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Preface

International Conference on Computational Thinking Education 2020 (CTE2020) is the fourth international conference
organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created

by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.

CoolThink@JC strives to inspire the digital creativity among students and nurture their proactive use of technologies for
social good from a young age. In collaboration with the world’s leading experts and local educators, CoolThink@JC
empowers teachers with high-quality teaching materials, learning platform, and professional development programmes. Since
2016, CoolThink@JC has trained more than 110 teachers from 32 pilot schools and benefited over 20,000 primary students
with CoolThink classes. The CoolThink@JC approach prepares students for a fast-changing digital future through a hands-
on, minds-on, and joyful learning experience. An independent evaluation has found that students participated in
CoolThink@JC grew twice as much in problem-solving skills when compared with non-participating students. Following the
successful implementation of the four-year pilot, the second phase of the CoolThink@JC is launched in 2020, with the aim

of mainstreaming computational thinking education.

CTE2020 is held online on 19-21 August, 2020. Last year, the conference attracted over 600 worldwide scholars, educational
practitioners and policymakers from 17 countries/ regions. The International Teacher Forum is first introduced this year to
reach out to K-12 CT teachers. Under the pandemic, CTE2020 experienced reschedule and has switched from face-to-face to
online mode. With the support from speakers, panelists, IPC Co-chairs, IPC members and paper authors, we have gone through

challenges and are excited to welcome partcipants to join us at the conference to share their research and ideas.



“Computational Thinking Education” is the main theme of CTE2020 which aims to keep abreast of the latest development
of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT development

in school education. There are 16 sub-themes under CTE2020, namely:

Computational Thinking

Computational Thinking and Coding Education in K-12
Computational Thinking and Unplugged Activities in K-12
Computational Thinking and Subject Learning and Teaching in K-12
Computational Thinking and Teacher Development
Computational Thinking and loT

Computational Thinking and STEM/STEAM Education
Computational Thinking and Data Science

Computational Thinking and Artificial Intelligence Education
Computational Thinking Development in Higher Education
Computational Thinking and Special Education Needs
Computational Thinking and Evaluation

Computational Thinking and Non-formal Learning
Computational Thinking and Psychological Studies
Computational Thinking in Educational Policy

General Submission to Computational Thinking Education



The conference received a total of 46 submissions (32 full papers, 11 short papers and 3 poster papers) by 107 authors from

19 countries/regions (see Table 1).

Table 1: Distribution of Paper Submissions for CTE2020

Country / Region No. of Authors Country / Region No. of Authors
Australia 2 Israel 3
Brazil 5 Malaysia 4
Canada 2 Singapore 10
China 17 South Korea

Cyprus 2 Spain

Finland 5 Sweden

Germany 8 Taiwan 14
Greece 1 The Netherlands 4
Hong Kong 4 United States 11
India 3 Total 107

The International Programme Committee (IPC) is formed by 98 Members and 13 Co-chairs worldwide. Each paper with
author identification anonymous was reviewed by at least three IPC Members. Related sub-theme Chairs then conducted
meta-reviews and made recommendation on the acceptance of papers based on IPC Members’ reviews. With the
comprehensive review process, 37 accepted papers are presented (12 full papers, 17 short papers and 8 poster papers) (see

Table 2) at the conference.

Table 2: Paper Presented at CTE2020

Sub-themes Full Paper Short Poster Total
Paper Paper
CT 1 0 0 1
CT and Coding Education in K-12 3 2 2 7
CT and Unplugged Activities in K-12 1 1 0 2
CT and Subject Learning and Teaching in K-12 0 2 0 2
CT and Teacher Development 1 2 0 3
CT and loT 0 1 0 1
CT and STEM/STEAM Education 1 2 1 4
CT and Artificial Intelligence Education 1 0 3 4
CT Development in Higher Education 3 2 0 5
CT and Evaluation 0 2 0 2
CT and Non-formal Learning 0 0 1 1
General Submission to CT Education 1 3 1 5
Total 12 17 8 37




On behalf of CoolThink@JC and the Conference Organizing Committee, we would like to express our gratitude towards all

partners and participants for their contribution to the success and smooth operation of CTE2020.

We sincerely hope everyone enjoy and get inspired from CTE2020.

With Best Wishes,

Prof. KONG, Siu-cheung
The Education University of Hong Kong, Hong Kong

Conference Chair of CTE2020

Principal CHU, Tsz-wing
St. Hilary’s Kindergarten and Primary Schools, Hong Kong

Conference Chair of CTE2020
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Computational Thinking Competences in Countries from Three Different
Continents in the Mirror of Students' Characteristics and School Learning

Amelie LABUSCHY", Birgit EICKELMANN?
12 paderborn University, Germany
amelie.labusch@upb.de, birgit.eickelmann@upb.de

ABSTRACT

Computational thinking (CT) aspires to be learned by
everyone for active participation in society. However,
differences in students’ learning of computational thinking
within and between educational systems and differences in
competence among students differentiated by social
background and gender emerge. The IEA study ICILS 2018
(International Computer and Information Literacy Study)
addresses this issue by measuring competences in
computational thinking and examining the conditions for the
acquisition of competences in an international comparison.
This allows in-depth analyses to answer the question to what
extent differences in students' average competences in
computational thinking can be explained by students' social
background, their learning of computational thinking tasks
at school, and their gender. For this purpose, regression
analyses are carried out using data from three countries from
three different continents (Republic of Korea, USA and
Germany). The dependent variables are students'
competences in computational thinking, their variance is to
be explained by the independent variables social
background, learning of computational thinking tasks at
school and gender. The results show that performance
differences in favor of students with socially privileged
background exist in all three countries. Controlled by social
background and gender, students' learning of computational
thinking tasks at school shows significant negative
relationships to their competences in computational thinking
in the Republic of Korea and Germany. In addition,
significant performance differences between girls and boys
in favor of boys under control of social background and
students' learning of computational thinking tasks at school
in the USA and Germany show up.

KEYWORDS
computational thinking,
students’ characteristics

ICILS 2018, school learning,

1. INTRODUCTION

Computational thinking is growing in relevance as a key
competence of the 21 century (Voogt, Fisser, Good,
Mishra, & Yadav, 2015). From the perspective of Aho
(2012), it is seen as a set of thought processes that are used
to model problems and their solutions in a way that
algorithmic processing becomes possible. The competences
in computational thinking thus concern cognitive processes
that go far beyond the mere application of hardware and
software. In this understanding, computational thinking
focuses on problem-solving processes that can be made
accessible through the development and application of
algorithms, associated processes of modeling and
formalization of implementation on a computer or digital

system. Students develop problem-solving skills in
computational thinking that are independent of a
programming language or development environment and
can include both subject-specific and general aspects of
problem-solving  skills  (Labusch, Eickelmann &
Vennemann, 2019).

However, computational thinking is differently or even not
at all anchored in school curricula worldwide. According to
analyses for the European Commission, computational
thinking was already anchored in eleven European education
systems (Bocconi, Chioccariello, Dettori, Ferrari &
Engelhardt, 2016) as early as 2016, with further countries
being added since then. In the overview of the different
approaches in different countries and educational systems,
also on an international level, three different approaches to
the curricular anchoring of computational thinking can be
identified (Eickelmann, 2019): (1) computational thinking
as a cross-curricular competence, (2) computational thinking
as part of computer science, and (3) computational thinking
as an individual subject or learning area.

However, since the first works by Papert (1980) and Wing
(2006), a de facto consensus has emerged in theoretical or
concrete curricular approaches on what is termed
computational thinking regardless of the form in which the
curriculum is anchored and how the concept of these
competences has been developed. For the design of school
support there is therefore still a need to advance the
development of generally accepted strategies for describing
and assessing competences in computational thinking (Barr
& Stephenson, 2011). In addition, the dynamics of the
competence area impeded the development of a theoretically
sufficiently elaborated concept of computational thinking
over the years, rendering this competence area difficult to
measure (Grover & Pea, 2013).

The empirical investigation of computational thinking has so
far been complicated not least by the diversity of theoretical
and empirical approaches and the diversity of the definitions
underlying the often rather smaller studies or even by the
complete lack of a working definition, and thus the lack of
an explanation of the theoretical approach (e.g. Curzon, Bell,
Waite & Dorling, 2019). Although not all curricula
explicitly mention the field of computational thinking, often
there are elements that can be assigned to this field. This
shows that the constructs computational thinking is based on
are in some places anchored in principle in the curriculum,
but in many cases have not always been bundled to achieve
their goals. Only in recent years, several studies emerged in
an international context which explicitly focus on
computational thinking. The results of these studies include
the fact that existing test instruments are partly
complementary. While the evaluation of items of the Bebras



competition (Dagiene & Futschek, 2008) refers to the
analytic and apply levels of the taxonomy — i.e. general
analytical thinking — and the evaluation mechanisms of the
Dr. Scratch environment (Moreno-Le6n & Robles, 2015),
the Computational Thinking Test (CTt; Roman-Gonzélez,
2015) with the levels Understand and Remember focuses on
conceptual knowledge in computational thinking (Curzon et
al., 2019).

The IEA (International Association for the Evaluation of
Educational Achievement) study ICILS 2018 (International
Computer and Information Literacy Study) closes this gap
(Fraillon et al., 2019). For the first time, an international
additional module to investigate competences in
computational thinking has been introduced. In an
international comparison, the competences of eighth graders
have been examined based on the representative student
sample of ICILS 2018 by means of computer-based student
tests developed in particular for this area, and the conditions
for acquiring these competences assessed by background
questionnaires. As this is an international option to the study,
only a part of the in ICILS 2018 participating countries,
including the Republic of Korea, the USA and Germany,
participate in the additional module (Eickelmann, Bos,
Gerick, Goldhammer, Schaumburg, Schwippert, Senkbeil,
& Vahrenhold, 2019; Fraillon, Schulz, Friedman, &
Duckworth, 2019).

Within the scope of the additional module of the ICILS 2018
study, an international group of experts developed a
theoretical measurement construct for the field of
computational thinking, which incorporates and evaluates
existing approaches and concepts in the field of
computational thinking, and thus combines them. The
theoretical construct also formed the basis for the
development of the computer-based test modules used in
ICILS 2018 (Fraillon et al., 2019). In this construct, a
distinction is made in the area of computational thinking
between conceptualizing a problem (strand 1) and
operationalizing a solution (strand II). In ICILS 2018,
computational thinking is defined as "an individual’s ability
to recognize aspects of real-world problems which are
appropriate for computational formulation and to evaluate
and develop algorithmic solutions to those problems so that
the solutions could be operationalized with a computer”
(Fraillon et al., 2019, p. 91).

A closer look at computational thinking in school reveals,
for instance, that slightly less than two fifths (39.9%) of
eighth graders in Germany have, according to their own
statements, learned to break down a complex process into
smaller parts at school at least to a medium extent. On
international average (49.4%), the proportion is significantly
higher than in Germany, as is the case for Luxembourg
(47.5%), the Republic of Korea (57.5%), Finland (58.6%),
Denmark (62.9%) and the USA (70.8%) (Eickelmann et al.,
2019). Differences between the countries can already be
stated at this point. A systematic investigation of the
relationship  between  students’ competences in
computational thinking and their school learning of
computational thinking in an international comparison is
lacking. However, this would be important for the further
development of teaching computational thinking.

Various studies have also focused on different groups of
students according to individual student characteristics, in
particular gender. Roman-Gonzalez, Pérez-Gonzalez, and
Jiménez-Fernandez (2017) found a statistically significant
difference in competences in favor of the male members of
the test group (t = 5,374; p < 0.01; effect size Cohens d =
0.31). Atmatzidou and Demetriadis (2016) report that the
computational thinking skills of girls improved significantly
after an intervention and that girls and boys ultimately
achieved the same level of qualification through the
intervention. In other studies, e.g. by Werner, Denner,
Campe and Kawamoto (2012) and Yadav et al. (2014), no
gender differences were found. In ICILS 2018 there are, for
instance, no differences in average competences in
computational thinking between girls and boys in the
Republic of Korea and in Germany, but in the USA of
7 points in favor of boys. The dependence of student
competence on their socio-economic background is known
for other domains, e.g. mathematics and science (OECD,
2019). In all ICILS-2018-participating countries there are
striking differences in performance, differentiated by
students’ social background (Eickelmann et al., 2019;
Fraillon et al., 2019). Other studies do not tend to focus on
the relationship between students’ competences in
computational thinking and their social background.

Bringing all these insights together, it emerges that there is
a lack of information on how school learning of
computational thinking relates to competences in
computational thinking under control of background
characteristics that have previously been described as
pervasive.

In order to investigate this in more depth on an international
comparative basis, three countries participating in ICILS
2018 from three different continents were selected: The
Republic of Korea (Asia), the USA (North America) and
Germany (Europe). Thereby different educational systems
are selected, which differ in teaching and culture.

The current contribution thus deals with the following
research question:

To what extent can differences in students' average
competences in computational thinking be explained by
students' social background, by learning computational
thinking tasks at school and by students' gender in three
countries from three different continents?

2. STUDY AND METHODS

The research question will be answered with data from the
internationally ~ comparative  large-scale  assessment
ICILS 2018 (International Computer and Information
Literacy Study 2018; 2015-2019), which is coordinated by
the IEA for the second time after ICILS 2013 (Fraillon et al.,
2019). In an international add-on module to the ICILS 2018
study, the competences of eighth graders in the area of
computational thinking were also measured for the first time
in an international comparison (Eickelmann et al., 2019). In
addition to the students' competences, the theoretical
framework model of the study also covered the conditions
for acquiring competences. Information on schools and
individual prerequisites and processes was collected via



background questionnaires for the tested students, teachers,
school principals and ICT coordinators.

In each country that participated in ICILS 2018, the
representative data basis realized via the tests and
questionnaires was supplemented by information on context
conditions collected from a national context survey. Nine of
the ICILS 2018 participants, namely Denmark, Finland,
France, Germany, Luxembourg, Portugal, the Republic of
Korea, the USA and the benchmark participant North Rhine-
Westphalia (federal state of Germany), participated in the
international option computational thinking (Eickelmann et
al., 2019; Fraillon et al., 2019). For three out of nine
participants from three different continents — the Republic of
Korea (N=2.875 students), the USA (N=6.790 students) and
Germany (N=3.655 students) — in-depth analyses were
carried out and the results are reported in the following, to
answer the research question by means of a regression
analysis.

Thus, the initial task involved identifying and measuring
competences in computational thinking, the students' social
background, their school learning in computational thinking,
and their gender. They were measured with an
internationally developed and elaborated set of instruments
along a theoretical framework model in nine educational
systems worldwide. The regression analysis comprises four
models, whereby competences in computational thinking
represent the dependent variable in regression modeling.

Computer-based competence tests with a live software
environment were developed and used to assess the
competences in computational thinking of students in the
eighth grade. Each student worked on two 25-minute test
modules in computational thinking, including, for instance,
visual coding tasks, nonlinear systems transfer tasks and
simulation tasks (Eickelmann et al., 2019; Fraillon et al.,
2019).

In the first two of the four models, the students’ social
background represents independent variables. In model 1,
cultural capital is taken as an indicator of social background,
operationalized by the number of books the students’ family
own at home. In educational research, the number of books
at home has proven to be a particularly effective indicator of
the students' cultural capital (Hatlevik et al., 2018). The
regression analyses refer to the distinction between students
whose families have a maximum of 100 books (low cultural
capital) and those who have more than 100 books (high
cultural capital) at home (Eickelmann et al., 2019).

Model Il incorporates the medium and high HISEI values,
which consider the economic resources in the parental home
as a further indicator of social background. The so-called
International Socio-Economic Index of Occupational Status
(ISEl; Ganzeboom, de Graaf, Treiman, & de Leeuw, 1992)
is an internationally standardized set of instruments to
classify occupations and translate this into income estimates.
The regression analysis refers to the highest occupational
status of parents (HISEI). A low HISEI value (below 40
points) applies to postmen and women, train attendants and
hairdressers, for example. Police officers, nurses, social
workers and administrative specialists have a medium
HISEI value (40 to 59 points). A high HISEI value (60 and

more points) is allocated, for example, to teachers,
journalists and lawyers.

In model 111, the internationally developed index (Fraillon et
al., 2019) for students' learning of computational thinking
tasks at school (Cronbach's o = .90) is used as an
independent variable. This index was formed based on a
scale in the student background questionnaire. Students were
asked to what extent they have been taught how to do
different computational thinking related tasks (e.g. to break
down a complex process into smaller parts) in the current
school year. To a large extent, To a moderate extent, To a
small extent, and Not at all were at their disposal as reply
options.

In model 1V the students' gender - differentiated into male
and female - was introduced.

In the following, the unstandardized regression coefficients
for each of the three countries Republic of Korea, USA and
Germany are reported in four-step regression models, so that
it is possible to interpret the content of these coefficients as
point values by which the average student achievement
(constant) changes when controlled by social background,
students’ learning of computational thinking tasks at school
and gender. The coefficient of determination R2as a quality
measure of linear regression indicates how well the
independent variables are suited to explain the variance of
the dependent variable or to predict its values.

The sampling procedure in ICILS 2018 corresponded to the
design of a two-stage cluster sample in which standard errors
of a relevant statistic were estimated using the Jackknife
Repeated Replication Technique (Rust, 2014). The analyses
were performed using the IEA IDB Analyzer (Rutkowski et
al., 2010), which was used as an add-on program to the IBM
SPSS  Statistics 25 software and estimates with
corresponding student-level sample weights.

3. RESULTS

The following three tables show the resulting regression
models for the Republic of Korea (table 1), the USA
(table 2) and Germany (table 3).

Table 1. Regression Model Explaining Differences in
Students' CT by their Social Background, School Learning
of CT and Gender in the Republic of Korea.

Model | Model Il Model Il
b (SE) b (SE) b (SE) b (SE)
31.7* (6.5) 23.5* (6.2) 23.6* (5.8) 23.6* (5.8)
16.0* (6.1) 15.7* (6.0) 16.1* (6.1)
26.8* (7.5) 27.6* (7.2) 27.8* (7.2)

Model IV

cultural capital®
medium HISEI value
high HISEI value

students' learning of computational

e e
thinking tasks at school® 0 @3 U5 @3

gender® - - - - 7.8 (4.8)
constant 515.3 510.3 532.0 536.4
R2 .02 .02 .03 .03

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A0 - maximum of 100 books; 1 - more than 100 books.

& international index (M =50, SD = 10).

€0 - male; 1 - female.

IEA: International Computer and Information Literacy Study 2018 ©ICILS 2018



Table 2. Regression Model Explaining Differences in
Students' CT by their Social Background, School Learning
of CT and Gender in the USA.

Model | Model Il Model Ill  Model IV

b (SE) b (SE) b (SE) b (SE)
62.1* (3.5) 44.4* (3.2) 43.5* (3.3) 44.2* (3.3)
22.5% (3.2) 21.8* (3.4) 21.9% (3.3)

48.0% (3.9) 46.9* (4.2) 46.4* (4.3)

cultural capital®
medium HISEI value
high HISEI value

students' learning of computational

thinking tasks at school® W @z el @z

gender® - - - - -14.6* (3.4)
constant 477.4 466.8 468.5 474.3
R2 .07 .09 .09 .09

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A0 - maximum of 100 books; 1 - more than 100 books.

® international index (M = 50, SD = 10).

€0-male; 1 - female.

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018

Table 3. Regression Model Explaining Differences in

Students' CT by their Social Background, School Learning
of CT and Gender in Germany.

Model | Model I Model Il Model IV
b (SE) b (SE) b (SE) b (SE)
64.1* (5.8) 48.6* (5.5) 54.0* (5.6) 54.9% (5.6)
30.2* (5.9) 24.5* (5.4) 24.8* (5.4)
51.2% (8.0) 45.1* (7.2) 44.3* (7.2)

cultural capital®
medium HISEI value
high HISEI value

students' learning of computational

07+ 0.8+
thinking tasks at school® O (@) U (@)

gender® - - - - -13.9* (5.0)
constant 459.2 4435 480.6 489.8
R2 .10 .13 .14 .15

b - regression weight (unstandardized).

dependent variable: students' computational thinking.

* significant coefficient (p < .05).

A0 - maximum of 100 books; 1 - more than 100 books.

B international index (M = 50, SD = 10).

€0-male; 1 - female.

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018

The first regression model (model 1) shows that eighth-
graders with high cultural capital (more than 100 books in
the home) in the Republic of Korea achieve on average 31.7
points more in competences of computational thinking than
those from families with low cultural capital (a maximum of
100 books in the home). This difference is significant. With
Model I, 2 percent of the variance in competences in
computational thinking can be explained for the Republic of
Korea. In the USA, a significant difference of 62.1 points
can be observed regarding cultural capital, which is
substantially higher than in the Republic of Korea. The
variance explanation is 7 percent. In Germany, there is even
a significant difference of 64.1 points in cultural capital with
a variance explanation of 10 percent.

Moreover, considering the economic resources in the
parental homes, operationalized via the HISEI (model 11), it
is evident in all three countries that students from
economically  privileged parental homes achieve
significantly higher scores in computational thinking than
those living under economically less privileged conditions.
In the Republic of Korea, the difference in cultural capital is
reduced to 23.5 points. The difference between students with
medium HISEI and those with other values is 16.0 points,
while the difference between students with high HISEI and

others is 26.8 points. In the Republic of Korea, as in the
previous model, 2 percent of the variance can be explained
with model I1. In the USA the difference in cultural capital
is reduced as well, in this case to 44.4 points. The difference
by the medium HISEI value is 22.5 points and the difference
by the high HISEI value is 48.0 points. The variance
explanation of model I in the USA is 9 percent. In Germany,
the difference according to cultural capital under controlling
for HISEI is at 48.6 points. The difference between students
with medium HISEI value and others is 30.2 points and the
difference between students with high HISEI value and
others is 51.2 points. The variance explanation for model 11
in Germany is 13 percent.

