how the sensors interact with the physical

world, and e.g. sound travels by waves and where they place

sensors matters.

We analysed the transcripts of the interview made with the

students to evaluate the decisions the made with regard to

the implementation of their solution. We identified how their

abstraction, decomposition and algorithmic thinking are

demonstrated from the interview data, as explained by the

students (See Table 4). This was made in reference to the

rubrics we developed.

Table 4. Interview Transcript of students in Group A

demonstrating the skill of Algorithmic Thinking

R [Researcher]

S [Student]

Dialogue Explanation

R How did you solve the

problem?

S

[06:38]

We decided to place,

instead of alerting the

teacher when it hits the

second level, we

decided to show the

teacher the level all the

time

Students decide to give

remote micro:bit to

teacher indication of

real time noise level

Abstraction – choose

the relevant data

Decomposition – break

down the problem into

smaller part to show the

information to the

teacher

R Oh show, show the

teacher the level all the

time is it? How do you

send the teacher the

value?

S We use the radio

function we send the

current noise level

R Yes

S And when the teacher

receives it, it’ll show on

the screen

Abstraction - choose

the relevant data and

information

The codes developed for the solution and the created artefact

comprising of the micro:bit board with sensors were

analysed for students algorithmic thinking, decomposition

and abstraction competencies (See Figure 4). For example,

the group with the sound sensor used one micro:bit to read

the sound level from Pin 1 and control a LED at Pin 0. The

micro:bit will send the value of the sound level to another

micro:bit through radio. The students designed such that the

remote micro:bit will be carried by the teacher and will

notify the teacher if the level exceeds the noise. The students

calibrated and tested the actual noise level in their classroom

that they deemed as noisy. This was the level they chose as

the trigger to notify the teacher. During testing, the students

noticed that there was a delay in sending the value to the

teacher’s micro:bit and the noise level reading was not

accurate. They did not have time to solve these issues.

Figure 4. Example of code (Sound Sensor) done by

students using makecode editor in the project design

We analysed the groups’ work process in developing the

solution, their completed artefact solution and codes, and the

interview transcripts. The analysis from the sources were

triangulated and compared to the rubrics we developed.

Results showed that most were at best able to achieve only

the beginner level of the CT skills (see Table 5). However,

we noted that the acquiring of these skills progressed over

time and towards the end, most students became more

competent in them as they engaged in more programming.

From our observations, we posit that students have

difficulties in designing a computing solution due to their

rudimentary CT skills. At the end, the students managed to

build a prototype of their solution but experienced

challenges in abstracting the vital data required for the

solution in the initial stages. This affected their choice of

sensors to use as input to their solution and difficulties in

25

thinking algorithmically on the computation to obtain the

automated output. Referring to Table 4, we believe both

groups worked at pre-CT stage (See Figure 1). The above

observations are specific to a few projects and students, and

generalizations would require more studies with more

students and diverse settings.

Table 5. Results of skills demonstrated by the two groups

during the observation
CT skills Group A (Level

achieved)

Group B (Level

achieved)

Abstraction Beginner Intermediate

Decomposition Beginner Beginner

Algorithmic

Thinking

Beginner (students

who programmed)

Beginner (students

who programmed)

6. DISCUSSION AND

RECOMMENDATIONS
Computational Modeling (CM) as per one of the established

definitions (Calder, et. al., 2018) can help us “translate

observations into an anticipation of future events, act as a

testbed for ideas, extract value from data and ask questions

about behaviours. The answers are then used to understand,

design, manage and predict the workings of complex

systems and processes, from public policy to autonomous

systems.” (p. 2)

Computational Thinking (CT), on the other hand is a

generalized problem-solving process that can be applied to a

wide variety of problems. The steps of CT includes

formulating a problem in a way that enables us to use a

machine to solve it. The machine here refers to computer and

other devices. In the process, data and concepts are

abstracted and analysed and algorithms are developed for

automating a solution.

We believe, that CT definition is not explicit about

modelling, i.e. representation of abstracted data and

concepts before algorithms are developed. Here in this

study, we first observe if indeed classrooms have modelling

incorporated in the CT lessons. Our findings show that

students attempt to directly code or develop algorithm once

they have understood the problem. They do not develop any

models or use any tools to represent data or concepts.

Today, visual block-based visual programming platforms

such as Scratch, Blockly are popular vehicles for

programming sensors and delivering CT. Even though

students are quick to pick up the programming constructs,

conceptual difficulties pertaining to problem and solution

space, and developing CT skills e.g. abstraction,

decomposition and algorithmic skills, are often evident.

From our observation of the work of both groups, we

surmise that students face difficulties in designing a

computing solution due to the missing explicit CT exposure

and almost non-existent CM. They have challenges in

abstracting the vital data required for the solution and

thinking algorithmically on the computation to obtain the

desired output.

For students, owning an idea serves as a motivation to learn.

We observed that students identified a problem or

innovation they wanted to pursue. We found that though

students were engaged in the maker-rich environments, they

did not move to thinking computationally and solving

problems. Much of their interaction with sensors and devices

is superficial. This is inferred through our interactions with

students. When we discussed with students about for

example how sensors were working or how transmission of

data or signal was from one to another device, we did not

find them confident of their knowledge of hardware beyond

what they were using it for.

However, when we, for example, introduced input-process-

output model, their understanding of the project seemed

better. They could explain the project better to another

researcher from our own group as well as to their teachers

later. We would want them to develop higher order design

skills through physical computing, not just coding. They

should understand the iterative nature of finding a solution

and testing. Open-ended exploration through the project-

approach in physical computing should reinforce practices

where CT skills grow and flourish.

Additionally, based on our observations, students have

difficulty in starting the implementation due to their lack of

CT and CM in the pre-CT stage. Reasons for such gaps are

mainly due to the inherent complexity of the problem that

they are trying to solve, as well as integrating different

components of the solution involving use of sensors,

collection of data, computation of data and automating the

solution. To scaffold their learning, it is important that they

are guided through developing a conceptual model, such as

CT (abstraction and algorithmic skills) and CM (See Figure

4), leading them eventually towards the CT+CM stage.

We propose that a CM phase could act as a glue from

understanding problem to the coding activity (see Figure 4)

for students to formulate their problems in computational

steps (Denning, 2017). Execution of computational models

could be seen as controlling and automating the machine to

solve the problem computationally. We believe focused

modeling activities could help students develop their CT

skills e.g. abstraction, decomposition, and algorithmic

approach much more than the minimally guided syntax

driven teaching approaches.

Based on our observations we suggest concrete steps that can

be taken to support the development of computational

thinking. We believe a project-approach through physical

computing provides an excellent maker-platform, in which

students are provided with the opportunity to evaluate and

manipulate underlying abstractions and mechanisms. It

gives ample scope of developing CT skills namely

abstraction, decomposition, and algorithmic thinking.

26

1

Computational

Thinking
(Abstraction,
Algorithmic

Thinking)

Computational
Models

Represent or simulate the

computation

Machine
(Algorithms to

control and automate)

Implementing the

model

Modeling with CT

Implementing the

solution

Pre-CT

CT+CM

Partia

l

Figure 5. Framework of CM Model for helping students

understanding CT

We propose a triad-model for effective and systematic

development of CT skills. This model describes a pattern of

engagement (see Figure 5). It is based on the premise that

computational modeling promotes the acquisition and

development of CT among students. At the ‘pre-CT’ level,

students are simply coders. For example, they code using

pre-existing code fragments or templates, and acquire

coding skills through a series of iterative refinements. New

skills and understandings are developed over time and they

begin to code with increasing levels of sophistication. This

does develop an understanding of at least a subset of the

abstraction contained within the problem and solution. We

observed that most of the students in our study operate at the

pre-CT level. As students gain skills and confidence, they

can be explicitly guided to develop CT skills with new

projects of their own design justifying their choices. At this

‘CT’ level, all three key aspects of computational thinking:

abstraction, decomposition and algorithmic thinking, come

into play. We observed two groups of students partially

acquiring CT skills when we explicitly made them think

about specific issues about their problem or solution. We

strongly believe that Computational Modeling (CM) could

act as an effective medium to develop computational

thinking skills especially in the context of physical

computing. We propose another level in our framework

labelled ‘CT+CM’ i.e. using Computational Modeling (CM)

as a medium to develop CT skills.

Here are our recommendations for effective delivery of CT

skills with CM based on this study:

• Design of a thinking style workshop that could help

students to develop and strengthen their mental model

about the problem. It is an important and essential that

students have the relevant vocabulary of the problem

domain, and systemic thinking before attempting to

formulate a solution.

• Guided team brainstorming sessions could help students

develop conceptual models for the solution they

propose. Developing a sound conceptual model at the

team level could help each individual member to

strengthen his/her mental model, and sync well with

team before implementing the solution.

• Gentle scaffolds could be introduced, e.g. graphic

organisers for the above, to ease students into

developing Computation Models. CM could be the glue

that connects a conceptual solution and actual code.

7. REFERENCES
Aho. A. V. (2012). Computation and Computational

Thinking. The Computer Journal, 55, 7, 832–835.

Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly, C.

A., Douglas, R., ... & Hinds, D. (2018). Computational

modelling for decision-making: where, why, what, who

and how. Royal Society open science, 5(6), 172096.

CSTA. (2013). Bugs in the System: Computer science

teacher certification in the U.S. Retrieved December 9,

2019, from

https://services.google.com/fh/files/misc/searching-for-

computer-science_report.pdf

Denning, P. J. (2017). Remaining Trouble Spots with

Computational Thinking. Communications of the ACM,

60(6), 33–39.

Guzdial, M., Kay, A., Norris, C., & Soloway, E. (2019)

Computational Thinking should just be Good Thinking.

Communications of the ACM, 62(11), 28-30.

MOE. (2019). Secondary School Education, Applied

Learning Programme. Retrieved December 9, 2019, from

https://beta.moe.gov.sg/uploads/Secondary-School-

Education-Booklet-2019.pdf

O'Sullivan, D., & Igoe, T. (2004). Physical computing:

sensing and controlling the physical world with computers.

Course Technology Press.

Papert, S. (1972). Teaching Children Thinking. Programmed

Learning and Educational Technology, 9(5), 245-255.

Rogers, Y. et al. (2017). From the BBC micro to micro:bit

and Beyond. interactions 24(2), 74–77.

Sentence, S. et al. (2017). “Creating Cool Stuff – Pupils’

experience of the BBC micro:bit. In Proceedings of the

48th ACM Technical Symposium on Computer Science

Education: SIGCSE 2017. 531-536.

Sentence, S., Waite, J. and Kallia, M. (2019). Teaching

Computer Programming with PRIMM: A Sociocultural

Perspective. Computer Science Education, 29(2-3), 136-

176.

TNP (2019). Coding enrichment classes for all upper

primary school students from next year. Retrieved

December 11, 2019, from

https://www.todayonline.com/singapore/coding-

enrichment-classes-upper-primary-school-students-next-

year

Wing, J. (2008). Computational Thinking and Thinking

about Computing. Phil. Trans. R. Soc. A, 366(1881), 3717–

3725.

Wing, J. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33-35.

https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

27

Computational Thinkers: Contemporary Approaches and Directions in

Computational Thinking for K-12 Education

Steven FLOYD

Western University, Canada

spfloyd@uwo.ca

ABSTRACT

This paper explores contemporary researchers and their

approaches to computational thinking (CT) for students in

K-12 education. Computational Thinking (Wing, 2016) is

used as a focal point of investigation as the views of Barba,

Papert, Resnick, Kafai, diSessa, Denning, Aho, Wilkerson,

and Grover are compared. While the varied approaches to

CT may indicate disagreement on behalf of researchers in

the field, it can also be a sign of the varied directions in

which CT, and related concepts, can be taken. As

educational jurisdictions integrate CT in K-12 curriculum,

these approaches and directions should be considered by

educators, policy makers, and researchers alike.

KEYWORDS

computational thinking, computer science, education, K-12,

K-8

1. INTRODUCTION
In March of 2006, the Communications of the ACM

published Jeanette Wing’s Computational Thinking where

she was seeking to expand the scope of Computer Science

education beyond the post-secondary levels. Wing

articulated the characteristics and importance of a

“universally applicable attitude and skill set” (Wing, 2006,

p. 33) called Computational Thinking (CT) which involved

thinking like a computer scientist.

The article captured the imagination of educators and

researchers from around the world (Grover & Pea, 2017) and

according to Google Scholar, as of December 2019, had

been cited over 5475 times. Important to note; however, is

the fact that ideas surrounding the integration of computer

science (CS) concepts and thought processes in K-12

education did not begin, and certainly did not end, with

Wing’s seminal work. A long history exists related to the

integration of CS concepts in K-12 education and since

2006, many researchers have expanded on the definition and

scope of CT, and its role in K-12 education.

What follows is a summary of the field of CT that

approaches the subject by presenting the various thought

leaders and their ideas. These ideas are especially pertinent

at this time as educational jurisdictions around the world

explore the integration of CT in the K-12 grades.

2. THINKING LIKE A COMPUTER

SCIENTIST
Jeanette Wing initially defined CT as “solving problems,

designing systems, and understanding human behaviour, by

drawing on the concepts fundamental to computer science”

(Wing, 2006, p. 33). Later, she refined her definition to the

“thought processes involved in formulating problems and

their solutions so that the solutions are represented in a form

that can be effectively carried out by an information-

processing agent.”. While researchers have discussed

Wing’s initial definition at length, a primary criticism

surrounds the idea of thinking like a computer scientist.

In Computational Thinking: I do not think it means what you

think it means (2016), Lorena Barba explains that Wing’s

view fails to acknowledge CT as “a source of power to do

something and figure things out, in a dance between the

computer and our thoughts”. Viewing the computer as a

formal tool to understand, and then apply to a problem later,

takes away its power: “Most people don’t want to be a

computer scientist, but everyone can use computers as an

extension of our minds, to experience the world and create

things that matter to us”. Barba was attempting to move

discussions away from Wing’s CT, towards an idea that

would allow students to use computing as a means to create

new knowledge in a broad number of domains. In order to

support this view, Barba made reference to several of

Seymour Papert’s ideas.

3. CONSTRUCTIONISM AND LOGO

PROGRAMMING
Described as the father of educational computing (Stager,

2016), Papert laid the foundation for how we think about

learning and teaching with computers (Kafai & Burke,

2014).

Before arriving at MIT in 1963, Papert worked closely with,

and was heavily influenced by, Jean Piaget and his theory of

cognitive development called constructivism. Papert built on

Piaget’s ideas by developing his own theory of learning that

he called constructionism (Stager, 2016). While both

theories focus on learning being an active process of

constructing knowledge, and both include the idea that

children learn new concepts by relating them to things that

they already know (Ames, 2018), they differ in that

constructionism acknowledges the importance of culture as

the source of the materials that students will use to build their

knowledge (Papert, 1993). Papert believed that in some

cases the culture provides the learning materials in

abundance, which facilitates Piagetian learning. In other

cases; when here is a slower development of a concept,

Papert saw the “critical factor as the relative poverty of the

culture in those materials that would make the concepts

simple and concrete” (Papert, 1993, p. 7).

It was for this reason that Papert was so enamoured with the

computer as a learning tool. He felt that the relative poverty

of a culture could be cured by a computer, the Proteus of

machines, that can “take on a thousand forms and can serve

a thousand functions” (Papert, 1993, p. xxi).

At MIT, Papert developed the Logo programming language,

which he felt could alter the relationship that students had

28

with computers. Rather than having students be programmed

by a computer (through computer-based exercises and

feedback) the Logo programming environment reversed this

relationship by having the student program the computer

itself, which essentially meant teaching the computer how to

think.

Papert uses the term “mechanical thinking” to describe the

type of thinking that students are introduced to when

programming in Logo (Papert, 1993, p. 27). He emphasises

that by introducing students to mechanical thinking, they

suddenly become aware of thinking styles, and they begin to

consider other thinking styles that might exist, as well as

how and why they might choose between styles. Later,

Papert uses the term “computational thinking” when

describing what some of his experiments were trying to

integrate into everyday life. He acknowledges that the

visions of these experiments were insufficiently developed,

but that they will serve as “manifestations of a social

movement of people interested in personal computation,

interested in their own children, and interested in education”

(Papert, 1993, p. 182)

Papert’s work surrounding computers and education, and his

development of the Logo programming language, sowed the

seeds of this social movement. In 2017, Mitch Resnick, a

former doctoral student of Papert’s, exclaimed “I will be

happy to spend the rest of my life working to nurture the

seeds that Seymour sowed” (Resnick, 2017).

4. COMPUTATIONAL FLUENCY AND

SCRATCH PROGRAMMING
Resnick is the director of the Lifelong Kindergarten research

group at MIT that developed Scratch, the world’s leading

coding platform for kids. Scratch was deeply inspired by

Papert’s Logo but “goes beyond Logo by making

programming more tinkerable, more meaningful, and more

social” (Resnick, 2014, p. 2).

In New Frameworks for Studying and Assessing the

Development of Computational Thinking (2012), Resnick,

along with co-author Karen Brennan, propose an alternate

CT framework that includes three key dimensions: concepts,

practices and perspectives.

Resnick and Brennan’s CT concepts include the concepts

that designers engage in as they program (sequences, loops,

parallelism, events, conditionals, operators, and data). CT

practices differ to CT concepts in that the practices describe

the processes of construction that student engage in while

creating Scratch projects (being incremental and iterative,

testing and debugging, reusing and remixing, and

abstracting and modularizing). Finally, CT perspectives,

describe the evolving understanding that students using

Scratch exhibit about themselves, their relationship to

others, and the technological world (expressing, connecting,

and questioning). Together, the concepts, practices and

perspectives provide a broader understanding of CT that

Resnick calls Computational Fluency.

The impetus for Resnick’s Computational Fluency was an

attempt to “highlight the importance of children developing

as computational creators as well as computational thinkers”

(Resnick, 2018, p.1). Computational Fluency goes beyond

the problem-solving strategies of CT by including student’s

creativity and expression with digital tools, and the

opportunity for students to develop their own voice and

identity (Resnick, 2018).

Resnick’s emphasis on having students design digital

artifacts is well grounded in constructionism and Resnick

acknowledges the surge of interest in coding and schools

“provides an opportunity for reinvigorating and revalidating

the Constructionist tradition in education” (Resnick, 2014,

p. 7). Resnick and Papert’s views on constructionism are

thoroughly discussed in Constructionism in practice:

Designing, thinking, and learning in a digital world, a book

edited by Resnick and another one of Papert’s influential

students, Yasmin Kafai.

5. COMPUTATIONAL PARTICIPATION
Kafai was a student of Papert’s at the MIT Media Laboratory

and also contributed to the development of Scratch. Her

recent work includes Connected code: Why children need to

learn programming, a book that she co-authored with Quinn

Burke.

In Connected Code, Kafai and Burke describe four

dimensions characteristic of Papert’s constructionist thought

(social, personal, cultural, and tangible) and explain how

these dimensions have evolved resulting in a new form of

programming whereby students can create applications as

part of a larger community. This programming as a

participatory process extends CT because “when code is

created, it has both personal value and value for sharing with

others” (Kafai & Burke, 2014, p. 17). In From computational

thinking to computational participation in K-12 Education

(2016), Kafai argues that CT needs to be reframed as

Computational Participation moving us “beyond tools and

code to community and context” (p. 27).

Kafai’s Computational Participation acknowledges that CT

is a social practice with a broad reach and that programming

is now a way to make and be (Kafai, 2016) in the digital

world (Kafai, 2016). Digital technologies are used for

functional, political, and personal reasons and therefore all

students should develop an understanding of interfaces,

technologies, and systems that they encounter every day in

order to fully participate in contemporary activities and

social practices.

Kafai’s Computational Participation takes a broad view of

computing and acknowledges its potential impact across a

wide range of fields. This broad view shares some

characteristics with Computational Literacy, an idea that

was developed by Andrea diSessa even before Wing’s CT

became popular.

6. COMPUTATIONAL LITERACY
Andrea diSessa’s work focusses on the idea that computers

can be the basis of a new form of literacy that is applicable

to a wide variety of subjects, contexts and domains

(Weintrop et al., 2016). In 2000, six years before the

publication of Wing’s Computational Thinking, diSessa

published Changing Minds, a book in which he “invites us

to imagine a world in which computational knowledge – the

prime example is programming – is as widely practiced as

reading newspapers and novels is today” (Papert, 2006, p.

240)

29

 In presenting computing as a new form of literacy, diSessa

advocated for the broad use of computers in schools, and for

educators to see computing as means of transforming the

teaching and learning of things that are hard for students to

learn (Papert, 2006). diSessa uses algebra as an example of

an epistemological entity that, when first developed, was not

appreciated as a means of transforming complex and

difficult ideas into a form that can be grasped by high school

students (Papert, 2006). He argues that Computational

Literacy involves computing and computer programming

concepts being integrated into school subjects in much the

same way that algebra has become a tool in science,

mathematics and other subjects.

In Computational Literacy and “The Big Picture”

Concerning Computers in Mathematics Education (2018),

diSessa explains that his use of the term literacy goes beyond

the idea of simply having a casual acquaintance with

something. Instead, literacy means the adoption, by a broad

group or even a civilization, of a “particular infrastructural

representational form for supporting intellectual activities”

(diSessa, 2018, p. 4). diSessa continues by criticizing

Wing’s computer science-centric view of CT

acknowledging that because literacy is such a massive social

and intellectual accomplishment, it can’t belong to a single

professional discipline.

diSessa concludes Computational Literacy and “The Big

Picture” Concerning Computers in Mathematics Education

by providing practical advice:

There is no single recipe for how computation changes a field

or subfield. If your pursuits take you in different directions, then

I suggest here, that will enrich the horizon for all of us. If they

parallel or extend what I and others who are focused on the big

picture have already done, perhaps we can converge sooner

than might be expected (diSessa, 2018, p. 28).

We should consider this advice as we investigate the views

and applications of CT shared by other researchers within

the field.

7. CT DEFINITIONS AND

MATHEMATICAL MODELS
In 2017, Peter Denning published Remaining trouble spots

in computational thinking, where he explained that CT has

been major component of computer science since the 1950s

and so has the idea that CT can benefit people in a variety of

fields. Unfortunately, Denning claims, recent attempts to

make CT appealing to fields other than CS have led to

“vague and confusing definitions of CT” (p. 33). Denning’s

two main criticisms of Wing’s definition of CT include the

absence of any mention of computational models as well as

the suggestion that any sequence of steps constitutes an

algorithm. Denning prefers, instead, to accept a definition of

CT proposed by Alfred Aho, which he claims better

embodies the notion of CT from computer science,

computational science, as well as other fields such as the

humanities, law and medicine.

In 2012, Aho defined CT quite succinctly as “the thought

processes involved in formulating problems so their

solutions can be represented as computational steps and

algorithms” (p. 832). Aho explained that an important part

of the CT thought processes involve finding the appropriate

models of computation, and if there are none, then

developing new ones. This view is exemplified in some of

the mathematical modelling work by Michelle Wilkerson.

Wilkerson believes that computer science shares language

with mathematics that can be used to represent models

resulting in a description of patterns and processes that can

make up scientific and engineered systems (Wilkerson &

Fenwick, 2017). When describing CT, Wilkerson, and co-

author Michele Fenwick, explain:

While mathematics focuses on quantities, computational

thinking focuses on processes. Students engaged in the practice

of computational thinking break a complex problem or process

up into smaller steps in order to better understand, describe, or

explain it (Wilkerson & Fenwick, 2017, p. 189).

Wilkerson works with having students use or build

computational models and simulations in order to better

understand scientific and engineered systems. This approach

to CT would be considered by Shuchi Grover as a good

example of integration CT in an effort to enable or enrich

learning in other disciplines.

8. A TALE OF TWO (OR THREE OR

FOUR OR FIVE) CTs
In A tale of two CTs (and a Revised Timeline for

Computational Thinking) (2018), Grover argues that in

order to make sense of CT in K-12 education we need to

distinguish between main two views: computer science

thinking in CS classrooms and CT in other disciplines. She

explains that ideally, students will get a chance to experience

CT in both settings during their K-12 schooling. Grover also

presents a brief timeline of CT starting with the problem-

solving practices discussed by G. E. Forsythe in 1968 and

the elements of CS thinking discussed by Donald Knuth in

the 1980s.

In regards to Wing, Grover credits her definition of CT for

igniting K-12 computer science education and for calling

attention to its role in other disciplines but also

acknowledges that we should no longer be focused on

“dreams of CT changing everyday behaviours of those

who’ve learned this skill in curricular settings”. Instead, we

should view CT as playing a significant role in CS education

and playing a role in helping students understand concepts

within a variety of fields and disciplines.

9. CONCLUSION – MULTIPLE

DIRECTIONS
While the varied approaches to CT may indicate

disagreement on behalf of researchers in the field, it can also

be a sign of the varied directions in which this powerful form

of thinking can be taken. diSessa makes it clear that

Computational Literacy is distinct from CT and that the field

should have an analytical frame that can separate these ideas,

and other CT ideas and movements (diSessa, 2018, p. 17).

He goes on to explain that “it’s not an issue of choosing

terms; it is an issue of choosing directions” (diSessa, 2018,

p. 17).

When deciding on how to frame an essay on Papert’s ideas,

Resnick acknowledged that it’s “too simplistic to think that

you can just take someone’s ideas and put them into practice.

Seymour was always skeptical about that type of top-down,

30

linear thinking” (Resnick, 2017b). Perhaps varied

approaches related to computer education and CT are an

inevitable outcome of the epistemological and practical

underpinnings of the concept, as well as the nature of K-12

education.

As students begin to develop an understanding of “thinking

like a computer”, or “thinking like a computer scientist”,

they enter the interesting and sophisticated realm of

epistemology. To claim that there is one approach to having

students work within this realm, and one direction for

educators and researchers to take, discredits the nature of the

underlining, constructivist theory of knowledge. To claim

that there is one way to implement CT concepts in the

various disciplines and grades of K-12 education discredits

the subjective and responsive nature of teaching and

learning.

As we consider CT and K-12 education, we should

understand that it’s too simplistic to think that we can take

Wing’s general ideas of CT and put them into practice. The

varied approaches and directions listed above represent an

honest and authentic characteristic of a body of knowledge

whose foundation lies in the constructivist theory of

learning. There are several common, core principles and

beliefs that lie at the heart of a number of researcher’s views

on CT. These should continue to be documented and shared,

while the subtle differences surrounding the details of CT

should continue be investigated and celebrated. The

computer and the mind of a student can “take on a thousand

forms and can serve a thousand functions”, perhaps the

varied approaches to integrating CT in K-12 education

should honour this idea.

10. REFERENCES
Aho, A.V. (2012). Computation and Computational

Thinking. Computer Journal, 55, 832–835.

Ames, M.G. (2018). Hackers, Computers, and Cooperation:

A Critical History of Logo and Constructionist Learning.

Proceedings of the ACM on Human-Computer Interaction,

2, 1-19.

Barba, L. (2016). Computational thinking: I do not think it

means what you think it means. Retrieved December 1,

2019 from http://lorenabarba.com/blog/computational-

thinking-i-do-not-think-it-means-what-you-think-it-

means/

Brennan, K., Resnick, M. (2012). New Frameworks for

Studying and Assessing the Development of

Computational Thinking. Proceedings of the 2012 annual

meeting of the American Educational Research

Association, Vancouver, Canada, 1, 25.

Denning, P. J. (2017). Remaining Trouble Spots with

Computational Thinking. Communications of the ACM,

60(6), 33–39.

DiSessa, A. A. (2000). Changing minds: Computers,

learning, and literacy. Cambridge, MA: MIT Press.

DiSessa, A. A. (2018). Computational Literacy and “The

Big Picture” Concerning Computers in Mathematics

Education. Mathematical Thinking and Learning, 20(1), 3-

31.

Grover, S. (2018). A Tale of Two CTs (and a Revised

Timeline for Computational Thinking). Retrieved

December 1, 2019 from https://cacm.acm.org/blogs/blog-

cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-

for-computational-thinking/fulltext

Kafai, Y., & Resnick, M. (1996). Constructionism in

practice: Designing, thinking, and learning in a digital

world. Mahwah, NJ: Lawrence Erlbaum Associates.

Kafai, Y.B., & Burke, Q. (2014). Connected code: Why

children need to learn programming. Cambridge, MA:

MIT Press.

Kafai, Y. (2016). From Computational Thinking to

Computational Participation in K-12 Education.

Communications of the ACM, 59(50), 26-27.

Papert, S. (1993). Mindstorms: Children, computers, and

powerful ideas (2nd ed.). New York, NY: Basic Books.

Papert, S. (2016). Minding change: Essay Review of

Changing Minds: Computers, Learning, and Literacy by

Andrea diSessa. Human Development, 49, 239-247.

Resnick, M. (2014). Give P's a Chance: Projects, Peers,

Passion, Play. Proceedings of the Third International

Constructionism Conference. Vienna: Austrian Computer

Society, 13-20.

Resnick, M. (2017). The Seeds That Seymour Sowed.

Retrieved December 1, 2019 from https://www.media.

mit.edu/posts/the-seeds-that-seymour-sowed/

Resnick, M. (2018). Computational Fluency. Retrieved

December 1, 2019 from https://medium.com/@mres/

computational-fluency-776143c8d725

Stager, G. (2016). Seymour Papert (1928-2016) Father of

Educational computing. Nature, 537, 308.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., et al. (2015). Defining Computational

Thinking for Mathematics and Science Classrooms.

Journal of Science Education and Technology, 25(1), 127–

147.

Wilkerson, M. H. & Fenwick, M. (2017). The practice of

using mathematics and computational thinking. Helping

Students Make Sense of the World Using Next Generation

Science and Engineering Practices. Arlington, VA:

National Science Teachers’ Association Press, 181-204.

Wing, J. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33–36.

Wing, J. M. (2011). Research Notebook: Computational

Thinking—What and Why? Retrieved December 1, 2019

from https://www.cs.cmu.edu/link/research-notebook-

computational-thinking-what-and-why

http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/
http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/
http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/
https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://www.media.mit.edu/posts/the-seeds-that-seymour-sowed/
https://www.media.mit.edu/posts/the-seeds-that-seymour-sowed/
https://medium.com/@mres/computational-fluency-776143c8d725
https://medium.com/@mres/computational-fluency-776143c8d725
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

31

Effects of Using Mobile Phone Programs to Control Educational Robots on the

Programming Self-Efficacy of the Third Grade Students

1Yi-ting LIN, 2Ting-chia HSU*

1,2National Taiwan Normal University, Taiwan

i79432ytl@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT

The purpose of this study is to use mobile phone programs to control educational robots, so as to enhance the computational

thinking literacy of the third grade students. This study allows learners to use mobile phone applications to drag building

blocks in order to control and interact with the educational robots. This study also employed the computer program self-

efficacy scale, educational robot attitude scale and cognitive load scale to measure computational thinking ability and

learning performance. The research results show that learners have significantly improved their computational thinking

ability after course, and further analysis found that learners' self-efficacy performance of computer programs is significantly

negatively related to learning anxiety, and learning investment and learning image are significantly positively related.

KEYWORDS
computational thinking, educational robot, computer programming self-efficacy

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

32

三年級學生使用手機程式控制教育機器人對其程式自我效能表現之研究

1林羿婷，2許庭嘉
＊

1,2國立臺灣師範大學，科技應用與人力資源發展學系，臺灣

i79432ytl@gmail.com，ckhsu@ntnu.edu.tw

摘要

本研究旨在針對國小三年級學生於課程上使用手機程

式控制教育機器人學習後，其運算思維能力提升之研

究。本研究在課堂上讓學習者使用手機應用程式拖拉

積木程式與教育機器人進行互動，並使用電腦程式自

我效能量表、教育機器人態度量表及認知負荷量表進

行運算思維能力與學習表現之測量，研究結果發現學

習者在學習後其運算思維能力有顯著提升，而進一步

分析發現學習者之電腦程式自我效能表現與學習焦慮

有顯著負相關，學習投入及學習意象有顯著正相關。

關鍵字

運算思維；教育機器人；電腦程式自我效能

1. 前言

隨著科技發展，電腦資訊能力已成為每個人都必須學

會的技能，而在面對未來越來越多的新興問題挑戰，

可以使用運算思維來進行問題拆解、問題解決（Wing,

2006），且運算思維能力的應用並不侷限於電腦科技，

而是可以跨領域應用在不同項目內（Barr & Stephenson,

2011）。在 2008年 Wing學者針對運算思維的研究有提

及運算思維是兒童教育不可或缺的一部分（Wing,

2008），隨後學者的研究進行方向也朝向兒童的運算

思維教育（García-Peñalvo, 2018; Grover & Pea, 2013;

Rich, Binkowski, Strickland, & Franklin, 2018），不過要

如何養成運算思維的能力尚待需要更多實證研究來佐

證（Grover & Pea, 2013）。臺灣於 2019 年開始施行之

十二年國民基本教育課程綱要將核心素養列為課程發

展主軸，核心素養是指一個人為適應生活及面對未來

挑戰，所應具備的知識、能力與態度（教育部，

2014），在科技領域部份將運算思維列為學習重點

（教育部，2018），這顯示了運算思維將成為兒童需

要學習的重要能力。

隨著科技技術的提升，機器人的發展也是一個未來值

得討論的重要議題。越來越多學者提出使用機器人進

行教育的相關研究（Angeli & Valanides, 2019; Berry,

Remy, & Rogers, 2016; Lye, Wong, & Chiou, 2013），將

機器人當成提升思考邏輯、解決問題及團隊合作能力

的工具是一重要的研究方向（Benitti, 2012），根據

2018 年 Cheng、Sun 與 Chen 學者對於機器人基本應用

的類別統計，教育機器人屬於第二重要的應用領域，

而教育機器人應用的領域大多在 STEAM 教育及語言教

育，同一份研究也指出未來在學齡前及小學使用教育

機器人具有最大的潛力（Cheng, Sun, & Chen, 2018）。

亦有針對使用教育機器人進行運算思維能力的培養研

究指出，學生的運算思維能力在學習過程中皆有增加

（Atmatzidou & Demetriadis, 2016; Chen et al., 2017）。

綜上所述，運算思維已經是當前教育的發展重點，對

於使用教育機器人進行運算思維能力的提升需要更多

的研究佐證，因此本研究將融合教育機器人及運算思

維，將使用手機應用程式控制教育機器人應用在國小

三年級學童課程上，著重於運算思維能力之學習成效

探討，以期透過本研究的成果，提供給未來期望使用

教育機器人提升學生運算思維能力的教師，在未來課

程設計上能有所啟發。

2. 文獻探討

2.1. 運算思維
運算思維是基於像電腦科學家一樣思考的想法，來解

決問題、設計系統及理解人類行為，利用抽象化、拆

解一個複雜困難的問題，讓它化為一個知道如何解決

的問題（Wing, 2006），運算思維的能力可以用來解決

學習上或生活上的問題（Tsai, Wang, & Hsu, 2018）。

運算思維具有概念化的特性，而其本質在於抽象化，

其中包含著能夠將元素進行交織與結合（Wing, 2008）。

而當學生能夠學習運算思維並將腦海中解決問題的想

法透過電腦實現，學生不僅會成為工具的使用者，更

會成為工具的建造者（Barr & Stephenson, 2011）。

BBC（2017）對運算思維進行了四個面向的分類，分

別是問題拆解、模式識別、抽象化及演算法概念，問

題拆解是指將大問題拆解成各個小問題再針對小問題

進行解決，模式辨別是要找出小問題與小問題之間共

同之處，抽象化是找出問題的關鍵並找出相對關係或

進行模組化，而演算法概念則是最後產生解決問題的

步驟，這些類別並沒有一定的次序，而是不斷循環發

生的（許庭嘉， 2018），ISTE 更於 2018 年提出新的運

算思維標準，認為需要在學生的學習科目中加入運算

思維，讓學生具備解決未來問題的能力（ ISTE，

2018）。

2.2. 教育機器人

教育機器人是使用機器人作為一種教育工具（Lye et al.,

2013），無論是教育機器人還是使用機器人進行學習，

皆同時著重於鼓勵學生的參與和探索（Berry et al.,

2016），在任何領域裡面教育機器人作為學習工具是

擁有發展潛力的（Benitti, 2012），Cheng 等 2 名學者在

2018 年發表的研究報告統計了機器人基本應用的類別，

教育機器人屬於第二重要的應用領域。目前大部分教

育機器人應用的教育領域為 STEAM 教育、語言教育、

特殊教育（Pei & Nie, 2018）。學者 Pei 和 Nie（2018）

將教育機器人分為四類，分別是智能助手機器人、虛

擬模擬機器人、多功能套件機器人和非通用教育機器

33

人，智能助手機器人是指該機器人集人工智能且具有

智能對話系統可以執行語義識別，虛擬模擬機器人是

具模擬功能較常用於機器人教學，多功能套件機器人

具有各種模組可以自由組合常用於 STEAM 教育，非通

用教育機器人是針對特殊族群所設計的機器人，如自

閉症兒童的教育機器人，除了四種類的機器人，這兩

位學者亦統整出教育機器人的五種特徵，分別為靈活

性、數據化、重複性、人性化、自然互動的。其他研

究有顯示因機器人擁有重複性及互動的特性（Toh,

Causo, Tzuo, Chen, & Yeo, 2016）。

2.3. 電腦程式自我效能

自我效能的概念是由 Bandura 提出，是指個體對於自己

的期望會決定個體評估要付出多少努力與要經歷多久

的困難（Bandura, 1977）。而電腦程式自我效能是學習

者對自己電腦程式能力的看法（Korkmaz & Altun,

2014），瞭解學生的電腦程式自我效能和其他影響自

我效能的因素（Hasan, 2003），將可以在未來課程設計

上有更多的建議（Psycharis & Kallia, 2017）。電腦程式

自我效能也會和課程表現有關，有研究發現學習程式

的自我效能會受到過去學習程式的經驗影響（Benitti,

2012; Law, Lee, & Yu, 2010）。Tsai 等 2 位學者則發展

了測量電腦程式自我效能的量表，量表共含有五個構

面，分別是邏輯思維、合作、計算、控制和除錯，而

此份電腦程式自我效能量表也可以針對學生的運算思

維進行評估（Tsai et al., 2018）。

2.4. 學習焦慮

焦慮是一種情緒狀態，是一種對於情況感到緊張、害

怕與憂慮的感覺。研究互動機器人的學者認為需要更

關注在個體與機器人進行互動時所產生的焦慮

（Nomura, Suzuki, Kanda, & Kato, 2006），亦有學者則

認為焦慮是衡量學生學習經驗的重要變量，並將學生

與機器人互動時產生的焦慮定義為學生在課程上產生

的恐懼、焦慮和迴避和使用機器人有關，且針對此項

目進行問卷測量題目的設計，用以了解學生對於機器

人出現在課程上會不會產生緊張、不喜歡或受干擾的

感覺（Sisman, Gunay, & Kucuk, 2018）。

2.5. 學習意向

針對教育機器人在課程上對學生的影響，學習意向指

的是學生在未來課程中預期與機器人進行的互動

（Sisman et al., 2018）。在一項對於機器人作為輔助學

習的研究中指出，擬人化的機器人可以提高學生的學

習興趣，大多數的學生都喜歡使用類人類機器人進行

學習（Chin, Wu, & Hong, 2011）。而在一項使用機器人

進行英文教學的研究指出，學生在學習過程中很開心，

相信自己正在學習得更好、更有效，從長遠角度來看，

這 會 增 強 他 們 的 學 習 動 機 （ Alemi, Meghdari, &

Ghazisaedy, 2014）。

3. 研究方法

3.1. 研究流程

本研究實驗對象為 21 位臺北市某國小三年級學生，在

學生課前進行電腦程式自我效能量表前測，並向學生

介紹積木程式及講解機器人操作流程，接著讓學生親

自操作使用手機應用程式，學生需要拉動並堆疊模組

化的積木程式，當學生堆疊出相對應的積木程式後，

置於桌上的機器人則會產生對於堆疊之積木正確與否

的反應，學生可以觀察機器人明白自己所拖拉的積木

是否正確，最後讓學生進行分組競賽活動，藉由分組

競賽讓學生更加熟練積木及機器人操作，課程完成後

再對學生施以電腦程式自我效能量表、教育機器人態

度量表及認知負荷量表進行後測，用以探討學生使用

教育機器人進行課程學習之學習成效。完整研究流程

如圖 1。

圖 1 研究流程圖

圖 2 則為學生使用手機程式，拉動積木程式方塊進行機

器人操控之介面畫面。

圖 2 手機應用程式介面畫面

3.2. 測量工具

本研究使用電腦程式自我效能量表、教育機器人態度

量表及認知負荷量進行學習成效測量。

電腦程式自我效能量表為 2018 年由 Tsai Meng-Jung、

Wang Ching-Yeh 和 Hsu Po-Fen 發展的量表，在本研究

使用的問卷量表使用三個構面，分別為「邏輯思考」、

「控制」、「除錯」，邏輯思考構面的 Cronbach’s

alpha 值為 0.80，控制構面的 Cronbach’s alpha 值為 0.82，

除錯構面的 Cronbach’s alpha 值為 0.83，量表各構面皆

具有可接受之信度。

教育機器人態度量表為 2018 年由 Burak Sisman、

Devrim Gunay 和 Sevda Kucuk 所發展的量表，在本研究

的問卷量表使用三個構面，分別為「學習投入」、

「學習焦慮」、「學習意向」，學習投入構面

Cronbach’s alpha 值為 0.73，學習焦慮構面 Cronbach’s

34

alpha 值為 0.81，意向構面 Cronbach’s alpha 值為 0.53，

量表各構面皆具有可接受之信度。

認知負荷量表為 1998 年 John Sweller、Jeroen J. G. van

Merrienboer 和 Fred G. W. C. Paas 發展的量表，在本研

究的問卷使用量表 Cronbach’s alpha 值為 0.83，具有可

接受之信度。

3.3. 資料分析方法

本研究使用統計軟體 IBM SPSS Statistics 23，對電腦程

式自我效能量表三構面進行前、後測相依樣本 t 檢定，

用以瞭解學生使用手機程式控制教育機器人後的運算

思維學習成效，並使用 Pearson 相關分析進一步探討學

生電腦程式自我效能表現與教育機器人使用態度及認

知負荷之相關性。

4. 實驗結果分析

本研究施測對象為台北市某國小三年級學生，回收之

有效問卷數為 21 份，性別分布為男性 14 位（66.7%），

女性 7位（33.33%）；針對是否有聽過積木程式變項，

有 3 人（14.3%）回答為是，14 人（66.7%）回答為否。

欲探究學生在電腦程式自我效能表現，將問卷三構面

進行前後測相依樣本 t 檢定分析。根據分析結果發現

（如表 1），三個構面的前測與後測平均值皆有顯著差

異，在「邏輯思考」構面 t（20）= -3.16，p<.05，後測

得 分 （ M=3.79 ， SD=1.04 ） 顯 著 大 於 前 測 得 分

（M=3.08，SD=0.95）；「控制」構面 t（20）= -4.90，

p<.05，後測得分（M=2.81，SD=1.35）顯著大於前測

得分（M=1.44，SD=0.93）；在「除錯」構面 t（20）=

-3.62，p<.05，後測得分（M=3.29，SD=1.39）顯著大

於前測得分（M=1.98，SD=1.29）。

欲深入探討學生電腦程式自我效能表現與教育機器人

使用態度、認知負荷之相關性，進行 Pearson 相關分析，

分析結果如表 2。結果發現：電腦程式自我效能表現與

學習焦慮〔r（20）=.62，p<.001〕有顯著負相關；學

習投入及學習意向〔r（20）=.73，p<.001〕則有顯著

正相關。

5. 結論與未來展望

實驗結果顯示，學生在使用手機應用程式與教育機器

人進行互動學習後，其運算思維的能力皆有顯著提升，

表示學生使用教育機器人進行運算思維的學習是有效

果的。研究結果符合 Atmatzidou 和 Demetriadis（2016）

及 Chen 等五位學者（2017）對於運算思維及機器人主

題的研究結果，意即使用教育機器人進行運算思維的

能力提升是有成效的。

為了更加瞭解學生運算思維能力與使用教育機器人之

間的關係，進一步針對量表各構面進行 Pearson 相關性

分析後，結果發現學生的電腦程式自我效能表現與學

習焦慮有顯著負相關，意即學生有較高的電腦程式自

我效能則會有較低的學習焦慮，如學生有較低的電腦

程式自我效能則會有較高的學習焦慮，此研究結果符

合 Bandura 提出的自我效能理論（Bandura, 1977）。

本研究實驗結果亦呈現學習投入及學習意向之間呈現

正相關性，吻合 Sisman 於 2018 年發展機器人態度量表

時所測得之投入及意向構面間的相關性，也更加顯示

以此量表穩定，可以用來測量學生的學習投入與學習

意向。

綜合上述對於實驗結果與討論，本研究呈現一個使用

手機應用程式及教育機器人進行教學而提升學生運算

思維能力的例子，實驗成效供給未來期望使用教育機

器人提升運算思維能力的教師，在課程設計上能有所

啟發。由於本研究僅針對臺灣臺北市某國小三年級學

生進行實驗研究，未來研究方向則可以針對不同地區

的學生進行實驗研究，也可以針對不同年齡與性別的

學生進行實驗研究，讓研究更加全面也增加研究的擴

論程度。

6. 致謝

本研究感謝科技部研究計畫編號 : MOST 108-2511-H-

003 -056 -MY3 的部分補助。

7. 參考文獻

教育部（2014）。十二年國民基本教育課程綱要總綱。

臺北市：教育部。

教育部（2018）。十二年國民基本教育課程綱要國民

中學暨普通型高級中等學校-科技領域。臺北市：教育

部。

許庭嘉（2018）。寓教於樂：如何從桌上遊戲學習結

構化程式設計邏輯：含 Robot City v2 桌遊包。新北市：

台科大圖書。

Alemi, M., Meghdari, A., & Ghazisaedy, M. (2014). The

Effect of Employing Humanoid Robots for Teaching

English on Students’ Anxiety and Attitude. Preceedings of

the 2014 Second RSI/ISM International Conference on

Robotics and Mechatronics (ICRoM). IEEE, 754-759.

Angeli, C., & Valanides, N. (2019). Developing Young

Children's Computational Thinking with Educational

表 2 電腦程式自我效能表現量表之相依樣本 t 檢定表

項目
平均數（標準差）

自由度 t
前測 後測

邏輯思考
3.08

（0.95）

3.79

（1.04）
20 -3.16**

控制
1.44

（0.93）

2.81

（1.35）
20 -4.90***

除錯
1.98

（1.29）

3.29

（1.39）
20 -3.62**

p<.01,*p<.001

表 1 電腦程式自我效能表現與其他構面之相關矩陣表

 1 2 3 4

7. 電腦程式自我效能 -

7. 學習投入 .28 -

7. 學習焦慮 -.62** -.17 -

7. 學習意向 .19 .73** -.08 -

7. 認知負荷 -.02 -.13 .12 -.25

**p<.01

35

Robotics: An Interaction Effect between Gender and

Scaffolding Strategy. Computers in Human Behavior,

105954. doi:https://doi.org/10.1016/j.chb.2019.03.018

Atmatzidou, S., & Demetriadis, S. (2016). Advancing

Students’ Computational Thinking Skills through

Educational Robotics: A Study on Age and Gender

Relevant Differences. Robotics and Autonomous Systems,

75, 661-670. doi:

https://doi.org/10.1016/j.robot.2015.10.008

Bandura, A. (1977). Self-efficacy: Toward a Unifying

Theory of Behavioral Change. Psychological review,

84(2), 191. Barr, V., & Stephenson, C. (2011). Bringing

Computational Thinking to K-12: What is Involved and

What is the Role of the Computer Science Education

Community? Inroads, 2(1), 48-54.

Benitti, F. B. V. (2012). Exploring the Educational Potential

of Robotics in Schools: A Systematic Review. Computers

& Education, 58(3), 978-988. doi:

https://doi.org/10.1016/j.compedu.2011.10.006

Berry, C. A., Remy, S. L., & Rogers, T. E. (2016). Robotics

for All Ages: A Standard Robotics Curriculum for K-16.

IEEE Robotics & Automation Magazine, 23(2), 40-46.

British Broadcasting Corporation (2017). Introduction to

Computational Thinking. Retrieved Sep 19, 2017, from

https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/

1doi:10.1109/MRA.2016.2534240

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., &

Eltoukhy, M. (2017). Assessing Elementary Students’

Computational Thinking in Everyday Reasoning and

Robotics Programming. Computers & Education, 109,

162-175. doi:

https://doi.org/10.1016/j.compedu.2017.03.001

Cheng, Y. W., Sun, P. C., & Chen, N. S. (2018). The

Essential Applications of Educational Robot: Requirement

Analysis from the Perspectives of Experts, Researchers

and Instructors. Computers & Education, 126, 399-416.

doi: https://doi.org/10.1016/j.compedu.2018.07.020

Chin, K., Wu, C., & Hong, Z. (2011). A Humanoid Robot as

a Teaching Assistant for Primary Education. Proceedings

of the 2011 Fifth International Conference on Genetic and

Evolutionary Computing, 21-24.

García-Peñalvo, F. J. (2018). Editorial Computational

Thinking. IEEE Revista Iberoamericana de Tecnologias

del Aprendizaje, 13(1), 17-19.

doi:10.1109/RITA.2018.2809939

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

doi:10.3102/0013189x12463051

Hasan, B. (2003). The Influence of Specific Computer

Experiences on Computer Self-efficacy Beliefs.

Computers in Human Behavior, 19(4), 443-450. doi:

https://doi.org/10.1016/S0747-5632(02)00079-1

International Society for Technology in Education (2018).

ISTE Announces New Computational Thinking Standards

for All Educators. Retrieved Oct 8, 2018 from

https://www.iste.org/explore/Press-Releases/ISTE-

Announces-New-Computational-Thinking-Standards-for-

All-Educators

Korkmaz, Ö ., & Altun, H. (2014). Adapting Computer

Programming Self-Efficacy Scale and Engineering

Students’ Self-Efficacy Perceptions. Online Submission,

1(1), 20-31.

Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning

Motivation in E-Learning Facilitated Computer

Programming Courses. Computers & Education, 55(1),

218-228. doi:

https://doi.org/10.1016/j.compedu.2010.01.007

Lye, N. C., Wong, K. W., & Chiou, A. (2013). Framework

for Educational Robotics: A Multiphase Approach to

Enhance User Learning in a Competitive Arena.

Interactive Learning Environments, 21(2), 142-155.

 Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006).

Measurement of Anxiety toward Robots. Proceedings of

the 15th IEEE International Symposium on Robot and

Human Interactive Communication (Ro-Man06), 372 -

377.

Pei, Z., & Nie, Y. (2018). Educational Robots: Classification,

Characteristics, Application Areas and Problems.

Proceedings of the 2018 Seventh International Conference

of Educational Innovation through Technology (EITT),

57-62.

Psycharis, S., & Kallia, M. (2017). The Effects of Computer

Programming on High School Students’ Reasoning Skills

and Mathematical Self-efficacy and Problem Solving.

Instructional Science, 45(5), 583-602.

doi:10.1007/s11251-017-9421-5

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin,

D. (2018). Decomposition: A K-8 Computational

Thinking Learning Trajectory. Proceedings of the 2018

ACM Conference on International Computing Education

Research, 124-132.

Sisman, B., Gunay, D., & Kucuk, S. (2018). Development

and Validation of an Educational Robot Attitude Scale

(ERAS) for Secondary School Students. Interactive

Learning Environments, 27(3), 377-388.

doi:10.1080/10494820.2018.1474234

Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo,

S. H. (2016). A Review on the Use of Robots in Education

and Young Children. Journal of Educational Technology

& Society, 19(2), 148-163.

Tsai, M.-J., Wang, C.-Y., & Hsu, P.-F. (2018). Developing

the Computer Programming Self-Efficacy Scale for

Computer Literacy Education. Journal of Educational

Computing Research, 56(8), 1345-1360.

doi:10.1177/0735633117746747

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational Thinking and Thinking

about Computing. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, 366(1881), 3717-3725.

https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1016/j.compedu.2011.10.006
https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1doi:10.1109/MRA.2016.2534240
https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1doi:10.1109/MRA.2016.2534240
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2018.07.020
https://doi.org/10.1016/S0747-5632(02)00079-1
https://www.iste.org/explore/Press-Releases/ISTE-Announces-New-Computational-Thinking-Standards-for-All-Educators
https://www.iste.org/explore/Press-Releases/ISTE-Announces-New-Computational-Thinking-Standards-for-All-Educators
https://www.iste.org/explore/Press-Releases/ISTE-Announces-New-Computational-Thinking-Standards-for-All-Educators
https://doi.org/10.1016/j.compedu.2010.01.007

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

36

Exploring Creativity, Emotion and Collaborative Behavior in Programming for

Two Contrasting Groups

Dan SUN1, Fan OUYANG2*, Yan LI3, Hongyu CHEN4

1,2,3,4 College of Education, Zhejiang University, China

dansun@zju.edu.cn, fanouyang@zju.edu.cn, yanli@zju.edu.cn, 21903051@zju.edu.cn

ABSTRACT

Studies have reported that acquiring programming skills

remains a considerable challenge for most novice learners.

In this study, Minecraft was used to explore its’ effect on

secondary students’ creativity, emotion, as well as

collaborative behaviors during programming in groups. Four

out of twenty secondary students were recruited and

instructed in the design and development of programming

project in Minecraft, and pair programming was used to

foster their collaboration. The results revealed that students’

creativity was increased. Their emotion of enjoyment, hope

and pride towards programming were improved and feeling

of anxiety were decreased after the intervention. Two groups

behavior patterns during programming were detected

through click stream analysis, which revealing five typical

behaviors (UTP, CIP, DIM, CIM and DBM). This study

shed light on the dynamic connection between programming

learning and cultivation of creative ability and positive

emotion, and how to better integrate learning analytics in K-

12 programming education.

KEYWORDS

programming, secondary students, creativity, emotion,

behavior

1. INTRODUCTION
Based on a constructivist approach, programming has been

suggested as the main strategy to improve computational

thinking (CT) in schools (Wing & M., 2006). However, past

experience shows that many students perceive learning

computer programming as a difficult and boring task,

teaching programming languages remains a big challenge

for most school teachers (Barr & Guzdial, 2015). Minecraft

is acknowledged as a highly popular children’s digital game

and show its potential in education (Pellicone & Ahn, 2018).

Cipollone, Schifter, & Moffat (2014) demonstrated that

Minecraft offers a unique opportunity for students to express

their creativity. Minecraft also could provide the text-based

language (Python) learning environment, together with a

vivid debugging interface. However, less attention has been

paid to apply Minecraft for programming projects.

Therefore, the research questions was: What were the

differences in creativity, emotion and collaborative

behaviors of two contrasting groups in Minecraft

programming?

2. METHOD

2.1. Research Context

In this study, Minecraft was utilized as programming

learning environment. Callaghan (2016) suggested that

Minecraft could contribute to the enhancement of classroom

learning, the capacity to collaborate as well as the role of the

teacher contributed to a learning environment. Besides,

Python is a language that was designed specifically for

teaching programming to non-experts. And Python has been

adopted in Chinese High school Information Technology

Curriculum Standards. The demonstration of teaching

Python programming in Minecraft was shown in Figure 1.

Figure 1. Write, run and debug Python in Minecraft.

2.2. Measuring Instrument

Firstly, the creativity questionnaire was revised based on the

measure developed by Welch and McDowall (2010). The

Cronbach’s alpha value of the questionnaire was .80.

Secondly, the questionnaire of emotion in programming,

developed by Goetz, Frenzel, Barchfeld and Perry (2011),

which is designed to assess various achievement emotions

experienced by students in academic settings. The

Cronbach’s alpha value of the questionnaire was .93.

Thirdly, click stream analysis was adopted to explore

students’ collaborative behavior during the programming

process.

2.3. Experiment participants and procedure

Based on students’ performance and collaboration during

the experiment, 2 groups of 4 students of this study were

selected from 20 seventh graders in a secondary located in

Hangzhou, Ying and Dai in group 1 and Chen and He in

group 2.

The experiment took 12 weeks of one and half hours per

week. Teacher taught how to program and play with

Minecraft, and students were learning basic grammar and

function in Python, with implementing different project-

based programming cases. During the final programming

project, students were asked to conduct a pair programming

activities (swordgame), including two students working on

one computer, with one acted as Driver and the other as

Navigator.

3. RESULTS AND DISCUSSION
Firstly, at the first beginning of the experiment, Ying and

Dai in group 1 got 80 and 61, while Chen and He in group 2

got 72 and 50, with an average score of 59 for the whole

class. After 12 weeks of study, two groups of students all

37

improved individually, on top of that, students in group 2 got

a much significant enhancement during the study.

Secondly, it is apparent that all of four students’ emotion

were strengthened after the experiment, no matter if it is in

overall performance, or in every aspects of enjoyment, hope

and pride. Deci et al., (2017) also mentioned that learner’s

emotion could influence students’ judgement, motivation

and self-efficacy towards a specific task. However, He in

group 2 experienced a decrease in anxiety score, which

means his anxious feeling is rising along with the conducting

of the class. Therefore, for those students who couldn’t catch

up at the beginning or those one couldn’t work well with

partner, the sense of anxiety would also increase with the

time goes by.

Thirdly, in terms of students’ behaviors during the

programming in Minecraft, we incorporated the click stream

analysis. As it can be seen from Figure 2, the top 2 common

behaviors are CIP (coding in python) and DIM (debugging

in Minecraft), the rest behaviors are DBM (distracted by

Minecraft), CIM (creating in Minecraft) and UTP

(Understanding the project). Students in groups 1 have spent

the most of the time in CIP and more likely to write code to

complete the programming task; whereas the group 2 seems

to enjoy create building by mouse click (CIM) rather than

code-writing. Students in group 1 were appeared to be more

concentrated on programming, because of the shape of the

behavior CIP, DIM for group 1 are much more dense than

group 2, whereas the group 2 students’ behavior are much

scattered, and they have spent more time in analyzing the

question and were quite easy to get distracted by the game

in Minecraft.

Figure 2. Time-series analysis of programming procedure

4. CONCLUSION AND IMPLICATION
In this study, Minecraft, a creative sandbox game platform,

was used as learning environment to teach programming.

The experimental data showed that the students’ creativity

and emotion toward programming were significantly

improved after the intervention, revealing the benefits of the

proposed approach. In addition to that, students’ behaviors

(UTP, CIP, DIM, CIM and DBM) were detected through

click stream analysis.

Beside, this study contributes to providing new empirical

evidence for the valuableness of enhancing creativity in

programming education. Besides, researchers mentioned

that positive emotion could influence students’ intrinsic

motivation, such students tend to be more creative and

competitive (Deci et al., 2017), and this study also shed light

on the dynamic connection between emotion and

programming learning, and find a positive impact on how

students’ perceive programming knowledge.

On top of that, different behavior patterns were found

between two contrasting groups, with one group worked

peacefully and the other were having conflict. Except for

partners’ skill and personalities which are most emphasized

in previous research (Hung & Young, 2017), this study also

revealed that partners’ emotion towards the task will

influence each other, which will results in mutual success or

cruel failure.

5. REFERENCES
Barr, V., & Guzdial, M. (2015). Advice on teaching CS, and

the learnability of programming languages.

Communications of the ACM, 58(3), 8–9.

https://doi.org/10.1145/2716345

Cipollone, M., Schifter, C. C., & Moffat, R. A. (2014).

Minecraft as a Creative Tool. International Journal of

Game-Based Learning, 4(2), 1–14.

https://doi.org/10.4018/ijgbl.2014040101

Deci, E. L., Olafsen, A. H., & Ryan, R. M. (2017). Self-

Determination Theory in Work Organizations: The State

of a Science. Annu. Rev. Organ. Psychol. Organ. Behav,

4, 19–43. https://doi.org/10.1146/annurev-orgpsych

Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P.

(2011). Measuring Emotions in Students’ Learning and

Performance: The Achievement Emotions Questionnaire

(AEQ). Contemporary Educational Psychology, 36(1),

36–48.

https://doi.org/10.1016/J.CEDPSYCH.2010.10.002

Hung, H.-C., & Young, S. S.-C. (2017). Applying Multi-

touch Technology to Facilitate the Learning of Art

Appreciation: From the View of Motivation and

Annotation. Interactive Learning Environments, 25(6),

733–748.

https://doi.org/10.1080/10494820.2016.1172490

Pellicone, A., & Ahn, J. (2018). Building Worlds: A

Connective Ethnography of Play in Minecraft. Games and

Culture, 13(5), 440–458.

https://doi.org/10.1177/1555412015622345

Wing, J. M., & M., J. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33.

https://doi.org/10.1145/1118178.1118215

Welch, D., & McDowall, J. (2010). A Comparison of

Creative Strategies in Teaching Undergraduate Students in

the Visual Arts and Design. ACUADS 2010 Annual

Conference. Retrieved Nov 11, 2019 from https://research-

repository.griffith.edu.au/handle/10072/3886

https://doi.org/10.1145/2716345
https://doi.org/10.4018/ijgbl.2014040101
https://doi.org/10.1146/annurev-orgpsych
https://doi.org/10.1016/J.CEDPSYCH.2010.10.002
https://doi.org/10.1080/10494820.2016.1172490
https://doi.org/10.1177/1555412015622345
https://doi.org/10.1145/1118178.1118215
https://research-repository.griffith.edu.au/handle/10072/3886
https://research-repository.griffith.edu.au/handle/10072/3886

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

38

Canada’s CanCode Initiative and the Gender Gap in Computer Science Education

Lisa Anne FLOYD

Western University, London, ON, Canada

lapennar@uwo.ca

ABSTRACT

Initiatives are being implemented around the world to

support youth with developing digital literacy skills and

computational thinking. Many of these initiatives aim to

close gender gaps in the area of science, technology,

engineering and math (STEM). In Canada, CanCode is a

federal initiative that provides funds for non-profit

organizations to support K-12 teachers and their students

with developing computational thinking and digital skills.

Through the CanCode funding, organizations aim to

increase representation of girls in high school computer

science classes and post-secondary programs. There are

many common approaches that are implemented by

organizations including setting-up coding clubs, supporting

teachers in K-8, adjusting high school STEM and computer

science courses and organizing coding and robotics

competitions. Literature suggests best practices and

recommendations for such approaches in order to close the

gender gap in computer science education. Initiatives such

as CanCode are a starting point to ensure all young people,

including girls, have the skills to be active contributors to the

digital age.

KEYWORDS

computational thinking, computer science, K-12 education,

gender gap, coding

1. INTRODUCTION
Initiatives around the world are being implemented to

support students with developing computational thinking as

it is “increasingly important that people have an

understanding of the algorithmic, computational nature of

problem-solving involving digital technology” (UNESCO,

2018, p. 26). One such initiative in Canada is CanCode,

through which many non-profit organizations have received

funding to “support opportunities for Canadian students

(kindergarten to grade 12) to learn digital skills including

coding, data analytics, and digital content development”

(Government of Canada, 2019). CanCode was first launched

in September, 2017, providing $50 million in funding and

reached over 1.3 million students as well as 61,000 teachers

across Canada (Government of Canada, 2019). It has since

been extended with an additional $60 million over the next

two years aiming to advance “an agenda to build Canada as

a world-leading innovation economy that will create good

jobs and grow the middle class” (Government of Canada,

2019).

As part of the assessment criteria to receive funding,

organizations must have “demonstrated an ability to reach

traditionally underrepresented groups including girls,

Indigenous youth, and/or youth with disabilities”

(Government of Canada, 2019). Common approaches used

by the nonprofit organizations funded by CanCode to narrow

the gender gap in the areas of computer science and STEM,

as well as relevant research and recommendations are

described in this paper.

2. THE GENDER GAP AND FUNDED

INITATIVES
The Canadian government “recognizes the critical role that

gender equality has in building a strong economy that works

for everyone” (Government of Canada, 2018, p. 218).

Diversity is important for a nation as it is known to help

drive innovation, and results in more effective problem

solving (Foster, 2019; Kafai & Burke, 2014; Margolis &

Fisher, 2002). The Canadian government has made “targeted

investments, partnerships, and innovation and advocacy

efforts that have the greatest potential to close gender gaps

and improve everyone’s chance for success” (Government

of Canada, 2018, p. 243). Although many interventions and

actions are being taken by organizations with the CanCode

funding to close the gender gap, “no single action can be

recognized as a perfect solution” (Council of Canadian

Academics, 2015, p. 122).

2.1. Coding Clubs

Many of the organizations that have received funding will

be supporting teachers with starting and maintaining after

school coding clubs (Government of Canada, 2019). Clubs

tend to be flexible, allowing for youth to focus on their

interests and also encouraging collaboration beyond the

classroom walls, creating agency (Kafai & Burke, 2014).

Kafai and Burke (2014) acknowledge however, that true

“computational participation cannot be achieved if only a

select few join the clubhouse” (p. 133). While there are

equity issues associated with clubs that are held beyond the

school day, those who lead such clubs can attempt to develop

“more inclusive out-of-school science learning practices”

(Dawson, 2017, p. 544). Ideally, teachers will begin to

incorporate coding into their classroom, so that “what

happens inside and outside classrooms becomes more fluid”

(Kafai & Burke, 2014, p. 133).

2.2. Developing Digital Skills in High School

The CanCode initiative is meant to also support

improvement of high school courses related to digital

literacy and to increase the number of girls enrolled in

computer science and STEM programs. Kafai and Burke

(2014), Foster (2019), Margolis, Fisher and Miller (1999),

and Master, Cheryan and Meltzoff (2016) recommend that

new directions for designing activities as well as the tools

used in K-12 educational computing efforts, are required in

order to broaden not only participation, but also perceptions.

Most often, curriculum is misleadingly and unnecessarily

highly technical – when it should really be shown to be

relevant to many aspects of the world (Margolis et al., 1999).

Intentionally changing high school classrooms can create a

greater sense of belonging for girls and possibly reduce the

gender disparities observed in STEM courses (Master et al.,

39

2016). Incorporating mentor and peer support programs in

high schools has also been shown to encourage girls to stay

in computer science courses (Council of Canadian

Academics, 2015). This is worth investing in, as there have

been “positive signs that learning computer science in high

school is correlated with a greater likelihood” of girls to

pursue “computer science in postsecondary study” (K–12

Computer Science Framework, 2016, p. 25).

2.3. Early Exposure – Supporting Teachers in K-8

Grades K through 8 provide an opportunity to expose

everyone to computer science, which is seen as “critical to

reducing current gender disparities” (Master et al., 2016, p.

424), as it might prompt girls to consider computer science

courses at the high school and post-secondary levels.

Interventions starting as early as the primary grades engage

girls early, teaching about the many applications of

computer science, and providing hands-on activities which

might help to reduce the gender gap (Council of Canadian

Academics, 2015). While robotics kits are popular and

commonly used by funded organizations, Kafai and Burke

(2014) recommend that a variety of digital designs,

animations and stories that incorporate different materials

and contexts should also be shared with students.

In planning their activities for the youngest learners,

organizations should consider not just how to spark the

interest of girls in computer science, but also why they are

not interested in the first place (Gaymes San Vicente, 2014).

Some advocates argue that by designing computer science

activities that might better fit into girls’ interests, existing

stereotypes are being reinforced, but as Kafai and Burke

(2014) counterargue, “these tensions are productive because

they open up conversations and question fairly narrow

perceptions about computation” (p. 101). Master et al.

(2016) share in their study that girls’ lower sense of

belonging “could be traced to lower feelings of fit with

computer science stereotypes” (p. 424). Incorporating

computer science and STEM into K through 8 classes

through creative and less technical means, could help to shift

the gender disparity that is currently seen in high school

computer science classes and beyond.

2.4. Coding and Robotic Competitions and Hackathons

In many cases, hackathons and coding and robotic

competitions have been used by the funded organizations to

draw youth interest in computer science. Traditionally, such

competitions have been established as part of “creative

computing and engineering cultures in K-12 schools” (Kafai

& Burke, 2014, p. 95), but they have not reached everyone.

In fact, such competitions are expensive, tend to draw mostly

boys, and do not seem to increase participation much

amongst girls and minorities (Kafai & Burke, 2014). There

are many other ways to broaden participation, including

collaborative experiences, sharing circles and culturally

responsive making opportunities (Kafai & Burke, 2014, p.

102).

3. CONCLUSION
The approaches and related research outlined in this paper

indicate that initiatives such as CanCode can provide hope

for narrowing the gender gap observed in the area of

computer science and STEM. The non-profit organizations

involved with CanCode seem to be incorporating many

research-based practices outlined in literature and additional

recommendations have been highlighted. The CanCode

program offers a starting point to ensure that all young

people, including girls, have the opportunity to contribute to

the digital age by becoming authors and creators, rather than

solely consumers of technology.

4. REFERENCES
Council of Canadian Academics. (2015). Some Assembly

Required: STEM Skills and Canada’s Economic

Productivity. Retrieved November 30, 2019, from

http://www.scienceadvice.ca/uploads/ENG/AssessmentsP

ublicationsNewsReleases/STEM/STEMFullReportEn.pdf

Dawson, E. (2017). Social Justice and Out-of-school

Science Learning: Exploring Equity in Science Television,

Science Clubs and Maker Spaces. Science Education,

101(4), 539–547.

Foster, S. (2019). Women in Stem: Critical to Innovation.

Retrieved November 27, 2019, from

https://www.globalpolicyjournal.com/blog/10/01/2019/w

omen-stem-critical-innovation

Gaymes San Vicente, A. (2014). Another Dimension to

Streaming. Our Schools, Our Selves, 23(2), 227–259.

Government of Canada. (2018). Equality + Growth - A

Strong Middle Class. Retrieved November 30, 2019, from

https://www.budget.gc.ca/2018/docs/plan/budget-2018-

en.pdf

Government of Canada. (2019). CanCode. Retrieved

November 26, 2019, from

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

K–12 Computer Science (2016). K–12 Computer Science

Framework. Retrieved November 30,2019, from

http://www.k12cs.org

Kafai, Y. B., & Burke, Q. (2014). Connected Code - Why

Children Need to Learn Programming. Massachusetts:

Massachusetts Institute of Technology.

Margolis, J, & Fisher, A. (2002). Unlocking the Clubhouse:

Women in Computing. Cambridge, Massachusetts: MIT

Press.

Margolis, Jane, Fisher, A., & Miller, F. (1999). Caring about

Connections : Gender and Computing. IEEE Technology

and Society Magazine, 18, 13–20.

Master, A., Cheryan, S., & Meltzoff, A. N. (2016).

Computing whether She Belongs: Stereotypes Undermine

Girls’ Interest and Sense of Belonging in Computer

Science. Journal of Educational Psychology, 108(3), 424–

437.

UNESCO Institute for Statistics. (2018). A Global

Framework of Reference on Digital Literacy. Retrieved

November 30, 2019, from

http://uis.unesco.org/sites/default/files/documents/ip51-global-

framework-reference-digital-literacy-skills-2018-en.pdf

http://www.scienceadvice.ca/uploads/ENG/AssessmentsPublicationsNewsReleases/STEM/STEMFullReportEn.pdf
http://www.scienceadvice.ca/uploads/ENG/AssessmentsPublicationsNewsReleases/STEM/STEMFullReportEn.pdf
https://www.globalpolicyjournal.com/blog/10/01/2019/women-stem-critical-innovation
https://www.globalpolicyjournal.com/blog/10/01/2019/women-stem-critical-innovation
https://www.budget.gc.ca/2018/docs/plan/budget-2018-en.pdf
https://www.budget.gc.ca/2018/docs/plan/budget-2018-en.pdf
https://www.ic.gc.ca/eic/site/121.nsf/eng/home
http://www.k12cs.org/
http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

40

Computational Thinking and

Unplugged Activities in K-12

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

41

Public-Private-Key Encryption in Virtual Reality: Predictors of Students’

Learning Outcomes for Teaching the Idea of Asymmetric Encryption

Andreas DENGEL

Universität Würzburg, Germany

Andreas.dengel@uni-wuerzburg.de

ABSTRACT

With networks being an omnipresent part of children’s lives,

questions about safe communication in these networks

emerge. While the concept of symmetric encryption can be

taught in simple and gamified ways, asymmetric encryption

as the key idea of secure communication in distributed

networks is hard to understand for children and existing

approaches to simplify the idea still have their flaws. This

paper presents a virtual reality designed around a medieval

love story where letters are encrypted, decrypted, and signed

by using magic potions that are either public or private. A

study with 78 students revealed that the key factors for

learning in this virtual environment were presence,

emotions, and previous knowledge while neither the effect

of the used technology nor the effect of the students’

motivation on their learning outcomes were significant.

KEYWORDS

virtual reality, computer science unplugged, cryptography,

immersive learning

1. INTRODUCTION
Secure transmission of information is a relevant topic for

modern communication: Since the rise of the internet in the

1970s, distributed networks consisting of numerous parties

communicating with each other had to tackle the challenge

of encryption and decryption to ensure the privacy of the

participants in the network. A key idea that emerged with the

rise of distributed communication networks characterized by

participants that never met before is the asymmetric

encryption/decryption. Public and private key algorithms

(e.g. Diffie-Hellman key exchange, see Diffie and Hellman

1976 or RSA encryption/decryption, see Rivest, Shamir, and

Adleman 1978) pose the main idea how distant parties can

communicate securely without any prior contact even if a

third party, the man in the middle, intercepts the (encrypted)

messages in the network.

With questions on privacy and communication in their

digital environment, teaching some of these concepts can

help children to achieve a better understanding of their

digital everyday surroundings. The basic idea of encryption

and decryption can be explained easily, e.g. showing the

Caesar encryption/decryption method as an idea of

symmetric encryption. In further discussions, the children

can talk about the problem that participants need a safe way

of exchanging keys before starting the encrypted

communication and explore possibilities to do this. In this

paper, we explore the possibility of visualizing the idea of

asymmetric encryption in a metaphorical way using a virtual

reality game about a medieval love story and analyze what

factors contribute to the students’ learning outcomes.

2. METAPHORS FOR PUBLIC-PRIVATE

 KEY ENCRYPTION/DECRYPTION
While the mathematical concept of one-way functions that

underlies the idea of asymmetric encryption can be quite

abstract to explain for children, various metaphorical

approaches have been developed to teach this concept.

Explanatory ideas include the use of locks and keys (UC

Computer Science Education 2008), the mixture of colors

(Art of the Problem 2012), as well as boxes which can be

locked and unlocked in two different ways (Fekete and Morr

2018) to explain the underlying concept to students.