Furthermore, taking the index students' learning of
computational thinking tasks at school into account
(model I1), in the Republic of Korea there is a significant
difference of 0.4 points. The relation between students’
competences in computational thinking and their learning of
computational thinking tasks at school under control of their
social background is negative. The involvement of the
selected index increases the variance explanation of the
competence to 3percent. In the USA, there is no
performance difference regarding students' learning of
computational thinking tasks at school. The variance
explanation does not change compared to the previous
model and still amounts to 9 percent. In Germany, under
control of the students' social background, a significant
negative relationship between the students' competences in
computational thinking and their learning of computational
thinking tasks at school emerges (-0.7 points). The variance
explanation increases to 14 percent.

In the final model 1V, the gender of the students is also taken
as a predictor of competences in computational thinking.
Under consideration of students’ social background and their
learning of computational thinking tasks at school, there is
no significant performance difference between girls and
boys in the Republic of Korea. The overall model thus
explains 3 percent of the performance differences. The
performance difference according to cultural capital in the
Republic of Korea is 23.6 points in model 1V as in model 111,
16.1 points in the medium HISEI value and 27.8 points in
the high HISEI value. With regard to students' learning of
computational thinking tasks, a significant negative
relationship to competences in computational thinking of
0.5 points results under control of social background and
gender. In the USA, boys under control of social background
and the learning of computational thinking tasks achieve
significantly higher competences in computational thinking
on average by 14.6 points than girls (model 1V). The overall
model thus explains 9 percent of the performance
differences. The performance difference by cultural capital
in the USA is 44.2 points in Model 1V, 21.9 points in
medium HISEI value and 46.4 points in high HISEI value.
Regarding students' learning of computational thinking tasks
under control of social background and gender there is no
relationship to competences in computational thinking. In
Germany, boys under control of social background and the
learning of computational thinking tasks achieve 13.9 points
more on average and therefore significantly higher
competences in computational thinking than girls. The
overall model explains 15 percent of the differences in



performance. The performance difference according to
cultural capital in Germany is 54.9 points in Model 1V,
24.8 points at medium HISEI value and 44.3 points at high
HISEI value. Regarding students' learning of computational
thinking tasks, there is still a significant negative correlation
to competences in computational thinking under control of
social background and gender. This is -0.8 points.

In summary, there are large differences between and within
the three countries. For example, there are substantial
differences in competences in computational thinking by
high and low cultural capital. The performance is thus
closely linked to social background. However, this
difference is not as substantial in the Republic of Korea as
in the USA and Germany. This is also reflected in the fact
that only 2 percent of the variance can be explained in
Model I in the Republic of Korea, but 7 percent in the USA
and even 10 percent in Germany. Despite the addition of a
further indicator of social background and under the control
of cultural capital, the explanation of variance remains the
same in the Republic of Korea, in the USA it rises to
9 percent and in Germany to 13 percent. At this point after
model I1, the explanation of variance in the USA's regression
model no longer alters. Also, there is no relationship
between students' school learning of computational thinking
and their competences in computational thinking, not even
under control of the gender of the students. Although there
is a performance difference between girls and boys in favor
of boys, this does not explain any further variance. In the
Republic of Korea and in Germany, there is a slight but
remarkable significant negative relationship between
students’ competences in computational thinking and their
learning of computational thinking tasks at school. This
results in a slightly higher variance explanation in model 11
according to model Il in both countries. In Germany, this is
further increased by the addition of gender in model IV,
where under control of social background and students'
learning of computational thinking tasks at school there is a
significant difference in performance in computational
thinking in favor of boys and more variance is explained. In
the Republic of Korea, no more variance is explained in
model IV and there is also no difference in performance
between girls and boys. It can therefore be stated that in
Germany, it is primarily the student characteristics, but also
to a certain extent school learning, that play a role in the
competences in computational thinking. In the Republic of
Korea, social background and school learning play a role,
but rather a subordinate one: hardly any variance is
explained. In the USA, background characteristics play a
role, but school learning does not.

4., CONCLUSION

It is certainly not unexpected that there are different results
between countries. Common to all three countries is the
close relationship between competences and social
background, also remaining under control of other variables.
This is worrying because a large proportion of the students
worldwide have less chance of educational success due to
their social background. It would be advisable to reduce
differences so that all students — no matter how privileged
the families are — can successfully participate in society.
However, the ratio between students' competences in

computational thinking and their learning of computational
thinking at school varies across the three countries. While no
correlation can be found in the USA under control of
individual student characteristics, it is even slightly negative
in the Republic of Korea and in Germany. Since an index
was used for the present analyses, in further in-depth
analyses it would be necessary to take another look at which
aspects of computational thinking are particularly beneficial
in teaching, but nevertheless the teaching of computational
thinking should in any case be organized in such a way that
it promotes students’ competences. To this end, in some
countries it is initially necessary to embed computational
thinking in school curricula. Another approach might be to
teach computational thinking in a gender-sensitive way to
reduce differences in competence between girls and boys.
Generally speaking, the results show that there is a major
need for development in all countries, and here it could be
an objective to work on a number of adjustments in order to
improve the results over the next few years, particularly with
a view to ICILS 2023, and to give every student the
opportunity to have sufficient competences in computational
thinking in order to participate in society and later acquire a
good profession.
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ABSTRACT

In order to guide computing education in K-12, several
curricula and standards have been proposed, including the
prominent K-12 Computer Science Framework. However,
noting significant differences in content sequencing between
curriculum guidelines, a question arises as to whether the
proposed sequence is appropriate for learning. Furthermore,
an analysis of the difficulty of these concepts is necessary to
assist scaffold content sequencing or to assign different
weights to the concepts in student assessment. Therefore,
this paper presents the results of a large-scale analysis of
computing concepts difficulty and compares it with the
standards sequencing proposed by the K-12 Computer
Science Framework. Our focus is on programming concepts,
as in practice computing education in K-12 is typically
approached by teaching algorithms and programming
concepts. We perform an analysis using Item Response
Theory based on the automatic assessment of over 88,000
App Inventor projects with the CodeMaster rubric. The
results demonstrate that the easiness of some concepts can
be explained by their inherent characteristics, but also due to
the characteristics of App Inventor as a programming tool.
And, although the analysis demonstrates the alignment of
the content sequencing of the K-12 Computer Science
Standards with the difficulty, we also observed that some
concepts related to algorithms and programming are not
explicitly covered by the framework, such as strings and
Boolean operators. Thus, the results of this research can be
used by researchers as well as teachers to improve
computing education in K-12,

KEYWORDS
computational thinking, App Inventor, K-12 computer
science standards, Item Response Theory

1. INTRODUCTION

Computational thinking (CT) is making its way into K-12
worldwide (Lye & Koh, 2014). Regardless of the area of
expertise, it is important to know the fundamentals and basic
principles of computing so that one can perform his activity
fully. CT refers to the thought processes involved in creating
algorithmic, or step-by-step, solutions that can be executed
by a computer (Wing, 2006). In this context, several efforts
have been made to develop guidelines and curricula for K-
12 computing education. One of the most prominent models
is the K-12 Computer Science Framework (CSTA, 2016)
defining standards, the sequencing of CT concepts and
practices for different educational levels in K-12. The K-12
Computer Science Framework contains five educational
levels: 1A (for grades K-2 and ages 5-7), 1B (for grades 3-5

and ages 8-11), 2 (for grades 6-8 and ages 11-14), 3A (for
grades 9-10 and ages 14-16), and 3B (for grades 11-12 and
ages 16-18).

In practice, computational thinking is commonly taught
focusing on algorithms and programming concepts and
related CT practices (Grover & Pea, 2013) being one of the
main knowledge areas of computing. This comprises the
competency to develop algorithms to solve problems in a
language computers can understand including several sub-
concepts in accordance with the K-12 Computer Science
Framework (Fig. 1).

Recognizing and
Defining Computational >
Problems

Developing and Using ™\
Abstractions

Creating
Computational
Artifacts
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esting and Refining /J
Computational
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Figure 1. CT practices and algorithms & programming
concepts (CSTA 2016).

Variables refer to storing and manipulating data from
computer programs. Control concepts specify the order in
which instructions are executed within an algorithm or
program (e.g. using loops and/or conditionals). Modularity
involves dividing complex tasks into simpler tasks and
combining them to create something complex. Program
development represents the software engineering process
that is repeated until acceptance criteria are met (CSTA,
2016). In addition, several CT practices are related to
algorithms & programming as presented in Figure 1 (CSTA,
2016). Other guidelines and curricula, such as Computing
at School (CAS, 2015) or the Australian Curriculum,
Assessment and Reporting Authority (ACARA, 2015),
cover similar basic concepts and practices.
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In order to introduce programming in K-12, typically visual
block-based programming environments such as Scratch or
App Inventor are used (Papadakis et al., 2017). Diverse
instructional strategies are adopted, including well-
structured exercises such as Code.org, yet, often in a
constructivist context, a problem-based learning approach
with open-ended ill-structured programming activities is
adopted (Law, 2016; Shute et al., 2017). These instructional
units typically aim at teaching students to create their own
games or mobile applications to solve real-world issues (Fee



& Holland-Minkley, 2010). In order to assess open-ended
ill-structured  problems,  often  performance-based
assessments are performed based on the created software
artifacts (Alves et al., 2019). These assessments aligned with
curricula are typically based on rubrics scoring the ability to
develop a software artifact, and, thus, indirectly inferring the
achievement of CT practices and concepts (Sherman &
Martin, 2015). Some CT rubrics have been automatized,
such as Dr. Scratch (Moreno-Ledn & Robles, 2015) and
CodeMaster (Alves et al., 2020), allowing to assess students’
CT competences in an automated way.

Yet, although research and practical applications of
computing education in K-12 is strongly increasing
worldwide, it seems often to be based on experience rather
than systematic evidence. Thus, a question that remains is
related to content sequencing indicating in what order should
students learn concepts. The relevance of this question is
also demonstrated by research in this area. In order to
analyze CT progression, Seiter & Foreman (2013) used
Scratch projects of students from grades 1-6 to identify how
CT concepts varied by grade. Franklin et al. (2017) analyzed
student projects from grades 4-6 in sequence, events, and
initialization using LaPlaya (a Scratch-like programming
language). Grover & Basu (2017) analyzed students’
misconceptions of loops, variables, and boolean logic from
grades 6-8 also using Scratch. Lytle et al. (2019) analyzed
CT progression on the "use-modify-create” lesson using
Cellular environment (an extension of the block-based
programming environment Snap!). Rich et al
(2017;2018;2019) analyzed K-8 learning trajectories for
sequence, repetition, conditionals (Rich et al., 2017),
decomposition (Rich etal., 2018) and debugging (Rich etal.,
2019) in Scratch studies integrating CT into Mathematics.
But, although there are several studies analyzing some
aspects of CT using visual programming environments, no
research focusing directly on content sequencing in relation
to the K-12 Computer Science Framework and specifically
with respect to App Inventor has been found.

Thus, the objective of this study is to analyze the proposed
sequencing of the K-12 Computer Science Framework
(CSTA, 2016) based on the observed difficulty of
programming concepts in App Inventor projects. This
analysis is enabled by using CodeMaster (an automated
rubric). Specifically assessing CT in accordance with the K-
12 Computer Science Framework, the CodeMaster
automated rubric assesses several items related to algorithms
and programming concepts that can be extracted from the
source code.

2. CODEMASTER RUBRIC

CodeMaster is an automated performance-based assessment
rubric and grader. It enables an analysis of the code of App
Inventor programs supported by a free web-based tool
providing feedback to students and teachers in the form of a
CT score on programming projects. The model has been
developed based on a systematic mapping study (Alves,
2019) following an instructional design process (Branch,
2010) and the procedure for the rubric definition proposed
by Goodrich (1996). Evaluation of reliability and construct
validity indicated that the CodeMaster rubric can be

regarded as reliable (Cronbach’s alpha 0=0.84). With
respect to construct validity, there also exists an indication
of convergent validity based on the results of a correlation
and factor analysis indicating that the rubric can be used for
a valid assessment of algorithm and programming concepts
of App Inventor programs as part of a comprehensive
assessment completed by other assessment methods (Alves
et al., 2020).

The CodeMaster rubric is composed of 16 items related to
algorithm and programming concepts, however, in this
work, we are considering only items related to the K-12
Computer Science Standards (Table 1) from levels 1B to 3A,
and that can be found in apps of the App Inventor Gallery.
We, thus excluded apps with extensions (as the App Inventor
Gallery does not allow apps with extensions). Other
standards, which cannot be automatically assessed, are also
excluded from our analysis, as they are not present in the
CodeMaster rubric.

Table 1. K-12 Computer Science Standards (CSTA, 2017)
present in CodeMaster rubric.

Identifier K-12 Computer Science Standard A&P Practice
Subconcept
1B-AP-09 Create programs that use variables to store Variables Creating

and modify data. Computational

Artifacts

Creating
Computational
Artifacts

1B-AP-10 Create programs that include sequences, Control

events, loops, and conditionals.

1B-AP-11 Decompose (break down) problems into Modularity  Recognizing
smaller, manageable subproblems to and Defining
facilitate the program development process. Computational
Problems
2-AP-11  Create clearly named variables that Variables Creating
represent different data types and perform Computational
operations on their values. Artifacts
2-AP-13  Decompose problems and subproblems Modularity  Recognizing
into parts to facilitate the design, and Defining
implementation, and review of programs. Computational
Problems

3A-AP-14 Use lists to simplify solutions, generalizing Variables Developing and
computational problems instead of Using
repeatedly using simple variables. Abstractions

Based on these standards, the CodeMaster rubric defines
items and performance levels for each item. The
performance levels descriptors of the CodeMaster rubric are
derived directly from the learning objectives of the K-12
Computer Science Standards (standards identifiers are
underlined in Table 2). The performance levels are described
on ordinal scales, ranging from “criterion is not (or
minimally) present” to advanced usage of the criterion.

Table 2. Excerpt from the CodeMaster rubric items adopted
for this research (Alves et al., 2020).

Item Performance Level
0 1 2 3
Variables  No use of Modification or use  Creation and

variables. of predefined operation with
variables. variables.
1B-AP-09 2-AP-11
Naming Feworno 10 to 25% of the 26 to 75% of the ~ More than 75%
names are names are changed  names are changed of the names are
changed from their defaults. ~ from their defaults. changed from
fromtheir  2_ap-11 2-AP-11 their defaults.
defaults. 2-AP-11
Lists No lists are At least one list is More than one list  Lists of tuples are
used. used. is used. used.
3A-AP-14 3A-AP-14 3A-AP-14
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Events No type of ~ One type of event ~ Two or three types More than three
event handler is used. of event handlers  types of event
handleris  1B.Ap-10 are used. handlers are used.
used. 1B-AP-10 1B-AP-10

Loops No use of Simple loops are ‘For each’ loops ’For each’ loops
loops. used. with simple with list items are

1B-AP-10 variables are used. used.
1B-AP-10 1B-AP-10

Uses more than
one ‘if then else’
structure.

1B-AP-10

Uses one ‘if then
else’ structure.

1B-AP-10

Conditional No use of Uses ‘if” structure.
conditionals. 1g-AP-10

More than one
procedure defined.

1B-AP-11

Procedural No use of
Abstraction procedures.

There are
procedures for
code organization
and re-use.

2-AP-13

One procedure is
defined and called.

1B-AP-11

The assessment using the CodeMaster rubric is automated
by performing a static code analysis. The analysis is done by
counting the kind and the number of command blocks used
with respect to algorithms and programming concepts, such
as variables, conditionals, loops, etc. The automated
assessment is supported by the CodeMaster tool available
on-line (http://apps.computacaonaescola.ufsc.br:8080/).

3. RESEARCH METHOD

Following the Goal Question Metric approach (Basili,
Caldiera & Rombach, 1994), the objective of this study is
defined as to analyze the difficulty and sequencing of the
standards related to CT practices and Algorithms &
Programming subconcepts from the K-12 Computer Science
Standards (CSTA, 2017). To achieve this goal, a case study
is conducted following Yin (2017).

3.1. Data Collection

Initially, we collected data in the form of App Inventor
projects from the Applnventor Gallery. In order to optimize
the sample size, we downloaded the publicly available and
accessible apps from the App Inventor Gallery in June 2018.
As a result, we obtained the source-code from 88,864 App
Inventor apps. We assessed these projects using the
CodeMaster tool. Out of the 88,864 downloaded projects,
88,812 were successfully assessed with the CodeMaster
rubric. 52 projects failed to be analyzed due to technical
difficulties. The collected data were pooled in a single
sample in order to analyze the concepts sequencing (rather
than a specific app).

3.2. Data Analysis

In order to analyze the difficulty and sequencing, we use the
Item Response Theory (IRT) Gradual Response Model
proposed by Samejima (1969). IRT allows analyzing item
properties, such as difficulty and discrimination, using
falsifiable models. This is done by estimating the
correspondence between an unobserved latent trait, in this
case, CT, and observable evidence, in this case, the assessed
App Inventor apps. The Gradual Response Model assumes
that items are polytomous and its response categories are
ordered (such as in CodeMaster rubric). Samejima’s model
proposes a probabilistic model for parameter estimation that
is not dependent on a specific set of items and is used to
determine the probability for someone to receive a specific
score (or higher), given the level of the underlying latent
trait, which in this context is CT.

Adopting IRT, for each item is estimated: the parameter a
(common to all item categories) and the parameters b’s,
indicating the distance from adjacent difficulty performance
levels (see Fig. 2). The dataset was analyzed using the mirt
package from the R programming language (Chalmers,
2012).

b2 b3 b4

| |
Performance Performance Performance
level 0 level 1 level 2

Figure 2. Difficulty parameters (b’s) for items with 4
adjacent difficulty performance levels (as in CodeMaster
rubric).

Performance
level 3

Due to the focus on the individual properties of each item,
IRT allows the placement of items on a scale that
distinguishes what is easier and harder from the learner's
point of view. Using the scale, the items order relations are
compared to the K-12 Computer Science Standards
sequencing.

4. ANALYSIS

4.1. Parameter estimation and scale creation

Using the Gradual Response Model (Samejima, 1969) the
parameters of the items are estimated. The metric is
established by setting population parameters to average = 0
and standard deviation = 1. Since the CodeMaster rubric
contains ordinal polytomous items, several b parameters are
estimated to differentiate the passage from one score to
another:

e b, = represents the difficulty of getting score 1 on any
item,

e bs = represents the difficulty of getting score 2 on any
item,

¢ b, = represents the difficulty getting score 3 on any item.

Consequently, items on a 2-point ordinal scale (no
description for score 3) also do not present a parameter bs
(example: item variables). In IRT, parameters a and b’s can
theoretically assume any real value between —oo and +<°.
However, a negative value for a parameter is not expected.
Typically values above 1.0 are considered good, as they
indicate that the item discriminates well learners with
different abilities. In this study, parameters b are the main
indicators to be analyzed, as they indicate the difficulty of
the item. For parameters b, values close to or within the
range [-5, 5] are expected, with negative values indicating
that an item has below average difficulty and positive values
indicating above average difficulty.

In general, most items were well estimated, with a parameter
value above 1 (Table 3). In addition, the values of the
difficulty parameters (b2, bz, and bys) are within the range [-
5, 5]. Only the item Lists presented parameter bs slightly
above 5. Standard errors (SE) of each parameter b presented
similar results and are in low magnitude, therefore,
presenting no estimation problem.

Table 3. Parameters a and 4 ’s estimated with standard
errors (SE).

Item a (SE) bz (SE) bs (SE) bs (SE)

Variables 2.97 (0.02)  -0.83(0.01) -0.01 (0.01) NA
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Naming 168(001) -0.31(0.01) 0.07(0.01) 1.89(0.01)
Lists 124(001)  1.49(0.01) 2.00(0.02) 5.20(0.07)
Events 2.88(0.02) -1.65(0.01) -0.90 (0.01) -0.47 (0.01)
Loops 177(003)  2.14(0.02) 2.29(0.02) 2.57(0.03)
Conditional  2.32(0.02)  0.34(0.01) 0.80(0.01) 1.57 (0.01)
Procedural  3.18(0.03)  0.99(0.01) 1.08(0.01) 1.19 (0.01)

Abstraction

Analyzing the results, it can be inferred that obtaining 1
point for the item Events is easier than in any other item
since this item has the smallest b parameter (b, = -1,65). On
the other hand, obtaining 3 points for item Lists is more
difficult than any other item, as it presents the highest value
for a b parameter (bs = 5.20).

Based on the estimated difficulty parameters, the items are
placed on a scale (0.1), i.e. with average = 0 and standard
deviation = 1 (Figure 3). The scale is an “arbitrary” scale
where the relations of order between its points are most
important and not necessarily its magnitude. The items are
arranged at the scale points according to the estimated
difficulty parameters (bz, bs, and b.), as presented in Table
3. For example, the b, parameter of the item Events is equal
to -1,65, so it is placed at point -1.5 of the scale.

Ab2 @b3 ©b4
5.0
45
4.0
35 -
3.0
T 25
z 1
= 1
S 05
£ 00 @&
© 0.5 oy @ .
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-1.5 &
g ¥ £ £ & 3
B E ° g 8 g
© = b=}
= &
(&)

Procedural Abstraction

Figure 3. Placement of the items on the scale.

From the placement of items on the scale, we can infer that
an item with a parameter b estimated at 1.5 is 1.5 standard
deviations above the average ability. Thus, this item is more
difficult than all items that are placed below point 1.5 at the
scale. In the context of App Inventor programming, the
easiest items include events and variables (Figure 3), as
these items have negative (below average) parameters b.
These parameters are semantically consistent, as App
Inventor encourages variable creation and unlimited use of
events (Turbak et al., 2014).

The most difficult items include lists and loops. Score 3 for
the list item has the highest difficulty parameter (Lists ba),
being the most difficult to achieve among all items.
Although the loops item is also considered difficult, it is
noteworthy that loop blocks in App Inventor programs are
rarely used because many iterative processes that would be
expressed with loops in other programming languages are
expressed as an event that performs a single step of the
iteration every time it is triggered (Turbak et al., 2014).
Thus, the difficulty parameters of loops may be poorly
represented through the App Inventor dataset, as more than

94% of apps are assessed with 0 points in loops (see fig. 4).
In other visual programming environments, such as Scratch,
the usage of this concept and consequently the observed
difficulty may be different.

Performancelevel: m0 m1 m2 =3

Variables
Naming
Lists
Events
Loops

Conditional

Procedural Abstraction

o

20000 40000 60000 80000

Number of App Inventor projects
Figure 4. Frequency of the performance level score for
each item.

4.2. Comparison of K-12 Computer Science Standards

sequencing with estimated IRT parameters
Based on the results of the scale placement (Fig. 4), we
analyze the content sequencing proposed by the K-12
Computer Science Standards (Fig. 5). Here we expect that
CodeMaster items that are easier should be sequenced on
early levels (1B or 2) and those that are difficult are
sequenced on final levels (2 or 3A).
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Figure 5. Positioning items on the scale.

Most of the items are sequenced in accordance with their
difficulty. For example, easy items are placed on levels 1 and
2, e.g., events, variables, and naming. Events are widely
used in App Inventor programs; even simple apps need
events in order to function properly. Variables are also
widely used, both as predefined and blocks to create/modify
user variables. However, there are also some discrepancies
between the degree of difficulty based on the IRT analysis
and the placement of standards throughout K-12 (Figure 5).
Naming (components and procedures) is essential to make
the program understandable. However, it seems to be much
harder than obtaining a low-medium performance level (1 or
2 points) than to obtain a high-performance level (3 points)
for Naming. In other words, the gap between Naming(2) and
Naming(3) is bigger than the gap between Naming(1) and
Naming(2).

Items with medium difficulty are placed throughout all K-12
Computer Science Standards levels (1B to 3A), including
Conditional, Procedural Abstraction and the first
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performance level for Lists (since Lists(2) and Lists(3) were
placed together with difficult items). Conditionals include
“if-then” or “if-then-else”. Although it seems there is no
difference in using “if-then” (Conditionals(1)), or “if-then-
else” (Conditionals(2)), using more than one “if-then-else”
(Conditionals(3)) is much harder as it was almost placed
with difficult items (Fig. 5). Item Lists(1) was the only level
3A item derived from the K-12 Computer Science Standards
placed as a medium item.

Difficult items include Lists(2), Lists(3), Loops and
Naming(3). Being a level 3A concept in the K-12 Computer
Science Standards (CSTA, 2017), Lists performance levels
are expected to be placed together with more difficult items.
However, Loops are a level 1A concept following the K-12
Computer Science Standards, yet are placed together with
difficult concepts. This, on the other hand, may be explained
by the underrepresentation in the dataset as well as its
needless use in many cases in App Inventor as stated by
Turbak et al. (2014).

5. DISCUSSION

Considering the difficulty of items, we identified that events
and variables are the easiest items when programming with
App Inventor. Items with medium difficulty include
conditional and procedural abstraction. The most difficult
items are loops and lists, while the estimated high difficulty
of loops may be influenced by its infrequent use in App
Inventor projects.

Analyzing the proposed content sequencing of curriculum
guidelines on the example of the CSTA framework, we can
observe that it is adequately aligned with the difficulty as
determined via the IRT analysis (with exception of loops).
For example, the proposal indicates addressing list concepts
in level 3, being one of the most difficult concepts this is
appropriate and allows a scaffolding approach.

However, some concepts related to algorithms and
programming are not explicitly included in CSTA
framework/standards, for example, strings and Boolean
operators, and, thus, were excluded from this analysis.
Further evolutions of curriculum guidelines could, therefore,
also explicitly start to include these concepts.

5.1. Threats to validity

One risk is related to grouping data from different contexts.
The App Inventor programs come from various contexts in
the worldwide App Inventor community, and no additional
information about the creator history in App Inventor
Gallery projects is available. As the goal in this work is to
identify the relationship between standards difficulty, this is
not considered a problem, although the results should be
perceived considering that there is no information about
which context the apps were created. Another threat
regarding the possibility of generalizing the results is related
to the sample size and projects of only one programming
language. As one of the leading visual programming
environments, App Inventor contains many of the
algorithmic and programming concepts covered in K-12
computing education and is similar to other environments,
such as Scratch. Therefore, this risk is minimized by using a
significant number of apps (over 88,000). Thus, the sample

size is considered satisfactory, allowing the generation of
significant results. Regarding the construct validity,
measurements were systematically defined and data
extraction was performed automatically, eliminating errors
from manual extraction. The statistical technique used for
the analysis was chosen based on the literature as one of the
indicated techniques for this purpose.

6. CONCLUSIONS

Based on App Inventor projects, we analyzed the difficulty
of Algorithms & Programming concepts as well as the
alignment of the content sequencing as proposed by the K-
12 Computer Science Standards. We noticed that the
sequencing of the standards is consistent with the difficulty
of the concepts. We also observed that the difficulty of
achieving performance levels of certain items may depend
on the specific programming language. For example, the
loops concept in App Inventor may be more difficult to learn
since there are other ways to program an iterative process.
The results of this analysis can be used to systematically
discuss and improve the pedagogical sequencing of
curriculum guidelines by adopting scaffolding techniques
and comparisons with other reference frameworks.
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ABSTRACT

Computational Thinking (CT) and creativity are considered
fundamental skills for future citizens. We studied the
associations between these two constructs among middle
school students (N=174), considering two types of
creativity: Creative Thinking and Computational Creativity.
We did so using log files from a game-based learning
platform (Kodetu) and a standardized creativity test. We
found that the more creative the students were (as measured
by a traditional creativity test), the more effectively they
acquired CT. We also found significant positive correlations
between Computational Creativity and the acquisition of CT
in some levels of the game, and a positive correlation
between Creative Thinking and Computational Creativity.

KEYWORDS
computational thinking, creativity, game-based learning,
learning analytics, log analysis

1. INTRODUCTION

The exponential growth in the data available from a plethora
of resources and the significant development of science,
make it essential for people to adopt skills that complement
and provide the added value of computing capabilities to any
field of expertise (Hambrusch, Hoffmann, Korb, Haugan, &
Hosking, 2009). Both Computational Thinking and
Creativity have been recognized as essential skills for the
21% century (Kalelioglu, Giilbahar, & Kukul, 2016; Sai d-
Metwaly, Noortgate, & Kyndt, 2017) and are crucially
important for human development (Czerkawski, 2015).

Computational Thinking (CT) is the conceptual foundation
required to define and solve real-world problems using
algorithmic methods to reach solutions that are transferable
and necessary to various contexts and disciplines (Shute,
Sun, & Asbell-Clarke, 2017). It is a skill that helps
improving thinking abilities and provides techniques to
extract knowledge hidden in the data (Buitrago Flérez et al.,
2017).

Creativity is a thinking ability that enables problem-solving
in an innovative manner, and the production of original and
valuable products (Torrance, 1974). Despite having many
definitions to this construct, there is an agreement that
creativity is a multi-dimensional variable comprised of four
characteristics: (1) Fluency — the ability to generate a large
number of ideas and directions of thought for a particular
problem; (2) Flexibility — the ability to think about as many
uses and classifications as possible for a particular item or
subject; (3) Originality — the ability to think of ideas that are
not self-evident or banal or statistically ordinary, but rather

unusual and even refuted, and (4) Elaboration — the ability
to expand an existing idea, develop and improve it by
integrating existing schemes with new ideas (Guilford,
1950; Torrance, 1965).

Similar to CT, creativity has been identified as crucial to
human inventive potential in all disciplines, and it is evident
that its influence dominates various spheres of life
(Navarrete, 2013). However, for many years, these two skills
remained within their content areas - CT was mainly taught
in the context of Science, Technology, Engineering, and
Mathematics (STEM) fields, and creativity in the fields of
design and art. We have come to a point where there is an
understanding that both can be nurtured and should be
included across the curriculum from an early age (Beghetto,
2010; Vygotsky, 2004). Indeed, creativity involves a set of
thinking tools that overlap with the fundamentals of
Computer Science—specifically, observation, imagination
and visualization, abstraction, and creation and
identification of patterns (Yadav & Cooper, 2017)—which
can support the development of creativity. For this reason,
various educational initiatives worldwide have begun to
establish national K-12 curricula, academic standards, and
instructional computerized and unplugged activities that
promote these skills (ISTE, 2017; World Economic Forum,
2015).

With the recognition of its importance, CT has been
integrated into school curricula around the world, and many
online platforms, especially game-based learning platforms,
have been developed to support and promote its acquisition
(Kim & Ko, 2017). Some of these platforms—Iike
CodeMonkey™ or Hour of Code™—take advantage of the
game-based learning approach, which promotes learning
through fun, interactive and rewarding game-play, in order
to increase engagement and motivation for learning and to
improve academic achievements in the long run (Ibanez, Di-
Serio, & Delgado-Kloos, 2014; Kazimoglu, Kiernan, Bacon,
& MacKinnon, 2012; Vu & Feinstein, 2017). However,
while encouraging the acquisition of CT in a fun, engaging
way, these platforms promote efficiency and sometimes
limit creativity (for example, when not allowing free use of
coding blocks). This is most evident when a learner submits
a solution which may be considered as creative, but as it is
not the most efficient solution anticipated by the platform,
the learner would not get a full score for it.

Research on CT and creativity has been conducted from
different perspectives, looking at both creativity within the
scope of CT and the influence of the two constructs on each
other (Miller et al., 2013; Seo & Kim, 2016). However, only
limited research exists on the relationship between these two
perspectives. Creativity may be dependent on the learning
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context and the measuring tool (Reiter-Palmon, lllies, Kobe
Cross, Buboltz, & Nimps, 2009). Therefore, we explore the
associations between different measures and perspectives of
creativity and look for connections between them and CT
acquisition.

2. RESEARCH QUESTIONS

To avoid confusion, we use Creative Thinking to refer to a
traditional measure of creativity that has no connection to
the platform being used, and Computational Creativity to
refer to a measure of how creativity is manifested inside the
platform, as reflected by the frequency (originality) of a
given solution among all other solutions (detailed in section
3.5). To meet our research goal, we formulated the following
research questions:

1. What are the associations between the acquisition
of CT and Creative Thinking?

2. What are the associations between the acquisition
of CT and Computational Creativity?

3.  What are the associations between Computational
Creativity and Creative Thinking?

3. METHODOLOGY

3.1. The Learning Platform: Kodetu

Kodetu is a web app built using Google's Blockly for
teaching basic programming skills (Eguiluz et al., 2017).
The environment has three official games, and it is also
allowing users to create their own games. Each of Kodetu's
levels presents the user with a challenge in which an
astronaut should get to a marked destination. The user has to
define the astronaut's movements using coding blocks in the
workspace. Each level of the game presents one or more CT
concepts (e.g., sequences, loops, etc.). Moving to the next
level is possible only upon completing the current level
successfully. It should be noted that a user can reset the level
and solve it again. The system is offered in three languages:
English, Spanish, and Basque. While the app is being used,
the system logs any action taken by its users.

For our broad study, a dedicated game was created in the
Kodetu platform. The game includes ten levels with
increased difficulty. In this paper, we present part of our
work covering levels 1-9. The first four levels are designed
with the aim of practicing the concept of sequences. Level 1
presents a trivial level to show how the system works. Level
2 and 3 involve turns and perspective. Level 4 presents a
challenge where a long sequence of actions, including more
than one rotation, is needed to reach the goal. Level 5 limits
the number of blocks that can be used (i.e., code length) to
prevent participants from using long sequences and to
encourage them to take advantage of new code structures of
loops. Level 6 presents a trivial challenge that deals with
sequences and loops. Level 7 (Shown in Figure 1) also works
on sequences and loops with limitation of blocks’ usage.
Level 8 limits the number of blocks that can be used (i.e.,
code length) to prevent participants from using long
sequences and to encourage them to take advantage of new
code structures of conditionals. Level 9 introduces If-Else
conditionals and requires nested structures and a limited
number of blocks. Solving the entire set of levels is intended

to take 30 to 60 minutes. While the platform is being used,
the system logs any action taken by its users.

Yo-u have 5Vblocks left.

Figure 1. An Example Level of Kodetu (level 7)

3.2. Population and Research Design

For this study, we analyzed the actions of 174 middle-school
Spanish students, 11-12 years old (55% boys and 45% girls)
from two different schools. The students arrived to an
outreach activity organized by the Faculty of Engineering of
the University of Deusto and participated in a workshop
about technology, programming, and robotics. During this
workshop, the students played the designated Kodetu game
for about 60 minutes. For the vast majority of the students,
it was their first encounter with programming experience
(78%, 136 of 174). In addition, 60% of students (105 of 174)
reported they have a high affinity for technology.

Prior to the Kodetu session, all participants completed a pen-
and-paper creativity task (Torrance's TTCT — Figural Test;
see section 3.4). Data from Kodetu log files were
triangulated with the data obtained via the creativity task
using a unique ID for each participant. This ID was produced
by Kodetu and was written down on the creativity test form
by the participants. In addition, participants were asked to
provide demographic data (age, gender), previous
programming background (yes/no), and affinity to
technology (1-low to 10-high).

3.3. Dataset and Preprocessing

The full log file included 163,137 rows, each representing
an action taken by a user, including its timestamp, the level
in which it was taken, its result [Success, Failure, Timeout,
Error], and the code associated with this action.

3.4. Research Tool

We used the Torrance Test for Creative Thinking (TTCT) —
Figural Test (Torrance, 1974) to assess Creative Thinking in
four dimensions: fluency, flexibility, originality, and
elaboration. In this pen-and-paper test, each student was
presented with a sheet on which 12 identical, empty circles
were printed. Students were asked to make as many
drawings as possible using the circles as part of the
drawings. An eligible drawing used the circle as part of the
drawing. See examples in Figure 2.
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Figure 2. Example of Eligible (top row) and Non-eligible
(bottom row) Drawings from TTCT — Figural Test

3.5. Variables

3.5.1. Computational Thinking

We focused on three variables to measure the acquisition of
computational thinking, each computed for all levels as well
as for each level separately.

e Solution Attempts.
e  Correct Solution Attempts.

e  Average Time [min].

3.5.2. Creative Thinking

To score the creativity task, we used eligible drawings only,
that is, drawings in which the circle was considered an
important part of the drawing. In order to ensure the
reliability of determining eligibility, each of the first two
authors coded 20 sheets for eligibility separately; then, we
ran an inter-rater reliability assessment using Cohen’s kappa
and got a satisfying coefficient of 0.81. The authors then
discussed borderline cases and agreed on guidelines for the
rest of the coding, which was done by the first author.

Similarly, each of the first two authors separately coded 20
sheets for categories and then discussed their codes until full
agreement achieved. The rest of the coding was done by the
first author, with frequent discussions throughout this
process about their very definitions and about splitting and
merging categories. At the end of this iterative process, the
final list consisted of 59 categories, e.g., "Emoji", "Sun",
"Flower", "Signpost".

Finally, we computed the following four variables (for each
student):

e  Fluency — Number of eligible drawings;

o  Flexibility — Number of different drawings'
categories;

e Originality — Average frequency of the drawing
categories, across all drawings;

e Elaboration — Number of ideas/details used in each
eligible drawing;

3.5.3. Computational Creativity

Our analysis focuses on the originality of a correct solution
as a proxy for creativity. This is due to the fact that the
Kodetu platform, similarly to many other platforms, does not

explicitly encourage multiple solutions, and once a level is
solved, participants are immediately encouraged to move to
the next level. Therefore, fluency, flexibility, and
elaboration are not applicable in our analysis.

The originality is represented by the frequency of this
solution among all the correct solutions for this level. That
is, the rarer a solution is, the more creative it is considered.
When there were multiple correct solutions for an individual
participant, we calculated the average across her or his
correct solutions. The originality was calculated for each
level separately and also aggregated for all Levels.

4. FINDINGS

4.1. Descriptive Statistics of the Research Variables

In order to better understand the associations between
Computational ~ Thinking, Creative Thinking, and
Computational Creativity, we first report on descriptive
statistics of each of the variables. All statistical analyses
used IBM SPSS version 25.

4.1.1. Computational Thinking

We found that among all participants, the average Solution
Attempts was 6.16 (SD=3.08), and Correct Solution Attempt
was 1.06 (SD=0.19). The Average Time it took to solve each
level was 5.13 minutes (SD=11.99).

Overall, there was an increasing trend in Level Solution
Attempts, with R?=0.49 for the graph trend line (see Figure
3), indicating the increasing difficulty of the game. A similar
trend was found for the Level Average Time, excluding a
decrease between Level 1 to level 3, which might be related
to the participants' adaptation to the interface in these initial
levels. In addition, there is a decrease from level 8 to 9 that
may be associated with the presentation of the concept of
conditionals in level 8.

25
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Figure 3. Solution Attempts and Average Time by Level

When comparing the performance by Gender, we found that
the average Solution Attempts was greater for girls than for
boys (M=6.48, SD=3.5, and M=5.93, SD=2.79,
respectively). The Average Time was also greater for girls
than for boys (M=3.17, SD=2.96, and M=2.87, SD=2.58,
respectively).

4.1.2. Creative Thinking

As indicated above, Creative Thinking consisted of four
dimensions  (fluency, flexibility, originality, and
elaboration). Based on normality tests (H.-Y. Kim, 2013),
we assumed normality (Skewness<0.5 in absolute value) for
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all dimensions of Creative Thinking except originality. A
summary of the statistics is presented in Table 1.

We should comment on the relatively high mean value of
originality (M=0.89, SD=0.16, N=174). Recall that we
defined 59 categories of drawings for the TCTT — Figural
Test. The distribution of the categories was in a "long tail"
shape; that is, many categories had a very low frequency
(i.e., were highly original), and only a few had relatively
high frequency (i.e., were not original). The least original
category ("Emoji") had a frequency of 75%.

Table 1. Descriptive Statistics for Creative Thinking

4.2. Creative Thinking and the Acquisition of
Computational Thinking

We tested the correlation between the Computational
Thinking variables and the Creative Thinking variables. We
found that Flexibility and Originality were significantly
negatively correlated with Average Time, with Spearman’s
p taking values of -0.16 and -0.18, respectively, at p<0.05.
Likewise, we found a significant negative correlation
between Flexibility and Solution Attempts, with p=-0.17, at
p<0.05. When we examined the correlation between the two
variables by level, we found five cases — levels 1, 3, 5, 6, and
7 — which demonstrated significant correlations. Note that
except for one case (level 1), all correlations were negative
(findings are summarized in Table 3). These results indicate
that the more creative the students were (as measured by
a traditional creativity test), the less time and effort it took
them to solve the levels in the game.

Table 3. Correlations between Computational Thinking and
Creative Thinking by Levels (N=174)

Variable Average Median Skewness
(SD) (SE)

Fluency 6.96 (3.65) 7 -0.23 (0.18)

Flexibility 4.25 (2.94) 4 0.48 (0.18)

Originality 0.89 (0.16) 0.94 -4.43 (0.18)

Elaboration 2.88 (0.89) 2.83 -0.12 (0.18)

4.1.3. Computational Creativity

Among all participants, the Computational Creativity score
was low, as indicated by an average value of 0.24
(SD=0.24). No clear trend was observed throughout the
game (See Table 2). In more than half of the cases, we could
not assume normality (H.-Y. Kim, 2013), as can be seen
from the high levels of the Skewness coefficients (that is,
higher than 1). In most levels, one dominant solution was
observed despite the existence of several others, as solved
by a minority of students. Exceptions were levels 7 and 8,
where only a single solution was observed for the whole
population, probably because of the design of these levels
and their block limit. Levels 4 and 6 showed the highest
variability among participants.

Table 2. Descriptive Statistics for Computational Creativit

Level Average Median Skewness
(SD) (SE)

1 0.17 (0.25) 0.9 2.91 (0.18)
2 0.21 (0.27) 0.11 2.35(0.19)
3 0.1(0.2) 0.05 3.96 (0.18)
4 0.67 (0.19) 0.7 0.49 (0.19)
5 0.03 (0.13) 0.02 7.48 (0.18)
6 0.63 (0.17) 0.67 0.67 (0.19)
7 0.02 (0.72) - -
8 0.02 (0.09) - -
9 0.45 (0.15) 0.42 -1.78 (0.2)

Solution Correct Average
Attempts Solution Time
Attempts
Fluency
Level 1 =-0.04 p=0.04 p=-0.16"
p=0.62 p=0.65
Flexibility
Level 1 p=-0.04 p=-0.01 p=0.15"
p=0.58 p=0.94
Level 7 =-0.18" p=0.00 p=-0.14
p=0.96 p=0.07
Originality
Level 5 p=-0.15" p=-0.06 p=-0.04
p=0.42 p=0.62
Elaboration
Level 1 p=0.1 p=-0.15 p=-0.27"
p=0.19 p=0.05
Level 3 p=0.11 p=-0.15 p=-0.19""
p=0.14 p=0.05
Level 6 p=-0.2"" p=-0.16" | p=-0.21"

* p<0.05, ™ p<0.01

4.3. Computational Creativity and the Acquisition of
Computational Thinking

Next, we tested the associations between Computational
Thinking and Computational Creativity as the latter is
reflected by the originality of a correct solution in a given
level compared with all other correct solutions. We did so
both for the aggregated measures, as well as for each level
of the game separately. We found that overall,
Computational Creativity is negatively correlated with
Solution Attempts, with p=-0.17, at p<0.05, and with
Average Time, with p=0.2, at p<0.01. We also found four
cases — levels 3, 4, 6, and 9 — which demonstrated
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significant positive correlations, as reported in Table 4.
These results indicate that the more creative the students
were in producing a solution, the more time and effort it
took them to solve levels in the game.