The original Computer Science Unplugged activity (UC

Computer Science Education 2008) uses a box to send a

chocolate bar through a network with a man in the middle.

A student is given a box that contains a bar of chocolate (as

a metaphor for the message that somebody else wants to

read). The box has to be sent to another participant in the

network (a simple queue of students, one of them being a

man in the middle). The students explore ideas of how the

box can be locked so that the target person can open the lock

while the man-in-the-middle cannot. The students have to

deal with the challenge that the key has to remain private and

cannot be sent through the network. In this scenario, a

solution can be to send the locked box to the target person,

the target person adds her own lock to box (so that the box

is now locked twice) and sends the box back to the sender.

The sender unlocks his/her own lock and sends the box back

again so that the target person, once receiving the box, can

unlock his/her own lock and get the chocolate. While the

underlying idea of the Computer Science Unplugged activity

engages students to think about the problem in a

metaphorical and fun way without having to understand the

underlying mathematical functions behind the key and the

lock, the metaphor fails to explain both signing and

encrypting. The metaphor also struggles with the physical

characteristics of a key (that it can not lock something by

itself as it would be needed for signing a message) and those

of a lock (that, usually, one would not distribute locks).

Another idea tries to mix colors (Art of the Problem 2012)

in order to simulate a secure key exchange: First, each

participant has a secret color. Two students, A and B, who

want to start an encrypted conversation agree publicly on a

color and add their own private colors to it. They exchange

the new colors (one with A’s private color and one with B’s

private color) are exchanged publicly. After receiving the

mixed color, again, A and B each add their own private color

to it. The received color represents the secret key for their

communication. Doing so, the parties exchanged a secret

color without ever meeting each other in person. The

mixture of colors is a good idea for introducing a key

exchange (like the Diffie-Hellman key exchange) as it

explains the idea of a one-way-function in a simple and

42

engaging way but its applications for really encrypting and

decrypting messages are limited. Further, the realization

often fails in reality as the amount of color has to be

measured exactly for the activity to work.

IDEA provides IKEA-like manuals for concepts related to

Computational Thinking. In their manual for public-private

key encryption/decryption (Fekete and Morr 2018), they

present a box that can be locked in two directions as a

metaphor for the key pair used in a public-private-

communication. If the box is locked in one direction with the

public key, it can only be unlocked by using the private key.

If it is locked using the private key, it can only be unlocked

in the other direction with the public key, as both keys only

turn the lock in one direction. The metaphor is very close to

the actual principle of a secure communication involving

public-private-key encryption/decryption and is also capable

of explaining the idea of signing a message. But its practical

application is limited as it is difficult to actually build a box

like this for activities where the students can explore the

possibilities of encrypting and decrypting messages.

While there are some approaches of visualizing networks

and communication in networks in non-immersive virtual

environments (Voss et al. 2013; Sturgeon, Allison, and

Miller 2009) and basic concepts of IT security in immersive

virtual realities (Puttawong, Visoottiviseth, and Haga 2017),

none of them focus on the idea of asymmetric encryption.

As shown before, metaphors can contribute to students’

understanding but have often some constraints or flaws for

carrying out the metaphors in real activities/tasks for

students. Virtual reality technology can provide a useful tool

to get rid of the constraints of the actual reality (Bricken

1990) in order to create engaging learning environments.

3. THE DESIGN OF FLUXI’S CRYPTIC

POTIONS
The approach for our immersive EVE Fluxi’s Cryptic

Potions, which was developed using Unity, combines the

original Computer Science Unplugged activity, where the

students communicate in an unknown network and send

each other messages (or chocolate bars) with the mixing

colors idea. Our medieval setting takes the player into a

castle chamber where he/she encounters Fluxi, a carrier

dragon, who delivers messages to and from the student. The

player receives a letter from a friend, Nikolay, who asks the

player if he/she will be at Sir Dance-A-Lot’s (the

metaphorical man-in-the-middle) party this evening. Fluxi

asks the player to reply to Nikolay by telling him that he/she

wants to attend but has not received an invitation yet. Fluxi

brings the letter to the post office (simulating the network

structure) and returns with an encrypted response. Fluxi

explains that the post office provides each participant of the

network with two cryptic potions: a private and a public

potion. While all potions cipher messages, the encryption

can only be reversed by using the corresponding other

potion. The public potion of each participant is stored

publicly in the post office and everyone can get a copy of it.

In contrast, the recipe of the private potion is secret and only

known by the user. After explaining the benefits of this

asymmetric encryption process, he instructs the user to

decrypt Nikolay’s message by using his/her private potion.

Figure 4. Fluxi's Cryptic Potions

Nikolay informs the player that Princess Isolde, Prince

Charming, and Fluxi’s aunt Gertrude will be at the party as

well. He notes that the player always wanted to dance with

one of them and that he/she should write a letter to the person

of interest. But Nikolay also warns the player that Sir Dance-

A-Lot wants to dance with all of them which is why the

communication should be kept secret and, therefore, all

messages should be encrypted. The player writes a new,

encrypted letter to Nikolay (with Nikolay’s public potion)

and agrees that it would be a good idea to encrypt the

messages. After delivering this letter to the post office, Fluxi

returns with the invitation of Sir Dance-A-Lot. The

invitation seems to be ciphered as well, and Fluxi explains

that Sir Dance-A-Lot signed the invitation so that everyone

knows that the message must be from him. After reasoning

why this process is secure (in terms of authentification), the

player adds Sir Dance-A-Lot’s public potion to the letter in

order to decipher it. The player writes a message saying that

he/she will attend the party and signs the letter with his own

private potion. After delivering the letter, Fluxi asks the

player who it is he/she wants to dance with. As the dialogues

and letters are quite similar and the tasks stay the same, we

will present the scenario for a player who chose Prince

Charming. The player writes a message to Prince Charming

asking him for a dance. Fluxi gets the prince’s public potion

from the post office and explains that this potion can encrypt

letters for Prince Charming and decipher signed letters from

him as well. The player encrypts the message with Prince

Charming’s public potion (to avoid Sir Dance-A-Lot reading

it) and gives the letter to Fluxi. After returning from the post

office, Fluxi gives the player a signed response from Prince

Charming: He does not believe the player’s authenticity as

the player encrypted the message for Prince Charming, but

did not sign it. Hence, the player has to rewrite his/her letter,

encrypt it with Prince Charming’s public potion and sign it

with his/her own private potion. After resending the letter,

Fluxi returns with a signed and encrypted reply from Prince

Charming, telling the player that the prince waited an

eternity for this question and would be glad to dance with

him/her.

The controls in Fluxi’s Cryptic Potions were gaze-based via

point-and-click. The player could pick up potions and letters,

write new messages, and talk to the dragon. The player could

not move or teleport, resulting in him/her staying in the same

room all the time. In all technological settings, the player sat

on a chair, simulating the same position as in the EVE.

43

4. LEARNING IN IMMERSIVE

ENVIRONMENTS
Necessary to consider the factors influencing learning

outcomes, especially when teaching and learning with

immersive technology like virtual reality, e.g. immersion as

a quantifiable description of technology (Slater et al. 1999)

and presence as the feeling of ’being there’ (e.g. Biocca

1997). Dalgarno and Lee (2010) identify representational

fidelity (the display of the environment, the display of view

changes and object motion, the object behavior, the

representation of the user, the provided spatial audio, and the

kinesthetic and force feedback) and the learner interaction

(embodied actions, embodied verbal and non-verbal

communication, control of environment attributes and

behavior, and construction/scripting of objects and

behaviors) as affordances of 3D learning environments.

These characteristics of EVEs can induce the construction of

identity, a sense of presence, and co-presence inside of the

user. These user characteristics, in turn, affect the learning

benefits (spatial knowledge representation, experiential

learning, engagement, contextual learning, and collaborative

learning) through the afforded learning tasks provided by 3D

EVEs. By combining Dalgarno and Lee’s framework with

the idea of presence being a person-specific, unique

characteristic of EVEs (for a discussion about this, see

Mikropoulos 2006), Dengel and Mägdefrau (2018)

introduce the Educational Framework for Immersive

Learning (EFiL, Fig. 2). The EFiL localizes the factors

immersion and presence in the educational supply-use-

framework for the explanation of scholastic learning

presented by Helmke (2014) and provides a solid basis for

explaining learning outcomes in immersive and non-

immersive EVEs: According to the EFiL, learning activities

in EVEs "are determined through the (immersive) learning

potential [including motivation, cognitive factors, and the

emotional state of the learner], the context of the

learner, the perception of the didactical, immersive and

content quality of the instructional materials at a certain

level of presence and the interpretation of these materials.

The factors influencing immersive learning are related

among each other and (especially in scholastic

environments) affected by the family and the teacher of the

learner" (Dengel and Mägdefrau 2018, p. 614). Dengel

(2020) notes that the EFiL can be used as a framework for

explaining learning in EVEs in general, but, in order to

understand the relations between the factors, one has to

consider already established research from the educational

sciences and psychological research.

The potential of immersive media has been acknowledged

for the use in Computer Science Education (Dengel, 2019):

By taking on the idea of Computer Science Unplugged

(introduced by Bell and Fellows, see e.g. Bell, Rosamond,

and Casey 2012), the concept of Computer Science

Replugged thinks of ways to integrate immersive technology

to enhance existing Computer Science Education activities

and to generate new activities in virtual environments while

preserving most of the key characteristics of an Unplugged

activity (kinaesthetic, fun and engaging with a sense of story

to the activities, see Bell et al. 2009): "By using immersive

technology, the induced feeling of presence can provide a

perception of non-mediation and, therefore, a first-hand

experience" (Dengel, 2019, p. 2).

5. METHOD
By following the assumptions of the EFiL (cognitive

abilities are modeled through the previous scholastic

performance in German, which is the students first language,

and Maths) and the constraints of the factors’ relations

formulated by Dengel (2018), it is hypothesized that

(1) The level of immersion predicts the user’s level of

physical presence.

(2) The user’s emotional state predicts his/her sense of

physical presence (a: Stronger positive emotions

Figure 2. The Educational Framework for immersive Learning (EFiL) by Dengel and Mägdefrau, 2018

44

increase presence. b: Stronger negative emotions

decrease presence.).

(3) The user’s motivation predicts his/her pre-test

performance (a: Intrinsic motivation increases pre-

test performance b: Extrinsic motivation decreases

pre-test performance.)

(4) A higher sense of presence predicts a higher post-

test performance.

(5) A better result in the student’s pre-test predicts a

better post-test performance.

(6) The user’s cognitive abilities predict his/her post-

test performance (a: A higher previous scholastic

performance in German increases post-test

performance. b: A higher previous scholastic

performance in Maths increases post-test

performance.).

As noted in section 4, the factors marked as independent

variables here are related to each other. For the path analysis

approach presented in this study, the relations suggested by

popular theories like the Expectancy-Value-Theory (Ryan

and Deci 2000), the Control-Value-Theory (Pekrun 2000),

and meta-studies like Hattie (2008) were considered for

formulating the research model.

5.1. Sample and Procedure

78 students (36 female, 4 missing values) between the age

of 13 and 16 from different classes of an Austrian school

took part in the study. Asymmetric encryption was not part

of their computer science classes before. Their performances

in the subjects Maths (M = 2.51, SD = .91) and German (M

= 2.42, SD = .92), which could be reported anonymously by

the students on their parents’ notice, were average (with 1

being the highest and 6 the lowest grade).

A week after completing the pre-test and the motivation

questionnaire, the students took part in the experiment in

groups of four to six which were assigned to different

technology settings. This study was part of a bigger study,

providing three EVEs in total. First, they filled out an

emotional state questionnaire and then waited until the next

VR experience was available. Each student was provided

with another technology for each EVE. After completing

each VR experience, they filled out the corresponding

presence questionnaire and post-test.

5.2. Instruments

An adapted version of the Slater-Usoh-Steed presence

questionnaire (Slater, Usoh, and Steed 1994) was used

where the mean score was calculated out of six questions on

a seven-point Likert scale (M = 4.14, SD = 1.56, α = .91).

Further, an emotional state questionnaire of Titz (2001) was

used, assessing academic emotions on a 6-point Likert scale

(positive emotions: M = 2.91, SD = .98, α = .73; negative

emotions excluding fear: M = .69, SD = .68, α = .68). The

context motivation questionnaire assessed intrinsic

motivation (M = 3.10, SD = 1.02, α = .85), identified

motivation (M = 3.34, SD = .97, α = .79), introjected

motivation (M = 2.39, SD = 1.07, α = .76), and extrinsic

motivation (M = 2.70, SD = 1.02, α = .65) for learning in the

subject Computer Science (original version by Hanfstingl

(Hanfstingl et al. 2010), adapted and evaluated for the

subject Computer Science by Dengel, 2020) on a 5-point

Likert scale. For the path analysis, only intrinsic motivation

and extrinsic motivation were analyzed as they tended to

show the greatest difference in motivation for learning

computer science between the students. The pre- and post-

tests were the same and assessed the students’ understanding

skills: The first task and the second task asked the students

to explain why a specific key was used in order to

sign/encrypt a message, resulting in a performance test of

four points total. The students scored better in the post-test

(M = 1.83, SD = 1.20, α = .68) than in the pre-test (M = 1.32,

SD = 1.16; the pre-tests scale reliability was not calculated

as the tasks were supposed to be new to the students). A third

task where the student had to insert the correct keys into

blanks was removed due to a reduction of the overall scale

reliability of the post-test. The Fluxi’s Cryptic Potions EVE

was presented with three different technologies: a laptop, a

mobile VR (using a Moto Z smartphone and a Daydream

View headset), and an HTC Vive.

5.3. Results

While there were no outliers in the sample’s results, the

results of the post-test, the pre-test, the extrinsic motivation

scale, the negative emotions scale, and the scholastic

performances in German and Maths were not equally

distributed (Shipiro-Wilk method, p < .05). Non-parametric

analysis was used where it was applicable.

An ANOVA could show significant differences (F = 22.68,

p < .0005) between the induced levels of presence for the

different technologies (laptop: M = 3.11, SD = 1.23; Mobile

VR: M = 4.07, SD = 1.54; HTC Vive: M = 5.40, SD = .93).

A Gabriel (used because of slightly varying group sizes)

post-hoc test could show that presence in the laptop setting

at a significance level of p < .05 from the Mobile VR setting

and at a significance level of p < .0005 from the HTC Vive

level. The level of presence was significantly different from

the Mobile VR level as well (p < .01). A multiple linear

regression model including immersion, positive emotions,

and negative emotions as predictors of presence was

calculated, but only immersion was included as the only

predictor of presence with β = .63, p < .0005) A predictive

effect of positive emotions and negative emotions on

presence was not significant (this relation will be explored

further in the path analysis).

To predict the pre-test performance, another multiple linear

regression model [corrected R2 = .06, F (2, 70) = 3.27, p <

.05] was calculated, including intrinsic motivation (β = .12,

p > .05) and extrinsic motivation (β = -.23, p > .05).

The students’ post-test performance could be predicted

[corrected R2 = .26, F (4, 59) = 6.59, p < .0005] by the factors

presence (β = .24, p < .05), pre-test performance (β = .50, p

< .0005), the previous scholastic performance in German (β

= .29, p < .05) and the previous scholastic performance in

German (β = -.27, p < .05).

As noted in section 4, the factors that predict learning

achievement are related to each other. Therefore, a path

analysis was calculated, integrating suggested relations

within and between the different theoretical constructs.

45

The path analysis showed good fit indices (Chi2 p = .30,

RMSEA = .041, CFI = .968, TLI = .946, SRMR = .073).

Figure 3 shows the correlations between and predictive

effects of the different factors. Intrinsic motivation and

extrinsic motivation are correlated negatively; scholastic

performances in German and in Maths are correlated

positively; positive and negative emotions are correlated

negatively. A higher scholastic performance in German

predicts lower positive emotions; a higher scholastic

performance in Maths predicts higher positive emotions; a

higher scholastic performance in German predicts higher

negative emotions (these effects are inverse in the path

analysis due to the fact that the best scholastic performance

is grade 1, the worst is grade 6). A higher level of immersion

predicts a higher level of presence. Presence, pre-test

performance, as well as scholastic performances in German

and Maths predict the post-test performance.

5.4. Discussion

Regarding the hypotheses, H1, The level of immersion

predicts the user’s level of physical presence, can be

maintained as the ANOVA and the post-hoc tests show

significant differences. H2, The user’s emotional state

predicts his/her sense of physical presence (a: Stronger

positive emotions increase presence. b: Stronger negative

emotions decrease presence.) could not be verified as

emotions were not identified as predictors of presence.

Regarding H3, The user’s motivation predicts his/her pre-

test performance (a: Intrinsic motivation increases pre-test

performance b: Extrinsic motivation decreases pre-test

performance.), the sample was too small to find significant

effects, this hypothesis has to be investigated further. H4

assumed that A higher sense of presence predicts a higher

post-test performance. The effect of presence on post-test

performance was found to be significant.

Therefore, presence poses an important predictor of learning

outcomes for the presented EVE. H5, A better result in the

student’s pre-test predicts a better post-test performance,

could be verified as well in this study and can be maintained.

For H6, the user’s cognitive abilities predict his/her post-test

performance (a: A higher previous scholastic performance

in German increases post-test performance.

b: A higher previous scholastic performance in Maths

increases post-test performance.), both subhypotheses can

be maintained as the study showed significant effects of the

previous scholastic performance on the post-test learning

outcomes.

Even though some of the results are not significant (as

assumed, due to the small sample size), the general idea of

the EFiL, which was used for the selection of the hypotheses,

was found to be true: Presence is an important predictor of

learning outcomes and is influence by immersion. Even

though the learning outcomes are influenced by many

factors, the level of immersion is not one of them.

6. CONCLUSIONS
Teaching the basic idea of asymmetric encryption using VR

technology has the opportunity that it is possible to realize

metaphors and analogies that are impossible to carry out in

the physical reality. Still, using metaphors for explaining

general ideas is tricky: It is the role of the teacher to explain

the metaphor/analogy before or after the activity.

Furthermore, if the teacher uses the EVE as an introduction

to asymmetric cryptography in advanced classes, dealing

with computational complexity and mathematical

background becomes crucial as well. Doing so, VR

experiences should be seen as an addition to existing

teaching methods, not as substitutes. They have to be

included at the right point in the learning process in order to

show their potential. While the VR activity was effective in

terms of learning outcomes, it is, by now, not possible to

conclude that using the VR environment has benefits over

Figure 3. Path Analysis Showing Effects between Intrinsic Motivation (MotInt), Extrinsic Motivation (MotExt),

Scholastic Performances in German and Maths, Positive Emotions (EmoPo), Negative Emotions (EmoNe), Presence

(Pres), Immersion (Imm), Pre-Test Performance (PerfPre), and Post-Test Performance (PerfPost)

Levels of Significance: *p<.05; **p<.01; ***p<.001

46

real activities. In addition, the EVEs can be enhanced in

multiple ways: Providing possibilities to interact with other

students, for example to send each other secret messages or

to intercept other students’ messages and try to decrypt them

would make the EVE more fun and motivating while adding

more interaction possibilities. That said, using VR in

cryptography education has its merits, but also poses

challenges for the teacher. Future studies could focus on

exploring the benefits and challenges of using this

metaphorical VR representation in comparison to real

activities or traditional learning approaches. Having this in

mind, it would also be interesting to explore, what other

topics in CS education can benefit from the use of immersive

technology in the classroom and how immersive technology,

in general, can enhance learning.

7. REFERENCES
Art of the Problem. (2012). Public key cryptography -

diffiehellman key ex-change (full version). Retrieved May

27, 2019, from https://www.youtube.com/watch?

v=YEBfamvdo

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009).

Computer Science Unplugged: School Students Doing

Real Computing Without Computers. The New Zealand

Journal of Applied Computing and Information

Technology, 13(1), 20–29.

Bell, T., Rosamond, F., & Casey, N. (2012). Computer

Science Unplugged and related Projects in Math and

Computer Science Popularization. In M. R. Fellows H. L.

Bodlaender (Eds.), The Multivariate Algorithmic

Revolution and Beyond, 398–456.

Biocca, F. (1997). The Cyborg’s Dilemma: Progressive

Embodiment in Virtual Environments. Journal of

Computer-Mediated Communication, 3(2), JCM324.

Bricken, W. (1990). Learning in Virtual Reality. Seattle.

Dalgarno, B., & Lee, M. J. W. (2010). What are the Learning

Aordances of 3-D Virtual Environments? British Journal

of Educational Technology, 41(1), 10–32.

Dengel, A. (2019). Computer Science Replugged: What Is

the Use of Virtual Reality in Computer Science Education?

Proceedings of the 14th Workshop in Primary and

Secondary Computing Education (WiPSCE’19).

Association for Computing Machinery, New York, NY,

USA, Article 21, 1–3.

Dengel, A., & Mägdefrau, J. (2018). Immersive Learning

Explored: Subjective and Objective Factors Influencing

Learning Outcomes in Immersive Educational Virtual

Environments. Proceedings of 2018 IEEE International

Conference on Teaching, Assessment, and Learning for

Engineering (TALE). IEEE, 608-615.

Diffie, W., & Hellman, M. (1976). New Directions in

Cryptography. IEEE Transactions on Information Theory,

22(6), 644–654.

Fekete, S. P., Morr, S. (2018). Public key krypto. Retrieved

May 27 2019, from https://idea-instructions.com/public-

key

Hanfstingl, B., Almut, T., Andreitz, I., & Müller, F.H.

(2010). Evaluationsbericht Schüler-und Lehrerbefragung

2008/09. Interner Arbeitsbericht. Klagenfurt, Institut für

Unterrichts-und Schulentwicklung.

Hattie, J. A. (2008). Visible Learning: A Synthesis of over

800 Meta-analyses Relating to Achievement. Routledge.

Helmke, A (2014). Unterrichtsqualität und

Lehrerprofessionalität: Diagnose, Evaluation und

Verbesserung des Unterrichts. Seelze-Velber: Klett

Kallmeyer.

Mikropoulos, T. A. (2006). Presence: A Unique Charac-

teristic in Educational Virtual Environments. Virtual

Reality, 10(3-4), 197–206.

Pekrun, R. (2000). A Social-cognitive, Control-value theory

of Achievement Emotions. Motivational Psychology of

Human Development: Developing Motivation and

Motivating Development. Advances in Psychology, 131,

143–163.

Puttawong, N., Visoottiviseth, V., & Haga, J. (2017).

Vrfiwall Virtual Reality Edutainment for Firewall Security

Concepts. Proceedings of 2017 2nd International

Conference on Information Technology (INCIT). IEEE, 1-

6.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method

for Obtaining Digital Signatures and Public-key

Cryptosystems. Communications of the ACM, 21(2), 120-

126.

Ryan, R., & Deci, E. (2000). Self-determination Theory and

the Facilitation of Intrinsic Motivation, Social

Development, and Well-being. American Psychologist,

55(1), 68.

Slater, M., Linakis, V. Usoh, M., & Kooper, R. (1999).

Immersion, Presence, and Performance in Virtual

Environments: An Experiment with Tri-Dimensional

Chess. Proceedings of the ACM Symposium on Virtual

Reality Software and Technology. ACM, 163-172.

Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence

in Virtual Environments. Presence: Teleoperators and

Virtual Environments, 3(2), 130–144.

Sturgeon, T., Allison, C., & Miller, A. (2009). Exploring

802.11: Real Learning in a Virtual World. Proceedings of

Frontiers in Education Conference. IEEE, 1–6.

Titz, W. (2001). Emotionen von Studierenden in

Lernsituationen: Explorative Analysen und Entwicklung

von Selbstberichtskalen-Anhang.

UC Computer Science Education. (2008). Computer science

unplugged - the show. Retrieved May 27, 2019, from

https://www.youtube.com/watch?v=

VpDDPWVn5Q&t=10s

Voss, G.B., Nunes, F.B., Muhlbeier, A.R., & Medina, R.D.

(2013). Context-aware Virtual Laboratory for Teaching

Computer Networks: a proposal in the 3d opensim

environment. XV Symposium on Virtual and Augmented

Reality, 252–255.

https://www.youtube.com/watch?%20v=YEBfamvdo
https://www.youtube.com/watch?%20v=YEBfamvdo
https://idea-instructions.com/public-key
https://idea-instructions.com/public-key
https://www.youtube.com/watch?v=%20VpDDPWVn5Q&t=10s
https://www.youtube.com/watch?v=%20VpDDPWVn5Q&t=10s

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

47

Comparison of the Learning Behaviors of the Third Grader Students Integrating

Robots and the Computational Thinking Board Game in Singapore and Taiwan

Yi-Sian LIANG1, Ting-chia HSU2*

 National Taiwan Normal University, Taiwan

 mianmian0202@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT
The purpose of this study is to explore the use of educational robots and computing thinking board games by primary and

middle school students in different countries, and to explore whether there are differences in learning behaviors during the

learning process. It was found that the primary school students in Singapore had the highest number of behaviors in irrelevant

courses, and the same textbook content was applied to the primary three in Taiwan. It can be seen that Taiwanese students

tend to spend time talking with competitors. This phenomenon can increase students' oral communication and enhance their

learning fun during the discussion. Singaporean students rank first in behaviors that are not related to the course. It is

speculated that the content of the textbooks may be too difficult, which may lead to restrictions on communication. This study

suggests that textbooks can be moved to other grades in Singapore in the future to help Singaporean students improve the

same learning effectiveness as Taiwanese students.

KEYWORDS
learning analysis, educational robots, computational thinking, board game

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

48

比較新加坡和台灣小學三年級學生整合機器人與運算思維桌遊之學習行為

梁儀嫻 1，許庭嘉 2*

國立臺灣師範大學 科技應用與人力資源發展學系，臺灣

mianmian0202@gmail.com, ckhsu@ntnu.edu.tw

摘要
本研究旨在探討不同國家小三學生使用教育機器人結

合運算思維桌遊，探討學習過程中的學習行為是否有

差異。結果發現新加坡小學的學生在無關課程的行為

次數居所有行為之冠，而相同教材內容應用在台灣小

三上，發現與組外對談的行為次數居所有行為之冠。

可見台灣學生傾向花時間和競爭同儕對話，此現象可

增加學生進行口語交流，在討論過程中提升他們對學

習的有趣性。新加坡學生在與課程無關學習的行為位

居之冠，推測可能教材內容太難，導致溝通形成限

制。本研究建議未來可將教材移至新加坡其他年級，

幫助新加坡學生提升與台灣學生相同學習成效。

關鍵字
行為分析；教育機器人；運算思維；桌上遊戲

1. 前言
在數位時代中，每個人都應該具備運算思維能力

（ Korkmaz, Ç akir, & Ö zden, 2017 ） 。 運 算 思 維

（Computational thinking, CT）是學習者的基本技能，

也是評估教育的關鍵因素（Zhong, Wang, Chen, & Li,

2016）。運算思維是新一代學習者必須掌握的一套解

決問題的技能，才能在充滿由軟體驅動物體的數位時

代中蓬勃發展（ Román-González, Pérez-González, &

Jiménez-Fernández, 2017）。

有學者發現機器人活動是一種有效的教學策略，可以

提高人們對機器人的興趣，提高自我效能及與機器人

一起教學，發展出對科學概念的理解並促進運算思維

能力的發展（Jaipal-Jamani & Angeli, 2017）。機器人技

術可以被當作是創造許多科學教育方法的〝工具〞，

例如探究式學習和解決問題（Altin & Pedaste, 2013）。

越來越多的使用社交技能的人型機器人在教育領域中

的科學教育、特殊教育和外語教育等（Sisman, Gunay,

& Kucuk, 2019）。

有學者發現，遊戲式學習可以幫助學習者避免無聊，

因而獲得新的學習體驗環境（Rawendy, Ying, Arifin, &

Rosalin, 2017）。過去二十年中，遊戲式學習的環境已

經發展成為功能強大的學習工具，也引起了各種教育

利益相關者期大的興趣（Groff, 2018）。透過遊戲式學

習、問題導向學習、視覺化程式設計是可以潛在地幫

助學習者在程式設計課程入門中有良好的技術表現

（Topalli & Cagiltay, 2018）。

根據上述所提到的教育機器人已經應用於教育領域

上，而遊戲式學習可以幫助學習者獲得一個新的學習

環境，故本研究試圖探討對於在不同國家的學習者利

用教育機器人進行遊戲式學習，在學習過程中的行為

是否有所差異，並且針對遊戲式學習的過程進行行為

序列分析。本研究將探討的研究問題為：不同國家的

學習者，利用教育機器人進行遊戲式學習之間行為分

析的差異為何？

2. 文獻探討

2.1. 運算思維

運算思維主要是一種思維和行動方式，可以透過使用

特定的技能加以展示，然後成為一個可以做基礎評估

CT 實作本位測量的技能（Shute, Sun, & Asbell-Clarke,

2017）。可以將運算思維簡單地定義為能夠使用電腦

解決生活中產生問題所必須具有的知識、技能和態度

（Korkmaz et al., 2017）。

CT 主要用在程式設計和電腦科學的活動，也還依些研

究與其他主題有關。同時，大多數研究在 CT 活動中採

用專題式學習、問題導向學習、合作學習和遊戲式學

習（Hsu, Chang, & Hung, 2018）。

2.2. 教育機器人

教育機器人的配件及一些特殊學習和教材的使用是目

前科技必備的。學者也已經證明，當應用在自然數學

的學科和科技教育領的學科連結時，學習效果會提高

（Ospennikova et al., 2015）。

教育機器人（Educational Robotics, ER）的概念不應該

只關注在分開、獨立的主題，反而應該作為一種綜合

方法應用，以促進對不同領域和領域的整體理解和接

受（Kandlhofer & Steinbauer, 2016）。教育機器人技術

是用在學習、運算思維、程式設計和工程學的一種轉

換工具，在 K-12 教育當中被視為 STEM 學習的關鍵因

素（Eguchi, 2014）。

2.3. 遊戲式學習

隨著新流行的技術發展，教育界很快開始探索如何將

遊戲用於教學上（Godwin-Jones, 2016）。對於教育遊

戲的設計，遊戲的挑戰應該可以跟上學習者的成長能

力和學習，以辨認可遊戲式學習學習環境中可以持續

學習（Hamari et al., 2016）。

在學校環境中整合遊戲式學習的主要的挑戰之一是幫

助學習者將遊戲中學習到的知識與學校中所學習到的

知識連繫在一起（Barzilai & Blau, 2014）。有學者發現

遊戲式學習已經成功的應用，也發現遊戲式學習的可

以降低考試焦慮和增加參與度（Kiili & Ketamo, 2018）。

49

3. 研究方法

3.1. 研究對象

本次實驗共 54 名三年級學習者參加這項研究。一組為

新加坡某國小三年級 26 名學習者學習第二語言

（Second Language, L2），過程中使用的教材語言為華

語文；另一個為台灣北部某國小三年級 28 名學習者學

習外語（Foreign Language, FL），過程中使用的教材語

言為英語，兩組皆沒有玩過運算思維桌遊，皆利用教

育機器人進行組內合作學習。

參與者平均年齡為 9 歲。為了保護實驗對象，實驗中的

實驗對象們的參與皆得到了父母的同意，並在研究過

程中隱藏他們的個人資訊來保護實驗對象。此外，他

們知道參加是自願的，過程中若有不適可以隨時退出

研究。

3.2. 序列分析之編碼系統

為了探討學習者在遊戲式學習過程中的學習行為，針

對被觀察者的行為詳實記錄下來，並參考相關研究之

編碼系統。在學習過程中將學習狀況分為三類：運算

思維行為、語言行為和其他行為，如表 1 所示。

 表 1 行為編碼：組內競賽活動之行為分析編碼

類別 代碼 意義 範例

運算

思維

編碼

PP(People&People) 組內對談 同組的兩個

人在對談

PC(People

Commnication)
組外對談 與別組在對

談

PR(People & Robot) 使用機器人 掃描卡牌使

機器人移動

ID(Individual

Decision)
個人使用任務

卡

使用石頭、

砂土…等，

放置任務卡

上

CD(Cooperation

Decision)
共同使用任務

卡

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉…

等)

PM(Physical

Message)
姿體表達 行為左右

轉、手勢左

右轉…等

AG(Abstraction

General)
資料簡化或用

其他方式表達

單程式方法

便迴圈方式

表達

語言

編碼

LI(Learning

Interaction)
被觀察者正在

練習口語互動

自己口語互

動

PLI(People learning) 正有其他人在

指導被觀察者

口語互動

教師教觀察

者學習口語

互動

NS(No Speaking) 不會口語互動 沒有講任何

語言

YS(Yes Speaking) 會正確口語互

動

單字、句型

接正確

LT(Listen to teacher) 聽教師講解 教師講解遊

戲規則

其他

IM(Irrelevant

Message)
無關課程 發呆、離開

座位…等

SP(Separate) 組內做不同的

事

各做各的事

4. 研究結果

本實驗將學習者利用教育機器人進行遊戲式學習的學

習過程，進行行為分析的比較。依據影片紀錄，學習

者的行為經過編碼及後續的序列分析，各獲得 494 個及

6588 個行為編碼，本研究進一步對 54 名學習者提出的

70282 種編碼進行行為頻率計算如表 2 所示。

表 2 兩國學習者之遊戲式學習行為出現比率

編碼 新加坡 台灣

次數 百分比(%) 次數 百分比(%)

PP 58 11.98% 764 14.25%

PC 67 13.84% 1123 20.94%

PR 74 15.29% 763 14.23%

ID 0 0.00% 85 1.58%

CD 6 1.24% 313 5.84%

AT 56 11.57% 795 14.82%

PM 0 0.00% 537 10.01%

AG 0 0.00% 0 0.00%

LI 18 3.72% 348 6.49%

PLI 42 8.68% 116 2.16%

NS 0 0.00% 0 0.00%

YS 0 0.00% 0 0.00%

LT 37 7.64% 408 7.61%

IM 89 18.39% 2 0.04%

SP 37 7.64% 109 2.03%

根據上表，新加坡小學的學習者中，前五名行為依序

為無關課程（IM）、使用機器人（PR）、與組外對談

（PC）、組內對談（PP）、使用卡牌（AT），而在台

灣小學的學習者中，前五名行為依序為與組外對談

（PC）、使用卡牌（AT）、組內對談（PP）、使用機

器人（PR）、姿體表達（PM）；由此可知，學習者在

使用教育機器人進行遊戲式學習時，皆會使用使用機

器人（PR）、與組外對談（PC）、組內對談（PP）、

使用卡牌（AT）。唯一的差別為新加坡小學的學習者

較常做一些與課程無關（IM）的事情，而台灣小學的

學習者較專注在課堂上，並會透過肢體表達（PM），

完成任務。

4.1. 行為分析

為確保過程的一致性，以相同性質背景的人員，各分

配50%的影片進行分析。在定量分析後，針對結果比較

每個碼之間的關聯性並繪成行為編碼圖，箭頭方向為

起始編碼至目標編碼，線上數字即表示該轉換行為關

係的 Z值，Z值大於 1.96 代表著行為序列達到顯著水準

（p<0.05）（Bakeman & Gottman, 1997），如圖 1、圖
2 所示。

50

圖 1 新加坡小學學習者之行為編碼圖

圖 2 台灣小學學習者之行為編碼圖

從圖 1 中可以發現，學習者的行為模式可以分為有三個

獨立的關聯性。這三個關聯分別為 CD-PP-CD（共同使

用任務卡、組內對談、共同使用任務卡）；SP-PC（即

各做各的和與別組組員對談）；PLI-LI（即正有其他人

在指導被觀察者如何說（英語）和被觀察者正在練習

口語互動（自己說英語））。為當學習者在進行合作

使用任務卡（CD）後會與組員討論（PP），接著在一

起合作使用任務卡（CD），而當有其他人在指導學習

者口語互動（PLI）後，學習者會透過指導的過程後練

習口語互動（LI），另外，當學習者兩兩一組在做不一

樣的事（SP）時，會意識到似乎該回到課堂中，並與

組外的組員進行討論（PC）。

從圖 2 中可以發現，學習者的行為模式可以分為有三個

獨立的關聯性。這三個關聯分別為 ID-CD（即個人使用

任務卡和合作使用任務卡）； IM-PLI-LI（即無關課

程、正有其他人在指導被觀察者如何說（英語）、被

觀察者正在練習口語互動（自己說英語））；LI-PLI

（即被觀察者正在練習口語互動（自己說英語）和正

有其他人在指導被觀察者如何說（英語））。當學習

者在進行合作使用任務卡（CD）後會與個人使用任務

卡（ ID），而當有其他人在指導學習者口語互動

（PLI）後，學習者會透過指導的過程後練習口語互動

（LI），若學習者講述的不正確的話，教師會進一步的

指導學習者口語互動，另外在學習者若在做無關課程

（IM）的事的時候，教師將會再次指導學習者進行口

語互動。

從兩國的行為分析編碼圖來看，新加坡小學的學習者

會共同合作思考完畢後與組員討論並一起完成任務；

而台灣小學的學習者較傾向於獨立思考的部分，不過

當學習者獨立思考後，會再與組員討論並共同完成任

務。這部分可以說明利用教育機器人進行遊戲式學習

的過程，可以增加學習者的合作力。另外，兩國小學

的學習者之中，當有其他人在指導學習者口語互動

時，學習者會接著練習口語互動，值得注意的事，台

灣小學的學習者若講述錯誤的口語的話，指導者將會

再次指導學習者進行口語互動，這幫助學習者更完整

且更快速的完成任務。

5. 結論與未來展望

隨著科技應用的興起，教育機器人也跟著盛行，教育

機器人已經越來越多地融入在從幼兒時期到高等教育

的教育領域當中，教育機器人活動將與課程的學習目

標或技能的發展中，保持一致性，例如：協作、解決

問題、創造力、批判性思維和運算思維（Komis,

Romero, & Misirli, 2016）。近年來，因為行為分析的的

認可和對行為分析服務的需求已經大大提升，透過閱

讀材料並按照課程領域分類（例如：倫理學、行為主

義、單科研究方法），以便為新程式開發和語言翻譯

工作提供資源（Pastrana et al., 2018）。故本研究利用教

育機器人進行遊戲式學習幫助學習者學習，並透過行

為分析編碼表觀察學習者的行為，發現兩國小學的學

習者之中，當有其他人在指導學習者口語互動時，學

習者會接著練習口語互動，值得注意的事，台灣小學

的學習者若講述錯誤的口語的話，指導者將會再次指

導學習者進行口語互動，這可以幫助學習者更加完整

且更快速的完成任務。

在學習過程中，本研究發現新加坡小學的學習者在無

關課程（IM）的部分佔據第一名，推測可能是因為新

加坡小學的學習者在校內華語分班的部分較為後段

班，而教材內容所使用的華語部分可能對新加坡小學

的學習者來說較為困難，導致學習者遇到問題時不敢

詢問不知道該如何做，才會做出與課程無關的事情，

故本研究建議未來可以朝著將將教材更改為適合學習

者的內容，並針對調整整體教學流程，幫助學習者達

成提升學習成效的部分。

6. 致謝

本研究感謝科技部研究計畫編號 : MOST 108-2511-H-

003 -056 -MY3 的部分補助。

7. 參考文獻
Altin, H., & Pedaste, M. (2013). Learning Approaches to

Applying Robotics in Science Education. Journal of Baltic

Science Education, 12(3), 365-377.

Bakeman, R., & Gottman, J. M. (1997). Observing

interaction: An introduction to sequential analysis.

Cambridge University Press.

Barzilai, S., & Blau, I. (2014). Scaffolding Game-based

Learning: Impact on Learning Achievements, Perceived

Learning, and Game Experiences. Computers &

Education, 70, 65-79.

Godwin-Jones, R. (2016). Emerging Technologies

Augmented Reality and Language Learning: From

Annotated Vocabulary to Place-based Mobile Games.

Language Learning & Technology, 20(3), 9-19.

Groff, J. S. (2018). The Potentials of Game‐based

Environments for Integrated, Immersive Learning Data.

European Journal of Education, 53(2), 188-201.

51

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-

Clarke, J., & Edwards, T. (2016). Challenging Games Help

Students Learn: An Empirical Study on Engagement, Flow

and Immersion in Game-based Learning. Computers in

Human Behavior, 54, 170-179.

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to

Learn and How to Teach Computational Thinking:

Suggestions Based on a Review of the Literature.

Computers & Education, 126, 296-310.

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics

on Elementary Preservice Teachers’ Self-efficacy, Science

Learning, and Computational Thinking. Journal of Science

Education and Technology, 26(2), 175-192.

Kandlhofer, M., & Steinbauer, G. (2016). Evaluating the

Impact of Educational Robotics on Pupils’ Technical-and

Social-skills and Science Related Attitudes. Robotics and

Autonomous Systems, 75, 679-685.

Kiili, K., & Ketamo, H. (2018). Evaluating Cognitive and

Affective Outcomes of a Digital Game-based Math Test.

IEEE Transactions on Learning Technologies, 11(2), 255-

263.

Komis, V., Romero, M., & Misirli, A. (2016). A Scenario-

Based Approach for Designing Educational Robotics

Activities for Co-creative Problem Solving. Proceedings

of International Conference EduRobotics 2016. Cham:

Springer, 158-169.

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A Validity

and Reliability Study of the Computational Thinking

Scales (CTS). Computers in Human Behavior, 72, 558-

569.

Pastrana, S. J., Frewing, T. M., Grow, L. L., Nosik, M. R.,

Turner, M., & Carr, J. E. (2018). Frequently Assigned

Readings in Behavior Analysis Graduate Training

Programs. Behavior Analysis in Practice, 11(3), 267-273.

Rawendy, D., Ying, Y., Arifin, Y., & Rosalin, K. (2017).

Design and Development Game Chinese Language

Learning with Gamification and Using Mnemonic

Method. Procedia Computer Science, 116, 61-67.

Román-González, M., Pérez-González, J.-C., & Jiménez-

Fernández, C. (2017). Which Cognitive Abilities Underlie

Computational Thinking? Criterion Validity of the

Computational Thinking Test. Computers in Human

Behavior, 72, 678-691.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).

Demystifying Computational Thinking. Educational

Research Review, 22, 142-158.

Sisman, B., Gunay, D., & Kucuk, S. (2019). Development

and Validation of an Educational Robot Attitude Scale

(ERAS) for Secondary School Students. Interactive

Learning Environments, 27(3), 377-388.

Topalli, D., & Cagiltay, N. E. (2018). Improving

Programming Skills in Engineering Education through

Problem-based Game Projects with Scratch. Computers &

Education, 120, 64-74.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An

Exploration of Three-dimensional Integrated Assessment

for Computational Thinking. Journal of Educational

Computing Research, 53(4), 562-590.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

52

Computational Thinking and

Subject Learning and Teaching

in K-12

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

53

On the Integration of Learning Mathematics and Programming

Dan KOHEN-VACS1*, Chronis KYNIGOS2*, Marcelo MILRAD3*

1Holon Institute of Technology, Israel
1,2,3Linnaeus University, Sweden

2National and Kapodistrian University of Athens, Greece

mrkohen@hit.ac.il, kynigos@ppp.uoa.gr, marcelo.milrad@lnu.se

ABSTRACT

In the field of education, there has been recent attention and

call for transdisciplinary approaches related to learning

mathematics and programming in schools. Despite the

advent of theory and tools for such an approach, there is still

a lack of a common ground and implicitness in the

understanding of what exactly this would entail amongst

teachers and curriculum designers. In this paper, we present

a theoretical discussion in the light of our ongoing efforts to

develop a more elaborated and precise language

representing educational and epistemological values for

integrating mathematics and programming. Accordingly, we

provide an overview of our previous research efforts in this

field followed by an elaborated example describing our

approach. We conclude with a discussion addressing the

pedagogical potential of our proposed ideas compared to the

previous ones.

KEYWORDS

constructionism, subject matter integration, computational

thinking, mathematics, programming

1. INTRODUCTION AND RATIONALE
The value of interdisciplinarity is a recurrent issue in

educational settings and often at the core of the rationale for

designing and implementing innovation in schools. The

fields of Science, Technology, Engineering and

Mathematics (STEM) for instance have been a subject for

the application of integrative approaches to teach these

different areas. Spite of these efforts, there have been many

diverse understandings and views on the nature of STEM

and on how to put together an educational activity where

students generate joint meanings from two distinct domains

while engaged in an interesting relevant activity. A number

of underlying questions regarding the perception, the scope

and the implementation of interdisciplinary educational

activities remain implicit. For instance, is it more valuable

to forge two - way connections between STEM disciplines

at first? Is there a sense of thinking of one discipline as the

field of application of another? Is there a sense in perceiving

of one discipline serving the learning of another in an

activity where both co-exist? For instance, what value does

the practice of de-composing problems into simpler ones

have in mathematics and in programming?

In this paper, we look closely at one example of such an

interdisciplinary approach regarding mathematics,

programming and computational thinking (CT). How can a

mathematics teacher integrate a programming activity in

their attempt to engage students in mathematical meaning

making? Conversely, how can a computer science teacher

can help students to write algorithms and programs

employing the necessary mathematics concepts to do so?

How can one discipline serve the understanding of the other

and how can we design activities where students develop

meanings jointly for concepts lying on both domains? To

address some of these issues we review interdisciplinary

approaches to learning mathematics and programming while

trying to develop a more articulated view to think about the

challenge of integrating them. Accordingly, we decompose

the problem in three more focused ways of thinking about it,

i.e. on how to design activities where one domain serves the

other and vice versa and on how to think of the joint learning

of these two domains. We use a special case for each of these

sub-problems to analyze the different issues involved. Our

proposed approach can be employed by teachers to design

and think of activities integrating the two subjects in uni-

disciplinary or interdisciplinary settings.

2. PROGRAMMING AT THE SERVICE

OF MATHEMATICAL MEANING

MAKING
It has been a long time now since a connection was made

between learning to program and learning mathematics. This

connection was firstly elaborated as early as in the 1960's by

Seymour Papert as a theory of learning mathematics which

he called 'Constructionism', i.e. the generation of

mathematical meaning through programming a computer

(Papert, 1980). Back then, programming was not yet

perceived to have some value as a learning subject in general

education. Indeed, Papert saw Constructionism as a

mathematical learning activity involving the construction of

and the tinkering with a digital artifact. He perceived of such

an artifact as a public entity which can be shared, changed,

discussed over. Such an artifact is thus never considered as

'complete' or as 'unquestionable', it is always under reform

and improvement and it can be considered either as an object

in itself or as a building block for higher order constructions

(Kynigos, 2015). So, the initial connection between

mathematics and programming in the field of education,

rather than addressing a two-way connection, referred to the

latter servicing the former, so to speak. Papert (1980)

focused on the issue of the learning of mathematics by

writing a computer program. He and others defined the

Turtle as a means to create contours affording potentials to

employ ideas from Euclidean and Cartesian Geometries. In

addition, these affordances were proposed as absolute

position and heading commands were included (Kynigos,

1992).

3. BIG IDEAS FROM MATHEMATICS
Papert coined the term 'big ideas' in mathematics to draw

attention to some generic mathematical concepts which can

be used as tools for solving problems in Turtle Geometry and

54

understanding the underlying structure of computational

objects (Papert, 2000). Some examples of big mathematical

ideas include generalization, fractions, ratio and proportions.

Some of these ideas concepts related to angles, rate of

change, periodicity. Others address class of objects defined

by their properties as well as orientation in space. In this

promising early work, programming was nevertheless

considered in the role of servicing mathematical meaning-

making. Not much attention was given to educational design

aspiring on optimized intertwinement between learning

mathematics and programming. An exception to this was

Brian Harvey who developed his Berkeley Logo and a 3-

volume book about 'programming Logo style' where Turtle

Geometry only features as one chapter, the rest addressing

issues of LISP-like learning to program (Sinclair & Moon,

1991). For more than a decade, substantial research was

carried out with a focus on learner's mathematical meaning-

making through programming. However, even though this

resulted in the elaboration of a lot of potential yielded by

children's expressions, explanations and exchanges, it also

raised a debate as to the applicability and the effectiveness

of such activity regarding the demands made by schooling

and sustained educational institutions (Noss & Hoyles,

1996). This debate has hence remained unresolved.

Moreover, in the 90s the interest in learning to program

withered as if it had become obsolete in the wake of the

spread of multimedia interfaces and the internet in its early

form, drawing attention to individuals and collectives' use of

digital media rather than their creations with tools affording

constructionist activity.

3.1 Intertwining Applied CT with Math Challenges

Jansen et al., (2018), address the need to re-think what are

the big programming ideas in connection to CT in a way

parallel to the quest for the definition of mathematical big

ideas which began back in the 80's. They take an

epistemological point of view searching to define those big

ideas in the foundational work of Turing, i.e. related to the

process of learning to solve problems in the way computers

do. But then again, there are few efforts re-connecting the

learning of mathematics and programming. This is despite

the recent elaboration of the wider value of approaches to

STEM where technology and mathematics feature in a

transdisciplinary setting which affords such efforts.

Furthermore, in mathematics education, attention has

progressed from highlighting the value of students' learning

of mathematical concepts and ideas as an end in itself. There

is now more emphasis on the learning of mathematics to

involve the adoption of higher order mathematical

processes. That is, to develop a disposition to mathematize

their world by seeking for patterns, creating generalizations,

looking for expression economy (Noss & Hoyles, 1996). In

the same sense, with respect to programming and

computational thinking, Wing (2006) has articulated the

value of broadening the view of programming from the

learning of concepts and techniques to the adoption of

computational practices and strategies. As is well known in

the Computational Thinking Education (CTE) community

addressed the educational point of CT and programming to

involve not only computational concepts but also practices

and strategies (Jansen et al., 2018), i.e. higher-order problem

solving competences such as abstraction, decomposition and

pattern recognition.

3.2 Mathematical Problem Solving Applied by CT

In the past decade, the situation seems to have swung again

and programming has drawn new attention but in a new

guise, that of CT as a fundamental 21st century competence

for all citizens, involving concepts, practices and

dispositions regarding user constructions with digital media

(Grover & Pea, 2018). Programming is seen in this context

as a central feature of CT involving specific concepts (like

e.g. conditionals, loops, variables, recursion). In addition, it

involves strategies and practices as well as thinking

processes such as problem solving and posing, analysis and

decomposition, design, evaluation, refinement and iteration

(Wing, 2006). In its current form, programming as an

element of CT has been perceived with little connection to

mathematical learning. So, what happened to the debate as

to how programming can inspire mathematical meaning

making? And furthermore, how can this debate connect to a

broader debate about connections between mathematics and

programming from an epistemological and educational point

of view?

4. READRESSING THE PROGRAMMING

- MATHEMATICS CONNECTION
As stated earlier in this paper, we reconsider the kinds of

connections between mathematics and programming which

we feel as worth re-visiting in the wake of attention to CT as

a 21st century competence. We do this in an attempt to

highlight mathematical and programming concepts in

contexts where they have equivalent value and use and to

consider the extent to which dispositions, practices and

strategies attributed to these two domains may in fact be

thought of as mutually compatible and worth integrating.

Accordingly, we elaborate on a few examples that address

the connectivity between mathematical concepts and

thinking processes integrating with the engineering kind of

mathematics required to write a computer program. We

proceed and describe an overview of a few cases where we

focus transdisciplinary challenges concerning mathematics,

computational thinking which is later programmatically

implemented on CT implementations used for coping with

mathematical challenges from across domains. We use them

as a starting point for later addressing our current effort and

illustrate transdisciplinary approaches of applied CT in

service in service of mathematics.

4.1 Overview of our previous efforts

We elicit our current research efforts and ask the question of

what kind of mathematics is necessary in order to learn to

program (see, for instance, Sinclair and Moon,

1991). During our previous efforts, we addressed different

mathematical challenges adapted for different study levels

(Jansen et al., 2018; Kynigos, 2015). Accordingly, we

explored how these mathematical challenges could be coped

in terms of computational thinking as well as how they could

be implemented programmatically. To illustrate our efforts,

we selected two mathematical cases from across domains.

The 1st case corresponds to students attending primary

schools coping with simple math challenges. The 2nd case

55

concerns high-school students coping with higher level of

math consisting of geometry challenges. For each of the

cases, students were required to analyze the math challenges

and seek for algorithmic concepts to solve them. Next, they

were presented with an applied tool to code this algorithmic

concept. The coding environment was adapted according to

students’ level of study. Thus, young students used Visual

Computer Language (VLC) as a graphical approach offering

intuitive and clear view of the proceedings according along

the computer program. The high-school students used

Python representing a more traditional coding approach

offering richer programming options which are optimized to

the math challenge they coped with. As illustrated, for both

cases, we used the same transdisciplinary approach

consisting of postulation of math challenge followed by

employment of CT to conceptualized on possible

approaches to cope with challenges. Finally, these concepts

were formulated as applied programs solving the math

challenge. In the next subsection we present the current

phase of our research while illustrating this approach in the

context of solving geometry challenges while combining

core CT concepts using MaLT2.

4.2 Programming to learn Mathematics

In this case we bring our current phase of our efforts to

further explore new ways to use and learn mathematical

ideas through programming. Consider for example the

following four ways to construct a circle with the Logo

based programming language in MaLT2.

Intrinsic Circle

;creates a polygon approximation of a circular curve using

Instrinsic Geometry only

to circlea :a :n

repeat :n [fd :a rt 360/:n]

end

circlea 6 60

Intrinsic Circle using a Euclidean property

;creates a polygon approximation of a circular curve using

a Euclidean property for radius

to circleb :r :n

repeat:n [fd (2*pi*:r)/:n rt 360/:n]

end

circleb 50 36

Euclidean Circle

;uses the Euclidean definition of points equi-distant to the

centre
to circlec :r :n

repeat :n [pu fd :r pd point pu bk:r pd rt 360/:n]

 end
circlec 100 36

to point

 fd 2 bk 2

end

Cartesian Circle

;uses a Cartesian function for each quadrant
to circle :r
upright :r :r

upleft :r :r

downright :r :r
downleft :r :r

pu home pu

end

to upright :r :x
if :x=0 [stop]

pu

setx :x
sety sqrt ((:r*:r) - (:x*:x))

pd

fd 1
upright :r :x-1

end

Each of these uses different mathematical properties coming

from distinct geometrical systems to construct the same

figure. The first one constitutes a polygon approximation of

a circle and does not employ Euclidean elements such as

center or radius nor Cartesian/Algebraic ones such as circle

functions. The second one employs a Euclidean property

relating the circumference to the diameter in order to

nevertheless construct a polygon - circle in intrinsic

Geometry - style. The third uses the equidistance to the

circle's center point Euclidean definition. The fourth

constructs four quadrants (only one is written here for space

economy) using Cartesian positioning primitives and the

circle function. A pedagogical approach engaging students

with the distinctions between these definitions and

constructions would potentially be particularly rich for the

respective mathematical meaning-making distinguishing

amongst the geometrical systems employed (Kynigos,

1992). In these cases, the students would need to be able to

use computational ideas such as structured programs,

variables, loops, not to mention recursion. But these

concepts would be just tools to focus on and consider the

mathematics in a mathematics course.

4.3 Distinguishing between approaches

In this subsection, we focus on how to distinguish between

the presented approach while emphasizing that even in the

case where we have the same programming tool and the

same problem, there can be different approaches to it, here

corresponding to the ideas described in previous sections.

We give an example of two very different solutions to the

problem of constructing a program to create a generalized

parallelogram which however can never be a square. The

problem was given by a teacher in year 8 of a mathematics

class. His students proposed the following program to

construct a generalized parallelogram as follows:

to parallelogram :a :b :c

repeat 2 [fd :a rt :c fd :b rt 180-:c]

end

This procedure expresses the class of objects 'parallelogram'

since it contains variables for the independent linear and

angular elements, expresses the property of equality by

means of a loop to repeat half the figure twice and the

angular dependency by means of a linear function between

two consecutive avatar turns. The students were asked to

solve the above problem after having constructed and

discussed this procedure. They found many solutions mostly

from the following kind:

to parallelogram :x :c

repeat 2 [forward :x right :c forward :x+20 right 180-:c]

end

In this solution, the students imposed an otherwise

redundant functional relation between two consecutive

linear elements of a parallelogram. The definition of a

parallelogram implies that there must be no dependency

between the length of two consecutive sides. The students

solved the problem of constructing a parallelogram which

can never be a square by imposing a functional relationship

between those lengths which makes it impossible for a

56

property of the square to apply, i.e. that the lengths can never

be equal since they must have a difference of 20. So here,

the big aim, is represented by a generalized property of a

geometrical figure combined with the idea of function and

generalized number.

To parallelogram: a: b: c

If: c <90 repeat 2 [fd: a rt: c fd: b rt 180-: c]

 If: c> 90 repeat 2 [fd: a rt: c fd: b rt 180-: c]

End

This response to a task was set by the authors during a

programming course to learn how to program geometrical

figures in MaLT2 (Kohen & Milrad, 2019). Here, the

program generates a parallelogram in every case except for

the value of a turn which allows the generation of a

rectangle. It thus avoids the generation of a square by

imposing a higher order negation of generating a rectangle.

It could be argued that this solution fits better into 'the way

in which a computer would resolve the problem' since the

problem was worded - create a program to construct a

generalized parallelogram which can never become a square.

But here, the mathematical concept needed in order to

construct the program looks like it's in the service of a

computational idea, that of conditionals. It is necessary to

know that of the turns cannot be 90 degrees then the figure

cannot be a rectangle and therefore it cannot become a

square. So, these are two correct solutions but one employs

a mathematical idea of imposing a redundant linear

relationship between two linear elements of the model and

the other employs a computational idea - a conditional to

simply exclude the creation of a square by means of

excluding only the two values which would yield a

rectangle.

5. DISCUSSION - CONCLUSION
In this paper we have presented a few examples with

different approaches illustrating how mathematics and

programming can be integrated in various ways. Our goal is

to help curriculum designers to place joint programming and

mathematics activities in either of the respective curricula or

consider them in trans-disciplinary educational activities

including post-normal science perspectives which focus on

larger socio-scientific issues. For a computer science

teacher, integrating mathematics at the service of

programming concepts could be a way in to including

mathematics into the teaching of programming before

considering mathematics as the object of programming, i.e.

starting from the approach shown in 4.1 to move to the one

in 4.3. Conversely for a mathematics teacher a progression

from 4.2 to 4.3 could be appropriate. In both cases being

explicit about the positioning and the role of the two subjects

would help designing activities which make more sense to

students. This kind of discussion may help clarify

educational policy and curriculum design issues related to

implementation aspects in schools. What kinds of domains

are rich in opportunities for them to develop CT practices

and strategies in the context of using big ideas either in

mathematics or in programming? What kinds of specific

connections can be pedagogically engineered between such

ideas from each domain, for instance between functional

relations and generalized number from mathematics and

variables and model animation properties from computer

science? These are current and future directions in which we

are focusing our research efforts on.

6. REFERENCES
Grover, S. & Pea, R. (2018). Computational Thinking: A

Competency whose Time has Come. Computer Science

Education: Perspectives on teaching and learning.

London: Bloomsbury Academic, 19-37.

Jansen, M., Kohen-Vacs, D., Milrad, M. (2018). A

Complementary View for better Understanding the Term

Computational Thinking. Proceedings of the International

Conference on Computational Thinking Education 2018.

Hong Kong: The Education University of Hong Kong, 2-

7.

Kohen, D., & Milrad, M. (2019). Computational Thinking

Education for In-Service Elementary Swedish Teachers:

Their Perceptions and Implications for Competence

Development. Proceedings of the International

Conference on Computational Thinking Education 2019.

Hong Kong: The Education University of Hong Kong,

109-112.

Kynigos, C. (1992). The Turtle Metaphor as a Tool for

Children Doing Geometry in Learning Logo and

Mathematics. Cambridge, MA: MIT press.

Kynigos, C. (2015). Constructionism: Theory of Learning or

Theory of Design? Selected Regular Lectures from the

12th International Congress on Mathematical Education.

Cham: Springer, 417- 438.

Noss, R., & Hoyles, C. (1996). Windows on mathematical

meanings: Learning cultures and computers. Dordrecht:

Kluwer. Science and Technology, 3(3), 249-262.

Papert, S. (1980). Mindstorms: Children, Computers, and

Powerful Ideas. New York: Basic Books.

Papert, S. (2000). What’s the Big Idea? Toward a Pedagogy

of Idea Power. IBM Systems Journal, 39(3.4), 720-729.

Sinclair, K., & Moon, D. (1991). The Philosophy of LISP.

Communications of the ACM, 34(9), 40–47.

Wing J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3).

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

57

An Empirical Study of Analyzing the Behaviors of the Sixth Grade Students in

Learning English Oral Interaction with Educational Robots

1Chao-jui HSU, 2Ting-chia HSU*

1,2National Taiwan Normal University, Taiwan

god26275001@gmail.com，ckhsu@ntnu.edu.tw

ABSTRACT
This study attempted to explore the learning behaviors of the six grade students using educational robots on the learning units

of oral interaction in English. This study provided the application of smart phone for controlling the action of the robots and

ask the students to orally interact with partners so as to put the objective learning sentences into practice. Then, the foreign

language interactive behaviors were recorded and observed during the period of collaborative learning tasks. The participants

were 18 English as Foreign Language (EFL) learners whose age were from 11 to 12. The research results showed that exercise

of expressing opinions in English with objective learning sentence is the most frequent behaviors in the learning process,

implying that the game of the educational robots did not preclude the students from naturally using English oral presentation

to achieve the purpose of communication, so as to reduce the foreign language learning anxiety.

KEYWORDS
foreign language learning anxiety, educational robot game, English oral interaction

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

58

探討六年級學生使用教育機器人學習英語口語互動之行為實證分析

1許晁睿，2許庭嘉＊

1,2國立臺灣師範大學， 科技應用與人力資源發展學系，臺灣

god26275001@gmail.com，ckhsu@ntnu.edu.tw

摘要
本研究旨在探討國小六年級學生使用教育機器人在英

語口語互動學習單元之學習行為分析。本研究提供手

機應用程式來控制機器人行動，並要求學生和同伴用

英語口語互動以實際演練學習的目標句型，然後錄影

和觀察學生在合作學習的任務期間，所進行的外語互

動行為。參與者由 18名 11-12歲以英語作為外語學習的

學習者所組成。研究結果顯示，在學習過程中，學生

練習使用學習目標的句型練習英語表達意見的部份是

很常出現的行為，代表教育機器人遊戲並不會讓學生

排斥自然使用英語口說達成溝通目的，減少外語焦

慮。

關鍵字
外語學習焦慮；教育機器人遊戲；英語口語互動

1. 前言
資訊技術是世界設施的基礎。在這種社會背景下，教

育像任何生產或服務部門一樣，都受到技術的影響。

面對這種環境，教育系統必須使年輕人適應數位世

界，因此，在學校中，我們應該訓練語言和數位素

養 ， 否 則 他 們 將 成 為 數 位 文 盲 García-Peñalvo

（2018）。運算思維作為一種使用電腦技術解決問題

的方法，已成為主流，因為許多政府正在提高兒童的

程式設計能力。但是，除了所掌握的程式設計能力

外，對於程式設計如何影響其他方面的研究較少

（Moreno-León & Robles, 2015）。

在全球化和社會文化的趨勢背景下，移民和英語的傳

遞讓英語學習者的社會和教育背景有多樣性。由於英

語是一種國際語言，因此，如果不特別注意英語教學

的背景，就不能做出有效的教學決策（McKay &

Bokhorst-Heng, 2017）。數十年來在東亞國家中，英語

教育有普及和重要性的狀況，台灣和其他東亞國家已

開始在高等教育領域推廣英語中等教學（English‐

medium instruction, EMI）。在 EMI 教室中通過英語進

行交流是英語作為外語學習者（English as a foreign

language, EFL）的基本要求，但這可能是一個挑戰。因

為說外語是一個複雜的過程，包含語言能力，口語技

巧和策略運用（Chou, 2018）。第二語言焦慮一直是經

驗和理論上不斷關注的對象。出於理論和實踐的考

慮，該領域的許多研究都檢查了焦慮與第二語言成就

之間的關係（Teimouri, Goetze, & Plonsky, 2019）。焦

慮對於外語學習格外重要，因為焦慮可能會阻礙學習

者與他人交流（Horwitz, Horwitz, & Cope, 1986）。學者

們已經表明在語言學習中考慮焦慮的重要性。因此，

越來越多的研究人員嘗試整合多種學習策略和技術來

減輕學生在學習英語時的焦慮（Hwang, Hsu, Lai, &

Hsueh, 2017）。Benitti （2012）指出，機器人教學是一

個很好教學工具，並且也非常容易吸引學生的注意

力。為了使學習語言過程更具刺激性，老師需要在開

發活動時投入大量思想，以保持學生的興趣並實現短

期目標，從而增強自信心並降低焦慮水平（Alemi,

Meghdari, & Ghazisaedy, 2014）。

基於上述提到越來越多研究者想透過不同的學習策略

來降低學生的學習焦慮，並且機器人教學容易吸引學

生注意力。因此本研究將探討對國小六年級的學生，

以英語做為學習單元，提供了手機應用程式及教育機

器人，輔助學生學習運算思維的概念，同時透過課堂

活動遊戲與機器人互動，來觀察學生在學習行為中的

過程。

2. 文獻探討

2.1. 外語焦慮（Foreign language anxiety）

多數的外語學習者在學習外語過程中感到焦慮（Elaldi,

2016）。英語作為外語教學（EFL）在亞洲面臨許多挑

戰，例如缺乏互動式語音環境、強調考試成績以及存

在外語焦慮的問題（Yen, Hou, & Chang, 2015）。EFL

學習者不願在課堂上講英語，這是外語背景下常見的

問題（Hamouda, 2013）。學生在學習英語時表現出許

多問題和困難，如語法，詞彙和發音等，這些通常被

認為會妨礙 EFL 學習者的難題（Hashemi & Abbasi,

2013）。學生必須被告知他們不是唯一一個在學習外

語時遇到焦慮的人。學生認為自己英語能力低，並且

缺乏信心和準備，以及害怕犯錯和得到負面評價，所

以相當多的學生不願回應老師（Hamouda, 2013）。大

多數學習者在外語學習中都有一定程度的焦慮，例如

發音困難，被老師立即糾正問題，不理解老師所提出

的問題。焦慮會對學習第二語言或外語的過程產生負

面影響，老師與學生普遍認爲焦慮是學習的障礙

（Horwitz et al., 1986）。焦慮的主要原因主要都是對互

動、自尊心低、缺乏自信、缺乏準備和擔心失敗等因

素（Marwan, 2016; Melouah, 2013）。

總和以上的敘述，語言表現不足以及被其他人評價為

負面的恐懼最有可能引發年輕學習者的焦慮（Liu &

Chen, 2014）。老師和課程設計者應該提出一些教學活

動，以幫助學習者減少焦慮（Al-Khasawneh, 2016）。

為了幫助減少學習者的焦慮，英語老師應該需要知道

EFL學習者中存在著外語焦慮，並在課堂上表現出同情

心。老師需要應對學生的外語焦慮，並防止學生迴避

課堂參與（Park & French, 2013）。學校環境和情境項

目，也可能會影響學生的焦慮水平，因此老師應該提

供安全和有吸引力的環境（Henter, 2014）。

59

2.2. 運算思維與教育機器人

教育機器人技術可以做為一種工具，提供學生參與和

發展運算思維的機會（ I. Lee et al., 2011; Repenning,

Webb, & Ioannidou, 2010）。許多學校也開始在引入一

些教育機器人讓學生體驗不一樣的學習環境，提升和

建立更高階的運算思維的能力，並幫助學生解決複雜

的問題（Blanchard, Freiman, & Lirrete-Pitre, 2010）。

關於運算思維的教學，在過去的研究中，已經有學者

接受將教育機器人作為教導學生運算思維的方法（Bers,

Flannery, Kazakoff, & Sullivan, 2014; Botički, Pivalica, &

Seow, 2018）。教育機器人是一種功能強大和具有高彈

性的教學工具，機器人的技術通常都包含了科學、數

學、資訊和科技的學科，被視為一門跨學科的活動，

並為各個年級的學生帶來了重大的好處。有研究人員

表示，針對 4-6 歲的兒童可以建立簡單的機器人專案項

目，進而熟悉工程技術和程式語言的思考模式，同時

還能建立運算思維的能力（ Bers et al., 2014 ）。

Penmetcha （2012）研究了教育機器人對大學生探索機

器人技術與開發程式語言和演算法思維之間的相關影

響，結果表示，無論學生的背景如何，機器人活動都

能作為媒介落實整合運算思維的目的，並可以教更高

層面的抽象化和程式設計概念。機器人教學活動具有

改善課堂教學的巨大潛力，能讓學生從被動學習的身

分，轉換為主動學習者，進而形成主動與同儕互動並

建立良好關係。許多研究指出，教育機器人的課程對

學生批判性思考、問題解決能力以及認知能力有正面

影響（Atmatzidou & Demetriadis, 2012; Blanchard et al.,

2010）。其他研究也有指出教育機器人如何提升學生

學習的方式以及學生的動機、合作和創造力（Eguchi,

2010; Khanlari, 2013）。

3. 研究方法

3.1. 研究對象

本研究針對學生在英語學習中的行為進行編碼，實驗

對象台灣北部某國小六年級的學生，平均年齡為 11-12

歲，有 18 位學生，過程中使用的教材語言為英語，學

生需要使用手機來操控教育機器人，透過手機的應用

程式拖拉積木程式，將積木程式層層堆疊，藉此來操

控教育機器人，學生可以透過機器人的反應及行為，

來得知自己所拉的積木程式與自身預期教育機器人的

反應是否一樣，來觀看學生在英語學習過程中的行

為。

3.2. 序列分析之編碼系統

為了探討學習者在學習過程中的學習行為，本研究針

對學生的學習行為記錄為 log 檔並進行編碼，並參考相

關研究編碼來進行編碼，使用 GSEQ軟體進行分析分析

學生在學習行為之間進行的活動結果，以探討學生的

行為模式。在學習過程中將學習狀況分為三類：運算

思維行為、語言行為和其他行為，如表 1 所示。

表 1 行為分析編碼表

類別 代碼 意義 範例

運算

思維

編碼

PP(People&People) 組內對談 同組的兩個

人在對談

PC(People

Commnication)
組外對談 與別組在對

談

PR(People & Robot) 使用機器人、

手機

操控手機拖

拉積木程式

使機器人移

動

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉等)

PD:

1.ID(Individual

Decision)

2.CD(Cooperation

Decision)

組內當中:

1.個人(ID)使

用任務卡

2.共同(CD)使

用任務卡

使用任務卡

放置石頭、

砂土…等

PM(Physical

Message)
姿體表達 行為左右

轉、手勢左

右轉…等

AG(Abstraction

General)
資料簡化或用

其他方式表達

單程式方法

便迴圈方式

表達

語言

編碼

LI(Learning

Interaction)
被觀察者正在

練習口語互動

自己口語互

動

PLI(People learning) 正有其他人在

指導被觀察者

口語互動

教師教觀察

者學習口語

互動

NS(No Speaking) 不會口語互動 沒有講任何

語言

YS(Yes Speaking) 會正確口語互

動

單字、句型

接正確

其他

LT(Listen to teacher) 聽教師講解 教師講解遊

戲規則

IM(Irrelevant

Message)
無關課程 發呆、離開

座位…等

SP(Separate) 組內做不同的

事

各做各的事

4. 研究結果

本實驗將學習者利用教育機器人進行英語的學習過

程，進行行為分析的比較。依據影片紀錄，學習者的

行為經過編碼及後續的序列分析後，共獲得 1542 個行

為編碼，本研究進一步對 18 名學習者提出的各種編碼

進行行為頻率計算，如表 2 所示。

60

表 2 學習者之學習行為出現比率

編碼 次數 百分比（%）

PP 118 7.65%

PC 175 11.34%

PR 594 38.52%

ID 13 0.84%

CD 98 6.35%

AT 99 6.42%

PM 103 6.67%

AG 0 0.00%

LI 110 7.13%

PLI 17 1.10%

NS 0 0.00%

YS 0 0.00%

LT 80 5.18%

IM 38 2.46%

SP 97 6.29%

根據上表，可以看出學習者中，出現前五名行為依序

為使用機器人（PR）佔了 38.52%、與組外對談（PC）

佔了 11.34%、與組內對談（PP）佔了 7.65%、說英語

互動（LI）佔了 7.13%、姿體表達（PM）佔了 6.67%，

由此可知，學生在使用教育機器人進行英語學習時，

使用機器人（PR）、與組外對談（PC）、組內對談

（PP）、說英語互動（LI）、姿體表達（PM）等行為

是最常出現的動作。

4.1. 行為分析

進行上述行為的次數分析以後，將針對分析結果比較

每個行為碼之間的關係圖，並畫製成行為編碼圖。箭

頭方向為起始行為編碼至目標行為編碼，上方的數值

表示從起始行為至目標行為關係的 Z 值，Z 值大於 1.96

代表著行為序列達到顯著水準（p<0.05）（Bakeman &

Gottman, 1997），如圖 1 所示。

圖 1 小學六年級學生之行為編碼圖

從圖 1 中可以發現，學生的行為模式可以分為三個行為

的連動性。這三個連動分別為 AT-CD（即使用手牌、

和合作使用任務卡）；PM-ID（即姿體表達和與個人使

用任務卡）；LI-PLI（即學生正在練習口語互動（自己

說英語） 和有其他人在指導被觀察者如何說（英

語））。每當學生在使用手牌時（AT），會與同組的

學生一起使用任務卡（CD）;並且學生會透過模仿機器

人的行為，進行姿體表達（PM），接著會個人使用任

務卡（ID）來取得任務相關的道具;另外，當學習者練

習口語表達後，會有其他人來指導學習者的口語互動

的部分。

5. 結論與未來展望

近年來，因為對不同學習者的行為分析需求已經大幅

提升，故本研究利用教育機器人輔助學習者學習，並

透過行為分析編碼表來觀察學習者的行為，先前的研

究表示，機器人可以成為動機的重要來源，在以人為

基礎的學習方法上也能具有很大的優勢，可以減少焦

慮程度並為語言學習者提供更加輕鬆的氛圍（S. Lee et

al., 2011）。一些針對英語教師的教學建議：情境因

素，即學校環境和情境項目，可能會影響學生的焦慮

水平，因此教師應提供安全和有吸引力的環境

（Henter, 2014）。多媒體環境可以減少學生的焦慮，

並提供較少壓力的課堂環境。除此之外，多媒體工具

使英語教師能夠幫助學生提高英語表現並降低他們的

語言焦慮（Huang & Hwang, 2013）。當學生開始在外

語課堂上感到安全時，他們自然會開始說話。總之，

所有外語教師都需要激勵學生;鼓勵他們說話;並允許他

們犯錯而不受懲罰（Atas, 2015）。

本研究透過教育機器人輔助工具，來探討學生在使用

手機應用程式以及說英語的過程，並對學生的行為進

行分析，實驗結果顯示，在學習過程中，透過教育機

器人的輔助，學生在英語口說的部份是很常出現的動

作，代表學生在英語口說的部份並不排斥，為了完成

課堂上提供的任務卡，是可以在上課中與同學進行英

語口說互動。接著分析了學生之間的行為關聯，發現

學習者正在練習英語口說的時候，會有其他人指導被

觀察者如何說，代表學生在練習英語口說時，如果學

習者有錯誤的話會有指導老師指導學習者進行英語互

動，這可以使學習者更知道英語口說哪裡需要改進與

修正。

6. 致謝

本研究感謝科技部研究計畫編號 : MOST 108-2511-H-

003 -056 -MY3 的部分補助。

7. 參考文獻

Al-Khasawneh, F. M. (2016). Investigating Foreign

Language Learning Anxiety: A Case of Saudi

Undergraduate EFL Learners. Dil ve Dilbilimi Çalışmaları

Dergisi, 12(1), 137-148.