Table 4. Correlations between Computational Thinking and
Computational Creativity by Levels (N=174)

Solution Correct Average
Attempts Solution Time
Attempts
Level 3 p=0.14 p=0.05 p=0.27""
p=0.08 p=0.53
Level 4 p=0.14 p=-0.02 p=0.25""
p=0.06 p=0.78
Level 6 p=0.17" p-0.08 p=0.11
p=0.28 p=0.16
Level 9 p=0.18" p=0.1 p=0.33""
p=0.27

*p<0.05, ™ p<0.01

4.4. Computational Creativity and Creative Thinking
Finally, we examined the associations between creativity
related measures: Computational Creativity and Creative
Thinking. We found a significant positive correlation
between originality and the aggregated variable of
Computational Creativity, with p=0.2, at p<0.01. In
addition, when examining these correlations between the
variables for each level separately, we found that in one case
— levels 6 — originality was positively correlated with
Computational Creativity, with p=0.19, at p<0.05). These
results indicate that students who created more original
drawings in the TTCT task were more creative in the
game.

5. DISCUSSION

Various studies have investigated the associations between
computational thinking (CT) and creative thinking,
however, this study is among the pioneers who examine
these associations with Computational Creativity. In this
study, we investigated the associations between the
acquisition of CT by middle-school students who used a
game-based learning platform, referring to two types of
creativity — Creative Thinking and Computational
Creativity. The first was defined by a traditional creativity
test, not related to CT, while the second by the originality of
correct solutions within the learning platform. Overall, we
found interesting associations between the three research
variables. Two dimensions of Creative Thinking—namely
flexibility, and originality—were negatively correlated with
measures of CT. As students were more creative in the
TTCT task, they needed less time and effort to solve the
levels in the game. This is in line with an earlier study that
indicates a positive relationship between standardized
creativity testing and students' performance (Anwar, Aness,
Khizar, Naseer, & Muhammad, 2012). Furthermore, these
findings reinforce the claim that creativity contributes to
computer science and CT in particular (Kong, 2019; Miller
etal., 2013).

Notably, we found that at some level of the game, there was
a positive correlation between Computational Creativity and
measures of the acquisition of CT. That is, students who

provided more unique and original solutions needed more
time and attempts to solve these levels. This is not surprising
as producing a creative solution may take more time than a
"standard" solution (Akinboye, 1982; M. Baer & Oldham,
2006).

We also found some intriguing associations between the two
types of creativity. Computational Creativity was positively
correlated with the originality dimensions of Creative
Thinking. These results may imply that creativity is context-
dependent (as the associations were only demonstrated in
some of the game-levels) as well as transferable from one
domain to another. This supports the hierarchical model of
creativity, which integrates both domain-general and
domain-specific types of creativity (Baer, 2010; Hong &
Milgram, 2010). It also reflects earlier findings that linking
TTCT score and creativity in problem-solving in
programming platforms (Liu & Lu, 2002).

While the results and insights of this study contribute in
offering a better understanding of the associations between
CT and type of creativity, we also want to highlight its
limitations. First, we analyzed data from a single learning
platform (Kodetu), and it is possible that our findings were
a result of some unique characteristics of this platform.
Specifically, the studied platform does not encourage
multiple correct solutions and, in some cases, limits the free
use of coding blocks, which may affect and limit creative
submission. Furthermore, the analysis is based on students
from a single country (Spain). Personal and cultural
characteristics may impact the way creativity is exhibited.
Therefore, we plan to broaden our perspective by examining
similar platforms under different conditions and with a more
multi-cultural view.
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ABSTRACT

Coding for students is no longer just constrained to software
and screen-based text and graphics. Students today use
programmable sensors and microprocessors to solve the
problems around them. The purpose of this research is to
understand how students conceptualize problems and
implement solutions with physical computing. Our study is
driven by the following: 1) find out what Computational
Thinking (CT) competencies, specifically abstraction,
decomposition and algorithmic thinking, can be developed
by students and 2) to what level students develop these
competencies in carrying out physical computing projects.
We closely observe how 41 Grade 7 students developed
solutions for problems they identify in the physical world
around them. Through doing so, we explore how powerful
ideas of CT play a role in a project-approach to physical
computing. We believe open-ended exploration through a
project-approach in physical computing should reinforce
practices where CT skills can grow and flourish. Our
findings show that much of students’ interaction with
sensors and devices is at pre-CT level, where students
simply use pre-existing code fragments or templates. As
students gain skills and confidence, they can be explicitly
guided to develop CT skills with new projects of their own
design justifying their choices. We strongly believe that
Computational Modeling (CM) could help students develop
their CT skills e.g. abstraction, decomposition, and
algorithmic approach much more than the minimally guided
syntax driven teaching approaches.

KEYWORDS
computational thinking, computational models, abstraction,
physical computing, K-12

1. INTRODUCTION

Physical computing, an emerging approach to learning
computing, teaches students about coding and
computational thinking through hands-on activities with
sensors using small computing boards like the micro:bit
(Rogers, et al., 2017). In Singapore, primary school students
are introduced to coding through the Digital Maker
programme with the micro:bit (TNP, 2019).

The micro:bit is a pocket-sized physical computing device
that can be input with various codes. The device is designed
to be visually appealing and tactile, affordable, easy to use,
interactive, and extensible. The board has a built-in display,
buttons, motion detection, temperature and light sensing. It
can be programmed using a desktop PC, laptop or tablet
running one of several different operating system web-based
programming environments: a visual block-based editor,
Python or JavaScript.

Despite the ease in using the micro:bit to code, it is not
certain that physical computing will actually improve
students' understanding of computational thinking (CT). Itis
therefore important for educators to explore the question on
“what and how do students develop CT competencies when
they use physical computing devices to interact with the
physical world?” With this as an over-arching research
question, we set out to design our observational study in
Singapore schools. Our aim here is to 1) find out what CT
competencies, specifically abstraction, decomposition and
algorithmic thinking, should be developed by students and
2) to what level, do students develop these in carrying out
physical computing projects. Furthermore, we want to find
out if students used any conceptual or computational
modeling before or while carrying out their physical
computing projects. We believe our observations would help
us partially answer our over-arching research question.

The project-approach to physical computing, an often used
pedagogy in schools, serves as an open-ended exploratory
approach to examine the computational thinking
competencies that students should learn. We observed that
among many other factors that inhibit the development of
CT skills, the inherent complexity of problem and solution
space could overwhelm students. Additionally, the cognitive
load in designing and developing their solutions could also
hinder them in their learning. Therefore, we propose gentle
scaffolds for developing a sound conceptual model,
followed by guided Computational Modeling (CM) for
overall CT skills development.

2. RELATED WORK

Our study is informed by the ideas of Computational
Thinking (Papert, 1972; Wing, 2008), Computational
Models (Aho, 2012; Denning, 2017; Calder, et. al., 2018),
learning computing models (Sentence, Waite & Kallia,
2019) and Physical Computing (O’Sullivan & Igoe, 2004).
Seymour Papert (1972) described CT as a mental skill
children develop from practicing programming. In a 2006
paper, Jeannette Wing (2006) catalyzed a ‘CT for all’ (p. 33)
movement. It has been debated since then if CT makes better
problem solvers or if practice of coding can help develop CT
skills, with claims that everyone can benefit by CT not yet
being fully substantiated by studies (Guzdial, Kay, Norris,
Soloway, 2019). Many definitions and role of CT in
computing as well as in other fields, and overlap of CT and
computing have followed.

Denning (2017), in his viewpoint on CT, finds the absence
of computation models in the post-2006 CT definitions as a
mistake. He points that key ingredients of CT e.g.
abstraction, data representations and decomposition are
used, in order to get a model to accomplish certain task. He
encourages teachers to take note of Aho’s reflection about
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computation as “a process defined in terms of an underlying
model of computation” (p. 832) and CT as “the thought
processes involved in formulating problems so that their
solutions can be represented as computational steps” (p.
832). Aho suggests the use of the term ‘computation’ in
conjunction with a well-defined model whose semantics is
clear and which matches the problem being investigated. He
added that one could use CT skills to devise computation
models.

There is a growing emphasis on teaching computing since
the idea of CT was proposed by Wing. Countries such as the
United Kingdom have mandated the integration of
Computing and Computational Thinking into the National
curriculum at all levels. Japan is making learning computing
compulsory for elementary and higher education.
Introducing computing has expanded from using screen-
based tools such as Scratch to physical computing such as
the micro:bit. In physical computing, students interact with
the world through the use of sensors as input and controllers
as output of computing devices. Computation is done on the
data from the input sensors like buttons or temperature
sensor to drive the controllers such as motors or LED lights.

For students learning to code, they need to deal with the
complexity of knowing what data they need from the
environment, how to use the sensors to collect the data, how
the data is used for computation, what output needs to be
created and how it should be used. This complexity could
overwhelm students in designing and developing their
solutions. In many approaches to introducing coding,
students are taught using physical computing without
introducing CT skills. The assumption is that students would
learn CT skills as a result of the learning coding through
physical computing. In the pre-CT stage, students may
encounter difficulties in implementing physical computing
solutions without using CT skills, such as automating
machine to interact with the physical world (Fig 1). For
example, students need to know how to acquire data from
the environment, process to compute the data, and output to
the world. Teaching CT skills explicitly to students can help
students to implement their solutions better as shown in Fig
2. The teaching of CT skills can bridge some of the
difficulties students face in learning coding and
implementing solutions with Physical computing.
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PRIMM (Sentence, Waite, & Kallia, 2019), a framework for
teaching programming, focuses on students talking about
how and why programs work before they tackle writing their
own programs. The first element of PRIMM i.e. Predict, is
about students discussing and predicting what a program

might do, drawing and writing out what they think will be
the output in order to develop the vocabulary they need to
talk about the program. We believe such vocabulary
development should extend to CM, which is an important
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Figure 2. lllustration on how the gap between and CT and
implementing Physical Computing in the
classroom is being bridged

3. CONTEXT OF STUDY

To understand how CT is applied in learning of physical
computing through the use of micro:bit in coding, the
research team observed the micro:bit training sessions and
interdisciplinary project work lessons of Grade 7 comprising
of 41 students divided into 10 groups, in a local
neighbourhood school, over a period of 4 %2 months. The
purpose of the study was to understand how students
conceptualised the problems and implemented the solutions
with physical computing. Additionally, the research aimed
to 1) find out what CT competencies, specifically
abstraction, decomposition and algorithmic thinking,
students should develop and 2) to what level, do students
develop these in carrying out physical computing projects.
Students find it exciting when they see their projects come
to life. Physical computing is therefore very engaging that
helps them understand how things work in the real world.

The students followed a project-approach to develop
physical computing solutions using micro:bit. During the
micro:bit training sessions, the students are first introduced
to both the basic and intermediate technical aspects of the
micro:bit board and makecode editor, where they carry out
block coding. Thereafter, they are introduced to the
development environment of the ‘makecode editor’, an
online visual block-based coding programme, where they
could develop their codes. Their solutions were expected to
incorporate sensors to capture data occurring from everyday
phenomena such as surrounding temperature or sound. The
process that students undertake in designing their projects
using the below-mentioned flowchart.

The entire training sessions and interdisciplinary project
work lessons seek to complement the Applied Learning
Programme (ALP) in Robotics and Programming run by the
school, which aims to empower students with the
technological and thinking skills that will enable them to be
innovative and empathetic members of the community.
(MOE, 2019)
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Students are challenged to find a real world problem around them

Students conceptualise and plan in their groups, applying what they learn
in their training sessions

Students prototype their solution by incorporating their coding into their

to validate their solution

micro:bit, and coming up with a physical model with an attached micro:bit

Students continue their brainstorming, discussion and designing of their
prototype and coding for the solution in their project work lesson, over the
entire observation period

the classroom, explaining how it attempted to mitigate the problems in the
classroom

For the final lesson, students present their coding solution and prototype to

Students are further challenged by their teacher on how to further improve
their micro:bit coding to make the solution more effective

Figure 3. Flowchart showing the process students
undertake

4. METHODOLOGY AND DATA

COLLECTION

The students attended the two micro:bit training sessions (10
hours in total), and attempted an implementation of the
design thinking approach where they developed prototypes
with the micro:bit sensors, servo motors and connecting
wires. Students worked within their groups for a duration of
12 weeks, typically meeting once every 2 weeks (see Table
1).

Table 1. Table of lesson observation schedule, data
collected, summary of training session and lessons

Lesson | Description of Activity Data
Collected
in lessons

1 Overview  Project  Work;  Group | Video

Discussion - Identify Project Topic
2 Introduction  to  micro:bit;  Group | Video
Discussion- Project work Topic

3 micro:bit Training (Day 1) Video

4 micro:bit Training (Day 2) Video

5 Completion of CT Questionnaire Video

Student group discussion on Project (with
students)
6 micro:bit Revision by Trainer Video,
Student group discussion on Project (with | Audio
Teacher and Trainer)

7 Discussion on Project (with Teacher and | Video,
Trainer) Audio

8 Presentation of Projects Video,
Audio

9 Interviews with Students Video,
Audio

The researchers observed the 10 hours training sessions, in
order to accustom with the coding curriculum that students
were being taught. They sought to understand the thought
and application processes of students when they were
incorporating coding knowledge and subject content
knowledge into the various projects they were doing. The
sessions were filmed and recorded in both audio and video
format.

Additionally, we observed the students as they design, code
and implement their physical computing projects in Lessons
5to 7 (see Table 1). We looked out for CT skills application
in specific milestones of problem formulation, initial design,
implementation, and demonstration as they carry out their
projects. The purpose of the activity was to understand how
students use abstraction, decomposition and algorithmic
thinking, while conceptualising the problems and
implementing the solutions with physical computing.

For data collection, we selected two groups for more detailed
observation (See Table 2). We followed these two groups as
they developed their projects and enquired them on their
actions and decisions. These two groups were selected based
on the complexity of their projects and recommendations by
their teachers because they were able to articulate their ideas
clearly compared to their peers. We recorded the
presentations they made to classmates on their ideas and
solutions. After their presentation, we interviewed the group
members and archived their codes for analysis.

Table 2. Projects of the two groups of students observed

Group No No of Students Project
A 4 Classroom Door Lock
B 4 Noise Level Detector

5. ANALYSIS AND FINDINGS

To evaluate students on their application of their CT skills,
we developed a set of rubrics for CT skills. The rubrics was
developed from our literature review of the CT skills and we
also obtained feedback from practitioners on the levels of the
rubrics and the skills. For this work, we focused in observing
three CT skills, namely Abstraction, Decomposition, and
Algorithmic Thinking (See Table 3).

In our analysis, we observed the two groups closely as they
developed their projects with physical computing. Our
observations of two groups and the projects that they worked
on in the following paragraphs.

Group A worked on a problem of a sensor-operated door-
lock that would open upon motion detection of a contactless
card. The students were queried about the algorithmic steps
and meaning of the codes in the micro:bit block. The
research team hinted to students about thinking logically
about the codes found in the block and figure out which
blocks can be matched together to form the required codes.
We observed that the students lacked the necessary
knowledge on the type of data and sensor to read the
contactless card. As a result, the students realized that they
had to change the sensor from a card scanner to a digital
keypad with numbers connected to the classroom door, as
the use of a card scanner had been deemed unfeasible. Even
with the change, they could not implement the use a digital
keypad with the micro:bit.

Table 3. Rubrics for Classroom Observation
ABSTRACTION - to choose the right amount of detail for the
problem to be modeled
Beginner: Able to identify and choose relevant data and information
for the model and solving the problem
Intermediate: Beginner + identify relevant data and from multiple
sources to integrate for developing possible CMs
Advanced: Intermediate + physically represent through
modelling and interact with relevant data and information for the
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model from multiple sources + express/articulate what is
conceptualized in thinking by constructing a model using relevant
details + translate abstraction into model

DECOMPOSITION - to breakdown a problem into component
parts to be understood and solved

Beginner: Able to break a problem in smaller parts

Intermediate: Beginner + articulate the relationship between the
parts

Advanced: Intermediate + develop a model to understand the
complex system to facilitate/evaluate problem solving using
computation

ALGORITHMIC THINKING - to think in terms of sequences to
solving the problem

Beginner: Create a sequence of steps to solve a problem, with
instructions to execute

Intermediate: Beginner + Understand how automation works and
use algorithmic thinking to create a sequence of steps

Advanced: Intermediate + test the automated steps through a
breaking down process + identifying how the information changes
between the steps and refine/optimise the steps + improving the
creation of sequence of steps in areas such as optimisation,
efficiency, reusability, readability and re-factoring

Group B worked on the problem of noise detection in the
classroom, which would send an alert to the teacher once the
noise threshold is reached. The team had difficulty in
conceptualizing their solution with the micro:bit. They
recognized though that they needed a sound sensor to detect
sound from the physical environment. They were able to test
the sensor input and simulating an alert to the teacher by
pairing two micro:bits. They however lacked the systemic
knowledge. For example, they did not think deep enough on
where to best place the sensor to capture the noise accurately
or how sound travels could affect the coding and prototyping
of their project. It showed an inadequate mental model, and
therefore an inadequate conceptual model of the problem
and solution i.e. how the sensors interact with the physical
world, and e.g. sound travels by waves and where they place
sensors matters.

We analysed the transcripts of the interview made with the
students to evaluate the decisions the made with regard to
the implementation of their solution. We identified how their
abstraction, decomposition and algorithmic thinking are
demonstrated from the interview data, as explained by the
students (See Table 4). This was made in reference to the
rubrics we developed.

Table 4. Interview Transcript of students in Group A
demonstrating the skill of Algorithmic Thinking

time is it? How do you
send the teacher the
value?

We use the radio
function we send the
current noise level

Yes

And when the teacher
receives it, it’ll show on
the screen

Abstraction - choose
the relevant data and
information

R [Researcher] Dialogue Explanation
S [Student]
R How did you solve the
problem?
S We decided to place, Students decide to give
[06:38] instead of alerting the remote micro:bit to
' teacher when it hits the |teacher indication of
second level, we real time noise level
deCIﬁed tr? SIhOV\: ﬂ:f h Abstraction — choose
:_eac er the level all the e relevant data
ime Decomposition — break
down the problem into
smaller part to show the
information to the
teacher
R Oh show, show the
teacher the level all the

The codes developed for the solution and the created artefact
comprising of the micro:bit board with sensors were
analysed for students algorithmic thinking, decomposition
and abstraction competencies (See Figure 4). For example,
the group with the sound sensor used one micro:bit to read
the sound level from Pin 1 and control a LED at Pin 0. The
micro:bit will send the value of the sound level to another
micro:bit through radio. The students designed such that the
remote micro:bit will be carried by the teacher and will
notify the teacher if the level exceeds the noise. The students
calibrated and tested the actual noise level in their classroom
that they deemed as noisy. This was the level they chose as
the trigger to notify the teacher. During testing, the students
noticed that there was a delay in sending the value to the
teacher’s micro:bit and the noise level reading was not
accurate. They did not have time to solve these issues.

digital wite pin m v to @)

digital write pin PO v tn.

Figure 4. Example of code (Sound Sensor) done by
students using makecode editor in the project design

We analysed the groups’ work process in developing the
solution, their completed artefact solution and codes, and the
interview transcripts. The analysis from the sources were
triangulated and compared to the rubrics we developed.
Results showed that most were at best able to achieve only
the beginner level of the CT skills (see Table 5). However,
we noted that the acquiring of these skills progressed over
time and towards the end, most students became more
competent in them as they engaged in more programming.

From our observations, we posit that students have
difficulties in designing a computing solution due to their
rudimentary CT skills. At the end, the students managed to
build a prototype of their solution but experienced
challenges in abstracting the vital data required for the
solution in the initial stages. This affected their choice of
sensors to use as input to their solution and difficulties in
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thinking algorithmically on the computation to obtain the
automated output. Referring to Table 4, we believe both
groups worked at pre-CT stage (See Figure 1). The above
observations are specific to a few projects and students, and
generalizations would require more studies with more
students and diverse settings.

Table 5. Results of skills demonstrated by the two groups
during the observation

CT skills Group A (Level Group B (Level
achieved) achieved)

Abstraction Beginner Intermediate

Decomposition Beginner Beginner

Algorithmic
Thinking

Beginner (students
who programmed)

Beginner (students
who programmed)

6. DISCUSSION AND

RECOMMENDATIONS

Computational Modeling (CM) as per one of the established
definitions (Calder, et. al., 2018) can help us “translate
observations into an anticipation of future events, act as a
testbed for ideas, extract value from data and ask questions
about behaviours. The answers are then used to understand,
design, manage and predict the workings of complex
systems and processes, from public policy to autonomous
systems.” (p. 2)

Computational Thinking (CT), on the other hand is a
generalized problem-solving process that can be applied to a
wide variety of problems. The steps of CT includes
formulating a problem in a way that enables us to use a
machine to solve it. The machine here refers to computer and
other devices. In the process, data and concepts are
abstracted and analysed and algorithms are developed for
automating a solution.

We believe, that CT definition is not explicit about
modelling, i.e. representation of abstracted data and
concepts before algorithms are developed. Here in this
study, we first observe if indeed classrooms have modelling
incorporated in the CT lessons. Our findings show that
students attempt to directly code or develop algorithm once
they have understood the problem. They do not develop any
models or use any tools to represent data or concepts.

Today, visual block-based visual programming platforms
such as Scratch, Blockly are popular vehicles for
programming sensors and delivering CT. Even though
students are quick to pick up the programming constructs,
conceptual difficulties pertaining to problem and solution
space, and developing CT skills e.g. abstraction,
decomposition and algorithmic skills, are often evident.

From our observation of the work of both groups, we
surmise that students face difficulties in designing a
computing solution due to the missing explicit CT exposure
and almost non-existent CM. They have challenges in
abstracting the vital data required for the solution and
thinking algorithmically on the computation to obtain the
desired output.

For students, owning an idea serves as a motivation to learn.
We observed that students identified a problem or
innovation they wanted to pursue. We found that though
students were engaged in the maker-rich environments, they

did not move to thinking computationally and solving
problems. Much of their interaction with sensors and devices
is superficial. This is inferred through our interactions with
students. When we discussed with students about for
example how sensors were working or how transmission of
data or signal was from one to another device, we did not
find them confident of their knowledge of hardware beyond
what they were using it for.

However, when we, for example, introduced input-process-
output model, their understanding of the project seemed
better. They could explain the project better to another
researcher from our own group as well as to their teachers
later. We would want them to develop higher order design
skills through physical computing, not just coding. They
should understand the iterative nature of finding a solution
and testing. Open-ended exploration through the project-
approach in physical computing should reinforce practices
where CT skills grow and flourish.

Additionally, based on our observations, students have
difficulty in starting the implementation due to their lack of
CT and CM in the pre-CT stage. Reasons for such gaps are
mainly due to the inherent complexity of the problem that
they are trying to solve, as well as integrating different
components of the solution involving use of sensors,
collection of data, computation of data and automating the
solution. To scaffold their learning, it is important that they
are guided through developing a conceptual model, such as
CT (abstraction and algorithmic skills) and CM (See Figure
4), leading them eventually towards the CT+CM stage.

We propose that a CM phase could act as a glue from
understanding problem to the coding activity (see Figure 4)
for students to formulate their problems in computational
steps (Denning, 2017). Execution of computational models
could be seen as controlling and automating the machine to
solve the problem computationally. We believe focused
modeling activities could help students develop their CT
skills e.g. abstraction, decomposition, and algorithmic
approach much more than the minimally guided syntax
driven teaching approaches.

Based on our observations we suggest concrete steps that can
be taken to support the development of computational
thinking. We believe a project-approach through physical
computing provides an excellent maker-platform, in which
students are provided with the opportunity to evaluate and
manipulate underlying abstractions and mechanisms. It
gives ample scope of developing CT skills namely
abstraction, decomposition, and algorithmic thinking.
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We propose a triad-model for effective and systematic
development of CT skills. This model describes a pattern of
engagement (see Figure 5). It is based on the premise that
computational modeling promotes the acquisition and
development of CT among students. At the ‘pre-CT’ level,
students are simply coders. For example, they code using
pre-existing code fragments or templates, and acquire
coding skills through a series of iterative refinements. New
skills and understandings are developed over time and they
begin to code with increasing levels of sophistication. This
does develop an understanding of at least a subset of the
abstraction contained within the problem and solution. We
observed that most of the students in our study operate at the
pre-CT level. As students gain skills and confidence, they
can be explicitly guided to develop CT skills with new
projects of their own design justifying their choices. At this
‘CT’ level, all three key aspects of computational thinking:
abstraction, decomposition and algorithmic thinking, come
into play. We observed two groups of students partially
acquiring CT skills when we explicitly made them think
about specific issues about their problem or solution. We
strongly believe that Computational Modeling (CM) could
act as an effective medium to develop computational
thinking skills especially in the context of physical
computing. We propose another level in our framework
labelled ‘CT+CMi.e. using Computational Modeling (CM)
as a medium to develop CT skills.

Here are our recommendations for effective delivery of CT
skills with CM based on this study:

e Design of a thinking style workshop that could help
students to develop and strengthen their mental model
about the problem. It is an important and essential that
students have the relevant vocabulary of the problem
domain, and systemic thinking before attempting to
formulate a solution.

e  Guided team brainstorming sessions could help students
develop conceptual models for the solution they
propose. Developing a sound conceptual model at the
team level could help each individual member to
strengthen his/her mental model, and sync well with
team before implementing the solution.

e Gentle scaffolds could be introduced, e.g. graphic
organisers for the above, to ease students into
developing Computation Models. CM could be the glue
that connects a conceptual solution and actual code.
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ABSTRACT

This paper explores contemporary researchers and their
approaches to computational thinking (CT) for students in
K-12 education. Computational Thinking (Wing, 2016) is
used as a focal point of investigation as the views of Barba,
Papert, Resnick, Kafai, diSessa, Denning, Aho, Wilkerson,
and Grover are compared. While the varied approaches to
CT may indicate disagreement on behalf of researchers in
the field, it can also be a sign of the varied directions in
which CT, and related concepts, can be taken. As
educational jurisdictions integrate CT in K-12 curriculum,
these approaches and directions should be considered by
educators, policy makers, and researchers alike.

KEYWORDS
computational thinking, computer science, education, K-12,
K-8

1. INTRODUCTION

In March of 2006, the Communications of the ACM
published Jeanette Wing’s Computational Thinking where
she was seeking to expand the scope of Computer Science
education beyond the post-secondary levels. Wing
articulated the characteristics and importance of a
“universally applicable attitude and skill set” (Wing, 2006,
p. 33) called Computational Thinking (CT) which involved
thinking like a computer scientist.

The article captured the imagination of educators and
researchers from around the world (Grover & Pea, 2017) and
according to Google Scholar, as of December 2019, had
been cited over 5475 times. Important to note; however, is
the fact that ideas surrounding the integration of computer
science (CS) concepts and thought processes in K-12
education did not begin, and certainly did not end, with
Wing’s seminal work. A long history exists related to the
integration of CS concepts in K-12 education and since
2006, many researchers have expanded on the definition and
scope of CT, and its role in K-12 education.

What follows is a summary of the field of CT that
approaches the subject by presenting the various thought
leaders and their ideas. These ideas are especially pertinent
at this time as educational jurisdictions around the world
explore the integration of CT in the K-12 grades.

2. THINKING LIKE A COMPUTER

SCIENTIST
Jeanette Wing initially defined CT as “solving problems,
designing systems, and understanding human behaviour, by
drawing on the concepts fundamental to computer science”
(Wing, 2006, p. 33). Later, she refined her definition to the
“thought processes involved in formulating problems and
their solutions so that the solutions are represented in a form

that can be effectively carried out by an information-
processing agent.”. While researchers have discussed
Wing’s initial definition at length, a primary criticism
surrounds the idea of thinking like a computer scientist.

In Computational Thinking: I do not think it means what you
think it means (2016), Lorena Barba explains that Wing’s
view fails to acknowledge CT as “a source of power to do
something and figure things out, in a dance between the
computer and our thoughts”. Viewing the computer as a
formal tool to understand, and then apply to a problem later,
takes away its power: “Most people don’t want to be a
computer scientist, but everyone can use computers as an
extension of our minds, to experience the world and create
things that matter to us”. Barba was attempting to move
discussions away from Wing’s CT, towards an idea that
would allow students to use computing as a means to create
new knowledge in a broad number of domains. In order to
support this view, Barba made reference to several of
Seymour Papert’s ideas.

3. CONSTRUCTIONISM  AND

PROGRAMMING
Described as the father of educational computing (Stager,
2016), Papert laid the foundation for how we think about
learning and teaching with computers (Kafai & Burke,
2014).

Before arriving at MIT in 1963, Papert worked closely with,
and was heavily influenced by, Jean Piaget and his theory of
cognitive development called constructivism. Papert built on
Piaget’s ideas by developing his own theory of learning that
he called constructionism (Stager, 2016). While both
theories focus on learning being an active process of
constructing knowledge, and both include the idea that
children learn new concepts by relating them to things that
they already know (Ames, 2018), they differ in that
constructionism acknowledges the importance of culture as
the source of the materials that students will use to build their
knowledge (Papert, 1993). Papert believed that in some
cases the culture provides the learning materials in
abundance, which facilitates Piagetian learning. In other
cases; when here is a slower development of a concept,
Papert saw the “critical factor as the relative poverty of the
culture in those materials that would make the concepts
simple and concrete” (Papert, 1993, p. 7).

LOGO

It was for this reason that Papert was so enamoured with the
computer as a learning tool. He felt that the relative poverty
of a culture could be cured by a computer, the Proteus of
machines, that can “take on a thousand forms and can serve
a thousand functions” (Papert, 1993, p. xxi).

At MIT, Papert developed the Logo programming language,
which he felt could alter the relationship that students had
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with computers. Rather than having students be programmed
by a computer (through computer-based exercises and
feedback) the Logo programming environment reversed this
relationship by having the student program the computer
itself, which essentially meant teaching the computer how to
think.

Papert uses the term “mechanical thinking” to describe the
type of thinking that students are introduced to when
programming in Logo (Papert, 1993, p. 27). He emphasises
that by introducing students to mechanical thinking, they
suddenly become aware of thinking styles, and they begin to
consider other thinking styles that might exist, as well as
how and why they might choose between styles. Later,
Papert uses the term “computational thinking” when
describing what some of his experiments were trying to
integrate into everyday life. He acknowledges that the
visions of these experiments were insufficiently developed,
but that they will serve as “manifestations of a social
movement of people interested in personal computation,
interested in their own children, and interested in education”
(Papert, 1993, p. 182)

Papert’s work surrounding computers and education, and his
development of the Logo programming language, sowed the
seeds of this social movement. In 2017, Mitch Resnick, a
former doctoral student of Papert’s, exclaimed “I will be
happy to spend the rest of my life working to nurture the
seeds that Seymour sowed” (Resnick, 2017).

4. COMPUTATIONAL FLUENCY AND

SCRATCH PROGRAMMING
Resnick is the director of the Lifelong Kindergarten research
group at MIT that developed Scratch, the world’s leading
coding platform for kids. Scratch was deeply inspired by
Papert’s Logo but “goes beyond Logo by making
programming more tinkerable, more meaningful, and more
social” (Resnick, 2014, p. 2).

In New Frameworks for Studying and Assessing the
Development of Computational Thinking (2012), Resnick,
along with co-author Karen Brennan, propose an alternate
CT framework that includes three key dimensions: concepts,
practices and perspectives.

Resnick and Brennan’s CT concepts include the concepts
that designers engage in as they program (sequences, loops,
parallelism, events, conditionals, operators, and data). CT
practices differ to CT concepts in that the practices describe
the processes of construction that student engage in while
creating Scratch projects (being incremental and iterative,
testing and debugging, reusing and remixing, and
abstracting and modularizing). Finally, CT perspectives,
describe the evolving understanding that students using
Scratch exhibit about themselves, their relationship to
others, and the technological world (expressing, connecting,
and questioning). Together, the concepts, practices and
perspectives provide a broader understanding of CT that
Resnick calls Computational Fluency.

The impetus for Resnick’s Computational Fluency was an
attempt to “highlight the importance of children developing
as computational creators as well as computational thinkers”
(Resnick, 2018, p.1). Computational Fluency goes beyond
the problem-solving strategies of CT by including student’s

creativity and expression with digital tools, and the
opportunity for students to develop their own voice and
identity (Resnick, 2018).

Resnick’s emphasis on having students design digital
artifacts is well grounded in constructionism and Resnick
acknowledges the surge of interest in coding and schools
“provides an opportunity for reinvigorating and revalidating
the Constructionist tradition in education” (Resnick, 2014,
p. 7). Resnick and Papert’s views on constructionism are
thoroughly discussed in Constructionism in practice:
Designing, thinking, and learning in a digital world, a book
edited by Resnick and another one of Papert’s influential
students, Yasmin Kafai.

5. COMPUTATIONAL PARTICIPATION
Kafai was a student of Papert’s at the MIT Media Laboratory
and also contributed to the development of Scratch. Her
recent work includes Connected code: Why children need to
learn programming, a book that she co-authored with Quinn
Burke.

In Connected Code, Kafai and Burke describe four
dimensions characteristic of Papert’s constructionist thought
(social, personal, cultural, and tangible) and explain how
these dimensions have evolved resulting in a new form of
programming whereby students can create applications as
part of a larger community. This programming as a
participatory process extends CT because “when code is
created, it has both personal value and value for sharing with
others” (Kafai & Burke, 2014, p. 17). In From computational
thinking to computational participation in K-12 Education
(2016), Kafai argues that CT needs to be reframed as
Computational Participation moving us “beyond tools and
code to community and context” (p. 27).

Kafai’s Computational Participation acknowledges that CT
is a social practice with a broad reach and that programming
is now a way to make and be (Kafai, 2016) in the digital
world (Kafai, 2016). Digital technologies are used for
functional, political, and personal reasons and therefore all
students should develop an understanding of interfaces,
technologies, and systems that they encounter every day in
order to fully participate in contemporary activities and
social practices.

Kafai’s Computational Participation takes a broad view of
computing and acknowledges its potential impact across a
wide range of fields. This broad view shares some
characteristics with Computational Literacy, an idea that
was developed by Andrea diSessa even before Wing’s CT
became popular.

6. COMPUTATIONAL LITERACY

Andrea diSessa’s work focusses on the idea that computers
can be the basis of a new form of literacy that is applicable
to a wide variety of subjects, contexts and domains
(Weintrop et al., 2016). In 2000, six years before the
publication of Wing’s Computational Thinking, diSessa
published Changing Minds, a book in which he “invites us
to imagine a world in which computational knowledge — the
prime example is programming — is as widely practiced as
reading newspapers and novels is today” (Papert, 2006, p.
240)
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In presenting computing as a new form of literacy, diSessa
advocated for the broad use of computers in schools, and for
educators to see computing as means of transforming the
teaching and learning of things that are hard for students to
learn (Papert, 2006). diSessa uses algebra as an example of
an epistemological entity that, when first developed, was not
appreciated as a means of transforming complex and
difficult ideas into a form that can be grasped by high school
students (Papert, 2006). He argues that Computational
Literacy involves computing and computer programming
concepts being integrated into school subjects in much the
same way that algebra has become a tool in science,
mathematics and other subjects.

In Computational Literacy and “The Big Picture”
Concerning Computers in Mathematics Education (2018),
diSessa explains that his use of the term literacy goes beyond
the idea of simply having a casual acquaintance with
something. Instead, literacy means the adoption, by a broad
group or even a civilization, of a “particular infrastructural
representational form for supporting intellectual activities”
(diSessa, 2018, p. 4). diSessa continues by criticizing
Wing’s computer science-centric  view of CT
acknowledging that because literacy is such a massive social
and intellectual accomplishment, it can’t belong to a single
professional discipline.

diSessa concludes Computational Literacy and “The Big
Picture” Concerning Computers in Mathematics Education
by providing practical advice:

There is no single recipe for how computation changes a field
or subfield. If your pursuits take you in different directions, then
I suggest here, that will enrich the horizon for all of us. If they
parallel or extend what | and others who are focused on the big
picture have already done, perhaps we can converge sooner
than might be expected (diSessa, 2018, p. 28).

We should consider this advice as we investigate the views
and applications of CT shared by other researchers within
the field.

7. CT DEFINITIONS

MATHEMATICAL MODELS

In 2017, Peter Denning published Remaining trouble spots
in computational thinking, where he explained that CT has
been major component of computer science since the 1950s
and so has the idea that CT can benefit people in a variety of
fields. Unfortunately, Denning claims, recent attempts to
make CT appealing to fields other than CS have led to
“vague and confusing definitions of CT” (p. 33). Denning’s
two main criticisms of Wing’s definition of CT include the
absence of any mention of computational models as well as
the suggestion that any sequence of steps constitutes an
algorithm. Denning prefers, instead, to accept a definition of
CT proposed by Alfred Aho, which he claims better
embodies the notion of CT from computer science,
computational science, as well as other fields such as the
humanities, law and medicine.

AND

In 2012, Aho defined CT quite succinctly as “the thought
processes involved in formulating problems so their
solutions can be represented as computational steps and
algorithms” (p. 832). Aho explained that an important part
of the CT thought processes involve finding the appropriate

models of computation, and if there are none, then
developing new ones. This view is exemplified in some of
the mathematical modelling work by Michelle Wilkerson.

Wilkerson believes that computer science shares language
with mathematics that can be used to represent models
resulting in a description of patterns and processes that can
make up scientific and engineered systems (Wilkerson &
Fenwick, 2017). When describing CT, Wilkerson, and co-
author Michele Fenwick, explain:

While mathematics focuses on quantities, computational
thinking focuses on processes. Students engaged in the practice
of computational thinking break a complex problem or process
up into smaller steps in order to better understand, describe, or
explain it (Wilkerson & Fenwick, 2017, p. 189).

Wilkerson works with having students use or build
computational models and simulations in order to better
understand scientific and engineered systems. This approach
to CT would be considered by Shuchi Grover as a good
example of integration CT in an effort to enable or enrich
learning in other disciplines.

8. A TALE OF TWO (OR THREE OR

FOUR OR FIVE) CTs

In A tale of two CTs (and a Revised Timeline for
Computational Thinking) (2018), Grover argues that in
order to make sense of CT in K-12 education we need to
distinguish between main two views: computer science
thinking in CS classrooms and CT in other disciplines. She
explains that ideally, students will get a chance to experience
CT in both settings during their K-12 schooling. Grover also
presents a brief timeline of CT starting with the problem-
solving practices discussed by G. E. Forsythe in 1968 and
the elements of CS thinking discussed by Donald Knuth in
the 1980s.

In regards to Wing, Grover credits her definition of CT for
igniting K-12 computer science education and for calling
attention to its role in other disciplines but also
acknowledges that we should no longer be focused on
“dreams of CT changing everyday behaviours of those
who’ve learned this skill in curricular settings”. Instead, we
should view CT as playing a significant role in CS education
and playing a role in helping students understand concepts
within a variety of fields and disciplines.

9. CONCLUSION -

DIRECTIONS

While the varied approaches to CT may indicate
disagreement on behalf of researchers in the field, it can also
be a sign of the varied directions in which this powerful form
of thinking can be taken. diSessa makes it clear that
Computational Literacy is distinct from CT and that the field
should have an analytical frame that can separate these ideas,
and other CT ideas and movements (diSessa, 2018, p. 17).
He goes on to explain that “it’s not an issue of choosing
terms; it is an issue of choosing directions” (diSessa, 2018,
p. 17).

When deciding on how to frame an essay on Papert’s ideas,
Resnick acknowledged that it’s “too simplistic to think that
you can just take someone’s ideas and put them into practice.
Seymour was always skeptical about that type of top-down,

MULTIPLE
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linear thinking” (Resnick, 2017b). Perhaps varied
approaches related to computer education and CT are an
inevitable outcome of the epistemological and practical
underpinnings of the concept, as well as the nature of K-12
education.

As students begin to develop an understanding of “thinking
like a computer”, or “thinking like a computer scientist”,
they enter the interesting and sophisticated realm of
epistemology. To claim that there is one approach to having
students work within this realm, and one direction for
educators and researchers to take, discredits the nature of the
underlining, constructivist theory of knowledge. To claim
that there is one way to implement CT concepts in the
various disciplines and grades of K-12 education discredits
the subjective and responsive nature of teaching and
learning.

As we consider CT and K-12 education, we should
understand that it’s too simplistic to think that we can take
Wing’s general ideas of CT and put them into practice. The
varied approaches and directions listed above represent an
honest and authentic characteristic of a body of knowledge
whose foundation lies in the constructivist theory of
learning. There are several common, core principles and
beliefs that lie at the heart of a number of researcher’s views
on CT. These should continue to be documented and shared,
while the subtle differences surrounding the details of CT
should continue be investigated and celebrated. The
computer and the mind of a student can “take on a thousand
forms and can serve a thousand functions”, perhaps the
varied approaches to integrating CT in K-12 education
should honour this idea.
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Effects of Using Mobile Phone Programs to Control Educational Robots on the
Programming Self-Efficacy of the Third Grade Students
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ABSTRACT

The purpose of this study is to use mobile phone programs to control educational robots, so as to enhance the computational
thinking literacy of the third grade students. This study allows learners to use mobile phone applications to drag building
blocks in order to control and interact with the educational robots. This study also employed the computer program self-
efficacy scale, educational robot attitude scale and cognitive load scale to measure computational thinking ability and
learning performance. The research results show that learners have significantly improved their computational thinking
ability after course, and further analysis found that learners' self-efficacy performance of computer programs is significantly
negatively related to learning anxiety, and learning investment and learning image are significantly positively related.
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computational thinking, educational robot, computer programming self-efficacy
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ABSTRACT

Studies have reported that acquiring programming skills
remains a considerable challenge for most novice learners.
In this study, Minecraft was used to explore its’ effect on
secondary students’ creativity, emotion, as well as
collaborative behaviors during programming in groups. Four
out of twenty secondary students were recruited and
instructed in the design and development of programming
project in Minecraft, and pair programming was used to
foster their collaboration. The results revealed that students’
creativity was increased. Their emotion of enjoyment, hope
and pride towards programming were improved and feeling
of anxiety were decreased after the intervention. Two groups
behavior patterns during programming were detected
through click stream analysis, which revealing five typical
behaviors (UTP, CIP, DIM, CIM and DBM). This study
shed light on the dynamic connection between programming
learning and cultivation of creative ability and positive
emotion, and how to better integrate learning analytics in K-
12 programming education.

KEYWORDS
programming, secondary students, creativity, emotion,
behavior

1. INTRODUCTION

Based on a constructivist approach, programming has been
suggested as the main strategy to improve computational
thinking (CT) in schools (Wing & M., 2006). However, past
experience shows that many students perceive learning
computer programming as a difficult and boring task,
teaching programming languages remains a big challenge
for most school teachers (Barr & Guzdial, 2015). Minecraft
is acknowledged as a highly popular children’s digital game
and show its potential in education (Pellicone & Ahn, 2018).
Cipollone, Schifter, & Moffat (2014) demonstrated that
Minecraft offers a unique opportunity for students to express
their creativity. Minecraft also could provide the text-based
language (Python) learning environment, together with a
vivid debugging interface. However, less attention has been
paid to apply Minecraft for programming projects.
Therefore, the research questions was: What were the
differences in creativity, emotion and collaborative
behaviors of two contrasting groups in Minecraft
programming?

2. METHOD

2.1. Research Context

In this study, Minecraft was utilized as programming
learning environment. Callaghan (2016) suggested that
Minecraft could contribute to the enhancement of classroom

learning, the capacity to collaborate as well as the role of the
teacher contributed to a learning environment. Besides,
Python is a language that was designed specifically for
teaching programming to non-experts. And Python has been
adopted in Chinese High school Information Technology
Curriculum Standards. The demonstration of teaching
Python programming in Minecraft was shown in Figure 1.

Write Python language

Runand debug in Minecraft

Figure 1. Write, run and debug Python in Minecraft.