Alemi, M., Meghdari, A., & Ghazisaedy, M. (2014). The

Effect of Employing Humanoid Robots for Teaching

English on Students' Anxiety and Attitude. Proceedings of

2014 Second RSI/ISM International Conference on

Robotics and Mechatronics (ICRoM). IEEE, 754-759.

Atas, M. (2015). The Reduction of Speaking Anxiety in EFL

Learners Through Drama Techniques. Procedia-Social

and Behavioral Sciences, 176, 961-969.

Atmatzidou, S., & Demetriadis, S. N. (2012). Evaluating the

Role of Collaboration Scripts as Group Guiding Tools in

Activities of Educational Robotics: Conclusions from

Three Case Studies. Proceedings of 2012 IEEE 12th

International Conference on Advanced Learning

Technologies. IEEE, 298-302.

61

Bakeman, R., & Gottman, J. M. (1997). Observing

interaction: An introduction to sequential analysis.

Cambridge University Press.

Benitti, F. B. V. (2012). Exploring the Educational Potential

of Robotics in Schools: A Systematic Review. Computers

& Education, 58(3), 978-988.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.

(2014). Computational Thinking and Tinkering:

Exploration of an Early Childhood Robotics Curriculum.

Computers & Education, 72, 145-157.

Blanchard, S., Freiman, V., & Lirrete-Pitre, N. (2010).

Strategies Used by Elementary Schoolchildren Solving

Robotics-based Complex Tasks: Innovative Potential of

technology. Procedia-Social and Behavioral Sciences,

2(2), 2851-2857.

Botički, I., Pivalica, D., & Seow, P. (2018). The Use of

Computational Thinking Concepts in Early Primary

School. Proceedings of International Conference on

Computational Thinking Education 2018. EdUHK, 8-13.

Chou, M. H. (2018). Speaking Anxiety and Strategy Use for

Learning English as a Foreign Language in Full and Partial

English‐Medium Instruction Contexts. TESOL Quarterly,

52(3), 611-633.

Eguchi, A. (2010). What is Educational Robotics? Theories

Behind It and Practical Implementation. Proceedings of

Society for Information Technology & Teacher Education

International Conference. AACE, 4006-4014.

Elaldi, S. (2016). Foreign Language Anxiety of Students

Studying English Language and Literature: A Sample

from Turkey. Educational Research and Reviews, 11(6),

219-228.

García-Peñalvo, F. J. (2018). Editorial Computational

thinking. IEEE Revista Iberoamericana de Tecnologias

del Aprendizaje, 13(1), 17-19.

Hamouda, A. (2013). An Exploration of Causes of Saudi

Students' Reluctance to Participate in the English

Language Classroom. International Journal of English

Language Education, 1(1), 17-34.

Hashemi, M., & Abbasi, M. (2013). The Role of the Teacher

in Alleviating Anxiety in Language Classes. International

Research Journal of Applied and Basic Sciences, 4(3),

640-646.

Henter, R. (2014). Affective Factors Involved in Learning a

Foreign Language. Procedia-Social and Behavioral

Sciences, 127, 373-378.

Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign

Language Classroom Anxiety. The Modern Language

Journal, 70(2), 125-132.

Huang, P., & Hwang, Y. (2013). An exploration of EFL

Learners' Anxiety and E-learning Environments. Journal

of Language Teaching and Research, 4(1), 27.

Hwang, G. J., Hsu, T. C., Lai, C. L., & Hsueh, C. J. (2017).

Interaction of Problem-based Gaming and Learning

Anxiety in Language Students' English Listening

Performance and Progressive Behavioral Patterns.

Computers & Education, 106, 26-42.

Khanlari, A. (2013). Effects of Robotics on 21st Century

Skills. European Scientific Journal, 9(27).

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, Malyn-smith J., & Werner, L. (2011).

Computational Thinking for Youth in Practice. ACM

Inroads, 2(1), 32-37.

Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G., Sagong, S., &

Kim, M. (2011). On the Effectiveness of Robot-assisted

Language Learning. ReCALL, 23(1), 25-58.

Liu, H. J., & Chen, T. H. (2014). Learner Differences

Among Children Learning a Foreign Language: Language

Anxiety, Strategy Use, and Multiple Intelligences. English

Language Teaching, 7(6), 1-13.

Marwan, A. (2016). Investigating Students’ Foreign

Language Anxiety. Malaysian Journal of ELT Research,

3(1), 19.

McKay, S. L., & Bokhorst-Heng, W. D. (2017).

International English in its sociolinguistic contexts:

Towards a socially sensitive EIL pedagogy. Routledge.

Melouah, A. (2013). Foreign Language Anxiety in EFL

Speaking Classrooms: A Case Study of First-year LMD

Students of English at Saad Dahlab University of Blida,

Algeria. Arab World English Journal, 4(1).

Moreno-León, J., & Robles, G. (2015). Computer

Programming as an Educational Tool in the English

Classroom a Preliminary Study. Proceedings of 2015

IEEE Global Engineering Education Conference

(EDUCON). IEEE, 961-966.

Park, G. P., & French, B. F. (2013). Gender Differences in

the Foreign Language Classroom Anxiety Scale. System,

41(2), 462-471.

Penmetcha, M. R. (2012). Exploring the Effectiveness of

Robotics as a Vehicle for Computational Thinking.

Doctoral Dissertation, Purdue University.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable

Game Design and the Development of a Checklist for

Getting Computational Thinking Into Public Schools.

Proceedings of the 41st ACM Technical Symposium on

Computer Science Education. ACM, 265-269.

Teimouri, Y., Goetze, J., & Plonsky, L. (2019). Second

Language Anxiety and Achievement: A Meta-analysis.

Studies in Second Language Acquisition, 1-25.

Yen, Y.-C., Hou, H.-T., & Chang, K. E. (2015). Applying

Role-playing Strategy to Enhance Learners’ Writing and

Speaking Skills in EFL Courses Using Facebook and

Skype as Learning Tools: A Case Study in Taiwan.

Computer Assisted Language Learning, 28(5), 383-406.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

62

Computational Thinking and

Teacher Development

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

63

Workshops and Co-design Can Help Teachers Integrate Computational Thinking

into Their K-12 STEM Classes

Sally P. W. WU1*, Amanda PEEL2, Connor BAIN3, Gabriella ANTON4, Michael HORN5, Uri WILENSKY6

1,2,3,4,5,6Northwestern University, United States

sally.wu@northwestern.edu, amanda.peel@northwestern.edu, connorbain2015@u.northwestern.edu,

gabriellaanton3.2020@u.northwestern.edu, michael-horn@northwestern.edu, uri@northwestern.edu

ABSTRACT
This work aims to help high school STEM teachers integrate

computational thinking (CT) into their classrooms by

engaging teachers as curriculum co-designers. K-12 teachers

who are not trained in computer science may not see the

value of CT in STEM classrooms and how to engage their

students in computational practices that reflect the practices

of STEM professionals. To this end, we developed a 4-week

professional development workshop for eight science and

mathematics high school teachers to co-design

computationally enhanced curriculum with our team of

researchers. The workshop first provided an introduction to

computational practices and tools for STEM education.

Then, teachers engaged in co-design to enhance their science

and mathematics curricula with computational practices in

STEM. Data from surveys and interviews showed that

teachers learned about computational thinking,

computational tools, coding, and the value of collaboration

after the professional development. Further, they were able

to integrate multiple computational tools that engage their

students in CT-STEM practices. These findings suggest that

teachers can learn to use computational practices and tools

through workshops, and that teachers collaborating with

researchers in co-design to develop computational enhanced

STEM curriculum may be a powerful way to engage

students and teachers with CT in K-12 classrooms.

KEYWORDS
computational thinking, STEM education, K-12, teacher

professional development, curriculum design

1. INTRODUCTION
Initiative to incorporate computational thinking (CT) in K-

12 education face challenges on several fronts, particularly

in the United States. CT education often takes place within

computer science courses, which may limit access to those

who traditionally take computing courses (Heinz, Mannila,

& Färnqvist, 2016). Moreover, there is a dearth of K-12

teachers trained in computer science and technologies

(Advocacy Coalition, 2018; Cuny, 2012).

In order to address the systemic barriers to CT education,

researchers argue for the integration of CT in K-12 STEM

classes (Wilensky, Brady, & Horn, 2014). Integrating CT in

STEM classes can broaden access to computational practices

for all students, as STEM classes are required in middle and

high school. Further, students’ use of computational tools

has been shown to deepen learning in mathematics and

science domains (e.g., Brady et al., 2016; Wilensky, 2003).

Weintrop and colleagues (2016) organize computational

thinking practices in mathematics and science classrooms

into four strands: data practices, modeling and simulation

practices, computational problem-solving practices, and

systems thinking practices. In this paper, we focus on

modeling and simulation (using, modifying, and creating

computational models) and data practices (collecting,

visualizing, and analyzing data). Engaging in these CT-

STEM practices can help students develop science and

mathematics content understanding through authentic

STEM practices used in modern science (Weintrop et al.,

2016).

Integrating CT in STEM classes further addresses the

shortage of teachers trained in computer science by shifting

the focus to training STEM teachers in the computational

tools and practices relevant to their associated fields. This

shift requires both curriculum designers and teachers to

reimagine classroom practices and to learn how to

incorporate computational methods and tools (Ball &

Forzani, 2009; Windschitl et al., 2012). We address this shift

using a Design Based Implementation Research (DBIR)

framework (Penuel et al., 2011) that supports teachers in

professional development and integration of

computationally enriched STEM units. Over multiple years

of partnering with teachers and schools, our team has shifted

from providing day-long professional development to

ongoing teacher-driven support. Through these design

iterations, we have sought to support teacher ownership,

agency, and comfort in teaching with computational tools.

In the latest design iteration, we position teachers as active

co-designers in modifying their existing STEM curricula to

include computational tools and practices. Our approach

foregrounds teachers’ views on how the curriculum aligns

with teaching strategies and expectations for student

learning (Allen & Penuel, 2015; Coburn, 2005; Penuel et al.,

2009). Researchers serve as computational experts and work

alongside teachers to develop new computationally enriched

STEM curricula that align with individual teacher’s views

and goals. The co-design process aims to (1) help teachers

develop an understanding of CT and (2) empower teachers

to integrate and teach CT in their STEM courses. In this

paper, we present the results of a month-long professional

development in which high school teachers co-design CT-

STEM curricula with researchers. We investigate the

research questions: (1) What did teachers learn about CT

through a 4-week professional development? and (2) How

did teachers integrate CT into their curriculum?

2. METHOD
To investigate our research questions, we developed the CT-

STEM Summer Institute (CTSI), a 4-week professional

development workshop that positioned teachers and

researchers as co-designers of curriculum. Teachers and

64

researchers formed design teams by subject area: three

biology teachers (pseudonyms: Betty, Briana, Brooke); one

chemistry teacher (Carrie); three physics teachers (Penny,

Peter, Philip); and one mathematics teacher (Matt). The

eight participants teach high school science or mathematics

in four U.S. public schools (2 urban and 2 suburban).

Teachers received $1000 U.S. dollars per week of

participation in CTSI and were asked to create a CT-STEM

curriculum for their classroom that would be implemented

in the following school year. Seven graduate students and

one post-doctoral researcher were assigned to work with

teachers based on their prior experience working with

specific subject areas and participating teachers.

Table 1. Overview of Professional Development Activities

over Four Weeks of CTSI, Organized by Day.
Week Monday Tuesday Wednesday Thursday Friday

1 Pre-survey

Introductions

Demo CT

Lesson

Computational

Models and

CT-STEM

Practices

Computational

Tools

Computational

Tools

Unit planning

Reflection

Work from

home

2 + 3 Work from

home

Review

partner’s

work

Discuss

feedback

Co-design (2-

3 hours)

Co-design (2-3

hours)

CT-STEM

Workshop

Co-design (3.5

hours)

Reflection

Work from

home

4 Work from

home

Review

partner’s

work

Discuss

feedback

Co-design (2-

3 hours)

Co-design (3

hours)

CT-STEM

Workshop

Co-design (3.5

hours)

Reflection

Post-survey

Post-interview

Co-design (1

hour)

Curriculum

Showcase

Table 1 shows an overview of activities during the 4-week

professional development. Teachers and researchers met in-

person for 14 days from 10am-3pm, with one hour for a

catered lunch.

The first week of CTSI (4 days) comprised of workshops led

by the researchers. Each workshop introduced

computational practices and tools by engaging teachers in

lessons designed for students. Each lesson demonstrated

how computational tools can engage students in CT-STEM

practices while learning disciplinary content. For example,

one lesson (https://tinyurl.com/IntroToCT) first asked

teachers to use, modify, and debug a series of computational

models that simulate how fire spreads through a forest

(http://tinyurl.com/netlogofire; Wilensky, 1997) using

NetLogo, a multi-agent programmable modeling

environment (Wilensky, 1999). Next, teachers collected and

analyzed ‘density vs. percent burned’ data using CODAP

(https://codap.concord.org/; Common Online Data Analysis

Platform), a web-based data analysis environment. Then,

they posed research questions about other variables that may

affect the spread of fire and discussed how scientists use

such computational models. Finally, teachers reflected on

the pedagogy of CT-STEM practices and how they may use

computational models and/or data analysis tools with

students.

In addition to NetLogo and CODAP, teachers engaged in

Unplugged CT activities, which teach CT without

computing tools (e.g., writing loops on paper), and

NetTango, a blocks-based programming interface for

exploring NetLogo Web models (Horn et al., 2014), in the

context of a chemistry unit on molecular particle collisions.

The last three weeks of CTSI provided co-design time for

teams of teachers and researchers to sit together as they

worked on computational models and units. Teams engaged

in approximately 24 hours of in-person co-design time. On

Fridays and Mondays, teams worked from home and

communicated via email as needed. Each team reviewed

each other’s work on Monday afternoons and discussed the

feedback on Tuesdays. In addition, teams engaged in

supplemental CT-STEM workshops that focused on CT

tools or pedagogy on Wednesdays and participated in a

reflection session on Thursdays. Each co-design team

differed in how they collaboratively built models and

curricula materials (Kelter et al., 2020).

At the end of CTSI, the teachers and researchers showcased

their co-designed CT-STEM curriculum in an event open to

the community: https://tinyurl.com/CTSI2019Expo. All

teachers also responded to pre/post surveys and post-

interviews, as described below.

2.1. Data Sources

To assess what teachers learned from CTSI (RQ1), the 33-

item pre/post surveys asked teachers to rate on a 5-point

Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree):

their perception of CT (Adapted from Cabrera et al., 2018)

and comfort with CT-STEM practices. Further, in the post-

interview, we asked teachers what they learned from CTSI.

To assess how teachers integrated CT into their curriculum

(RQ2), we asked teachers to describe their curriculum in the

post-interview and examined the computational tools and

practices used in their CT-STEM curriculum.

3. RESULTS
3.1. What Teachers Learned about CT
To address RQ1 (what teachers learned about CT through

professional development), we first analyzed teachers’

ratings on the pre-/post-survey. Due to the small sample size,

we qualitatively compare differences from pre to post. Note

that Brooke did not complete the pre-survey (4.8 average

across all categories on post-survey) and Philip did not

complete the post-survey (4.4 average on pre-survey).

Table 2. Average Pre/Post Survey Response by Category.
 CT

Value

CT in

STEM

CT

Integration

Modeling

Practices

Data

Practices

Overall

Pre 4.1 4.1 4.1 3.8 3.0 3.7

Post 4.3 4.6 4.4 4.2 4.0 4.2

As shown in Table 2, teachers were more likely to agree or

strongly agree on all item categories on the post-survey,

compared to the pre-survey. That is, after the professional

development, teachers reported that they understood the role

of CT in STEM education and valued CT to a greater degree.

Teachers also reported higher confidence in their ability to

identify and integrate computational modeling and data

practices into their teaching.

Next, we analyzed the post-interview responses to: “What

have you learned from CTSI?” We qualitatively reviewed

responses of all eight teachers to identify themes mentioned

by multiple teachers. Below, we present teachers’ responses

with the four themes underlined: computational thinking,

computational tools, coding, and collaboration.

https://tinyurl.com/IntroToCT
http://tinyurl.com/netlogofire
https://codap.concord.org/
https://tinyurl.com/CTSI2019Expo

65

3.1.1. Computational thinking

Two teachers described learning about CT: Briana (see

Section 3.1.3) and Peter. Peter described different levels of

CT practices in how they affect students’ thinking:

I think being able to see the different domains of

computational thinking and the different levels was

important. That at one level, it's just: Can you use a model?

Can you change a model? Right? Can you collect data? Can

you represent data? That's one level, but then can you dig in

deeper? Can you change a model? Can you design a model?

Can you manipulate data and represent it in different ways?

Those are deeper levels that the goal is to try to push down

as far as you can to get the kids’ thinking, at a really deep

level. So that's one thing that I've learned about

computational thinking itself.

Peter learned that CT can engage students in more

procedural thinking, such as using models and collecting

data, as well as more deep conceptual thinking, such as

changing and designing their own models. His goal now is

to focus on “push[ing]” students’ thinking “at a really deep

level” because “the different levels [are] important.”

3.1.2. Computational tools

Four teachers stated what they learned about specific

computational tools (Peter, Matt, Philip, and Carrie). Peter

and Matt listed different computational tools that they

learned about and plan to use in their classroom.

Additionally, Matt discussed how the computational tools

can help students engage in math as professionals do:

I'd never heard of CODAP or NetLogo or NetTango or any

of those. So for me, it just gave me some tools that I can use

in stats and hopefully geometry to present math in a relevant

way to today's learners. I think it will help me answer the

question: Why are we learning this? When am I ever going

to have to use this? ‘Cause it'll be easy to show them, this is

what actual researchers are using. ‘Here's what actual

statisticians are using, rather than we're using the calculator

because that's what the AP exam requires you to use.’

Philip and Carrie, who had prior experience building models

or implementing CT-STEM lessons, both stated that they

became aware of new tools. Carrie added that she was “very

excited that [she’s] integrating some CODAP this

year...[She] already see[s] other possible places in [her] year

that [she] can use [CODAP].” Even though the workshops

only aimed to help teachers integrate tools into their CT-

STEM curriculum, teachers identified CT tools as resources

they can use for other lessons in their classroom.

3.1.3. Coding/programming

In contrast to the four teachers above who seemed “excited”

and comfortable integrating computational tools into their

classrooms, three of the female teachers mentioned learning

about coding in general because they had little or no prior

experience (Betty, Penny, Briana). For example, Betty said

she cannot “code anything” but learned how code works and

how to explain it to her students:

I knew nothing about coding […] I cannot code anything,

maybe a tiny little change I can make, but I at least see now

what goes into it and I think I'll be better at explaining things

to the kids.

Although Betty feels she can only make “a tiny little change”

in code, another teacher Penny discussed learning “a lot”

about coding by building NetLogo models for her

curriculum and participating in the introductory workshops:

I never knew anything about NetLogo before and I've now

learned a lot about NetLogo and modified or helped build

some simulations. And that's largely my first and only

exposure to coding. So that's relatively new...I thought a

couple of the coolest things that we did were within the first

week workshops you have for us: the forest fires

simulation....that was the first thing where we really looked

at the code behind it- and why aren't the trees burning? And

I thought that was fun. As well as just seeing the emergent

phenomena in that throwing in the same density doesn't

always result in the same forest burn rates. So that was cool

for me.

While Penny learned that coding was “fun” and “cool” in the

first week, Briana stated that she learned to love coding in

the second week as she started writing her curriculum and

now wants to learn more about how to build models herself.

She also mentions learning about all four themes stated

across teachers (computational thinking, computational

platforms/tools, coding, and collaboration):

I learned more about what computational models are, what

computational thinking is. I learned how to incorporate that

into my classroom and my lessons more easily.

Collaboration is so important. I learned a little bit of how to

do some coding and learned different modalities that can be

used for different platforms that can be used for different

types of analysis....the second week, my Aha moment was I

think that creating models is way cooler than writing

curriculum...I thought I hated the coding process. At first, I

was like it's gonna be terrible, but when I actually learn the

foundation/fundamentals, I was like: well this is actually

really cool: how a line I write can completely change how

something else works. So that was an Aha moment for me is

that I would love to learn more about how to do that.

3.1.4. Collaboration

Lastly, four teachers mentioned the value of collaboration

in their curriculum design process (Briana, Betty, Brooke,

Carrie). Betty learned that “a whole team of people”

contribute to constructing computational models:

I learned that the value of co-design is very important. Yeah, I'm

just more comfortable with using NetLogo...I think just

understanding that things have to be coded, like preferences have

to be put in there. Someone put that in ‘cause I'm like: how do these

models know to do this? So you have to actually do some of the

research ahead of time, then put it in. And you need a whole team

of people. It's not- a computer programmer doesn't know the

science necessarily, so you need a scientist with a computer

programmer to work together. I love that. I love that idea.

Betty learned that “co-design is very important” because

models involve collaborative design decisions from experts

from different fields. Similarly, Brooke noted that she

benefited from collaborating and brainstorming with the

researcher in her team who had a different expertise:

It's just been really nice to have the time to sit down and have

conversations around some of this stuff. That's giving me time to

dig into the content, research more about what actually- I want it

to be about think a little bit more deeply about like the alignment

66

of the unit itself. And that's just been really great to have

[researcher] there to say: Okay, this is the idea. What might fit

well? And he'll be like: ‘Oh, you could do this or you could do that.’

Or just that piece of brainstorming around expertise that I don't

have.

In addition to brainstorming, Carrie also mentioned that “[h]aving

a researcher with us the whole time was so beneficial” because she

could get help on her questions right away from a collaborator

sitting right next to her.

3.1.5. Summary of what teachers learned from CTSI

In sum, teachers generally learned more about CT after

CTSI. Some of them learned about computational tools and

practices that they can integrate into their classroom. Other

teachers with limited CT experience learned coding so that

they can engage in and explain CT to their students. Further,

multiple teachers mentioned collaboration, which supported

them in building and integrating computational tools and

practices into a CT-STEM curriculum.

3.2. How Teachers Integrated CT

To assess how teachers integrated CT into their curriculum

(RQ2), we analyzed how teachers used computational

practices and tools in their CT-STEM curricula. We first

describe their curriculum below and then discuss their use of

CT-STEM practices (summarized in Table 3):

1. Experimental Design and Computational Thinking: 8-

day AP Biology unit that uses a physical lab, CODAP,

NetTango, and NetLogo to conduct experiments on

animal behavior, further described below (Betty)

2. Evolution Part II: Natural Selection (Darwin's Finches

and The Case of the Rock Pocket Mouse): 20-day

Freshmen Biology unit that uses CODAP and NetLogo

models to collect and analyze data on the mechanisms

of natural selection (Briana)

3. Climate Change in the Great Lakes: 10-day

Environmental Science unit that uses Unplugged

activities, CODAP, and NetLogo models to investigate

various environmental factors and make sense of

climate change models (Brooke)

4. Energy in Chemical Reactions: 13-day Chemistry unit

that uses NetLogo and CODAP to explore changes in

energy when bonds break and form during chemical

reactions (Carrie)

5. Charge Interactions: 8-day Physics unit that uses a

physical lab, CODAP, NetLogo, and PhET simulations

to explore the behavior of charges in electricity and

magnetism, further described below (Penny and Peter)

6. 1-D Kinematics Motion Maps: 3-day Physics unit that

uses NetLogo and NetTango to analyze and draw

velocity in kinematics motion maps, building on

Philip’s 1-D Kinematics NetLogo model, further

described below (Penny and Peter)

7. 1-D Kinematics and Newton's Laws: six Physics

lessons that use CODAP, NetTango, and NetLogo to

collect and analyze data through writing formulas and

generating graphs on kinematics and Newton’s Laws,

implemented throughout the fall semester (Philip)

8. Descriptive Statistics: 8-day AP Statistics unit using

Python notebooks and Unplugged activities to generate

formulas, data tables, and plots that describe various

real-world datasets (Matt)

Table 3. CT-STEM Practices Targeted in Curriculum
 Curricular Unit

(see Section 3.2)

1 2 3 4 5 6 7 8

Modeling and simulation practices

Using computational models (CMs) to
understand a concept

x x x x x x x x

Using CMs to find and test solutions x x x x x

Designing CMs x x

Assessing CMs x x x x x x

Constructing CMs x x x

Data practices

Collecting data x x x x x x x

Manipulating data x x x x x x x

Analyzing data x x x x x x x

Visualizing data x x x x x x x

Creating data x x x x x x

The descriptions of CT-STEM curriculum show that all

teachers integrated several computational tools into their

curricula to teach disciplinary content. In addition, Table 3

shows that all CT-STEM curricula targeted multiple CT-

STEM modeling and data practices. To better understand

how teachers integrated computational practices and tools,

we present three example curricula (#1, #5, #6) below.

Biology. Betty, with her co-design partner, developed

Experimental Design and Computational Thinking (#1) for

her AP Biology course. She described it as: “really about

scientific design and inquiry.” In the unit, students design

experiments to find the preferred habitat conditions of the

pill bug (rolypoly). Betty decided that students start with a

physical lab experiment using two connected chambers, one

damp and one dry. The students place 10 pill bugs and

observe change in population of the two chambers over time.

After the physical experiment, students then explore, modify

and recreate the animal behavior experiment digitally using

NetLogo and NetTango models.

Betty also explained that her unit engages students in

multiple CT-STEM data practices: “the kids learn how to set

up a controlled experiment, how to collect data, how to make

graphs, and it's also where we start to teach them how to

analyze some of that data.” She integrated these data

practices with the CT-STEM practice of using models:

[My class uses] the computational model to learn about the

importance of sample size because we only get to use 10

rolypolies and then when we do Chi Square, we don't always

get good answers. And then we looked it up, they're like: oh,

you need at least 30, for your sample size...So with the

model, they can say: oh, what happens if we have 20

rolypolies, 40 rolypolies?

Betty wanted students to not only use models but modify

them based on a physical lab: “[students] are now also

learning how to change the model. So the first model just has

wet and dry, and then in the second activity, they actually

changed the code and add their variable, like the one that

they tested in class.” Specifically, Betty wanted students to

learn “that the model is actually coded by a human, based

on things that actually happened in real life,” as she herself

learned at CTSI (see Section 3.1.4). Her integration of

NetTango block-based programming makes this design

decision particularly salient: “[students] build their chamber

using NetTango. Then they put the rolypolies in and all the

67

rolypolies escape because they didn't tell them to stay within

the chamber.”

Although Betty expressed that she “cannot code anything”

(see Section 3.1.3), her CT-STEM curriculum is the only

unit that integrates all modeling and data practices into

science content (see Table 3) and forefronts CT in its title.

Importantly, after Betty taught this unit in the fall, classroom

observations and an interview suggests that this unit helped

students learn science content and engage in CT-STEM

practices because Betty discussed coding and CT in context

of disciplinary science content, as a result of the professional

development (Peel et al., 2020).

Physics. Peter and Penny, who work at the same school,

developed two units together for their general Physics

classes. With their co-design partners, they designed Charge

Interactions (#5), which focused on “electrostatics: electric

charge, Coulomb's law, electric fields” (Peter), and a short

unit on 1-D Kinematics Motion Maps (#6).

The electrostatics unit first asks students to engage in

physical lab experiment with sticky tape and then explore a

NetLogo library model on electrostatics (Sengupta &

Wilensky, 2005), which was modified with researchers to fit

the curriculum. Penny described the unit as primarily

focused on the model and how the code works:

Most of it is around the simulation and specific questions

asking them to observe particular behaviors or how things

happen using their prior knowledge to try to explain why

those are things that are happening. And then a few

questions asking them to look at the code and, fine, where

did we program in that the electron should repel from each

other? Like where did we program in that the conductor's

color is gray. Could you change that?

Then, students use CODAP to understand Coulomb’s Law,

as Peter explained: “If we really want them to come up with

Coulomb's law, which is our goal, then you have to keep one

thing constant and vary another. And CODAP lets you do

that really quickly. So that's why we chose that.” Finally,

students examine a PhET simulation of charges.

Penny and Peter finished their first unit in Week 3, and then

modified Philip’s 1-D Kinematics NetLogo model for the

motion maps unit (#6). Peter saw this short unit as a way to

help students dynamically see changes in velocity:

“[students] don't often see the map being drawn, as

something moves. I think that the simulation that we put

together does that and sort of bridge that gap between what

we want them to see and what they actually see.” The unit

also asks students to build their own motion map using

NetTango, as Peter explained: “The NetTango thing is a way

to help kids gain more control over making a motion

map…they have that ownership of the whole process and I

think they'll be able to internalize what's going on better.”

As of this writing, Penny and Peter have not yet

implemented their Charge Interactions unit, but classroom

observations of students engaging with the 1-D Kinematics

Motion Maps unit showed that both teachers encouraged

students to not only understand the science content, but to

“explore the code” and “try to break the model.”

4. DISCUSSION
Results from our qualitative study suggests that engaging

high school STEM teachers in workshops and co-design of

CT-STEM curricula in a 4-week professional development

can help them develop an understanding of CT and integrate

CT into their classroom. We are particularly encouraged by

the fact that although these eight teachers already valued CT

at the beginning of the workshop because they chose to

participate in the professional development, all teachers

reported even more favorable perceptions of CT and greater

confidence in integrating it into their classroom at the end of

the professional development. Teachers shared in post-

interviews that they learned not only about CT and

computational tools for their classroom, but also about

coding in general and the value of collaboration in the co-

design process. Due to the relatively recent emergence of CT

in STEM for K-12 teachers, particularly in the United States,

this work takes one step towards understanding where

teachers may need particular support when learning about

CT and how to help teachers integrate CT into their

classroom practices.

Our analysis of co-designed curriculum showed all teachers

were able to integrate multiple computational tools that

engage their students in CT-STEM practices. Teacher

interviews and classroom observations show that teachers

designed and implemented activities that reflect what they

personally learned about coding, computational tools, and

CT during the professional development. For example, Betty

learned that computational models involve design decisions

made by people and thus engaged her students in designing

computational models where they write code for the

behaviors that they expect to see. Further, because Penny

found it “fun” and “cool” to see the code behind a model to

understand how it works, she encouraged her students to

similarly explore and break the code.

Taken together, these findings suggest that teachers

benefited from both parts of our professional development:

workshops in Week 1 and co-design in Weeks 2-4.

Particularly, learning about specific computational tools and

how to use them in the context of disciplinary content was

important for four of the eight teachers, who reported being

“excited” about integrating the tools into their classrooms.

However, three of our teachers had little experience with

coding and may not have the ability to integrate new

computational tools into their classroom without the

additional support provided in Weeks 2-4. At the end of the

professional development, these three teachers reported

learning to be comfortable with code and one teacher,

Briana, even learned to love coding in the second week when

she began working side-by-side with researchers to co-

design curriculum. Moreover, multiple teachers viewed

researchers as valuable thinking partners with expertise in

CT. Hence, co-design may be an effective way to help

teachers in integrate CT into their curriculum, particularly

those with little or no CT experience. This finding aligns

with prior work which showed that teachers’ confidence in

CT and ability to reach their curricular goals grew over a

multi-week process of working with researchers as co-

designers (Wu et al., 2020). We propose that additional

research support integration of CT in K-12 by positioning

teachers not only as learners of CT in workshops or

68

trainings, but as co-designers and collaborators who can

augment existing STEM disciplinary content with CT in

their classroom.

This work has the potential to engage more K-12 teachers

and students in computational practices and tools by

integrating CT into existing K-12 STEM classrooms.

Through one summer professional development, teachers

were empowered to develop and implement eight

computationally enhanced STEM curricula for up to three

weeks in mathematics and science classrooms. Our

observations of these classrooms showed that the teachers

talked about their experience during the 4-week professional

development and leveraged what they learned about CT to

help students become more comfortable with CT and engage

in CT-STEM practices. Additional professional

developments will help us identify what factors contribute to

our success, beyond those specific to our eight teachers. This

will help us scale this work to a larger population using in-

person and online support on CT integration. By helping

more teachers understand CT and computational tools, we

can empower K-12 STEM teachers to engage their students

in authentic scientific practice while also broadening

participation in computing.

5. REFERENCES
Advocacy Coalition. (2018). 2018 State of Computer

Science Education. Retrieved October 8, 2019, from

https://advocacy.code.org/

Allen, C. D., & Penuel, W. R. (2015). Studying Teachers’

Sensemaking to Investigate Teachers’ Responses to

Professional Development Focused on New Standards.

Journal of Teacher Education, 66(2), 136-149.

Ball, D., & Forzani, F. (2009). The Work of Teaching and

the Challenge for Teacher Education. Journal of Teacher

Education, 60(5), 497-511.

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez,

S., & Wilensky, U. (2016). All Roads Lead to Computing:

Making, Participatory Simulations, and Social Computing

as Pathways to Computer Science. IEEE Transactions on

Education, 60(1), 59-66.

Cabrera, K., Morreale, P., & Li, J. J. (2018). Computer

Science+ Education: An Assessment of CS Professional

Development. Journal of Computing Sciences in Colleges,

33(3), 141-147.

Coburn, C. E. (2005). Shaping Teacher Sensemaking:

School Leaders and the Enactment of Reading Policy.

Educational Policy, 19(3), 476-509.

Cuny, J. (2012). Transforming High School Computing: A

Call to Action. ACM Inroads, 3(2), 32-36.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of

models for introducing computational thinking, computer

science and computing in K-12 education. Proceedings of

2016 IEEE Frontiers in Education Conference (FIE), 1-9.

Horn, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky,

U. (2014, June). Frog Pond: A Codefirst Learning

Environment on Evolution and Natural Selection.

Proceedings of the 2014 conference on Interaction Design

and Children. ACM, 357-360.

Kelter, J., Peel, A. M., Bain, C., Anton, G., Dabholkar, S.,

Aslan, U., Horn, M. & Wilensky, U. (in press). Seeds of

(r)Evolution: Constructionist Co-Design with High School

Science Teachers. Proceedings of Constructionism 2020.

Peel, A. M., Dabholkar, S., Anton, G., Wu, S. P. W., Horn,

M. S., & Wilensky, U. (in press). A case study of teacher

professional growth through co-design and

implementation of computationally enriched biology units.

Proceedings of 14th International Conference of the

Learning Sciences (ICLS) 2020. Nashville, TN.

Penuel, W. R., Fishman, B. J., Cheng, B. H., & Sabelli, N.

(2011). Organizing Research and Development at the

Intersection of Learning, Implementation, and Design.

Educational Researcher, 40(7), 331-337.

Sengupta, P. and Wilensky, U. (2005). NetLogo

Electrostatics model. Retrieved December 1, 2019, from

http://ccl.northwestern.edu/netlogo/models/Electrostatics

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science

Classrooms. Journal of Science Education and

Technology, 25(1), 127-147.

Wilensky, U. (1997). NetLogo Fire model. Retrieved

December 1, 2019, from

http://ccl.northwestern.edu/netlogo/models/Fire

Wilensky, U. (1999). NetLogo. Retrieved December 1, 2019,

from http://ccl.northwestern.edu/netlogo/

Wilensky, U. (2003). Statistical Mechanics for Secondary

School: The GasLab Multi-agent Modeling Toolkit.

International Journal of Computers for Mathematical

Learning, 8(1), 1-41.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering

Computational Literacy in Science Classrooms.

Communications of ACM, 57(8), 24-28.

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D.

(2012). Proposing a Core Set of Instructional Practices and

Tools for Teachers of Science. Science Education, 96(5),

878-903.

Wu, S.P.W., Anton, G, Bain, C, Peel, A.M., Horn, M.S. &

Wilensky, U. (2020). Engage teachers as active co-

designers to integrate computational thinking in STEM

classes. Presented at NARST Annual International

Conference (NARST 2020). Portland, Oregon.

https://advocacy.code.org/
http://ccl.northwestern.edu/netlogo/models/Electrostatics
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

69

The Effect of Teacher Interventions and SRA Robot Programming on the

Development of Computational Thinking

Nardie FANCHAMPS1, Marcus SPECHT2*, Paul HENNISSEN3*, Lou SLANGEN4*

1, 4Fontys University of Applied Science, Netherlands
2Delft University of Technology, Netherlands

3Zuyd University of Applied Science, Netherlands

nardie.fanchamps@fontys.nl, M.M.Specht@tudelft.nl, paul.hennissen@zuyd.nl, l.slangen@fontys.nl

ABSTRACT
The implementation of programming in primary education is

currently receiving a considerable amount of attention in the

context of developing 21st century skills and digital literacy.

The application of programmable robots is a playful integration

of developing programming skills and computational thinking.

Once pupils understand the basics of robot programming, they

can solve challenging new programming tasks themselves

without the teacher taking over too much of the learning

process. It is therefore worthwhile to investigate the extent to

which teachers’ instructional approach and guiding

interventions influence the development of pupils’

computational thinking. Furthermore, programming robots

have some special affordances for educational purposes as

robots typically have to be programmed to interact with their

environment. Little evidence is known to which extent

programmable robots using the SRA-approach contribute to the

development of computational thinking skills among primary

school pupils. The use of Sense, Reason and Act (SRA)

programming includes the application of loops, routines and

conditionals when controlling actuators on the basis of sensory

information with which the robot can anticipate changes in the

environment. Our findings indicate that teachers versus

students experience the way of teaching (perceived monitoring

and scaffolding) significantly different when programming

robots. We make recommendations as to which competences

the guiding teacher needs. It is also shown that programming

robots using an SRA-approach contribute to the development of

specific characteristics (reformulating problems, problem

decomposition, abstraction, algorithms and procedures &

parallelisation) of computational thinking.

KEYWORDS

programming, sense-reason-act, robotics, computational

thinking, teacher interventions

1. INTRODUCTION

In all educational sectors from primary school to higher

education one key question is how to integrate the development

of computational thinking in the curriculum. Little is known

about the possibilities and impact and there are many questions

such as: what contribution does learning to program make to

cognitive development, what is the relationship between

programming and computational thinking, and what is the

influence of the teacher's actions in this regard (McCombs,

Lauer, & Peralez, 1997; Morehead & LeBeau, 2005).

Computational thinking is the ability to solve complex

problems using the basic concepts of computer science (Wing,

2006). The integration of programming in education is a way to

stimulate the development of computational thinking among

pupils and requires specific teacher competences (Lye & Koh,

2014). In our explorative research project we therefore

investigate to what extent the way of providing instruction and

teacher interventions (e.g. asking questions, giving a hint,

showing/following, taking over) during teaching programming

influences the development of computational thinking (e.g.

algorithmic thinking, problem decomposition, debugging,

parallel thinking).

Sense, Reason and Act (SRA) programming is a special

approach of programming. It requires the creation of programs

that implement control structures using sensors and actuators

with the application of variables, loops and conditionals, for

example when using programmable robots (Slangen, 2016).

The SRA-loop is the process whereby detection (sensing)

continuously generates new information that is entered into a

logic reasoning component (reason), which subsequently leads

to the resulting actions (act) (Lith, 2006).

Robots programmed using the principle of SRA can react to

changes in their environment on the basis of sensory

information. This requires pupils to think anticipatively in the

task solution. Programming according to the principle of sense-

reason-act requires problem-solving skills and abstract

thinking. Pupils' programming of robots based on the SRA-

principle requires skills related to creative thinking and critical

thinking, such as: analysing, elaborating, causal reasoning,

synthesizing, imagining, etc. This requires the teacher to

provide a pedagogical space to apply these skills in practice.

This demands an environment that is strongly linked to inquiry-

based learning (Slangen, 2016; Valcke, 1985).

Teaching to program SRA needs special teacher strategies and

competences and is more than just a transfer of knowledge

(Slangen, 2016). Moreover, very few teachers have the

experience and skills to conduct this kind of activity (Breed,

2003). Bers, Ponte, Juelich, Viera, and Schenker (2002) have

found that teachers who start with a constructivist instructional

approach when teaching programming, quickly revert to a more

directive way of teaching to provide guidance to learners when

solving complex problems. Slangen (2016) recommends that

teachers best support such a learning process by means of a

scaffolding-based approach and to design a learning

environment to support children in their explorations and to

scaffold learning (Sullivan & Bers, 2016). In that sense learning

to program is more effective when the learner can construct his

own knowledge from guided programming experiences. It is the

teacher who has to set up a well-defined learning space and

should apply appropriate guidance that allows pupils to gain a

deeper understanding of how to program (Fanchamps, Slangen,

Hennissen, & Specht, 2019). Thus, learning must be active;

pupils must construct knowledge assisted by guidance from the

teacher and best also with feedback from other pupils (Buitrago

Flórez et al., 2017). Furthermore, in order to become familiar

with complex programming such as SRA, a scaffold is required

or a research-based structure must be followed.

Previous research shows that teacher interventions during

programming lessons influence pupils' decision making skills

70

in solving programming problems (Fanchamps, 2016), and

have a positive effect on the development of computational

thinking skills of primary school pupils (Pat‐El, Tillema,

Segers, & Vedder, 2013). Teachers often intervene in a

directive style; they start from their own insight and often

provide an overload of information too quickly (Petrou &

Dimitrakopoulou, 2003). For teachers, it seems difficult to be

reluctant when pupils have to solve a problem using

programming (Valcke, 1985). This reluctance on the teachers’

part seems to be an important prerequisite for pupils to be able

to learn inquisitively and to take problem-solving action when

working with programming environments (Slangen, 2016).

Furthermore, in programming education there is a need for

different teacher behaviour (Sentance & Csizmadia, 2017). It is

expected that teachers who provide guidance using a

scaffolding based approach (asking questions, providing help

when needed and in the way needed) will be able to get pupils

further in the development of programming than teachers who

use a more direct approach.

Considering previous research, we were interested to explore

the following research questions:

1. To what extent does the teacher's own estimated

instructional approach correspond with the pupils'

perception of that instructional approach?

2. Which instructional approach (directive instruction -

scaffolding) do teachers mainly use to influence the

learning of programming in a robotics SRA learning

environment?

3. To what extent does SRA-programming with Lego

Robots contribute to the development of

computational thinking skills?

2. METHOD

To investigate our research questions we used a pretest-posttest

design. This includes a) among pupils pre-measurement of

computational thinking skill and, for teachers, the extent of their

own self-assessment of support, b) a robotics-intervention, and

c) a post-test among pupils measuring computational thinking

skills and the extent to which teacher support is perceived.

During the execution, the instructional approach used by the

teacher and the type of interventions were recorded. Among

pupils, the ability to program was measured and the level of

quality of the constructed program was assessed. We also

measured the difference in terms of the support provided by the

teacher and how it was perceived by the pupils.

2.1. Participants

This exploratory research was conducted among pupils and

teachers of a Dutch primary school. Programming sessions with

both primary school teachers and primary school pupils were

organised. To make an inventory of the instructional

approaches used, and in order to measure which interventions

were mainly applied by the teachers, we chose to incorporate

pupils and teachers from grade 3 to grade 8 in this research. We

would like to indicate that that these Dutch grade levels

correspond with age 6 to 12.

2.2. Materials

We used Lego Robots EV-3 as a SRA programming

environment. This environment offers possibilities to control a

robot using sensors and actuators. The programming of this

environment is characterized by visual programming by means

of drag and drop command blocks. By manipulating the

programming variables per block and putting them in a specific

order, pupils construct their program. This visually

programming environment is also suitable for use in primary

education (Korkmaz, 2018).

In order to reflect the self-assessment of the teacher’s

pedagogical level of support, and to determine how pupils

experienced this support as such (research question 2), the

Assessment for Learning questionnaire was used (Pat‐El et al.,

2013). This validated questionnaire, consisting of a separate

teacher part and a specific pupil part, which measures

individually the perception of both teachers and pupils, is based

on a 5-point Likert scale (range from “completely disagree” –

“completely agree”) and consists of two categories:

"Experienced monitoring/supervising the learning process"

(Perceived monitoring - 16 items) and "Experienced

level/application of scaffolding" (Perceived scaffolding - 12

items). This questionnaire includes questions such as: "The

teacher provides opportunities to set learning objectives" and

"The teacher provides hints to help understand the subject".

The questionnaire is deliberately presented to both teachers

(teacher version) and pupils (pupil version), so that the

perception of teachers can be tested against the perception of

pupils. This allows, by monitoring differences in teaching and

learning, to visualise the influence of a different pedagogical

approach (in this case a directive approach compared to a

scaffolding approach).

In order to measure an effect on computational thinking among

pupils (research question 3) the validated Computational

Thinking test (Román-González, Pérez-González, & Jiménez-

Fernández, 2017) was used as a pre- and post-measurement

among pupils. This questionnaire consists of 28 questions in

which pupils have to link programming commands to various

situations (and vice-versa), measuring characteristics of

computational thinking.

2.3. Procedure

After teachers followed three training sessions provided by the

researcher, in which they learned how to program Lego EV3

robots, the teacher independently and without the intervention

of the researcher taught five programming lessons using the

Lego environment. In these 5 lessons the teacher guided the

pupils, who worked together in pairs, to solve various robotics

programming problems. Pupils were confronted with 20

programming problems that became more and more difficult.

The teacher specified the task the robot had to perform using

the computer program created by pupils. The teacher used a

personal instructional approach and his or her own interventions

to guide pupils through the learning process.

By means of observation to determine which instructional

approach (directive instruction or scaffolding) the teacher has

used and what kind of interventions the teacher has applied

(asking questions, giving a hint, showing/following or taking

over the learning process), the researcher recorded a) the type

of instructional approach and which type / to what extent

interventions have been used by the teacher to identify what the

effect was (research question 1), and b) the extent to which

SRA-programming by pupils has been applied in solving

programming problems.

3. RESULTS AND DATA-ANALYSIS

Examination of the results of the first research question

concerning the influence of the instructional approach on

learning to program indicates that the instructional approach of

71

the teacher is of great influence. An analysis of the observations

shows that pupils from grade 1 to grade 6 are perfectly capable

of functionally programming Lego Robots by using the

computer program provided. Pupils who have been guided

according to a scaffolding approach frequently make use of the

knowledge they have already acquired during new

programming tasks are further advanced in a problem-solving

approach compared to guidance according to a directive

instructional approach.

Further indications show that teachers who use a scaffolding

based instructional approach mainly promote a self-

management and problem-solving, self-analytical capacity of

learners, and in particular use questioning and hints. Teachers

who use a directive instructional approach mainly promote

procedural thinking, initiate functional programming and

enhance pupils’ success experience, and mainly make use of

showing/following and taking over the learning process, and

ask few questions.

The results concerning the second research question about the

extent to which the teacher's estimated instructional approach

matches the student's perception of that instructional approach,

show a difference in estimation (Table 1).

Table 1. Assessment for Learning Questionnaire
 Perceived monitoring (16 items)

Group n M SD range Mdn

Teacher 13 3.93 .45 3.75 – 4.75 3.94

Pupil 21 3.68 .45 2.75 – 4.50 3.75

 Perceived scaffolding (12 items)

Group n M SD range Mdn

Teacher 13 4.15 .32 3.58 – 4.58 4.17

Pupil 21 3.76 .32 3.25 – 4.42 3.75

Note. n = number of respondents; M = average; SD = standard deviation;
range = spread in measurement; Mdn = median

Pupils do not value the teachers’ instructional approach as

highly as the teachers themselves. Table 1 shows that the

averages (M) on both categories (monitoring, scaffolding) of

the questionnaire are very different and the difference for

perceived scaffolding is statistically significant t (32) = 1.57, p

= 0,001, 95% CI [0,15, 0,62]. This is indicatively more accurate

to deduce from the median (Mdn), which for pupils in both

categories is significantly lower, and from the range, in which

the distribution of pupils' results is more dispersed. A closer,

more detailed study of the collected questionnaires makes it

quantitatively visible that teachers respond to more questions

with the answer "agree" and "completely agree", but that pupils

give significantly lower scores for this, i.e. they experience the

teachers approach differently. A comparison in perception

between the two research groups is quite striking and can be a

fundamental ground for the accompanying teacher to take a

critical look at applied instructional approach and interventions

used during programming lessons.

The answer to the third research question on the extent to which

SRA-programming contributes to the development of

computational skills can be found in Table 2.

Although not significant, the measured results (Table 2) show

an increase in the characteristics of computational thinking

skills (reformulating problems, problem decomposition,

abstraction, algorithms and procedures and parallelisation)

among pupils. In the post measurement, pupils solve more tasks

correctly and therefore show a higher level of computational

thinking skill compared to the pre-measurement. The

computational thinking characteristics "completion",

"debugging" and "sequencing" show in the post measurement a

higher average score (M), a lower standard deviation (SD) and

less spread in the measured values (range). Based on these

results, the conclusion can be drawn that by application of SRA-

programming pupils develop a higher level of computational

thinking skills.

Table 2. Development of Computational Thinking Skills

 Pre-test (n = 21)

Variable M SD range Mdn
Total (28) 1.01 .36 0.25 – 1.42 1.13

CT-skill

completion

.33 .11 0.08 – 0.50 0.33

CT-skill
debugging

.19 .11 0.00 – 0.33 0.11

CT-skill

sequencing

.49 .19 0.17 – 0.75 0.46

 Post-test (n = 21)

Variable M SD range Mdn

Total 1.14 .22 0.83 – 1.50 1.13

CT-skill
completion

.35 .09 0.25 – 0.50 0.33

CT-skill
debugging

.25 .10 0.08 – 0.42 0.10

CT-skill
sequencing

.54 .13 0.25 – 0.67 0.58

Note. Variable = measurable value; Total = number of questions correct

CT-questionnaire; completion = completed by CT; debugging =
reformulate problems; sequencing = sequence; M = average; SD =

standard deviation; range = spread in measurement; Mdn = median

4. CONCLUSION AND DISCUSSION

This research helps teachers who want to implement

programming lessons in the classroom. Because learning to

program seems to depend on the instructional approach and the

appropriate interventions, the question arises whether a more

directive instruction or a scaffolding-based approach is more

appropriate for teaching programming. This requires a more

inquiry-based approach for pupils, and for teachers knowledge

of scaffolding and the guidance to be used as well as the type of

interventions to be applied. The necessary competences can be

developed through training and further experience.

This research makes the effect of the type of teacher

intervention visible when teaching programming robots in the

classroom. The results also contribute to sharpening the

definition of what computational thinking means for the

development of primary school pupils. It leads to four

recommendations:

• First, LEGO Robotics can be used as a programming

learning environment.

• Second, specific programming lessons can increase

classroom yields.

• Third, SRA-programming contributes to the

development of computational thinking skills of

primary school pupils with a transfer to other

disciplines and educational areas/other primary school

subjects.

• Fourth, a thorough implementation of teaching

programming in the classroom requires a further

professionalisation of the teacher on scaffolding and

guidance with specific interventions.

72

4.1. Limitations and further directions

Despite the limited number of respondents in this study, a

measurable development (although not significant) in

computational thinking skills has been demonstrated. In follow-

up research, larger numbers of respondents will be used for

which it is expected that significant results can be demonstrated.

It is also worthwhile to investigating whether other types of

programming environments generate the same yields.

The indications from this research show that it is relevant for

teachers to become more aware of the fact that the nature of

support is important to help pupils further in SRA-

programming. This means, on the one hand, that teachers need

to have their own content programming insights and, on the

other hand, that they can also use guidance skills.

In order to further develop the construct of the SRA approach

theoretically, it is relevant to further investigate and develop the

relationship between computational thinking and SRA

programming.

4.2. Acknowledgments

This research was financed with a grant obtained for a KIEM-

Sia project study (SVB/KIEM.21V01.051).

The authors would like to thank Heutink Netherlands for the

donation of the required sets Lego Mindstorms and their

cooperation.

5. REFERENCES

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J.

(2002). Teachers as Designers: Integrating Robotics in

Early Childhood Education. Information Technology in

Childhood Education Annual, 2002(1), 123-145.

Breed, B. (2003). The Reflective Abilities of Expert and

Novice Learners in Computer Programming. Proceedings

of British Educational Research Association Annual

Conference. Edinburgh: Heriot-Watt University.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A.,

Restrepo, S., & Danies, G. (2017). Changing a

Generation’s Way of Thinking: Teaching Computational

Thinking through Programming. Review of Educational

Research, 87(4), 834-860.

Fanchamps, N. (2016). De Invloed van SRA Programmeren

op Mathematisch Redeneren en Zelfeffectiviteit met Lego

Robotica in Twee Instructievarianten. Master's thesis,

Open Universiteit, Heerlen.

Fanchamps, N., Slangen, L., Hennissen, P., & Specht, M.

(2019). The Influence of SRA Programming on

Algorithmic Thinking and Self-Efficacy Using Lego

Robotics in Two Types of Instruction. International

Journal of Technology and Design Education, 1-20.

Korkmaz, Ö . (2018). The Effect of Scratch-and Lego

Mindstorms Ev3-Based Programming Activities on

Academic Achievement, Problem-solving Skills and

Logical-mathematical Thinking Skills of Students.

Malaysian Online Jou1rnal of Educational Sciences, 4(3),

73-88.

Lith, P. V. (2006). Masterclass Robotica. Limbricht:

Elektuur.

Lye, S. Y., & Koh, J. H. L. (2014). Review on Teaching and

Learning of Computational Thinking through

Programming: What is next for K-12? Computers in

Human Behavior, 41, 10.

McCombs, B., Lauer, P., & Peralez, A. (1997). Researcher

Test Manual for the Learner-Centered Battery (Grades 6-

12 Version). A Set of Self-Assessment and Reflection Tools

for Middle and High School Teachers. Mid-Continent

Regional Educational Lab.

Morehead, P., & LeBeau, B. (2005). The Continuing

Challenges of Technology Integration for Teachers.

Essays in Education, 15(1), 10.

Pat‐El, R. J., Tillema, H., Segers, M., & Vedder, P. (2013).

Validation of Assessment for Learning Questionnaires for

Teachers and Students. British Journal of Educational

Psychology, 83(1), 98-113.

Petrou, A., & Dimitrakopoulou, A. (2003). Is Synchronous

Computer Mediated Collaborative Problem-solving

"Justied" only when by Distance? Teachers' Point of

Views and Interventions with Co-located Groups, during

every day Class Activities. Proceedings of International

Conference on Computer Support for Collaborative

Learning. Dordrecht: Springer, 441-450.

Román-González, M., Pérez-González, J.-C., & Jiménez-

Fernández, C. (2017). Which Cognitive Abilities Underlie

Computational Thinking? Criterion Validity of the

Computational Thinking Test. Computers in Human

Behavior, 72, 678-691.

Sentance, S., & Csizmadia, A. (2017). Computing in the

Curriculum: Challenges and Strategies from a Teacher’s

Perspective. Education and Information Technologies,

22(2), 469-495.

Slangen, L. (2016). Teaching Robotics in Primary School.

(PhD). Eindhoven University of Technology, Eindhoven.

Retrieved September 9, 2019, from

https://pure.tue.nl/ws/files/25754482/20160630_CO_Slan

gen.pdf

Sullivan, A., & Bers, M. U. (2016). Robotics in the Early

Childhood Classroom: Learning Outcomes from an 8-

week Robotics Curriculum in Pre-kindergarten through

Second Grade. International Journal Technology and

Design Education, 26, 17.

Valcke, M. (1985). Praktische ervaringen met het leren

programmeren in de klas - Karakteristieken van de

leerkrachtinterventie. Proceedings of Programmeertalen

en courseware-aanmaak, 61-90.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 3.

https://pure.tue.nl/ws/files/25754482/20160630_CO_Slangen.pdf
https://pure.tue.nl/ws/files/25754482/20160630_CO_Slangen.pdf

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

73

Preservice Teachers’ Views of Computational Thinking:

STEM Teachers vs non-STEM Teachers

Chee-Kit LOOI1, Shiau Wei CHAN2, Wendy HUANG3, Peter SEOW4, Longkai WU5

1,2,3,4,5National Institute of Education, Nanyang Technological University, Singapore

cheekit.looi@nie.edu.sg, shiauwei.chan@nie.edu.sg, wendy.huang@nie.edu.sg, peter.seow@mie.edu.sg,

longkai.wu@nie.edu.sg

ABSTRACT

This study was performed to explore the views of preservice

teachers of computational thinking (CT) through a pilot

survey. A total of 329 preservice teachers from the National

Institute of Education Singapore took part in this pilot

survey. These preservice teachers were trained to teach

STEM and non-STEM subjects. The overall findings

showed that the preservice teachers do not yet have an

adequate understanding of CT. Most of them perceived CT

as logical thinking or reasoning. This is followed by no idea

or no understanding or not sure, using ICT or computer,

coding or programming, problem-solving and so forth.

Besides that, STEM preservice teachers had different views

of CT compared to non-STEM preservice teachers. These

initial views of CT among the preservice teachers can serve

to inform the design of teacher preparation programs,

policies and syllabus materials to support the preservice

teachers to infuse CT into their future teaching practices.

KEYWORDS

computational thinking, preservice teacher, view, pilot

survey

1. INTRODUCTION
In Singapore, developing computational capabilities is one

of the key enablers for the Smart Nation initiative. Several

programs have been conducted to introduce and enhance

computational thinking (CT) skills and coding abilities

among the Singaporean, from pre-school students to adults.

Nevertheless, one of the main concerns is how to best

prepare and support teachers to incorporate CT into their

teaching in the classroom (Yadav, Hong, & Stephenson,

2016). We are a research group that explores the design of

new programs to train the preservice teachers and in-service

teachers in CT. A recent program that has been implemented

was CTFest: Sharing and Learning about CT which

sponsored by a grant from the Google Data Centre

Community Fund. During the CTFest, featured talks and

discussions were held for the teachers to learn about the best

practices in the teaching of CT. The attendees included

teachers of computer science, computer programming and

applications, computing, design and technology, and

computing-related Applied Learning Programmes;

colleagues from Curriculum Planning & Development

(CPDD) of MOE, polytechnics lecturers and Singapore

Science Centre. Industry partners were also invited to

exhibit their work in computing education.

Educational experiences are needed for the teachers from all

levels to prepare them well to teach CT concepts effectively.

Knowing the standpoints of preservice teachers towards CT

can serve as applicable resources for creating teacher

preparation programs, policies, and syllabus materials to

support the teachers to integrate CT into their teaching

practices (Rich, Yadav, & Schwarz, 2019). Thus, this study

is intended to determine preservice teachers’ views of CT

through a pilot survey. It is led by these research questions:

(a) How do preservice teachers view computational

thinking?

(b) What are the differences in the view of computational

thinking between STEM and non-STEM preservice

teachers?

2. LITERATURE REVIEW
CT has the potential to promote problem-solving skills and

capabilities among the students as they start to think in new

ways (Yadav et al., 2014). Therefore, the students should be

taught to understand computational procedures and develop

skills for representing and abstracting information (Lu &

Fletcher, 2009). Hemmendinger (2010) also claimed that the

aim of teaching CT was “to teach them how to think like an

economist, a physicist, an artist, and to understand how to

use computation to solve their problems, to create, and to

discover new questions that can fruitfully be explored” (p.

4). Yadav et al. (2011) asserted that teacher education was

one discipline where CT would have a noteworthy effect on

K-12 education. This was because if the preservice teachers

were able to present their CT ideas in the teaching, the

students would have the superior experience of computing

in general.

Some works have been executed to determine how

preservice teachers view CT. For instance, Chang and

Peterson (2018) accomplished a study to identify the

perceptions of CT among preservice teachers. The

preservice teachers define CT as an important literacy, with

elements of thinking in a logical series and steps, thinking

for solution and creating strategies, and demonstrating

thinking. Furthermore, Bower and Falker (2015) conducted

a study to investigate the understanding of CT among

preservice teachers. The results indicated that almost one-

third of the preservice teachers regarded CT as problem

solving using technology, and utilizing technology. Another

study was done by Yadav et al. (2014) to evaluate the

understanding of CT among preservice teachers. The

preservice teachers perceived that CT as heuristics and

problem solving, algorithms, use of computers or

technology, and critical thinking.

3. METHOD

3.1. Respondents

74

329 preservice teachers in the National Institute of

Education, Singapore who participated in this study. They

had just completed their year-long teaching training courses,

and were about to go to school for their practicum before

graduation as a teacher. They were trained to teach at least

two subjects. Most of them (n=147, 44.7%) had the

curriculum subject of English Language / Literature /

General Paper. This is followed by the subjects of Mother

Tongue (n=92, 28%), Mathematics (n=82, 24.9%), Science

(n=59, 17.9%), History / Social Studies / Geography /

Economics (n=76, 23.1%), Art / Music / Drama (n=21,

6.4%), Computer Applications (n=3, 0.9%), Principles of

Accounts (n=3, 0.9%), Elements of Business Skills (n=2,

0.6%), Character and Citizenship Education (n=2, 0.6%),

Social Studies (n=1, 0.3%), and French (n=1, 0.3%). 121 of

them were trained to teach STEM subjects including

Mathematics, Science, and Computer Applications. We

considered them as STEM preservice teachers if they were

trained and prepared to teach at least one STEM subject.

Meanwhile, 208 of them were trained in teaching non-

STEM subjects. All of these preservice teachers were

required to attend a one and half hour long CT introductory

session as part of their Beginning Teacher Orientation

Programme.

3.2. Pilot Survey

At the beginning of the session program on CT, the

respondents had to complete a pilot survey which consisted

of two questions. The first question was in multiple-choice

format, and the second question was open-ended. The first

question was “What subject areas have you been prepared to

teach?” and the second question was “What is your current

understanding of computational thinking?” The respondents

answered the questions using google forms. The responses

of the second question were analyzed using an open coding

approach to identify the preliminary analytic categories. If

the responses contained multiple features, they were put

under two or more categories, for instance ‘Problem solving

with the use of computers’ was included in the categories of

‘problem-solving’ and ‘using ICT/computer’ (Bower &

Falkner, 2015).

4. FINDINGS

4.1. Preservice Teachers’ Views of CT

Table 1 presents the views of CT among preservice teachers.

In Table 1, we notice that the majority of the preservice

teachers perceived that CT was logical thinking or reasoning

with a total frequency of 80. It was surprising that a number

of preservice teachers (n=43) did not have any idea or

understanding of CT. Most of them (n=38) also regarded CT

involve the use of ICT or computer. 32 of the respondents

viewed CT as coding or programming. Besides that, the

preservice teachers also thought that CT was related to

problem-solving, with a frequency of 30 and CT was

systematic or systematic thinking with the frequency of 19.

They deemed that CT was thinking or thinking process

(n=13), computation or calculation (n=10), and algorithm

(n=10). This is followed by mathematics (n=8), analytical

thinking or analytical thinking (n=8), and programming

(n=8). Six of the respondents conceived that CT was step

by step and thinking like a computer. Methodical thinking

and analysis were perceived as CT with a frequency of 4

respectively. Furthermore, CT was also considered as

computing skills or principles (n=3), sequencing or

sequential thinking (n=3), artificial intelligence (n=3),

structured or structured thinking (n=2), and using software

(n=2). The other CT views with a frequency of 1 were

including stepwise thinking, thinking like a bot, thinking

like a coder, rational thinking, IT-related thinking,

engineering-related and so on.

Table 1. Preservice Teachers’ views of CT

No CT Views Frequency

1 Logical thinking/reasoning 80

2 No idea/No understanding/Not sure 43

3 Using ICT/computer 38

4 Coding/Programming 32

5 Problem solving 30

6 Systematic/Systematic thinking 19

7 Thinking/Thinking Process 14

8 Computation/Calculation 10

9 Algorithm 10

10 Mathematics 8

11 Analytical/Analytical thinking 8

12 Steps/Step by step 6

13 Thinking like a computer 6

14 Methodical thinking 4

15 Analysis 4

16 Computing skills/principles 3

17 Sequencing/Sequential thinking 3

18 Artificial intelligence 3

19 Structured/Structured thinking 2

20 Using software 2

21 Algorithmic thinking 1

22 Strategy 1

23 Robots 1

24 JavaScript 1

25 Out of box thinking 1

26 Recursion 1

27 Stepwise thinking 1

28 Giving instructions 1

29 Rational conclusions 1

30 Commands 1

31 Thinking like a bot 1

32 Thinking like a coder 1

33 Thinking like a machine 1

34 Numbers 1

35 Higher order thinking 1

36 Excel 1

37 Statistics 1

38 Permutation 1

39 Combinations 1

40 Configurations 1

41 Decision making 1

42 Directions for machines 1

43 Computer terminology 1

44 Technical 1

45 Algebraic thinking 1

46 Binary codes 1

47 Iterations 1

48 Processing thoughts effectively 1

75

49 Thinking procedurally 1

50 Procedure 1

51 Mathematical thinking 1

52 Rational thinking 1

53 Memory work 1

54 Managing complexity 1

55 Using models 1

56 Proactive thinking 1

57 ICT lesson 1

58 IT-related thinking 1

59 Optimization 1

60 Function 1

61 Graph theory 1

62 Standardized thinking 1

63 Solutions 1

64 Making teaching easier 1

65 Engineering-related 1

4.2. Comparison of the view of CT between STEM and

non-STEM preservice teachers

Based on Table 1, the views of CT that had a frequency of 2

or more than 2 were included in the analysis to compare the

differences in the view of CT between STEM and non-

STEM preservice teachers. From Table 2 and Figure 1, it can

be observed that more STEM preservice teachers (28.9%)

viewed CT as logical thinking or reasoning than non-STEM

preservice teachers (21.6%). Most of the non-STEM

preservice teachers (15.9%) did not know about CT

compared to that of STEM preservice teachers (8.3%).

When compared to non-STEM preservice teachers, the

STEM preservice teachers were more likely to consider CT

as coding or programming (10.7%), systematic or systematic

thinking (8.3%), thinking or thinking process (5.0%),

computation or calculation (5.0%), mathematics (2.5%),

analytical or analytical thinking (3.3%), steps or step by step

(3.3%), thinking like a computer (2.5%), methodical

thinking (1.7%), and using software (0.8%). The percentage

for the non-STEM preservice teachers for these ten CT

views was 9.1%, 4.3%, 3.8%, 1.9%, 2.4%, 1.9%, 1.0%,

1.4%, 1.0%, and 0.5% respectively. In the contrast, the

STEM preservice teachers were less likely to regard CT as

using ICT or computer (10.7%), algorithm (1.7%), analysis

(0.8%), computing skills or principles (0.8%), and

sequencing or sequential thinking (0.8%). The percentage

for non-STEM preservice teachers was higher than STEM

preservice teachers for these five CT views, i.e. 12%, 3.8%,

1.4%, 1.0%, and 1.0%. Both STEM and non-STEM

preservice teachers deemed CT as problem-solving which

had the same percentage of 9.1%. Non-STEM preservice

teachers considered CT as artificial intelligence and

structured or structured thinking with a percentage of 1.4%

each, but there was 0% for the STEM preservice teachers.

Table 2. Comparison of views of CT between STEM and

non-STEM preservice teachers

CT Views STEM Non-

STEM

Logical thinking/reasoning 28.9 21.6

No idea/No understanding/Not sure 8.3 15.9

Using ICT/computer 10.7 12

Problem solving 9.1 9.1

Coding/Programming 10.7 9.1

Systematic/Systematic thinking 8.3 4.3

Thinking/Thinking Process 5 3.8

Computation/Calculation 5 1.9

Algorithm 1.7 3.8

Mathematics 2.5 2.4

Analytical/Analytical thinking 3.3 1.9

Steps/Step by step 3.3 1

Thinking like a computer 2.5 1.4

Methodical thinking 1.7 1

Analysis 0.8 1.4

Computing skills/principles 0.8 1

Sequencing/Sequential thinking 0.8 1

Artificial intelligence 0 1.4

Structured/Structured thinking 0 1.4

Using software 0.8 0.5

Figure 1. Comparison of views of CT between STEM and

non-STEM preservice teachers

5. DISCUSSIONS AND CONCLUSION
The overall findings demonstrated that preservice teachers

did not have a sufficient understanding of CT. This indicated

that a lack of awareness of how CT skills can be

incorporated into their teaching practices, thus implying that

more work needs to be put in to expose them to knowledge

and practices about the integration of CT in the classrooms.

The majority of preservice teachers perceived that CT as

logical thinking which is analogous with the result of a study

from Chang and Peterson (2018) where CT is seen as

thinking in logical steps. The preservice teachers had

comparable responses with the study of Sands, Yadav and

Good (2018) where CT involved problem-solving, logical

thinking, thinking like a computer, mathematics, using ICT

or computer, coding or programming, and algorithm. CT

was regarded as problem solving and mathematics which is

also consistent with the finding of Rich, Yadav and

Schwarz’s (2019) study. The preservice teachers were

capable to determine the types of thinking connected with

CT, such as analytical thinking, mathematical thinking,

logical thinking, and structured thinking, which is

compatible with the study of Bower and Falkner (2015). By

referring to Table 1, some of the preservice teachers were

able to identify the concepts and elements that related to CT,

76

for example, algorithmic thinking, iterations, function, using

models, sequencing or sequential thinking, and thinking

procedurally. However, there were some responses in Table

1 that did not relate to CT or had no clear meaning, such as

JavaScript, configurations, memory work, solutions, and

graph theory.

Preservice teachers, regardless of STEM and non-STEM,

ought to have similar thoughts about CT. However, in this

study, it was found that the STEM preservice teachers had

different views of CT compared to non-STEM preservice

teachers. Unlike the non-STEM preservice teachers, the

STEM preservice teachers were more likely to perceive CT

as logical thinking or reasoning, coding or programming,

systematic or systematic thinking, thinking or thinking

process, computation or calculation, analytical or analytical

thinking, steps or step by step, thinking like a computer,

methodical thinking, and using software. On the other hand,

the STEM preservice teachers were less likely to regard CT

as using ICT or computer, algorithm, analysis, computing

skills or principles, and sequencing or sequential thinking.

More non-STEM preservice teachers did not have an idea or

understanding concerning CT. This is most likely because

STEM preservice teachers may have more exposure to

Computing courses in their tertiary education before joining

the preservice teaching course. Both STEM and non-STEM

preservice teachers had the same response for CT as

problem-solving. Two remarkable differences of view of CT

between STEM and non-STEM preservice teachers were the

artificial intelligence and structured or structured thinking as

none of the STEM teachers gave these responses. This could

attributed to non-STEM teachers perception that CT is

related to the use of technology.

In some countries such as the United Kingdom, efforts have

been made to integrate CT into all subjects at all levels, If

teachers have pre-conceptions of CT that differ from the

concepts of CT, it would be difficult to require teachers to

integrate CT into the curriculum, Our findings of this study

can serve as useful resources to help create teacher

preparation programs, policies, and syllabus materials to

help the preservice teachers to embed CT into their future

classrooms. It is proposed to implement more teacher

preparation programs on CT for the preservice teachers to

help them to be more familiar with the CT concepts and have

a better grasp on how CT can be employed in their future

teaching. The teacher preparation programs play an

important role in making a large-scale shift towards

embedding CT into K-12 education. Hence, preservice

teachers should have opportunities to experience CT during

their preservice courses. During the course, tangible or

practical examples of how to integrate CT into different

subject areas should be provided. Future research needs to

include a bigger sample of participants with diverse

demographics. Besides, this pilot survey does not tell us

much about the views of preservice teachers in detail. In

future research, we can further investigate where the

teachers are getting their ideas about CT from through in-

depth interviews and elaborate on them.

6. ACKNOWLEDGEMENT
This work was supported by a grant (OER 10/18) from the

Office of Educational Research, NIE.

7. REFERENCES
Bower, M., & Falkner, K. (2015). Computational Thinking,

the Notional Machine, Pre-service Teachers, and Research

Opportunities. Proceedings of the 17th Australasian

Computer Education Conference (ACE2015) Sydney, 37-

46.

Chang, Y., & Peterson, L. (2018). Pre-service Teachers’

Perceptions of Computational Thinking. Journal of

Technology and Teacher Education, 26(3), 353-374.

Hemmendinger, D. (2010). A Please for Modesty. ACM

Inroads, 1(2), 4–7.

Lu, J., & Fletcher, G. (2009). Thinking about Computational

Thinking. SIGCSE 2009, Chattanooga. ACM, 260-264.

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019).

Computational Thinking, Mathematics, and Science:

Elementary Teachers’ Perspectives on Integration.

Journal of Technology and Teacher Education, 27(2),

165-205.

Sands, P., Yadav, A., & Good, J. (2018). Computational

Thinking in K-12: In-service Teacher Perceptions of

Computational Thinking. Computational Thinking in the

STEM Disciplines. Cham: Springer, 151-164.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,

J. T. (2011). Introducing Computational Thinking in

Education Courses. Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education.

ACM, 465–470.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,

J. T. (2014). Computational Thinking in Elementary and

Secondary Teacher Education. ACM Transactions on

Computing Education, 14(1), 1–16.

Yadav, A., Hong, H., & Stephenson, C. (2016).

Computational Thinking for All: Pedagogical Approaches

to Embedding 21st Century Problem Solving in K-12

Classrooms. TechTrends, 60(6), 565-568.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

77

Computational Thinking and

IoT

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

78

CT-6E Model for Developing the IoT Teaching Activity

Hsien-Sheng HSIAO1*, Chung-Pu CHANG2*

1,2 Department of Technology Application and Human Resource Development, National Taiwan Normal University, Taiwan
1Chinese Language and Technology Center., National Taiwan Normal University, Taipei, Taiwan.

1Institule for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan.

etlab.paper@gmail.com, enzoapu@gmail.com

ABSTRACT

Information technology is developing rapidly, and there is a large demand for scientific and technological talents, such as the

Internet of Things, Big data, Artificial Intelligence, etc. Therefore, how to cultivate the next generation with information

technology concept and program implementation technology ability and computational thinking ability has become a very

important and urgent problem to be solved in countries around the world. This study proposes that a set of IoT teaching

activities using the CT-6E model will be developed. Through 8 weeks of inquiry learning and practical teaching, students will

learn the concepts of the Internet of Things, explore applications in life, write programs and assemble electronic components,

and make IoT topics that integrate various modules. In addition, an empirical study is planned to explore whether this course

can more effectively improve students' IoT learning effectiveness, computational thinking ability, and self-efficacy than

traditional courses.

KEYWORDS

Internet of Things, computational thinking, self-efficacy, 6E model

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

79

運用 CT-6E模式發展高中生之物聯網教學活動規劃

蕭顯勝 1*，張仲樸 2＊

1,2科技應用與人力資源發展學系，臺灣師範大學，台灣
1臺灣師範大學學習科學跨國頂尖研究中心，台灣

1臺灣師範大學華語文與科技研究中心，台灣

etlab.paper@gmail.com，enzoapu@gmail.com

摘要

資訊科技發展快速，有大量物聯網、大數據、人工智

慧等科技人才需求，因此如何培育具備資訊科技概念

和程式實作技術能力、運算思維能力的下一代，成為

各國相當重要且急迫需要解決的問題。本研究提出將

發展出一套運用CT-6E模式之物聯網教學活動，透過八

週的探究學習及實作教學，讓學生學到物聯網的概念、

探索生活中的應用、動手撰寫程式並組裝電子元件，

最後實作出整合各模組的物聯網專題。並規劃一實證

研究，來探討經由此課程能否比一般課程更有效地提

升學生的物聯網學習成效、運算思維能力及自我效能。

關鍵字

物聯網；運算思維；自我效能；6E模式

1. 前言

科技發展一日千里，隨著物聯網（ Internet of Things,

IoT）、大數據（Big Data）、人工智慧（Artificial

Intelligence, AI）等技術發展（Identifies Top 10 Strategic

IoT Technologies and Trends, 2018），未來五年「通訊

暨物聯網裝置」、「大數據分析」與「資料服務」等

產業，每年人才需求大於 10,000 人（國發會，2017）。

面臨快速發展的科技現況及全球化競爭時代來臨，如

何強化國家人才能力的培養及產業競爭力，為重要之

議題（PwC, 2019）。因此台灣教育部（2019）調整了

《十二年國民教育科技領域課程綱要》，將「資訊科

技」設為國、高中階段之必修科目，強調學生培養運

算思維（Computational Thinking, CT）能力的重要性。

過去大多數研究在 CT 教學活動中採用專題導向式學習、

問題專題導向式學習及合作學習（Hsu, Chang, & Hung,

2018），代表這種讓學生透過步驟探究進行學習是有

效的策略。6E 模式是一種以學生為中心，同樣為藉由

步驟讓學生探究學習的教學策略（Barry, 2014），過程

中規劃使學生容易增加信心及成就感的實作練習，可

改善學生在程式設計課程上，自我效能低落的問題。

本研究發展出一套運用CT-6E模式的物聯網教學活動，

能夠更加地提升學生的物聯網學習表現、運算思維及

自我效能，進而培育更多具有未來競爭力的相關人才。

研究問題如下：

（1）如何發展 CT-6E模式的物聯網教學活動？

（2）如何評估學生在 CT-6E 模式與一般教學模式上的

學習成效差異？

2. 文獻探討

2.1. 物聯網教學

在物聯網教學環境中，學生將學習到數理科學與工程

教育的跨領域知識，同時會獲得科技應用與程式設計

等實作機會（Kortuem, Bandara, Smith, Richards, & Petre,

2012）。

Mavroudi、Divitini、Gianni、Mora 與 Kvittem（2018）

的研究中，教學者使用體驗式學習策略，讓學生扮演

物聯網應用設計師，發想以智慧城市為主題的創意題

目和解決方案。最後的調查結果發現，參與者認為學

習物聯網知識、智能城市概念和獲得解決問題的技能

等方面都非常令人滿意。

2.2. 運算思維

運算思維由 Wing（2006）提出，後續許多研究陸續發

表出不同的定義或概念組合。本研究採過去學者或電

腦科學組織在定義運算思維時所提到的概念中，較廣

為人知的四大概念（ Angeli et al., 2016; Barr &

Stephenson, 2011; CSTA, 2011; Google for Education, 2015;

Grover & Pea, 2013; Hsu, Chang, & Hung, 2018; Selby &

Woollard, 2014），其定義如下：

1.分解：將資料、程序或問題分解為更小、易於處理的

部分。

2.模式識別：觀察出資料中的模式、趨勢和規律。

3.抽象化：識別並提取可表達主要概念的相關訊息。

4.演算法設計：創建一程序性指令，用於解決相似的問

題或執行一個任務。

Lai、Chen、Lai、Chang與 Su（2019）將運算思維納入

物聯網應用的課程規劃中，讓學生通過理解問題並分

析解決步驟來找到不同領域問題的解決方案，結果發

現能夠有效地提高學生的學習興趣和表現。

2.3. 自我效能

Bandura（1997）說明自我效能是個人在不同情境下的

信心、信念程度。自我效能將會影響學生在解決問題

時所表現出的努力程度（ Gandhi & Varma, 2009;

Psycharis & Kallia, 2017）。

Tsai 等人（2019）根據 Berland 與 Lee（2011）的運算

思維框架，發展出一個更加泛化的自我效能量表，用

以檢驗學生的程式設計自我效能感，有益於教育者或

課程設計者在教學實踐和教育研究中應用。

80

2.4. 6E模式

6E 模 式 是 由 美 國 國 際 科 技 與 工 程 教 師 學 會

（ International Technology and Engineering Educators

Association, ITEEA）在 2013 年提出，包括六大步驟：

參與（engage）、探索（explore）、解釋（explain）、

實作（engineer）、深化（enrich）、評量（evaluate），

教師扮演輔助的角色，讓學習者透過探究的過程，理

解真實情境的問題，經由思考、設計並實作出解決方

案（Barry, 2014）。

Chen等人（2019）運用 6E模式發展出四軸飛行器實作

活動，讓學生動手寫程式、連結控制板與馬達，透過

藍芽控制，實驗結果表明，能夠有效地提升學生的學

習成效。Hsiao 等人（2019）則是運用 6E 模式發展出

S4A機器人實作課程，實驗結果表明，學生的學習成效

和運算思維能力均有所提高。

2.5. 文獻評析

經由前述文獻整理與探討可知，以物聯網為主題的教

學活動或課程能夠培養學生的資訊科技各領域概念及

運算思維；運用 6E 模式發展之課程，能夠提升學生在

物聯網相關課程上的學習成效。因此，本研究欲將運

算思維的概念融入課程，並與 6E 模式個步驟做搭配，

最後發展出共八週之物聯網教學活動，以及後續實證

研究規劃。

3. 教學設計與教案規劃

3.1. 物聯網課程

課程以物聯網為主軸，分為三個學習階段，學習階段

一：進行物聯網基礎教學，帶領學生學習 Arduino程式

設計和電子元件；學習階段二：進行物聯網進階教學，

讓學生透過每週的模組實作，學習更多感測器應用、

網路通訊功能、雲端服務串接等，共有四個模組：

「自動照明裝置」、「自動風扇開關」、「危害氣體

偵測器」、「智慧門鎖」；學習階段三：進行「智慧

家庭」物聯網專題實作，學生應用前兩階段所學得之

知識與技能，整合各模組之功能，組裝房屋並設置模

組，完成最終的專題作品。各階段之學習內容說明如

表 1所示。

表 1 學習內容說明

項目 學習內容

Arduino入門
認識 Arduino、Arduino開發環境介紹、程

式語言、基礎電路、電子元件

程式設計入門
Arduino控制結構、資料型態、變數、運

算子、序列阜、條件式、迴圈、函式

自動照明裝置 訊號處理、紅外線感測器監控、LED

自動風扇開關 電壓調節、溫溼度感測器監控、風扇模組

危害氣體偵測
CO感測器數據監控、蜂鳴器控制、Wi-Fi

無線通訊、ThingSpeak平台串接

智慧門鎖
磁簧開關控制、伺服馬達控制、串接

IFTTT服務、LINE通知訊息發送

人工智慧 微軟 AI認知服務（影像、語音、語言）

智慧家庭 雷切房屋組裝、模組設置與整合、多感測

解決方案 裝置監控

3.2. 教學策略

本研究將運算思維四大概念與 6E模式的六步驟做對

應，提出「CT-6E模式」，每週之教學活動皆使用以此

進行課程設計，圖 1為教學策略執行內容圖，說明各步

驟中教師教學和學生學習的方式。

圖 1 CT-6E模式執行內容圖

學習階段二，每個模組之教學內容皆對應運算思維四

大概念，表 2以「自動照明裝置」為例說明之。

表 2 教學內容與 CT概念對照表

CT概念 說明

分解
問題拆解為(1)偵測人的距離，判斷是否靠

近；(2)自動開啟照明

模式

識別

˙ 感測器會回傳一範圍區間之數值資料

˙ 經過換算可用以衡量受測物之距離

˙ 觀察並定義出人是否靠近的距離範圍

抽象化
˙ 使用紅外線感測器取得受測物之距離

˙ 使用 LED燈作為照明裝置

演算法

設計

˙ 將任務以程序表示，如：取得感測器數值

→是否在某距離內→點亮燈數秒

˙ 畫流程圖並用程式實作出來

4. 研究方法

4.1. 研究架構

採用準實驗研究法，探討不同教學模式之物聯網教學

活動，對於學生物聯網學習表現、運算思維及自我效

能之影響。研究架構圖如圖 2所示。

圖 2 研究架構

4.2. 研究對象

將以台北市某所高級中學一年級學生為實驗對象，實

驗組、對照組各 2個班，每個班 40個人，共 160人。

81

每個班學生 2 人為一組，共分 20 組參與實驗教學和專

題實作。

4.3. 實驗設計與實施

實驗含前後測共 10 週，每週有 100 分鐘，第一週進行

物聯網學習表現、運算思維和自我效能之前測，並說

明上課規範與計分方式。第二週與第三週為學習第一

階段，接受物聯網基礎教學，學習 Arduino程式設計和

電子元件。第四週至第七週為學習第二階段，接受物

聯網進階教學，讓學生透過每週的作品實作，學習更

多感測器應用、網路通訊功能、雲端服務串接等。第

八週與第九週為學習第三階段，進入連續兩週之物聯

網專題實作。第十週課程活動結束後，進行物聯網學

習表現、運算思維和自我效能之後測。圖 3為本研究之

實驗設計流程說明。

圖 3 實驗流程

4.4. 研究工具

4.4.1物聯網學習表現測驗卷

本研究將自行編製物聯網學習表現測驗卷，內容包括

物聯網、電子電路、感測器、程式設計等。將請兩位

有教學經驗之資訊科技老師進行專家審查，達到內容

效度標準；將於某高中進行預試，剔除內部一致性系

數未達.5之題項。

4.4.2 國際運算思維測驗

採用國際運算思維能力測驗（ International Bebras

Contest），挑選近五年題庫中，符合「分解」、「模

式識別」、「抽象化」、「演算法設計」概念之題目

進行編制。題目皆設計為情境式，讓學習者利用自己既

有的知識及運算思維概念進行解題。

4.4.3 自我效能量表

採用 Tsai 等人（2019）發展之程式設計自我效能量表

（Computer Programming Self-Efficacy Scale, CPSES）分

為邏輯思維、演算法、偵錯、控制和合作等五個構面，

共 16題，以李克特六點尺度計分，整體之 Cronbach’s α

為 0.96，各構面 α值的範圍從.84到.96，具有高度的內

部一致性。

4.5. 預期成果

透過準實驗研究法來探討兩者對於高中生物聯網學習

表現、運算思維和自我效能之影響。使用共變數分析，

比較實驗組與對照組在物聯網學習表現、運算思維和

自我效能之結果。並預期運用CT-6E模式之實驗組，在

物聯網學習表現、運算思維和自我效能上，都能顯著

高於一般教學模式的對照組。

5. 參考文獻

國家發展委員會（2016）。107-109 年重點產業人才供

需調查及推估彙整報告。臺北市：國家發展委員會。

教育部（2019）。十二年國民基本教育課程綱要綜合

型高級中等學校-科技領域。台北：教育部。

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-

Smith, J., & Zagami, J. (2016). A K-6 Computational

Thinking Curriculum Framework: Implications for

Teacher Knowledge. Journal of Educational Technology

& Society, 19(3), 47-57.

Bandura, A. (1997). Self-efficacy: The exercise of control.

New York, NY: WH Freeman and Company。

Barr, V., & Stephenson, C. (2011). Bringing Computational

Thinking to K-12: What is Involved and What is the Role

of the Computer Science Education

Community?. Inroads, 2(1), 48-54.

Barry, N. (2014). The ITEEA 6E Learning byDeSIGN™

Model. Technol. Eng. Teach, 73, 14-19.

Chen, J. C., Huang, Y., Lin, K. Y., Chang, Y. S., Lin, H. C.,

Lin, C. Y., & Hsiao, H. S. (2019). Developing a Hands‐on

Activity Using Virtual Reality to Help Students Learn by

Doing. Journal of Computer Assisted Learning.

doi: 10.1111/jcal.12389

Computer Science Teachers Association (CSTA). (2011).

CSTA K-12 computer science standards. The ACM K-12

Education Task Force. Retrieved November 20, 2019,

from https://www.csteachers.org/page/standards

Gandhi, H., & Varma, M. (2009). Strategic Content

Learning Approach to Promote Self-regulated Learning in

Mathematics. Proceedings of epiSTEME, 3, 119–124.

Google for Education. (2015). Exploring Computational

Thinking. Retrieved November 18, 2019, from

https://edu.google.com/resources/programs/exploring-

computational-thinking/

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Hsiao, H. S., Lin, Y. W., Lin, K. Y., Lin, C. Y., Chen, J. H.,

& Chen, J. C. (2019). Using Robot-based Practices to

Develop an Activity that Incorporated the 6E Model to

Improve Elementary School Students’ Learning

Performances. Interactive Learning Environments, 1-15.

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to

Learn and How to Teach Computational Thinking:

Suggestions based on a Review of the

Literature. Computers & Education, 126, 296-310.

https://www.csteachers.org/page/standards
https://edu.google.com/resources/programs/exploring-computational-thinking/
https://edu.google.com/resources/programs/exploring-computational-thinking/

82

Kortuem, G., Bandara, A. K., Smith, N., Richards, M., &

Petre, M. (2012). Educating the Internet-of-Things

Generation. Computer, 46 (2), 53-61.

Lai, Y. H., Chen, S. Y., Lai, C. F., Chang, Y. C., & Su, Y.

S. (2019). Study on Enhancing AIoT Computational

Thinking Skills by Plot Image-based VR. Interactive

Learning Environments, 1-14.

Mavroudi, A., Divitini, M., Gianni, F., Mora, S., & Kvittem,

D. R. (2018). Designing IoT applications in Lower

Secondary Schools. Proceedings of 2018 IEEE Global

Engineering Education Conference (EDUCON).

IEEE, 1120-1126.

Omale, G. (2018). Gartner Identifies Top 10 Strategic IoT

Technologies and Trends. Retrieved November 7, 2018,

from https://www.gartner.com/en/newsroom/press-

releases/2018-11-07-gartner-identifies-top-10-strategic-

iot-technologies-and-trends

PricewaterhouseCoopers (PwC). (2019). Talent Trends

2019: Upskilling for a Digital World. Retrieved August 1,

2019, from https://www.pwc.tw/zh/publications/events-

and-trends/cover-story/c334-cover.html

Barry, N. (2014). The ITEEA 6E Learning byDeSIGN™

Model. Technol. Eng. Teach, 73, 14-19.

Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019). Developing

the Computer Programming Self-Efficacy Scale for

Computer Literacy. Education. Journal of Educational

Computing Research, 56(8), 1345-1360.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.pwc.tw/zh/publications/events-and-trends/cover-story/c334-cover.html
https://www.pwc.tw/zh/publications/events-and-trends/cover-story/c334-cover.html

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

83

Computational Thinking and

STEM/STEAM Education

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

84

A Study on Influential Factors of Primary School Students' Computational

Thinking in Interdisciplinary STEM Teaching

Pinghong ZHOU1*, Yi ZHANG2, Wei MO3, Jue WANG4

1,2,3School of Educational Technology, Central China Normal University, China Wuhan
4 School of teacher education, Huzhou University，Huzhou Zhejiang

phzhou@mail.ccnu.edu.cn, zhangyi@mail.ccnu.edud.cn, 22089463@qq.com, wangjue@zjhu.edu.cn

ABSTRACT

This study explores the relationship among learners' metacognition, learning motivation and engagement and Computational

Thinking in interdisciplinary STEM teaching. A questionnaire survey was carried out in a primary school of Wuhan Economic

Development Zone. 593 samples were collected from 6 classes in grade 3, 4 and 5 of the primary school. The results of

structural equation model analysis showed that: (1) metacognition, learning motivation, engagement and computational

thinking were significantly positively correlated; (2) the direct and indirect effects of Metacognition on Computational

Thinking were significant. Indirect effect includes two paths: through the partial mediating role of learning participation and

through the chain mediating role of learning motivation and engagement; (3) the direct effect of learning motivation on

Computational Thinking is not significant, but it can affect Computational Thinking through the mediating role of

engagement. This conclusion provides the relevant strategy reference for the cultivation of students' computing thinking

ability.

KEYWORDS

computational thinking, metacognition, learning motivation, engagement

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

85

跨学科 STEM 教学中小学生计算思维影响因素研究

周平红 1＊，张屹 2，莫尉 3，王珏 4

1,2,3华中师范大学教育信息技术学院，中国武汉
4湖州师范学院教师教育学院，浙江湖州

phzhou@mail.ccnu.edu.cn，zhangyi@mail.ccnu.edud.cn，22089463@qq.com，wangjue@zjhu.edu.cn

摘要

本研究探讨在跨学科 STEM教学中学习者的元认知、学

习动机、参与度与计算思维之间的关系。研究在武汉

市经济开发区某小学开展问卷调查，收集了该小学三

年级、四年级、五年级共计 6 个班 593 份样本，结构方

程模型分析结果显示：（1）元认知、学习动机、参与

度与计算思维两两之间均显著正相关；（2）元认知对

计算思维影响的直接效应和间接效应均显著。间接效

应为通过学习参与度的部分中介作用和通过学习动机

与参与度的链式中介作用；（3）学习动机只能通过参

与度的中介作用影响计算思维。这一结论为培养学生

的计算思维能力提供了相关策略参考。

关键词

计算思维；元认知；学习动机；参与度

1. 问题的提出

计算思维（Computational Thinking，简称 CT）是 21 世

纪的关键技能之一。美国国际教育技术协会（ISTE）

确定的 21 世纪学生标准包括解决问题、合作、创造力

和批判思维等高级技能，计算思维直接与这些技能相

关。Wing（2006）认为计算思维是利用计算机科学的

基本概念来解决问题，设计系统并理解人类行为，与

编程和数学思维有着密切的联系。此外，计算思维涉

及问题解决过程中复杂和高阶的技能，是一种通过分

解、抽象、泛化、算法设计、调试和迭代等技能思考

和采取行动的方式，被认为有助于在各个领域发展知

识和理解概念，具有发展问题解决技能的巨大潜能。

由于计算思维的重要性，许多国家将计算思维纳入 K12

教育中，并且关注促进学生计算思维能力提升的教学

方法和研究设计。为了提高学生的能力，将计算思维

和 STEAM 课程相结合是恰当的选择，同时考虑这两个

领域可能共享的大量主题材料，因为通过跨学科整合

有助于提升学生的问题解决能力（ISTE，2016）。在

计算思维教育中如何让学生参与有意义的学习以培养

他们有用的思维技能和数字能力还需进一步探索。

为此，在面向计算思维培养的K12教育和培训过程中确

定有效的影响因素非常重要。但是在跨学科整合的

STEM 课程中，对哪些因素显著影响学生计算思维的发

展、计算思维与其他变量之间关系的相关研究较少。

本研究从变量间链式中介关系的角度，探讨个体内部

心理变量元认知、学习动机、参与度如何影响计算思

维。即研究主要探讨经过跨学科整合的 STEM课程教学

后，检验学生在问题解决过程中计算思维技能与其学

习动机、参与度、元认知等变量之间的关系。

2. 文献综述与研究假设

2.1. 文献综述

2.1.1. 计算思维的培养及其影响因素

计算思维目前没有统一的定义。最早 Papert通过关注儿

童在 LOGO 环境中进行编程开发的过程性思维提出了

计算思维的想法。Wing认为 CT不仅涉及编程，还具有

使用计算机科学的基本概念来理解人类行为的技能。

在 2010 年，她重新引入“计算思维”一词，认为计算思

维是解决问题及其解决方案所涉及的思想过程，以便

以一种可用信息处理代理有效执行的形式来表示解决

方案（Wing, 2006）。Brennan 和 Resnick 提出了一个框

架，从 CT 概念、CT 实践和 CT 观点三个维度对 CT 进

行概念化（Brennan & Resnick, 2012）。

张屹等构建了以计算思维培养为核心，以计算机编程

作为载体，跨学科 STEM整合培养学生计算思维的理论

框架。该理论框架分为学科内容层（STEM）、跨学科

大概念层（即凝练抽象与具体、数量与比例、图式与

模式、结构与功能、原因与结果等）和学习思维三层

（张屹, 李幸, 黄静等, 2018）。

目前培养学生计算思维能力的课程有编程、数学、自

然科学、社会科学和语言艺术，根据计算思维技能而

不仅仅是程序设计或编程教学来培养学生的问题解决、

抽象思维、程序思维及类似能力。Durak和 Sarıtepeci对

安卡拉的 156 名公立学校学生计算思维能力影响因素的

研究表明，教育水平、数学成绩、对数学课程的态度

和对科学课程的态度是影响计算思维的主要因素

（Durak & Saritepeci, 2018）。也有相关研究结果表明

在计算思维教育中对编程更感兴趣的学生会认为编程

更有意义，具有更大的创作自我效能感和更大的编程

自我效能感。此外，在面向计算思维技能培养的视频

游戏中认知和态度对学生会有影响。以上相关研究显

示，影响计算思维的因素既有认知层面的（态度、兴

趣、自我效能感等），也有知识层面的因素，如成绩。

2.1.2. 面向问题解决的元认知与计算思维

元认知概念最早由美国儿童心理学家弗拉维尔提出，

是指个体关于自己的认知过程、结果以及任何相关事

物的知识，另一方面指个体对自己认知过程的主动监

控、结果的调整以及对整个过程的协调。许多研究强

调计算思维是一种认知过程，将其描述为解决问题的

方法，强调元认知在计算思维过程中的作用，并且通

过关注计算机信息的自动化来了解计算思维与其他思

维方式的不同之处。Aho 认为计算思维是解决问题的思

维过程，其解决方案可以表示为计算步骤和算法（Aho,

86

2012）。从心理学的角度出发，形成问题的心理表征、

计划和选择解决方案的适当策略、检查错误和调试、

思考如何改进等组成了元认知的计划、评价和监控部

分。

相关研究者强调元认知和计算思维的关系。 Resnick 提

出，建构性的学习环境需要为学习者提供迭代设计解

决方案并反思自己学习过程的机会，以促进学习计算

思维技能（Resnick, 2007）。Yasemin Allsop 认为计算

思维是一个认知过程，受元认知实践的监管，涉及一

系列计算概念的应用，包括对学习行为的利用（Allsop,

2019）。牟连佳等立足计算思维的元认知视角，认为

在整个计算思维的心理操作序列中，学习者有机会试

用元认知监控信息特性、陈述性和程序性知识以及认

知经验，以维持个体在各种情境下解决问题的动机

（指计算思维）（牟连佳等，2015）。为此，学习者

的元认知对其计算思维的发展具有一定的影响作用。

此外，一些研究者对元认知与学习动机的关系进行了

探究。汪玲等借助于结构方程模型中的路径分析方法，

得到元认知受动机变量的调节和制约，动机变量（如

学业自我概念、考试焦虑、掌握定向、内部归因等）

对元认知活动具有“供能”作用的结论（汪玲和郭德俊，

2003）。Ghaleb 等人的研究表明，掌握目标的学生可

能拥有掌握信息所需的高级元认知技能和策略；使用

高级元认知最终会提高学习动机（Ghaleb , Ghaith &

Akour, 2015）。为此，学习者的元认知与其学习动机

会相互作用和相互促进。

2.1.3. 学习动机与计算思维

动机是使个人从事某种特定行为的内在力量，是激发、

引导和维持行为的内部过程，是使学习者开始行动、

维持行动，并决定其行动的方向（格雷德勒，2007）。

具有强烈学习动机的学生会运用更高级的认知活动，

学习和记忆更多的内容。一个相信完成一项任务具有

更大影响力的人将会有更多的内在动力，并且更有可

能为完成任务而付出努力。计算思维教育具有使学生

从技术的使用者转换为技术的生产者的潜能。相关研

究表明，培养学生计算思维的教学方法主要有游戏教

学法、探究式学习、基于问题的学习和建构主义以及

配对编程，需要创建基于任务的学习环境以增强动机

和认知成果（Belland, Kim & Hannafin, 2013）。在这些

教学方法下构建的高阶思维培养环境能促进学生进行

信息处理、反思活动的计算实践。为此，学习动机能

够正向影响计算思维能力水平。

2.1.4. 参与度与计算思维

参与度是学生参与学习活动过程中所表现出的行为强

度（如付出的时间与努力程度）与情绪的质量（如享

受或厌倦学习过程）。目前，被普遍认同的学习参与

度包括认知参与、行为参与和情感参与。相关研究表

明，学习动机是影响学习投入的关键因素，参与度来

自学生的动机，内在动机可以预测参与度，学生的内

在动机和学生的自我效能感高度相关，倾向参与的学

生具有内在动机（Dunn & Kennedy, 2019）。参与度是

自主学习成功的关键因素之一，K. Sharma 等认为协作

和参与能在学生参与面向计算思维培养的编程活动中

对学生的学习态度起有效的调节作用，该研究强调为

儿童设计高度协作和参与的编码活动的重要性，并指

出参与度可以调节参与意向与认知学习之间的关系

（Sharma, Papavlasopoulou & Giannakos, 2019）。计算

思维作为一种解决问题的学习方式，通过简化、嵌入

转换或模拟等来重构和解决问题，学生积极且可持续

的参与对于面向计算思维培养的教学来说非常重要。

促进适应性和参与度，为所有年龄的学习者提供计算

思维发展的内在动力是关键。

综上所述，国内外已有相关研究主要探讨计算思维培

养过程中学生的元认知、学习动机、参与度的重要性

与关联性，而对学生的元认知、学习动机和参与度如

何以及在多大程度上影响计算思维水平的问题研究较

少。本研究将建立计算思维能力培养的影响因素模型，

并通过数据对此理论模型进行验证分析。

2.2. 研究假设

本研究旨在探究跨学科 STEM课程学习中学习者的计算

思维水平与学习者内在心理变量即学生的元认知、学

习动机和参与度的关系，进而探讨影响学生计算思维

能力的因素，研究假设模型如图 1 所示，参与度在元认

知、学习动机和计算思维之间起着中介作用。

图 1 研究假设模型

研究模型中每条路径的研究假设为：

H1：在面向计算思维培养的教学中学生的元认知会正

向影响其学习动机和计算思维；

H2：在面向计算思维培养的教学中学生的学习动机会

正向影响其参与度；

H3：在面向计算思维培养的教学中学生的元认知会正

向影响其计算思维；

H4：元认知会通过参与度影响计算思维，参与度是元

认知和计算思维的中介变量；

H5：学习动机会通过参与度影响计算思维，参与度是

学习动机和计算思维的中介变量；

H6：元认知会通过学习动机和参与度影响计算思维，

学习动机和参与度在元认知和计算思维之间起着链式

中介效应。

3. 研究设计

本研究是促进小学生计算思维培养研究项目的一部分。

在该项目研究中强调跨学科整合的 STEM课程设计及其

对学生计算思维能力培养的重要性。在项目开始前期

对教师进行基于设计的跨学科 STEM教学培养学生计算

87

思维能力的相关培训，在学期结束后对学生的计算思

维能力及其学习动机、元认知、参与度等进行后测。

3.1. 研究工具

本研究借鉴国内外已有的相关量表，通过改编量表、

质性访谈等方法设计调查问卷。问卷共分五部分，包

括四个子量表，分别为计算思维子量表、元认知子量

表、参与度子量表、学习动机子量表。每个量表的题

目以李克特五级量表形式进行设定（非常不同意=1，

不同意=2，一般=3，同意=4，非常同意=5），得分越

高表明学习者某一维度的水平越高。

3.1.1. 计算思维量表

本 研究参 考 Korkmaz2017 提 出的计 算思维 量表

（Korkmaz, Ç akir & Ö zden, 2017），在此基础上进行改

编，形成包括创造力、算法思维、批判性思维、问题

解决和合作能力等五个维度的计算思维量表。其中创

造力维度包括 8 个指标、算法思维维度包括 5 个指标、

批判性思维包括 5 个指标、问题解决能力包括 6 个指标、

合作能力包括 8 个指标。在本研究中该量表的一致性系

数 Coronhach’α 为 0.912。

3.1.2. 元认知量表

本研究中元认知量表采用的是 Schrawhe 和 Dennison 编

写的元认知水平问卷（Schraw & Dennison, 1994），包

括认知知识和认知调节两个维度，其中认知知识包括

陈述性知识、程序性知识和条件性知识，认知调节包

括计划、信息管理、监控、调节和评价等。本研究根

据需要编制了五个题目，对学生的认知知识和认知调

节进行测量，其中认知知识 2 个题目，认知调节 3 个题

目。在本研究中该量表的一致性系数 Coronhach’α 为

0.858。

3.1.3. 学习动机量表

本研究中学习动机量表参考期望——价值动机理论而

设计，该理论认为个体对当前学习任务价值的知觉程

度，是学习投入和学习成就的有力预测因素（Wigfield

& Eccles, 2000）。问卷主要从能力信念、对成功的期

望和任务价值（包括当前学习任务的实用性、重要性

与趣味性）等维度来考察学习者的动机情况。本研究

根据需要编制了 7 个题目，其中任务价值 3 个题目，能

力信念 2 个题目，对成功的期望 2 个题目，在本研究中

该量表的一致性系数 Coronhach’α 为 0. 780。

3.1.4. 参与度量表

本研究中参与度测量采用的是 Barbara A. Greene、

Miller等人（Greene, 2015）编制的学生认知参与测量问

卷以及 Reinhard Pekrun 等人（Pekrun, Goetz & Frenzel,

2011）编制的情感参与测量问卷。问卷主要从认知参

与、情感参与两个维度来测量学习者在课堂中认知和

情感的投入程度。该问卷共包含 7 个题目，其中认知参

与 3 个题目，情感参与 4 个题目，问卷采用李克特量表

进行自我评定（1=非常不同意，5=非常同意），得分

越高表明学习者在课堂学习中的参与效果越好。在本

研究中该量表的一致性系数 Coronhach’α 为 0.799。

3.2. 调研样本

采用分层随机抽样法，在湖北省武汉市经济开发区某

小学的三年级、四年级和五年级共计六个班进行问卷

调查，前测回收问卷 773 份，后测回收问卷 720，剔除

无效样本，进行前后测配对后获得的有效配对样本为

593 份。其中男生 280 名（47.2%），女生 313 名

（52.8%）。三年级学生 189名（31.9%），四年级学生

211 名（35.6%），五年级学生 193 名（32.5%）。本研

究被试所在各个年级都接受面向计算思维培养的跨学

科 STEM课程教学，包括基于单学科的 STEM课程、基

于统整课程和社团课的跨学科 STEM 课程教学。

3.3. 数据处理与分析

研究采用有中介的结构方程模型对数据进行建模和统

计分析。首先，利用 SPSS22.0 工具对问卷数据进行预

处理和基本描述性统计分析，删除一些不合理的数据。

然后，利用 AMOS21.0工具构建结构模型，对测量模型

部分进行验证性因素分析，对结构模型部分进行路径

分析。最后，利用 Bootstrap 法对模型的中介效果进行

检验和分析。

4. 研究结果与分析

4.1. 测量模型的信度和效度检验

本研究包含元认知、学习动机、参与度和计算思维四

个潜在变量，每个潜在变量下设有相应的外显测量指

标。为了保证模型的有效性，需要先对模型的信度和

效度进行检验。信度检验采用克隆巴赫信度系数

（Cronbach’s α）和组合信度（CR 值）对测量模型进行

信度分析。效度检验采用平均方差萃取量（AVE 值）

检验收敛效度以及 AVE 的平方根检验区分效度，AVE

体现的是潜变量解释测量指标变异量的程度。

通过 SPSS22.0 软件计算问卷的整体一致性信度系数，

问卷整体 Cronbach’s α 系数为 0.946，大于 0.9 表明问卷

整体一致性较好。通过 AMOS21.0软件对模型参数进行

估计，计算出各测量模型的因子负荷量，在此基础上

进一步计算组合信度和区分效度，具体分析结果如表 1

所示。

表 1 中的数据分析结果表明，本模型中各潜变量的组合

信度值在 0.752-0.913 之间（CR 值>0.7），表明本模型

的信度达到要求，模型的内在质量理想。从观察变量

的标准化因子负荷值可知，所有观察指标的估计值都

在 0.539-0.891 之间，所有显变量在潜变量上的因子载

荷 t 值从 13.036 到 25.929 之间，达到显著性水平（Z 值

大于 1.96），且无负的误差变异数，表明模型符合拟合

评价标准，平均方差萃取量（AVE）值在 0.505-0.678

之间（均大于 0.5），表明测量模型具有良好的收敛效

度。

此外，AVE 的平方根值若大于潜在变量间的相关系数，

则表示各潜在变量之间具有区别效度。如表 2 所示，元

认知与学习动机正相关（r=0.392，p<0.01），元认知

与参与度正相关（r=0.345，p<0.01），元认知与计算

思维正相关（r=0.562，p<0.01），参与度与学习动机

正相关（r=0.555，p<0.01），计算思维与学习动机正

88

相关（r=0.650，p<0.01），计算思维与参与度正相关

（r=0.667，p<0.01）。各潜在变量的 AVE 的平方根值

（即斜对角线的值）大于大多数潜在变量间的相关系

数，说明测量模型具有较好的区别效度。

表 1 信度和效度分析表

注：N=593，*P<0.05，**P<0.01，***P<0.001， 组合

信度 ， 为指标变量在潜变量上的标准

化参数估计值，为观察变量的误差变异量。

表 2 各变量均值、标准差、相关系数及区别效度分析

注：N=593，*P<0.05，**P<0.01，***P<0.001，斜对角

线粗体字为 AVE 的平方根值。

4.2. 模型整体拟合效果与假设检验

研究采用 AMOS 软件中的极大似然法进行模型的拟合，

得到的拟合度指标数据显示：卡方值/自由度＝2.984；

渐进残差均方和平方根 RMSEA＝0.057；标准化残差均

方和平方根 SRMR＝0.037；良适性适配指标 GFI＝

0.947；基准线比较指标 IFI＝0.972、TLI＝0.963、CFI

＝0.972。上述各指标表明，研究的模型为可接受模型。

为了验证研究假设是否成立，模型拟合过程中，根据

修正指数对模型进行了适当修正，修正后的模型路径

如图 2 所示。图中显示的是路径系数显著的路径，即研

究假设成立的路径，而不显著的路径表明研究假设不

成立，所以在图中没有显示。

图 2 学习者元认知、学习动机、参与度对计算思维的

影响

图 2 所示的结构模型中变量关系显示，在面向计算思维

培养的 STEM课程中，学习者的元认知对学习者的学习

动机有显著影响（β=0.636，P<0.001）；学习者的元认

知（ β=0.717 ， P<0.001 ）、学习动机（ β=0.234 ，

P<0.001）对学习者的参与度均有显著影响。其次，学

习 者 的 元 认 知 （ β=0.514 ， P<0.001 ） 、 参 与 度

（β=0.437，P<0.001）对其计算思维水平有显著影响。

而学习者的学习动机对计算思维影响的路径系数因参

数检验的显著性概率值不显著（P>0.05）被移除。

4.3. 中介效应分析

研究参考温忠麟等研究者提出的中介效应检验方法，

采用 Bootstrap 法进行中介效应检验。该方法根据标准

误的理论概念，将样本容量很大的样本当作总体，进

行有放回抽样（抽样次数可以自己定），从而得到更

为准确的标准误。本研究使用 AMOS 进行 Bootstrap 的

中介效应检验，将样本量设置为 1000，选择 95%的置

信区间，观察有偏置信区间（Bias-corrected percentile

method）估计的上限和下限值是否包含 0，如果包含 0，

则中介效应不显著，如果不包含 0，则中介效应显著

（温忠麟和叶宝娟, 2014）。中介效应分析显示各中介

路径的上限和下限值及效应值如表 3 所示。

表 3 Bootstrp 法估计的中介效应及效应值

中介效应的分析结果表明（如表 4 所示），元认知可直

接作用于计算思维，直接效应为 0.514，占总效应的

57.6%；学习参与度和学习动机在元认知与计算思维之

间起到了部分中介作用，中介效应值 0.378，占总效应

的 42.4%。具体来看，中介效应由两条路径产生的间接

效应组成：通过元认知——学习参与度——计算思维

产生的间接效应 1（0.313），通过元认知——学习动机

——学习参与度——计算思维产生的间接效应 2

（0.065）。间接效应 1 的 Bootstrap95%有偏置信区间

[0.142，0.375]和间接效应 2的 Bootstrap95%有偏置信区

间[0.142，0.375]均不包含 0，表明两个中介效应显著，

间接效应分别占总效应的 35.1%和 7.3%。

此外，学习动机影响计算思维过程中，由于学习动机

对计算思维的路径系数未达到显著性水平，所以学习

动机未能直接作用于计算思维，学习参与度在学习动

机和计算思维之间起到了完全中介效应，其间接效应

值为 0.102，表明学习动机对计算思维的影响完全通过

中介变量学习参与度起作用，学习动机对计算思维没

有直接影响。

5. 讨论与启示

89

5.1. 讨论

本研究探讨 STEM教育中个体内部心理变量元认知、学

习动机、参与度与计算思维之间的相互影响关系。研

究发现，元认知对学生计算思维能力影响的直接效应

和间接效应都显著。其中的间接效应通过两条中介作

用途径产生：第一，通过学习参与度的独立作用；第

二，通过学习动机和参与度的共同作用。其次，学习

动机对学生计算思维能力培养的直接效应不显著，间

接效应显著，间接效应通过参与度的独立作用产生。

5.1.1. 学生的元认知与计算思维的关系

根据本研究的分析结果看，学生的元认知对计算思维

能力有正向显著的直接影响。由于元认知涉及个体在

解决问题过程中动机、策略和目标等的自我监控，这

与计算思维的本质内涵即利用计算机来解决问题的思

维过程联系尤为密切，在计算机科学中大多数算法选

择问题代表了一个经典的元认知任务。学习思维方式

将提高学生的创造性学习技能，并提高他们解决问题

和抽象等技能的能力。为此，在本研究构建的模型中

元认知成为预测计算思维水平的重要因素，有效提高

学习者的元认知技能将能使他们更成功的掌握计算技

能。

5.1.2. 参与度在元认知和计算思维之间的中介效应分析

本研究结果表明，参与度作为学习者主动学习的重要

特征，对学生计算思维能力有正向显著的直接影响，

并且是元认知影响计算思维的重要途径，其中介效应

达到 35.1%，这意味着元认知对计算思维的影响，有

35.1%是通过提高学生的参与度来达成的。在面向计算

思维能力培养的 STEM课程中学生积极、可持续地参与

活动和学习过程非常重要。尤其是在融入编程等活动

的课程中参与度是一个不可忽视的变量，当学生面对

复杂的问题解决产生负面情绪时时，需要采用恰当的

元认知策略激发学生的参与度，促进学生进行有效的

协作、问题解决和批判性思维，达到培养计算思维的

能力。

5.1.3. 学习动机和参与度在元认知和计算思维之间的链
式中介效应分析

学习者的主动学习除了体现在参与度上，还体现在学

习动机上。研究结果发现学习动机不能直接影响计算

思维，但是能够通过学生的参与度对计算思维产生正

向的显著影响。此外，学习动机也受元认知的正向影

响，并且学习动机和参与度在元认知与计算思维之间

形成了链式中介效应。这表明学习者元认知技能的掌

握能在学习动机上起着积极的促进作用，即促进学习

者对任务价值的理解和期望、提升学习者的能力信念，

进而表现出积极的参与，并促进计算思维能力的提升。

5.2. 启示

本研究发现在跨学科 STEM教学中，学习者的元认知、

学习动机和参与度等内部心理变量对计算思维能力的

提升有正向显著的影响。学习者对认知和元认知的监

控、调节，加强学生对计算概念的理解、反思，培养

学生在问题解决过程中的元认知技能，能促进动机状

态的调节，进而带动学生的认知参与和情感参与，提

升学生的计算思维能力。

本研究也存在某些局限性，需要在以后的研究中加以

改进，本研究仅考虑的学习者内部心理变量对计算思

维能力的影响，未考虑学习者的性别、年龄、先前知

识经验对计算思维能力的影响，另外在计算思维能力

培养中相较于传统的教学，基于设计的 STEM教学更有

自己的特色，不同干预策略的影响效果还需进一步研

究。

6. ACKNOWLEDGMENT
本研究受 2018 国家自然科学基金项目“促进小学生计算

思维培养的跨学科 STEM+C 教学理论与实证研究

（71874066）” 资助。

7. 参考文献

张屹, 李幸, 黄静等（2018）。基于设计的跨学科 STEM

教学对小学生跨学科学习态度的影响研究。中国电化

教育，(7)，81-89。

牟连佳、李丕贤和邵洪艳（2015）。计算思维与巴斯

德象限——计算思维融入信息技术教育的研究框架。

科技创新导报，(25)，20-23。

汪玲和郭德俊（2003）。元认知与学习动机关系的研

究。心理科学，26(5)，829-833。

格雷德勒（2007）。学习与教学: 从理论到实践。中国

轻工业出版社。

温忠麟和叶宝娟（2014）。中介效应分析: 方法和模型

发展。心理科学进展，22(5)，731-745。

Aho, A. V. (2012). Computation and Computational

Thinking. The Computer Journal, 55(7), 832-835.

Allsop, Y. (2019). Assessing Computational Thinking

Process Using a Multiple Evaluation

Approach. International Journal of Child-computer

Interaction, 19, 30-55.

Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A

Framework for Designing Scaffolds that Improve

Motivation and Cognition. Educational Psychologist,

48(4), 243–270.

Brennan, K., & Resnick, M. (2012, April). New Frameworks

for Studying and Assessing the Development of

Computational Thinking. Proceedings of the 2012 annual

meeting of the American Educational Research

Association, Vancouver, Canada, 1, 25.

Dunn, T. J., & Kennedy, M. (2019). Technology Enhanced

Learning in Higher Education; Motivations, Engagement

and Academic Achievement. Computers &

Education, 137, 104-113.

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the

Relation between Computational Thinking Skills and

Various Variables with the Structural Equation Model.

Computers & Education, 116, 191-202.

Ghaleb, A. B., Ghaith, S., & Akour, M. (2015). Self-efficacy,

Achievement Goals, and Metacognition as Predicators of

90

Academic Motivation. Procedia-Social and Behavioral

Sciences, 191, 2068-2073.

Greene, B. A. (2015). Measuring Cognitive Engagement

with Self-report Scales: Reflections from over 20 Years of

Research. Educational Psychologist, 50(1), 14-30.

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A Validity

and Reliability Study of the Computational Thinking

Scales (CTS). Computers in Human Behavior, 72, 558-

569.

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry,

R. P. (2011). Measuring Emotions in Students’ Learning

and Performance: The Achievement Emotions

Questionnaire (AEQ). Contemporary educational

psychology, 36(1), 36-48.

Resnick, M. (2007, June). All I Really Need to Know (About

Creative Thinking) I Learned (By Studying How Children

Learn) in Kindergarten. Proceedings of the 6th ACM

SIGCHI conference on Creativity & cognition. ACM, 1-6.

Schraw, G., & Dennison, R. S. (1994). Assessing

Metacognitive Awareness. Contemporary educational

psychology, 19(4), 460-475.

Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019).

Coding Games and Robots to Enhance Computational

Thinking: How Collaboration and Engagement Moderate

Children’s Attitudes?. International Journal of Child-

Computer Interaction.

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value

Theory of Achievement Motivation. Contemporary

educational psychology, 25(1), 68-81.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33–35.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

91

Confronting Frame Alignment in CT Infused STEM Classrooms

Connor BAIN1*, Sugat DABHOLKAR2, Uri WILENSKY3

1,2,3 Northwestern University, United States

connorbain@u.northwestern.edu, sugat@u.northwestern.edu, uri@northwestern.edu

ABSTRACT

While the Next Generation Science Standards (NGSS) have

presented computational thinking (CT) as an integral part of

scientific inquiry, little work has been done to explicitly

enable this connection in classrooms. We report on the

efforts of one such design-based implementation research

project which, with participation from local teachers, has

been implementing CT infused STEM units in biology and

chemistry classrooms. Using teacher reflections facilitated

by an external evaluator, research field notes, and

interviews, we identify possible issues of frame alignment in

our implementations–that CT practices, particularly using

computational models, were valued but would not enable

students to gain a deeper understanding of scientific content.

We then use this analysis and Schulman’s definition of

teacher case knowledge to design a new element of the

project that aims to enable teachers to promote collaborative

scientific practice using computational models in the

classroom that we call Lesson 0. We conclude with the

discussion of a pilot implementation of this new lesson.

KEYWORDS

computational thinking, STEM education, teacher learning,

computational modeling

1. INTRODUCTION
For many years, Computational Thinking (CT) practices

have tended to only be featured in standalone computer

science (CS) courses, resulting in unequal access for

students from historically underrepresented groups in CS,

such as women and racial minorities (Margolis & Fisher,

2003). However, in our increasingly computational world,

CT has become a necessary and integral part of nearly every

discipline, particularly STEM disciplines (Weintrop et al.,

2015). In recent years, the Next Generation Science

Standards (NGSS) have made clear that using computational

thinking (CT) is a cornerstone of modern science education

(Quinn et al., 2012; Wilensky, Brady & Horn, 2014). By

embedding CT practices into high school STEM classrooms

like biology, chemistry and physics, we can simultaneously

improve access to CT for all students, particularly those

underrepresented in CS, while also providing a more

authentic STEM experience for students in these classes.

This work is part of a research practice partnership between

a Midwestern U.S. research university and a network of

urban high schools in a large Midwestern U.S. city. In this

paper we analyze and discuss the experiences of 6 teachers

who taught one of our CT-embedded curricula during the

academic year in the 2nd iteration of a design-based

implementation research (DBIR) project, where research

and practice are collaborative, iterative, and systematically

analyzed (Fishman et al., 2013). We identify shortcomings

of our previous curricular design and professional

development program that may have caused an issue in

frame alignment between scientific inquiry and CT. We then

propose a new introductory lesson to our curricula which

attempts to address these differences by framing CT as an

authentic part of scientific inquiry.

2. THEORETICAL FRAMEWORK
The character of CT practices in the science disciplines is

not yet well understood, nor is how to create curriculum and

assessments that develop and measure these practices

(Grover & Pea, 2013). To address this gap, our group has

explicitly characterized core CT practices through a

taxonomy of CT practices in STEM (Weintrop et al., 2016).

The taxonomy consists of practices related to Data,

Modeling and Simulation, Computational Problem-Solving,

and Systems Thinking. We translated our taxonomy into a set

of learning objectives and used these to guide the

development of the two CT science curricular units, one

biology and one chemistry, used in this study. Our curricular

approach, which aligns with that of the NGSS, emphasizes

figuring out core ideas through engaging in CT practices,

rather than treating the dimensions separately (NRC, 2012).

In this manner, we see frame alignment as one of the major

roadblocks to integrating CT into STEM classes (Farrell et

al., 2018). Frame alignment refers to “the linking of two

ideologically congruent but structurally unconnected frames

regarding a particular issue or problems” (Benford & Snow,

2000, p. 624). While NGSS embeds CT as one of its core

practices, competing frames of promoting scientific

discourse in the classroom, integrating CS for all ideas, and

even simply encouraging student agency in using CT for

inquiry can all be vying for precedence in a teacher’s

sensemaking of new curricula.

3. METHODS
As part of the second iteration of the DBIR project, 6

teachers, 2 biology and 4 chemistry across 2 high schools,

implemented one of our two week (10 class period)

curricular units during the 2016-2017 school year. The two

schools (one urban and one suburban) were all located near

a large Midwestern U.S. city. Each of the teachers had at

least five years of experience in their respective subject.

Prior to their implementation, each of the six teachers

participated in a professional development program which

defined CT practices in STEM, familiarized the teachers

with the curricular units they would implement through

selective enactment, and allowed teachers to review and

redesign the curricula with edits and tweaks based on their

particular classroom needs.

3.1. CT Science Curricular Units

Both the chemistry and biology curricular units were

explicitly designed to teach traditional subject matter

92

content through the enactment of CT practices. The units

focused on helping students develop practices for Modeling

and Simulation through exploring NetLogo (Wilensky,

1999b) models. NetLogo models were chosen because the

agent-based representations in this modeling environment

make complex systems phenomena (like population

dynamics in ecosystems), more accessible (Wilensky,

2001). The chemistry unit covered the basics of the Ideal Gas

Laws through exploring how micro-level particle

interactions give rise to the macro-level effects like pressure

and temperature (Wilensky, 1999a). The biology unit

focused on the principles of ecosystems and evolution with

students designing and interacting with models of

competition between species to discover how ecosystems

reach equilibrium.

Figure 1. A chemistry model of gas particles colliding with

the walls of a box which gives rise to the emergent

phenomenon known as pressure (link blinded for review).

In both units, students explore the relationship between

micro elements of the models and how they give rise to

system level effects. Students observe trends within their

data, use models to make and test predictions, and follow the

steps of scientific inquiry in order to construct a deeper

understanding of these phenomena (Wilensky & Reisman,

2006). These units are intentionally designed so that students

engage in CT practices as part of an authentic scientific

inquiry experience (NRC, 2012). The units are presented in

the form of guiding questions, which encourage students to

use either their prior knowledge or the exploration of a

computational model to engage with the curricular content.

3.2. Data Collection

Data collection took place across twenty-two classes

amongst our 6 teachers. Class periods were videotaped

resulting in around 118 hours of video data. In addition, at

least one researcher attended each class period and recorded

written field notes. Because the curricula were hosted on our

website, all student responses were recorded digitally).

Finally, the teachers participated in interviews with an

external evaluator about their experience with the

professional development program and curricular

implementation. For this paper, we use these teacher

reflections and field notes to discuss frame alignment issues

and motivate our new design efforts to mitigate those.

Figure 2. A biology model which allows students to

manipulate behaviors of wolf and moose and

reason about their emergent population

dynamics (link blinded for review).

4. RESULTS
We had theorized that the students would emergently

collaborate using this shared curriculum and computational

models, with the teacher acting as a facilitator and modeling

classroom talk (McNeill & Pimentel, 2010). In this manner,

students would be participating in teams for scientific

discovery–to discover the core ideas of gas laws and

ecosystem stability. Computational models have been

shown to be fruitful for this sort of classroom-level

knowledge building (Wilkerson et al, 2007). In addition, in

a pre-survey, 484 of 526 student participants agreed with the

statement “People who have careers in science or computing

need to work well in teams.” In essence, we expected that

students would use the computational models of anchoring

phenomena for classroom talk and construct knowledge at

the classroom level.

While we did see episodes of students debating

computational methodologies in order to solve problems, we

rarely saw classroom-level discussions of using a

computational model for scientific inquiry. Some teachers

facilitated classroom discussions at the end of each period

on the “takeaways” (i.e. “organisms can compete indirectly

if they are sharing a finite resource”) for the day–an activity

they classified as “usual practice” in their classrooms.

Although these takeaways served as fruitful points of

classroom discussion, none of the teachers explicitly talked

about CT practices in these wrap-up discussions. In fact, one

chemistry teacher Veronica saw the CT and chemistry

content in direct conflict with each other.

I felt that, if the purpose is for them to see CT within content,

yeah, but content was—I don’t think it was as cohesive. Like

the idea [was supposed to be], “Okay, so we’re gonna teach

gas laws and incorporate CT.” It was more, “We’re using

that law to teach you computational—to teach you how to—

to show you how models work.”

Even the most experienced teacher in our study Ulyana, who

was the head of the biology department at her school,

93

admitted that her number one concern during her

implementation was to teach her students the biology

content of the unit. Francine, another chemistry teacher

made a similar comment,

I like the use of models in the classroom... I would have liked

to see more of them walking away with more of the typical

expectations for gas laws that you would expect students to

get in those kind of conversations, but I like the use of models

and the learning that they had with the models.

As such, Francine followed up the two-week

implementation with a lecture-based repeat of gas laws to

each of her classes. Her interview suggested she saw the

models as a way of reinforcing a concept rather than an

introductory or exploratory instrument. While each of our

teachers saw the need to have CT embedded in the

classroom, there was no indication that they saw our

curricular approach, emphasizing figuring out core ideas

through engaging in CT practices, as aligned with their

content-specific goals.

While we believed our curricular design would help teachers

elicit student thinking about both content and CT, from these

results, we see that there was a significant discrepancy

between how our team and how the teachers/students saw

the alignment between content and the computational

models and activities. We became interested in how to

address this lack of frame alignment and whether we could

design an introductory lesson that would provide a frame

from which all the goals could be seen as aligned. In the rest

of the paper, we describe our proposed solution.

5. PROPOSED SOLUTION AND PILOT

OUTCOMES
Our analysis of teacher reflections revealed that the lack of

clarity about connections between content and CT to the

students and teachers may have led to the lack of

collaboration and discussion related to CT practices and

scientific inquiry. To use Schulman’s (1986, pg. 11) term,

we had provided teachers with a small amount of case

knowledge–a parable which conveyed CT practices as the

norm of the scientific community–without providing the

associated prototype and precedent (1986). We used this

framing from Schulman to design a new preparatory element

for each of the curriculum we call Lesson 0: How to Learn

with Computational Models (see it here: link removed for

blinding). The lesson is meant to be used by both teachers

and students as a sort of rehearsal of learning with

computational models in order to get ready for the more

discipline specific content coming later in each curriculum.

New science standards and reforms articulate a commitment

to greater student agency with a disciplinary focus: that

students should take on increased responsibilities for

deciding what to figure out in science classrooms and how

(Berland et al., 2016). In our curricular implementations,

these frames seemed to conflict with the frame of CT as a

way of scientific inquiry. As such, Lesson 0 is designed with

three main principles: 1. Scaffold students into discussions

of how scientists use models; 2. Engage students with

computational models as a method of scientific

experimentation; 3. Demonstrate how to develop new

understandings of using a computational model.

The lesson centers on a computational model of a forest fire

and is divided into four sections meant to make explicit the

ways in which computational models can be used to explore

scientific concepts and engage in scientific inquiry

practices. It was designed to scaffold teacher and student

sensemaking with Schulman’s (1986) three types of case

knowledge in mind. In Step 1 (Using models to learn

science), we make explicit the precedent that scientists use

models, and specifically computational models, as methods

of inquiry. In Step 2 (A not-so-sneak peek into the code), we

encourage classroom-level discussion of debugging as a

parable, establishing discussions about the code behind

computational models are a valued norm of a CT classroom.

In Step 3 (Systematically investigating the spread of

wildfire), we present an implementation of a prototype of

scientific inquiry, where students make hypotheses, design

computational experiments, and draw conclusions based on

the computational models. Finally, in Step 4 (Constructing

knowledge by engaging in scientific inquiry practices), we

further enforce the parable of the classroom as an arena for

knowledge construction through discussion of both

experimental conclusions as well as computational model

design.

We implemented this new lesson with a group 8 High School

science teachers at a Computational Thinking in STEM

workshop hosted at a large Midwestern U.S. University. The

second author served as the instructor, taking on the role as

teacher educator. Teachers were asked to “play-as” students

with the teacher educator serving as the teacher with the goal

of the teachers entering into a participatory relationship with

the lesson.

Ulyana, the same teacher from the prior iteration of the

study, was one of the participants in this workshop. In

addition to participating in the lesson as a student during the

workshop, she also implemented the very same lesson in her

classroom as the very first lesson of her biology unit. When

asked about her experiences teaching the unit in this new

iteration, Ulyana reflected upon her new understanding of

what it meant to use computational models in the learning

process:

So...in my head, my models were always the ones I did with

very physical models. I never thought about using

computational models until I met you guys. And those are

even more important, because they can then use those

computational models. That it can be seamless that you can

take the concepts that you're already going to teach and put

them into this model...and show the kids the value of

computational models. Yeah, I mean, they were I felt like

they what I learned is that they were [doing] what a real

scientist would do in collecting the data.

In addition to seeing students participate in the practice of

real science, Ulyana singled out how framing debugging and

code inspection as an expected classroom practice, as is done

in Lesson 0, allowed students to interact with models in a

deep way:

…we are going into the code and fixing any problem there

was so yeah, the kids, I can see that you could put a bug in,

94

and the kids can fix it. And sometimes there were bugs in

accidentally, and we still had to fix so and that it isn't like

the end of the world is a win. It's just a code. You fix the

code. So nothing was ever really broken.

She also remarked how her students performed well on her

typical AP-style assessments after completing the CT

curricula: “So, they not only learned how to use a

computational model, they learned the content I needed for

their AP test.” In short, Ulyana saw the computational

models as opportunities for students to engage

simultaneously in both science and CT. In the coming

months, additional teachers will be implementing a similar

curricular structure featuring Lesson 0 as the beginning of a

CT infused STEM unit. We hope to continue to analyze

student and teacher data to further learn how we can refine

Lesson 0 to support CT as a normal classroom practice.

6. CONCLUSIONS
In this paper, we presented an analysis of data from an

iteration of DBIR project that suggested that frame

alignment was an obstacle in our goal of allowing students

to use computational models to discover core disciplinary

content ideas. We then presented a modification to our

curricula: a prepended lesson to help both teachers and

students better understand how computational models might

serve as tools (and objects) of scientific inquiry. In order to

assist teachers in integrating CT into STEM classrooms, we

see a need to provide explicit prototypes, precedent, and

parables in order to help teachers align the seemingly

competing frames of teaching expected content, scientific

inquiry practices, and computational thinking. We see

Lesson 0 as one possible method of allowing both teachers

and students to make sense of how these frames align in

service of a new form of scientific learning.

7. REFERENCES
Benford, R. D., & Snow, D. A. (2000). Framing Processes

and Social Movements: An Overview and Assessment.

Annual review of sociology, 26(1), 611-639.

Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A.

S., & Reiser, B. J. (2016). Epistemologies in Practice:

Making Scientific Practices Meaningful for Students.

Journal of Research in Science Teaching, 53(7), 1082-

1112.

Farrell, C. C., Davidson, K. L., Repko-Erwin, M., Penuel,

W. R., Hill, H. C., & Herlihy, C. (2018). Goals and

Challenges of Research-Practice Partnerships for

Improvement Efforts.

Fishman, B. J., Penuel, W. R., Allen, A. R., Cheng, B. H., &

Sabelli, N. O. R. A. (2013). Design-based Implementation

Research: An Emerging Model for Transforming the

Relationship of Research and Practice. National society for

the study of education, 112(2), 136-156.

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse:

Women in computing. MIT press.

McNeill, K. L., & Pimentel, D. S. (2010). Scientific

Discourse in Three Urban Classrooms: The Role of the

Teacher in Engaging High School Students in

Argumentation. Science Education, 94(2), 203-229.

National Research Council. (2012). A Framework for K-12

Science Education: Practices, Crosscutting Concepts, and

Core Ideas. Washington, DC: The National Academies

Press.

Schweingruber, H., Keller, T., & Quinn, H. (2012). A

framework for K-12 science education: Practices,

crosscutting concepts, and core ideas. Tech. Rep.

Shulman, L. S. (1986). Those Who Understand: Knowledge

Growth in Teaching. Educational researcher, 15(2), 4-14.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science

Classrooms. Journal of Science Education and

Technology, 25(1), 127–147.

Wilensky, U. (1999a). GasLab—An extensible modeling

toolkit for connecting micro-and macro-properties of

gases. In Modeling and simulation in science and

mathematics education. New York, NY: Springer, 151-

178.

Wilensky, U. (1999b). NetLogo. Retrieved Dec 1, 2019,

from http://ccl.northwestern.edu/netlogo/

Wilensky, U., & Reisman, K. (2006). Thinking Like a Wolf,

a Sheep, or a Firefly: Learning Biology through

Constructing and Testing Computational Theories-An

Embodied Modeling Approach. Cognition and

Instruction, 24(2), 171–209.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering

Computational Literacy in Science Classrooms.

Communications of the ACM, 57(8), 24-28.

Wilkerson, M., Shareff, B., Gravel, B., Shaban, Y., & Laina,

V. (2017). Exploring Computational Modeling

Environments as Tools to Structure Classroom-Level

Knowledge Building. Philadelphia, PA: International

Society of the Learning Sciences.

http://ccl.northwestern.edu/netlogo/

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

95

CT-based Collaborative Storytelling for Learning

Programming Concepts in Python

Nicol Hui Yi PHUAN1, Chien-Sing LEE2*, Ean-Huat OOI3

1,3 Universiti Tunku Abdul Rahman, Malaysia
2 Sunway University, Malaysia

nic.phy76@gmail.com, chiensingl@sunway.edu.my, jamesooieh@gmail.com

ABSTRACT
With Industrial Revolution 4.0, the need to develop

interdisciplinary skills has been highlighted in many

curricula globally. Programming skills is one of the core

skills. Aiming to develop creativity and computational

thinking skills through collaborative storytelling using

blocks of Python codes in a system called FunPlay Code;

technology acceptance factors have been identified in an

earlier study. This paper presents the initial developed

prototype. A work-in-progress, future work involves user

testing and further development, possibly, involving more

open co-design.

KEYWORDS
FunPlay Code, computational thinking, Python, storytelling,

collaborative

1. INTRODUCTION
Industries and trends are constantly changing and evolving.

The Fourth Industrial Revolution (IR4.0) further poses an

ever-looming potential threat of the loss of certain jobs in

the foreseeable future. To address these concerns, much

emphasis has been included in curricula to encourage the

learning of programming concepts and principles and to

develop programming skills to cope with the immense

growth of technology in the 21st century.

In addition, Deloitte and other TechTrend analysts have

encouraged developing flexibility and transfer. For instance,

Stubbings in PricewaterhouseCooper’s (PwC) 2018 analysis

report, agrees with the general sentiments of countries and

industries. She notes that “The secret for a bright future

seems to lie in flexibility and in the ability to reinvent your-

self.” As such, in her projection of the future of work in

2030, she emphasizes the need to broaden mindsets and

perspectives across different knowledge branches. “Think

about yourself as a bundle of skills and capabilities, not a

defined role or profession”.

1.1. Problem Statement

The scenarios introduced earlier imply that we need to be not

only predictive but also adaptive and agile across

disciplines. It is no longer adequate to concentrate only on a

single way of thinking, learning and even working. There is

a need to bridge the gap between the Arts/Humanities and

the ever-expanding field of technology. This applies to every

field from education, to art, fashion and even politics.

Scratch and Alice (Figures 1a and 1b) are examples of such

endeavours. They combine graphical blocks but remove the

obstacle of traditional programming code syntax and

debugging-oriented graphical user interface. In that way,

programming is made more understandable, clearer,

accessible and more appealing to a broader audience.

Figure 1a. Scratch User Interface

Figure 17b. Alice User Interface

Lee and Jiang’s (2019) study further assesses computational

thinking skills of students’ fractal Scratch projects based on

Dr. Scratch’s assessment rubric. Findings indicate that the

main difference between experts and novices is abstraction,

different perspectives and different types of media. This

confirms the viability of combining both logical thinking

and design thinking through collaborative storytelling.

Furthermore, in line with computational thinking, the

experimental playground needs to be programming-related.

The hypothesis is that since stories are logic-based, they may

provide an easier and more interesting entry for novices.

Furthermore, if eventually computational art comes into the

picture, it may be even more motivating.

1.2. Project Objectives

This system is developed pursuant to Lee and Jiang’s (2019)

study and Lee and Ooi’s (2019) FunPlay Code

conceptualization study. It is intended as collaboration

between three universities, two in Malaysia and one in

China. Lee and Ooi’s (2019) study seeks to identify design

factors, which would encourage young people to code, given

a collaborative storytelling system. Findings indicate that

perceived ease of use, perceived usefulness and social

factors are likely to influence technology adoption.

This Python-based application, FunPlay Code for the Web,

aims to narrow the gap between design and science by:

a) encouraging youth to think logically and motivating

them to adopt and/or adapt codes to create their own

digital stories in a more creative way;

b) encouraging re-evaluation and/or reframing and/or

96

c) traversal between the Arts/Humanities and Science.

Correspondingly, in this FunPlay Code Python-based Web

application, participants can:

a) continuously create stories or blocks of stories or

contribute to others’ stories or blocks of stories in

Python codes;

b) compile the whole ‘story’ and run upon request;

c) allow users to ‘like,’ comment and share a specific

story, or part of it onto the user’s own homepage;

d) reframe the codes to form another perspective to fit their

objectives; recreating something new.

1.3. Project Solution

Python is the intended language when utilizing FunPlay

Code. To make the integration of the project less

complicated, the Application Programming Interface (API)

will also be coded in Python. In order to allow the use of

Object-Relational Mapping in Python, Krebs’ (2017)

SQLAlchemy will be used.

1.4 Project Approach

The initial collaborative storytelling system utilizes social

media and intelligent recommendation of resources (Wong

& Lee, 2011). It does not involve learning of codes. FunPlay

Code’s design challenge is to tell experiences using codes,

to imitate social media functions such as like, share,

comment, reuse and modify others’ codes to create a

continuous logical collaborative story. Preliminary user

requirements reported in Lee and Jiang (2019) stress on

perspectives and abstraction. Lee and Ooi (2019) indicate

the importance of human factors to technology adoption.

Hence, Agile Methodology is used to carry out this project.

It is chosen as it allows opportunities to assess the project’s

direction and allows room for change throughout its

development (Gonçalves, 2019).

1.5 Scope of the Project

FunPlay Code will be a platform that allows participants to

create their own digital stories, adapt and reuse codes. It also

allows editing of existing codes and functions to like, share,

comment. The program must also be able to recognise

patterns and the semantics of programming logic. It should

however, only allow Python codes.

2. LITERATURE REVIEW
In 2013, ‘Higher Order Thinking Skills’ (HOTS) are

emphasized in the Malaysian curricula across primary,

secondary and tertiary education to transform education

from the traditional ‘drill-and-kill’ method of learning to

nurturing flexible, inventive mindsets (Rajaendram, 2018).

The importance of HOTS has increased since then. Some

theoretical foundations are presented below.

2.1. Creative Learning

Creative thinking can be seen via Problem-Based Learning.

“Psychological research and theory suggest that by having

students learn through the experience of solving problems,

they can learn both content and thinking strategies” (Hmelo-

Silver, 2004). She states that in Problem-Based Learning, a

student learns not only through facts and textbooks. Instead,

it is centered on addressing complicated questions that have

no fixed answers. Furthermore, students are encouraged to

work cooperatively in order to determine what they need to

solve the problem.

In his paper Sowing the Seeds for a More Creative Society,

Resnick (2007) opines that success does not fully depend on

one’s knowledge. It also depends on one’s “ability to think

and act creatively”. He thus urges modern-day students to

learn to “think creatively, plan systematically, analyse

critically, work collaboratively, communicate clearly,

design iteratively, and learn continuously”. This gives rise to

the “creative thinking spiral” (Figure 2), to guide them to

“imagine” more, in multiple iterations.

Figure 7 Creative Thinking Spiral

2.2. Computational Thinking (CT)

Another aspect of creativity is highlighted by Wing (2006).

Wing describes computational thinking as a necessary skill

for everyone, from young children to working adults, even

if they are not in the Information Technology field.

CT involves asking questions that are frequently

encountered in software patterns and even software

development: What is the problem in this situation? How

difficult is it to solve this problem? What is the optimum

method to solve it? These are questions that build the

theoretical foundations of computer science. They can also

function as a set/list to solve an existing issue. It allows us

to break down large numbers of probabilities and

information into smaller, digestible portions.

“Computational thinking is thinking recursively. It is

parallel processing. It is interpreting code as data and

data as code.”

“Computational thinking is using abstraction and

decomposition when attacking a large complex task or

designing a large complex system.”

Wing’s definitions help to form the bases of what the system

should do. By mapping computational thinking to how a user

would relate to the flow of the software, it would help

enhance user’s experience and assist them in understanding

code logic. It also makes it easier to weigh the benefits and

consequences of choices that we make.

2.3. Waterfall Methodology

The Waterfall Methodology does not allow room for the

development to adapt to changes, when it is far into the last

stages. For the FunPlay Code project, Waterfall

Methodology would not be recommended as there is a high

probability of changes to the functional requirements in the

future. Since the project would be a collaboration between

multiple universities, changes due to feedback are much

expected especially later in the development process.

97

2.4. Agile Development Methodology

Agile Methodology centres around the ability to accept and

adapt to change. It allows software development to progress

and smoothly work through uncertainties faced. According

to Gonçalves (2019), there are four vital values to Agile

Development:

• Focus on individuals and interactions, less, on the

development processes and the tools.

• Prioritize properly functioning software over overly

thorough documentation.

• Build cooperative relationships between customer and

developer more than contract negotiation.

• Enable flexible development and responsiveness to

change, not just follow a strict plan and schedule.

With values that heavily emphasize cooperation and

collaboration between the developing team and the client, it

allows potential for the development team to respond to a

client’s feedback throughout the development process. This

is especially important since FunPlay Code is mainly a

collaborative project between Universiti Tunku Abdul

Rahman and Sunway University at this point.

3. METHODOLOGY

3.1. Development Methodology

The first objective of FunPlay Code for Web is to build a

platform that can act as a bridge between the Arts/

Humanities and Science. The methodology selected for this

project is the Dynamic Systems Development Model

Methodology (DSDM). DSDM is an agile iterative,

incremental framework (Buehring, 2019). DSDM is chosen

because DSDM focuses on a project’s specific goals and

objectives; shaping the project’s development around its

goals.

For instance, besides the set functions of creating,

contributing, deleting and social sharing of digital stories,

DSDM allows sufficient space for improving and adding

features without compromising the main key features of the

software. This is done by specifically prioritising each

requirement with DSDM’s principle of using MoSCow:

keeping track of a requirement’s priority by labelling them

with ‘MUST’, ‘SHOULD’. ‘COULD’ and ‘WILL NOT’.

Thus, the flow of the project development would focus on

fulfilling the requirements before moving on to what the

software is further capable of.

Furthermore, since FunPlay Code is intended to be

interactive and used by users who may have little to no

Information Technology knowledge, it is vital that the

interface of the software be easily navigational and

understandable to the users. DSDM’s principle of

prototyping ensures that for every prototype created, users

would be involved to test it in order to ensure it is

functioning and ‘user-friendly’; allowing early discovery of

flaws and bugs, room for change and possibilities and

software development grows over time. Hence, as DSDM

allows user involvement, and changes to be implemented

during development, the outcome should be better.

3.2. Development Tools

Software development tools are used by developers for the

purpose of accomplishing a specific task such as compiling,

testing, maintenance or debugging. The subsections below

state and describe the tools used for this project.

Development tools are ReactJS and GitHub.

GitHub is good for tracking as it is possible to list down a

series of functions that the software must have and should

have by using a feature called GitHub Issues. This relates to

the DSDM’s principle of prioritising features to ensure that

the project meets its stated requirements. The way that

GitHub Issues function is by creating an ‘issue’ and

specifically tagging them (Figure 3) with certain labels.

Figure 3. GitHub Issues obtained from ROBINPOWERED

GitHub would ease the load of project documentation. As

project development grows, it becomes easier to forget

smaller notes or minor bug fixes. Bigger loads mean more

things to remember, and with GitHub feedbacks, notes can

be made as reminders and flagged once completed. This

ensures that most problems can be tracked and recalled

more easily rather than leaving it to manual documentation.

As everything would be stored and noted on GitHub, these

would help developers check if what is done during

development matches the requirements.

4. PROJECT INITIAL SPECIFICATION
FunPlay Code for Web is a web-based application that

allows users to create their own digital stories and contribute

to digital stories created by others. The software must allow

sharing, commenting and ‘liking’ of stories.

4.1. System Requirements

4.1.1. Login

4.1.2. Create Digital Stories

4.2.3. Contribute to Digital Stories

4.2.4. View Digital Stories

4.2.5. Share Digital Stories

4.2.6. Like and Comment on Digital Stories

A sample use case description is presented in Table 1.

Table 1. ‘Create Digital Stories’ Use Case Description
No. 2

Use Case Name Create Digital Stories

Actor(s) User with Account

Short Description Authorized Users (users with a valid account)

can create new digital stories.

Trigger User clicks the “create” button

Preconditions Action only valid for users with existing account

Flow 1. User logs into account
2. User clicks ‘Create New Story’

5. INITIAL PROTOTYPE DESIGN
The initial prototype design is as illustrated in Figures 5a, b,

c. This initial prototype has not been tested yet by users as

we are concerned with technology acceptance factors

98

identified earlier in Lee and Ooi (2019). Further

development is for Android (Vegean, Lee & Ooi, 2019) and

user testing. Figure 5d shows a sample screenshot of

FunPlay Code for Android.

Figure 5a. Home Screen

Figure 5b. Create Screen

Figure 5c. View Screen

Figure5d. Sample screens from the Android version

6. CONCLUSION
The world demands innovation, creativity; a combination of

design, and logic. With the theoretical foundations and

methodologies in mind, we hope to minimize mental blocks

involving more open co-design and to appreciate the power

of computer science and its relevance in diverse aspects of

our daily lives. FunPlay Code’s success/failure will depend

partly on socio-technological factors but we hope it would

develop further.