2.2. Measuring Instrument

Firstly, the creativity questionnaire was revised based on the
measure developed by Welch and McDowall (2010). The
Cronbach’s alpha value of the questionnaire was .80.
Secondly, the questionnaire of emotion in programming,
developed by Goetz, Frenzel, Barchfeld and Perry (2011),
which is designed to assess various achievement emotions
experienced by students in academic settings. The
Cronbach’s alpha value of the questionnaire was .93.
Thirdly, click stream analysis was adopted to explore
students’ collaborative behavior during the programming
process.

2.3. Experiment participants and procedure

Based on students’ performance and collaboration during
the experiment, 2 groups of 4 students of this study were
selected from 20 seventh graders in a secondary located in
Hangzhou, Ying and Dai in group 1 and Chen and He in
group 2.

The experiment took 12 weeks of one and half hours per
week. Teacher taught how to program and play with
Minecraft, and students were learning basic grammar and
function in Python, with implementing different project-
based programming cases. During the final programming
project, students were asked to conduct a pair programming
activities (swordgame), including two students working on
one computer, with one acted as Driver and the other as
Navigator.

3. RESULTS AND DISCUSSION

Firstly, at the first beginning of the experiment, Ying and
Dai in group 1 got 80 and 61, while Chen and He in group 2
got 72 and 50, with an average score of 59 for the whole
class. After 12 weeks of study, two groups of students all
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improved individually, on top of that, students in group 2 got
a much significant enhancement during the study.

Secondly, it is apparent that all of four students’ emotion
were strengthened after the experiment, no matter if it is in
overall performance, or in every aspects of enjoyment, hope
and pride. Deci et al., (2017) also mentioned that learner’s
emotion could influence students’ judgement, motivation
and self-efficacy towards a specific task. However, He in
group 2 experienced a decrease in anxiety score, which
means his anxious feeling is rising along with the conducting
of the class. Therefore, for those students who couldn’t catch
up at the beginning or those one couldn’t work well with
partner, the sense of anxiety would also increase with the
time goes by.

Thirdly, in terms of students’ behaviors during the
programming in Minecraft, we incorporated the click stream
analysis. As it can be seen from Figure 2, the top 2 common
behaviors are CIP (coding in python) and DIM (debugging
in Minecraft), the rest behaviors are DBM (distracted by
Minecraft), CIM (creating in Minecraft) and UTP
(Understanding the project). Students in groups 1 have spent
the most of the time in CIP and more likely to write code to
complete the programming task; whereas the group 2 seems
to enjoy create building by mouse click (CIM) rather than
code-writing. Students in group 1 were appeared to be more
concentrated on programming, because of the shape of the
behavior CIP, DIM for group 1 are much more dense than
group 2, whereas the group 2 students’ behavior are much
scattered, and they have spent more time in analyzing the
question and were quite easy to get distracted by the game
in Minecraft.

Groups

* Gouwpl

Coding Categories

Class Period

Figure 2. Time-series analysis of programming procedure

4, CONCLUSION AND IMPLICATION

In this study, Minecraft, a creative sandbox game platform,
was used as learning environment to teach programming.
The experimental data showed that the students’ creativity
and emotion toward programming were significantly
improved after the intervention, revealing the benefits of the
proposed approach. In addition to that, students’ behaviors
(UTP, CIP, DIM, CIM and DBM) were detected through
click stream analysis.

Beside, this study contributes to providing new empirical
evidence for the valuableness of enhancing creativity in
programming education. Besides, researchers mentioned

that positive emotion could influence students’ intrinsic
motivation, such students tend to be more creative and
competitive (Deci et al., 2017), and this study also shed light
on the dynamic connection between emotion and
programming learning, and find a positive impact on how
students’ perceive programming knowledge.

On top of that, different behavior patterns were found
between two contrasting groups, with one group worked
peacefully and the other were having conflict. Except for
partners’ skill and personalities which are most emphasized
in previous research (Hung & Young, 2017), this study also
revealed that partners’ emotion towards the task will
influence each other, which will results in mutual success or
cruel failure.
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ABSTRACT

Initiatives are being implemented around the world to
support youth with developing digital literacy skills and
computational thinking. Many of these initiatives aim to
close gender gaps in the area of science, technology,
engineering and math (STEM). In Canada, CanCode is a
federal initiative that provides funds for non-profit
organizations to support K-12 teachers and their students
with developing computational thinking and digital skills.
Through the CanCode funding, organizations aim to
increase representation of girls in high school computer
science classes and post-secondary programs. There are
many common approaches that are implemented by
organizations including setting-up coding clubs, supporting
teachers in K-8, adjusting high school STEM and computer
science courses and organizing coding and robotics
competitions. Literature suggests best practices and
recommendations for such approaches in order to close the
gender gap in computer science education. Initiatives such
as CanCode are a starting point to ensure all young people,
including girls, have the skills to be active contributors to the
digital age.

KEYWORDS
computational thinking, computer science, K-12 education,
gender gap, coding

1. INTRODUCTION

Initiatives around the world are being implemented to
support students with developing computational thinking as
it is “increasingly important that people have an
understanding of the algorithmic, computational nature of
problem-solving involving digital technology” (UNESCO,
2018, p. 26). One such initiative in Canada is CanCode,
through which many non-profit organizations have received
funding to “support opportunities for Canadian students
(kindergarten to grade 12) to learn digital skills including
coding, data analytics, and digital content development”
(Government of Canada, 2019). CanCode was first launched
in September, 2017, providing $50 million in funding and
reached over 1.3 million students as well as 61,000 teachers
across Canada (Government of Canada, 2019). It has since
been extended with an additional $60 million over the next
two years aiming to advance “an agenda to build Canada as
a world-leading innovation economy that will create good
jobs and grow the middle class” (Government of Canada,
2019).

As part of the assessment criteria to receive funding,
organizations must have “demonstrated an ability to reach
traditionally underrepresented groups including girls,
Indigenous youth, and/or youth with disabilities”
(Government of Canada, 2019). Common approaches used
by the nonprofit organizations funded by CanCode to narrow
the gender gap in the areas of computer science and STEM,

as well as relevant research and recommendations are
described in this paper.

2. THE GENDER GAP AND FUNDED
INITATIVES

The Canadian government “recognizes the critical role that
gender equality has in building a strong economy that works
for everyone” (Government of Canada, 2018, p. 218).
Diversity is important for a nation as it is known to help
drive innovation, and results in more effective problem
solving (Foster, 2019; Kafai & Burke, 2014; Margolis &
Fisher, 2002). The Canadian government has made “targeted
investments, partnerships, and innovation and advocacy
efforts that have the greatest potential to close gender gaps
and improve everyone’s chance for success” (Government
of Canada, 2018, p. 243). Although many interventions and
actions are being taken by organizations with the CanCode
funding to close the gender gap, “no single action can be
recognized as a perfect solution” (Council of Canadian
Academics, 2015, p. 122).

2.1. Coding Clubs

Many of the organizations that have received funding will
be supporting teachers with starting and maintaining after
school coding clubs (Government of Canada, 2019). Clubs
tend to be flexible, allowing for youth to focus on their
interests and also encouraging collaboration beyond the
classroom walls, creating agency (Kafai & Burke, 2014).
Kafai and Burke (2014) acknowledge however, that true
“computational participation cannot be achieved if only a
select few join the clubhouse” (p. 133). While there are
equity issues associated with clubs that are held beyond the
school day, those who lead such clubs can attempt to develop
“more inclusive out-0f-school science learning practices”
(Dawson, 2017, p. 544). ldeally, teachers will begin to
incorporate coding into their classroom, so that “what
happens inside and outside classrooms becomes more fluid”
(Kafai & Burke, 2014, p. 133).

2.2. Developing Digital Skills in High School

The CanCode initiative is meant to also support
improvement of high school courses related to digital
literacy and to increase the number of girls enrolled in
computer science and STEM programs. Kafai and Burke
(2014), Foster (2019), Margolis, Fisher and Miller (1999),
and Master, Cheryan and Meltzoff (2016) recommend that
new directions for designing activities as well as the tools
used in K-12 educational computing efforts, are required in
order to broaden not only participation, but also perceptions.
Most often, curriculum is misleadingly and unnecessarily
highly technical — when it should really be shown to be
relevant to many aspects of the world (Margolis et al., 1999).
Intentionally changing high school classrooms can create a
greater sense of belonging for girls and possibly reduce the
gender disparities observed in STEM courses (Master et al.,
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2016). Incorporating mentor and peer support programs in
high schools has also been shown to encourage girls to stay
in computer science courses (Council of Canadian
Academics, 2015). This is worth investing in, as there have
been “positive signs that learning computer science in high
school is correlated with a greater likelihood” of girls to
pursue “computer science in postsecondary study” (K-12
Computer Science Framework, 2016, p. 25).

2.3. Early Exposure — Supporting Teachers in K-8
Grades K through 8 provide an opportunity to expose
everyone to computer science, which is seen as “critical to
reducing current gender disparities” (Master et al., 2016, p.
424), as it might prompt girls to consider computer science
courses at the high school and post-secondary levels.
Interventions starting as early as the primary grades engage
girls early, teaching about the many applications of
computer science, and providing hands-on activities which
might help to reduce the gender gap (Council of Canadian
Academics, 2015). While robotics kits are popular and
commonly used by funded organizations, Kafai and Burke
(2014) recommend that a variety of digital designs,
animations and stories that incorporate different materials
and contexts should also be shared with students.

In planning their activities for the youngest learners,
organizations should consider not just how to spark the
interest of girls in computer science, but also why they are
not interested in the first place (Gaymes San Vicente, 2014).
Some advocates argue that by designing computer science
activities that might better fit into girls’ interests, existing
stereotypes are being reinforced, but as Kafai and Burke
(2014) counterargue, “these tensions are productive because
they open up conversations and question fairly narrow
perceptions about computation” (p. 101). Master et al.
(2016) share in their study that girls’ lower sense of
belonging “could be traced to lower feelings of fit with
computer science stereotypes” (p. 424). Incorporating
computer science and STEM into K through 8 classes
through creative and less technical means, could help to shift
the gender disparity that is currently seen in high school
computer science classes and beyond.

2.4. Coding and Robotic Competitions and Hackathons
In many cases, hackathons and coding and robotic
competitions have been used by the funded organizations to
draw youth interest in computer science. Traditionally, such
competitions have been established as part of “creative
computing and engineering cultures in K-12 schools” (Kafai
& Burke, 2014, p. 95), but they have not reached everyone.
In fact, such competitions are expensive, tend to draw mostly
boys, and do not seem to increase participation much
amongst girls and minorities (Kafai & Burke, 2014). There
are many other ways to broaden participation, including
collaborative experiences, sharing circles and culturally
responsive making opportunities (Kafai & Burke, 2014, p.
102).

3. CONCLUSION
The approaches and related research outlined in this paper
indicate that initiatives such as CanCode can provide hope

for narrowing the gender gap observed in the area of
computer science and STEM. The non-profit organizations
involved with CanCode seem to be incorporating many
research-based practices outlined in literature and additional
recommendations have been highlighted. The CanCode
program offers a starting point to ensure that all young
people, including girls, have the opportunity to contribute to
the digital age by becoming authors and creators, rather than
solely consumers of technology.
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ABSTRACT

With networks being an omnipresent part of children’s lives,
questions about safe communication in these networks
emerge. While the concept of symmetric encryption can be
taught in simple and gamified ways, asymmetric encryption
as the key idea of secure communication in distributed
networks is hard to understand for children and existing
approaches to simplify the idea still have their flaws. This
paper presents a virtual reality designed around a medieval
love story where letters are encrypted, decrypted, and signed
by using magic potions that are either public or private. A
study with 78 students revealed that the key factors for
learning in this virtual environment were presence,
emotions, and previous knowledge while neither the effect
of the used technology nor the effect of the students’
motivation on their learning outcomes were significant.

KEYWORDS
virtual reality, computer science unplugged, cryptography,
immersive learning

1. INTRODUCTION

Secure transmission of information is a relevant topic for
modern communication: Since the rise of the internet in the
1970s, distributed networks consisting of numerous parties
communicating with each other had to tackle the challenge
of encryption and decryption to ensure the privacy of the
participants in the network. A key idea that emerged with the
rise of distributed communication networks characterized by
participants that never met before is the asymmetric
encryption/decryption. Public and private key algorithms
(e.g. Diffie-Hellman key exchange, see Diffie and Hellman
1976 or RSA encryption/decryption, see Rivest, Shamir, and
Adleman 1978) pose the main idea how distant parties can
communicate securely without any prior contact even if a
third party, the man in the middle, intercepts the (encrypted)
messages in the network.

With questions on privacy and communication in their
digital environment, teaching some of these concepts can
help children to achieve a better understanding of their
digital everyday surroundings. The basic idea of encryption
and decryption can be explained easily, e.g. showing the
Caesar encryption/decryption method as an idea of
symmetric encryption. In further discussions, the children
can talk about the problem that participants need a safe way
of exchanging keys before starting the encrypted
communication and explore possibilities to do this. In this
paper, we explore the possibility of visualizing the idea of
asymmetric encryption in a metaphorical way using a virtual
reality game about a medieval love story and analyze what
factors contribute to the students’ learning outcomes.

2. METAPHORS FOR PUBLIC-PRIVATE

KEY ENCRYPTION/DECRYPTION
While the mathematical concept of one-way functions that
underlies the idea of asymmetric encryption can be quite
abstract to explain for children, various metaphorical
approaches have been developed to teach this concept.
Explanatory ideas include the use of locks and keys (UC
Computer Science Education 2008), the mixture of colors
(Art of the Problem 2012), as well as boxes which can be
locked and unlocked in two different ways (Fekete and Morr
2018) to explain the underlying concept to students.

The original Computer Science Unplugged activity (UC
Computer Science Education 2008) uses a box to send a
chocolate bar through a network with a man in the middle.
A student is given a box that contains a bar of chocolate (as
a metaphor for the message that somebody else wants to
read). The box has to be sent to another participant in the
network (a simple queue of students, one of them being a
man in the middle). The students explore ideas of how the
box can be locked so that the target person can open the lock
while the man-in-the-middle cannot. The students have to
deal with the challenge that the key has to remain private and
cannot be sent through the network. In this scenario, a
solution can be to send the locked box to the target person,
the target person adds her own lock to box (so that the box
is now locked twice) and sends the box back to the sender.
The sender unlocks his/her own lock and sends the box back
again so that the target person, once receiving the box, can
unlock his/her own lock and get the chocolate. While the
underlying idea of the Computer Science Unplugged activity
engages students to think about the problem in a
metaphorical and fun way without having to understand the
underlying mathematical functions behind the key and the
lock, the metaphor fails to explain both signing and
encrypting. The metaphor also struggles with the physical
characteristics of a key (that it can not lock something by
itself as it would be needed for signing a message) and those
of a lock (that, usually, one would not distribute locks).

Another idea tries to mix colors (Art of the Problem 2012)
in order to simulate a secure key exchange: First, each
participant has a secret color. Two students, A and B, who
want to start an encrypted conversation agree publicly on a
color and add their own private colors to it. They exchange
the new colors (one with A’s private color and one with B’s
private color) are exchanged publicly. After receiving the
mixed color, again, A and B each add their own private color
to it. The received color represents the secret key for their
communication. Doing so, the parties exchanged a secret
color without ever meeting each other in person. The
mixture of colors is a good idea for introducing a key
exchange (like the Diffie-Hellman key exchange) as it
explains the idea of a one-way-function in a simple and
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engaging way but its applications for really encrypting and
decrypting messages are limited. Further, the realization
often fails in reality as the amount of color has to be
measured exactly for the activity to work.

IDEA provides IKEA-like manuals for concepts related to
Computational Thinking. In their manual for public-private
key encryption/decryption (Fekete and Morr 2018), they
present a box that can be locked in two directions as a
metaphor for the key pair used in a public-private-
communication. If the box is locked in one direction with the
public key, it can only be unlocked by using the private key.
If it is locked using the private key, it can only be unlocked
in the other direction with the public key, as both keys only
turn the lock in one direction. The metaphor is very close to
the actual principle of a secure communication involving
public-private-key encryption/decryption and is also capable
of explaining the idea of signing a message. But its practical
application is limited as it is difficult to actually build a box
like this for activities where the students can explore the
possibilities of encrypting and decrypting messages.

While there are some approaches of visualizing networks
and communication in networks in non-immersive virtual
environments (Voss et al. 2013; Sturgeon, Allison, and
Miller 2009) and basic concepts of IT security in immersive
virtual realities (Puttawong, Visoottiviseth, and Haga 2017),
none of them focus on the idea of asymmetric encryption.
As shown before, metaphors can contribute to students’
understanding but have often some constraints or flaws for
carrying out the metaphors in real activities/tasks for
students. Virtual reality technology can provide a useful tool
to get rid of the constraints of the actual reality (Bricken
1990) in order to create engaging learning environments.

3. THE DESIGN OF FLUXI’S CRYPTIC

POTIONS

The approach for our immersive EVE Fluxi’s Cryptic
Potions, which was developed using Unity, combines the
original Computer Science Unplugged activity, where the
students communicate in an unknown network and send
each other messages (or chocolate bars) with the mixing
colors idea. Our medieval setting takes the player into a
castle chamber where he/she encounters Fluxi, a carrier
dragon, who delivers messages to and from the student. The
player receives a letter from a friend, Nikolay, who asks the
player if he/she will be at Sir Dance-A-Lot’s (the
metaphorical man-in-the-middle) party this evening. Fluxi
asks the player to reply to Nikolay by telling him that he/she
wants to attend but has not received an invitation yet. Fluxi
brings the letter to the post office (simulating the network
structure) and returns with an encrypted response. Fluxi
explains that the post office provides each participant of the
network with two cryptic potions: a private and a public
potion. While all potions cipher messages, the encryption
can only be reversed by using the corresponding other
potion. The public potion of each participant is stored
publicly in the post office and everyone can get a copy of it.
In contrast, the recipe of the private potion is secret and only
known by the user. After explaining the benefits of this
asymmetric encryption process, he instructs the user to
decrypt Nikolay’s message by using his/her private potion.

Figure 4. Fluxi's Cryptic Potions

Nikolay informs the player that Princess lIsolde, Prince
Charming, and Fluxi’s aunt Gertrude will be at the party as
well. He notes that the player always wanted to dance with
one of them and that he/she should write a letter to the person
of interest. But Nikolay also warns the player that Sir Dance-
A-Lot wants to dance with all of them which is why the
communication should be kept secret and, therefore, all
messages should be encrypted. The player writes a new,
encrypted letter to Nikolay (with Nikolay’s public potion)
and agrees that it would be a good idea to encrypt the
messages. After delivering this letter to the post office, Fluxi
returns with the invitation of Sir Dance-A-Lot. The
invitation seems to be ciphered as well, and Fluxi explains
that Sir Dance-A-Lot signed the invitation so that everyone
knows that the message must be from him. After reasoning
why this process is secure (in terms of authentification), the
player adds Sir Dance-A-Lot’s public potion to the letter in
order to decipher it. The player writes a message saying that
he/she will attend the party and signs the letter with his own
private potion. After delivering the letter, Fluxi asks the
player who it is he/she wants to dance with. As the dialogues
and letters are quite similar and the tasks stay the same, we
will present the scenario for a player who chose Prince
Charming. The player writes a message to Prince Charming
asking him for a dance. Fluxi gets the prince’s public potion
from the post office and explains that this potion can encrypt
letters for Prince Charming and decipher signed letters from
him as well. The player encrypts the message with Prince
Charming’s public potion (to avoid Sir Dance-A-Lot reading
it) and gives the letter to Fluxi. After returning from the post
office, Fluxi gives the player a signed response from Prince
Charming: He does not believe the player’s authenticity as
the player encrypted the message for Prince Charming, but
did not sign it. Hence, the player has to rewrite his/her letter,
encrypt it with Prince Charming’s public potion and sign it
with his/her own private potion. After resending the letter,
Fluxi returns with a signed and encrypted reply from Prince
Charming, telling the player that the prince waited an
eternity for this question and would be glad to dance with
him/her.

The controls in Fluxi’s Cryptic Potions were gaze-based via
point-and-click. The player could pick up potions and letters,
write new messages, and talk to the dragon. The player could
not move or teleport, resulting in him/her staying in the same
room all the time. In all technological settings, the player sat
on a chair, simulating the same position as in the EVE.
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Figure 2. The Educational Framework for immersive Learning (EFiL) by Dengel and Mé&gdefrau, 2018

4. LEARNING IN IMMERSIVE

ENVIRONMENTS

Necessary to consider the factors influencing learning
outcomes, especially when teaching and learning with
immersive technology like virtual reality, e.g. immersion as
a quantifiable description of technology (Slater et al. 1999)
and presence as the feeling of ’being there’ (e.g. Biocca
1997). Dalgarno and Lee (2010) identify representational
fidelity (the display of the environment, the display of view
changes and object motion, the object behavior, the
representation of the user, the provided spatial audio, and the
kinesthetic and force feedback) and the learner interaction
(embodied actions, embodied verbal and non-verbal
communication, control of environment attributes and
behavior, and construction/scripting of objects and
behaviors) as affordances of 3D learning environments.
These characteristics of EVES can induce the construction of
identity, a sense of presence, and co-presence inside of the
user. These user characteristics, in turn, affect the learning
benefits (spatial knowledge representation, experiential
learning, engagement, contextual learning, and collaborative
learning) through the afforded learning tasks provided by 3D
EVESs. By combining Dalgarno and Lee’s framework with
the idea of presence being a person-specific, unique
characteristic of EVEs (for a discussion about this, see
Mikropoulos 2006), Dengel and Maégdefrau (2018)
introduce the Educational Framework for Immersive
Learning (EFiL, Fig. 2). The EFiL localizes the factors
immersion and presence in the educational supply-use-
framework for the explanation of scholastic learning
presented by Helmke (2014) and provides a solid basis for
explaining learning outcomes in immersive and non-
immersive EVEs: According to the EFiL, learning activities
in EVEs "are determined through the (immersive) learning
potential [including motivation, cognitive factors, and the
emotional state of the learner], the context of the

learner, the perception of the didactical, immersive and
content quality of the instructional materials at a certain
level of presence and the interpretation of these materials.
The factors influencing immersive learning are related
among each other and (especially in scholastic
environments) affected by the family and the teacher of the
learner” (Dengel and Maéagdefrau 2018, p. 614). Dengel
(2020) notes that the EFiL can be used as a framework for
explaining learning in EVEs in general, but, in order to
understand the relations between the factors, one has to
consider already established research from the educational
sciences and psychological research.

The potential of immersive media has been acknowledged
for the use in Computer Science Education (Dengel, 2019):
By taking on the idea of Computer Science Unplugged
(introduced by Bell and Fellows, see e.g. Bell, Rosamond,
and Casey 2012), the concept of Computer Science
Replugged thinks of ways to integrate immersive technology
to enhance existing Computer Science Education activities
and to generate new activities in virtual environments while
preserving most of the key characteristics of an Unplugged
activity (kinaesthetic, fun and engaging with a sense of story
to the activities, see Bell et al. 2009): "By using immersive
technology, the induced feeling of presence can provide a
perception of non-mediation and, therefore, a first-hand
experience" (Dengel, 2019, p. 2).

5. METHOD

By following the assumptions of the EFiL (cognitive
abilities are modeled through the previous scholastic
performance in German, which is the students first language,
and Maths) and the constraints of the factors’ relations
formulated by Dengel (2018), it is hypothesized that

(1) The level of immersion predicts the user’s level of
physical presence.

2) The user’s emotional state predicts his/her sense of
p
physical presence (a: Stronger positive emotions
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increase presence. b: Stronger negative emotions
decrease presence.).

(3) The user’s motivation predicts his/her pre-test
performance (a: Intrinsic motivation increases pre-
test performance b: Extrinsic motivation decreases
pre-test performance.)

(4) A higher sense of presence predicts a higher post-
test performance.

(5) A better result in the student’s pre-test predicts a
better post-test performance.

(6) The user’s cognitive abilities predict his/her post-
test performance (a: A higher previous scholastic
performance in German increases post-test
performance. b: A higher previous scholastic
performance in Maths increases post-test
performance.).

As noted in section 4, the factors marked as independent
variables here are related to each other. For the path analysis
approach presented in this study, the relations suggested by
popular theories like the Expectancy-Value-Theory (Ryan
and Deci 2000), the Control-Value-Theory (Pekrun 2000),
and meta-studies like Hattie (2008) were considered for
formulating the research model.

5.1. Sample and Procedure

78 students (36 female, 4 missing values) between the age
of 13 and 16 from different classes of an Austrian school
took part in the study. Asymmetric encryption was not part
of their computer science classes before. Their performances
in the subjects Maths (M = 2.51, SD = .91) and German (M
=2.42, SD =.92), which could be reported anonymously by
the students on their parents’ notice, were average (with 1
being the highest and 6 the lowest grade).

A week after completing the pre-test and the motivation
questionnaire, the students took part in the experiment in
groups of four to six which were assigned to different
technology settings. This study was part of a bigger study,
providing three EVEs in total. First, they filled out an
emotional state questionnaire and then waited until the next
VR experience was available. Each student was provided
with another technology for each EVE. After completing
each VR experience, they filled out the corresponding
presence questionnaire and post-test.

5.2. Instruments

An adapted version of the Slater-Usoh-Steed presence
questionnaire (Slater, Usoh, and Steed 1994) was used
where the mean score was calculated out of six questions on
a seven-point Likert scale (M = 4.14, SD = 1.56, o = .91).
Further, an emotional state questionnaire of Titz (2001) was
used, assessing academic emotions on a 6-point Likert scale
(positive emotions: M = 2.91, SD = .98, a = .73; negative
emotions excluding fear: M = .69, SD = .68, o = .68). The
context motivation questionnaire assessed intrinsic
motivation (M = 3.10, SD = 1.02, a = .85), identified
motivation (M = 3.34, SD = .97, a = .79), introjected
motivation (M = 2.39, SD = 1.07, a = .76), and extrinsic
motivation (M = 2.70, SD = 1.02, o = .65) for learning in the
subject Computer Science (original version by Hanfstingl
(Hanfstingl et al. 2010), adapted and evaluated for the

subject Computer Science by Dengel, 2020) on a 5-point
Likert scale. For the path analysis, only intrinsic motivation
and extrinsic motivation were analyzed as they tended to
show the greatest difference in motivation for learning
computer science between the students. The pre- and post-
tests were the same and assessed the students’ understanding
skills: The first task and the second task asked the students
to explain why a specific key was used in order to
sign/encrypt a message, resulting in a performance test of
four points total. The students scored better in the post-test
(M =1.83,SD =1.20, a =.68) than in the pre-test (M = 1.32,
SD = 1.16; the pre-tests scale reliability was not calculated
as the tasks were supposed to be new to the students). A third
task where the student had to insert the correct keys into
blanks was removed due to a reduction of the overall scale
reliability of the post-test. The Fluxi’s Cryptic Potions EVE
was presented with three different technologies: a laptop, a
mobile VR (using a Moto Z smartphone and a Daydream
View headset), and an HTC Vive.

5.3. Results

While there were no outliers in the sample’s results, the
results of the post-test, the pre-test, the extrinsic motivation
scale, the negative emotions scale, and the scholastic
performances in German and Maths were not equally
distributed (Shipiro-Wilk method, p < .05). Non-parametric
analysis was used where it was applicable.

An ANOVA could show significant differences (F = 22.68,
p < .0005) between the induced levels of presence for the
different technologies (laptop: M = 3.11, SD = 1.23; Mobile
VR: M =4.07, SD = 1.54; HTC Vive: M = 5.40, SD = .93).
A Gabriel (used because of slightly varying group sizes)
post-hoc test could show that presence in the laptop setting
at a significance level of p < .05 from the Mobile VR setting
and at a significance level of p <.0005 from the HTC Vive
level. The level of presence was significantly different from
the Mobile VR level as well (p < .01). A multiple linear
regression model including immersion, positive emotions,
and negative emotions as predictors of presence was
calculated, but only immersion was included as the only
predictor of presence with g = .63, p <.0005) A predictive
effect of positive emotions and negative emotions on
presence was not significant (this relation will be explored
further in the path analysis).

To predict the pre-test performance, another multiple linear
regression model [corrected R% = .06, F (2, 70) = 3.27, p <
.05] was calculated, including intrinsic motivation (p = .12,
p > .05) and extrinsic motivation ( = -.23, p > .05).

The students’ post-test performance could be predicted
[corrected R? = .26, F (4, 59) = 6.59, p < .0005] by the factors
presence (B = .24, p <.05), pre-test performance ( = .50, p
<.0005), the previous scholastic performance in German (j
= .29, p < .05) and the previous scholastic performance in
German (B =-.27, p < .05).

As noted in section 4, the factors that predict learning
achievement are related to each other. Therefore, a path
analysis was calculated, integrating suggested relations
within and between the different theoretical constructs.

44



R*= .10

478

R* = .34

PerlPre

R* = .04

PerlPost

Y

R = .10

Maotlnt Genman

4O

Y

EmoPo

{\l"'

MotExt Maths

R*=.03

EmoNe Imm

4

R* = .06
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The path analysis showed good fit indices (Chi? p = .30,
RMSEA = .041, CFI = .968, TLI = .946, SRMR = .073).
Figure 3 shows the correlations between and predictive
effects of the different factors. Intrinsic motivation and
extrinsic motivation are correlated negatively; scholastic
performances in German and in Maths are correlated
positively; positive and negative emotions are correlated
negatively. A higher scholastic performance in German
predicts lower positive emotions; a higher scholastic
performance in Maths predicts higher positive emotions; a
higher scholastic performance in German predicts higher
negative emotions (these effects are inverse in the path
analysis due to the fact that the best scholastic performance
is grade 1, the worst is grade 6). A higher level of immersion
predicts a higher level of presence. Presence, pre-test
performance, as well as scholastic performances in German
and Maths predict the post-test performance.

5.4. Discussion

Regarding the hypotheses, H1, The level of immersion
predicts the user’s level of physical presence, can be
maintained as the ANOVA and the post-hoc tests show
significant differences. H2, The user’s emotional state
predicts his/her sense of physical presence (a: Stronger
positive emotions increase presence. b: Stronger negative
emotions decrease presence.) could not be verified as
emotions were not identified as predictors of presence.
Regarding H3, The user’s motivation predicts his/her pre-
test performance (a: Intrinsic motivation increases pre-test
performance b: Extrinsic motivation decreases pre-test
performance.), the sample was too small to find significant
effects, this hypothesis has to be investigated further. H4
assumed that A higher sense of presence predicts a higher
post-test performance. The effect of presence on post-test
performance was found to be significant.

Therefore, presence poses an important predictor of learning
outcomes for the presented EVE. H5, A better result in the
student’s pre-test predicts a better post-test performance,
could be verified as well in this study and can be maintained.
For H6, the user’s cognitive abilities predict his/her post-test
performance (a: A higher previous scholastic performance
in German increases post-test performance.

b: A higher previous scholastic performance in Maths
increases post-test performance.), both subhypotheses can
be maintained as the study showed significant effects of the
previous scholastic performance on the post-test learning
outcomes.

Even though some of the results are not significant (as
assumed, due to the small sample size), the general idea of
the EFiL, which was used for the selection of the hypotheses,
was found to be true: Presence is an important predictor of
learning outcomes and is influence by immersion. Even
though the learning outcomes are influenced by many
factors, the level of immersion is not one of them.

6. CONCLUSIONS

Teaching the basic idea of asymmetric encryption using VR
technology has the opportunity that it is possible to realize
metaphors and analogies that are impossible to carry out in
the physical reality. Still, using metaphors for explaining
general ideas is tricky: It is the role of the teacher to explain
the metaphor/analogy before or after the activity.
Furthermore, if the teacher uses the EVE as an introduction
to asymmetric cryptography in advanced classes, dealing
with  computational complexity and mathematical
background becomes crucial as well. Doing so, VR
experiences should be seen as an addition to existing
teaching methods, not as substitutes. They have to be
included at the right point in the learning process in order to
show their potential. While the VR activity was effective in
terms of learning outcomes, it is, by now, not possible to
conclude that using the VR environment has benefits over
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real activities. In addition, the EVEs can be enhanced in
multiple ways: Providing possibilities to interact with other
students, for example to send each other secret messages or
to intercept other students’ messages and try to decrypt them
would make the EVE more fun and motivating while adding
more interaction possibilities. That said, using VR in
cryptography education has its merits, but also poses
challenges for the teacher. Future studies could focus on
exploring the benefits and challenges of using this
metaphorical VR representation in comparison to real
activities or traditional learning approaches. Having this in
mind, it would also be interesting to explore, what other
topics in CS education can benefit from the use of immersive
technology in the classroom and how immersive technology,
in general, can enhance learning.

7. REFERENCES

Art of the Problem. (2012). Public key cryptography -
diffiehellman key ex-change (full version). Retrieved May
27, 2019, from https://www.youtube.com/watch?
v=YEBfamvdo

Bell, T., Alexander, J., Freeman, 1., & Grimley, M. (2009).
Computer Science Unplugged: School Students Doing
Real Computing Without Computers. The New Zealand
Journal of Applied Computing and Information
Technology, 13(1), 20-29.

Bell, T., Rosamond, F., & Casey, N. (2012). Computer
Science Unplugged and related Projects in Math and
Computer Science Popularization. In M. R. Fellows H. L.
Bodlaender (Eds.), The Multivariate Algorithmic
Revolution and Beyond, 398-456.

Biocca, F. (1997). The Cyborg’s Dilemma: Progressive
Embodiment in Virtual Environments. Journal of
Computer-Mediated Communication, 3(2), JCM324.

Bricken, W. (1990). Learning in Virtual Reality. Seattle.

Dalgarno, B., & Lee, M. J. W. (2010). What are the Learning
Aordances of 3-D Virtual Environments? British Journal
of Educational Technology, 41(1), 10-32.

Dengel, A. (2019). Computer Science Replugged: What Is
the Use of Virtual Reality in Computer Science Education?
Proceedings of the 14th Workshop in Primary and
Secondary  Computing  Education  (WiPSCE’19).
Association for Computing Machinery, New York, NY,
USA, Article 21, 1-3.

Dengel, A., & Magdefrau, J. (2018). Immersive Learning
Explored: Subjective and Objective Factors Influencing
Learning Outcomes in Immersive Educational Virtual
Environments. Proceedings of 2018 IEEE International
Conference on Teaching, Assessment, and Learning for
Engineering (TALE). IEEE, 608-615.

Diffie, W., & Hellman, M. (1976). New Directions in
Cryptography. IEEE Transactions on Information Theory,
22(6), 644-654.

Fekete, S. P., Morr, S. (2018). Public key krypto. Retrieved
May 27 2019, from https://idea-instructions.com/public-
key

Hanfstingl, B., Almut, T., Andreitz, 1., & Miiller, F.H.
(2010). Evaluationsbericht Schiiler-und Lehrerbefragung
2008/09. Interner Arbeitsbericht. Klagenfurt, Institut fir
Unterrichts-und Schulentwicklung.

Hattie, J. A. (2008). Visible Learning: A Synthesis of over
800 Meta-analyses Relating to Achievement. Routledge.

Helmke, A (2014).
Lehrerprofessionalitdt:
Verbesserung des Unterrichts.
Kallmeyer.

Mikropoulos, T. A. (2006). Presence: A Unique Charac-
teristic in Educational Virtual Environments. Virtual
Reality, 10(3-4), 197-206.

Pekrun, R. (2000). A Social-cognitive, Control-value theory
of Achievement Emotions. Motivational Psychology of
Human Development: Developing Motivation and
Motivating Development. Advances in Psychology, 131,
143-163.

Puttawong, N., Visoottiviseth, V., & Haga, J. (2017).
Vrfiwall Virtual Reality Edutainment for Firewall Security
Concepts. Proceedings of 2017 2nd International
Conference on Information Technology (INCIT). IEEE, 1-
6.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method
for Obtaining Digital Signatures and Public-key
Cryptosystems. Communications of the ACM, 21(2), 120-
126.

Ryan, R., & Deci, E. (2000). Self-determination Theory and
the Facilitation of Intrinsic Motivation, Social
Development, and Well-being. American Psychologist,
55(1), 68.

Slater, M., Linakis, V. Usoh, M., & Kooper, R. (1999).
Immersion, Presence, and Performance in Virtual
Environments: An Experiment with Tri-Dimensional
Chess. Proceedings of the ACM Symposium on Virtual
Reality Software and Technology. ACM, 163-172.

Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence
in Virtual Environments. Presence: Teleoperators and
Virtual Environments, 3(2), 130-144.

Sturgeon, T., Allison, C., & Miller, A. (2009). Exploring
802.11: Real Learning in a Virtual World. Proceedings of
Frontiers in Education Conference. IEEE, 1-6.

Titz, W. (2001). Emotionen von Studierenden in
Lernsituationen: Explorative Analysen und Entwicklung
von Selbstberichtskalen-Anhang.

UC Computer Science Education. (2008). Computer science
unplugged - the show. Retrieved May 27, 2019, from
https://www.youtube.com/watch?v=
VpDDPWVN5Q&t=10s

Voss, G.B., Nunes, F.B., Muhlbeier, A.R., & Medina, R.D.
(2013). Context-aware Virtual Laboratory for Teaching
Computer Networks: a proposal in the 3d opensim
environment. XV Symposium on Virtual and Augmented
Reality, 252—-255.

Unterrichtsqualitct und
Diagnose, Evaluation und
Seelze-Velber: Kilett

46


https://www.youtube.com/watch?%20v=YEBfamvdo
https://www.youtube.com/watch?%20v=YEBfamvdo
https://idea-instructions.com/public-key
https://idea-instructions.com/public-key
https://www.youtube.com/watch?v=%20VpDDPWVn5Q&t=10s
https://www.youtube.com/watch?v=%20VpDDPWVn5Q&t=10s

Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,
M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.
Hong Kong: The Education University of Hong Kong.

Comparison of the Learning Behaviors of the Third Grader Students Integrating
Robots and the Computational Thinking Board Game in Singapore and Taiwan

Yi-Sian LIANG?, Ting-chia HSU?"
National Taiwan Normal University, Taiwan
mianmian0202@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT

The purpose of this study is to explore the use of educational robots and computing thinking board games by primary and
middle school students in different countries, and to explore whether there are differences in learning behaviors during the
learning process. It was found that the primary school students in Singapore had the highest number of behaviors in irrelevant
courses, and the same textbook content was applied to the primary three in Taiwan. It can be seen that Taiwanese students
tend to spend time talking with competitors. This phenomenon can increase students' oral communication and enhance their
learning fun during the discussion. Singaporean students rank first in behaviors that are not related to the course. It is
speculated that the content of the textbooks may be too difficult, which may lead to restrictions on communication. This study

suggests that textbooks can be moved to other grades in Singapore in the future to help Singaporean students improve the
same learning effectiveness as Taiwanese students.
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ABSTRACT

In the field of education, there has been recent attention and
call for transdisciplinary approaches related to learning
mathematics and programming in schools. Despite the
advent of theory and tools for such an approach, there is still
a lack of a common ground and implicitness in the
understanding of what exactly this would entail amongst
teachers and curriculum designers. In this paper, we present
a theoretical discussion in the light of our ongoing efforts to
develop a more elaborated and precise language
representing educational and epistemological values for
integrating mathematics and programming. Accordingly, we
provide an overview of our previous research efforts in this
field followed by an elaborated example describing our
approach. We conclude with a discussion addressing the
pedagogical potential of our proposed ideas compared to the
previous ones.

KEYWORDS
constructionism, subject matter integration, computational
thinking, mathematics, programming

1. INTRODUCTION AND RATIONALE
The value of interdisciplinarity is a recurrent issue in
educational settings and often at the core of the rationale for
designing and implementing innovation in schools. The
fields of Science, Technology, Engineering and
Mathematics (STEM) for instance have been a subject for
the application of integrative approaches to teach these
different areas. Spite of these efforts, there have been many
diverse understandings and views on the nature of STEM
and on how to put together an educational activity where
students generate joint meanings from two distinct domains
while engaged in an interesting relevant activity. A number
of underlying questions regarding the perception, the scope
and the implementation of interdisciplinary educational
activities remain implicit. For instance, is it more valuable
to forge two - way connections between STEM disciplines
at first? Is there a sense of thinking of one discipline as the
field of application of another? Is there a sense in perceiving
of one discipline serving the learning of another in an
activity where both co-exist? For instance, what value does
the practice of de-composing problems into simpler ones
have in mathematics and in programming?

In this paper, we look closely at one example of such an
interdisciplinary ~ approach  regarding  mathematics,
programming and computational thinking (CT). How can a
mathematics teacher integrate a programming activity in
their attempt to engage students in mathematical meaning
making? Conversely, how can a computer science teacher
can help students to write algorithms and programs

employing the necessary mathematics concepts to do so?
How can one discipline serve the understanding of the other
and how can we design activities where students develop
meanings jointly for concepts lying on both domains? To
address some of these issues we review interdisciplinary
approaches to learning mathematics and programming while
trying to develop a more articulated view to think about the
challenge of integrating them. Accordingly, we decompose
the problem in three more focused ways of thinking about it,
i.e. on how to design activities where one domain serves the
other and vice versa and on how to think of the joint learning
of these two domains. We use a special case for each of these
sub-problems to analyze the different issues involved. Our
proposed approach can be employed by teachers to design
and think of activities integrating the two subjects in uni-
disciplinary or interdisciplinary settings.

2. PROGRAMMING AT THE SERVICE
OF MATHEMATICAL MEANING
MAKING

It has been a long time now since a connection was made
between learning to program and learning mathematics. This
connection was firstly elaborated as early as in the 1960's by
Seymour Papert as a theory of learning mathematics which
he called 'Constructionism’, i.e. the generation of
mathematical meaning through programming a computer
(Papert, 1980). Back then, programming was not yet
perceived to have some value as a learning subject in general
education. Indeed, Papert saw Constructionism as a
mathematical learning activity involving the construction of
and the tinkering with a digital artifact. He perceived of such
an artifact as a public entity which can be shared, changed,
discussed over. Such an artifact is thus never considered as
‘complete’ or as 'unquestionable’, it is always under reform
and improvement and it can be considered either as an object
in itself or as a building block for higher order constructions
(Kynigos, 2015). So, the initial connection between
mathematics and programming in the field of education,
rather than addressing a two-way connection, referred to the
latter servicing the former, so to speak. Papert (1980)
focused on the issue of the learning of mathematics by
writing a computer program. He and others defined the
Turtle as a means to create contours affording potentials to
employ ideas from Euclidean and Cartesian Geometries. In
addition, these affordances were proposed as absolute
position and heading commands were included (Kynigos,
1992).

3. BIG IDEAS FROM MATHEMATICS

Papert coined the term 'big ideas' in mathematics to draw
attention to some generic mathematical concepts which can
be used as tools for solving problems in Turtle Geometry and
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understanding the underlying structure of computational
objects (Papert, 2000). Some examples of big mathematical
ideas include generalization, fractions, ratio and proportions.
Some of these ideas concepts related to angles, rate of
change, periodicity. Others address class of objects defined
by their properties as well as orientation in space. In this
promising early work, programming was nevertheless
considered in the role of servicing mathematical meaning-
making. Not much attention was given to educational design
aspiring on optimized intertwinement between learning
mathematics and programming. An exception to this was
Brian Harvey who developed his Berkeley Logo and a 3-
volume book about ‘programming Logo style' where Turtle
Geometry only features as one chapter, the rest addressing
issues of LISP-like learning to program (Sinclair & Moon,
1991). For more than a decade, substantial research was
carried out with a focus on learner's mathematical meaning-
making through programming. However, even though this
resulted in the elaboration of a lot of potential yielded by
children's expressions, explanations and exchanges, it also
raised a debate as to the applicability and the effectiveness
of such activity regarding the demands made by schooling
and sustained educational institutions (Noss & Hoyles,
1996). This debate has hence remained unresolved.
Moreover, in the 90s the interest in learning to program
withered as if it had become obsolete in the wake of the
spread of multimedia interfaces and the internet in its early
form, drawing attention to individuals and collectives' use of
digital media rather than their creations with tools affording
constructionist activity.