7. ACKNOWLEDGEMENT
This paper is extended from Nicol’s final year project

carried out in Universiti Tunku Abdul Rahman, Malaysia.

We thank CTE for increasing our awareness of CT research

globally.

8. REFERENCES
Buehring, S. (2019). The DSDM Principles: A Visual Guide.

Retrieved 24 March 2019, from

https://www.knowledgetrain.co.uk/resources/practice/the-

dsdm-principles

Dunn, Z. (n.d.), How we Organize GitHub Issues: A Simple

Styleguide for Tagging. Retrieved 22 March 2019, from

https://robinpowered.com/blog/best-practice-system-for-

organizing-and-tagging-github-issues/

Gonçalves, L. (2019). What is agile methodology? Retrieved

26 February 2019, from https://luis-goncalves.com/what-

is-agile-methodology/

Krebs, B. (2017). SQLAlchemy ORM Tutorial for Python

Developers. Retrieved 24 February 2019, from

https://auth0.com/blog/sqlalchemy-orm-tutorial-for-

python-developers/

Lee, C. S. & Jiang, B. (2019). Assessment of Computational

Thinking (CT) in Scratch Fractal Projects: Towards CT-

HCI Scaffolds for Analogical-fractal Thinking.

International Conference on Computer Supported

Education, (1), 192-199.

Lee, C. S., & Ooi, E.H. (2019). Design to Encourage

Reframing and Lean Design through Art Science Digital

Storytelling/Transformations and Analogical Thinking.

International Conference on Engineering Technology.

July 6-7, Terengganu, Malaysia.

Vegean, N., Lee, C. S. & Ooi, E. H. (2019). FunPlayCode

for Android. Extended Universiti Tunku Abdul Rahman

final year project.

Resnick, M. (2007). Sowing the Seeds for a More Creative

Society. Learning & Leading with Technology, 35(4), 18-

22.

Stubbings, C. (2018). Workforce of the future: The

competing forces shaping 2030. London, United

Kingdom: PricewaterhouseCoopers.

Wing, J.M. (2006). Computational Thinking.

Communications of the ACM - Self managed systems,

49(3), 33-35.

Wong, Y. L. & Lee, C. S. (2011). Creative Storytelling

Enhanced through Social Media and Intelligent

Recommendation. Creativity and Cognition, Georgia

Tech, Atlanta, November 3-6, 2011, 399-400.

[Multimedia University final year student project]

https://www.knowledgetrain.co.uk/resources/practice/the-dsdm-principles
https://www.knowledgetrain.co.uk/resources/practice/the-dsdm-principles
https://robinpowered.com/blog/best-practice-system-for-organizing-and-tagging-github-issues/
https://robinpowered.com/blog/best-practice-system-for-organizing-and-tagging-github-issues/
https://luis-goncalves.com/what-is-agile-methodology/
https://luis-goncalves.com/what-is-agile-methodology/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

99

Computational Thinking and

Artificial Intelligence Education

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

100

Experiences from Teaching Actionable Machine Learning at the University Level

through a Small Practicum Approach

Natalie LAO1*, Irene LEE2, Hal ABELSON3

1,2,3 Massachusetts Institute of Technology, United States of America

natalie@mit.edu, ialee@mit.edu, hal@mit.edu

ABSTRACT
Machine learning (ML) courses have traditionally been

taught through a math-first approach. They generally begin

by establishing mathematical theories behind ML, such as

the perceptron algorithm, logistic regression, and

backpropagation, and then use these building blocks to

motivate more complex structures such as neural networks.

Such educational resources may not be sufficient or

preferable for audiences who wish to use ML to build useful

artifacts but do not have a strong mathematical or

programming background. In this paper, we introduce a new

framework for teaching actionable ML that combines three

components in a Use-Modify-Create progression: (1)

technical modules taught through hands-on labs, (2) a

capstone project, and (3) supplemental lectures for new

areas of research. This framework was applied in two

iterations of a semester-long practicum at Massachusetts

Institute of Technology (MIT) as a beginner-accessible

course aimed at helping a broad range of students gain the

ability to ideate and implement independent ML projects.

We present the curriculum, student projects, pre and post-

course survey responses, assignment grades, reflective

discussions, and learnings from both iterations of the course.

Our results indicate that the proposed actionable

pedagogical framework for ML along with the content and

practices of the course were effective for increasing students’

practical self-efficacy in ML and computational identity as

developers of ML applications. The findings of this study

illuminate patterns of interaction with ML systems that

support a practical approach to teaching ML in order to

increase knowledge acquisition, future learning ability, and

motivation in beginner students.

KEYWORDS
machine learning, deep learning, actionable pedagogical

framework, experiential learning, small practicum

1. INTRODUCTION
As artificial intelligence (AI) and machine learning (ML)

have gained prevalence in public education over the past

decade, many interpretations of the two terms have been

presented. We define ML as models trained on large

amounts of data to inductively find patterns while AI also

includes algorithms crafted from general deductive

principles to solve specific problems (e.g. alpha-beta

pruning and minimax); and deep learning as a subtopic of

ML that uses neural networks with more than one hidden

layer (Lao, Lee, & Abelson, 2019). In order for an ML

system to “work”, it is dependent on the availability of high

quality data, scientific insights on features, appropriate

model architectures, and computational processing power.

Instead of being generally deterministic programs, ML

results in powerful statistical algorithms that can be hard to

debug and understand on a detailed level, such as when

analyzing a single error in a large neural network (Shapiro,

Fiebrink, & Norvig, 2018). Therefore, it may not be the most

effective to teach ML in the style of other algorithms courses

if we want to educate critical thinkers from a wide variety of

backgrounds. In designing our teaching framework, our

questions were:

• Can students with no/minimal ML or CS experience

quickly apply ML to interesting and suitable problems

without being explicitly taught the underlying

mathematical theories?

• What human and computational resources are needed

for an introductory, projects-based ML course?

This paper serves as an experience report that describes the

pedagogical learnings from designing and implementing a

small-scale, project-focused practicum that was successful

at helping students of various technical backgrounds

develop self-efficacy as machine learning project creators

(Lao, Lee, & Abelson, 2019).

2. BACKGROUND

2.1. Theoretical vs. Practical Approaches

Most current ML courses teach the mathematics of ML

during lessons (e.g. the perceptron algorithm or linear

regression), and ask students to work on proofs or math-

heavy problems for homework, which may involve

translating the relevant math into code (Dror & Ng, 2018;

see also Mohri, 2018). However, such methodologies may

not work well for students who do not yet have a strong

foundation in probability, calculus, or linear algebra. In

contrast, practicums are often run as laboratory classes

where students work on assignments and projects during

class time with the support of mentors and/or teaching

assistants. This Deep Learning Practicum course is an

example of an ML practicum targeted towards university

students of a broad range of backgrounds that takes a

practical approach—its focus is on the “doing and use of

ML” and the creation of personal projects and applications.

2.2. Experiential Learning: Use-Modify-Create

In experiential learning, or “learning through reflection and

doing” (Kolb, 2014), learning can be elicited through direct

manipulation of objects or systems as “objects to think with”

(Papert, 1980). In our course design, experiential learning

exercises are combined with a capstone project through the

Use-Modify-Create Progression (Lee et al., 2011). We posit

that Use-Modify-Create can help students deepen

understanding of ML concepts and master practical skills: (1)

students use ready-made ML models within fast-response

101

and user-friendly interfaces to develop high-level intuitions

about training, testing, and the importance of data, (2)

students manipulate the models directly to understand how

architectural modules, hyperparameters, and datasets impact

results for different problems, (3) students scope a problem

suitable for ML and create their own application.

This methodology can now be applied to ML due to the

creation of libraries that support in-browser ML experiments

such as TensorFlow.js (Smilkov et al., 2019), and user-

friendly applications such as Teachable Machine (Stoj.io et

al, 2018) and ModelBuilder (Google, 2018). These tools

allow students to modify powerful ML models (either

through a user interface or code) and test the results in real-

time, which enable novices to quickly gain experience

through direct manipulation of ML systems. Students can

quickly iterate through building a model, inputting data,

training the model, and analyzing results. Furthermore, these

“laboratory” experiences with ML systems provide students

with experiences that directly relate to the future of work at

the human-machine frontier.

2.3. Self-Efficacy and Engagement

This practicum's framework for teaching actionable ML

incorporates several mechanisms for engagement:

empowering students, creating meaningful experiences

through scaffolded, inquiry-based learning, and authentic

learning opportunities (Wu & Huang, 2007). The framework

also emphasizes self-efficacy, a belief in one's chances of

successfully accomplishing a task and producing a favorable

outcome (Bandura, 1977). Students with high self-efficacy

develop deeper interests in the tasks at hand and are more

motivated to learn challenging material (Bandura et al.,

2001). Recent work shows that self-efficacy is developed

and strengthened through seeing others like themselves

succeed, being persuaded by respected friends and advisors,

and reflecting on one's own capabilities (Bandura, 2004). As

such, our framework was designed to emphasize

collaborative work, work with near-peer mentors, and

exposure to ML professionals of diverse demographics

(gender, age, and race/ethnicity).

3. INSTRUMENTS AND ASSESSMENT
The data sources used to analyze the course’s impact

included anonymous responses to pre and post surveys and

analysis of capstone projects. At the time of the study, there

were no validated instruments for measuring self-efficacy in

ML. We created our post survey instrument based on

validated instruments for measuring self-efficacy in general

sciences, including Children's Science Curiosity Scale

(Harty & Beall, 1984) and Modified Attitudes Towards

Science Inventory (Weinburgh & Steele, 2000).

4. DEEP LEARNING PRACTICUM V1
The first version of the course ran for 1.5 hours 2x a week

over a 15-week semester in spring 2018 at Massachusetts

Institute of Technology (MIT). The course did not count

towards core undergraduate requirements and was an

elective course. In pre-registration, the instructors

emphasized that the course was meant for students who did

not feel comfortable working with ML and not experts

hoping to gain advanced techniques. Class size was

restricted due to the personalized, project-based nature of

instruction. Twelve students completed the course.

During the course, instructors aimed to ground theoretical

constructs of ML in hands-on applications that spanned

different topics. Six genres were covered in the pilot that

included predictive and generative applications of ML. The

order of genres followed the historical development of ML,

and naturally presented a progression in the sophistication of

ML models. There were 3 starter topics followed by 3

advanced topics. The instructors gave short explanatory

technical lectures (<15 min.) with in-class exercises in

TensorFlow.js that students ran on their own laptops. The

activities often leveraged existing datasets, pre-built models,

and web-based tools for ML. For each set of exercises,

students were asked to discuss their findings with a partner

or with the class. Student teaching staff provided technical

and instructional support. Weekly take-home assignments

provided an extension to the environment and the exercises

introduced during class.

The last 9 weeks of class focused on capstone projects and

guest lectures (GLs) from ML professionals and researchers.

Students chose a problem that personally interested them

and was suitable for an ML application. Mentors were paired

to each project. A week-by-week map of the version 1

curriculum is presented in Table 1.

Table 1. V1 of the curriculum annotated with the

ITEST Use-Modify-Create progression per week.

wk. Topics Progression

1
K-Nearest

Neighbors

Use: Teachable Machine

webapp (Stoj.io et al, 2018).

Modify: Confidence algorithms

in source code.

2
Multilayer

Networks

Use: Model Builder webapp

(Google, 2018). Modify: Starter

TensorFlow.js and HTML code

for programming multilayer

networks.

3

Convolutional

Neural

Networks

(CNNs)

Use: Model Builder webapp,

filter visualization webapp

(Harley, 2015), Fast Style

Transfer webapp (Nakano,

2018). Modify: Starter code for

programming CNNs.

4

Generative

Models and

Embeddings

Use: Embedding Projector

webapp (TensorFlow, 2018),

Latent Space Explorer

(deeplearn.js., 2018). Modify:

Feature projection functions in

Latent Space Explorer source

code.

5

Generative

Adversarial

Networks

(GANs)

Use: GAN Playground webapp

(Nakano, 2017). Modify:

Starter TensorFlow.js and

HTML code for programming

GANs.

6

Recurrent

Neural

Networks

(RNNs) and

Long Short-

Term Memory

(LSTMs)

Use: RNN text generation

webapp (Karpathy, 2015),

SketchRNN webapp (Ha,

Jongejan, & Johnson, 2019).

Modify: Architecture and

parameters in webapp source

code. Create: Music generation

102

RNN application through

TensorFlow Python notebook.

7
Project

Overview

Create: Students scoped and

presented 3 project ideas.

8 Spring Break

Create: Teams/individuals

worked on the project proposal

writeup.

9

Project Mentor

Matching, GL:

Healthcare

Create: Teams submitted

proposals and were matched

with industry mentors.

10

GL: Fairness,

GL: Testing and

Training Tools

Create: Teams work on

projects.

11
GL:

Interpretability

Create: Teams work on

projects.

12

Project

Midpoint

Checkpoint

Presentations,

GL: Art &

Music

Create: Teams presented 5-

minute project progress reports

in class, received feedback.

13
GL: People +

AI Research
Create: Work on projects.

14

Final

Presentation

Dress

Rehearsal, GL:

Adversarial

Examples

Create: Teams presented a

practice run of their final 10-

minute project presentations in

class, received feedback.

15

Final

Presentation

Showcase,

Project Writeup

Due

Create: Present projects in

front of industry professionals

and submit project writeups in

the form of instructional blog

posts.

4.1. Student Demographics

Of the 12 students, there were 2 (17%) second-years, 4 (33%)

third-years, 5 (42%) fourth-years, and 1 (8%) graduate

student. Nine (75%) majored in EE/CS, 1 in Math, 1 in Math

& Physics, and 1 in Humanities. There were 3 black women,

3 Asian men, 2 Asian women, 2 white women, and 1 white

man. Ten students (83%) had basic exposure to AI or ML,

but wrote in the pre- survey that they wanted to take another

introductory course because they did not feel that they could

build practical applications. All students had at least some

coding experience, but only 8 (67%) had experience in

JavaScript.

4.2. Teaching Staff and Industry Mentors

There were 6 student staffers who helped debug in-class

exercises for each topic, answer questions, and lead

reflective discussions that directed towards learning goals

for the exercises. For the 9 projects in the class, 3 of the staff

mentored 1 project each and 3 mentored 2 projects each.

There were 9 industry mentors. We reached out to

companies and researchers in the area to ask for volunteers

who have experience with ML projects. We invited all

volunteers to a mixer with the students after project teams

had formed. At the beginning of the mixer, each mentor gave

a brief overview of their expertise and each student team

summarized their project goals. After the mixer, student

teams submitted their preferences for mentors and were

matched. Mentors met with teams during the beginning and

middle of their project cycles to help with high level ideas,

resources, and project scoping.

4.3. Capstone Projects

Within this “Create” stage of the course, students marshaled

the tools and techniques at their disposal along with

mentorship to create capstone projects. Students were

instructed to choose a project that they were personally

interested in, but were also cautioned that a realistic project

implemented well and evaluated thoroughly is better than a

half-implemented ambitious project with no result. Projects

could be a real-world Application of ML, an Exploration

of properties of neural networks, or a Replication of an ML

paper. To scaffold project scoping, students were given a “3

Ideas” assignment in which they presented 3 project ideas in

class. For each idea, students defined a “Safe” goal that they

were confident they could achieve by the end of the semester,

a “Target” goal that they hoped to achieve, and a “Stretch”

goal that would be good to achieve if extra time was

available.

Students had the option of finding a project partner after the

presentations. There were 9 projects consisting of 3 pair

projects and 6 solo projects. 7 projects were in the

Application category, 1 in Replication, and 1 in both

Application and Exploration. All teams achieved their Safe

goals. One team continued working on their project after the

class ended and was able to publish a paper.

4.4. Learnings for V2

Feedback was obtained through surveys and a discussion-

style post-mortem on the last day of class. Due to the small

class size, quantitative analyses are not presented to preserve

anonymity. Overall, students loved the interactive lab style

of the modules in the class. Two students with no prior

JavaScript experience felt that the course was surprisingly

JavaScript-independent, although some coding experience

was helpful. Students felt that the small class size was

beneficial in creating an environment that made them feel

comfortable speaking during the open reflective discussions

that accompanied in-class exercises. Nearly every student

felt that there was not enough time for project

implementation, but students also said that it was the most

valuable and enjoyable part of the course. Students

suggested that the course should cover data collection, data

processing, and using external computational resources to

better scaffold the projects. Students enjoyed the guest

lectures and thought that they helped “put what we learned

into a much bigger picture.” Students noted that some guest

lectures may have been useful before starting their final

projects and would have provided additional context for

project choices.

Several students said that the course demystified ML and

made it more approachable. Two students mentioned their

increased concern over bias in ML algorithms as well as a

deeper understanding of how to resolve some of these issues:

“Before this course, I thought of computer programs more

linearly – as if [programmers] were mostly in control of a

program's results. Now I have a much greater

understanding of how ML programs can be biased and

unfair... I learned the importance of providing good, varied

input data and how this data can have significant impact on

a network and ultimately the world.”

103

5. DEEP LEARNING PRACTICUM V2

5.1. Changes from V1

The second version of Deep Learning Practicum was offered

at MIT in fall 2018, the semester following the pilot. There

were 6 main changes from version 1: (1) the final project

was introduced at the beginning of the semester and ran in

parallel to the modules portion of the course, (2) there were

two additional scaffolding workshops for the final project

(data mining and using computing clusters), (3) students

were required to have a partner for their project unless given

permission, (4) guest lectures were more interspersed

throughout the course instead of all at the end, (5) the staff-

to-student ratio decreased from 6:12 to 6:26, and (6) an

additional unit on reinforcement learning was added. The

full set of version 2 curricula, lectures, assignments, and

final projects can be found online at http://mit.edu/6.s198

(Lao & Abelson, 2018). A weekly summary of the version 2

curriculum is presented in Table 2 (Lao, Lee, & Abelson,

2019).

Table 2. V2 of the curriculum annotated with the

ITEST Use-Modify-Create progression per week.

wk. Topics Progression

1

K-Nearest

Neighbors,

Transfer Learning

Module from version 1 wk. 1

with more emphasis on

transfer learning techniques.

2

Multilayer

Networks, Project

Overview

Module from v1 wk2.

Create: Scope 3 ideas for

capstone final project.

3
CNNs, GL:

Adversarial Attacks

Module from v1 wk3.

Modify: Starter adversarial

attack TensorFlow code on

CNNs.

4

3 Ideas Project

Workshop, Data

Mining Workshop

Use: Kaggle to find datasets

(Kaggle Inc., 2019). Modify:

3 project ideas based on

feedback. Create: Web

scraping scripts using

Beautiful Soup (Python

Software Foundation, 2019).

5

Generative Models

and Embeddings,

Computational

Resources

workshop, Project

Mentor Matching

Module from v1 wk4. Use:

Holyoke Computing Cluster

tutorial (MGHPCC, 2018).

6 GANs Module from v1 wk5.

7

Project Data

Review,

Reinforcement

Learning

Use: Metacar webapp

(thibo73800, 2019), OpenAI

Gym webapps (OpenAI,

2019). Modify: TensorFlow

starter code for RL. Create:

Data review document to

describe project dataset

details.

8 RNNs and LSTMs Module from v1 wk6.

9
Informal Project

Checkpoint

Create: Work on projects and

discuss progress with staff.

10

GL: Art & Music,

GL: People + AI

Research

Create: Finish project

proposal.

11
Formal Project

Checkpoint

Create: Work on projects and

show basic working demo to

staff.

12

GL: Healthcare,

Project Practice

Lightning Talks

Create: Present 2-minute

project lightning talks, receive

feedback for final showcase.

13 Office Hours Create: Work on projects.

14
Final Presentation

Showcase

Create: Presented capstone

projects to an audience of

varying ML experience with

lightning talks, then individual

booths.

15
Project Writeup

Due

Create: Submit project

writeups in the form of

instructional blog posts.

5.2. Student Demographics

Of the 26 students, there were 5 (19%) second-years, 6 (23%)

third-years, 11 (42%) fourth-years, 3 (12%) graduate

students, and 1 (4%) post-doc. Twenty students (77%)

majored in EE/CS, 2 in Architecture, 2 in Physics & EECS,

1 in Materials Science & Engineering, and 1 in Biological

Engineering & Math. There were 9 Asian women, 6 Asian

men, 5 white men, 3 Hispanic men, 1 black woman, 1 white

woman, and 1 black man. Similar to V1, 21 students (81%)

had basic exposure to AI or ML, but commented that they

wanted to participate in the course due to self-perceived lack

of ability to apply theory and math in building practical

applications.

5.3. Capstone Projects

For V2 of the course, students were asked to work in groups

of two for the final project due to the decrease in the staff-

student ratio. Students started work on the projects in wk. 2

of the course, so they had not been exposed to all of the topic

modules. The instructors were concerned that students may

avoid later topics and tried to mediate this by giving

lightning talks and sample use cases for the topics that would

be presented later. There were 14 projects, all of which

completed their Safe goal. All three project categories were

represented with the majority being Application projects.

More projects bridged multiple project categories than in V1,

likely due to students having more time.

The first project workshop was the 3 Ideas Workshop during

wk. 4, which changed in format from the pilot due to the

increased number of students: The staff ran two 30-minute

sessions of guided group presentations. For each session, the

class was divided into four groups of 5-6 students based on

shared project topic interests. One to two staffers led each

group, where students took turns presenting their 3 ideas.

During the final 30 minutes of the class, students were

encouraged to talk to others they had met and form groups.

After the 3 Ideas Workshop, there were two workshops

given on project skills: data collection and how to connect

to computing resources. There was also a data review

checkpoint assignment due in wk. 7 to confirm that students

had completed data collection and processing in a timely

manner.

5.4. Post Survey Responses

The post survey was emailed out after the course ended and

received 17 responses (65%). Demographic results indicated

that the participants were representative of the class in terms

of grade level, major, gender, and ethnicity. Table 4 presents

the responses to all linear scale questions, where 5 =

http://mit.edu/6.s198

104

“Strongly agree” or “Completely confident” and 1 =

“Strongly disagree” or “No confidence.”

Table 4. Means and standard deviations of post survey

linear scale question responses.

 Item Mean S.D.

1
I felt that I was successful in this

class.
4.4 0.6

2
I am proud of what I was able to

accomplish in my final project.
4.2 0.8

3

I will be able to complete an ML

project (of a similar level and scale

to my final project) on my own.

4.6 0.5

4
In this class, I saw people like me

succeed at learning ML
4.2 0.6

5

When I saw people like me succeed

in ML, it made me feel that I could

succeed as well.

4.3 0.7

6

How confident do you feel about

describing your project to a non-

technical person?

4.6 0.5

7
The project work made me feel

uncomfortable
1.6 0.9

As a follow-up to Question 1, we asked “What did you use

to determine your sense of success in the class?”. The

majority of responders attributed their sense of success to

work on the final project (94%) and understanding of the

concepts presented in class (88%). Responses to “Which of

the following elements from the course did you use in your

project work?” also indicated that the modules and

workshops were helpful. More than half of responders said

they used concepts/architectures from the units (82%), used

independent researching skills [developed] through the

assignments (59%), or used the 3 Ideas Workshop to [help]

improve or refine [their] project idea (59%).

When asked “How can you see yourself using the tools,

techniques, and methods presented in the class?”, all

responders gave multiple use cases. The most prevalent were:

Applying ML to new domains (82%); Be(ing) able to talk

about it with experts (77%); Being able to talk about it with

non-experts (77%); Using it for fun (65%); Developing my

final project further (65%); Using it [for] another class

(65%); and Using it as part of a job (65%).

When asked “How did your views on ML change through

taking this course?”, 53% mentioned a “personal realization

of the easy application potential of ML”; 18% had

“increased enjoyment of the field”; 18% wrote “realizing

limitations of ML”; and 12% were “excited…the field is

rapidly evolving”.

6. DISCUSSION
The course aimed to help students with some coding

background and none to novice AI or ML knowledge gain

self-efficacy in ML. In general, students highly enjoyed the

course, felt that it helped demystify ML, and were

encouraged to pursue independent, personal ML projects in

the future. We felt that both iterations of the course were

successful in our goals, with V2 allowing students more time

for projects. Survey responses from V2 indicate that

successful completion of capstone projects most heavily

influenced development of self-efficacy in ML, and that the

modules portion of the course was successful at preparing

students for the projects. While our results are promising, we

recognize limitations to replication: there was a high staff-

to-student ratio and many students had exposure to ML/AI

before the course (although we found no significant

difference in performance between students of varying

levels of ML and coding backgrounds).

We believe that the following 4 components of the course

best contributed to its success: First, while the modules did

not teach all of the skills and concepts students needed for

every type of ML project, we hypothesize that the hands-on,

exploratory lab work for each application helped students

feel more comfortable playing with new architectures. This

encouraged students to conduct research and learn on their

own – 3 teams from V2 (21%) even applied methods not

taught in the class to their projects. Second, TensorFlow.js

allowed beginners to dive directly into exploring complex

and visually appealing ML applications – modifying ML

models in the browser allowed for near-instantaneous

feedback and reduced infrastructure problems. Third,

mentors for each project greatly assisted students in properly

scoping problems and finding resources. Fourth, the blog

post style for the final project writeup helped students learn

disciplinary sharing norms, situate their work in the

community, and identify with other ML developers,

enthusiasts, and researchers. Thirteen of the 14 projects from

V2 shared their project blog posts publicly on the web (Lao

& Abelson, 2018).

In replicating this course, the advanced modules (wk. 4+)

can be replaced based on the types of projects instructors

want to encourage (e.g. more types of RNNs, LSTMs, and

GANs for an arts-focused ML class). Additionally, we found

that transfer learning was extremely useful – students were

able to adjust and retrain high quality pre-built models with

great results for repurposed use instead of spending a long

time trying to create (often ineffective) models from scratch.

We recommend encouraging students to research and

experiment with different architectures as often as possible.

Many of the students without coding experience also

suggested that a version of the course could be adapted for

high school students.

7. REFERENCES
Bandura, A. (1977). Self-Efficacy: Toward a Unifying

Theory of Behavioral Change. Psychological Review,

84(2), 191–215.

Bandura, A. (2004). Health Promotion by Social Cognitive

Means. Health Education Behavior: The Official

Publication of the Society for Public Health Education,

31(2), 143–164.

Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli,

C. (2001). Self-Efficacy Beliefs as Shapers of Children’s

Aspirations and Career Trajectories. Child Development,

72(1), 187-206.

Deeplearn.JS. (2018). Font-Explorer. Retrieved November

18, 2019, from https://github.com/mintingle/font-explorer

Dror, R., & Ng, A. (2018). CS229: Machine Learning.

Retrieved November 18, 2019, from

http://cs229.stanford.edu/syllabus.html

https://github.com/mintingle/font-explorer
http://cs229.stanford.edu/syllabus.html

105

Ha, D., Jongejan, J., & Johnson, I. (2019). Draw Together

with a Neural Network. Retrieved November 18, 2019,

from https://magenta.tensorflow.org/sketch-rnn-demo

Harley, A. (2015). 3D Visualization of a Convolutional

Neural Network. Retrieved November 18, 2019, from

http://scs.ryerson.ca/~aharley/vis/conv/

Harty, H., & Beall, D. (1984). Toward the Development of

a Children’s Science Curiosity Measure. Journal of

Research in Science Teaching, 21(4). 425-436.

Kaggle Inc. (2019). Kaggle: Your Home for Data Science.

Retrieved November 18, 2019, from

https://www.kaggle.com/

Google. (2018). People + AI Research Initiative:

Deeplearn.JS Model Builder Demo. Retrieved November

18, 2019, from http://courses.csail.mit.edu/6.s198/spring-

2018/model-builder/src/model-builder/

Karpathy, A. (2015). RecurrentJS Sentence Memorization

Demo. Retrieved November 18, 2019, from

https://cs.stanford.edu/people/karpathy/recurrentjs/

Kolb, D. A. (2014). Experiential learning: Experience as the

source of learning and development. Pearson FT Press,

New Jersey. Print.

Lao, N., & Abelson, H. (2018). 6.S198: Deep Learning

Practicum, Fall 2018. Retrieved November 18, 2019, from

http://mit.edu/6.s198

Lao, N., Lee, I., & Abelson, H. (2019). A Deep Learning

Practicum: Concepts and Practices for Teaching

Actionable Machine Learning. Proceedings of 12th

Annual International Conference of Education, Research

and Innovation (ICERI’19). International Academy of

Technology, Education and Development (IATED), 10.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Malyn-Smith, J., & Werner, L. (2011).

Computational Thinking for Youth in Practice. ACM

Inroads, 2(1), 32-37.

The MGHPCC. (2018). The Massachusetts Green High

Performance Computing Center. Retrieved November 18,

2019, from http://www.mghpcc.org

Mohri, M. (2018). Foundations of Machine Learning –

CSCI-GA.2566-001. Retrieved November 18, 2019, from

https://cs.nyu.edu/~mohri/ml18/

Python Software Foundation. (2019). Beautiful Soup,

version 4.8.1. Retrieved November 18, 2019, from

https://pypi.org/project/beautifulsoup4/

Nakano, R. (2017). GAN Playground – Explore Generative

Adversarial Nets in your Browser. Retrieved November 18,

2019, from https://reiinakano.github.io/gan-playground/

Nakano, R. (2018). Deeplearn.JS Style Transfer Demo.

Retrieved November 18, 2019, from

https://reiinakano.github.io/fast-style-transfer-

deeplearnjs/

OpenAI. (2019). Gym. Retrieved November 18, 2019, from

https://gym.openai.com/

Papert, S. (1980). Mindstorms: Children, computers and

powerful ideas. Basic Books, New York. Print.

Shapiro, R. B., Fiebrink, R., & Norvig, P. (2018). How

Machine Learning Impacts the Undergraduate Computing

Curriculum. Communications of the ACM, 61(11), 27-29.

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N.,

Yu, P., Zhang, K., Cai, S., Nielsen, E., Soergel, D.,

Bileschi, S., Terry, M., Nicholson, C., Gupta, S. N.,

Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viégas,

F. B., & Wattenberg, M. (2019). TensorFlow.js: Machine

Learning for the Web and Beyond. CoRR.

Stoj.io, Use All Five, Creative Lab, and PAIR team at

Google. (2018). Teachable Machine. Retrieved November

18, 2019, from

https://teachablemachine.withgoogle.com/v1/

TensorFlow. (2018). Embedding projector – visualization of

high-dimensional data. Retrieved November 18, 2019,

from http://projector.tensorflow.org/

thibo73800. (2019). Metacar: A reinforcement learning

environment for self-driving cars in the browser. Retrieved

November 18, 2019, from https://www.metacar-

project.com/

Weinburgh, M. H., & Steele, D. (2000). The Modified

Attitudes Toward Science Inventory: Developing an

Instrument to Be Used with Fifth Grade Urban Students.

Journal of Women and Minorities in Science and

Engineering, 6(1). 87-94.

Wu, H. K., & Huang, Y. L. (2007). Ninth-Grade Student

Engagement in Teacher-Centered and Student-Centered

Technology-Enhanced Learning Environments. Science

Education, 91(5), 727-749.

https://magenta.tensorflow.org/sketch-rnn-demo
http://scs.ryerson.ca/~aharley/vis/conv/
https://www.kaggle.com/
http://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
http://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
https://cs.stanford.edu/people/karpathy/recurrentjs/
http://mit.edu/6.s198
http://www.mghpcc.org/
https://cs.nyu.edu/~mohri/ml18/
https://pypi.org/project/beautifulsoup4/
https://reiinakano.github.io/gan-playground/
https://reiinakano.github.io/fast-style-transfer-deeplearnjs/
https://reiinakano.github.io/fast-style-transfer-deeplearnjs/
https://gym.openai.com/
https://teachablemachine.withgoogle.com/v1/
http://projector.tensorflow.org/
https://www.metacar-project.com/
https://www.metacar-project.com/

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

106

Using Transfer Learning, Spectrogram Audio Classification, and MIT App

Inventor to Facilitate Machine Learning Understanding

Nikhil BHATIA1*, Natalie LAO2*

1,2 Massachusetts Institute of Technology, USA

nwbhatia@mit.edu, natalie@mit.edu

ABSTRACT
Recent advancements in deep learning have brought

machine learning and its many applications to the forefront

of our everyday lives. As technology has become more and

more integrated into our educational curriculum, researchers

have focused on creating deep learning tools that allow

students to interact with machine learning in a way that

incites curiosity and teaches important concepts. Our

research contribution focuses on applying transfer learning

and spectrogram audio classification methods to teach basic

machine learning concepts to students. We introduce the

Personal Audio Classifier (PAC), a web interface that allows

users to train and test custom audio classification models

that can classify 1-2 second sound bites recorded by the user.

We also contribute a custom App Inventor extension that

allows users to use the output of the web interface to create

App Inventor applications that rely on their trained custom

audio classification model.

KEYWORDS
machine learning, transfer learning, App Inventor

1. INTRODUCTION
From personal voice assistants to self-driving cars, machine

learning applications have permeated every aspect of our

daily lives. Much of these advances are thanks to the

subfield of machine learning known as deep learning, a field

primarily concerned with building large neural networks to

perform specialized tasks. Yet as researchers began to make

significant advancements in deep learning during the past

decade, it became clear that computational complexity,

training time, and esoteric development tools could pose as

a deterrent to widespread development of deep learning

applications. Transfer learning was born out of this

deficiency, spurred by Yosinski’s work (Yosinki, 2014) on

transferable features in deep neural networks.

1.1. Transfer Learning

Transfer learning is a machine learning method where an

existing deep learning model is used as the starting point to

train a model specialized for a slightly different task. The

ability to start with a pre-trained model allows new

developers to apply deep learning to solve novel problems

without the vast compute and time resources normally

needed to train neural networks from scratch. While the

conventional model-training process is likely only

accessible to researchers or institutions with deep pockets,

the result is one that should be available to developers of all

levels and even students of any age. Transfer learning has

allowed for just this, giving machine learning enthusiasts

around the world the ability to build their own models using

complex models as a starting point.

Figure 1. Transfer learning starts with a pre-trained model

and fine-tunes the output layers to specialize towards a new

task.

1.2. TensorFlow.JS and App Inventor

Wwe introduce two important technologies, Tensorflow.js

(Tensorflow.js, 2015) and MIT App Inventor (MIT App

Inventor, 2010), that this project utilizes to help students

develop exposure to machine learning concepts without

requiring a deep computer science background.

Tensorflow.js is a Javascript machine learning library that

has recently found success in the niche bridging machine

learning implementation and educational tools. It allows for

deep learning models to be trained and run right in the

browser, and when combined with a well-designed web GUI,

can hide the complexities of programming syntax while still

allowing users to interface with machine learning models.

Similarly, MIT App Inventor is a free open-source web

platform that allows users to create mobile applications via

a drag-and-drop interface, requiring little to no

programming experience while still offering rich application

functionality. App Inventor also offers the ability to add

custom extensions to any app, allowing us to build an audio

classification extension that students could upload and use

to help build his private diary app. With these two

technologies, we’ve created a web app that blends PIC (Tang,

2018) and Teachable Machine (Google, 2019), allowing

users to train an audio classification model that can

recognize 1-2 second audio clips. After using this web app

to train a custom model, users will be able to download this

model and plug it into MIT App Inventor as an extension to

build apps with custom audio-classification functionality.

2. APPROACH

3.1. Personal Audio Classifier

We present a web application (Personal Audio Classifier, or

PAC) that allows users to train a custom audio classifier

using Tensorflow.js within the browser. The application is

available to the public at https://c1.appinventor.mit.edu.

This section will detail the basic functionality, as well as the

machine learning tools that were used to implement an in-

browser audio classifier. First, users are prompted to add

custom labels that the classifier will attempt to differentiate

between. Users can then record an unlimited number of

audio clips for each label that will be used to train the

107

internal model. Each audio clip is one second long, and

client side JavaScript is used to up-sample each audio clip to

384,000 Hz. Each element in the audio buffer is passed

through a Fast Fourier Transform to draw the audio

frequencies onto a single pixel sliver of our output

spectrogram. This spectrogram provides a visual

representation of the recorded audio bite, and is attached to

the corresponding label so that the user can view each audio

clip in the browser.

Figure 2. The label view allows users to add custom labels

and record corresponding audio clips. Audio clips are up-

sampled

and converted to spectrograms in the browser.

After inputting a number of labels and recording the

corresponding audio clips, the user is prompted to train a

custom model using their provided training data, specifying

hyperparameters like Learning Rate, Optimizer, Epochs, and

Training Data Fraction. The web application then proceeds

to load a pretrained ImageNet model (MobileNet) and train

a custom machine learning model in the browser using the

activations outputted from passing the training data through

the pretrained model. After experimenting with a variety of

model architectures, we decided to standardize the custom

model to have a single convolutional layer, a single flatten

layer, and two dense layers. The output of the model is then

passed through a SoftMax layer to generate probabilities that

correspond to the user-inputted labels.

A separate page allows the user to use this custom trained

model as a classifier, recording audio clips that are passed

back through the model and assigned to one of their original

labels. The corresponding label confidences are displayed

after each clip is recorded, and we aggregate the test results

so the user can analyze the success of their custom classifier,

and even download the custom model for use in the App

Inventor extension.

Figure3. The test view allows users to record and

classify audio clips that are converted to spectrograms

 and passed through the custom classifier.

Figure 4. The test view also provides the aggregated results

 from classifying user-recorded audio clips.

3. REFERENCES
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., & Adam, Hartwig. (2017).

MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications. Retrieved December 12,

2019, from https://arxiv.org/abs/1704.04861

Jamarshon et al. (n.d.). Pytorch. Retrieved December 12,

2019, from

https://github.com/pytorch/audio/blob/master/torchaudio/

transforms.py

MIT (n.d.). App Inventor. Retrieved December 12, 2019,

from https://appinventor.mit.edu/

MIT (n.d.). Personal Image Classifier. Retrieved December

12, 2019 from https://classifier.appinventor.mit.edu/

PyTorch (n.d). Homepage. Retrieved December 12, 2019

from https://pytorch.org/

Stakky, Lamberta, B., & Daoust, M. (n.d.). Tensorflow

Audio Recognition. Retrieved December 12, 2019, from

https://github.com/tensorflow/docs/blob/master/site/en/r1

/tutorials/sequences/audio_recognition.md

Tensorflow (n.d.). Homepage. Retrieved December 12,

2019 from https://tensorflow.org/

Tensorflow.js (n.d.). Homepage. Retrieved December 12,

2019 from https://tensorflow.org/js

Tensorflow (2019). Speech Commands. Retrieved

December 12, 2019, from

https://github.com/tensorflow/tfjs-

models/tree/master/speech-commands

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).

How transferable are features in deep neural networks?

Retrieved December 12, 2019, from

https://arxiv.org/abs/1411.1792

https://arxiv.org/abs/1704.04861
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://appinventor.mit.edu/
https://classifier.appinventor.mit.edu/
https://pytorch.org/
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://tensorflow.org/
https://tensorflow.org/js
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://arxiv.org/abs/1411.1792

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

108

Computational Thinking and Artificial Intelligence Education: A Balanced

Approach Using both Classical AI and Modern AI

Kwong-Cheong WONG

College of Professional and Continuing Education, PolyU, Hong Kong

 kwongcheong.wong@cpce-polyu.edu.hk

ABSTRACT

This paper presents an approach to AI education, which

combines both Classical AI and Modern AI. It argues that

this approach can enhance students’ computational thinking

through explicit programming. The applicability of this

approach is illustrated with the design of a short course

aimed at introducing AI to secondary school students.

KEYWORDS

computational thinking, artificial intelligence education,

classical AI, modern AI, chatbots

1. INTRODUCTION
In recent years, in responding to the international call for

incorporating computational thinking and AI into school

education, many school educators have started to design AI

courses for their students; see, e.g., (Holmes, Bialik, & Fadel,

2019) and (Touretzky, Gardner-McCune, Martin, & Seehorn

2019). However, these AI courses tend to teach exclusively

Modern AI (which is based on Machine Learning,

particularly Deep Learning), at the expense of Classical AI

(which is based on symbolic logic). This tendency is hardly

surprising, given that Deep Learning is currently the most

powerful and high-profile approach to AI, and has generated

a lot of hype. However, it is my contention that Classical AI

still has its merits in AI education and we should take a

balanced approach, combining both Classical AI and

Modern AI. There are several advantages for adopting this

balanced approach, the main one being that Classical AI is

better than Modern AI in teaching computational thinking to

school students.

2. CLASSICAL AI VS MODERN AI
Classical (Symbolic) AI, also called GOFAI (“Good Old-

Fashioned AI”), was born in the now famous Dartmouth

Conference of 1956 (Haugeland, 1989). It is also called the

Logic-Based AI as it is based on symbolic logic, and its idea,

according to John McCarthy, one of the pioneers of AI, is

that “an agent can represent knowledge of its world, its goals

and the current situation by sentences in symbolic logic and

decide what to do by inferring that a certain action or course

of action is appropriate to achieve its goals” (Minker, 2000,

p. 39). One distinctive feature of Classical AI is that

intelligence is explicitly programmed, say in the form of a

comprehensive list of if-then-else rules. Consequently, the

designer of a Classical AI system needs to think carefully

through all the possible combinations and devise a rule-

based system that can make decisions by traversing through

the pre-defined rule path. In stark contrast, Modern (Sub-

symbolic) AI is based on Machine Learning, which can be

defined, according to Andrew Ng, as “the process of

inducing intelligence into a system or machine without

explicit programming”. Deep Learning is just a particular

type of Machine Learning that deals with powerful

algorithms inspired by the biological structure of the human

brain, so-called deep neural networks, to endow machines

with intelligence. Consequently, the designer of a Modern

AI system does not need to encode the system with a

comprehensive list of all possible rules; all he does is let the

system learn on its own from the data.

Based on modelling logical reasoning, Classical AI, had, in

its early years, developed systems that successfully solve

interesting and important problems in specialized domains

(Neapolitan & Jiang, 2018, p. 4), e.g., the rule-based expert

system MYCIN and the rule-based chatbot ELIZA, both in

the restricted medical domain. Despite these early successes,

Classical AI in its traditional form is now widely agreed to

have failed in building true artificial intelligence (Miracchi,

2019, p. 594). In stark contrast, Modern AI, powered by

Deep Learning, has, in recent years, made extraordinary

advances in a broad range of varied pattern recognition

tasks, including classification, object detection, speech

recognition, etc. – though, importantly, reasoning tasks still

elude Deep Learning (Skansi, 2018, p. 13). As a result,

Modern AI has recently replaced Classical AI as the most

promising technology to realize true artificial intelligence.

However, Modern AI has its drawbacks, one of which

concerns explainability (or interpretability) – it is still not

very clear as to exactly how a problem is being solved,

especially for Deep Learning, since deep neural nets are still

poorly understood mathematically, though Explainable AI

or Interpretable AI is a hot research topic (Molnar, 2019).

Consequently, most users often treat a Modern AI system as

a black box. But this is unacceptable when the decision

provided by the system affects the person, e.g., a medical

diagnosis, in which the reasoning behind the decision is also

important (Kelleher, 2019, p. 245). In stark contrast, the

inner working of a Classical AI system, due to its being

explicitly programmed, is fully explainable.

3. A BALANCED APPROACH TO AI

EDUCATION
Based on the aforementioned differences between Classical

AI and Modern AI, I hereby propose a balanced approach to

teaching AI, chiefly in school education. This approach

combines both Classical AI and Modern AI. While the

inclusion of Modern AI hardly needs justification – it is,

after all, the focal point where all the current fascination and

excitement about AI lie, the inclusion of Classical AI, a

widely regarded out-of-fashion approach, demands some

justifications and explanations. All in all, there are four

reasons (or advantages) for teaching Classical AI in school

education: the pedagogical reason, the practical reason, the

109

historical reason, and the philosophical reason. First, and the

foremost, unlike Modern AI, which is often treated as a

black box by the learner, Classical AI by its very nature

requires explicit programming from the learner. This

therefore can provide a valuable chance for students to

practice programming when building a Classical AI system,

e.g., a rule-based expert system or chatbot. Consequently,

teaching Classical AI can help train and enhance students’

computational thinking skills. Second, unlike Modern AI,

which is based on advanced mathematics, Classical AI is

based simply on symbolic logic (Kowalski, 2011) which, by

its logical nature, should be more accessible to school

students. Evidence, e.g., (Yuen, Reyes, & Zhang, 2019), has

shown that school students can learn symbolic logic

effectively through logic programming. Third, Classical AI

is an important part of the history of AI. It had made many

achievements in the past years, which are regarded as the

milestones in the human’s quest for artificial intelligence,

e.g., ELIZA, the Logic Theorist, the General Problem

Solver, MYCIN, and Deep Blue, just to name a few. All

these should be told to the students of AI so that they can

have a more complete picture of the development of AI as a

discipline. Fourth, the fact that Classical AI has been good

at reasoning tasks and Modern AI has been good at pattern

recognition tasks has made philosophers speculate that

reasoning is inherently rule-based and cannot be learned. So

perhaps Classical AI and Modern AI are complementary to

each other and one can never replace the other.

4. THE COURSE
To illustrate its applicability, I designed a short course using

this approach. The goal of this course is to introduce AI to

Form 3 and Form 4 students who have had some experience

in programming (e.g., Scratch). The duration of the course is

15 hours, divided into two main parts, with the first part

about Classical AI and the second part about Modern AI; see

Figure 1. In the first part, the instructor teaches students how

to program in the logic programming language Prolog. With

support from the instructor, students are then asked to

implement a simple rule-based expert system in Prolog

(Bramer, 2013), and a simple ELIZA-like rule-based chatbot

(O'Keefe, 1990). The second part of the course teaches

students the basic ideas of neural networks (which can be

introduced as extensions of linear regression). With support

from the instructor, students are asked to implement a

shallow, and then a deep, neural network in R to recognize

handwritten digits (Liu & Maldonado, 2018), which

involves very little coding, and to build a deep learning

chatbot without coding using a free online platform. At the

end of the course, the students will be able to compare and

contrast the two different approaches to AI, thereby

enhancing their understanding of both.

5. CONCLUSION AND FUTURE WORK
I have proposed a balanced approach to AI education in

school. This balanced approach has the advantage that

students can learn computational thinking through explicit

programming in Classical AI. As planned, this short course

will be delivered to a cohort of secondary school students.

Feedback about this approach will then be collected and

evaluation followed.

 Part 1. Classical AI

1.1 The History of AI

1.2 Programming in Prolog

1.3 Implementing an Expert System and a Chatbot

 Part 2. Modern AI

 2.1 Implementing a Shallow Neural Network and a

Deep

Neural Network for Handwritten Digit Recognition

 2.2 Building a Deep Learning Chatbot

 2.3 The Future of AI

Figure 1. Contents of the course

6. REFERENCES
Bramer, M. (2013). Logic Programming with Prolog.

Secaucus: Springer.

Haugeland, J. (1989). Artificial Intelligence: The Very Idea.

MIT press.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial

Intelligence in Education: Promises and Implications for

Teaching and Learning. Boston, MA: Center for

Curriculum Redesign.

Kelleher, J. (2019). Deep Learning. MIT Press.

Kowalski, R. A. (2011). Artificial Intelligence and Human

Thinking. Cambridge University Press.

Liu, Y. H., & Maldonado, P. (2018). R Deep Learning

Projects: Master the Techniques to Design and Develop

Neural Network Models in R. Packt Publishing Ltd.

Minker, J. (ed.) (2000). Logic-Based Artificial Intelligence.

Boston, MA: Springer.

Miracchi, L. (2019). A Competence Framework for Artificial

Intelligence Research. Philosophical Psychology, 32(5),

589-634.

Molnar, C. (2019). Interpretable Machine Learning. Lulu.

com.

Neapolitan, R. E., & Jiang, X. (2018). Artificial Intelligence:

With an Introduction to Machine Learning. Chapman and

Hall/CRC.

O'Keefe, R. A. (1990). The Craft of Prolog. MIT press.

Skansi, S. (2018). Introduction to Deep Learning: From

Logical Calculus to Artificial Intelligence. Springer.

Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn,

D. (2019). Envisioning AI for K-12: What Should Every

Child Know about AI?. Proceedings of the AAAI

Conference on Artificial Intelligence, 33, 9795-9799.

Yuen, T., Reyes, M., & Zhang, Y. (2017). Introducing

Computer Science to High School Students Through Logic

Programming. Theory and Practice of Logic Programming,

19(2), 204-228.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

110

Analysis of the Current Situation and Hotspots of Artificial Intelligence Education

in China

——Visual Analysis based on Chinese Literature from 2015 to 2019

Zhihui GONG1，Qiuping HU2，Junjie SHANG3＊

1,3 Learning Science Laboratory in College of Education, Peking University, China
2 Chaoyang Branch of Beijing Institute Of Education, China

1801213879@pku.edu.cn, hqpdan@163.com, jjshang@pku.edu.cn

ABSTRACT

The rapid development and widespread application of artificial intelligence have attracted great attention from the education

community. The integration of artificial intelligence and education has played a huge role in educational reform in mainland

China. The article takes 7 major journals of educational technology majors in mainland China as data sources and uses a

bibliometric method to visually analyze articles on the subject of "artificial intelligence education" from 2015 to 2019, and

summarizes research on artificial intelligence education in mainland China. Status and research hotspots. Through analysis,

it is found that research on artificial intelligence education in mainland China mainly focuses on how to develop education in

the era of artificial intelligence, how to organize teaching, how students learn, and the application of artificial intelligence

education supported by new technologies.

KEYWORDS

artificial intelligence, artificial intelligence education, educational application

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

111

中国大陆人工智能教育研究现状及热点分析

——基于 2015 - 2019 年中文文献的可视化分析

龚志辉 1，胡秋萍 2，尚俊杰 3
＊

1,3北京大学教育学院学习科学实验室，中国
2北京教育学院朝阳分院，中国

1801213879@pku.edu.cn, hqpdan@163.com, jjshang@pku.edu.cn

摘要

人工智能的迅速发展和广泛应用已经引起了教育界的

极大关注，人工智能与教育的融合对中国大陆的教育

变革起到了巨大的作用。文章以中国大陆 7 本教育技术

学专业重要期刊为数据源，采用文献计量的方法对

2015-2019 年以“人工智能教育”为主题的文章进行了可

视化分析，总结梳理中国大陆人工智能教育研究的现

状及其研究热点。通过分析发现，中国大陆对人工智

能教育的研究主要集中在人工智能时代教育如何发展，

教学如何组织，学生如何学习以及新技术支持下的人

工智能教育应用研究。

关键词

人工智能；人工智能教育；教育应用

1. 前言

国务院印发的《新一代人工智能发展规划》指出，随

着人工智能的快速发展，教育呈现出深度学习、跨界

融合、人机协同、群智开放、自主操控等新特征，人

工智能技术在教育中的应用越来越重要（高丹阳，

2019）。近年来，人工智能技术与教育的融合，也推

动了中国大陆的教育教学变革，智能教育、学习分析、

机器学习、计算思维等正不断渗透并影响着教育教学

系统。在此背景下，研究中国大陆教育技术学领域所

关注的人工智能教育热点问题，有希望为推动人工智

能与教育的融合创新提供借鉴和指导。

2. 关键词聚类分析

1. 数据来源和研究工具

本研究的数据来源于中国大陆 7 本教育技术学重要期刊，

分别是《中国电化教育》、《电化教育研究》、《中

国远程教育》、《开放教育研究》、《现代教育技

术》、《现代远程教育研究》和《远程教育杂志》，

时间范围是 2015 年 1月——2019 年 12月，检索条件是

主题为“人工智能教育”，经过剔除其中新闻稿、征稿通

知等文章，共得到 287 篇文献。研究选择对教育技术学

专业的重要期刊进行分析，目的是总结和梳理教育技

术研究者近五年所关注的人工智能教育问题，希望对

后续开展人工智能教育研究的学者提供参考和借鉴。

2. 关键词聚类结果

利用 CiteSpace 对文献数据进行关键词聚类分析，可以

帮助探索该研究领域的研究热点和研究前沿。研究将

时间分割定为 1 年，将引文关键词作为网络节点进行分

析，聚类图谱收集了排名前 50 的关键词。经过聚类计

算后模块值(Q 值)为 0.485，平均轮廓值(S 值) 大于

0.5377，意味着划分出来的图谱结构是显著的。出现频

次排名前 10 的关键词及其中心度如表 1 所示。中心度

指一个结点担任其它两个结点之间最短路的桥梁的次

数。一个结点充当“中介”的次数越高，它的中心度就越

大。

表 1 频次排名前 20 的关键词

序号 频次 中心度 关键词

1 148 0.46 人工智能

2 25 0.3 智能教育

3 22 0.24 教育信息化

4 20 0.21 智慧教育

5 16 0.14 大数据

6 14 0.12 教育应用

7 13 0.11 学习分析

8 11 0.1 个性化学习

9 11 0.08 教育信息化 2.0

10 10 0.08 计算思维

关键词共现图谱是指根据所引文献中关键词共现的情

况绘制，两个关键词出现在同一篇文献中即视为一次

合作，主要依据关键词共现频次矩阵。在“人工智能教

育”领域中，利用谱聚类算法，共生成 9 个主要的聚类，

分别是: 教育信息化、智能教育、计算思维、学习分析、

人工智能教育应用、教育、创客教育、人才培养和知

识图谱。聚类后的共现关键词图谱如图 3 所示。

图 1 聚类后的共现关键词图谱

由 CiteSpace 基于聚类关键词生成的时间线图也可视化

地表现了这一现状。基于关键词和聚类的时间线图如

图 4 所示。基于聚类关键词生成的时间线图可以显示出

每个聚类里关键词的发展情况。例如计算思维这一类

的发展情况可以概括为由计算思维到智能技术再到儿

童编程教育。

112

图 2 基于关键词聚类的时间线图

3. 人工智能教育的研究热点和前沿分析

通过关键词聚类结果和对高被引文献进行内容分析，

进一步将中国人工智能教育的研究现状总结归纳为理

论探索和应用研究两方面，理论探索主要研究人工智

能对教育产生的影响、作用机制，以及国内人工智能

教育的发展路径等。应用研究体现为新技术支持下的

人工智能教育应用现状及对策研究，例如大数据、学

习分析、计算思维和机器学习等。

1. 人工智能教育理论研究

通过聚类，我们发现教育信息化、智能教育、智慧教

育等内容在人工智能教育的研究中占有极大的比重，

而这类研究主要集中在在如今的技术环境下人工智能

时代教育如何发展，教学如何组织，学生如何学习以

及中国大陆人工智能教育发展的过程和趋势等内容。

例如，钟绍春讨论了人工智能时代推进教育信息化 2.0，

实现教育创新发展的方向与目标、实施路径、面临的

机遇和挑战。并从技术支持教与学瓶颈性问题的解决

策略出发，构建促进策略实施的智慧支撑系统，设计

基于智慧系统的教学活动实施方案等（钟绍春，

2018）。贾积有认为从教育的本质特征和人工智能的

研究领域来分析人工智能与教育的关系，可以发现教

育是提高人的自然智能的过程和系统；人工智能是在

机器上实现的教育，人工智能必将对人类的教育与学

习方式产生重大影响（贾积有，2018）。吴永和从人

工智能+教育的孕育条件、特征、作用三方面阐述了

“人工智能+教育”的内涵，从应用形态、技术架构、业

态趋向等要素构建了“人工智能+教育”的生态系统，并

阐述了“人工智能+教育”的人才培养体系（吴永和，

2017）。

2. 新技术支持下的人工智能教育应用研究

在关键词聚类图谱中，我们发现大数据、学些分析、

计算思维、5G 等关键词也占有极大的比重。伴随着人

工智能技术的不断发展和成熟，新技术支持下的人工

智能教育应用也逐渐走进教育研究者的视野。大数据

领域的研究主要集中在大数据时代教育教学的变革，

教育技术研究新范式的提出以及基于大数据分析的学

科教学路径等。学习分析技术是测量、收集、分析和

报告有关学生的学习行为以及学习环境的数据，用以

理解和优化学习及其产生的环境的技术（顾小清，

2012），学习分析技术可作为教师教学决策、优化教

学的有效支持工具，也可为学生的自我导向学习、学

习危机预警和自我评估提供有效数据支持，还可为教

育研究者的个性化学习设计和增进研究效益提供数据

参考。随着图形化编程和机器人编程教育的不断普及，

计算思维的培养也受到了来自学者和一线教师的持续

关注，目前计算思维的研究主要集中在理论探索和培

养方案研究两方面。理论探索主要讨论了计算思维的

概念演变、构成要素、测评方式等。培养方案研究则

关注中小学计算思维培养模式及课程实践，同时还有

一部分学者关注基于大学信息技术基础课程的计算思

维培养和发展研究。

4. 总结

为促进教育信息化的不断深化，还需对人工智能教育

进行深入研究，促进教育和人工智能的深度融合，构

建信息化学习环境和数字化学习资源，借助新技术创

新教育研究范式，探讨新技术在教育教学中的应用。

需要指出的是，研究还存在一些不足，文献数据只选

择了教育技术学领域的期刊文章，大量其他学科领域

的文章未予采用，在研究热点的总结上可能存在偏差。

在人工智能教育的研究热点和前沿分析上，阅读的文

献基数较小，存在一定的主观性和概括性。人工智能

在和教育融合的过程中，会不断出现值得探讨的问题，

我们期待能通过人工智能提升教师的教学，加强学生

的学习，丰富教育研究的手段，让教育一直充满新的

活力。

5. 参考文献

王亚飞和刘邦奇（2018）。智能教育应用研究概述。

现代教育技术，6-12。

张剑平（2003）。关于人工智能教育的思考。电化教

育研究，(1) ，24-28。

张坤颖和张家年（2017）。人工智能教育应用与研究

中的新区、误区、盲区与禁区。远程教育杂志，35(5)，

54-63。

吴永和。刘博文和马晓玲和构筑"人工智能+教育"的生

态系统。远程教育杂志，35(5) ，27-39。

杨现民、张昊、郭利明、林秀清和李新（2018）。教

育人工智能的发展难题与突破路径。现代远程教育研

究，153(3) ，32-40。

钟绍春和唐烨伟（2018）。人工智能时代教育创新发

展的方向与路径研究。电化教育研究，39(10)，17-22，

42。

高丹阳和张双梅（2019）。人工智能在教育领域的研

究现状与特征分析。中国教育信息化，(13) 。

顾小清、张进良和蔡慧英（2012）。学习分析：正在

浮现中的数据技术。远程教育杂志，30(1) ，18-25。

贾积有（2018）。人工智能赋能教育与学习。远程教

育杂志，36(1)，39-47。

梁迎丽和刘陈（2018）。人工智能教育应用的现状分

析、典型特征与发展趋势。中国电化教育，(3) ，24-30。

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

113

Computational Thinking

Development in Higher

Education

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

114

Teaching Computational Thinking and Python Programming for Business

Students: A Preliminary Study of the Alignment of Teaching and Learning

Strategies with Bloom’s Taxonomy of Learning Outcomes

Gabriel Chun-Hei LAI1*, Ron Chi-Wai KWOK2, Joseph Siu-Lung KONG3
1,2,3City University of Hong Kong, Hong Kong

gabrilai2-c@my.cityu.edu.hk, isron@cityu.edu.hk, joseph.kong@cityu.edu.hk

ABSTRACT
Teaching computational thinking for business students at the

University level has been challenging because business

students normally have little and/or heterogenic computer

programming background. Also, there are very few

literature that examines the alignment of appropriate

teaching and learning theories/strategies with different

levels of cognitive processes/learning outcomes for teaching

business students computational thinking. This preliminary

study is to address these gaps by proposing and exemplifying

an alignment of six teaching and learning strategies with the

six levels of the Bloom’s taxonomy of learning outcomes for

teaching business students, with different computer

programming background, Python programming at the

University level. University lecturers could use these six

proposed teaching and learning strategies as a guideline to

design their course contents and materials for teaching

business students Python programming at the University

level. Further research direction was discussed.

KEYWORDS
computational thinking, Python programming, Bloom’s

Taxonomy, teaching and learning strategies

1. INTRODUCTION
Technology has been blooming and improving over the past

decade, computational thinking and programming

experience has become highly desirable skillsets required by

business industries. There are many programming languages

in the market, such as C++, Java, Matlab, etc. However,

Python stands out from other programming languages and is

growing in recent years.

Therefore, many business schools have been trying to

include Python into their curriculum to teach business

students computational thinking concepts and programming

skills. This raises the question of how to teach students,

especially business students, to learn Python effectively.

There are plenty of literature introducing various teaching

and learning theories and strategies in general subjects such

as marketing and economics, but teaching Python is

comparatively new in business schools. In particular,

teaching computational thinking for business students at the

University level has been challenging.

More specifically, one of the greatest challenges of teaching

Python is that students are having heterogenic programming

experience. Students may have experiences with different

programming languages prior to taking a Python

programming class. For instance, some students may have

learned different programming languages, while other

students may have never learned any programming language

at all. This makes it difficult for lecturers to prepare teaching

materials for students with differing levels of programming

experience. The heterogenic background of students poses a

challenge for lecturers to prepare class content or the

syllabus of the course, which definitely has an impact on

students’ learning experience. Thus, it is important to

investigate ways to manage the class to fit a wide range of

students.

Wang and his colleagues (2017) have written a paper about

teaching computer programming with Python for industrial

and systems engineers. The paper basically illustrates the

experiences of teaching and learning Python with an

academic setting. It also shows some analyses regarding the

learning preference of students with different background

like gender, class standing, and attendance differences. For

instance, Wang and his colleagues find that the learning

performance is slightly different for female and male

students. Yet, while Wang et al. solely provide statistics

about the relationship between learning experience and

different attributes of students, no teaching theory is

proposed or examined. To extend this line of research on

teaching Python, this preliminary study is to address these

gaps by proposing and exemplifying an alignment of six

teaching and learning strategies with the six levels of the

Bloom’s taxonomy of learning outcomes for teaching

business students, with different computer programming

background, Python programming at the University level.

2. THE BLOOM’S TAXONOMY
In this study, the revised Bloom’s Taxonomy (2001) was

applied to adopt a set of teaching and learning strategy for

teaching business students Python at the University level in

the Semester A of the academic year of 2019/20. The revised

Bloom’s Taxonomy is an ordering of cognitive processes

and learning outcomes, which is based on earlier version of

Bloom’s Taxonomy (1956) created by Bloom and

Krathwohl. Bloom’s Taxonomy had been used as a guide in

learning, teaching, and assessing learning outcomes for the

past 50 years or so. It illustrates the cognitive path of

learning from the beginning to a more advanced level of

thinking with respect to the ordering of cognitive processes

and learning outcomes. The Bloom’s Taxonomy has also

been a staple in teacher training and professional

preparation, especially for a class of students with

heterogenic background, addressed by this study.

115

Table 5. The proposed alignment of the six teaching

and learning strategies with Bloom’s taxonomy

of learning outcomes.

3. PROPOSED ALIGNMENT OF SIX

TEACHING AND LEARNING

STRATEGIES WITH BLOOM’S

TAXONOMY OF LEARNING

OUTCOMES
In the revised Bloom’s Taxonomy, six cognitive

processes/learning outcomes are identified, including

remembering, understanding, applying, analysing,

evaluating, and creating. In this study, we propose and

exemplify an alignment of six levels of the Bloom’s

taxonomy of learning outcomes with six teaching and

learning strategies for teaching business students

computational thinking and Python programming at the

University level. The alignment table is illustrated in Table

1. The concept of the proposed alignment will be illustrated

by giving an example of the learning and assessment task in

regard to each of the teaching and learning strategies in the

following sub-sections. The given examples are adopted and

modified from a textbook of the python course (Schneider,

2016).

3.1. Remembering: Learn-by-typing

In this paper, learn-by-typing is defined as learning by

typing the given codes to recall the learned computational

thinking and programming concepts and syntaxes to

complete simple programming tasks. An example of the

learning and assessment task in regard to this teaching and

learning strategy is shown below:

Type the following lines of code and run to determine the

output.

listA = [5, -3, 6, 33, -10]

listA.sort()

print (listA)

In general, students are required to type out codes and

display the output. This teaching and learning strategy is

appropriate for students with no computational thinking and

programming experience.

3.2. Understanding: Learn-by-appreciating-examples

In this paper, learn-by-appreciating-examples is defined as

learning by reading, appreciating and comparing the given

examples of codes based on the computational thinking

concepts. An example of the learning and assessment task in

regard to this teaching and learning strategy is shown below:

Identify the pros and cons of the following two sets of codes

with the same expected output.

Expected output:

0123456789012345678901234567890123456789012345678

9

week no event \ holiday date

2 day following mid-autumn festival 14/09

5 national day 01/10

5 graduation date 02/10

6 chung yeung festival 07/10

First set of code:

print ("0123456789"* 5)

print("{0:<9s}{1:<36s}{2:>5s}".format("week no",

"event\holiday", "date"))

print("{0:^9s}{1:<36s}{2:>5s}".format("2", "day

following mid-autumn festival", "14/09"))

print("{0:^9s}{1:<36s}{2:>5s}".format("5",

"national day", "01/10"))

print("{0:^9s}{1:<36s}{2:>5s}".format("5",

"graduation date", "02/10"))

print("{0:^9s}{1:<36s}{2:>5s}".format("6", "chung

yeung festival", "07/10"))

Second set of code:

Bloom’s Taxonomy: Levels and

Definitions

(Anderson & Krathwohl, 2001)

Proposed

Teaching

and

Learning

Strategies

Proposed

Definitions

Remembering Memorize and

recall learned

materials like

basic concepts,

terminology,

and facts.

Learn-by-

typing

(Mitamura et

al., 2012)

Learn by typing the

given codes to recall

the learned

computational

thinking and

programming

concepts and
syntaxes to complete

simple programming

tasks.

Understanding Establish

understanding

of learned
materials by

comparing,

translating,

interpreting

main concepts.

Learn-by-

appreciating-

examples
(Guibert et

al., 2004)

Learn by reading,

appreciating and

comparing the given
examples of codes

based on the

computational

thinking concepts.

Applying Apply learned

knowledge to
tackle practical

problems in

certain

situation.

Learn-by-

modifying-
open-

sourced-

codes (Saeed

et al., 2011)

Learn by exploring

and modifying the
open-sourced and/or

given codes to

complete the

computational

thinking and

programming tasks.

Analyzing Break down

information to

identify and

make

inferences on

relationship or

causes of

different

factors.

Learn-by-

partial-

coding

(Garner,

2002)

Learn by breaking a

complex program

into sub-programs

(modules) and

making use of the

given partially

completed codes to

complete the
complex

computational

thinking and

programming tasks.

Evaluating Make

judgment and
decisions after

considering

factors

interfering the

situation.

Learn-by-

debugging

(Lee, 2014)

Learn by evaluating

flaws of the given
codes and make

corrections based on

computational

thinking concepts.

Creating Gather ideas
and

information to

propose valid

alternative

solutions.

Learn-by-
problem-

solving

(Chao, 2016)

Learn by creating
programs with

designated purposes

to solve problems or

provide alternative

solutions based on

computational

thinking concepts.

116

print ("0123456789"* 5)

print ("week

no".ljust(8),"event\holiday".ljust(33),"date".rju

st(7))

print('2'.center(7), ' day following mid-autumn

festival'.ljust(35), '14/09'.rjust(8), sep="")

print('5'.center(7), ' national day'.ljust(35),

'01/10'.rjust(8), sep="")

print('5'.center(7), ' graduation

date'.ljust(35), '02/10'.rjust(8), sep="")

print('6'.center(7), ' chung yeung

festival'.ljust(35), '07/10'.rjust(8), sep="")

In general, students are required to appreciate and compare

given sets of codes to identify their pros and cons. This

teaching and learning strategy is appropriate for students

with limited computational thinking and programming

experience.

3.3. Applying: Learn-by-modifying-open-sourced-codes

In this paper, learn-by-modifying-open-sourced-codes is

defined as learning by exploring and modifying the open-

sourced and/or given codes to complete the computational

thinking and programming tasks. An example of the learning

and assessment task in regard to this teaching and learning

strategy is shown below:

Write a program that requests a person to input his/her

first name, last name, hourly rate and number of hours

worked in Company ABC. Then the program calculates

and displays person’s gross exactly same output as below:

Enter your first name: Tai Man

Enter your last name: CHAN

Enter hourly rate: 55

Enter number of hours worked: 40

The gross pay for Tai Man CHAN: $ 2,475.00

Tips: Please modify the function given below for

calculating the gross pay in Company ABC that employees

should be paid “time-and-a-half” for work in excess of 30

hours in a week.

The function for calculating the gross pay in Company

DEF, paying “time-and-a-half” for work in excess of 40

hours in a week is given below:

def calGrossPay(rate, hours):

 if hours <= 40:

 grossPay = rate * hours

 else:

 grossPay = (rate * 40) + (1.5 * rate * (hours

- 40))

return grossPay

In general, students are required to modify the given set of

codes (acts as open-sourced and/or given codes), and

complete the program. Thus, students do not have to spend

too much time on writing the entire program from scratch.

This teaching and learning strategy is appropriate for

students with limited computational thinking and

programming experience.

3.4. Analyzing: Learn-by-partial-coding

In this paper, learn-by-partial-coding is defined as learning

by breaking a complex program into sub-programs

(modules) and making use of the given partially completed

codes to complete the complex computational thinking and

programming tasks. An example of the learning and

assessment task in regard to this teaching and learning

strategy is shown below:

There are missing lines of code in the following program,

please fill in the missing lines of code to complete the

program with no errors.

totalScore.py

def aboutSystem():

 print ("This program calculates your total

score and letter grade.")

 print ("Please input your mid-term, and

final-exam score.")

 print ("This program is made by CHAN Tai Man,

12345678")

Task 1: Please add a line of missing code here

 midterm = float(input("Enter your mid-term

score: "))

 ## Task 2: Please add a line of missing code

here

 totalScore = midterm*0.3 + exam*0.7

 return round(totalScore,2)

letterGrade.py

def getLetterGrade(total):

 if total >= 90:

 return "A"

 elif total >= 80:

 return "B"

 ## Task 3: Please add a line of missing code

here

 return "C"

 elif total >= 60:

 return "D"

 else:

 return "F"

getYourGrade.py

from totalScore import aboutSystem

from totalScore import getTotalScore

Task 4: Please add a line of missing code here

aboutSystem()

total = getTotalScore()

letter = getLetterGrade(total)

Task 5: Please complete the missing code below

print ("Your total score is " + _______ + ", and

your letter grade is "_________ ".")

In general, students are given a set of incomplete coding and

were asked to fill in lines of codes or fill in the blanks to

117

complete the program. This teaching and learning strategy is

appropriate for students with considerable computational

thinking and programming experience.

3.5. Evaluating: Learn-by-debugging

In this paper, learn-by-debugging is defined as learning by

evaluating flaws of the given codes and make corrections

based on computational thinking concepts. An example of

the learning and assessment task in regard to this teaching

and learning strategy is shown below:

In the following lines of code, identify all errors.

line = (“The”, “only”, “way”, “to”, “do”,

“great”, “work”, “is”, “to”, “hate”, “what”,

“you”, “do”)

line[9] = “love”

print (“ ”.join(line))

In general, students are asked to find out flaws and error of

the codes provided. This teaching and learning strategy is

appropriate for students with considerable computational

thinking and programming experience.

3.6. Creating: Learn-by-problem-solving

In this paper, learn-by-problem-solving is defined as

learning by creating programs with designated purposes to

solve problems or provide alternative solutions based on

computational thinking concepts. An example of the

learning and assessment task in regard to this teaching and

learning strategy is shown below:

Mr. Lee just started his own business with very limited

budget. Although it is a small store, he has lots of products

needed to be managed. Without a store management

system, it is very difficult for him to keep track on his

product in store and carry out any stock control. Yet, he

does not have spare money to purchase one. To help Mr.

Lee to solve this business problem, you are asked to create

a program using Python that can perform basic store

management function, including creating invoice table in a

database file, insert data into the invoice table in a

database file, make query and request information

corresponding to certain criteria. The entities and the data

types should be included in the system are shown in the

table below.

In general, students are asked to solve a business problem by

using computational thinking and programming skills. This

teaching and learning strategy is appropriate for students

with rich computational thinking and programming

experience.

4. FEEDBACKS FROM STUDENTS AND

INSTRUCTORS
All six teaching and learning strategies were addressed and

demonstrated through examples from the learning and

assessment tasks given to students of the Python course in

the Semester A of the academic year of 2019/20. After the

semester was ended, we collected feedbacks from both

business students and instructors about the Python course.

Some of the comments were captured and shown in the

following subsections.

4.1. General Comments from Students

Some feedbacks are captured from the students of the

Python course via an e-learning platform and presented in

the following:

• I like this course as it provides a basic knowledge of

Python, which help me understand how python works.

• I can catch up the lesson because of the uploaded

examples and exercise. It is easy for me to follow the

class. I think the examples, exercise and assignment are

really useful for me to understand the chapter.

• Also, source codes are given to us, so we do not have to

work from scratch, but to understand how to apply the

programming languages to different scenarios.

• More actual examples and application of alternating

items in a text file and analyzing the Data in a CSV File

with a List as personally they are the most challenging

sections in the course, but they are useful and essential

skills applied on workplace.

4.2. General Comments from Instructors

Some feedbacks are captured from the instructors of the

Python course via an interview, and presented in the

following:

• Students were from a wide range of programming

experiences. Some students had rich experience in other

programming languages and struggled to accommodate

the syntax that they learned in other programming

courses to Python programming syntax. Examples and

open-sourced codes help students to accommodate in

using Python programming language.

• Students appreciated practical examples and scenarios

that can solve problems or facilitate works for people in

business settings. The assignments for problem solving

also showed how students utilize open source code,

acquired programming knowledge, and their creativity to

provide alternative solution for the situations.

• At the beginning of the course, students needed more

time for each assignment, even for those who had some

programming training prior to the course. But as the

course goes on, students with experience in

programming started to overcome their legacy, they tried

to help students who are new to programming. As

students begin to help each other, collective

programming happens which lowers the workload and

burden from the teaching assistants’ perspective. Time

used for each assignment significantly decreased.

118

• A fixed marking scheme is preferred at the beginning of

the course as to ensure students to learn the correct

syntax of Python. Yet, after students get used to writing

programming language, especially for those students

with previous programming experience, they tried to

combine or implement what they have learned in

previous programming courses to the Python class,

which leads to unexpected learning outcomes. Thus,

fixed marking schemes might not be applicable at this

point of the course.

5. CONCLUSION AND FUTURE WORK
To conclude, the main contribution of this paper is to

propose and exemplify an alignment of a set of six teaching

and learning strategies with the six levels of the Bloom’s

taxonomy of cognitive processes / learning outcomes

(Anderson & Krathwohl, 2001) for teaching Python

programming for business students (with different computer

programming background) at the University level.

University lecturers could use these six proposed teaching

and learning strategies as a guideline to design their course

contents and materials for teaching Python in the University

level.

In this paper, feedback from both instructors and students

are captured. Most of the comments are positive towards the

proposed teaching and learning strategies, which indicated

that the teaching and learning strategies are useful for better

students’ learning experiences, especially for those without

computer programming background.

For the future research direction, empirical studies with

large sample size and more robust measurement are

suggested for examining the effectiveness of the six

proposed teaching and learning strategies of teaching Python

programming for students of different majors and computer

programming backgrounds.

6. REFERENCE
Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001).

A taxonomy for learning, teaching, and assessing: a

revision of Bloom's Taxonomy of educational objectives

(Abridged ed.). New York: Longman.

Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of

Educational Objectives: The Classification of Educational

Goals. Handbook I: Cognitive Domain. NY, NY:

Longmans, Green.

Chao, P. Y. (2016). Exploring Students' Computational

Practice, Design and Performance of Problem-solving

through a Visual Programming Environment. Computers

& Education, 95, 202-215.

Garner, S. (2002). COLORS for Programming: A System to

Support the Learning of Programming. Proceedings of

Informing Science, 533-542.

Guibert, N., Girard, P., & Guittet, L. (2004). Example-based

Programming: A Pertinent Visual Approach for Learning

to Program. Proceedings of the Working Conference on

Advanced Visual Interfaces, Gallipoli, Italy. ACM, 358-

361.

Lee, M. J. (2014). Gidget: An Online Debugging Game for

Learning and Engagement in Computing Education.

Proceedings of 2014 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC),

Melbourne, VIC, Australia. IEEE, 193-194.

Mitamura, T., Suzuki, Y., & Oohori, T. (2012). Serious

Games for Learning Programming Languages.

Proceedings of 2012 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), Seoul. IEEE, 1812-

1817.

Saeed, T., Gill, H., Fei, Q., Zhang, Z., & Loo, B. T. (2011).

An Open-Source and Declarative Approach Towards

Teaching Large-Scale Networked Systems Programming.

ACM SIGCOMM Education Workshop, 1-5. ACM.

Schneider, D. (2016). Introduction to programming using

Python, 1st edition. Boston: Pearson.

Wang, Y., Hill, K. J., & Foley, E. C. (2017). Computer

Programming with Python for Industrial and Systems

Engineers: Perspectives from an Instructor and Students.

Computer Applications in Engineering Education, 25(5),

800-811.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

119

Teaching Computational Thinking to Applied Science Majors: What and How

Li XU

 College of Applied Science and Technology

University of Arizona, USA

lxu@u.arizona.edu

ABSTRACT

Since Jeannette Wing proposed Computational Thinking

(CT) as a fundamental skill to everyone (Wing, 2006), CT

has become a phenomenon. In addition, it has been verified

by program accreditation and employer requirements that

undergraduate students in STEM need to develop higher-

order thinking and metacognitive skills in problem solving.

Thus, in our institution we intended to teach CT to students

in Applied Science majors and support them to master the

CT skill. While developing a CT course, we noticed that

there was little agreement on what and how to teach CT. In

this paper, we examine the CT course and provide a review

that addresses two questions: 1) What to teach CT and 2)

how to teach CT effectively. More specifically, we present

the course topics covered in the CT course and describe six

teaching strategies we utilized to engage students in learning

and doing CT. While analyzing the course development

reflectively, we become informed to continually improve the

course in order to teach CT effectively in future.

KEYWORDS

computational thinking, course development, Applied

Science majors, problem solving, student-centered learning

1. INTRODUCTION
Undergraduate students in STEM need to develop higher-

order thinking and metacognitive skills in problem solving,

which is verified by program accreditation documents and

employer requirements. In addition, since Jeannette Wing

proposed Computational Thinking (CT) as a fundamental

skill to everyone (Wing, 2006), CT has become a

phenomenon. According to Hu (2011), CT is present not

only because of the nature of computation but also because

of the way how people think critically—people gain

different kinds of critical thinking capabilities through

variety of means in CT. In our institution, we intend to teach

and promote CT explicitly, and believe that every student in

Applied Science disciplines such as Informatics, Cyber

Operations, and Network Operations must master the CT

skill. In the Applied Science programs, students can use the

CT course as a critical thinking course to meet their Bachelor

degree requirement.

How to support students to develop the CT skill? Research

works done on thinking processes convinced that thinking

skills were most effectively taught when teaching them

directly and deliberately (Bono, 1992). Guzdial (2008) also

pointed out “the metaphors and ways of thinking about

computing must be explicitly taught.” To exploit the idea to

teach CT explicitly, we developed a CT course and offered

it to students in the Applied Science programs. By viewing

CT as a skill in general, we intend to teach CT by supporting

students to acquire CT as competencies over time with

practice but not facts or information compiled during the

student learning process.

While developing the course, we found that even though CT

had drawn a lot of attentions and become a popular subject,

there was little agreement on what should be taught and how

to teach CT effectively. For our CT course development, we

designed the course by investigating literatures and

resources on CT as well as the prior skills and knowledge of

students who we intended to teach and support. Especially,

in our approach we used Kansanen’s didactic triangle

(Kansanen, 1999) as a framework to design and evaluate the

course content, considering what and how students would

learn, what instructor’s roles would be, and how students,

instructor, and course content should work together using a

student-centered approach to deliver the course.

In particular, to engage students into the teaching/learning

process, we applied the preference matrix focusing on the

two key dimensions including “make sense" and “get

involved" to develop the CT course. The preference matrix

method is based on an observation (Paxton, 2006): If an

individual can “make sense" of and “get involved” in the

course learning environment, the individual prefers the

environment and then it is likely that the person will spend

time within the environment; As a side effect of “make

sense" and “get involved", learning will take place, which

leads the individual to function effectively and have a

productive learning. Moreover, we strongly believe that

students are able to acquire the CT skill through hands-on

projects. Therefore, we utilized problem-based learning

(PBL) to engage students with hands-on projects, and

students actively involved in doing CT practice persistently

during the course delivery terms.

To summarize what and how we did, we centered our

teaching on engaging and supporting students so that

students conducted their learning by solving problems in

multiple projects throughout every course delivery term. In

parallel with the problem-solving activities, the course

supported students to direct a self-regulated learning that

refers to “the process whereby learners personally activate

and sustain cognitions, affects, and behaviors that are

systematically oriented toward the attainment of personal

goals” (Zimmerman & Dschunk, 2011). Additionally, the

course utilized writing, which provided one of the best ways

to help learn the active, dialogic thinking skills according to

Bean and Weimer (2011).

In this paper, we examine the course development and focus

on addressing two questions: 1) What should be taught in

order to support students to develop the CT skill, and 2) what

are the effective teaching strategies, i.e., how we can teach

and promote CT to the Applied Science majors effectively

during the learning process. While developing the course,

120

we have persistently and reflectively touched on the two

questions. Section Course Topics presents the covered CT

topics when delivering the course in our institution. Section

Teaching Strategies focuses on two aspects: 1) Practice CT

skills by solving problems; and 2) explicitly guide learners

to promote meta-cognitive awareness and conduct guided

learning on CT. Section Findings presents four course

deliveries by an instructor and discusses the impacts of

course topics and teaching strategies on student learning.

Finally, Section Conclusions concludes the study.

2. COURSE TOPICS
Among the CT literatures, we couldn’t find a clear-cut

definition of CT. In this paper, we highlight a definition

Wing presented in a later paper (Wing, 2011), where she

defined CT as “the thought process involved in formulating

problems and their solutions so that the solutions are

represented in a form that can be carried out by an

information-processing agent.” The CT course development

was based on the fact that CT uses a set of concepts drawn

from Computer Science (CS) to solve problems and design

systems. To help students to understand and practice CT,

we designed the course for students to develop a foundation

of CT concepts and techniques, practice the various CT

tools, and eventually synthesize them in critical thinking and

problem solving.

When developing the course, we didn’t intend to come up

with an ultimate definition of CT to students. Instead, we

explored various definitions and guided students to identify

recognizable CT concepts such as abstraction, simulation,

and algorithm design. While introducing multiple CT

definitions, we highlighted Wing’s arguments and

definitions on CT so that students could see how the

definitions, concepts, techniques and tools are related and

put together. More specifically, we proposed a list of course

topics including introduction to computational thinking,

algorithm design, programming languages, data abstraction,

programming in Python, thinking Object Oriented (OO),

abstraction, simulation, shell programming in UNIX, and

theory of computation.

First, we started the class with the instruction topic to allow

students develop insight on what is CT, what are available

CT definitions by researching CT literatures in ACM digital

library and other online resources addressing CT. Students

compared, analyzed, and identified the concepts and skills

between the CT definitions and from what aspects people

think about CT. After the introduction topic, student learned

algorithm representation and creation in pseudo code that

was written in Python style. (Python was used as the

primary programming language in class.) After the

algorithm topic, students learned variables and expressions,

control structures, programming paradigms, and data

structures in Python and bash. While students were

acquiring knowledge on the essential concepts and

techniques in programming languages, they also utilized and

practiced programming to explore meanings of the CT

concepts as well as problems such as Caesar cypher coding

and random walking. Later, students further studied how to

think in terms of objects, form communities by putting the

objects/agents to act together, and design systems based on

system behaviors and agent responsibilities. While

exploring OO programming in Python, students used Python

code to conduct simulation, and analyzed the steps of a

simulation study. In addition, student studied theory of

computation to understand what computers can do and what

they cannot do in practice.

Through the course, we intended to support students to

define and identify CS terms and concepts in CT; analyze

and estimate what and how computers do; program

operations in at least two programming languages (Python

and bash); and apply CT to solve problems and design

systems in practical applications. Among the topics, we

emphasized concepts including algorithm, programming,

and abstraction in a problem-solving context. When

approaching problems, students needed to apply abstractions

and make transitions among the different levels of

abstractions. Students learned to use, analyze, and create

algorithms by applying tools such as decomposition and

generalization along with others such as planning and

evaluations.

We introduced programming quite early in the course so that

students were able to use programming as a vehicle to

practice CT rigorously. Through programming, students

were able to realize the power of computing by bridging the

gap between informally expressed problems and formal

solutions. They learned to invent formalisms by coming up

with operations they designed and implemented. While

programming, students approached to write procedures and

functions in imperative program modules and later moved to

program objects and classes using OO programming

paradigm.

Note that in the course development we viewed CT as a skill

rather than a set of knowledge facts. Such view was

remarkable to guide our course development when we were

deciding how to assess student learning while addressing the

various concepts, techniques, and tools. We believe the

course topics must be relevant and make sense to students

regarding CT, and the CT skill must be acquired and

constructed while students are doing CT and deeply

involved in the learning process. Therefore, we carefully

designed the learning assessment focusing on skill

acquisition and CT development among students. To

accomplish the learning goals, we used quizzes, online

discussion, and programming/writing assignments. In

particular, we included a final project where students needed

to solve a problem.

3. TEACHING STRATEGIES
To effectively teach CT, we employed multiple teaching

strategies to build a student-centered learning environment

focusing on problem solving and guided learning with

student self-awareness.

3.1. Problem Solving and Skill Construction

According to Lu and Fltscher (2009), CT provides a

conceptual way to “systematically, correctly, and efficiently

process information and tasks” to solve problems. We argue

that CT is a skill that students acquire so that they can think

like computer scientists to approach problem solving. Even

though problem-solving skills are not specific to CT, as John

121

Dewey (1916) rooted critical thinking in the students’

engagement with a problem, we recognized that problem

solving was relevant to engaging and promoting CT, and

intensively employed problems to stimulate thoughts and

inspire learning while developing the CT course.

3.1.1. Strategy 1: Scaffold with Progression Model

During the learning process, we guided students to learn

using a progression model composed of three steps: use,

modify and create. We intended to use the model as a pattern

of engagement to support student learning and maintain a

level of challenge while avoiding too much learning anxiety.

To practice a tool such as data abstraction, students used data

structures such as arrays, lists, and dictionaries, to approach

pre-defined tasks including file processing and behavior

simulation. Then, we provided code that approached a

problem with an incomplete solution. Students needed to

modify the given code, trace execution steps, and

empirically explore data structures being practiced in order

to approach a complete solution. For the last step of the

progression model, students needed to create customized

data structures while approaching a problem. When

designing the course content, we carefully conducted

scaffolding the course materials to support student learning

using the three-step progression model.

3.1.2. Strategy 2: Break Down and Synthesize

To align with the root of CT in problems, while introducing

CT to students during the first topic, we referenced and

shared the operational definition of CT introduced by

International Society for Technology in Education (ISTE).

The definition defines CT as a problem-solving process with

characteristics including: formulating problems in a way that

enables us to use a computer and other tools to help solve

them; logically organizing and analyzing data; representing

data through abstractions such as models and simulations;

automating solutions through algorithmic thinking;

identifying, analyzing, and implementing possible solutions

with the goal of achieving the most efficient and effective

combination of steps and resources; and generalizing and

transferring this problem-solving process to a wide variety

of problems. The operational definition provides a

breakdown of CT skills for both the instructor and the

students to identify and connect the key concepts and means

in CT. Our objectives to teach CT consist of the acquisition

of the ability to apply the CS concepts and techniques

flexibly and creatively in a variety of contexts and situations.

The course intentionally introduced the means and tools in

CT such as algorithms, data structures, abstractions, thinking

Object Oriented, and programming so that students were

equipped with tools when they were approaching problems

designed in the course assignments and the final project. The

set of assignment problems was well structured and designed

to promote learning in purposeful and engaging activities.

The final project was to support students to synthesize their

learning on CT and transfer the CT skill to problem solving.

3.1.3. Strategy 3: Abstract to Solve Problems

While referencing the ISTE operational definition of CT, the

course development focused on the core CT skills identified

by Selby and Woollard (2013), including abstraction,

algorithmic thinking, decomposition, evaluation, and

generalization. According to Kramer (2007), abstraction is

the key to computing. In the CT course, we guided students

to explore how to use abstraction to model problems and

create solutions. To highlight the concept, we explicitly

taught abstraction as a topic after introducing procedural and

algorithmic thinking. In addition, when exploring CT from

multiple aspects, students experienced practicing multiple-

level abstractions with other tools such as programming and

simulation. We also followed what Hazzan (2008) suggested

that we should educate students to move between

abstractions consciously. In particular, in our course

development, we applied instructional scaffolding strategies

to teach the various levels of abstractions involved in CT

including data representation, procedures, objects, and

problem solving.

3.2. Guided Learning and Self-Awareness

According to Kaplan & Kaplan (1983), the single most

effective step one can take in improving the process of

sharing knowledge is understanding and respecting the

cognitive requirements of the intended recipient. The CT

course development supported learners to promote

metacognitive awareness, and built multiple channels for

students and the instructor to interact and facilitate the

student-centered learning process.

3.2.1. Strategy 4: Set Up Learning Goals and Objectives

While designing the CT course, we were aware that students

needed to be coached to become self-regulated learners.

The CT course development carefully presented the learning

goals for students to accomplish from the beginning and

throughout the course term. For each learning topic such as

algorithm or programming, there were learning objectives

and activities explicitly instructed to students. During the

learning process, we used the course goals and module

learning objectives to support students to monitor and assess

their learning persistently. At the beginning of each course

term, we informed every student and expected him or her to

be proactive and reflective. While the student was

progressing the learning process, he or she needed to

constantly evaluate instructor/peer feedbacks and comments

as well as learning performances, and gradually the student

adjusted his or her learning approaches to master the CT

skill, and developed self-regulated learning skills on

thinking computationally.

3.2.2. Strategy 5: Engage to Read Critically

To effectively approach each subject covered in the CT

course, students needed to read critically to gain essential

conceptual knowledge and comprehension. Additionally,

we aimed to support students become engaged readers on the

CT topics. Our reading-engagement models emphasized on

students’ motivational beliefs such self-efficacy, interest,

and value (Guthrie & Humenick, 2004). First, the course

had a required textbook to cover algorithm, programming

languages, data structures, and theory of computation. For

more practical subjects such as programming in Python and

bash, we provided hands-on notes and an online interactive

book to guide reading and practice programming. In

addition, we provided optional reading materials including

podcasts, videos, and Voice Thread slides available online.

To make sure students get involved in reading, we utilized

122

reading-quizzes, practice assignments, and online

discussions.

3.2.3. Strategy 6: Write Reflectively and Persistently

Hazzan (2008) suggested conducting reflections and stated

that reflection “increases one’s awareness of the objects with

which one thinks, and may therefore systematically and

consciously lead one to think …” We exploited writing and

reflections as two primary means to guide students to deepen

their understanding on the CT concepts and develop the CT

skill iteratively. To implement the writing strategy to teach

CT, we deliberately required students to conduct weekly

reflective writing to recognize, evaluate, and refine their

learning on CT as well as stages of problem solving. To

guide the weekly reflective discussion, we designed a set of

scaffolding online-discussion questions with the expectation

that student would write and unfold the computational

concepts that form the foundation of CT. Moreover, in their

reflective writing, students described their learning state and

provided details for the instructor to monitor student

learning.

4. FINDINGS
The CT course developments aimed to support a student-

centered, participatory approach to teach and learn CT skills.

We present what we found in the below subsections.

4.1 Course Deliveries

The course was initiated in 2013. Since then, we offered the

course annually and in 2017 we started to offer it two times

each year. In this paper, we would like to discuss the most

recent four course deliveries offered by one single instructor.

Table 1 presents the overview of the four course deliveries.

In spring 2016 and spring 2017, we offered the course using

16 weeks. In spring 2016, 26 enrolled the class, one

dropped, and one failed to pass it. In spring 2017, 31

enrolled, two dropped and two failed the course. In fall

2017, we offered the same course within 7.5 weeks. There

were 31 students enrolled, one dropped, and two failed. In

summer 2019, the course was offered within 7.5 weeks.

There were 15 students enrolled and one student failed.

Based on the Teacher-Course-Evaluation (TCE) reports

collected by the end of each term, the teaching effectiveness

is 4.65 over 5 in spring 2016, 4.32 in spring 2017, 4.65 over

5 in fall 2017, and 4.57 in summer 2019. The TCE numbers

are positive to indicate that our teaching on CT has been

effective.

Table 1. Overview of Course Deliveries

Enrollment/

Dropped/Failed

No. Of

Weeks
TCE

SP 2016 26/1/1 16 4.65

SP 2017 31/2/2 16 4.32

FA 2017 31/1/2 7.5 4.65

SU 2019 15/0/1 7.5 4.57

Since we employed programming as the primary means to

carry out abstraction and automation while students were

practicing the CT skill, we asked student input at the

beginning of each term so that we were aware of their prior

knowledge and experiences on programming. Due to a new

and quickly growing Cyber Operations program developed

in our institution, we’ve learned that more students enrolled

in the course with little CS or programming experience. In

2016, about 40% of the students who enrolled the course had

very little programming experience prior to the class. In

spring and fall 2017, the numbers were about 60% and 75%.

In summer 2019, only one of the 15 students had prior

programming experience.

By monitoring student performance data and how students

conducted their learning process, we observed that usually

students were able to identify the CT concepts rapidly. For

the reading quizzes, which we designed to assess how

students understood the CT concepts, all 25 students who

completed the course had passing grades (C or better) in

spring 2016, one of the 29 students in spring 2017, two of

the 30 students in fall 2017, and two of the 15 students in

summer 2019 failed to pass the reading quizzes. For the

online discussion component, which we employed to assess

how students explained and applied the CS concepts in

writing, only two of the 23 students didn’t pass the online

discussion component in spring 2016, four of the 29 students

didn’t pass in spring 2017, and four of the 30 students failed

the online discussion in fall 2017. In summer 2019, one

student failed online discussion.

In addition to analyzing student learning performance on

reading quizzes and online discussions, we also investigated

how students conducted CT to solve problems. Based on

student learning performances on the assignment questions,

which required students to apply and synthesize the means

and tools in CT to address, we found three students in spring

2016, seven students in spring 2017, three students in fall

2017 and two students in summer 2019 failed to pass the

assignments. In fall 2017, we started to provide a few more

problem-solving hints on the coding assignments based on

student questions and feedback comments we collected from

students enrolled in spring 2017. The revision certainly

helped students in fall 2017 to succeed their assignments. In

summer 2019, we tried adding more programming

components to support students practice Object Oriented

(OO) programming and simulation, which followed a

suggestion from the Cyber Operation program. The new

added programming activities to employ OO programming

paradigm certainly provided more practice for students to

think OO and program simulation more rigorously.

However, we also observed that the additional OO

programming paradigm introduced in the short summer term

generated more confusion between procedural and OO

programming. And two students failed their programming

assignments in the past summer.

Although students reported that practicing CT in the

assignments and the final project increased their

professional skills, it was obvious that students had

difficulty on synthesizing the CT means and tools into their

final project. In 2016, three of the 25 students who

completed the course failed the final project even though

two of the three students still completed proposing their

projects and reported their progress on project development.

In spring 2017, seven students didn’t complete the final

project but six of them completed their proposals and

progress reports. In fall 2017, we delivered the course using

7.5 weeks, half of the time that we spent to deliver the course

in the previous two spring terms. We found six students

were not able to propose their projects and another six

123

students didn’t submit their project posters. In summer 2019,

based on our collected 7.5-week teaching experiences, we

updated the final project by asking students to solve a single

problem. In the revised final project, the program statement

was provided and students needed to model the problem and

implement their solution in Python. However, based on the

final project submissions, the revision didn’t improve

student learning performance: only two thirds of the students

created and implemented solutions to the problem, and the

other five students failed to approach the final-project

problem. Note that since the final project was the designated

final exam, which contributed 15% of the overall grade,

some students chose not to complete their final projects due

to their busy schedules during the final exam period,

especially if they felt satisfied with their accumulated

grades. Thus, the performance data on the final project

might be depressed to represent how students learned to

employ CT to solve problems. Nevertheless, by analyzing

the learning data and student comments in fall 2017 and

summer 2019, we think that the shorter terms didn’t work

well as the longer ones for students to transfer their CT skill

into problem solving while approaching the final project.

4.2 Discussion

Based on TCE reports and comments at the online

discussion forums, students reported that they enjoyed and

engaged in reading the course materials, and they liked how

the course used the online discussions in conjunction with

the assignments and reading quizzes to make all work

together, and the online reflective writing contributed to

establish a safe environment where students felt like they

could be open and not get criticized. As they built the

supportive, inclusive learning community, most students

were willing to put more efforts to deal with the learning

challenges even though they admitted several of the course

topics could be overwhelming.

The course topics covered programming in Python and bash,

which we essentially intended to provide two problem-

solving contexts to tackle abstractions and automate

execution of algorithms. Programming was a focal point in

the CT course development to carry out important concepts

and skills in authentic contexts of use. Even though students

perceived programming as the most challenging subject, we

observed that programming was engaging for students,

especially for students who had little or none programming

experience, to master as a means to express algorithms and

accomplish abstractions and automations. However, we

were also aware and let students well informed that

programming and CT are not equivalent and programming

is but one context for the practice of CT (Voogt, Fisser,

Good, Mishra, & Yadav, 2015).

Note that we utilized programming in our course rightly

after CT was introduced and students finished the topic

algorithm. We delayed programming later than introducing

CT so that students could acquire a bare model of CT first

instead of being overwhelmed with programming and

programming languages since the beginning. Considering

the students in the Applied Science disciplines had various

programming experiences and some of them had none, we

were concerned that premature attempts to introduce

programming with CT simultaneously could lead to

confusions on understanding CT and failures to see the

relevancy of the other course topics to CT. We believe such

arrangement was fruitful---the writing reflections affirmed

that students were able to understand CT and connect the CT

skill to the various topics we practiced during each delivery

term.

One critical learning component in the course development

was the programming assignment part, which was designed

based on Problem Based Learning (PBL). In PBL, it is

common to give students a large ill-defined problem and let

students figure out how to resolve it. Such practice is useful

for students to practice tolerating ambiguities, to identify

and formally define problems. However, to avoid

overwhelming students, we carefully provided well-defined

problems in each programming assignment so that the

assignment problems were able to promote learning with

purposes and challenges. Student learning performance was

mostly positive while students were practicing CT in the

assignments. The learning reflections and TCE comments

also indicated that students were challenged and deeply

engaged in resolving the problems computationally.

Nevertheless, for the 16-week deliveries and the first

shorter-term delivery, we asked students to propose

problems and create solutions in their final projects. We

found that students had hard time to transfer the topics

including programming into problem solving in their project

development, especially when they were in charge of

modeling their own problems of interest. In the most recent

summer-term delivery, even with the provided problem

statement describing a task to extract networking frame data,

student performance data indicated that students were

challenged significantly when they needed to synthesize

various tools in CT as well as programming to create the

problem solutions.

On the other hand, it was obvious, based on the student

reflections and TCE comments, that the use-modify-create

model helped student to make progress and acquire the CT

skill and competencies gradually. Even for the shorter terms

including fall 2017 and summer 2019, most students

commented that the course delivery paced well. For students

who had no prior programming experience or just returned

back to school, their input including midterm surveys

regarding learning progression was positive. However,

since programming has been used as the primary means to

express problem models and implement solutions, for

students who hadn’t done any rigorous programming before,

creating a sound and complete solution to a problem was an

intimidating challenge. Especially, based on the learning

performances on the final project in the four course

deliveries, we found that the complexity to move around the

multiple-level abstractions when solving a complex problem

and/or conducting a self-regulated project learning on the

final project required time and practice for students to move

around and gradually generalize and transfer the CT skill

between problem contexts.

We found that the learning reflections we conducted were

definitely helpful for students to retain their knowledge

cognitively and ensure the whole learning make sense to

students. During the learning process, the writing provided

reliable, persistent learning traces for the instructor to

124

support student learning. The student reflections revealed

the various backgrounds of the Applied Science majors.

While reflecting what they were learning, students also

brought up different knowledge and skill frameworks, which

led to acquire the CT skill in different manners.

Additionally, the learning reflections effectively involved

both students and the instructor to be aware of the learning

obstacles as well as critical issues to address. It was not

unusual to see some students described that they couldn’t

continue due to certain programming bugs they confronted

or they had no clue on how to approach a problem. In

response to such reflections/questions, the instructor would

guide their thinking, point out learning materials to refresh a

review, and set up meetings to discuss the issues if

necessary. Moreover, their peers often recommended

problem-solving approaches or external materials/tips they

found helpful. Last but not the least, since the course

development required persistent learning reflections, writing

became part of the systematic process for students to

regulate and monitor their learning. Students became better

communicators by transmitting and receiving messages

clearly and reading the input from their peers and the

instructor.

5. CONCLUSIONS
To draw our conclusions, we present and provide a review

on a course development that intends to promote and teach

CT to students in Applied Science disciplines. In particular,

we address the questions including what and how to teach

CT by identifying six effective teaching strategies. Our

investigation focuses on the course content, students, and the

instructor as well as relationships among the various

learning components. Based on student learning outcomes

and performances, we conclude that the course development

is promising to engage and teach students to acquire CT as a

skill to solve problems computationally. While we become

more informed by analyzing and reflecting on the course

development, we hope the course design and teaching

strategies could be useful for our colleagues when they teach

similar courses in their institutions.

6. REFERENCES
Bean, J. C, & Weimer M. (2011). Engaging ideas: The

professor’s guide to integrating writing, critical thinking,

and active learning in the classroom, 2nd Edition. Jossey-

Bass.

Bono, E. D. (1992). Six thinking hats for schools. Hawker

Brownlow.

Dewey, J. (1916). Democracy and Education. New York:

Macmillan.

Guthrie, J. T., & Humenick, N. (2004). Motivating students

to read: Evidence for classroom practices that increase

reading motivation and achievement. The voice of

evidence in reading research. Baltimore: Brookes, 329-

354.

Guzdial, M. (2008). Education: Paving the Way for

Computational Thinking. Communications of the ACM,

51(8), 25-27.

Hazzan, O. (2008). Reflections on Teaching Abstraction and

Other Soft Ideas. SIGCSE Bull, 40(2), 40-43.

Hu, C. (2011). Computational Thinking: What It Might

Mean and What We Might Do About It. Proceedings of

the 16th annual joint conference on Innovation and

technology in computer science education: ITiCSE ’11.

New York, NY, USA: ACM, 223-227.

Kansanen, P., & Meri, M. (1999). The Didactic Relation in

the Teaching-studying-learning Process. TNTEE

Publications, 2, 255-275.

Kaplan, S., & Kaplan, R. (1983). Cognition and environment:

Functioning in an uncertain world. AnnArbor, MI:

Ulrich’s.

Kramer, K. (2007). Is Abstraction the Key to Computing?

Communications of the ACM, 50(4), 36-42.

Lu, J.J., & Fletscher, G.H.L. (2009). Thinking About

Computational Thinking. ACM SIGCSE Bulletin, 41(1),

260-264.

Paxton, J. (2006). The Preference Matrix as a Course Design

Tool. Proceedings of the 6th Baltic Sea Conference on

Computing Education Research: Koli Calling 2006. New

York, NY, USA: ACM, 124–127.

Selby, C., & Woollard, J. (2013). Computational thinking:

the developing definition.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational Thinking in Compulsory

Education: Towards an Agenda for Research and Practice.

Education and Information Technologies, 20(4), 715-728.

Wing, J. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33-35.

Wing, J. (2011). Computational thinking: What and Why.

Retrieved December 10, 2019, from

http://www.cs.cmu.edu/link/research-notebook-

computational-thinking-what-and-why.

Zimmerman, B.J., & Schunk, D.H. (2011). Self-regulated

learning and performance: An introduction and overview.

In B.J. Zimmerman and D.H. Schunk, editors, Handbook

of Self-Regulation of Learning and Performance. Taylor

and Francis, New York, 1-12.

http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

125

Developing Computational Thinking Through Tinkering in Engineering Design

Ashutosh RAINA1*, Sridhar IYER2, Sahana MURTHY3

1,2,3 Indian Institute of Technology Bombay, India

raina.ashu@iitb.ac.in, sri@iitb.ac.in, sahanamurthy@iitb.ac.in

ABSTRACT

Artefact creation as part of constructionist approaches

towards learning has seen an increase pertaining to the

growth and ease of availability of design tools. Projects that

involve artefact creation allows the learner to experience the

problem solving process while being situated in a real-life

context. Tinkering is one such approach to problem-solving.

In this paper, we present a design of our tinkering

intervention for teaching and learning of computational

thinking. The intervention is a composition of four major

components, namely the Pedagogy, Problem, Resources and

Mentor. The proposed Explore-Solve-Evolve pedagogy

incorporates aspects of constructionism, progressive

formalisation, learning situated in a real-life context and

immediate feedback for reflection. Lego Mindstorm is

provided as a building resource, and an app seamlessly

provides information about the resources. The mentor

encourages the learners towards exploration and play with

the resources in the problem space and scaffolds them with

strategies to overcome challenges. A proposed study has

been discussed to further understand the development of CT

with tinkering. The paper is concluded with presenting the

mapping between the phases of our intervention and the

three dimensions of the CT framework.

KEYWORDS

computational thinking, tinkering, intervention, robotics

1. INTRODUCTION
Computational thinking has been defined as “The thought

processes involved in formulating problems and their

solutions so that the solutions are represented in a form that

can be effectively carried out by an information-processing

agent” (Brennan & Resnik, 2012). Computational thinking

has been taught not only through programming but also

through activities like playing games, building a robot to

solve challenges, creating e-textiles and range of activities

that involve concepts of computational thinking. The idea is

to be able to express yourself using computational artefacts

which have been identified as an essential aspect of

computational literacy. While developing artefacts, learners

also deal with failure in physical components and

compatibility issues that can be frustrating. However, they

are an essential part of solving problems where one is often

required to use of computational thinking, not limited to just

writing code (which has been termed as the material aspect

of CT). In addition to the material aspects of CT (which is

the how), learning-environments that include artefact

building as a part of the problem-solving process also focus

on the social (which is the where and whom) and extends it

to the cognitive aspects (which describe the why). Building

artefacts to solve a given problem situates the problem-

solving process in a physical context that is closer to an

authentic scenario.

One such practice that includes artefact creation with

problem-solving is tinkering. It has been considered as a

novice and expert practice which sets it apart from most of

the classroom practices (Danielak, 2014). It does not make

tinkering better or worse but it does make it an authentic

professional practice (Berland, 2016). Tinkering provides

the opportunity to work in a realtime environment with

immediate feedback on actions taken hence making it a

potential means for developing computational thinking. We

believe that tinkering with robotics kits like Lego

Mindstorm provide a medium and opportunities for the

development of computational thinking. We are interested

in the ways that tinkering activities with programmable

tangible robotics kits, like the Lego Mindstorm, can support

the development of computational thinking in students in

higher education which is highly dependent on learning of

programming languages (Brennan & Resnick, 2012).

2. THEORETICAL BASIS

2.1. CT Framework

Computational-Thinking has further been classified into CT

Concepts that learners develop while learning to program

like loops, conditionals, sequences, parallelism, data

structures, operators, event handling, procedures and

initialisation. CT Practices that learners repeatedly

demonstrate in the programming process like problem

formulation, problem decomposition, abstracting and

modularising, algorithmic thinking, reusing and remixing,

being iterative and incremental, testing and debugging. CT

Perspective’s talk about the Learners’ understanding of

themselves and their relationships with others and the world

of technology, also termed as Computational Identity

(Brennan & Resnik, 2012). It also includes programming

empowerment as well as provides a perspective of

expressing, connecting and questioning with programming.

The elements of CT as mentioned earlier in its three

dimensions have also been included in the operational

definition of CT for K-12 education by the International

Society for Technology in Education and Computer Science

Teachers Association (ISTE & CSTA, 2011).

2.2. Tinkering Practice

The growing availability design tools have led to a

commitment to learning through design activities in a

constructionist approach (Harel & Papert) to a level of

learning that highlights the importance of young people

engaging in the development of external artefacts (Kafai &

Resnick, 1996). Besides, progressive formalisation

(Bransford, Brown & Cocking, 2000) requires teaching to

be designed to encourage students to build on their informal

ideas in a gradual, structured manner that enables them to

acquire the concepts and procedures of the discipline.

Moreover Learning situated in a real-life context (Bransford,

Sherwood, Hasselbring, Kinzer, & Williams, 1990) enables

126

a better understanding of abstract concepts by establishing

there need in a real-life context using everyday examples. In

addition to situated learning, play becomes an essential tool

for learning in real-life context as it allows experimentation

with the available resources and one's ideas in the actual

problem space with just in time feedback that enables

reflection. It also allows one to take multiple perspectives on

an action and its impact, which is an essential social skill for

the development of the mind (Bailey, 2002). Tinkering has

been addressed to be at the intersection of all the above

(Roque, Rusk & Blanton, 2013). A definition of tinkering

calls it as a playful, experimental, iterative style of

engagement, in which people are continually reassessing

their goals, exploring new paths, and imagining new

possibilities (Honey & Kanter, 2013). Here play has been

referred to as experimental play. Tinkering provides a

multitude of possible paths taken progressively while

situated in problem space working with immediate

feedback.

2.3. Explore-Solve-Evolve Pedagogy

Based on our synthesis from the literature on tinkering for

problem-solving, we have identified a few operational

aspects of tinkering as Exploration, Play and Reflection.

Exploration is used to determine the affordances or can

do’s of the available resources and possible solution or want

to do for the problem at hand. Play is used to determine if a

solution could emerge by mapping the can do’s and want to

do’s. Reflection is used to overcome states

of stuck and fixation that arise due to unexpected

contingencies (exception violation (Schank, 1983)) or

failure. Using strategies like questioning, repurposing,

reflective strategies on productive failure (Kapur, 2008)

provide the means to overcome such challenges. Reflection

on the tinkering trajectories to enable modification of

understanding and learning about the problem space.

We used the above operational aspects along with tinkering

frameworks like Spark, Sustain and Deepen (Honey &

Kanter, 2013), and Think, Make and Improve (Martinez &

Stager, 2013) to derive a three-phase pedagogy named

Explore, Solve and Evolve for taking a tinkering approach

to computational thinking. The features of free exploration

to capture intrinsic motivation have been incorporated in the

explore phase. Progressive formalisation has been

implemented in all the three phases of explore, solve and

evolve. In explore learners start with small problems situated

in context robotics, which requires them to interact with the

physical space using the components of the robotics kits to

solve the problem. In the problem given in the solve phase

allows the learners to build their solutions with small

component problems solved in the previous phase. This

method also allows the reuse and iteration of previous

solutions. Finally, in evolve, the learners frame and solve a

problem to advance the solution they develop in the solve

phase. The learning environment comprises of building

resources and some pre-build solution of similar problems.

We believe the features of the pedagogical design and the

element of the learning environment based on tinkering

which has been aligned to the operational elements of CT

aided with an explicit reflection on the action will lead to the

development of CT among the students. The problems that

have been chosen align to the High school curriculum of

various educational boards in India.

Table 1. Summary of the pedagogy with its mapping to available resources and activities to be performed.

Pedagogy Problem

Resources Activities

Building Information Learner Mentor

Explore

Small problems that are a
part of the challenge for the

next phase. E.g. build a

chases with wheels.

With the focus on use of
basic individual resources

and their affordances. E.g.

Connecting motors and the
EV 3 brick.

Using the AR component
view from the app for

affordances of the

individual resources.

Interaction with
resources while

solving problems to

understand their
affordances.

Encourage
exploration and

play with

resources

Solve

One open-ended challenge

that is derives from problems
of “Explore” phase with

opportunities for reuse. E.g.

build a wheeled bot that can
move and turn.

With the focus on combined

use of the resources and their
interactions with each other.

E.g. Mounting the EV3 on

the chassis and building the
turning mechanism.

Additionally, information

about the interaction of
different resources and

available use cases.
Scaffolds for techniques
for getting unstuck

Determining the sub

problems and primary
functional modules.

Use pre-built solutions

from previous phase

Additionally,

provide prompts
and scaffolds for

techniques like

reflection and
productive failure.

Evolve

Additional challenge to
increase the complexity of

the previous challenge

requiring the need of
abstraction modularization

and iteration. E.g. Make the

bot avoid obstacles

Use of additional complex
resources to enhance

capability of the current

build. E.g. Adding IR,
Ultrasonic sensors and

building a parallel process

of obstacle detection.

Similar as above Frame the new
problem, choose the

sub problems and

address the sub
problems while using

techniques to

overcome challenges

Indirect guidance
using instances

from the previous

phases.

127

3. INTERVENTION DESIGN
The Tinkering environment for learning with CT comprises

of the problem whose potential solutions derives from CT.

Available resources allow free exploration, have a low floor

and high ceiling and align to the constructs of computational

thinking. Both the problem and the resources ensure the

requirement of tinkerability (Resnick & Robinson, 2017).

The pedagogy encompasses features like progressive

formalisation, alignment to intrinsic motivation, guided

reflection. Finally, a mentor provides scaffolds for the use of

strategies like re-purposing, question-posing and reflection

for working with expectation violation and productive

failure. A summary of the entire intervention is as presented

in table 1.

3.1. Problems

Though any problem with its corresponding resources could

be provided in a tinkering based learning environment, we

choose Lego Mindstorm Robotics kit and design a maze that

would have to be solved as a part of the activity. This activity

provides enough freedom to the learners for designing the

robot as per their choice to solve a given maze. Keeping

progressive formalisation in mind the problems are divided

into two categories. The first category of problems is toy

problems that help the learners to explore the resources

available in Lego Mindstorm and get used to them. E.g. one

of the problems requires the learners to determine the

volume of the room given the Lego Mindstorm EV3 brick

and the ultrasonic sensor. The objective of this problem is

for the learners to understand the usage of ultrasonic sensors

and also to be able to build a quick prototype and use the

data representation features of the EV3 brick. Additionally,

they are being exposed to the concept of input and output of

data using physical sensors, or what we call they are getting

a sense of the kind of output the sensor can provide. Though

this question requires them to work with the ultrasonic

sensor, the mentor encourages them to use all possible

actuators and sensors to get a sense of the devices. Similarly,

one of the problems requires the learners to build a two-

wheel powered bot and a four-wheel powered bot to

determine the use cases of each configuration. These

problems are candidate sub problems to the bigger problem

that the participants will solve in the next phase.

In the second phase “Solve” we provide them with a maze

that their bot has to navigate. The maze is an NxN matrix

where obstacles have been places, and the bot must follow

the unblocked edges and reach the destination. The learners

are given the maze along with the edges that will be blocked.

This problem becomes a standard path traversal problem

where the learner must sequence a set of instructions, and

the sequence would determine the path that is traversed by

the bot. The length of the edges are standard; hence the

learners must determine the distance the bot would move

and code it accordingly. Though the length is the same

distance would vary based on the bot they have built or the

motor parameters they are using. Thought a hard-coded

solution is not the ideal solution for this problem, the

problem the idea is to take the learners through this journey

to understand the different solutions and challenges they

pose and evolve them towards building using constructs to

build better / dynamic/efficient solutions.

In the third phase named “evolve,” they are given a new

challenge where they are to program and modify the robot

in such a way that it could traverse the maze even if the

obstacle locations have not been determined initially. They

could add markers on the obstacles for the bot to identify and

take action accordingly. The objective here is to allow the

learners to understand the concept of functions and

modularisation so their bot can take decisions based on the

maker. This problem evolves the learners to thinking in

terms of higher-order CT concepts while providing them

with the freedom of incorporating their idea of how to

implement them.

3.2. Resources

Resources in the learning environment refer to the

components of the learning environment. These are divided

into building resources and information resources. Building

resources refer to raw building materials, fabricated building

materials and electronic components. As an example, in our

case, the building resources would consist of the Lego

Mindstorm kit and a few other resources like tape cardboard

etc. Further classification of the components could be done

based on their nature of use and other characteristics.

Figure 1. Building Resources and Mobile Application

The information-seeking resource consists of repositories of

information on a mobile application. The mobile app also

has an interface to interact with the learning environment

using Augmented Reality. The learners work in the problem

space with the available tools and resources to find solutions

to the problem at hand. Prior knowledge of affordances of

tools and resources available for tinkering through a problem

or ability to acquire such information in the time of need is

a challenge for learners who intend to take a tinkering

approach. Gathering this information from manuals and

online resources frequently requires switch context, which

inhibits or discourages explorations with the unknown

components. Hence this app will enable the learners to seek

information about problem statements, help them track their

session, provide information about components. The app

will have a different section for the different phases of the

pedagogue. The app will also act as a platform where

prompts and scaffolds will be presented. The apps also

enable delivering just in time information by presenting

information in an augmented manner to ensure

seamlessness, as seen in Figure 2 below.

3.3 Pedagogy

The pedagogy has evolved from our explorations with

tinkering and literature (Honey & Kanter, 2013) (Martinez

& Stager, 2013). The initial motive is building curiosity into

the mind of the learners by exposing them to various

complex solutions and stories about solving them. The

learners are guided to explore and play with the available

128

solutions to build their understanding of the environment.

One of the intended ways of doing it is by starting with

candidate subproblems of the main problem that they will be

solving in the second phase. These subproblems are

introduced as primary problems for exploration with simple

resources to interact with and gradually increase the

complexity of the problems and the use of resources.

Figure 2. AR Component view of the Lego EV3 brick.

The motive is to encourage exploration of the resources for

indented use. At the end of this activity, the students should

have an understanding of the different components of the

robot, their function, and how they can be

arranged/combined to achieve a more significant function.

In the second phase, they are given a problem to solve within

the same environment. Initially, the learners are mentored to

find a starting point and then are left free to begin working

on the starting point of their choice. Here the learners

interact with the building resources based on their

understanding from the previous phase of the problem. The

disposition that learner should take is of experiencing what

would happen than predict the outcome by observing or

thinking about challenges. With practice, one may be able to

predict the outcome by mentally experimenting with the

problem space. This experience will later give rise to the

needs of the solution or what kind of function/behaviour

would be required by the solution. Another challenge they

might face is of being stuck. Stuck is to be interpreted as the

state when the participants are not able to ask the right

questions. Being in one state but still being able to ask the

right questions is still considered the state of flow. In the

stuck state, the role of the mentor is to guide the participants

to ask the correct questions. The app acts as the repositories

of information about building resources and examples. Some

necessary information maybe even augmented using the app

on the resources for a quick understanding. The learns may

record their progress on their app as a medium intended for

logging. This can also be used by the learners to reflect and

make decisions. The final part of this phase of the workshop

is to enable reflection on the solutions the learners have built

from the problem they were provided. The reflection would

be triggered by posing questions regarding the requirements

of the problem. The type of question to be posed. The

learners will also be encouraged to use their logs to aid this

reflection process. These reflections will be recorded by

learns in the app. The objective of reflection is to make the

explicit realisation of the CT elements and connect them to

the activities performed by this. It ensures the development

of an understanding of the use of CT as per the three

domains.

This stage, the learners will evolve their solution to either

enhance their capabilities or refine its function or

performance. One of the objectives is to introduce them

towards abstraction of primary function and their

modularisation. Also, expose them to parallelism. In this

phase, the mentor will be available only on demand as the

mentor does not take an active role in the solution process.

The purpose of the mentor would be to observe learners

actions to monitor their approaching. The mentor may

choose to intervene in some situations mentioned in the

mentor's guide. The intervention would be limited to

directing the learner's approach by asking broad questions.

The objective of this phase is to determine if the learner can

initiate explorations, make observations and ask questions

about it. The mentor may choose to allow the learns to exit

without building the refined solution if enough evidence of

the objective is available. These will be available as

guidelines to the mentor. In the final stage of the workshop,

the mentor will trigger reflections among the learners on the

entire actions to develop an understanding and use of the

elements of CT.

3.4. Mentor

The Mentor is more of a facilitator to observe the activities

and the process the students are following. The motive of

doing this is to help them reflect on their actions. Guide them

towards exploration and play. Guide them the overcome

challenges by identifying the reasons. The reasons could

vary from not being able to construct the intended the

solutions, not being able to use the resources at hand, not

being able to identify resources and/or the corresponding

affordances or unpredicted behaviour. To direct the students

to the flow state, the mentor themselves must become a

genuine participant of the activity. They should try to figure

out what is the problem. The mentor can probe using

questions like what seems to be the challenge? What seems

to be your approach? If the learner can answer mapping to

solving a problem and changing the design, then the learner

is actually in the flow state. To probe further, the instructors

could explicitly ask "Which questions are you trying to

answer?" if the participant shows signs of frustration or

seems to have given up. These would be responses like I do

not know what to do next, I have tried many things. It will

not work. This cannot be solved. The Mentors could guide

them by asking questions as stated above that would help

them proceed with the approach. The participants could

respond with answers that talk about the loss of interest or

boredom like I am getting bored, and I do not feel interested

in doing the same. I am not able to think more. The mentors

could guide them towards skipping the current challenge and

work on a different aspect or just ask them to take a break.

If the mentor feels the participant is struggling due to lack of

information, they may guide them towards the information.

The objective is to make them realise that such information

can be looked at.

The mentor should be able to take a multi-level view to

weight between the more significant problem and the

problem they are stuck. The criticality of the current problem

for the more significant problem can help determine to

solution approach. If it is critical, we need to find a way to

work it out or if not, can we manage to solve the bigger

problem without the problematic component at hand. The

mentor should guide the students via open-ended prompts

describing the behaviour of the component at hand. The

129

prompts should target misconception or refer to some other

project and explaining the function of the component and

have them try it. Another way of doing this is by posing

questions starting with What are they trying to achieve?

Why are they doing it this way? How will it achieve what

they intend to achieve? When and where does this help to

solve the bigger picture?

3.5 Proposed Study

The study is targeted at High school students who have just

started using programming languages and do not have

exposure to Lego Mindstorm robotics kits. This version of

the study will be done with one individual per kit. We plan

to introduce elements of collaboration in later studies. The

objective of the study is to explore the use of tinkering as a

strategy for learning elements of CT. Will the tinkering

learning environment designed with an alignment of CT

elements lead to explicit learning of CT in its three

dimensions? This will us with a deeper understanding of the

alignment and the features that may or may not work as

intended.

The study is based on the Explore, Solve and Evolve

pedagogy and distributed over three days. On the first day,

the learners will be introduced to Lego kit using the

candidate sub-problems. They start with problems to

introduce them to the EV3 brick along with the sensor and

the motor functions. Similarly, they will be given problems

that lead them to explore the construction blocks and beams.

The learners are allowed to dismantle a few prebuilt bots. In

the final part of the day, they would be given problems that

would require them to code, either the prebuilt bots or the

bots they have built. The day would end with the mentor

asking the learners about the kind of bots they would want

to build and making them reflect on their observations and

understanding of the building resources.

On the second day in the “Solve” phase, the learners would

be provided with the challenge of solving a static maze.

They could reuse the bots from the previous day or build

new ones. At the start of this session, the learners will try to

find out the essential requirement of traversing the maze.

The bot will have to perform two functions which are

moving on clear lines and turning to avoid obstacles. The

mentors may lead the participants to play in the problem

space to physically experience the problem by manually

navigating the maze using a non-motorised bot. Once the

participants have realised the essential functions, the

instructor will facilitate the participants in realising the

needs from the previous exercise and then try to translate

them into functions and behaviour for their solutions. Once

the desired behaviours have been achieved, learners can

move forward to the next essential objective. Learners may

perform as many numbers of trials on the maze and only

when they determine or the time is done, they would require

to demonstrate their solution. The learner determines the

final demonstration beforehand. If the learner finishes before

the time the mentor asks them to improve the efficiency in

terms of time taken by the bot to complete the maze. The day

ends with the mentors making the learners reflect on the

solution trajectories. The reflection will be carried out

through activities where the learner would be told about the

CT elements, and they would map it to their solution

strategies and later determine one use-case for their

application.

On the third and final day called “Evolve,” the learners are

required to solve a similar maze, but they would not know

where the obstacles would be placed. In this case, the

obstacles would have a provision to place markers. The

learner could use these markers to make the bot respond with

a specific action like turning left or right. In this phase, the

mentors will gradually reduce the scaffolds and prompt

limited to making them recall things they did on the previous

day, so they can make associations from what they learned.

To increase the complexity of the problem, the standard

length between the nodes may vary. The mentor facilitates

reflection by having the learners talk about their experience

and pointing out key actions they performed and having

them articulate what they exactly did and what did they

achieve. The mentor may ask learners to demonstrate the use

of CT concepts that could be implemented if a given

behaviour was to be achieved? Once the reflection session is

over the learner are given scenario-based MCQ.

4. CT IN TINKERING
In this paper, we present the design of an intervention and a

proposed study to explore the use of tinkering as a means for

developing an operational level understanding of the

different dimensions of CT. In the explore phase, activities

that emphasise the interaction with the sensors and the EV3

brick help the learners to understand with programming is

and empowers them with the opportunities of being able to

program physical objects. Constructing small artefacts

exposes them to CT concepts of operators, procedures etc.

In the solve phase, the learners are introduced to sub-

problem generation and encouraged to reuse and remix

solutions from the previous phase adding a few more CT

concepts. In the evolve phase, the learners are made to

reflect on the iterative and incremental way of solving

problems. The slight increase in complexity of the problem

introduces them concepts of abstraction modularisation of

the turning function. They also learn about parallel

processing to achieve the motion and obstacle detection

function. Table 1 below provides a summary of the mapping

between the activities performed in the tinkering

environment and operational elements of CT from the CT

Framework. Table 2 also presents the distribution based on

the three dimensional CT framework aligned to the essential

phases of our tinkering pedagogy. We believe that by such

an alignment of dimensions of CT with our tinkering

pedagogue, the learners will be able to develop an

operational understanding of using CT for solving problems.

130

Table 2. Activities done in different phases of the pedagogy and their mapping to dimensions of CT.

Phases Activity CT Concepts CT Practices CT Perspectives

Explore

Interaction of sensors with the environment

Finding their affordances
Making moving bots, right left turns

Stopping and moving on obstacle

Operators, Procedures,

Data structures

Problem Formulation,

Questing

Programing empowerment,

Perspective of expressing.

Solve
Use pre-built solutions from previous phase
Determining the subproblems and primary

functional modules

Sequencing, Event
handling

Problem Decomposition,
Algorithmic Thinking,

Reusing Remixing

Connecting Questioning

Evolve

Using the learning from explore about sensors
functions and bot motion

Evolving the solution to a modular approach.
Achieving obstacle detection while moving

Loops, Conditionals
Parallelism

Iterative Incremental,
Abstracting Modularising

Connecting Questioning

5. CONCLUSION
As present above, we proposed intervention for teaching

computational thinking (CT) as a part of the high school

curriculum. The first component of the intervention is

problems that provide learners with opportunities to use CT.

We have used problems with robotics. The second

component of our intervention are resources to work with.

We have chosen Lego Mindstorm and a few everyday

materials for construction. Our application provides

information about the resources textually, visually

seamlessly using augmented reality. The third aspect of our

intervention is that the Explore-Solve-Evolve pedagogy

ensures a rich, authentic problem-solving experience for the

learners. Reflections after each phase introduce the learners

to the concepts, practices and perspectives of computational

thinking. The mentor assumes the role of a noncontributing

companion by scaffolding the learner towards exploration

and play using strategies like question posing. They mentor

learners with strategies to overcome challenges and

reflection to ensure an explicit understanding of learns

action.

The question that we pose to ourselves is that “Will the

tinkering learning environment designed with an alignment

of CT elements lead to the development of such an

understanding of CT in its three dimensions?” Before we

could aim at answering this question, this study will provide

us with a deeper understanding of the alignment and the

features that may or may not work as intended. With an

evolved Tinkering enabled learning environment we plan to

conduct more studies using techniques to evaluate the

learning of CT as reported in the literature (Kong & Abelson,

2019) to be able to determine the impact of using a tinkering

approach towards developing computational thinking.

6. REFERENCES
Bailey, R. (2002). Playing social chess: Children's play and

social intelligence. Early Years: An International Journal

of Research and Development, 22(2), 163-173.

Berland, M. (2016). Making, tinkering, and computational

literacy. Makeology: Makers as learners, 2, 196-205.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000).

How people learn (Vol. 11). Washington, DC: National

academy press.

Bransford, J. D., Sherwood, R. D., Hasselbring, T. S.,

Kinzer, C. K., & Williams, S. M. (1990). Anchored

Instruction: Why we need it and how technology can help.

Cognition, education, and multimedia: Exploring ideas in

high technology, 129-156.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. Proceedings of the 2012 annual meeting of the

American Educational Research Association, Vancouver,

Canada (1), 25.

Danielak, B. A., Gupta, A., & Elby, A. (2014). Marginalized

identities of sense‐makers: Reframing engineering

student retention. Journal of Engineering Education,

103(1), 8-44.

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex

Publishing.

Honey, M., & Kanter, D. E. (Eds.). (2013). Design, make,

play: Growing the next generation of STEM innovators.

Routledge.

ISTE, I., & CSTA, C. (2011). Operational Definition of

Computational Thinking for K–12 Education. National

Science Foundation.

Kafai, Y., & Resnick, M. (1996). Constructionism in

practice: Designing, thinking and learning in a digital

world. Routledge.

Kapur, M. (2008). Productive failure. Cognition and

instruction, 26(3), 379-424.

Kong, S. C., & Abelson, H. (Eds.). (2019). Computational

Thinking Education. Springer.

Martinez, S. L., & Stager, G. (2013). Invent to learn:

Making. Tinkering, and Engineering in the Classroom.

Torrance, Canada: Construting Modern Knowledge.

Resnick, M., & Robinson, K. (2017). Lifelong kindergarten:

Cultivating creativity through projects, passion, peers,

and play. MIT press.

Roque, R., Rusk, N., & Blanton, A. (2013). Youth Roles and

Leadership in an Online Creative Community. CSCL, (1),

399-405.

Schank, R. C. (1983). Dynamic memory: A theory of

reminding and learning in computers and people.

Cambridge University Press.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

131

A Comparison of Computational Thinking Approaches in HCI-SEO Design:

Implications to Teaching and Learning STE(A)M

Chien-Sing LEE

Sunway University, Malaysia.

chiensingl@sunway.edu.my

ABSTRACT

Search engine optimization has often been through tagging

(metadata descriptions) and appropriate placement of these

metadata in inherent document structures e.g. XML. This

paper presents a complement whereby the structure and

information design based on design thinking and

computational thinking results in more effective scoping of

user requirements and leaner, agile design. This form of

human-computer interaction-search engine optimization is

much used in successful e-commerce websites due to Data

Science. Comparison between the standard 4 CT aspects

approach and Brennan and Resnick’s 3 CT aspects approach

and implications to STE(A)M teaching and learning are

investigated through a meta-analysis of two Project

Management course assignments. Significance of the paper

is direct link and greater specificity between design thinking,

computational thinking, human-computer interaction,

Project Management and search engine optimization within

an entrepreneurial project management framework.

KEYWORDS

design thinking, computational thinking approaches, design

optimization, STE(A)M, higher education

1. INTRODUCTION
The trends in project management (PMI, 2017) highlight the

need for first, entrepreneurial project managers who are able

to think and decide not only quickly but also analytically and

judiciously, by utilizing and managing frameworks and

diverse decision support tools. This leads to judicious

application of agile project management as well as

hybridization of project management methodologies from

different industries to promote different ways to build things

and enhance processes and outcomes.

Analytical, judicious thinking and the ability to synthesize

are characteristic of creative thinking (Arnold, 1959).

Arnold’s (1959) Theory of the Creative Process regards the

creative process as:

a) applicable to several domains to a certain extent;

b) dependent on the processes a person follows;

c) a search and problem-solving process aimed at better

 meeting basic human needs;

d) influenced by meta-cognitive processes, which identifies

 and regulates creative progress.

Another two trends which are increasingly gaining attention

are man-machine collaboration and gamification. If

designed well, these can sustain e-commerce, supply chain

and growth. Hence, there is a need to train students to design

through modelling and computational thinking. The

question is how to scaffold generative deep thinking?

1.1 Objective

Computational thinking (CT) commonly emphasizes four

aspects (Figure 1a). A critical CT concern is also to link with

real-life applications, scenarios. A real-life example of

decomposition and algorithmic thinking (Olaf can rearrange

parts of himself) in CT is in Figure 1b.

Figure 1a. Four key aspects Figure 1b. Example of CT

For this paper, implementations of the popularly accepted

four CT aspects and Brennan & Resnick’s (2012) 3 CT

aspects: computational concepts, computational practice

and computational perspectives are juxtaposed and the

implications to teaching and learning are compared. For both

case scenarios, project management knowledge areas are

integrated within an entrepreneurial framework.

Both studies/systems aim to increase Search Engine

Optimization (SEO), sustainability and interactivity. For the

standard 4 CT aspects, we choose to focus on an e-commerce

website that sells furniture, Furnitize (Chew, Chee, Wong,

Hiew, 2017). Patterns (templates), with decomposition

(parts of objects), abstraction (different levels of details) and

algorithmic thinking (processes to create the simulated

desired interior) using the software. For Brennan and

Resnick’s CT aspects, we choose an e-commerce-

crowdsourcing recycling website, The Enchantress (Yew,

Lim & Sugumar, 2017), which questions how we define

fashion, diverse perspectives of fashion design as well as

entrepreneurial possibilities.

2. RELATED WORK
In this section, we present the design factors considered. To

scaffold goal-based contextual thinking, goal-based

scenarios (GBS) proposed by Schank, Fano, Bell and Jona,

(1993) recommends the use of mission as overriding goal.

The mission can be reflected in themes and these can be

adapted into different cover stories with variations in

situations, roles and challenges. These cover stories

consequently, result in interrelated smaller missions. This is

necessary to mediate from easy to difficult situations, roles

and challenges.

Schank, Fano, Bell and Jona’s (1994) GBS finds support in

design thinking. Design thinking focuses on context,

empathy and user experience as starting points. As a Human-

Centered Design methodology, design thinking incorporates

132

consumer insights as the first design space (Dym & Little,

2003). Apple is a representative example of systemic

solutions, partly emotional and partly cognitive, within

knowledge-based ecosystems.

Brennan and Resnick’s (2012) CT aspects are concepts,

practice and perspective. Examples of concepts are events,

conditions, sequence, and loops. These are similar to

information system’s conceptual schema, conditions, data

flow. Practice in incremental improvement and testing are

akin to pilot, alpha-beta testing, reusing and remixing

strategies/assets. Practice in abstracting and modularizing is

pattern-based. Perspectives are expressive, connecting and

questioning, to encourage meaningful iterations. These

researches point out that more needs to be understood in

terms of how design and computational thinking helps to

develop creativity among designers, in higher education.

3. METHODOLODGY
The students are not Computer Science students. Hence,

Brennan and Resnick’s (2012) perspectives is first utilized.

Students are asked to identify which current trends and

issues in project management they find interesting from the

PM Institute’s Pulse of the Profession (2017) report. Project

Management and HCI concepts are integrated with

information systems analysis and design (ISAD) constrained

by impact on society and sustainability of products/services.

ISAD provides the computational thinking aspects, e.g.

patterns (templates), decomposition, abstraction (different

levels of details) algorithmic thinking (processes/data flow),

prototyping and user testing.

4. SYSTEM DESIGN & DEVELOPMENT
Project Management considerations are first applied for

systems analysis and design. This is followed by

Waterfall/agile methodology for systems development.

4.1. Furnitize’s design factors

For Furnitize (Chew, Chee, Wong, Hiew, 2017), the first

Project Management consideration is Project Integration

Management. Their design factors for Furnitize are

extracted as follows:

a) User satisfaction, behaviors

Fayad and Paper’s (2015) Technology Acceptance Model

(TAM): perceived usefulness, perceived ease of use, and

intentions; add four predictor variables to the original TAM:

expectations, process satisfaction, outcome satisfaction, and

e-commerce use – to extend TAM from measuring

intentions to measuring actual behavior. Expectations (ease

of use, usefulness), customer satisfaction (process and

outcome satisfaction) and intention (e-commerce use) as

design guidelines are thus utilized.

b) Cross-sell and Up-sell

Choosing which products to offer to which customers to

maximize the marketing return on investment and to work

around business constraints is complex but necessary to

retain customers (Salazar, Harrison & Ansell, 2007).

i) Market segmentation analysis, purchase acquisition trees

and survival analysis can be applied in many contexts;

ii) Lim and Lee’s (2010) study on online analytics using

classification and association rule mining.

c) Social Media and influencers

d) Gamification

Gamification, is transforming business models. It

integrates game mechanics into non-game environments to

motivate participation, engagement, and loyalty.

Gamification works because it leverages on our motivations

and desires for community, feedback, achievement, reward

(Yang, Asaad & Dwivedi, 2017).

The derived system requirements are in Table 1.

Table 1. System requirements

Company

strategies

Company services

Increase

customers’

satisfaction,

confidence,

and loyalty

• Customer relationship management

system (live chat, social media, forum,

subscribe, membership, news)

• Customize: allow customers to have their

own experiments with concepts (design

their own floor plan, own decoration

using templates, tutorials)

• Google analytics, Gamification (future)

Increase

variety of

products,

cost, time

• Joint venture with other companies

• Delivery system (Supply Chain Delivery

System)

• Agent, to save cost and time

• Installation and renovation services

The outcome of Project Integration is in Figure 2a.

Figure 2a. Wing’s 4 CT aspects: Furnitize
https://pailekchew963.wixsite.com/mysite

The second round of considerations are Project Scope

Management, Project Time management, Project Cost

Management and Project Quality Management. The

outcome from this second round of considerations is

illustrated in the choice of floor plans, and customization of

interior design and furniture selection. Examples shown

(Figures 2b, c, d) are customized screenshots, using the open

source RoomSketcher software.

Figure 2b. Customizable System

http://www.bunchball.com/gamification/game-mechanics
https://pailekchew963.wixsite.com/mysite

133

Figure 2c. Interior Design and Furniture Selection

Figure2d. Forum

To confirm feasibility, a third round of considerations are

factored in. These are Human Resource Management,

Communication Management, Risk Management,

Procurement Management and Stakeholder Management.

This layered-iterative methodology reflects agile principles.

4.2 Evaluation (user perception)

The user testing questionnaire is designed based on generic

human-computer interaction (HCI)/TAM principles.

HCI/TAM principles, optimize search. Findings extracted

from the report are presented in Table 2 below.

Table 2. User testing findings

4.3. The Enchantress’ design factors

Inspired by Starbucks’s gamified crowdsourcing ideation

system, The Enchantress (Yew, Lim & Sugumar, 2017) is a

crowdsourcing platform. Their proposition is to encourage

the community to develop a new habit i.e., to recycle. To

encourage and to sustain such new habits, would require not

only time scheduling and task load considerations, but also,

development of new perspectives through new value

propositions. The Enchantress (Figure 3) piques imagination

to the highest of what fashion is or can be. Hence, it’s like a

nested loop of perspectives.

Figure 3. Brennan & Resnick’s 3 CT aspects:

The Enchantress

4.4. Evaluation (user perception)

Technology acceptance by users has also been promising

though there are challenges as not everyone is interested in

design. Nevertheless, due to its social innovation orientation

of conserving the environment by encouraging product

innovation and entrepreneurship, it is still worth a try. To

sustain, a knowledge management framework has been

134

investigated (Yew & Lee, 2019). Findings are promising but

indicates the need for smart partnerships.

5. IMPLICATIONS AND CONCLUSION

Prior research is aimed at investigating how we can scaffold

generative/deep processing, i.e., how we can design deep

reflective questions, which would contribute towards pattern

recognition, theorizing, knowledge construction, and

subsequently, creativity and transfer of learning along with

the development of epistemic agency.

Both systems indicate that inter-disciplinarity in realistic

ecosystems aimed at meeting real needs are the most

effective motivators, confirming the efficacy of goal-based

scenarios. Interestingly, design factors are similar and the

two most important are the supply chain and cross-sell and

up-sell; and the ultimate goal: sustainability.

These findings confirm success factors identified in Lee and

Wong (2014; 2015; 2017; 2018):

a) design thinking (viability and sustainability of

innovations) and computational thinking; [2015]

b) design as search/SEO/navigational structure (Interaction

Design Institute); [2014]

c) Project Management (PM) grounded in Information

Systems Analysis and Design and correspondingly, the

Technology Acceptance Model (TAM), PMI; [2017]

d) marrying PM-TAM concepts with human-computer

interaction metrics enhances design

e) marrying the above within a knowledge management

framework ensures cycles of innovation. [2018]

The implications to teaching and learning are, first, the four

key CT aspects are more oriented towards Computer Science

projects in diverse contexts, with heavier research and Data

Science underpinnings. Brennan and Resnick’s (2012) 3 key

CT aspects naturally have research and Data Science

underpinnings, but are more easily understood and do-able

for the masses, given Resnick’s years of creativity research

e.g. Scratch. Reducing entry level/cognitive access, fun,

community engagement, overlay Computer Science/Data

Science underpinnings. It is also easier for the masses to

develop and transform value propositions.

Furthermore, adaptations are based on different centralities

in design. Interestingly, Furnitize leans more towards

structure, behavior, and function first whereas The

Enchantress leans towards function, behavior, structure

first. Hence, juxtaposing the 4 CT aspects against the 3 CT

aspects highlight their complementarity based on goal-based

scenarios, HCI and TAM principles to different contexts and

spectrum of abilities in education.

6. ACKNOWLEDGEMENT
The two Project Management course assignments (August-

December 2017) are by her Project Management students,

Pai-Lek CHEW, Yew-Keong CHEE, Jing-Pynn WONG,

Yit-Thang HIEW, Lee-Yin YEW, Kwan-Sheng LIM,

Priscilla SUGUMAR. Much thanks for their inspiring work.

Thanks also to Georgia Tech for introducing GBS during her

Fulbright Fellowship in 2008/2009 while with Multimedia

University, Dr. K. Daniel Wong for introducing design and

computational thinking in the past. Thanks to CTE for

propelling CT to greater heights.

7. REFERENCES
Arnold, John E. (1959). Creative engineering. Stanford.

Brennan, K. & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. AERA.

Dym, C.L., & Little, L. (2003). Engineering Design: A

Project-Based Introduction (2nd ed). NY, John Wiley.

Fayad, R. & Paper, D. (2015). The Technology Acceptance

Model E-Commerce Extension: A Conceptual

Framework. Procedia Economics and Finance, 26, 1000 –

1006.

 Lee, C. S. & Wong, K. D. (2014). Designing framing and

reflective scaffolds to develop design thinking and transfer

of learning: Theorizing for pre-school. Proceedings of

IEEE International Conference on Advanced Learning

Technologies. IEEE, 80-81.

Lee, C. S. & Wong, K. D. (2015). Developing a disposition

for social innovations: an affective-socio-cognitive co-

design model. Proceedings of International Conference on

Cognition and Exploratory Learning in Digital Age, 180-

186.

Lee, C. S. & Wong, K. D. (2017). An entrepreneurial

narrative media-model framework for knowledge building

and open co-design. SAI Computing, 1169 - 1175. IEEE.

Lee, C. S. & Wong, K. D. (2018). Design - computational

thinking, transfer and flavors of reuse: Scaffolds to

Information and Data Science for sustainable systems in

Smart Cities. Proceedings of IEEE International

Conference on Information Reuse and Integration, 225-

228. IEEE.

Lim, A. H. L. & Lee, C. S. (2010). Processing online

analytics with classification and association rule mining.

Knowledge-based Systems, 23(3), 248-255.

Project Management Institute (2017). Pulse of the

Profession. Retrieved July 5, 2017, from

http://www.pmi.org

Salazar, M., Harrison, T. and Ansell, J. (2007). An approach

for the identification of cross-sell and up-sell opportunities

using a financial services customer database. Journal of

Financial Services Marketing, 12(2), 115-131.

Schank, R. C., Fano, A., Bell, B. & Jona, M. (1994). The

Design of Goal-Based Scenarios. Journal of the Learning

Sciences, 3(4), 305-345.

Yang, Y., Asaad, Y., & Dwivedi, Y. (2017). Examining the

impact of gamification on intention of engagement and

brand attitude in the marketing context. Computers in

Human Behavior, 73, 459-469.

Yew, L. Y. & Lee, C. S. (2019). Resource-knowledge-mixed

Knowledge Management approaches to enhancing e-

Commerce sustainability: A comparative case study.

Proceedings of International Conference on Engineering

Technology.

http://www.pmi.org/

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

135

Development of Programming Self-efficacy Scale for University Students in the

Information Domain

Hsien-Sheng HSIAO1, Jun-Wei LAI2*, I-Ning WU3, Chung-Pu CHANG4

1,2, 3,4Department of Technology Application and Human Resource Development, National Taiwan Normal University,

Taiwan

1 Chinese Language and Technology Center, Institute for Research Excellence in Learning Sciences, National Taiwan

Normal University, Taipei, Taiwan.

etlab.paper@gmail.com, polo24072407@gmail.com, nancy851224@gmail.com, enzoapu@gmail.com

ABSTRACT

The purpose of this study was to develop a self-efficacy scale for students in the field of information studentss about

programming thinking procedures. The questionnaire consisted of 21 questions which divided into three dimensions such as

"importance", "confidence" and "anxiety". The research object is the college students who have taken programming courses

in Taiwan. There were 208 participants from northern, central, and southern Taiwan. The statistical methods used in this

research include descriptive statistics, item analysis, exploratory factor analysis and Cronbach α internal consistency analysis.

The internal consistency coefficient of the scale is between .950 and .957 and the validity of the construction is verified by

factor analysis. On the whole, the scale has good reliability and validity.

KEYWORDS

information domain, programming, self-efficacy, programming self-efficacy scale

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

136

資訊領域大學學生程式設計思考程序自我效能量表發展之研究

蕭顯勝 1，賴俊維 2＊，吳翊寧 3，張仲樸 4

1,2, 3,4科技應用與人力資源發展學系，臺灣師範大學，台灣
1臺灣師範大學學習科學跨國頂尖研究中心，臺灣師範大學華語文與科技研究中心，台灣

etlab.paper@gmail.com，polo24072407@gmail.com，nancy851224@gmail.com，enzoapu@gmail.com

摘要

本研究旨在發展與編制資訊領域大學生對於程式設計

思考程序自我效量表，量表包括「重要性」、「信

心」、「焦慮」三個構念共 21題，作答方式採用 Likert

十一點量尺。研究對象為臺灣修習過程式設計課程的

大學生，以立意抽樣臺灣北、中、南部的 208 位大學生

為預試樣本。本研究所使用的資料分析方法包括描述

性統計、項目分析、探索性因素分析、Cronbach α 內部

一致性分析。量表的內部一致性係數介於.950 至.957 之

間，並以因素分析來驗證建構效度，整體而言，本量

表具有良好的信度與效度。

關鍵字

程式設計；資訊領域；程式設計；自我效能；程

式設計自我效能量表

1. 前言

程式設計教育近年來在全球掀起一股浪潮，世界各國

皆致力於推動程式設計教育，將程式設計納入課綱當

中，這不僅是為了大量需求的科技人才，更是為了培

養學生問題解決、創造性思考、勇於犯錯等能力，以

及因應未來的數位生活（王令宜，2017）。美國前總

統歐巴馬在 2016 年時提出「全民電腦科學教育」

（Computer Science for All），讓全美的學生都能享有

完整的電腦科學教育，具備基本的程式編寫能力，以

因應新科技下急遽加速的未來，確保每一位學童都能

夠站在公平競爭的起跑點。

程式設計教育可以讓學生根據程式語言的語法、語言

結構與設計技巧來解決問題（Schollmeyer, 1996）。然

而，學生在學習程式語言上時常會遭遇到許多困難，

首先要將問題的描述轉換為邏輯，再由邏輯轉換為程

式碼，這個過程對初學者來說是困難的（Sengupta,

2009；Saeli, Perrenet, & Jochems, 2011），此外，程式

設計的初學者還需要記得許多抽象、不易理解的語法

及命令，容易導致學習上的困難（Kelleher & Pausch,

2005；Lahtinen, Ala-Mutka, & Jarvinen, 2005）。學生的

自我效能會影響其面對困難時的態度，相信自己能力

的學生會勇於面對困難的任務，並將其視為需要解決

的挑戰（Bandura, 1994）。自我效能是一種心理概念，

它可以評估個人的心理狀態，自我效能會影響學生的

活動選擇，包括學生將花費多少精力或時間來解決特

定的任務和情況（Bandura, 1997）。Moos 與 Azevedo

也在 2009 年指出在程式設計課程中，學生的自我效能

與學習表現有著密切關係（Tsai, Wang, & Hsu, 2019）。

過往有相關研究曾開發出用於評估程式設計自我效能

的量表。如 Ramalingam 與 Wiedenbeck（1998）發展由

四個構面組成的調查問卷，來評量初新手學習 C++程式

語言的自我效能；Askar 與 Davenport（2009）以及

Govender 與 Basak（ 2015）皆基於 Ramalingam 與

Wiedenbeck（1998）的量表來改編，以評量學生學習

Java程式語言的自我效能。從上述研究可以發現，多數

都是針對特定的程式語言的學習感受進行測量，鮮少

針對程式設計的解決問題流程、運算思維概念的自我

效能量表（Tsai, Wang, & Hsu, 2018）

因此在新科技不斷推陳出新，變化快速的當代，本研

究將改善前述相關研究缺乏，發展一個不限特定程式

語言環境的自我效能量表，並參考 Tritrakan、Kidrakarn

與 Asanok（2017）所提出程式設計的程序，編撰出學

習程式設計的七個步驟，來測量學生在學習程式設計

七個步驟的自我效能。本研究參考 Carberry、Lee 與

Ohland （2010）所開發的「工程設計自我效能問卷」

進行改編，發展「程式設計思考程序自我效能量表」，

未來希望透過此一量表來探究大學生在程式設計學習

過程中態度之影響。

2. 研究方法

2.1. 研究工具

2.1.1. 預試量表之設計與架構

本研究蒐集學習程式設計時，學習態度、自我效能、

態度傾向等相關文獻，根據文獻資料歸因出學習程式

設計的影響自我效能的因素（Carberry, Lee, & Ohland,

2010），逐步形成完整之「程式設計學習態度」之核

心構面，包括「重要性」、「信心」、「焦慮」三構

念及 21 題項，並參考 Tritrakan、Kidrakarn 和 Asanok

（2017）專家程式設計思考程序（Expert programming

design thinking and procedure），發展出程式設計 7 步驟，

包含（1）定義問題、（2）思考架構、（3）釐清資料、

（4）設計演算法、（5）程式撰寫、（6）測試與除錯、

（7）完成發表。經歷本研究團隊 3 次討論與字句修正，

完成此量表，本量表採用李克特式十一點量表分別以

「0」至「10」代表「低」至「高」，各構面之平均分

數愈高代表學習者對此構面之態度愈高。

2.1.2. 預試量表編制

完成測驗題目初稿編制後，本研究邀請 3 位教授程式設

計領域的專家學者對量表進行專家審查，審查與討論

的重點為：（1）審查初始量表題項之歸類與重要性；

（2）審查題項的題意與文字內容，提供題項之文字修

改意見。

137

經專家審查完後，本研究將程式設計思考程序自我效

能量表進行預試。在回收預試資料後，為了檢視檢驗

測量題項是否適切，透過項目分析，以瞭解各題項之

鑑別力與同質性，根據分析結果將不適合的題項刪除

或修改；透過探索性因素分析，以瞭解各題項的聚斂

情形。

預試結果經項目分析與探索式因素分析後，本研究正

式問卷按照自我效能之三項核心構面與程式設計 7 步驟

發展出 21 題項與個人基本資料 5 題（性別、年齡、學

校、學系、年級），如表 1 所示。

表 1 設計思考程序自我效能量表因素名稱與題目分布

量表名稱
因素

名稱
題號

題

數

設計思考程

序自我效能

量表

重要性
1、4、7、10、13、

16、19
7

信心
2、5、8、11、14、

17、20
7

焦慮
3、6、9、12、15、

18、21
7

2.2. 研究對象

本研究預適量表發放對象為資訊領域且在修習過程式

設計課程的大學生。本研究以立意抽樣的方式進行，

在臺灣的北、中、南十一所大學中進行預試施測。預

試使用電子問卷發放，施測 208 份，回收 208 份，回收

率為 100%。

2.3. 探索性因素分析

本研究經過專家審閱量表後進行預試數據收集後，項

目分析結果，21 題項 CR 值均顯著水準（p <.001）；同

質性檢定結果均為高度相關，故此 21 項均保留。進行

因素分析前，為了瞭解取樣的適切性，首先使用 KMO

和 Bartlett’s 球形檢定來判定是否做因素分析。結果

KMO 值=.889> .8，且 Bartlett’s 球形檢定的 p 值達顯著

（p=.000<.001），根據 Kaiser（1974）指出的判斷標準，

KMO 值大於.70，且 Bartlett 球形檢定達顯著水準，適

合作因素分析。採用正交轉軸之最大變異法萃取出三

個構面。結果如表 3，每一題項的因素負荷量皆大於.5，

無須刪題。各構面的特徵值皆大於 1，且總解釋變異量

（%）達 79.24，顯示具足夠之效度。

表 2 設計思考程序自我效能量表項目分析表

題號
因素負荷量 共同

性 重要性 信心 焦慮

IM1 .77 .65

IM2 .89 .84

IM3 .82 .73

IM4 .86 .80

IM5 .86 .79

IM6 .91 .84

IM7 .86 .77

CO1 .80 .76

CO2 .89 .81

CO3 .83 .77

CO4 .91 .85

CO5 .90 .83

CO6 .87 .83

CO7 .85 .75

AN1 .85 .74

AN2 .88 .80

AN3 .90 .80

AN4 .93 .87

AN5 .92 .86

AN6 .87 .77

AN7 .88 .78

特徵值() 5.62 5.54 5.48

解釋變異量
(%)

26.78 26.38 26.08

累積解釋變

異量(%)
26.78 53..17 79.24

各構面

值

.950 .955 .957

總量表

值

.898

3. 結論與建議

本研究建立一套「程式設計思考程序自我效能量表」，

根據項目分析、探索性因素分析結果顯示，此一量表

具有良好信效度。後續本研究將擴大規模發放正式問

卷，期望本量表可以幫助大學資訊領域教師在程式設

計課程規劃時，能夠了解學生在思考流程中是否遭遇

困難、也能了解學生經由學習後對於程式設計思考的

自我效能是否有所提升。

4. 參考文獻
Askar, P., & Davenport, D. (2009). An Investigation of

Factors related to Self-efficacy for Java Programming

among Engineering Students. Online Submission, 8(1).

Bandura, A. (1997). Self-efficacy: The Exercise of Control.

New York: W.H. Freeman and Company.

Carberry, A. R., Lee, H. S., & Ohland, M. W. (2010).

Measuring Engineering Design Self‐efficacy. Journal of

Engineering Education, 99(1), 71-79.

Govender, D. W., & Basak, S. K. (2015). An Investigation

of Factors related to Self-efficacy for Java Programming

among Computer Science Education Students. Journal of

Governance and Regulation, 4(4), 612-619.

Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to

Programming: A Taxonomy of Programming

Environments and Languages for Novice Programmers.

ACM Computing Surveys (CSUR), 37(2), 83-137.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M. (2005). A

Study of the Difficulties of Novice Programmers.

Proceedings of the 10th Annual SIGCSE Conference on

Innovation and Technology in Computer Science

Education, 14-18.

Maltese, A. V., & Tai, R. H. (2011). Pipeline Persistence:

Examining the Association of Educational Experiences

with Earned Degrees in STEM among US Students.

Science education, 95(5), 877-907.

138

Ramalingam, V., & Wiedenbeck, S. (1998). Development

and Validation of Scores on a Computer Programming

Self-efficacy Scale and Group Analyses of Novice

Programmer Self-efficacy. Journal of Educational

Computing Research, 19(4), 367-381.

Saeli, M., Perrenet, J., Jochems, W.M.G., & Zwaneveld, B.

(2011). Teaching Programming in Secondary School: A

Pedagogical Content Knowledge Perspective. Informatics

in Education, 10(1), 73-88.

Schollmeyer, M. (1996). Computer Programming in High

School vs. College. ACM SIGCSE Bulletin, 28(1), 378-

382.

Sengupta, A. (2009). CFC (Comment-First-Coding) – A

Simple yet Effective Method for Teaching Programming

to Information Systems Students. Journal of Information

Systems Education, 20(4), 393-399.

Tritrakan, K., Kidrakarn, P., & Asanok, M. (2017).

Development and Study the Usage of Blended Learning

Environment Model Using Engineering Design Concept

Learning Activities to Computer Programming Courses

for Undergraduate Students of Rajabhat Universities.

Journal of Education, 11(1), 46-59.

Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019). Developing

the Computer Programming Self-efficacy Scale for

Computer Literacy Education. Journal of Educational

Computing Research, 56(8), 1345-1360.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

139

Computational Thinking and

Evaluation

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

140

Using Eye-Tracking to Evaluate Program Comprehension

Fabian DEITELHOFF1*, Andreas HARRER2*, Benedikt SCHRÖ DER3*, H. Ulrich HOPPE4*, Andrea KIENLE5*

1,2,3,5 University of Applied Sciences and Arts, Dortmund, Germany

4 University of Duisburg-Essen, Germany
1,2,5firstname.lastname@fh-dortmund.de, benedikt.schroeder020@stud.fh-dortmund.de, hoppe@collide.info

ABSTRACT

Computational thinking has been identified as an essential

problem-solving skill in the information age. Although more

specialized, programming is an essential manifestation of

computational thinking, and in turn, source code

comprehension is a vital subskill of programming. The study

reported here compares the effects of different source code

examples on source code comprehension and different

learning hints as a starting point for a dynamic learner

support system. Our analysis relies heavily on using eye

tracking data in combination with specific data models and

visualizations. This form of behavioral analytics is

complemented with answers to comprehension questions to

assess the effects of these hints with different code examples.

Our findings indicate that syntax highlighting is of limited

benefit for better comprehension, and a dynamic

highlighting of the scope of code blocks and variables is less

used than expected.

KEYWORDS

eye tracking, program comprehension, computational

thinking, learning analytics

1. INTRODUCTION
In a society permeated by digital representations and tools in

professional and everyday life, the desirable general

knowledge of science, technology, engineering, and

mathematics (STEM) must be combined with more meta-

level skills like critical thinking, adaptive problem solving,

and creativity. As argued by Wing, "computational

thinking" (CT) is an important ingredient in this context

(Wing, 2006). Although CT cannot be reduced to

programming, programming is an activity that both builds

on CT and can support the development of CT. Accordingly,

it has been argued that there is an overall value in learning

basic concepts and skills of programming. However,

programming is a complex cognitive activity (Pea &

Kurland, 1984). When learning to program, comprehending

source code is the priority.

Eye tracking is more and more integrated into the process of

analyzing learners and creating better support systems

(Njeru & Paracha, 2017). Additionally, it is a powerful

ingredient in the context of learning analytics (Greller &

Hoppe, 2017).

In this paper, we describe the analysis of comprehension

problems participants encounter while reading source code

and answering comprehension questions. Especially, the

detection of common reading patterns may reveal

differences in computational thinking and understanding

among participants.

2. ANALYSIS APPROACH
The basis of every eye tracking analysis is fixation hits on

specific regions. In the source code examples, AOIs are

placed around every code line (line model) or every

important workspace area (workspace model). (Deitelhoff,

Harrer & Kienle, 2019b) These are marked with letters, in

the line model from top to bottom, with additional AOIs for

the question and answer areas, and in the workspace area

model with A = answer, C = code, and Q = question.

Additionally, we label non-hits with "_", to identify gaps in,

e.g., transitions.

We used the recorded eye tracking data to calculate fixations

based on the raw data. The fixation calculation is done with

an I-VT filter (Velocity-Threshold Identification) with a

maximum radius of 60 pixels, a minimum fixation duration

of 60 ms, and a maximum of 55 missing gaze samples to

count as a fixation.

For analyzing the reading behavior of participants, we are

using a top-down approach with predefined patterns. Two

global patterns are, e.g., the Linear Scan and Jump Control,

also known as Story Order Reading (SOR) and Execution

Order Reading (EOR) (Busjahn et al., 2015). SOR is a

reading pattern from top to bottom, like a story in a normal

text, while EOR follows the program execution. Besides, we

use one visualization to show the fixation order of AOIs

(Deitelhoff, Harrer & Kienle, 2019a). Furthermore, we use

our analysis tool CodeSight, which provides the feature to

search for eye movement patterns (fuzzy search).

3. RESEARCH QUESTION
Previous research has shown the effects of different source

code examples on reading patterns, and of syntax

highlighting as a form of learning hint. Some studies found

effects for novices or in general (Asenov, Hilliges & Müller,

2016); some do not (Hannebauer, Hesenius & Gruhn, 2018).

The highlighting is used as a visual cue for programmers to

decrease the time required for mental execution. Novices

tend not to use/ignore the highlighting or misinterpret the

meaning completely. The objective of our study was to

investigate the effect of learning hints on the outcome of

source code comprehension processes. Additionally, we

analyzed how learners use and perceive the source code

examples. In summary, we tested the following research

questions and hypotheses.

 HAnswer-Quality We examined how the answer quality differs

between the various source code examples and learning

hints. We assume that more complex code examples have

less correct answers overall and that learning hints influence

the answer quality.

141

Figure 5. The study prototype with the code example “Bubble” and with syntax highlighting.

 HAnswer-Quality We examined how the answer quality differs

between the various source code examples and learning

hints. We assume that more complex code examples have

less correct answers overall and that learning hints influence

the answer quality.

 HPatterns-Answer-Quality We found the patterns Story Order

Reading (SOR), Execution Order Reading (EOR), and

Flicking in the visualized AOI-DNAs. We assume that the

presence of these patterns is correlated to more correct

answers.

 HWorkspace-Area-Switches We analyzed, which visual context

switches between important workspace areas of the study

prototype are common between learners. We propose that

different context switches, and therefore comprehension

strategies, are visible. A different perception of the

workspace can lead to different approaches in solving the

comprehension questions, which may affect CT strategies.

4. STUDY PROTOTYPE
We used three code examples Bubble, GCD, and Vehicle as

stimuli. They correspond to the algorithms Bubble Sort,

Greatest Common Divisor, and a class that represents a

Vehicle with methods like accelerating and decelerating.

The complexity of these code examples varies between

complex (Bubble), medium (GCD), and easy (Vehicle),

assessed with the help of researchers involved in education,

learning analytics, and teaching. Error! Reference source

not found. shows an example screenshot for the Bubble

source code. To measure how successful participants

comprehend the source code, we asked the following

comprehension questions:

Bubble "What does the list look like after two runs of the

outer loop?"

GCD "To which values are the variables 'number1' and

'number2 set after three runs of the loop?"

Vehicle "To which values are the objects 'vOne' and 'vTwo'

set at the end of the program?"

The code examples are fixed in their order (Bubble → GCD

→ Vehicle), but with varying hints. We distinguish between

passive and active learning hints. The first is always

available, and the latter needs to be used actively by the

participant. The hint Syntax Highlighting highlights the Java

code is passive and helps to navigate the code and focusing

on parts like variable assignment and logic (see figure 1).

The second hint, called Dynamic, allows learners to focus a

variable or curly bracket with the mouse to highlight the

scope of either the usage of the variable or the, of a source

code block. Therefore, this hint is active. The third hint,

called Plain, is our control group without any hints.

5. DATA BASIS & ANALYSIS RESULTS
In this section, we report the results of our quantitative and

qualitative analysis of every hypothesis. As the data basis,

we recorded n = 24 participants from the nearby University

campus, out of which seven were females and 17 males, with

a mean age of 26.29 (SD = 4.28). The participants were all

Computer Science students (semesters 1-10).

5.1. Answer Quality

The overall correct answers for the Bubble source code are

12, for the GCD again 12, and for the Vehicle 5. Therefore,

the Vehicle code example seems to be more complex. This

result is contrary to our assumption, from an algorithmic

perspective, that the GCD is the most complex code

example. It seems that many participants had problems with

the object-oriented task. If we additionally consider the time

limit of every code example, we can confirm our impression

that many participants had problems with the Vehicle task.

Four participants exceeded the time limit for the Bubble

source code, 2 for GCD, and 9 for the Vehicle.

The data also shows that the syntax highlighting learning

hint is balanced for the correct/incorrect answers. Syntax

highlighting seems not to be an essential factor related to

answering a comprehension question. Complex code is still

complicated. However, the difference between the dynamic

learning hint and the plain code examples are indecisive for

the Bubble and GCD code examples. For the first code, plain

has a more significant effect on correct answers than the

dynamic learning hint (5 to 3 participants). This result is

reversed for the GCD code examples, with a more

substantial effect for the dynamic help on correct answers (2

to 6 participants). This is positive for the dynamic learning

hint of the GCD code example and interesting for the Bubble

code example. Overall, this needs a more in-depth analysis,

how often the dynamic learning hint was used across code

examples. For the Vehicle code, both conditions with the

dynamic help and the plain text seems to have no positive

effect on the comprehension result. Again, this needs to be

analyzed further on how often the dynamic learning hint was

used.

142

Figure 6. AOI-DNAs for the participants 1 and 15 for the code examples Bubble, GCD, and Vehicle.

5.2. Reading Patterns to Answer Quality

As a first step, we are visualizing the gaze patterns of

participants in our analyzing platform CodeSight to reveal

the reading behavior. The visualization, in the form of our

AOI-DNAs, shows some similarities between the

participants. We describe our findings for participants 1 and

15 as examples. Error! Reference source not found. shows

the AOI-DNAs for both participants for all three code

examples. The visualization uses a grayscale color coding

for visualization of the source code lines from 1-n for the

line AOI model. The parts with, e.g., loops and methods, are

brighter, and the main method is darker. The question area

is light purple, whereas the answer area is light green.

For the Bubble code example, both participants almost

immediately start with reading the question, followed by

reading the main method and a SOR phase subsequently.

Afterward, the answer and code fragments are read

alternately. For the GCD code example, participants again

start with the question, followed by reading some parts of

the code. Afterward, participants, like 1 and 15, are

alternately reading the answer and sections of the code, with

participant 15 reading the main method more often. For the

Vehicle code example, participant 15 focuses more on the

question in the beginning, while participant 1 reads the code,

mostly the main method, first. Afterward, both participants

read parts of the code and the answer area.

Our analysis platform CodeSight supports searching for eye

movement patterns based on regular expressions, to find

common patterns linked to the assumption that they have

advantages for comprehending source code. For our

analysis, we searched for the Execution Order Reading

(EOR) and Flicking patterns. The SOR pattern is already

visible with the grayscale visualization and, because of the

length and diversity, hard to search for directly. The patterns

EOR and Flicking should show advantages for the

participant for answering the comprehension question

correctly. Searching for patterns is dependent on an

appropriate regular expression. The expressions are based on

the character labels for the AOIs. Therefore, we are

describing the transitions we found with these labels. For the

EOR, we are searching for AOI transitions like F|G|H|I →

E|D (Bubble), E|H|D → C (GCD), and T|U → C|D|E or Y|Z

→ M|N|O (Vehicle) whereas the vertical separators are used

only to indicate the different AOIs within the patterns

visually. For the Bubble code example, the pattern search

revealed, that the patterns F|G|H|I → E are often present in

the AOI-DNAs. These eye movement patterns are essential

because they encode reading and comprehending the loop

structures. The fuzzy pattern search also shows that most of

these patterns, especially F → E, and G → E, are visible for

participant 1 with a far better comprehension result

compared to participant 15. Reading and tracking the loop

structures is vital for comprehending the Bubble example.

For GCD, the second code example patterns like E|H|D →

C|D are important. We found multiple hits for E|D → C and

H → C|D. These are important patterns for the while loop

and jumps from the two branches within the if statement to

the while loop. Both necessary for comprehending the

structure and behavior of the GCD algorithm. As for the

Bubble code, we found differences between the two

participants. Reading and tracking the loop and the if

structures are vital for comprehending the GCD example.

These results are also true for the Vehicle code example. We

identified important patterns like T|U → C|D|E, X → G|H|I,

or Y|Z → M|N|O. These are encoding (a) jumps from the

main method, were, among other things, constructors are

called, to the constructor definitions, and (b) jumps from the

for loop in the main method with method calls to the

corresponding method definitions. In contrast to the other

two code examples, we found only a small amount of pattern

matches for both participants.

5.3. Workspace Switches

First, we analyzed the overall fixation time for the source

code examples and the distribution of these durations on the

three AOIs in the workspace AOI model. The overall

fixation time for the question area is the highest for the

Bubble source code. This result is not a surprise, because

sorting an array takes many fixations and thereby time to

complete. The highest fixation time for the Vehicle source

code without any help is too as expected and in line with our

other analysis. The Vehicle example is the most difficult one

according to the participants, and the plain condition without

any additional help amplified this difficulty level. For the

Bubble source code example, the most fixation time spent

on the code AOI with the dynamic learning hint. For the

GCD code example, the most fixation time spent again on

the code AOI, but this time with the syntax learning hint

available. The fixation time results for the Bubble and GCD

code examples are a bit surprising. We assumed that for the

syntax and dynamic learning hints, these values should drop.

One reason could be the lower usage rates we see in the data.

Another possible reason is, that for the syntax learning hint

transitions and therefore fixations are getting higher,

because participants can read the source code much better,

and for the dynamic learning hint transitions and fixations

between the source code and answer area are higher because

participants getting help from emphasized variables which

helps them answer the question.

143

5.4. Overall Comprehension Problems

Overall, we find more comprehension problems in the

Vehicle code example than in the other two code examples.

We visually analyze the fixation distributions on the stimuli.

For that reason, we superimpose the fixations on top of the

source code examples. In three cases, it is noticeable that

these participants do not have enough fixations on the for

loop in the main method. Therefore, it is explainable why

these participants failed the source code comprehension

questions. But overall, the fixation distribution is equally

good or bad compared to the other two code examples. We

assume that this difference has to do with object-oriented

programming because the Vehicle example uses a class with

methods, which are called in the loop within the main

method.

After the participants did the comprehension tasks, we asked

them in the conclusive interview the question, among others,

if they can identify the source code examples. Not on a

specific algorithmic level, but in a more meta-level way. The

specific question in the interview was: “What was the aim of

the individual program codes?”. For the code examples

Bubble and GCD, the participants could answer this

question very specifically most of the time (70%). Whereas,

the answers for the Vehicle code example were much less

precise. In most of the cases (> 80%), the participants could

only tell that it has something to do with “a vehicle, which

can be controlled”.

Besides, we analyze the duration time and fixation count of

every participant on the AOIs. Therefore, we can count the

overall durations and fixation counts per source code line.

The results show that the duration of important areas of the

source code examples is no decisive factor for a correct

comprehension question. For the Bubble source code,

important areas are D and E for the loop, F for the if

statement, and G, H, and I for swapping the values of two

array elements. Participants with a (very) high fixation

duration, and these AOIs are not answering the

comprehension question more correctly overall. The inner

loop (AOI-E) of the bubble sort seems to be the most

important one regarding the answers, but for the other AOIs,

the results are inconclusive, which is a bit different for the

GCD and Vehicle code examples, whereas the fixation

duration on important AOIs seems to have an impact on the

answer quality of the source code comprehension. In

contrast to our expectation, we found that the fixation

duration is not a good predictor of comprehension success.

This result is quite different for the fixation counts. We can

summarize that a participant, who fixates an important AOI

more often, gives overall more correct answers for the

comprehension questions, which is especially true for the

GCD and Vehicle code examples and source code elements

like loops and if statements.

6. SUMMARY & DISCUSSION
To our surprise, the Vehicle code example was the most

difficult one, regarding the answers of participants. We

initially assumed that the Bubble code is the most complex

one, regarding the complexity of the program structure

(nested loops). However, the study showed that many

participants have problems with the object-oriented code, no

matter which learning hint was available.

The dynamic learning hint was less used than expected. We

thought that our target group, with knowledge in

programming and therefore, development environments

would use this hint more frequently. Overall, the hint may

be useful for the GCD example but ambiguous for the other

two code examples. This finding needs more in-depth

analysis and a specific study if the dynamic learning hint is

a candidate for the dynamic learner support system.

Regarding the reading patterns on both used AOI models,

we found common patterns across all participants, code

examples, and learning hints. The analysis showed that these

patterns form groups. Furthermore, a first analysis showed

that these patterns are not the distinguishing factor for the

answer quality of participants.

7. REFERENCES
Asenov, D., Hilliges, O., & Müller, P. (2016). The Effect of

Richer Visualizations on Code Comprehension.

Proceedings of the Conference on Human Factors in

Computing Systems. ACM, 5040–5045.

Busjahn, T. Bednarik, R., Begel, A., & et al. (2015). Eye

Movements in Code Reading: Relaxing the Linear Order.

Proceedings of the IEEE International Conference on

Program Comprehension. IEEE, 255–265.

Deitelhoff, F., Harrer, A., & Kienle A. (2019a). An Intuitive

Visualization for Rapid Data Analysis: Using the DNA

Metaphor for Eye Movement Patterns. Eye Tracking

Research and Applications Symposium, 78-83.

Deitelhoff, F., Harrer, A., & Kienle, A. (2019b). The

Influence of Different AOI Models in Source Code

Comprehension Analysis. Proceedings of the 6th

International Workshop on Eye Movements in

Programming. IEEE Press, 10–17.

Greller, W., & Hoppe, U. (2017). Learning Analytics:

Implications for Higher Education. Books on Demand.

Hannebauer, C., Hesenius, M., & Gruhn, V. (2018). Does

Syntax Highlighting Help Programming Novices?

Proceedings of the International Conference on Software

Engineering 23(5), 2795–2828.

Njeru, A. M., & Paracha, S. (2017). Learning Analytics:

Supporting At-risk Student through Eye-Tracking and a

Robust Intelligent Tutoring System. Proceedings of the

2017 IEEE International Conference on Applied System

Innovation: Applied System Innovation for Modern

Technology. IEEE, 1002–1005.

Pea, R. D., & Kurland, D. M. (1984). On the Cognitive

Effects of Learning Computer Programming. New Ideas in

Psychology 2(2), 137–168.

Wing, J. M. (2006). Viewpoint: Computational Thinking.

Communications of the ACM 49(3), 33–35.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

144

Learning Behaviors Analysis of the Six Grader Students Integrating Educational

Robots with the Computational Thinking Board Game

Tzu-Chin ZHOU1, Ting-Chia HSU2＊

1,2National Taiwan Normal University, Department of Technology Application and Human Resource Development, Taiwan

K8k3k13@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT
This study aimed at integrating computational thinking board game with robots, so that learners put computational thinking

process into practice when they completed the tasks on the board game by controlling the action of the robots. The participants

were the sixth-grade students in Singapore. Two students divided into a team collaborated with each other and competed with

the other team composed of two students. This study developed a table of the behavioral coding schema according to the

observations of the students’ behaviors. From analyzing the overall learning behaviors of the students, this study evaluated

and found the learning behavioral patterns of the students in the learning circumstances.

KEYWORDS
computational thinking, board game, collaborative learning, behavior analysis

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

145

小學六年級學生使用教育機器人結合運算思維桌上遊戲之學習行為分析

周子敬 1，許庭嘉 2＊

1,2國立臺灣師範大學，科技應用與人力資源發展學系，臺灣

K8k3k13@gmail.com, ckhsu@ntnu.edu.tw

摘要

本研究旨透過運算思維桌上遊戲與機器人，讓學習者

透過控制機器人在桌遊上面完成任務，來實際練習運

算思維的歷程。本研究使用手機積木程式來控制桌遊

上面機器人的動作，以新加坡小學六年級學生為受測

對象，並以二人為一組的合作學習模式和另外二個人

的小組進行對戰。本研究根據學生的行為內容進行行

為編碼表，並且觀察學習者的完整學習過程，藉此來

評估即發現學習者在此學習情境下的學習行為模式。

關鍵字

運算思維；桌上遊戲；機器人；合作學習；行為分析

1. 前言

近年來，學習運算思維的概念變得非常重要，而且被

認為是在數位時代不可或缺的一種技能 Kalelioglu

（2016），甚至許多國家已經把運算思維的概念引入

到 K-12的課程當中（Grover & Pea, 2013），不論是在

資訊科技、數學、社會研究和程式設計，都有涉及到

運算思維的概念（Barr & Stephenson, 2011），運算思

維在當今社會的重要性，不言而喻。

許多研究也保持著讓每個人都要學習運算思維的想

法，但大多數都是使用機上程式設計來學習運算思維

的邏輯，因為透過程式設計，能夠實作運算思維中的

結構化、抽象化、問題拆解等能力，但這種抽象的程

式設計邏輯，並不適用在每個學習者身上，如果無法

引起學習者的動機，只會降低學習者的學習意願。

所以，本研究使用運算思維桌上遊戲，以遊戲式學習

的教學策略，藉以提高學習者的學習態度與動機，此

外，本研究還觀察學習者在學習過程中的所有行為，

並且開發行為編碼表，以序列行為分析的方式，觀察

學習者認知或行為的變化，希望找出學習者行為之間

的關聯性，以便找到更好的教學方法或策略，提升學

習者的學習成效和表現。

所以綜上所述，學習運算思維已經是全球趨勢，身處

在一個資訊爆炸的時代，幾乎人人都需要一點運算思

維的概念，本研究希望透過桌上遊戲式學習結合安譜

機器人，搭配手機應用程式控制的教學策略，並從中

把運算思維的抽象概念與程式設計的邏輯結合，藉以

吸引學習者的注意力，激發學習者的動力及效率，進

而讓學習者獲得更好的學習成效。

2. 文獻探討

2.1. 運算思維

運算思維，就是一種用電腦的邏輯來解決問題的思

維，雖然至今對於運算思維的定義還沒有一個統一的

答案（Zhao & Shute, 2019），最早的定義由學者

Jeannette Wing在 2006年時提出，Wing（2006）認為運

算思維是利用電腦科學的基本概念進行問題解決、系

統設計與人類行為理解的思維模式，而在 2010 年時

Wing 更進一步提出運算思維是提出問題及其解決方案

所涉及的思維過程（Wing, 2010）。

Wing（2006）認為電腦運算思考的技巧，並不只是電

腦科學家或是一些相關人員的專利，而是每一個人都

應該要具備的素養和能力，因為運算思維和我們日常

生活的關係越來越密切，舉凡醫療、購物、交通、社

交網路等等，都包含在其中，所以具有運算思維的能

力更能夠有效的解決日常生活中遇到的問題。。現在

最被大家所接受的是 Google 在自己的教育網站中所提

出的（Google, 2016），把運算思維分成心理的思考過

程，共有 11項定義，在本研究有涵蓋到的部分如：

抽象化：為定義主要概念去識別並萃取相關資訊，演

算法設計：設計出有順序的指令以解決問題或完成任

務，自動化：利用電腦或機器執行重覆性的任務，解

析：將資料、過程、問題拆解成較小、較容易處理的

部分，平行化：同時處理大任務時，也同時處理較小

的任務以有效達到解決問題目的，

2.2. 遊戲式學習

遊戲，既可以指人的一種娛樂活動，也可以指這種活

動過程。一般是以娛樂為目的，有時也有教育目的。

法國社會學家 Caillois（1957）定義了遊戲是有以下特

性的活動：有趣、獨立性、不確定性、虛構、無生產

性和受規則的約束，遊戲的分類有很多項，例如：數

位遊戲、桌上遊戲，本研究是使用桌上遊戲當作教具

進行教學活動。

學者 Hogle（1996）提出遊戲對於學習有下列優點：可

引發內在動機並提高興趣，遊戲中好奇與期望、控制

與互動性以及故事情節的幻想性等特性，都可提高學

習者的學習興趣和內在動機（ Dichev & Dicheva,

2017）。在保留記憶方面，相較於傳統的課程，模擬

遊戲在記憶保留方面有較好的效果（Acquah & Katz,

2020）。並且能提供練習及回饋，許多遊戲學習軟體

提供練習的機會，讓學習者可以反覆的操作，並獲得

即時的回饋，讓學習者可以自我評估學習成效，促進

學習目標的達成。提供學習者高層次的思考，將教學

內容融入遊戲當中，讓學習者不斷的在遊戲中解決問

題、做決定，學習者要能夠整合自己所學，以找到解

決方式。教學內容將不斷的重複進入學習者記憶中，

是最好的學習形式。

遊戲式學習可以積極激發學生在課堂上的行為

（Simões, Redondo, & Vilas, 2013）中，遊戲式學習將激

勵他們付出更多的努力在這門科目上。遊戲式學習也

可以顯著增強學生在合作學習中的參與度（Hew,

Huang, Chu, & Chiu, 2016）。Lin and Davidson-Shivers

146

（1996）的研究中發現採用遊戲式學習後，學生的最

終成績得到了顯著提高。Ebner and Holzinger（2007）

的研究中表示，大多數學生，他們參與過遊戲式學習

之後會去主動進行遊戲式學習。所以根據上述研究，

可以通過遊戲式的學習環境來培養學生的學習成就以

及課堂參與度。

2.3. 序列行為分析

序列分析，或者稱行為序列分析是將研究對象的行為

資料進行編碼，依照行為出現的先後順序，找出一個

行為接著另外一個行為出現的頻率，並以二項式檢定

計算編碼與編碼之間的轉換是否有達到顯著性的一種

方法（Sackett, 1980）。

序列行為分析的目的是為了瞭解學習者在學習過程

中，依照研究者實施不同的教學策略，觀察學習者認

知和行為改變當中的交互作用，並且了解哪些行為對

於學習者來說是有意義的學習，以及學習者行為反應

之間的關聯性。

行為序列分析也在不同的領域中使用（Bakeman,

1997），過去也早有過將教育遊戲結合行為分析的研

究（Barab et al., 2009），而本研究也是探討以遊戲式學

習的教學方法觀察學習者的行為過程，就從這邊可以

將學習者行為轉換，分析究竟哪些是屬於比較明顯的

議題，藉此了解何種學習行為促使學習動機提升，了

解學習者學習的認知成果，並藉此找到更好的教學策

略與方法（Chang et al., 2014）。

2.4. 合作學習

合作學習，是一種有系統性的教學策略（ Slavin,

1985），讓學習者在小組與同儕之間相互學習，分享

大家的觀點並共享成果（Parker, 1985），這種以學習

者為主角的教學過程裡，除了個人的努力之外，每位

成員也要有所貢獻，以達到共同設定的目標，而老師

在其中只扮演引導者和協助者的角色（ Joe Cuseo,

1992）。

合作學習大都包含下列五項要素（Johnson, Johnson, &

Holubec, 1994），積極互相依賴是指學習者能知覺到自

己與小組是榮辱與共的，因此組內的每一個成員都要

一起努力，以完成任務（Nattiv, 1994）。面對面的助長

式互動是組內學習者可以相互助長彼此學習的成效，

例如鼓勵組內的其他同儕、努力完成任務、達成共同

目標。個人責任是指如果個人的表現不好，小組的表

現也不會好。因此，合作學習除了注重小組的整體表

現外，更重要的是個人的表現。在合作學習下，學生

就會察覺到個人的努力與小組相關，所以反而會更督

促自己。人際與小組技能是學習者之間如果有好的協

同合作，將會有高品質、高效率的學習成效。在合作

學習的情境下，彼此之間互動磨合，發生衝突無法避

免，所以要教導學習者：相互信任、良好溝通、相互

接納、化解衝突。團體歷程是指給予學生適當的時間

及去檢討小組的運作狀況，強調自我檢視的重要性，

並檢視組員在過程中哪裡需要改進的一種反思過程。

所以綜合合作學習可以帶來的好處。比如：可以幫助

學生提升深度學習和批判性思考的能力（Munir,

Baroutian, Young, & Carter, 2018），促進學生擁有更高

的學習成效、提高學生的社會競爭力，讓學生獲得更

好的學程成就等等。

3. 研究方法

3.1. 實驗對象

本次實驗由 25 位來自新加坡中的一所小學六年級學

生，13名男生 12名女生，這些學習者的平均年齡為 11-

12 歲，教學課程主要是以遊戲式學習配合機器人，以

手機應用程式控制機器人的行為，讓學習者學習運算

思維的概念，釐清運算思維的抽象意義，進而提高學

習者的學習成效。

3.2. 行為編碼表

本實驗透過遊戲式學習的教學策略，記錄學習者在實

驗過程中的所有行為，並將資料進行編碼，行為編碼

表如表 1所示，分析學習者在實驗過程的所有行為，並

探討行為之間的關聯性。

表 1 行為編碼表

類別 代碼 意義 範例

運算思維

編碼

PP(People&People) 組內對談 同組的兩個人在

對談

PC(People

Commnication)
組外對談 與別組在對談

PR(People & Robot) 使用機器人 掃描卡牌使機器

人移動

ID(Individual Decision) 個人使用任務卡 使用石頭、砂

土…等，放置任

務卡上
CD(Cooperation

Decision)
共同使用任務卡

AT(Algorithm) 使用卡牌 排除卡牌(前

進、左轉…等)

PM(Physical Message) 姿體表達 行為左右轉、手

勢左右轉…等

AG(Abstraction

General)
資料簡化或用其他

方式表達

單程式方法便迴

圈方式表達

其他

LI(Learning Interaction) 被觀察者正在練習

口語互動

自己口語互動

IM(Irrelevant Message) 無關課程 發呆、離開座

位…等

SP(Separate) 組內做不同的事 各做各的事

3.3. 評估工具

本次實驗使用 Robots city 桌上遊戲配合安譜機器人進

行，加上手機應用程式，並以程式設計的邏輯控制機

器人的行為，在本次實驗透過觀察學習者的行為並開

發編碼表，研究學習者的行為資料進行編碼，並利用

序列分析之殘插表的 Z分數檢定來解釋編碼與編碼之間

的轉換是否有達到顯著性的關聯。

學習者自行搭建完所需之場景後，接著教師便會指派

APP的關卡任務，讓學習者自行設計機器人的動作如圖

1，進行通關任務。

147

圖 1 學習者使用手機 APP自行設計安譜機器人的行為

4. 實驗設計與結果

本次實驗的樣本為新加坡小學六年級的學生，旨在以

遊戲式學習的教學策略下配合安譜機器人，並使用手

機應用程式，以程式設計的邏輯控制機器人的行為，

藉以讓學習者了解運算思維的抽象概念，並觀察學習

者在實驗過程中的所有行為，透過序列行為分析，了

解學習者在學習過程中發生的行為順序之間的關聯

性，從而瞭解學習者學習的認知成果。

實驗流程如圖 2所示，一開始時在教師進行間單的講解

之後，學習者便可以自行搭建 Robots city所需之場景，

接著教師便會指派不同的 APP 任務讓學習者依照指示

通關，並將學習者以 3~4人一組，進行分組競賽，藉此

來評估學習者在遊戲式學習的教學策略下中是否了解

運算思維的概念。

 圖 2 實驗流程

透過 GSEQ分析後的 Z分數的結果為表 2所示，其中

若 Z分數大於 1.96則表示行為間有顯著關係。

表 2 Z分數分配表

使用遊戲式學習搭配安譜機器人，並以手機應用程式

導入程式設計的邏輯，用來控制機器人的行為，對學

生的行為進行分析，圖 3 為 Z 分數比較表的視覺化呈

現，在實驗過程中的行為，會發現同一組學習者在與

另一組交換意見過後，會與自己同組的成員進行討論

PC→PP。

而在操作手機應用程式控制機器人時，學習者一開始

在還沒有任何問題的拆解時便會先操控手機 APP，進

行一些簡單的演算法步驟，爾後開始遇到問題時才會

進行拆解，接著才會再次操作手機 APP，讓機器人進

行正確的動作進而完成這次的指派任務 PR→AT→ID→

PR。

圖 3 Z分數比較表

5. 結論與未來展望

在本研究主要探討桌上遊戲式學習結合安譜機器人，

並從中導入運算思維的概念，還進一步結合了手機應

用程式的教學策略，讓學習者透過本研究之系統了解

運算思維的抽象概念。除此之外，本研究還開發行為

編碼表，紀錄學習者在研究過程中的所有行為，分析

學習者在實驗過程中的哪些行為有顯著差異，研究結

果顯示，同一組學習者在與另一組交換意見過後，會

與自己同組的成員進行討論 PC→PP。研究推論，因為

在各組別之間進行討論時，也會想要了解其他組別討

論出來的意見，所以會想要跟其他組別進行交流，彼

此交換完意見後，自己組員分享其他組的觀點，讓討

論的過程更加完善。

另一方面，而在操作手機應用程式進行程式設計操控

機器人的行為時，學習者一開始在還沒有任何問題的

拆解時便會先操控手機 APP，進行一些簡單的演算法

步驟，爾後開始遇到問題時才會進行拆解，接著才會

再次操作手機 APP，讓機器人進行正確的動作進而完

成這次的指派任務 PR→AT→ID→PR。研究推論，因

為學習者可能第一次接觸到手機、平板、機器人等裝

置，所以學習者一拿到裝置時，出於好奇，會先自己

使用看看，讓機器人進行一些簡單的演算法步驟，而

後才會開始進行問題拆解，想好如何設計機器人的行

為，在遊戲化的過程中完成這一次的指派任務，從這

裡也可以發現，使用本研究的學習者在遊戲過程中確

實累積了一些運算思維中的演算法設計、自動化、問

題解析等概念。然而，在本研究中仍存在部分限制，

本研究中的研究對象為新加坡國小六年級的學生，沒

有包含所有區域之學生，未來可以將相同年級的學生

納入研究，探討彼此之間是否存在差異。

綜上之結論提出以下之建議，本研究使用 Robots city桌

上遊戲，讓學習者可以透過遊戲式學習培養運算思維

的概念，並搭配手機應用程式，以程式設計的邏輯控

制機器人的行為，藉以分析學習者在研究過程中的行

為，所以未來的研究可以嘗試使用別種科技工具，也

建議可以與不同科目或導入不同的教學策略，分析學

習者在過程中會不會有其他的行為達到顯著差異，還

可以進一步探討學習者的學習成效，如此一來更能夠

幫助學習者進行更有效的學習，也可以幫助教師找到

更有效的教學策略，提高教學品質。

6. 致謝

本研究感謝科技部研究計畫編號 : MOST 108-2511-H-

003 -056 -MY3的部分補助。

148

7. 參考文獻

Acquah, E. O., & Katz, H. T. (2020). Digital Game-based

L2 Learning Outcomes for Primary through High-School

Students: A Systematic Literature Review. Computers &

Education, 143, 103667. doi:

https://doi.org/10.1016/j.compedu.2019.103667

Bakeman, R., & Gottman, J. M. (1997). Observing

Interaction: An Introduction to Sequential Analysis.

Cambridge University Press.

Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-

Goble, A., Zuiker, S. J., & Warren, S. (2009).

Transformational Play as a Curricular Scaffold: Using

Videogames to Support Science Education. Journal of

Science Education and Technology, 18(4), 305.

doi:10.1007/s10956-009-9171-5

Barr, V., & Stephenson, C. (2011). Bringing Computational

Thinking to K-12: What is Involved and What is the Role

of the Computer Science Education Community? ACM

Inroads, 2(1), 48-54.

Caillois, R. (1957). Les Jeux et les Hommes. Paris:

Gallimard.

Chang, S. P., Hou, H.T., Sung, Y,T., & Chang, K. E. (2014).

Applying Sequential Analysis to Teaching Methods: Case

Study of a CSL Classroom. International Journal of

Research in Social Sciences, 4(1), 1-16.

Dichev, C., & Dicheva, D. (2017). Gamifying Education:

What is Known, What is Believed and What Remains

Uncertain: A Critical Review. International Journal of

Educational Technology in Higher Education, 14(1), 9.

doi:10.1186/s41239-017-0042-5

Ebner, M., & Holzinger, A. (2007). Successful

Implementation of User-Centered Game Based Learning

in Higher Education: An Example from Civil Engineering.

Computers & Education, 49(3), 873-890. doi:

https://doi.org/10.1016/j.compedu.2005.11.026

Google. (2016). Computational Thinking Concepts Guide.

Retrieved July 19, 2016, from

http://computationalthinking.pbworks.com/w/file/fetch/1

08605812/ComputationalThinkingConceptsGuide.pdf

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

doi:10.3102/0013189X12463051

Hew, K. F., Huang, B., Chu, K. W. S., & Chiu, D. K. W.

(2016). Engaging Asian Students through Game

Mechanics: Findings from two Experiment Studies.

Computers & Education, 92-93, 221-236. doi:

https://doi.org/10.1016/j.compedu.2015.10.010

Hogle, J. G. (1996). Considering Games as Cognitive Tools:

In Search of Effective "Edutainment". ERIC

Clearinghouse.

Joe Cuseo, J. B. (1992). Cooperative Learning vs. Small-

Group Discussions and Group Projects: The Critical

Differences. Cooperative Learning and College Teaching,

2(3), 4-9.

Johnson, D. W., Johnson, R. T., & Holubec, E. J. (1994).

The New Circles of Learning: Cooperation in the

Classroom and School. ASCD.

Kalelioglu, F. G., Yasemin; Kukul, Volkan. (2016). A

Framework for Computational Thinking Based on a

Systematic Research Review. Baltic Journal of Modern

Computing, 4(3), 583-596.

Lin, C.-H., & Davidson-Shivers, G. V. (1996). Effects of

Linking Structure and Cognitive Style on Students’

Performance and Attitude in a Computer-Based Hypertext

Environment. Journal of Educational Computing

Research, 15(4), 317-329. doi:10.2190/JU82-YHCA-

X5DR-EHYU

Munir, M. T., Baroutian, S., Young, B. R., & Carter, S.

(2018). Flipped Classroom with Cooperative Learning as

a Cornerstone. Education for Chemical Engineers, 23, 25-

33. doi: https://doi.org/10.1016/j.ece.2018.05.001

Nattiv, A. (1994). Helping Behaviors and Math

Achievement Gain of Students Using Cooperative

Learning. The Elementary School Journal, 94(3), 285-297.

doi:10.1086/461767

Parker, R. E. (1985). Small-Group Cooperative Learning-

Improving Academic, Social Gains in the Classroom. Nass

Bulletin, 69, 48-57.

Sackett, G. P. (1980). Lag Sequential Analysis as a Data

Reduction Technique in Social Interaction Research.

Exceptional infant. Psychosocial Risks in Infant-

Environment Transactions, 4.

Selby, & Collins, C. (2013). Computational Thinking: The

Developing Definition. University of Southampton

Simões, J., Redondo, R. D., & Vilas, A. F. (2013). A Social

Gamification Framework for a K-6 Learning Platform.

Computers in Human Behavior, 29(2), 345-353.

doi:https://doi.org/10.1016/j.chb.2012.06.007

Slavin, R. E. (1985). Cooperative Learning: Applying

Contact Theory in Desegregated Schools. Journal of

Social Issues, 41(3), 45-62. doi:10.1111/j.1540-

4560.1985.tb01128.x

Swaid, S. I. (2015). Bringing Computational Thinking to

STEM Education. Procedia Manufacturing, 3, 3657-3662.

doi: https://doi.org/10.1016/j.promfg.2015.07.761

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49, 33-35.

Wing, J. M. (2010). Computational Thinking: What and

Why? Retrieved November 17, 2010, from

https://pdfs.semanticscholar.org/628a/da255c83abfee869

3132310cba2ccfaed5a6.pdf?_ga=2.10897140.110636630

3.1576479702-448492393.1576479702

Zhao, W., & Shute, V. J. (2019). Can Playing a Video Game

Foster Computational Thinking Skills? Computers &

Education, 141, 103633. doi:

https://doi.org/10.1016/j.compedu.2019.103633

https://doi.org/10.1016/j.compedu.2019.103667
https://doi.org/10.1016/j.compedu.2005.11.026
http://computationalthinking.pbworks.com/w/file/fetch/108605812/ComputationalThinkingConceptsGuide.pdf
http://computationalthinking.pbworks.com/w/file/fetch/108605812/ComputationalThinkingConceptsGuide.pdf
https://doi.org/10.1016/j.compedu.2015.10.010
https://doi.org/10.1016/j.ece.2018.05.001
https://doi.org/10.1016/j.promfg.2015.07.761
https://pdfs.semanticscholar.org/628a/da255c83abfee8693132310cba2ccfaed5a6.pdf?_ga=2.10897140.1106366303.1576479702-448492393.1576479702
https://pdfs.semanticscholar.org/628a/da255c83abfee8693132310cba2ccfaed5a6.pdf?_ga=2.10897140.1106366303.1576479702-448492393.1576479702
https://pdfs.semanticscholar.org/628a/da255c83abfee8693132310cba2ccfaed5a6.pdf?_ga=2.10897140.1106366303.1576479702-448492393.1576479702
https://doi.org/10.1016/j.compedu.2019.103633

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

149

Computational Thinking and

Non-formal Learning

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

150

Implementing a Computational Thinking Curriculum with Robotic Coding

Activities through Non-formal Learning

Poh-tin LEE1*, Chee-wah LOW2

1,2 Bukit View Secondary School, Singapore

lee_poh_tin@moe.edu.sg, low_chee_wah@moe.edu.sg

ABSTRACT

This paper shares the implementation of a robotic coding

curriculum for the students to develop Computational

Thinking skills through non-formal learning at a secondary

school in Singapore. These after-school activities are

implemented for students who are members of the school’s

Infocomm Club. The students learn to program the robotic

balls using block-based coding and apply problem solving

skills in their projects using recycled materials for green

environment. The projects are also designed for the students

to apply Mathematics and Science concepts.

KEYWORDS

non-formal learning, coding, computational thinking,

curriculum, implementation.

1. INTRODUCTION
At the Bukit View Secondary School, 38 students of the

Infocomm Club are between age 12 and 17 years old. These

students acquire Computational Thinking skills (Wing,

2006) through non-formal learning in the after-school

activities (Lee et al., 2019).

The Infocomm Club runs various programmes for the

students to learn coding such as Scratch programming

(Maloney et al., 2010), Python programming (Rashed &

Ahsan, 2012) and MIT’s App Inventor (Wagner et al.,

2013). A new Robotic Ball Coding Programme has been

implemented to excite the students through coding of the

Sphero balls (www.sphero.com) using block programming.

2. RATIONALE FOR USING ROBOTIC

BALLS
There are various electronics platform available for the

teaching of coding to infuse Computational Thinking skills.

In the new programme, teachers of the school’s Infocomm

Club facilitate the students to code on robotic ball as it comes

with built-in sensors such as accelerometer (measure

motion), gyroscope (measure tilt angles), light sensor

(measure luminosity), infrared sensor (measure relative

distance between robotic balls) and compass sensor

(measure orientation in real-world directions).

Other microprocessor boards usually require motors and

wheels to be attached for movement. With robotic balls, the

students can now focus on coding activities to move or rotate

these balls without other hardware accessories.

3. THE ROBOTIC BALL CODING

CURRICULUM
Under the Robotic Ball Coding Programme, the students

learn through activities which make use of the built-in

sensors of the Sphero robotic balls such as the accelerometer

sensor, gyroscope sensor and control its sound and LED

lights. The students also create prototypes such as maze and

tractor vehicles using recycled materials for green

environment including card boards, ice-cream sticks and

paper cups. Table 1 shows the topics and activities of the 6-

week Robotic Ball Coding Curriculum with projects on

Music, Mathematics and Science.

Table 1. Robotic Ball Coding Curriculum.
Week Topic Activity

Week 1 Introduction and

Loop Statements

Navigate the Robotic Ball

through a maze.
Week 2 Variables and

Conditional if-else

Statements

Create games with the built-in

sensors.

Week 3 More fun with if-

else Statements

Create a futuristic Robotic Ball

using the Accelerometer Sensor.

Week 4 Mathematics
Project

Control the LED lights based on
the Gyroscope Sensor’s axes of

rotation.

Week 5 Music Project Synchronize the Robotic Ball
dancing with a song.

Week 6 Science Project Build a tractor vehicle and

explore force and motion.

4. IMPLEMENTATION OF THE

ROBOTIC BALL CODING

CURRICULUM
The students learn to program the robotic balls using Sphero

Edu App installed on the iPads. This app allows students to

code through Draw Programming, Block Programming and

Text Programming using Javascript (Sphero Edu, 2019).

As the Infocomm Club comprises of both junior and senior

members, the students are taught the Block-based

Programming (Kelleher & Pausch, 2005; Weintrop &

Wilensky, 2017) which is easier to learn than Text

Programming. A block program code using the Sphero Edu

App is shown in Figure 1.

Figure 1. Block program code using Sphero Edu App.

To infuse more elements of fun, a Sphero Race Competition

is held and the students are required to code their robotic

balls to move through a race course where speed, inertia and

obstacles have to be taken into account. After each stage, the

students are allowed to improve their program code. Figure

151

2 shows the final stage of the race with 2 Sphero balls in the

competition.

Figure 2. Final stage of the Sphero Race Competition.

5. SURVEY RESULTS
After the 6-week Robotic Ball Coding Programme, a survey

was conducted for the 38 students of the Infocomm Club.

95% of the students enjoyed coding activities on robotic

balls. 87% of the students have expressed that they can

develop Computational Thinking skills to solve real-world

problems as shown in Figure 3. Similarly, 87% of the

students also expressed that they can apply Mathematics and

Science concepts in the coding activities as shown in Figure

4. Some students have faced challenges in testing and

debugging the errors in their programs.

Figure 3. Survey Question 1: I can develop Computational

Thinking to solve real-world problems with

robotic balls.

Figure 4. Survey Question 2: I can apply Mathematics and

Science concepts in the coding activities.

At the end of the programme, some students gave the

following feedback:

“I am able to use coding to control the ball.”

“I like the coding when the balls start dancing.”

“I can apply Mathematics and Science in the coding.”

“I like making the ball move to a light source.”

“I can use the raw motors to make the balls bounce like

crazy.”

6. CONCLUSION
This paper shares the rationale, curriculum and

implementation of Computational Thinking with robotic

coding activities on Sphero balls through non-formal

learning at the school’s Infocomm Club. The 6-week

programme enables students to develop Computational

Thinking through block-based coding with built-in sensors

and create prototypes using recycled materials. The survey

results show that the students are motivated as they find

coding with Sphero balls to be fun and they could apply

Science and Mathematics concepts in their projects. Future

study will explore on coding with projects that involve

integration of knowledge from various subject matters.

7. REFERENCES
Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to

Programming: A Taxonomy of Programming

Environments and Languages for Novice Programmers.

ACM Computing Surveys (CSUR), 37(2), 83-137.

Lee, P. T., Lee, X. R., Low, C. W., & Kokila, A. (2019).

Implementing Computational Thinking through Non-

formal Learning in after School Activities at Students

Society Club. Proceedings of the International Conference

on Computational Thinking Education 2019, 201-202.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The Scratch Programming Language

and Environment. ACM Transactions on Computing

Education, 10(4), 16.

Rashed, M. G., & Ahsan, R. (2012). Python in

Computational Science: Applications and Possibilities.

International Journal of Computer Applications, 46(20),

26-30.

Sphero Edu. (2019). Programming. Retrieved Nov 1, 2019,

from https://support.sphero.com/article/cptfh361pk-

programming-with-sphero-edu

Wagner, A., Gray, J., Corley, J., & Wolber, D. (2013). Using

App Inventor in a K-12 Summer Camp. Proceedings of the

44th ACM Technical Symposium on Computer Science

Education, 621-626.

Weintrop, D., & Wilensky, U. (2017). Comparing Block-

Based and Text-Based Programming in High School

Computer Science Classrooms. ACM Transasctions on

Computing Education 18(1), 3.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35.

https://support.sphero.com/article/cptfh361pk-programming-with-sphero-edu
https://support.sphero.com/article/cptfh361pk-programming-with-sphero-edu

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

152

General Submission to

Computational Thinking

Education

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

153

Investigating the Effects of Gender and Scaffolding tools on the Development of

Preschooler’s Computational Thinking

Kyriakoula GEORGIOU1*, Charoula ANGELI2,

1,2 University of Cyprus, Cyprus

georgiou.kyriakoula@ucy.ac.cy, cangeli@ucy.ac.cy

ABSTRACT

A large body of literature emphasizes the importance of

effective integration of computational thinking at preschool

education (Ching, Hsu, & Baldwin, 2018) as it is enlisted in

the 21st century skills (Lye & Koh, 2014). Nonetheless, the

factors related to the development of computational thinking

are under investigation (Román-González, Pérez-González,

Moreno-León, & Robles, 2018). Consequently, the study

herein investigated the impact of scaffolding and gender in

the development of one hundred and eighty children’s

computational thinking. The results indicated strong

interaction (p<0.000) between the aforementioned factors

and the advancement of computational thinking producing

practical suggestions for the preschool educators and the

computing community in general.

KEYWORDS

computational thinking, scaffolding tools, gender, young

children, robotics

1. INTRODUCTION
Science, technology, engineering and mathematics (STEM)

are the cornerstones of our society that upon them its healthy

development is constructed (Chabbott & Ramirez, 2000).

However, there is an oppressive shortage of human

resources in the aforementioned areas and simultaneously a

declining trend in the number of students choosing STEM

courses (Bøe, Henriksen, Lyons, & Schreiner, 2011). In

addition it is predicted that by 2020, the 50% of STEM jobs

will be in computing (ACM Pathways Report, 2013).

Computational thinking is a fundamental concept of

computer science emerging from its basic principles and

practices (Sengupta, Kinnebrew, Basu, Biswas, & Clark,

2013) while at the same time improves computing education

since it derives methods from different disciplines (Guzdial,

2008). In environments where computation thinking has

been used as a tool for learning STEM content it has been

shown to synergistically deepen learning of the STEM topics

and computing concepts (Sengupta et al., 2013).

Computational thinking is being described as a key set of

skills (Guzdial, 2008; Wing, 2008) involved in problem

solving (Bocconi et al., 2016). Its core elements are:

abstraction, generalization, decomposition, algorithmic

thinking and debugging (detection and correction of errors)

(Angeli et al., 2016). It is discussed in the computing

community that is of great importance the development of

computational thinking to be realized within school contexts

and furthermore to be integrated in the curricula (Grover &

Pea, 2018). Although several empirical studies have been

conducted studying the development of computational

thinking in elementary and high school settings however, the

research area of the development of computational thinking

in preprimary education is still in its infancy (Bers, Flannery,

Kazakoff, & Sullivan, 2014).

The teaching and the development of computational

thinking especially in the early childhood education is

mainly being implemented with the use of the robotics (Bers

et al., 2014). Recent studies support the introduction of

robotics in preprimary education since they reported that the

active manipulation of the various robotics tools can

enhance the learning experience of the children. In addition

the use of robotics can advance the development of cognitive

skills (Papert, 1980); social skills and engineering design

skills (Bers, 2008).

Programming is theorized as a teaching approach

interwoven with the learning of robotics (Papert, 1980)

supporting the implementation of cognitive tasks directly

correlated to the development of computational thinking

(Lye & Koh, 2014). in this study the design pattern of Papert

(1993) “low floor and high ceiling” was embraced which is

considered suitable for programming educational robots

(Resnick & Silverman, 2005).

Among the contributing factors that are directly connected

to the development of computational thinking is gender

since there are consistent findings in the literature that

support the claim that gender differences influence student

learning (Duckworth & Seligman, 2006) and school

achievements (Sousa & Tomlinson, 2011). More

specifically neuroscience studies recite that these differences

are interwoven with the fact that girls’ and boys’ brain have

morphological variances resulting to more cortical areas

devoted to verbal functioning and visual-spatial information

processing respectively (Baron-Cohen, 2004). Accordingly

girls are better at verbal and sensory memory and boys at

visual memory (Bonomo, 2011), justifying the fact that girls

are excelling in complex tasks of reading and writing

whereas boys in tasks which involve mental rotation (Maeda

& Yoon, 2013).

Another factor which is scrutinized in the present study is

scaffolding. It is well documented in the literature that the

use of scaffolding is imperative in education especially,

when learning is accompanied by technological tools

(Azevedo & Hadwin, 2005). Moreover scaffolding

provision is essential especially for young students (Belland,

2014) since in its absence students may fail to complete the

task (Van de Pol, Volman, & Beishuizen, 2010). Studies

connected scaffolding with the theory of the cognitive load

due to the fact that scaffolding tools support the reduction of

cognitive load that is being imposed to student during

learning (Myhill & Warren, 2005) while at the same they

improve the acquisition of cognitive skills (Reid-Griffin &

Carter, 2004).

154

2. RESEARCH PURPOSE
Very little research has been conducted exploring gender

differences and the impact of different types of scaffolding

tools in young children’s robotics and programming abilities

(Angeli & Valanides, 2019; Sullivan & Bers, 2013) most

likely because the use of robotics and programming in early

childhood classrooms is relatively new.

The research aim is two folded as it focus on investigating

the effects of different scaffolding tools on children’s

computational thinking in preprimary education and at the

same time it examines whether the two different types of

scaffolding tools have a different impact on boys’ and girls’

performance on the scores of computational thinking.

3. THEORITICAL BACKGROUND

3.1. Participants

The participants were one hundred and eighty preschoolers,

ranging in mean age from five to six years old. The

researchers obtained written consent from their parents to

participate in the study.

3.2. Research Materials

3.2.1. Problem-solving Tasks

Three different problem-solving tasks, corresponding to

three different research phases, were designed for the

children to program and direct the Bee-Bot into different

paths. Children had twenty minutes at their disposal to

complete each problem-solving task. The first problem-

solving task engaged children into an exploration of the

commands of the programming language of the Bee-Bot and

it consisted of thirteen subtasks. The second task consisted

of five subtasks aiming to teach children how to formulate

sequences of commands in increasing levels of complexity.

Finally the third task comprised of five subtasks that were

used to evaluate children’s computational thinking.

3.2.2. Modeling-Based Scaffolding

This scaffolding tool is a representation of the floor mat, the

robotic toy Bee-Bot and the programming commands all in

reduced size. The child thought about the algorithm and

constructed a representation of it using the model that was

used to support his/hers endeavor to guide the Bee-Bot into

the task’s path.

3.2.3. Code Structure-Based Scaffolding

This type of scaffolding included small laminated cards

representing each of the Bee-Bot commands and a larger

laminated card and was developed to simulate the way the

code is being written while programming. For this reason the

participants were asked to choose the cards and attached

them in the larger card in the order they believed it was the

correct one. With this way they formed a sequence of

commands that visualize the algorithm and then tested it.

3.3. Research Procedures

Research procedures consisted of three research phases that

were administered in three consecutive days. All of the

research phases were conducted individually for each

participant. The first day, during Phase 1, all the children

became acquainted with the basic commands of the Bee-Bot

and small sequences of commands.

On the following day, during Phase 2, the children were

randomly divided into three equivalent groups as shown in

Table 1. In the first experimental group, children used the

modeling-based scaffolding tool, while in the second

experimental group, they used the code structure-based

scaffolding tool. The last group of children constituted the

control group where they worked with no scaffolding tool.

During this phase, children learned small codes that

comprised sequences of commands with a minimum length

of four commands and a maximum of seven. Children were

evaluated for their initial attempts to solve the problem

solving task. More specifically, children developed a

sequence of commands and used it by pressing the

corresponding buttons. Then, they observed which path

Bee-Bot would follow and if the path was not correct, they

had the opportunity to try again. During the last phase, Phase

3, the scaffolding tools were withdrawn and children’s

performance was assessed while trying to carry out the third

problem-solving task.

Table 1. Participants’ Distribution into the Two

Experimental Groups and the Control Group According to

Their Gender

3.4. Data Analysis

This study used a total of one hundred and eighty hours of

video data. The entire process of the individualized

instruction that resulted from children’s interactions with the

Bee-Bot was videotaped, transcribed and analyzed over one

year period. Many researchers propose various software for

coding recorded data however their use was not applicable

in the present study. The reason for this is that the human

interpretation process of the data was deemed necessary in

this research since the robotic device (Bee-Bot) that was

used in the herein study, is designed to support a playful

learning process (Bers et al., 2014) and in such learning

environments, children's actions are coded by researchers

(Basu, Biswas, & Kinnebrew, 2017). Consequently, the

researchers had to observe the videotaped videos and record

the actions of the children corresponding to the command’s

choices. Specifically, the researcher recorded which buttons

the children selected in their various attempts to solve the

problem of each teaching intervention. Following, the

research data were analyzed using the method of process

coding (Saldaña, 2015), which is considered to be ideal

when the observed actions of the participants include

problem solving (Corbin & Strauss, 2008). At first, four

videos from each group were coded from two researchers to

ensure validity and afterwards researchers' coded videos

independently.

Groups Participants

Control Group 60 Boys Girls

37 23

Model-Based Scaffolding 60 Boys Girls

35 25

Code-Based Scaffolding 60 Boys Girls

26 34

Total 180 96 82

155

4. Results

4.1. Computational Thinking Assessment Rubric

The researchers collected data from all the one hundred and

eighty students for each problem-solving task and then

identified whether students solved the tasks correctly on

their first attempt or whether they required more attempts.

Based on the analysis, a rubric was created that scores

students’ total effort along two aspects: (a) number of

attempts and (b) the ability to complete the tasks step by

step.

4.2. Computational Thinking

The picture emerging from the descriptive statistics shown

in Table 3 indicates an advantage of male participants. In all

groups, during the initial and final assessment of the

computational thinking in Phase 2 and Phase 3, boys seem

to outperform girls. A 2 X 3 analysis of variance was

conducted to determine whether there was statistically

significant difference between boys and girls on the different

forms of scaffolding strategies during the assessment of

computational thinking in Phase 2. The results revealed that

only the use of scaffolding tool (F (2, 179) = 49.26, p <

0.000) was statistically significant for the scores of

computational thinking. In order to detect the differential

performance on the computational thinking regarding to

scaffolding tools, the researchers performed post-hoc LSD

comparisons. The results showed that both modeling-based

scaffolding and code structure-based scaffolding

outperformed the control group.

Table 2. Descriptive Statistics of Children’s Computational

Thinking in Phase 2 for each Scaffolding tool and Gender
Research Phase2

 Mean SD Ν

Modeling-Based Scaffolding

Girls 246,08 17,94 25

Boys 239,40 43,81 35

Total 485,48 61,75 60

Code Structure-Based Scaffolding

Girls 226,11 39,75 34

Boys 230,13 22,92 26

Total 456,24 62,67 60

Working without Scaffolding (Control Group)

Girls 156,60 57,11 23

Boys 180,21 44,00 37

Total 336,81 101,11 60

During the third research phase boys outperformed girls in

all groups (Table 4). In addition, the children who belonged

in the control group scored higher than the children who

belonged in the two scaffolding groups. A 2 X 3 analysis of

variance was conducted to investigate the differences

between boys and girls and the different forms of scaffolding

strategies used in the previous research phase. The findings

showed that only gender had a significant main effect (F (1,

179) = 12.82, p < 0.000) in the computational thinking score,

revealing that the intervention produced significantly higher

gains for the male participants.

Table 3. Descriptive Statistics of Children’s Computational

Thinking in Phase 3 for Each Scaffolding tool and Gender
Research Phase2

 Mean SD Ν

Modeling-Based Scaffolding

Girls 164,60 41,05 25

Boys 202,09 58,91 35

Total 366,69 99,96 60

Code Structure-Based Scaffolding

Girls 168,61 57,73 34

Boys 195,76 53,86 26

Total 364,37 111,59 60

Working without Scaffolding (Control Group)

Girls 175,86 52,01 23

Boys 206,59 47,02 37

Total 382,45 99,03 60

5. DISCUSSION
Interventions that are being implemented with the use of

robotics and contemplate the development of computational

thinking have become increasingly popular within the

school system (Grover & Rea, 2018). This study brings into

focus a large contributor to the discussion of how to integrate

the development of computational thinking in preprimary

education, a notion affecting the computing community in

general. In this study the authors investigated and

documented gender differences in educational robotics

instruction. Unlike Sullivan and Bers (2013) that reported no

gender differences regarding the performance on robotics

and on the development of computational thinking of young

children respectively, the findings of the herein study are in

line with findings of the studies of Angeli and Valanides

(2019) and Román-González et al. (2018) that reported that

boys outperformed girls during the assessment of the

development of the computational thinking.

This result could be justified by a range of factors that are

studied in the study herein. The gender disparities on the

development of computational thinking might be related to

the spatial ability of the participants, since the majority of

this study’s problem-solving tasks required the formation of

sequences of commands that comprised the spatial referents

“left” and “right”. Researchers cited that especially in tasks

that involve mentally rotation of figures (Maeda & Yoon,

2013), that the stereotype threats are often particularly

noticeable for female, the task’s performance may be

attributed to a lack of ability. Mental rotation requires the

operation of visual-spatial working memory (Hyun & Luck,

2007) which is being influenced by the cerebral cortex and

is larger in boys than girls supporting the fact that boys'

learning is improved through visual-motor experiences

(Bonomo, 2011). Indeed, some studies have shown evidence

that males, with their better visual-spatial working memory,

are likely to perform better in visual-motor tasks than girls

(e.g. Maeda & Yoon, 2013) resulting to this study’s

observed male advantage on task’s performance.

Alternatively, another possible interpretation of the strong

effect of gender in our data might be related to the

scaffolding tools used for the development of the

computational thinking. More specifically the modeling and

code structure-based scaffolding tools may have contributed

to a lack of engagement of the female participants resulting

to their lower performance on the problem solving tasks in

comparison with their male counterparts. A different type of

scaffolding tool including storytelling activities might have

showed different results (Kelleher, Pausch, & Kiesler,

2007). More precisely girls that used storytelling showed

more evidence of engagement with programming and

expressed greater interest in future use of coding than girls

156

who did not have storytelling support. Findings obtained by

Angeli and Valanides (2019) report the importance of

gender oriented scaffolding tools. In their study, higher

means in the computational thinking scores were found in

the male and female group that used manipulative-based and

collaborative writing activity respectively.

No significant differences were found between female and

male attrition from robotics activities during Phase 2.

However, significant differences were found between the

experimental groups and the control group: in scaffolding

salient condition the performance of children was

substantially better from the performance of children in the

control condition. Specifically children who had been

provided with scaffolding outperformed children that had no

scaffolding. These results are consistent with previous work

by Jonassen (1992) and more contemporary work by Angeli

and Valanides (2004) that showed the necessity of

scaffolding techniques, such as, external memory systems to

facilitate students’ learning with technological tools. In

addition the results of the herein study are collinear with the

results of studies that outlined that necessity of scaffolding

especially when students of preschool education use

technological tools (Azevedo & Hadwin, 2005) since the

cognitive load that is being imposed to students during

learning is reduced (Van Merriënboer, Kirschner, & Kester,

2003).

The observed low scores of the children of the control group

on the measurement of computational thinking, during the

second research phase, are caused from their difficulties that

they encountered while visualizing the procedure needed to

execute a program (Fessakis, Gouli, & Mavroudi, 2013).

Children’s problems with the visualization of the commands

sequences can be attributed to children’s misconceptions

situated in the mental rotation (Sarama & Clements, 2009).

More specifically children are not able to correctly

discriminate their left and right body parts; use and apply the

word left and right; label the directions correctly as ‘left’ or

‘right’ (Sarama & Clements, 2009). However children with

appropriate scaffolding can understand and use the concept

of left and right correctly (Shusterman & Spelke, 2005)

while being engaged in activities that include concepts

strongly correlated with the rotation such the use of

commands that directed the floor robot to turn right or left.

Therefore the use of the scaffolding tools materialized the

visualization of the algorithm used to program the floor

robot and supported the learning of computational practices

(Lye & Koh, 2014) that enabled children to excel in the

problem-solving learning environment.

These findings have a number of implications of both

theoretical and practical significance. Regarding the

theoretical significance, this study contributes to the

literature addressing gender effects on computational

thinking achievement by examining the contribution of

scaffolding tools on children’s computational thinking

development during preprimary education. This study

extends previous findings in gender differences in visual

spatial memory providing additional data indicating that

gender differences in visual spatial working memory

appears also in younger ages.

Despite the fact that adults can use visualization effectively

in many tasks (Wohldmann, Healy, & Bourne, 2007) it is

clear that this strategy is not available for children resulting

to an incensement of their cognitive load. The role of

scaffolding in educational robotic settings should be

communicated since scaffolding assist students to

successfully complete a complex task (Belland, 2014).

It has been reported that early childhood educators lack of

competence and confidence while teaching robotics

therefore they need training and resources (Bers, Seddighin,

& Sullivan, 2013). Therefore, in regards with the practical

implications, this study provides insights integrating

computational thinking with the use of robotics into teaching

practices of preschool education verifying the effectiveness

of scaffolding tools as an instructional design framework for

the development of computational thinking. At the same

time this study contributes to the resources for professional

development which are considered crucial for the curricular

changes.

Furthermore the herein results document that engaging

children into problem solving tasks with robotics, constitutes

a beneficial instructional method that advances

computational thinking in early childhood settings. There is

a great necessity to design environments that encourage and

enhance computational thinking from a young age through

meaningful playing. By introducing robotics activities that

include problem solving to the early education curriculum,

the play experiences of the children can be enhanced.

In conclusion, the authors in the herein study accomplished

to: (a) integrate computational thinking into the learning of

programming with robotics, (b) propose a set of learning

activities that provide low-high ceiling problem solving

tasks at preschool level and (c) advocate the use of specific

scaffolding tools for supporting the development of

computational thinking.

6. LIMITATIONS AND FUTURE

DIRECTIONS
Our analyses provide critical insight into the association

between the trend of gendered attrition with robotics

activities and the development of computational thinking.

Nonetheless, a number of limitations should also be

considered. The findings obtained during the last research

phase, when the scaffolding tools were withdrawn, reported

that the differences on the scores on the assessment of the

computational thinking among the experimental and control

groups were not statistically significant. This result can be

attributed to a number of reasons. Firstly, the duration and

the number of the lessons proved to be inadequate to enable

the transfer of knowledge as other researchers concur (e.g

Bers et al., 2014). In regards of children’s computational

thinking development, it has been established by researchers

that developing cognitive skills in young children requires

sustained and immersive effort (Bers et al., 2014). Lastly, to

trigger the augmentation of the pedagogical gains of the

scaffolding is essential that the scaffolding to gradually fade

out (Van de Pol et al., 2010). Therefore future research effort

should focus on expanding the duration of the interventions.

157

While prior research has shown gender variation in

computational thinking task’s performance at elementary

and high school level showing relative advantages for male

students (e.g. Atmatzidou & Demetriadis, 2016) little is

known about which cognitive strategies are directly linked

with gender differences in attrition with robotics activities

and most importantly, what factors contribute to female fully

engaged in robotics activities. In addition gaining a better

understanding and addressing the underlying causes of

gender disparities to the development of young children’s

computational thinking will likely require focusing on

different skills of computational thinking: abstraction and

debugging.

Another possibility requiring further exploration is whether

particular groups of children benefit more substantially from

interventions that include a focus on their cognitive style. In

this context, robust research that can shed further light on the

relationship of young children’s cognitive style is needed

(Georgiou & Angeli, 2019).

A dimensional approach will be of interest in future research

investigating different levels of competence - for example,

whether gender-related attitudes are associated with

computational thinking skills or whether a threshold effect

is observed. These questions have important implications for

formulating and evaluating interventions targeting to

advance computational thinking. Future intervention

research should also test the mechanisms through which any

effect of positive computational thinking growth on learning

occurs. For example whether gender disparities impact on

the development of computational thinking via social

pathways such as teacher-student interactions.

7. REFERENCES
Angeli, C., & Valanides, N. (2004). The Effect of Electronic

Scaffolding for Technology Integration on Perceived Task

Effort and Confidence of Primary Student Teachers.

Journal of Research on Technology in Education, 37(1),

29-43.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-

Smith, J., & Zagami, J. (2016). A K-6 Computational

Thinking Curriculum Framework: Implications for

Teacher Knowledge. Journal of Educational Technology

& Society, 19(3), 45-47.

Angeli, C., & Valanides, N. (2019). Developing Young

Children’s Computational Thinking with Educational

Robotics: An Interaction Effect between Gender and

Scaffolding Strategy. Retrieved August 10, 2019, from
https://www.sciencedirect.com/science/article/pii/S0747563219

301104?via%3Dihub

Atmatzidou, S., & Demetriadis, S. (2016). Advancing

Students’ Computational Thinking Skills through

Educational Robotics: A Study on Age and Gender

Relevant Differences. Robotics and Autonomous

Systems, 75, 661-670.

Azevedo, R., & Hadwin, A. F. (2005). Scaffolding Self-

Regulated Learning and Metacognition–Implications for

the Design of Computer-based Scaffolds. Instructional

Science, 33(5), 367-379.

Baron-Cohen, S. (2004). The Essential Difference. London:

Penguin.

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner

Modeling for Adaptive Scaffolding in a Computational

Thinking-based Science Learning Environment. User

Modeling and User-Adapted Interaction, 27(1), 5-53.

Belland, B. R. (2014). Scaffolding: Definition, Current

Debates, and Future Directions. In Handbook of Research

on Educational Communications and Technology. NY:

Springer, 505-518.

Bers, M. U. (2008). Blocks, Robots and Computers:

Learning about Technology in Early Childhood. New

York: Teacher’s College Press.

Bers, M., Seddighin, S., & Sullivan, A. (2013). Ready for

Robotics: Bringing Together the T and E of STEM in Early

Childhood Teacher Education. Journal of Technology and

Teacher Education, 21(3), 355-377.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.

(2014). Computational Thinking and Tinkering:

Exploration of an Early Childhood Robotics

Curriculum. Computers & Education, 72, 145-157.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., &

Engelhardt, K. (2016). Developing Computational

Thinking in Compulsory Education-Implications for

Policy and Practice (No. JRC104188). Joint Research

Centre.

Bøe, M. V., Henriksen, E. K., Lyons, T., & Schreiner, C.

(2011). Participation in Science and Technology: Υoung

People’s Achievement related Choices in Late Modern

Societies. Studies in Science Education, 47(1), 37-72.

Bonomo, V. (2010). Gender Matters in Elementary

Education: Research-Based Strategies to Meet the

Distinctive Learning Needs of Boys and Girls.

Educational Horizons, 88(4), 257-264.

Chabbott, C., & Ramirez, F. O. (2000). Development and

Education. In Maureen & Hallinan (Ed.), Handbook of the

Sociology of Education. New York, NY: Springer.

Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing

Computational Thinking with Educational Technologies

for Young Learners. TechTrends, 62(6), 563-573.

Corbin, J., & Strauss, A. (2008). Strategies for Qualitative

Data Analysis. Basics of Qualitative Research. Techniques

and Procedures for Developing Grounded Theory, 3, 65-

86.

Duckworth, A. L., & Seligman, M. E. (2006). Self-discipline

Gives Girls the Edge: Gender in Self-discipline, Grades,

and Achievement Test Scores. Journal of Educational

Psychology, 98(1), 198-208.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem

Solving by 5–6 years old Kindergarten Children in a

Computer Programming Environment: A Case

Study. Computers & Education, 63, 87-97.

Georgiou, K., & Angeli, C. (2019). Developing Preschool

Children’s Computational Thinking with Educational

Robotics: The Role of Cognitive Differences and

scaffolding. Proceedings of the 16th International

https://www.sciencedirect.com/science/article/pii/S0747563219301104?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0747563219301104?via%3Dihub

158

Conference on Cognition and Exploratory Learning in

Digital Age. Cagliari, Italy: IADIS Press, 101-108.

Grover, S., & Pea, R. (2018). Computational Thinking: A

Competency Whose Time Has Come. Computer Science

Education: Perspectives onTeaching and Learning in

School. London: Bloomsbury Academic.

Guzdial, M. (2008). Education: Paving the Way for

Computational Thinking. Communications of the

ACM, 51(8), 25-27.

Hyun, J. S., & Luck, S. J. (2007). Visual Working Memory

as the Substrate for Mental Rotation. Psychonomic

Bulletin & Review, 14(1), 154-158.

Jonassen, D. H. (1992). What are Cognitive Tools? In D. H.

Jonassen (Ed.), Cognitive Tools for Learning. Berlin:

Springer, 1-6.

Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007).

Storytelling Alice Motivates Middle School Girls to Learn

Computer Programming. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems.

ACM, 1455-1464.

Lye, S. Y., & Koh, J. H. L. (2014). Review on Teaching and

Learning of Computational Thinking through

Programming: What is Next for K-12? Computers in

Human Behavior, 41, 51-61.

Maeda, Y., & Yoon, S. Y. (2013). A Meta-analysis on

Gender Differences in Mental Rotation Ability Measured

by the Purdue Spatial Visualization Tests: Visualization of

Rotations (PSVT: R). Educational Psychology Review,

25(1), 69–94.

Myhill, D., & Warren, P. (2005). Scaffolds or Straitjackets?

Critical Moments in Classroom Discourse. Educational

Review, 57(1), 55-69.

Papert, S. (1980). Mindstorms: Children, Computers, and

Powerful Ideas. New York: Basic Books.

Papert, S. (1993). The Children's Machine: Rethinking

School in the Age of the Computer. New York, NY: Basic

Books.

Reid-Griffin, A., & Carter, G. (2004). Technology as a Tool:

Applying an Instructional Model to Teach Middle School

Students to Use Technology as a Mediator of

Learning. Journal of Science Education and

Technology, 13(4), 495-504.

Resnick, M., & Silverman, B. (2005). Some Reflections on

Designing Construction Kits for Kids. Proceedings of the

2005 Conference on Interaction Design and Children.

ACM, 117-122.

Román-González, M., Pérez-González, J. C., Moreno-León,

J., & Robles, G. (2018). Extending the Nomological

Network of Computational Thinking with Non-cognitive

Factors. Computers in Human Behavior, 80, 441-459.

Saldaña, J. (2015). The Coding Manual for Qualitative

Researchers. London: Sage.

Sarama, J., & Clements, D. H. (2009). Early childhood

Mathematics Education Research: Learning Trajectories

for Young Children. New York, NY: Routledge.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &

Clark, D. (2013). Integrating Computational Thinking

with K-12 Science Education Using Agent-based

Computation: A Theoretical Framework. Education and

Information Technologies, 18(2), 351-380.

Shusterman, A., & Spelke, E. S. (2005). Language and the

Development of Spatial Reasoning. In P. Carruthers, S.

Laurence & S. Stitch (Eds.), The Innate Mind: Structure

and Content. New York, NY: Oxford University Press, 89

–108.

Sousa, D. A., & Tomlinson, C. A. (2011). Differentiation

and the Brain: How Neuroscience Supports theLearner-

friendly Classroom. Bloomington, IN: Solution Tree

Press.

Sullivan, A., & Bers, M. U. (2013). Gender Differences in

Kindergarteners’ Robotics and Programming

Achievement. International Journal of Technology and

Design Education, 23(3), 691-702.

Van de Pol, J., Volman, M., & Beishuizen, J. (2010).

Scaffolding in Teacher–student Interaction: A Decade of

Research. Educational Psychology Review, 22(3), 271-

296.

Van Merriënboer, J. J., Kirschner, P. A., & Kester, L. (2003).

Taking the Load off a Learner's Mind: Instructional Design

for Complex Learning. Educational Psychologist, 38(1),

5-13.

Wing, J.M. (2008). Computational Thinking and Thinking

about Computing. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, 366 (1881), 3717-3725.

Wohldmann, E. L., Healy, A. F., & Bourne Jr, L. E. (2007).

Pushing the Limits of Imagination: Mental Practice for

Learning Sequences. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 33(1),

254.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

159

Integrating Computational Thinking in K-12 Education:

Exploring Digital Fabrication Activities through CTPACK Framework

Megumi IWATA1*, Jari LARU2*, Kati MÄ KITALO3*, Kati PITKÄ NEN4*

1,2,3,4 Faculty of Education, University of Oulu, Finland

megumi.iwata@student.oulu.fi, jari.laru@oulu.fi, kati.makitalo@oulu.fi, kati.pitkanen@student.oulu.fi

ABSTRACT
This paper presents the preliminary study of integrating

computational thinking (CT) into K-12 education. In order

to successfully integrate CT into school curriculum, we need

to enhance teachers’ understanding on CT. In this paper, we

explore the possibilities for widening teacher’s CT

understanding by merging CTPACK framework, which

combines CT in technological pedagogical content

knowledge (TPACK). Aim of the study is to understand how

CT intersects with elements of TPACK in the context of ill-

structured digital fabrication activities. We examined three

cases where 7th-9th grade students visited a makerspace as

part of school curriculum. Through interviews and

observations, we found that CT was interconnected with

technological knowledge and pedagogical knowledge

highlighting the use of advanced technologies and

pedagogical propositions of the context, learning by doing.

We also found vague connections between CT and content

knowledge (subject matters). The study urges further

research on CTPACK framework which potentially enhance

integration of CT in K-12 education.

KEYWORDS
computational thinking, ill-structured problem-solving,

digital fabrication, TPACK, CTPACK

1. INTRODUCTION

1.1. Computational Thinking in K-12 Education and

Emerging CTPACK Framework

Currently, there is a growing need in educational contexts to

develop students’ ability to deal with non-routine and

abstract tasks (Kirschner, 2002). One of the important skills

to confront ill-structured problems in this digitalized society

is Computational Thinking (CT). CT refers to a way of

solving complex problems by applying the set of thinking

skills, practices and approaches which are fundamental to

computer science (Wing, 2006). CT leads to understanding

how computer works as well as possibilities and limitations

of technologies, which is vital for taking advantage of

technology-infused social world (Denning & Tedre, 2019).

Wing (2006) encourages to apply CT in K-12 education

describing CT as “a fundamental skill for everyone, not just

for computer scientists” (p.33). Previous studies have

identified needs for further research to enhance integration

of CT in K-12 education. Those research needs include

combining CT with other subject studies, and teachers’

professional development to synthesize CT with existing

contents and pedagogical strategies (Howland, Good,

Robertson, & Manches, 2019; Mäkitalo, Tedre, Laru, &

Valtonen, 2019).

Mäkitalo and colleagues (2019) propose CTPACK

framework to support integration of CT into school

curriculum. CTPACK framework combines CT in the

framework of technological pedagogical content knowledge

(TPACK). TPACK framework, introduced by Mishra and

Koehler (2006), has been used in educational contexts to

integrate technologies, pedagogies and subject matters in

teaching and learning. CTPACK represents skill set for

teachers to guide development of CT through subject study

with appropriate technologies and pedagogy in K-12

educational contexts (Mäkitalo et al., 2019). Although

CTPACK is still an emerging framework, it has potential to

enhance integration of CT in educational contexts.

1.2. Aim of the Study

The aim of this study is to understand how elements of CT

intersects with technological pedagogical content

knowledge (TPACK). CTPACK framework supports the

integration of CT in K-12 education by 1) recognizing CT as

part of aspects which teachers need to consider in order to

position CT as an objective of learning at K-12 schools and

2) providing practical framework to combine CT with

teachers’ existing practices of designing and implementing

learning activities. Results contribute in advancing practices

of integration of CT in K-12 education and establishing

applicable CTPACK framework.

1.3. Digital Fabrication as a Context to Integrate CT in

K-12 Education

We use ill-structured digital fabrication activities as contexts

to integrate CT in K-12 school curriculum. Previous studies

showed digital fabrication, a process of making artefacts

with digital technologies, is a potential context to develop

CT (Borges, de Menezes, & da Cruz Fagundes, 2017; Iwata,

Pitkänen, Laru, & Mäkitalo, 2019). In K-12 education,

digital fabrication can be used to learn different subjects,

such as mathematics, physics, art, and history (e.g., Blikstein,

2013; Pitkänen & Iwata, 2019).

The theory underlies digital fabrication in educational

contexts is constructionism (Blikstein, 2013).

Constructionism emphasizes individuals learn effectively in

interactions with the physical and social environment, such

as making personally meaningful artefacts and publicly

sharing objects (Papert & Harel, 1991). Pitkänen, Iwata, and

Laru (2019) emphasize teachers’ significant roles and the

needs of pedagogical views in designing and implementing

ill-structured digital fabrication activities. Although digital

fabrication activities tend to be student-centered, effort to

support students’ learning based on pedagogical

understanding is necessary. There are less studies which

utilize TPACK framework in digital fabrication in formal

education. However, Smith (2013) applied TPACK

160

framework to examine afterschool digital fabrication

activities. She analyzed instructional strategies related to

each element of TPACK as well as in pairs and a

combination of three. Results showed encouraging technical

resourcefulness as technological knowledge, utilizing

constructionism approach as pedagogical knowledge, and

developing multiple modes of literacy as content knowledge

(Smith, 2013). Thus, this study shows the importance of

developing all areas. Integrating CT into TPACK framework

provide the tool for teachers to better understand the holistic

perspective of CT.

2. RESEARCH METHODS

2.1. Research Context and Cases

The context of the study is a makerspace in Finland. The

makerspace offers digital fabrication facilities, such as 3D

printers, laser cutters, vinyl cutters and programmable

microcontrollers. The makerspace arranges digital

fabrication activities for school visitors. We focus on three

cases of school visits where 7th-9th grade students engaged in

digital fabrication activities at the makerspace in 2016.

Student groups from three different schools visited the

makerspace as part of multidisciplinary learning module,

which emphasizes integrating multiple subject domains

(Finnish National Agency for Education, 2016). Overview

of the cases and differences were as follows:

Case I (School A): 12 students (9th grade) accompanied by a

teacher worked on digital fabrication projects for five days.

The projects were, for example, electronic controlled lock,

jukebox game, and music car. Students had autonomy of

what to make with only a few requirements, such as using a

microcontroller.

Case II (School B): 20 students (7th-8th grade) and two

teachers visited the makerspace for three days. Students

developed project ideas, such as Finland 100 years calendar,

Finland 100 years history wheel, and Finland flag day clock,

based on the theme provided by teachers and requirement of

using a microcontroller.

Case III (School C): 9 students (9th grade) with two teachers

visited the makerspace for five days. Students had initial

project ideas as visiting the makerspace was a part of the

ongoing project: designing a playhouse for the school

community.

Table 2. Summary of Technologies Used in the Activities.
Technologies School A School B School C

Design tool
Inkscape,

Tinkercad
Inkscape

Inkscape,

SketchUp

Electronics

Arduino Uno,

servos,

buttons,

piezoelectric

buzzer

Arduino

Uno, servos

Programming Arduino Arduino

Machines
Laser cutter,

3D printer
Laser cutter

Laser cutter,

vinyl cutter,

sewing

machine

Students used different technologies during the activities

(see Table 2). All the projects were implemented as

collaborative projects, where students worked together on

one project as a group. Activities were run by two facilitators

who work at the makerspace. The facilitators’ main role was

to provide instructions of basic operations of facilities and

digital tools and to help students when they had problems in

the processes. Teachers’ role at the makerspace was mainly

observing activities and general time management.

2.2. Data Collection and Analysis

Data was collected through 1) observation, 2) semi-

structured informal interviews with teachers, students and

facilitators during or after the activities, and 3) two semi-

structured focus group interviews with teachers (focus group

interview I) and facilitators (focus group interview II).

During the observation, we took notes and photos focusing

on overall structure, contents and instructions of the

activities. In the semi-structured informal interviews, we

asked about their perspectives on the digital fabrication

activity. The interviews were recorded in video and audio.

In data analysis we focused on how CT was seen and

described in relation to each element of TPACK framework.

The main data for this study was focus group interviews.

Observation data was used to deepen understanding of the

contexts and to refine the research design and questions.

Data was analyzed through theory-driven approach. We

coded the data based on definitions of CT (Barr, Harrison,

& Conery, 2011), which have been used in K-12 contexts,

as well as each element of TPACK framework (Mishra &

Koehler, 2006). We performed matrix coding analysis to see

how CT and each element of TPACK framework are

interconnected. NVivo software was used to support data

analysis process.

3. RESULTS
Table 3 shows CTPACK elements, which represent

connections of CT and TPACK, identified in focus group

interviews. CT was mainly discussed in relation to each

TPACK element: technological, pedagogical and content

knowledge separately. Also, CT was discussed together with

technological pedagogical knowledge as a pair.

3.1. CT and Technological Knowledge: Advanced

Technologies and Mechanics for Developing CT

Teachers and facilitators mentioned that students’ CT was

developed through the following processes: 1) programming

of microcontrollers, 2) machining, including preparing files

in a certain format and operating machines correctly, and 3)

making artefacts which have mechanical function. These

results are in line with our previous study (Iwata et al., 2019),

yet provide new insights of how CT intersects with

technologies together with other elements of TPACK (see

later sections).

3.2. CT and Pedagogical Knowledge: Solving Complex

Problems through Learning by Doing

Students used CT in the processes of learning by doing.

Constructionism, which underlies digital fabrication,

encouraged solving complex problems while they were

working on the projects. In the iterative processes of

complex problem-solving, students analyzed the possible

solutions to improve the next design cycle.

161

School B had a unique division of roles among groups. Two

groups worked collaboratively on one project by dividing

the tasks: one group was responsible for outer design and

another group for inside mechanics of the product. Although

communication load between design and mechanics groups

increased, in this way, students were able to focus on

specific aspects of complex ill-structured digital fabrication

activity. A student from School B explained as follows:

There was two groups working for the same product, but

both had own tasks. We had to decide all those dimensions

together, between two groups, that the product will be right

size. It wasn’t hard, we get along well, and we managed to

do right everything. (Student, informal interview)

Table 3. CTPACK Elements in Focus Group Interviews.

CTPACK elements

Focus group

interview I

n(total)a=8,387

n(CT)b = 944

Focus group

interview II

n(total)=6,328

n(CT) = 826

CCc nd CC n

CT Technological

knowledge

35.8%

187 64.6% 268

CT Pedagogical knowledge 34.7% 181 11.3% 47

CT Content knowledge 0.0% 24.1% 100

CT Technological

Pedagogical knowledge

29.5% 154 0.0%

CT Technological Content

knowledge

0.0% 0.0%

CT Pedagogical Content

knowledge

0.0% 0.0%

CT Technological

Pedagogical Content

knowledge

0.0% 0.0%

Total 100% 522 100% 415

a Total number of words in the focus group interview; b Number of words

regarding CT; c Coding coverage: percentage of the number of words

coded at the node; d Number of words at the node.

3.3. CT and Content Knowledge: Applying Multiple

Subjects in Complex Problem-Solving

The activities included multiple school subjects, such as

math, physics, art, craft and English, as well as programming

and coding (cf. Pitkänen & Iwata, 2019). One facilitator

highlighted applying CT and school subjects in the context

of digital fabrication as follows:

Computational thinking it’s best applied to a little bit larger

design problems, really have to divide your work into pieces

that you have to solve piece by piece. But maybe at schools

the curriculum is just their subjects, they are not linked

together. But in [the makerspace] when we make a device,

we have several subjects we have to combine into one device.

(Facilitator, focus group interview)

In complex problem-solving in digital fabrication, which

requires using knowledge of multiple school subjects, CT

can be effectively developed.

3.4. CT and Technological Pedagogical Knowledge:

supporting development of CT with technologies

and pedagogy

In the case of School A, facilitators arranged a short lecture

where they explained how logic ports on microcontroller

work. Having lecture to theoretically understand logic port

function effectively supported students in learning CT.

Using microcontroller enhanced students’ learning by

enabling to apply theoretical knowledge of logical port

functions into practices.

Teachers from School C explained that they used a digital

mind map tool to support the students in ideation process. It

helped logically organize and analyze their ideas. Teacher

from School C reflected as follows:

In a start point…. the students made that mind map very

quickly, just some words, and after two days, they have to

make second mind map, and they just know that, “now I have

so much more ideas to go through in this week”. Also, they

recognized the whole process and the whole project, what to

do, and what we need, and how to solve the different kind of

problems and so on. (Teacher, focus group interview)

In different phases of the project, the mind map tool helped

students to generate ideas, to understand whole processes of

the project, and to organize small steps required to complete

the project.

4. DISCUSSION
CT and pedagogical knowledge were highlighted by two

means: 1) Pedagogical approach of learning by doing

enhanced developing CT. Students faced complex problems

in the processes of making artefacts. Smith (2013) describes

constructionism and learning by doing as the core of

pedagogical knowledge in digital fabrication. 2) Dividing

responsibilities may support dealing with complex problems.

Digital fabrication project in few day activity tends to give

heavy workload for K-12 students (Pitkänen & Iwata, 2019).

Distribution of responsibility allows focusing on a small part

of the whole project. Activities can be designed considering

complexness which contributes to the development of CT,

as well as students’ limited capacity. Dividing responsibility

may be effective in providing balanced workload.

We found two factors in which CT intersects with

technological pedagogical knowledge: 1) Advanced

technologies enhance feedback process of learning by doing,

which contributes to developing CT. By using technological

tools and machines, students can get feedback of their trial

quickly, which resulted in encouraging trial and errors

(Pitkänen & Iwata, 2019). As Papert (1980) described

computer as an “object-to-thing-with” (p. 23), students

develop CT through interacting with technological tools. 2)

Technologies helped the process of supporting students’

thinking process during ill-structured activities.

Results show that neither teachers nor facilitators discussed

intensively how subject matters directly relate to CT. One of

the potential reasons is that three cases of makerspace visit

were implemented as part of schools’ multidisciplinary

learning module. Thus, teachers did not intend to let students

learn specific aspects of subject matter. Based on the results,

it is a challenge to widen teachers’ understanding about CT,

162

because of the lack of long-term design and discussion about

the skills and competencies of CT – from the holistic

perspective (Denning & Tedre, 2019) and it’s relation to

technology, pedagogy and content. Another possible reason

is that cognitive demand of the activity was high, thus

participants had only limited room to focus on subject

matters during the activities. Pitkänen et al. (2019) argue

potential challenges which students face during ill-

structured digital fabrication activities due to high cognitive

demand. Cognitive demand in digital fabrication activities

can be increased by digital tools and machines with which

students and teachers are not familiar. In addition, ill-

structured activity design with minimal instructions might

contribute to increasing cognitive demand.

Limitations of the study are in data collection and analysis

processes. In the interviews, we did not ask questions

focusing on learning of subject matters. It might affect to

results of vague connection between CT and content

knowledge. In data analysis, we used operational definition

of CT introduced by Barr et al. (2011). However, aspects of

CT in the definition are not directly related to processes of

digital fabrication. Using a definition of CT which takes the

research context (digital fabrication) into account, such as

Borges et al. (2017), may increase reliability of results.

5. CONCLUSION
This paper presented preliminary study examining the

current practices of digital fabrication activities for K-12

students to understand how CT and elements of TPACK are

interconnected. We found connections of CT and part of

TPACK elements. Results provide the basis for

understanding the role of CT in ill-structured digital

fabrication activities. Further, CTPACK framework provide

practical solutions to connect CT in subject matter with

appropriate technologies and pedagogy in order to widen

teachers’ understanding about CT. In future study, CTPACK

framework can be used as a tool to develop digital

fabrication activities to integrate CT in school curriculum.

To examine applicability of CTPACK, students with broader

grade levels can be chosen as participants, and data can be

analyzed considering different level of subject studies,

students’ age, sex, and background.

6. REFERENCES
Barr, D., Harrison, J., & Conery, L. (2011). Computational

Thinking: A Digital Age Skill for Everyone. Learning &

Leading with Technology, 38(6), 20-23.

Blikstein, P. (2013). Digital Fabrication and ’Making’ in

Education: The Democratization of Invention. FabLabs:

Of Machines, Makers and Inventors, 4, 1-21.

Borges, K. S., de Menezes, C. S., & da Cruz Fagundes, L.

(2017). The Use of Computational Thinking in Digital

Fabrication Projects a Case Study from the Cognitive

Perspective. Proceedings of the 2017 IEEE Frontiers in

Education Conference (FIE). IEEE, 1-6.

Denning, P. J., & Tedre, M. (2019). Computational thinking.

MIT Press.

Finnish National Board of Education. (2016). National core

curriculum for basic education 2014. Helsinki: Finnish

National Board of Education.

Howland, K., Good J., Robertson, J., & Manches, A. (2019).

Special Issue on Computational Thinking and Coding in

Childhood. International Journal of Child-Computer

Interaction, 19, 93-95.

Iwata, M., Pitkänen K., Laru, J., & Mäkitalo, K. (2019).

Developing Computational Thinking Practices through

Digital Fabrication Activities. Proceedings of

International Conference on Computational Thinking

Education 2019. Hong Kong: The Education University of

Hong Kong, 223-228.

Kirschner, P. A. (2002). Cognitive Load Theory:

Implications of Cognitive Load Theory on the Design of

Learning. Learning and Instruction, 12(1), 1–10.

Mäkitalo, K, Tedre, M., Laru, J., & Valtonen, T. (2019).

Computational Thinking in Finnish Pre-Service Teacher

Education. Proceedings of International Conference on

Computational Thinking Education 2019. Hong Kong:

The Education University of Hong Kong, 105-107.

Mishra, P., & Koehler, M. J. (2006). Technological

Pedagogical Content Knowledge: A Framework for

Teacher Knowledge. Teachers College Record, 108(6),

1017-1054.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc..

Papert, S., & Harel, I. (1991). Situating Constructionism.

Retrieved December 12, 2019, from

http://www.papert.org/articles/SituatingConstructionism.

html

Pitkänen, K., & Iwata, M. (2019). What are the premises and

the essential elements of activity design for applying

digital fabrication in formal education? Unpublished

Master’s Thesis. University of Oulu, Oulu, Finland.

Pitkänen, K., Iwata, M., & Laru, J. (2019). Supporting Fab

Lab Facilitators to Develop Pedagogical Practices to

Improve Learning in Digital Fabrication Activities.

Proceedings of Fablearn Europe 2019 Conference. ACM,

6.

Smith, S. (2013). Through the Teacher’s eyes: Unpacking

the TPACK of Digital Fabrication Integration in Middle

School Language Arts. Journal of Research on

Technology in Education, 46(2), 207-227.

Wing, J. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33-35.

http://www.papert.org/articles/SituatingConstructionism.html
http://www.papert.org/articles/SituatingConstructionism.html

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

163

Analysis of Research Status and Trends of Computational Thinking in China

Based on Knowledge Graph

Hanrui GAO1, Yi ZHANG2*, Wei MO3, Xing LI4

1, 2 School of Educational Technology, Central China Normal University, China
3 School of Education Science, Hunan Institute of Science and Technology, China

4 School of Education，Jiang Han University, China

1053111801@qq.com, zhangyi@mail.ccnu.edu.cn, mowei0201@gmail.com, lxosu@qq.com

ABSTRACT
The study analyzed the literature of computational thinking （CT） in CNKI by using the Knowledge Graph, and analyzed

the main characteristics and the level of the research field of CT in China by using the keyword word frequency co-occurrence

analysis method. The results show that the research on CT in China gradually returns to the rational state. Drag-and-drop

programming for children provides an opportunity for the development of computational thinking in primary and secondary

schools. The training of computational thinking mainly relies on programming, information technology, mathematics and

other science and engineering courses. This paper sorts out the development of computational thinking, and puts forward

enlightenment for future research development: Introduction of standardized quantitative or qualitative assessment method of

CT; Exploration of the development of learners' CT from multiple perspectives; Enhancement of the awareness of in-service

teachers’ CT, and investigation of the teaching approach and pedagogy of the in service teachers' CT.

KEYWORDS
knowledge graph, computational thinking, evolution of computational thinking research

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

164

基于知识图谱的我国计算思维研究现状与研究趋势探析

高晗蕊 1，张屹 2*，莫尉 3，李幸 4

1, 2华中师范大学教育信息技术学院，中国
3湖南理工学院教育科学学院，中国

4江汉大学教育学院，中国

1053111801@qq.com，zhangyi@mail.ccnu.edu.cn，mowei0201@gmail.com，lxosu@qq.com

摘要

本研究利用知识图谱对中国知网中计算思维文献分析，

通过关键词词频共现分析法探析我国计算思维研究领

域的突出特性和层次深度。研究发现：我国计算思维

相关研究逐步回归理性状态；适合儿童的拖拽式编程

为中小学计算思维的培养带了契机；计算思维培养主

要依托编程、信息技术、数学等理工科课程，研究主

题多为课程模式的构建。本文梳理了计算思维发展脉

络，为未来的研究发展提出了启示：引入标准化的定

量或定性计算思维评价方法；多角度探究学习者计算

思维的培养；增强一线教师对计算思维的认知，探究

一线教师计算思维培养模式与方法。

关键词

知识图谱，计算思维，计算思维研究演变

1. 引言

2014年 3月，教育部发布的《关于全面深化课程改革落

实立德树人根本任务的意见》（以下简称《意见》）

以及 2017 版《普通高中信息技术课程标准》（以下简

称《课标》）等文件为计算思维相关研究在我国的快

速发展提供了契机。为了解我国计算思维研究现状和

趋势，研究者运用 CiteSpace 文献计量工具对中国知网

中计算思维相关文献进行分析，探析计算思维领域研

究发展脉络，梳理现有研究及现有研究的不足为计算

思维的进一步研究提供支点。

2. 问题提出

周以真教授认为计算思维并非计算机专业人员的特有，

计算思维等同于听、说、读、写，是每个人都需要掌

握的日常生活技能之一，是运用计算机概念抽象问题

模型，形成解决方案，再由信息处理代理自动化有效

执行的过程（Wing, 2006；Wing, 2008）。目前计算思

维的定义可分为两个方面，第一：计算思维是一种必

备的思维能力，指的是形成问题及其结果方案时所设

计的思维过程，使得解决方案能够快速有效的执行

（Sysło & Kwiatkowska, 2013）；计算思维包括计算科

学中的概念和思维过程，这些思维和过程将有助于学

习者面对不同领域的问题时形成相应的解决方案

（Mannila, Dagiene, Demo et al, 2014）；第二：计算思

维是问题解决、系统设计的过程或方法，关注的重点

是利用计算机学科的基本概念来理解人类的行为

（Korkmaz, Ç akir & Ö zden, 2017）；还有学者认为计算

思维是用计算机实现问题解决的方法，能够使用抽象、

迭递归等计算机学科概念来处理和分析数据，可以自

动化的将相关概念和技能跨领域的应用（Barr &

Stephenson, 2011）。计算思维最后指向学习者在信息

社会中解决问题的一种普适的基本能力，强调运用计

算机科学的基础概念进行问题求解、系统设计的思维

过程和行动，在问题解决的过程中，学生不仅要能够

熟练的运用可供选择的工具，还要掌握计算思维，运

用计算思维，成为问题解决方案的思考着和设计者、

成为新型问题解决工具的开发者与迁移者。基于此，

本研究探究以下问题，以期为接下来的研究提供支点：

（1）我国计算思维的研究现状如何？（2）如何随时

间变化？（3）研究热点、研究领域以及层次深度如何？

（4）结合国外研究前沿为我们带来什么样的启示？

3. 研究设计

3.1. 研究方法
CiteSapce 可以用于寻找某一学科领域的研究进展和当

前的研究前沿，能够将一个知识领域的演变历程呈现

在一张图上。CiteSpace 中关键词或特征词图谱配合突

现词功能使用可以帮助人们研究热点及热点的演变

（陈悦、陈超美和刘则渊等，2015）。本研究利用了

聚类视图和时间线视图结合的功能，构建计算思维关

键词图谱和计算思维关键词时间线图谱，分析计算思

维研究热点及随时间研究热点的转变，并对关键词结

果进行聚类，分析计算思维研究领域及对应的研究深

度。

3.2. 数据来源

计算思维又称为“运算思维”，因此，以“计算思维”或

“运算思维”为主题词，以中国知网中的期刊文献为研究

对象，对时间不进行限制的情况下进行精确检索，得

到记录为 3231 条，经初步分析发现 2010 年及以前文献

较少，近 5 年文献数量较多，主题相关度高，依据本文

研究目的为考察计算思维领域目前研究现状与趋势，

将时间节点设置成 2014年 1月 1号到 2019年 6月 1号，

对近 5-6 年内关于“计算思维”或“运算思维”的文献进行

检索，共检索出 2572 条结果，经过人工筛选，剔除与

主题无关、关键词混淆、会议通知等无效记录，剩余

2354 条记录。

4. 研究结果与分析

4.1. 计算思维研究热点分析

4.1.1. 计算思维研究文献时间分布图

计算思维的研究与我国重要文件和报告的提出呈显明

显的相关性。如图 1 所示，11-14 年文献数量增加幅度

165

较大，14-17 年文献数量无显著性变化，17 年之后文献

数量又有了小幅度增加，从 19 年上半年的形势来看应

该跟 18 年大致持平。其中文献数量急剧增加的年份为

12 年、13 年和 17 年，结合文献发表周期等现实情况，

２０１０年发布的 《九校联盟（Ｃ９）计算机基础教

学发展战略联合声明》强调了高等教育中计算机基础

教育培养学习者计算思维的重要性，并提出了相应的

课程体系建设和课程目标（董荣胜，2010）,《课标》

将计算思维培养列入了课程培养目标范围之内等文件

内容的发布推动了相关研究的发展。

图 1 计算思维研究文献时间分布图

4.1.2. 计算思维研究热点分析

关键词是了解文献的主题、内容等关键内容的重要线

索，关键词的中心度和出现的频次，代表了一段时间

内该领域研究者的关注热点。本研究运用 CiteSpace 对

知网中 2014年到 2019年 6月 1号的 2354条数据进行可

视化分析。Time Slicing 设定为“2014-2019”；Years Per

Slice 设定为 1 年；Node Types 设置为关键词；Selection

Criteria 设定为 Top N=50，运行 CiteSpace，高频关键词

节选如表 1 所示。中心度最高的为“计算思维”，为 0.51；

其次分别是信息技术、计算思维能力、核心素养、信

息技术课程，分别为 0.09、0.08、0.08、0.08。由此可

见，在该网络中，计算思维能力、信息技术课程、核

心素养培养、编程语言是计算思维发展过程的主要关

注点。

表 1 计算思维研究领域高中心度词汇节选

序号 词频 中心度 年份 关键词

1 1929 0.51 2014 计算思维

2 110 0.09 2014 信息技术

3 83 0.08 2014 计算思维能力

4 69 0.08 2017 核心素养

5 55 0.08 2014 信息技术课程

CiteSpace 关键词的聚类功能可以显示具体研究领域的

热点与发展趋势。如图 2 所示，计算思维关键词聚类图

谱网络节点共有 138 个， 598 条网络连线，网络密度为

0.0633。相关领域从研究主题上可以划分为计算思维、

信息技术、程序设计、计算机基础教学、教学模式以

及教学改革等；从研究层次上主要集中在高等教育研

究、基础教育研究领域，其中基础教育研究中大多以

信息技术课程为依托，计算思维在高等教育中的研究

主要以大学计算机基础课程教学为依托。近五年关于

计算思维的研究在课程方面有关于课程体系改革，课

程模式探索以及教学方法等方面的研究，依托的课堂

多为计算机或编程等相关课程，注重学习者 21 世纪核

心素养、高阶思维能力等方面的培养。

图 2 计算思维关键词频次聚类图普

4.2. 计算思维研究热点、领域等随时间发展的转变

时间线视图从时间维度对关键词进行聚类，分析聚类

之间的关系和某个聚类中文献的历史跨度。设置时间

切片为 1 年，构建关键词实时间线视图聚类，如图 3 所

示。

图 3 计算思维关键词时间线聚类视图

由图 3 可以清晰的看出计算思维各个研究热点聚类的发

展脉络，从中我们可以看到，计算思维相关研究大致

聚为 6 类，分别是核心素养、计算机基础、教学改革、

计算思维、计算思维能力、计算机。

4.2.1. 类#0 核心素养

《意见》中第一次提出加快“核心素养体系建设”的指导

意见，将核心素养体系放在了深化课程改革、落实立

德树人目标的基础地位。有上图聚类可知，在计算思

维研究领域研究者们对学习者“信息素养”持续关注，并

在 15 年左右“学科核心素养”出现。期间编程教育、项

目学习等学习方式也一直强调核心素养的培养，计算

思维的培养与核心素养的培养持续关联。

4.2.2. 聚类#1 和聚类#5 计算机基础和计算机

计算思维自提出之日，研究者们便希望能够运用计算

机学科的概念和原理去理解问题和解决问题。计算机

基础教学的核心任务是计算思维能力的培养（何钦铭、

陆汉权和冯博琴，2010）。在此聚类中可看出，从基

础教育的信息技术到高等教育的大学计算机均为研究

者们的关注点。其中随时间发展，中小学阶段以及高

中阶段的信息技术课程、scratch编程、人工智能等逐渐

被研究者关注，计算思维的培养也逐步深入基础教育

中去，逐渐关注中小学学生创造力等高阶思维的培养。

0

200

400

600

800

166

4.2.3. 聚类#2 教学改革

由聚类图可知，教学改革这一聚类从学科角度看主要

集中在在信息技术课程、编程教育、跨学科教育等方

面；从改革内容和形式来看主要集中在教学模式的探

索、课程体系的架构、课程设计与建设等方面。逐步

引入新工科、互联网等学科领域，目的指向应用型人

才以及学习者计算思维等高阶能力的培养。

4.2.4. 聚类#3 和聚类#4 计算思维和计算思维能力

研究者们对计算思维定义及其培养的关注一直持续不

下。“抽象”这一单独的概念维度在 2016 年出现被研究

者们关注，计算思维的培养开始出现根据不同年龄阶

段学习者的特征开展计算思维培养，不同年龄阶段学

习者所接受的计算思维培养内容和层次不同。

5. 研究结论与启示

5.1. 研究结论

本研究得到的主要结论如下：

（1）计算思维研究领域受权威机构的指导意见影响。

研究热点、研究情况受国家层面或权威机构发布的相

关政策与文件影响较大，政府层面或权威机构发布的

多个指导性文献有效推动了我国对计算思维的培养向

各教育阶段的过渡，教育领域的研究者们针对计算思

维从基础教育到高等教育均展开了大量的相关研究。

计算思维目前研究热度处于平稳状态，相关文献数量

不再急剧增长，相关研究从萌芽时期经历奠基时期和

混沌时期逐步回归理性状态。

（2）计算思维的培养主要依托理工科课程。高等教育

中主要依托计算机基础课程及程序设计课程，基础教

育中主要为信息技术课程、数学课程以及编程兴趣班。

高等教育中以计算机课程为依托，计算思维最主要的

培养方式是通过代码的编写以及代码逻辑的学习来实

现计算思维的培养。随着教育理念和教育技术的发展，

人工智能、创客教育、拖拽式编程为中小学计算思维

的培养带了契机（孙立会和周丹华，2019）。

（3）计算思维的研究主题多围绕培养模式的构建。计

算思维研究主题近五年来大多围绕各阶段的信息技术

课程进行，研究主题涉及计算思思维概念的介绍与界

定、计算思维发展的教学模式的构建和教学活动的设

计、相关课程案例的探讨等，也多处提及课程改革，

关于哪些活动环节、资源形式影响学习者计算思维能

力发展及如何评价学习者计算思维发展的相关研究较

少。

5.2. 研究启示

计算思维的发展与习得将会帮助学习者运用计算机科

学的理念和知识去理解世界，为其工作和学习带来便

利，是未来人才培养的重要目标之一，结合研究结论

及国际前沿演技，本研究提出以下反思建议：

（1）引入量表、测试题、理论模型等标准化的定量或

定性计算思维评价方法。正确有效的评价反馈才能促

进更好的教学，那么计算思维如何评价？评价什么？

怎么评价？仍是相关学者需要思考的问题。有效的计

算思维评价可以科学合理的评估学习者的起点水平、

认知结构、学习态度以及学习进步等，以便实施个性

化教学干预（Román-González Marcos，Pérez-González

Juan-Carlos et al, 2018）。

（2）多角度探究学习者计算思维的培养。我国研究者

对于计算思维培养的研究大多依托于中小学信息技术

课程以及大学的计算机课程，主要的方式是通过程序

设计来实现计算思维的培养，计算思维是一种每个人

都要具备的思维模式，是一种运用计算机科学概念理

解世界、解决问题的方式或方法，计算思维的培养不

仅可以依托于程序设计。计算思维的培养更要从多个

角度探究学习活动方式、教学资源形式对学习者计算

思维发展的影响（Zhao & Shute, 2019）。

（3）增强教师对计算思维的认知，开展主题为计算思

维理念与培养方法的教师培训。教师是培养学习者计

算思维能力培养的直接执行人，教师素质能力的高低

是影响学习者的关键因素（Liying Xia & Baichang

Zhong, 2019）。构建面向学习者计算思维培养的教师

发展培训模式，开发指导教师设计并实施计算思维培

养课程的资源体系等是落实计算思维培养教学目标的

前提与根本。

6. 基金项目

国家自然科学基金 2018 面上项目 促进小学生计算思维

培养的跨学科 STEM+C 教学理论与实证研究 71874066；

7. 参考文献

陈悦、陈超美、刘则渊、胡志刚和王贤文（2015）。

CiteSpace 知识图谱的方法论功能。科学学研究，33

（2），242-253。

董荣胜（2010）。《九校联盟（C9）计算机基础教学

发展战略联合声明》呼唤教育的转型。中国大学教学，

10，14-15。

何钦铭、陆汉权和冯博琴（2010）。计算机基础教学

的核心任务是计算思维能力的培养——《九校联盟

（C9）计算机基础教学发展战略联合声明》解读。中

国大学教学， 9，7-11。

孙立会和周丹华（2019）。国际儿童编程教育研究现

状与行动路径。开放教育研究，2，23-34。

Barr, V., & Stephenson, C. (2011). Bringing Computational

Thinking to K-12: What is Involved and What is the Role

of the Computer Science Education Community? Inroads,

2(1), 48-54.

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A Validity

and Reliability Study of the Computational Thinking

Scales (CTS). Computers in Human Behavior, 72, 558-569.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo,

C., Rolandsson, L., & Settle, A. (2014). Computational

Thinking in K-9 Education. Proceedings of the Working

Group Reports of the 2014 on Innovation & Technology in

Computer Science Education Conference. ACM, 1-29.

167

Román-González, M., Pérez-González, J. C., Moreno-León,

J., & Robles, G. (2018). Can Computational Talent be

Detected? Predictive Validity of the Computational

Thinking Test. International Journal of Child-Computer

Interaction, 18, 47-58.

Sysło, M. M., & Kwiatkowska, A. B. (2013). Informatics for

all High School Students. Proceedings of International

Conference on Informatics in Schools: Situation,

Evolution, and Perspectives. Berlin, Heidelberg: Springer,

43-56.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational Thinking and Thinking

about Computing. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, 366(1811), 3717-3725.

Xia, L., & Zhong, B. (2018). A Systematic Review on

Teaching and Learning Robotics Content Knowledge in

K-12. Computers & Education, 127, 267-282.

Zhao, W., & Shute, V. J. (2019). Can Playing a Video Game

Foster Computational Thinking Skills? Computers &

Education, 141, 103633.

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

168

The Impact of Using Mobile Block-based Programming to Control Robots on the

Performance of the Fifth Grader Students Learning Computational Thinking in

Singapore

Tien-hsiu JEN1, Ting-chia HSU2*

1,2National Taiwan Normal University, Taiwan

 tt40621t@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT
This study attempted to cultivate the students to apply computational thinking process to solving the problems when the

students play the interactive game with the educational robots. The instructional experiment participants were the fifth grader

students in Singapore. The educational robots were controlled to interact in Chinese with the block-based programming. The

results found that the students made significant progress both in the competence of computational thinking and the proficiency

of conditional sentences in Chinses through the game-based learning tasks with robots.

KEYWORDS
computational thinking (CT), game-based learning (GBL), robot

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

169

使用手機積木程式工具操控機器人對新加坡五年級學生運算思維表現之影響

任天秀 1，許庭嘉 2＊

1,2國立臺灣師範大學科技應用與人力資源發展學系，台灣

tt40621t@gmail.com, ckhsu@ntnu.edu.tw

摘要

本研究藉由透過手機或平板和教育機器人的程式編輯

器連線，透過編寫積木程式來操控機器人的互動內容，

培養學生透過運算思維歷程來解決教育機器人互動遊

戲中所遇到的問題。實驗對象為新加坡五年級的小學

生，利用積木程式控制機器人使用華語進行互動，研

究結果發現透過機器人的遊戲式學習任務，可以提升

學生在學習運算思維上的成效，同時提升學生的華語

文條件複句能力。

關鍵字

運算思維；機器人；遊戲式學習

1. 前言

在科技快速變遷的資訊化社會中，運算思維逐漸成為

每個 人必備的基 本技能（ Yadav, Mayfield, Zhou,

Hambrusch, & Korb, 2014），運算思維與其相關的概念，

例如：編寫程式碼、電腦程式設計、運算法思維等等，

在 教 育 領 域 受 到 越 來 越 多 的 關 注 （ Bocconi,

Chioccariello, Dettori, Ferrari, & Engelhardt, 2016），培

養學生運算思維的能力，成為教育領域的熱門課題。

近年來，世界各國為了因應此趨勢，並培養出在數位

時代具備重要能力的人才，相繼提出新的資訊教育政

策，將科技融入教育，而台灣於 2014 年頒佈的《十二

年國民基本教育課程綱要總綱》也正式於 2019 年開始

實行，其中資訊科技領域之課程即是以培養學生運算

思維之素養為主軸，重視跨領域統整、溝通與團隊合

作之能力，強調學習內涵須注重與生活的連結，而不

宜再局限於單純的學科知識及技能（王佳琪, 2017）。

儘管教育隨著時代不斷地變化，但遊戲一直是教育不

可或缺的一部分，教育遊戲的概念已在當今的教育界

中得到應用（Donmus, 2010），根據眾多研究支持遊戲

對學習的積極影響，越來越多的研究人員致力於開發

教育遊戲（Qian & Clark, 2016），學者 Reinders 和

Wattana （2015）表示遊戲可以激勵人們，降低學習中

的情感障礙，並鼓勵外語或第二語言（L2）的互動。

因此，本研究將探究使用手機應用程式與教育機器人

相互配合，讓華語作為第二語言學習的國小生，利用

手機應用程式中模組化的程式設計工具操作教育機器

人，學習華語邏輯與文法規則，並從遊戲中培養運算

思維與分析的能力，使得學生在遊戲過程中，能夠運

用運算思維解決所遇到的問題，並且釐清華語文法上

基本觀念。

2. 文獻探討

2.1. 運算思維

運算思維（Computational Thinking, CT）是使用電腦和

訊息科學必不可少的概念，經常被用來解決問題、設

計和評估複雜的系統，並理解人類的推理和行為

（Buitrago Flórez et al., 2017）。Korkmaz、Ç akir 和

Ö zden （2017）認為可以將「運算思維」簡單地定義為

具有能夠使用電腦解決生產中的生活問題所必需的知

識、技能和態度，這種思維方式對電腦科學以及幾乎

所有其他領域都具有重要意義（Buitrago Flórez et al.,

2017）。（Wing, 2006）表示一旦學生掌握了運算思維

的概念，便可以將其應用於電腦科學以外的領域。

在過去的十年中，運算思維和相關的概念例如：編寫

程式碼、電腦程式設計、運算法思維，在教育領域受

到越來越多的關注（Bocconi et al., 2016），隨著世界各

國政府在學校課程中引入這些技能，通過電腦程式設

計來發展運算思維技能是教育的一個主要焦點

（Moreno-León, Robles, & Román-González, 2016），運

算思維被認為是一種普遍的能力，應將其添加到每位

孩子的分析能力中，作為他們學校學習的重要組成部

分（Voogt, Fisser, Good, Mishra, & Yadav, 2015）。

然而，運算思維需要透過訓練和指導，不是自然而然

產生的 （Sanford & Naidu, 2016），儘管程式設計對年

輕學生非常有吸引力，且具有很好的實踐或經驗，但

是在程式設計方法或運算思維過程中發展學生的邏輯

思維能力和解決問題的能力可能更有趣（García-

Peñalvo, 2018）。

2.2. 機器人

機器人一直受到越來越多的關注，並且機器人在教育

中的許多方面被認為是有前途的教學手段（Cheng, Sun,

& Chen, 2017）。機器人程式可以吸引人的學習環境，

以獲取核心的運算思維能力（Witherspoon, Higashi,

Schunn, Baehr, & Shoop, 2017）。在世界範圍內，經濟

和技術要求等因素都在積極促進程式設計教育（Noh &

Lee, 2019）。教育機器人程式已在大多數發達國家中流

行，並且在發展中國家也越來越流行（ Miller &

Nourbakhsh, 2016）。

如今，教育機器人已經開始走進校園和家庭，改變了

傳統的教學方式（Jin, Xie, Ma, & Ye, 2019）。機器人技

術的發展具有與教育系統整合的巨大潛力，機器人技

術在中小學生中變得越來越普遍（Besari et al., 2016）。

機器人技術用於在各個教育階段的學生中教授問題解

決、程式設計、設計、物理、數學甚至音樂和藝術

（Miller & Nourbakhsh, 2016）。

2.3. 電腦程式自我效能

自我效能與人們本身對完成任務或目標能力的信念有

關（Bandura, 2006）。目標設定理論表明，困難的目標

170

可以提高許多任務的績效，但是當目標難以實現時，

目標可能會產生挫折感和動力不足，結果也會降低績

效（Baron, Mueller, & Wolfe, 2016）。

隨著對電腦系統的日益依賴以及新技術的引入日漸迅

速，用戶對技術的接受度仍然是一個重要的問題（Mun

& Hwang, 2003）。現代技術的發展及其對當今日常生

活的擴展已是不爭的事實，電腦的廣泛使用使得有必

要對這些技術進行培訓，例如：電腦自我效能、自我

概 念 、 態 度 、 動 力 和 需 求 （ Paraskeva, Bouta, &

Papagianni, 2008）。Karsten 與 Roth （1998）的研究結

果顯示，電腦自我效能感的測量提供了有用的證據，

表明通過培訓的過程，學生能夠更有效地提升使用電

腦的能力。

2.4. 遊戲式學習

近年來，對基於數位遊戲式學習（Digital Game-Based

Learning, DGBL）有效性的系統評估越來越引起人們的

興趣（All, Castellar, & Van Looy, 2015），有鑑於眾多

研究支持遊戲對學習的積極影響，越來越多的研究人

員致力於開發教育遊戲，以促進學生在學校 21 世紀技

能的發展（Qian & Clark, 2016）。電腦遊戲已向許多方

向發展，許多研究和系統涉及遊戲結構中的“樂趣”和

“愉快”等不同的元素，以提高學習者在教育學習領域的

動力（Al-Azawi, Al-Faliti, & Al-Blushi, 2016）。技術的

進步導致教學方法的不斷創新，例如：在課堂教學中

使用平板電腦（TPC）已被證明可以有效地吸引和激發

學生的興趣，並提高他們參與學習活動的意願（Hung,

Sun, & Yu, 2015）。遊戲可以激勵人們，降低學習中的

情感障礙，並鼓勵外語或第二語言（L2）的互動

（Reinders & Wattana, 2015）。

2.5. 合作學習

在過去的幾年中，有關課堂合作學習技術的研究一直

在增加，在這種學習中，學生以小組形式工作，並根

據小組的表現獲得獎勵或認可（Slavin, 1980）。在精

心組織的小組中合作工作的學生可以最大限度地利用

自己和彼此的學習（Smith, 1996）。通過鼓勵學習者共

同努力解決問題，了解他人的觀點並合作尋找創造性

和關鍵性的解決方案，這些經歷可以幫助認知和協作

技能的發展（Lee et al., 2016）。通過合作組織努力，

有大量證據表明學生將取得更高的成就，能夠學習更

多，使用更高層次的推理策略，建立更完整和複雜的

概念結構以及更準確地保留學習的訊息，建立更多的

支持性和積極關係，其中也包括人際關係，並以更健

康的方式發展，心理健康、自尊、應對壓力和逆境的

能力皆會有所提升（Smith, 1996）。

3. 研究方法

3.1. 實驗對象

本次實驗對象為 52 位將華語作為第二語言學習的新加

坡某國小五年級學生，性別分布為男性 30 位（58%），

女性 22 位（42%），主要是透過手機應用程式與教育

機器人相互配合使用，使學習者能夠運用運算思維並

釐清華語文法上基本觀念，同時提升學習者的學習成

效。

3.2. 研究工具

本研究使用機器人華語文句子學習單與電腦程式自我

效能量表進行學習成效測量：

3.2.1. 機器人華語文句子學習單

本研究使用的機器人華語文句子學習單測驗學習者的

華語能力，學習單內容取自與課文內容程度相同之華

語教材，總共分為四大題，第一部份以詞語組成為主，

第二部份選擇出正確的拼音，第三部份找出最適合的

詞語填入句子中，最後第四部份偏重圖片識別部份。

3.2.2. 電腦程式自我效能表現量表

此量表用以個人對於自己電腦能力的自我判斷。採用

Tsai, Wang 與 Hsu（2019） 所編製之「電腦程式自我效

能表現量表」上的得分來決定，得分越高，表示其所

具有的電腦程式自我效能表現越高，反之則越低。此

量表包含三個構面分別為「邏輯思考」、「控制」與

「除錯」，「邏輯思考」構面 4 題，「控制」與「除錯」

構面各 3 題，合計 10 題。作答形式採用李克特的五等

選項，「1」表示強烈反對，「5」表示堅決同意；各

分量表加總取平均值即為各分量表分數，並分別進行

前後測驗的比較。

3.3. 研究程序

本次實驗的實驗對象為 52 位將華語作為第二語言學習

的新加坡某國小五年級學生，施測地點為班級教室進

行施測，採團體施測的方式。使用手機應用程式與教

育機器人相互配合使用，主要的目的是希望讓華語非

母語的國小生利用模組化程式設計工具學習華語邏輯

與文法規則，並透過相互合作學習，共同努力解決在

學習過程中所面臨的問題，使學生能夠運用並釐清華

語文法上基本觀念。

如圖 1 表示，在實驗開始之前，使用機器人華語文句子

學習單與電腦程式自我效能表現量表，先對學生施行

前測，評估基本的華語及運算思維能力，接著進行小

組施測介紹並教授課程內容，經教學課程後，開始分

組完成實驗內容，每組使用手機應用程式（操作介面

如圖 2 所示）與教育機器人達成目標並完成實驗。待所

有組別皆完成實驗，開始進行全班的團體競賽的施測

介紹，藉由團體競爭的競爭方式提高學生的學習成效。

全班競賽施測結束後，要求學生填寫與前測相同難易

度的機器人華語文句子學習單與電腦程式自我效能表

作為後測，了解實驗結果與學習成效是否有進步。

171

圖 1 實驗流程

圖 2 使用手機積木程式工具操控機器人之介面

4. 研究結果

本研究欲探究學生之成績，使用機器人華語文句子學

習單進行前後測的成績測驗，並且將前後測的成績以

相依樣本 t 檢定分析發現，由表 1 得知，學生之後測與

前測之平均值有顯著差異，t（51）= -6.203，p<.05。後

測成績（M=76.35，SD=13.64）顯著地大於前測成績

（M=60.13，SD=23.26），由此可見學生透過手機應用

程式與教育機器人相互配合學習華語，對於學習成效

是有顯著增加的。

本研究欲探究學生在電腦程式自我效能之表現，將問

卷分為「邏輯思考」、「控制」與「除錯」三個構面，

將前後測以相依樣本 t 檢定進行分析發現，學生三構面

後測與前測之平均值皆有顯著差異。

由表 2 得知，在「邏輯思考」構面 t（51） = -6.12，

p<.05，後測成績（M=3.99，SD=0.81）顯著地大於前

測成績（M=3.07，SD=1.09）；在「控制」構面 t（51）

= -4.97，p<.05，後測成績（M=3.95，SD=0.94）顯著地

大於前測成績（M=2.96，SD=1.41）；在「除錯」構面

t（51） = -6.94，p<.05，後測成績（M=3.92，SD=0.83）

顯著地大於前測成績（M=2.79，SD=1.10），由此可見

學生透過手機應用程式與教育機器人相互配合學習華

語，能夠顯著提升運算思維的能力。

5. 結論與未來展望

在過去的十年中，運算思維和相關的概念例如：編寫

程式碼、電腦程式設計、運算法思維，在教育領域受

到越來越多的關注（Bocconi et al., 2016），隨著世界各

國政府在學校課程中引入這些技能，通過電腦程式設

計來發展運算思維技能是教育的一個主要焦點

（Moreno-León, Robles, & Román-González, 2016），而

使用手機應用程式中模組化的程式設計工具，是為了

培養學習者使用電腦邏輯來解決問題的運算思維

（Buitrago Flórez et al., 2017），強化資訊科技能力。

在本項研究中，使用手機應用程式中模組化的程式設

計工具操作教育機器人，學習運算思維與華語文法規

則。研究結果顯示，學習者在經教學課程並分組完成

實驗內容後，將前後測以相依樣本 t 檢定進行分析發現，

使用機器人華語文句子學習單進行前後測的成績測驗

之平均值有顯著差異，後測成績顯著地大於前測成績，

表示學習者透過手機應用程式與教育機器人相互配合

學習，確實能夠增加學習者學習華語的學習成效。並

且，學習者在「邏輯思考」、「控制」與「除錯」三

構面後測與前測之平均值皆有顯著差異，由此可見學

習者透過手機應用程式與教育機器人相互配合學習華

語，對於運算思維是確實有顯著提升的。

雖然本研究結果顯著，研究者認為華語的文法規則與

語法多變性遠遠大於目前手機應用程式中模組化的程

式設計工具所設計的內容，故希望未來可以朝向擴增

系統的資料庫、增加不同課文內容以及語法規則等邁

進，用以充實學習內容的深度與豐富度。

本研究之所以設計手機應用程式與教育機器人相互配

合，是為了透過遊戲式學習激勵學習者，降低學習者

在學習過程中的情感障礙（Reinders & Wattana, 2015），

並鼓勵學習者增加在華語學習上的互動，使得學習者

在遊戲過程中，能夠運用運算思維解決所遇到的問題，

並且釐清華語文法上基本觀念。研究者認為，未來在

研究上，建議也能透過教學增加學習者的學習動機以

及提升整個課程的滿意度，使得未來研究方向可以更

加完整。

6. 致謝

本研究感謝科技部研究計畫編號 : MOST 108-2511-H-

003 -056 -MY3 的部分補助。

7. 參考文獻

王佳琪。（2017）。十二年國民基本教育課程綱要總

綱之核心素養課程：評量的觀點。臺灣教育評論月刊，

6（3）, 35-42.

Al-Azawi, R., Al-Faliti, F., & Al-Blushi, M. (2016).

Educational Gamification VS. Game Based Learning:

Comparative Study. International Journal of Innovation,

Management and Technology, 7(4), 132-136.

All, A., Castellar, E. P. N., & Van Looy, J. (2015). Towards

a Conceptual Framework for Assessing the Effectiveness

of Digital Game-based Learning. Computers & Education,

88, 29-37.

Bandura, A. (2006). Guide for Constructing Self-efficacy

Scales. Self-efficacy beliefs of adolescents, 5(1), 307-337.

Baron, R. A., Mueller, B. A., & Wolfe, M. T. (2016). Self-

Efficacy and Entrepreneurs' Adoption of Unattainable

Goals: The Restraining Effects of Self-control. Journal of

Business Venturing, 31(1), 55-71.

表 1 機器人華語文句子學習單之相依樣本 t 檢定

項目 平均數（標準差） 自由度 t

前測 後測

成績
60.13

（23.26）

76.35

（13.64）

51 -6.203

***p<0.001

表 2 電腦程式自我效能表現量表之相依樣本 t 檢定

項目 平均數（標準差） 自由度 t

前測 後測

邏輯思考 3.07（1.09

）

3.99（0.81

）

51 -6.12

控制 2.96（1.41

）

3.95（0.94

）

51 -4.97

除錯 2.79（1.10

）

3.92（0.83

）

51 -6.94

***p<0.001

172

Besari, A. R. A., Sukaridhoto, S., Wibowo, I. K., Berlian, M.

H., Akbar, M. W., Yohanie, F. Y., & Bayu, K. A. (2016).

Preliminary Design of Interactive Visual Mobile

Programming on Educational Robot ADROIT V1.

Proceedings of the 2016 International Electronics

Symposium (IES).IEEE, 499-503.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., &

Engelhardt, K. (2016). Developing Computational

Thinking in Compulsory Education-Implications for

Policy and Practice. Retrieved December 24, 2016 from

https://econpapers.repec.org/paper/iptiptwpa/jrc104188.ht

m

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A.,

Restrepo, S., & Danies, G. (2017). Changing a

Generation’s Way of Thinking: Teaching Computational

Thinking through Programming. Review of Educational

Research, 87(4), 834-860.

Cheng, Y. W., Sun, P. C., & Chen, N. S. (2017). An

Investigation of the Needs on Educational Robots.

Proceedings of 2017 IEEE 17th International Conference

on Advanced Learning Technologies (ICALT). IEEE, 536-

538.

Donmus, V. (2010). The Use of Social Networks in

Educational Computer-game Based Foreign Language

Learning. Procedia-Social and Behavioral Sciences, 9,

1497-1503.

García-Peñalvo, F. J. (2018). Editorial Computational

Thinking. IEEE Revista Iberoamericana de Tecnologias

del Aprendizaje, 13(1), 17-19.

Hung, C. Y., Sun, J. C. Y., & Yu, P. T. (2015). The Benefits

of a Challenge: Student Motivation and Flow Experience

in Tablet-PC-game-based Learning. Interactive Learning

Environments, 23(2), 172-190.

Jin, T., Xie, W., Ma, J., & Ye, K. (2019). Design Method

and Example of a Simple Educational Robot. Proceedings

of the 2018 International Conference on Mathematics,

Modeling, Simulation and Statistics Application (MMSSA

2018).

Karsten, R., & Roth, R. M. (1998). Computer Self-efficacy:

A Practical Indicator of Student Computer Competency in

Introductory IS Courses. Informing Science, 1(3), 61-68.

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A Validity

and Reliability Study of the Computational Thinking

Scales (CTS). Computers in Human Behavior, 72, 558-569.

Lee, H., Parsons, D., Kwon, G., Kim, J., Petrova, K., Jeong,

E., & Ryu, H. (2016). Cooperation Begins: Encouraging

Critical Thinking Skills Through Cooperative Reciprocity

Using a Mobile Learning Game. Computers & Education,

97, 97-115.

Miller, D. P., & Nourbakhsh, I. (2016). Robotics for

Education. Springer handbook of robotics. Springer: 2115-

2134.

Moreno-León, J., Robles, G., & Román-González, M.

(2016). Comparing Computational Thinking Development

Assessment Scores with Software Complexity Metrics.

Proceedings of the 2016 IEEE Global Engineering

Education Conference (EDUCON), 1040-1045.

Mun, Y. Y., & Hwang, Y. (2003). Predicting the Use of

Web-based Information Systems: Self-efficacy,

Enjoyment, Learning Goal Orientation, and the

Technology Acceptance Model. International journal of

human-computer studies, 59(4), 431-449.

Noh, J., & Lee, J. (2019). Effects of Robotics Programming

on the Computational Thinking and Creativity of

Elementary School Students. Educational Technology

Research and Development, 1-22.

Paraskeva, F., Bouta, H., & Papagianni, A. (2008).

Individual Characteristics and Computer Self-efficacy in

Secondary Education Teachers to Integrate Technology in

Educational Practice. Computers & Education, 50(3),

1084-1091.

Qian, M., & Clark, K. R. (2016). Game-based Learning and

21st Century Skills: A Review of Recent Research.

Computers in Human Behavior, 63, 50-58.

Reinders, H., & Wattana, S. (2015). Affect and Willingness

to Communicate in Digital Game-based Learning.

ReCALL, 27(1), 38-57.

Sanford, J. F., & Naidu, J. T. (2016). Computational

Thinking Concepts for Grade School. Contemporary

Issues in Education Research, 9(1), 23-32.

Slavin, R. E. (1980). Cooperative Learning. Review of

Educational Research, 50(2), 315-342.

Smith, K. A. (1996). Cooperative learning: Making

“Groupwork” Work. New directions for teaching and

learning, 1996(67), 71-82.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational Thinking in Compulsory Education:

Towards an Agenda for Research and Practice. Education

and Information Technologies, 20(4), 715-728.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35.

Witherspoon, E. B., Higashi, R. M., Schunn, C. D., Baehr,

E. C., & Shoop, R. (2017). Developing Computational

Thinking through a Virtual Robotics Programming

Curriculum. ACM Transactions on Computing Education

(TOCE), 18(1), 4.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,

J. T. (2014). Computational Thinking in Elementary and

Secondary Teacher Education. ACM Transactions on

Computing Education (TOCE), 14(1), 5.

https://econpapers.repec.org/paper/iptiptwpa/jrc104188.htm
https://econpapers.repec.org/paper/iptiptwpa/jrc104188.htm

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

173

Computational Thinking Implemented in Five Sets of High School Information

Technology Textbooks in Mainland China:

Comparative Study of Methods and Strategies

Ya- jing GENG1*, Feng LI2
1Department of Education Information Technology, East China Normal University, China

2School of Open Learning and Education, East China Normal University, China

51194108027@stu.ecnu.edu.cn, fli@srcc.ecnu.edu.cn

ABSTRACT

The rapid development and popularization of information technology has changed people's behavior and thinking

characteristics. Among them, computational thinking is considered to be an indispensable basic ability in life, and

computational thinking has been identified as the core literacy of the information technology discipline at the K-12 stage.

Implementation and teaching methods are of concern to educational researchers and front-line teachers. Based on the

development of computational thinking and computational thinking education, this article focuses on the core concepts and

training methods of computational thinking, and refers to the 2017 high school information technology curriculum standards

in China, and determines the teaching materials to implement calculations from the orientation and training methods of

computational thinking. The four dimensions of thinking are used to compare the implementation of computational thinking

in 5 Chinese textbooks, and corresponding teaching suggestions are provided to provide theoretical and practical references

for the cultivation of computational thinking in students.

KEYWORDS

computational thinking, high school information technology, comparison of teaching materials, teaching suggestions

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,

M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

174

计算思维在中国大陆五套高中信息技术教材中落实的方法与策略的比较研究

耿雅静 1*，李锋 2
1华东师范大学教育信息技术学系，中国

2华东师范大学开放教育学院，中国

51194108027@stu.ecnu.edu.cn，fli@srcc.ecnu.edu.cn

摘要

信息技术的快速发展与普及改变了人们的行为方式和

思维特征，其中计算思维被认为是生活中不可或缺的

基本能力，并且计算思维被确定为 K-12 阶段信息技术

学科的核心素养，其落实和教学方法被教育研究者和

一线教师所关注。本文在梳理计算思维和计算思维教

育发展历程的基础上，围绕计算思维的核心理念、培

养方式，并参照我国 2017 年高中信息技术课程标准，

从计算思维培养指向性和培养方式确定了教材落实计

算思维的四个维度，由此来比较五套我国大陆教材计

算思维落实情况，并提出相应教学建议，为学生计算

思维的培养提供理论和实践的参考。

关键词

计算思维；高中信息技术；教材比较；教学建议

1. 前言

各个国家均将计算思维纳入其 K-12 课程标准中，并被

认为是数字化生存一种普适能力。2017 年，我国在新

修订的高中信息技术课程标准中将“计算思维”确定为信

息技术学科核心素养的一项核心内容，为教材的编写

和教师教学提供了标准和依据。那么在教材中，计算

思维是通过什么方式来落实的，教师如何利用教材来

培养学生计算思维的就显得尤为重要。

2. 新课标视角下信息技术学科计算思维落实

的方法与策略

2.1. 计算思维的内涵

新课标将计算思维素养的内涵界定为：在信息活动中，

能够采用计算机可以处理的方式界定问题、抽象思考、

建立结构模型、合理组织数据；通过判断、分析与综

合各种信息资源，运用合理的算法形成解决问题的方

案；总结利用计算机解决问题的过程与方法，并迁移

到与之相关的其他问题解决中。

2.2. 计算思维的表现

课程标准将计算思维的具体表现总结为在解决问题过

程中的形式化、模型化、自动化和系统化四个方面。

2.3. 计算思维再教材中的落实的方法

本文从计算思维培养的指向性（“教计算思维”和“学计

算思维”）和方法（“插电”和“不插电”）两个维度建立

坐标轴，如图 1，确定了“插电教计算思维”、“不插电

教计算思维”、“插电用计算思维”、“不插电用计算思维”

这四个比较维度，基于此对教材中计算思维的落实进

行梳理与分析。

图 2 计算思维比较维度

3. 五套信息技术教材中计算思维落实的比较

 “插电教计算思维”在教材中体现为运用计算机等电子

设备，在体验程序设计与编码中学习计算机语言、程

序设计与编码，软件工具的操作方式等；“不插电教计

算思维”体现为通过叙述性课文形式、思考讨论、思维

可视化的方式来让学生学习程序设计概念、方法和工

具、算法的设计与描述等；“插电用计算思维”主要是让

学生在用计算机等设备来实现算法、实现问题解决的

关键步骤，在真实情境中体验利用计算机来解决问题；

“不插电用计算思维”是在真实情境的项目活动中，将大

问题分解成小问题、运用抽象化、模型化、系统化的

思维来迭代和优化问题的解决方案，从而优质、高效

地解决问题。

本文根据图 1 的分类，选择对人民教育出版社（人教

版）、上海科技教育出版社（沪教版）、广东教育出

版社（粤教版）、浙江教育出版社（浙教版）和教育

科学出版社（教科版）出版的五本《数据与计算》模

块内容中计算思维的落实进行比较，具体比较结果如

图 2 所示。

图 2 计算思维落实的比较

对五本教材进行比较发现，人教版和教科版对四种落

实计算思维的方式设计的较为均衡，沪教版、粤教版

以及浙教版比较看重“通过不插电教计算思维”的方式。

其中五本教材也存在共性，即“通过插电的方式用计算

思维”的内容在教材中所占比例较低，可以看出新教材

真正落实了计算思维不是编程教育的核心理念。并且

教材中都尝试通过用项目化学习的方式让学生用计算

机解决问题的方式，即在一个完整的系统中将大问题

175

分解为子问题，让学生在子问题中进行形式化、模型

化与自动化的不断迭代。

4. 基于计算思维的教学建议

4.1. 共性建议

各教材的共同目标就是培养创造性思维，提高问题解

决能力与效率。故教师要结合教材优势和自身教学经

验，加强学生抽象思维和逻辑思维的培养。要合理安

排教学活动，让学生在独立分析思考、协作解决问题

的过程中将知识转化为能力，结合运用“插电”和“不插

电”的方式，充分全方位地发展学生思维。最后，要有

效对学生进行评价。

4.2. 个性建议

通过以上落实计算思维的比较研究的结果可以看出，

五套信息技术教材存在个性化差异，根据此种情况，

教师在使用不同教材时，要结合教材特点，进行相应

教学设计，以保证教学的有效开展以及学生计算思维

的稳步提升。

5. 总结

本文通过厘清计算思维在教育中应用的基础上，构建

了计算思维在教材中落实的比较方式，通过此方式选

择了五套正在进行试点使用的大陆教材，比较其计算

思维落实的情况，为后续教材的修改、教师的教学以

及计算思维的实践应用提供有价值的借鉴。

6. 参考文献

邱美玲、李海霞和罗丹等（2018）。 美国《K-12 计算

机科学框架》对我国信息技术教学的启示。现代教育

技术，28，41-47。

范文翔、张一春和李艺（2018）。国内外计算思维研

究与发展综述。远程教育杂志，36(02)，3-17。

李锋（2018）。中小学计算思维教育:stem 课程的视角。

中国远程教育（综合版），2 ，44-49，78。

李锋，熊璋（2017）。面向核心素养的信息技术课

程:“数据与计算”模块。中国电化教育，01，27-32。

李锋和王吉庆（2015）。计算思维教育：从“为计算”到

“用计算”。中国电化教育，10，6-10，21。

Bell, T., & Roberts, J. (2016). Computational Thinking is

More about Humans than Computers, Set 2016, 1, 3–7.

Bocconi. S., Chioccariello. A., Dettori. G., Ferrari, A., &

Engelhardt. K. (2016). Developing Computational

Thinking in Compulsory Education - Implications for

Policy and Practice. European Commission: Joint

Research Centre.

Caeli, E. N., & Yadav, A. (2019). Unplugged Approaches to

Computational Thinking: A Historical Perspective.

TechTrends, (6), 1-8.

Hermans, F., & Aivaloglou, E. (2017). To Scratch or Not to

Scratch? A Controlled Experiment Comparing Plugged

First and Unplugged First Programming Lessons.

Proceedings of the 12th Workshop in Primary and

Secondary Computing Education, 49–56.

ISTE & CSTA (2011). Computational Thinking

Teaching in K-12 Education: Teacher Resources

(Second edition). Retrieved November 10, 2011, from

http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CT

TeacherResources_2ed-SP-vF.pdf

Wing, J. M. (2011). Computational thinking: What and

Why? Retrieved November 21, 2019, from

https://www.cs.cmu.edu/link/research-notebook-

computational-thinking-what-and-why

Yang, M. (2017). Why Is Computational Thinking

Education Important as the Foundation for Innovation?

Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong:

The Education University of Hong Kong.

http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