3.1 Intertwining Applied CT with Math Challenges

Jansen et al., (2018), address the need to re-think what are
the big programming ideas in connection to CT in a way
parallel to the quest for the definition of mathematical big
ideas which began back in the 80's. They take an
epistemological point of view searching to define those big
ideas in the foundational work of Turing, i.e. related to the
process of learning to solve problems in the way computers
do. But then again, there are few efforts re-connecting the
learning of mathematics and programming. This is despite
the recent elaboration of the wider value of approaches to
STEM where technology and mathematics feature in a
transdisciplinary setting which affords such efforts.
Furthermore, in mathematics education, attention has
progressed from highlighting the value of students' learning
of mathematical concepts and ideas as an end in itself. There
is now more emphasis on the learning of mathematics to
involve the adoption of higher order mathematical
processes. That is, to develop a disposition to mathematize
their world by seeking for patterns, creating generalizations,
looking for expression economy (Noss & Hoyles, 1996). In
the same sense, with respect to programming and
computational thinking, Wing (2006) has articulated the
value of broadening the view of programming from the
learning of concepts and techniques to the adoption of
computational practices and strategies. As is well known in
the Computational Thinking Education (CTE) community
addressed the educational point of CT and programming to
involve not only computational concepts but also practices
and strategies (Jansen et al., 2018), i.e. higher-order problem

solving competences such as abstraction, decomposition and
pattern recognition.

3.2 Mathematical Problem Solving Applied by CT

In the past decade, the situation seems to have swung again
and programming has drawn new attention but in a new
guise, that of CT as a fundamental 21st century competence
for all citizens, involving concepts, practices and
dispositions regarding user constructions with digital media
(Grover & Pea, 2018). Programming is seen in this context
as a central feature of CT involving specific concepts (like
e.g. conditionals, loops, variables, recursion). In addition, it
involves strategies and practices as well as thinking
processes such as problem solving and posing, analysis and
decomposition, design, evaluation, refinement and iteration
(Wing, 2006). In its current form, programming as an
element of CT has been perceived with little connection to
mathematical learning. So, what happened to the debate as
to how programming can inspire mathematical meaning
making? And furthermore, how can this debate connect to a
broader debate about connections between mathematics and
programming from an epistemological and educational point
of view?

4. READRESSING THE PROGRAMMING

- MATHEMATICS CONNECTION

As stated earlier in this paper, we reconsider the kinds of
connections between mathematics and programming which
we feel as worth re-visiting in the wake of attention to CT as
a 21st century competence. We do this in an attempt to
highlight mathematical and programming concepts in
contexts where they have equivalent value and use and to
consider the extent to which dispositions, practices and
strategies attributed to these two domains may in fact be
thought of as mutually compatible and worth integrating.
Accordingly, we elaborate on a few examples that address
the connectivity between mathematical concepts and
thinking processes integrating with the engineering kind of
mathematics required to write a computer program. We
proceed and describe an overview of a few cases where we
focus transdisciplinary challenges concerning mathematics,
computational thinking which is later programmatically
implemented on CT implementations used for coping with
mathematical challenges from across domains. We use them
as a starting point for later addressing our current effort and
illustrate transdisciplinary approaches of applied CT in
service in service of mathematics.

4.1 Overview of our previous efforts

We elicit our current research efforts and ask the question of
what kind of mathematics is necessary in order to learn to
program (see, for instance, Sinclair and Moon,
1991). During our previous efforts, we addressed different
mathematical challenges adapted for different study levels
(Jansen et al., 2018; Kynigos, 2015). Accordingly, we
explored how these mathematical challenges could be coped
in terms of computational thinking as well as how they could
be implemented programmatically. To illustrate our efforts,
we selected two mathematical cases from across domains.
The 1%t case corresponds to students attending primary
schools coping with simple math challenges. The 2" case
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concerns high-school students coping with higher level of
math consisting of geometry challenges. For each of the
cases, students were required to analyze the math challenges
and seek for algorithmic concepts to solve them. Next, they
were presented with an applied tool to code this algorithmic
concept. The coding environment was adapted according to
students’ level of study. Thus, young students used Visual
Computer Language (VLC) as a graphical approach offering
intuitive and clear view of the proceedings according along
the computer program. The high-school students used
Python representing a more traditional coding approach
offering richer programming options which are optimized to
the math challenge they coped with. As illustrated, for both
cases, we used the same transdisciplinary approach
consisting of postulation of math challenge followed by
employment of CT to conceptualized on possible
approaches to cope with challenges. Finally, these concepts
were formulated as applied programs solving the math
challenge. In the next subsection we present the current
phase of our research while illustrating this approach in the
context of solving geometry challenges while combining
core CT concepts using MaLT2.

4.2 Programming to learn Mathematics

In this case we bring our current phase of our efforts to
further explore new ways to use and learn mathematical
ideas through programming. Consider for example the
following four ways to construct a circle with the Logo
based programming language in MaLT2.

Intrinsic Circle

;creates a polygon approximation of a circular curve using
Instrinsic Geometry only

tocirclea :a:n

repeat :n [fd :a rt 360/:n]

end

circlea 6 60

Intrinsic Circle using a Euclidean property
;creates a polygon approximation of a circular curve using
a Euclidean property for radius

to circleb :r :n

repeat:n [fd (2*pi*:r)/:n rt 360/:n]
end

circleb 50 36

Euclidean Circle
;uses the Euclidean definition of points equi-distant to the
centre

to circlec :r:n to point
repeat :n [pu fd :r pd point pu bk:r pd rt 360/:n] fd 2 bk 2
end end
circlec 100 36

Cartesian Circle
;uses a Cartesian function for each quadrant

to circle :r to upright :r :x
upright :r :r if :x=0 [stop]
upleft :r:r pu
downright :r :r setx :X
downleft :r :r sety sqrt ((:r*:r) - (:x*:x))
pu home pu pd
end fd1l
upright :r :x-1

| | end |

Each of these uses different mathematical properties coming
from distinct geometrical systems to construct the same
figure. The first one constitutes a polygon approximation of
a circle and does not employ Euclidean elements such as
center or radius nor Cartesian/Algebraic ones such as circle
functions. The second one employs a Euclidean property
relating the circumference to the diameter in order to
nevertheless construct a polygon - circle in intrinsic
Geometry - style. The third uses the equidistance to the
circle's center point Euclidean definition. The fourth
constructs four quadrants (only one is written here for space
economy) using Cartesian positioning primitives and the
circle function. A pedagogical approach engaging students
with the distinctions between these definitions and
constructions would potentially be particularly rich for the
respective mathematical meaning-making distinguishing
amongst the geometrical systems employed (Kynigos,
1992). In these cases, the students would need to be able to
use computational ideas such as structured programs,
variables, loops, not to mention recursion. But these
concepts would be just tools to focus on and consider the
mathematics in a mathematics course.

4.3 Distinguishing between approaches

In this subsection, we focus on how to distinguish between
the presented approach while emphasizing that even in the
case where we have the same programming tool and the
same problem, there can be different approaches to it, here
corresponding to the ideas described in previous sections.
We give an example of two very different solutions to the
problem of constructing a program to create a generalized
parallelogram which however can never be a square. The
problem was given by a teacher in year 8 of a mathematics
class. His students proposed the following program to
construct a generalized parallelogram as follows:

to parallelogram :a:b :c
repeat 2 [ fd :art:c fd :b rt 180-:c]
end

This procedure expresses the class of objects 'parallelogram'’
since it contains variables for the independent linear and
angular elements, expresses the property of equality by
means of a loop to repeat half the figure twice and the
angular dependency by means of a linear function between
two consecutive avatar turns. The students were asked to
solve the above problem after having constructed and
discussed this procedure. They found many solutions mostly
from the following kind:

to parallelogram :x :c
repeat 2 [forward :x right :c forward :x+20 right 180-:c]
end

In this solution, the students imposed an otherwise
redundant functional relation between two consecutive
linear elements of a parallelogram. The definition of a
parallelogram implies that there must be no dependency
between the length of two consecutive sides. The students
solved the problem of constructing a parallelogram which
can never be a square by imposing a functional relationship
between those lengths which makes it impossible for a
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property of the square to apply, i.e. that the lengths can never
be equal since they must have a difference of 20. So here,
the big aim, is represented by a generalized property of a
geometrical figure combined with the idea of function and
generalized humber.

To parallelogram: a: b: ¢

If: ¢ <90 repeat 2 [fd: a rt: ¢ fd: b rt 180-: c]
If: ¢> 90 repeat 2 [fd: a rt: ¢ fd: b rt 180-: c]
End

This response to a task was set by the authors during a
programming course to learn how to program geometrical
figures in MaLT2 (Kohen & Milrad, 2019). Here, the
program generates a parallelogram in every case except for
the value of a turn which allows the generation of a
rectangle. It thus avoids the generation of a square by
imposing a higher order negation of generating a rectangle.
It could be argued that this solution fits better into ‘the way
in which a computer would resolve the problem' since the
problem was worded - create a program to construct a
generalized parallelogram which can never become a square.
But here, the mathematical concept needed in order to
construct the program looks like it's in the service of a
computational idea, that of conditionals. It is necessary to
know that of the turns cannot be 90 degrees then the figure
cannot be a rectangle and therefore it cannot become a
square. So, these are two correct solutions but one employs
a mathematical idea of imposing a redundant linear
relationship between two linear elements of the model and
the other employs a computational idea - a conditional to
simply exclude the creation of a square by means of
excluding only the two values which would yield a
rectangle.

5. DISCUSSION - CONCLUSION

In this paper we have presented a few examples with
different approaches illustrating how mathematics and
programming can be integrated in various ways. Our goal is
to help curriculum designers to place joint programming and
mathematics activities in either of the respective curricula or
consider them in trans-disciplinary educational activities
including post-normal science perspectives which focus on
larger socio-scientific issues. For a computer science
teacher, integrating mathematics at the service of
programming concepts could be a way in to including
mathematics into the teaching of programming before
considering mathematics as the object of programming, i.e.
starting from the approach shown in 4.1 to move to the one
in 4.3. Conversely for a mathematics teacher a progression
from 4.2 to 4.3 could be appropriate. In both cases being
explicit about the positioning and the role of the two subjects
would help designing activities which make more sense to

students. This kind of discussion may help clarify
educational policy and curriculum design issues related to
implementation aspects in schools. What kinds of domains
are rich in opportunities for them to develop CT practices
and strategies in the context of using big ideas either in
mathematics or in programming? What kinds of specific
connections can be pedagogically engineered between such
ideas from each domain, for instance between functional
relations and generalized number from mathematics and
variables and model animation properties from computer
science? These are current and future directions in which we
are focusing our research efforts on.
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ABSTRACT

This study attempted to explore the learning behaviors of the six grade students using educational robots on the learning units
of oral interaction in English. This study provided the application of smart phone for controlling the action of the robots and
ask the students to orally interact with partners so as to put the objective learning sentences into practice. Then, the foreign
language interactive behaviors were recorded and observed during the period of collaborative learning tasks. The participants
were 18 English as Foreign Language (EFL) learners whose age were from 11 to 12. The research results showed that exercise
of expressing opinions in English with objective learning sentence is the most frequent behaviors in the learning process,
implying that the game of the educational robots did not preclude the students from naturally using English oral presentation
to achieve the purpose of communication, so as to reduce the foreign language learning anxiety.
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foreign language learning anxiety, educational robot game, English oral interaction

57



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,
M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

RANFUFEE AR TRBEAZERB OB LRI T ATEIH

HRE, PHAE

128 5 AR AL,

B RSRAD K RERER, £

00d26275001@gmail.com, ckhsu@ntnu.edu.tw

RS
AFREARFAR D SFRELERRNLTHREALR
EOBAMFEAFIAZFHT AN AFAREF
W AL X R IEHIER B AT D), EERFEFF MR
RFOFBLYATRAREHO ARG, RAKY
AR A ESFEOEHAM, PEITHNEL
AT Ao B4 W 18 4 11-12 ROAFEAF AIM3EF H 1
FHEFEAR. FLERET, EFHBEY, F4
RUMLAEE ARG ) WRY FFRET LI R
RmHRGITH, REKFTREAGRETGRT L
HF BRI R 3B o ki@ B 6y, R I E R
o

B MEMBRANRK, HEOELY)

1. AT

TABAAERAEGAM, EEHAETHTT, K
FARAEAT £ E IR AR, AT BBAOTE,
WM EBAARYE, KF R L AL FHEAS R
R, B, 22y, KMNEZIREST R E
A, TR RMAM R A KA L FH Garch-Pefialvo
(2018) o i B4 A —AE4E BB MG HAT AF R P AR
ik, CALIARA, BAFRSHREERGLEN
AARXNEFRA. 122, BT TR LR
S, HARKXZF TP ELRLTDOF LK)
(Moreno-Ledn & Robles, 2015) .

BAERN AT I EEHFTT, $RIFEGE
BEEZFESHENAAGREAT R TA SHM, dAR
ER—AARAMRES, Ak, mE R HEEREHE
B E, LR A RO ES RE (MKay &
Bokhorst-Heng, 2017) . &+ FRAEREZR R T, *E
HEHLERAEEZHMHRINL, 68 LRI ER R
Wb & FHF ARIERELZEFTFHST (English-
medium instruction, EMI) . & EMI # % & il i 32358
TR A KEAN A EF W% (English as a foreign
language, EFL) # & A& K, {23 7T it 2 — AP,
HwstE A —EAENRAE, O5F TR, PEHR
54k ki€ | (Chou, 2018) « H T RRB—ARL
A ERETMEAH R, hAERAFTRGE
B, ZEBWNHFSHARARET RRERF —FF R
Z M &9 M 1% (Teimouri, Goetze, & Plonsky, 2019) . &
BEHAIEF RN ERE, BAHARRBRTREWESY
Fdi AR (Horwitz, Horwitz, & Cope, 1986) o $ %
MeELANAZEFHPFRERG T RN, Ak,
AR L G RARTHAES ZAHSE Y Rk Fo R
WIS A G Y RER LR (Hwang, Hsu, Lai, &

Hsueh, 2017) . Benitti (2012) #54;, #MBAHKE 2 —
BRI HELITE, $ALEFEHRINSLANEE
Mo BHTHEFHFEZBRL LRSNE, 2605 24EH
BEDHFHRAKREZLN, ARFLEGIB T T
B AAZ, Km¥iE Aot EKE B KFE (Alemi,
Meghdari, & Ghazisaedy, 2014)

AA LA RIARRASFTE B LR S Y Rk
RERFENETERE, TAREAREEHASNE
AEEN . BIAFAMIRFHBEA DS FRGF L,
ARZFERAFHAEL, RB|T FRERNEZXAKT K
BN, MHFAFHEHLTHY MY, FAIFEERY
EHERRARBEALD), RRRFEEFEITAHTH

WAL,

2. LRI

2.1. ##F £ (Foreign language anxiety)
ZHGIMFBEEZEZ Y ERALT KB LR (Elaldi,
2016) . X&FEAE AINEHS (EFL) /2 &0 @B % bt
B, Plieik2 BHXFBEBTRE. BRALAREURSF
FENEEB A (Yen, Hou, & Chang, 2015) . EFL
SEUETHAERY EHRE, TRIEFZTTE LY
A (Hamouda, 2013) . $4 A% HEEHF AL FH
LM H I, Bk, AERETSE, BRATHRK
AhHE 54 EFL 2 ¥ #6934 (Hashemi & Abbasi,
2013) o FALIARE IR R R —— 18 LS F I
EHBIERBMA., AR EACTEER K, $H
2 AZ SRR, AR T WML FF D) & @R, FF
ARE %095 £ TR E E 6 (Hamouda, 2013) - X
SREEHAEIINFBREHPHA —RAREGER, Bl
BERE, REF IR EMAE, REMEHATRE
M, BREHSH S _EsasEn B fEEL A
BHE, EWAFALRAEHEERAZ YO
(Horwitzetal., 1986) . BB T ERHN I ML
B, AESIK, B2 A, B2 BEHERECLIAUTR
% (Marwan, 2016; Melouah, 2013) -

e d EA9RE, EERBARNEUARM AR 4
AEmORERA TR ZFEZFHEHFNERE (Liu&
Chen, 2014) . A Ar Rt H Rz d — X EE
B, AHEBEEER Y BB (Al-Khasawneh, 2016) .
HTHR S ZEEGRER, REBXGFRAT E4iE
EFLZH AP AaZNELERE, LEARY LARERN
N, EHEERUYSAENIEFLEE, EH LS 4B
#¥ 49 (Park & French, 2013) o & EF A F 358
B, TRV EZLAHEREKRF, REHEZR
et R 5] /1 693835 (Henter, 2014) .

58



22, EHBHLAKFTHEA
HEMBABRKTUMA—HITL, RES LS HEF
B EEH B ey & (1. Lee et al.,, 2011; Repenning,
Webb, & loannidou, 2010) . 3 % AR LM LTI N—
MHFRBARZAEERT RN ETRE, B4
HEI R HMEEL DMK, EHEEM A
#9 M2 (Blanchard, Freiman, & Lirrete-Pitre, 2010) .

MAEHGHOHST, EBLNHTTY, CEAFEH
BIRHEFTRBEAALXKEZAEL TR T % (Bers,
Flannery, Kazakoff, & Sullivan, 2014; Boticki, Pivalica, &
Seow, 2018) . A HBE AR~ IR KA LA 5HE
P HE T, MEAGEBFEAFTHOSTHE., K
2. TRAARGEH, RAL-—TIBEEHGESY,

T AZSMBMFRGEAERTRT TROGFR. AHARAE
AT, HH A6 RNWAETUEIMENBBEALE
B, EmAEIHEB LB THEEEX, FAKF
EREZEHL L HEE S (Bers et al, 2014) .

Penmetcha (2012) #F 5% 7 H A MBEAH K E AR L #H
RARNERABEXETREL LD EZ MMM
B OERET, AHPANT T, BEAEDH
BRAFHENBE T ELELTHGEYW, ETUHES
o @ 0 dh FALAAL XA, BMBAKEFHELR
KERTHEWHWERE), RAZFARMHETN S
o, BiGEALIHEEE, ERURIDERFHE LY IE
HEIRIFMAR. FEHRTAEH, HEFRBAGELEY
A MANELE ., PAMERRADUARZmE A E®
% (Atmatzidou & Demetriadis, 2012; Blanchard et al.,
2010) . AR LA EHFTHREALTRA S A
ZHG T RARE LN HMH. S4EL]E S (Eguchi,
2010; Khanlari, 2013) -

3. HARNF*k
31 FLHL
RARHHE AL ARFBZHFOTAHETHAS, TR
HESHLIRER D SFRGLE, FHER L 11-12
K, A 18 x84, BAEPERNOEMES L%E, F
E2E RN FHRABREHFTHEA, EAFHORA
FRXIELEMAAEX, BAAREXLLHEE, Fikig
EHERBEA, FETUAEBRREAGRIERITS,
RGO RARXEL FHEHNHFTHEEALY
BRERE — 4, ROAEFALEAZSHBARE PN
2

3.2. BIABHZ 44 F 4
HTHRALYH LS HAAEFTHEHITEH, KoFist
2 A S HIT A S log TR, 5 FE M
B #FF 5 4 A8 R AT S A5, A% F) GSEQ $URE AT 9 4T AT
LAEFRITHLMETOEDER, MEHSE L
AR, ELVBHEPHETRA» A4 &F
BHiAiT ., FBEATAREIT A, ok 1T,

F 1A B Arbe ik
R A &

A F1)

PP(People&People) 41 P9 #3k 6] 42 &4 v 41
ANEHH
PC(People IR Sp=sd 7 48 7 4
Commnication) %
PR(People & Robot) 1 R#% A. #HRizFHiE
F# FEAARAEZX
1% 4% 35 AH
7/
AT (Algorithm) & A A% HER R (AT
EH ., A8
B4 pPD: N E
% #% 1.1D(Individual 1ABA(IDME & AESF
Decision) ALk KB LA,
2.CD(Cooperation 2. 4F(CD)E k.. %
Decision)
AR
PM(Physical K kE iThkd
Message) . FE A
L. F
AG(Abstraction TA AR BAZX Tk
General) Her X ki QBT X
k&
LI(Learning MR A ELE ACTOEL

Interaction) BV OETE B
PLI(People learning) iEA HAfb A #AFHBLR
HBEMARE HFHoE

;; DELEH A
NS(No Speaking) R OELE KA BT
25>
YS(Yes Speaking) & EsEDEEL B3 HA
k7] B EAE
LT(Listen to teacher) #&#AFhd 27 3h AR
R FL AN
IM(Irrelevant &M EA R, AR
4t Message) AN S

SP(Separate) MNBARRE &HKEHE

¥

4. FREXR
ARBMEREARNATRBEALTHBEHLY B
2, AT APTE . RIEY Ak, SEHW
17 2o tB il 4 B BIR SR 0 R DI A2, SEHE4F 1542 84T
B, KFFRE— G 18 440 KR 0 X AE 4 4
BT AAERFE, Wk 2T

59



E2EW R BWIT A AL E

4 & "okt (%)
PP 118 7.65%
PC 175 11.34%
PR 594 38.52%
ID 13 0.84%
CD 98 6.35%
AT 99 6.42%
PM 103 6.67%
AG 0 0.00%
LI 110 7.13%
PLI 17 1.10%
NS 0 0.00%
YS 0 0.00%
LT 80 5.18%
IM 38 2.46%
SP 97 6.29%

MBELE, TAAHREHH T, HAWNELITARS
B A#EEA (PR) 457 38.52%. sz4sh4t3k (PC)
157 11.34%. N3k (PP) 457 7.65%. R¥EHE
B (L) 457 7.13%. £48%kiE (PM) 47 6.67%

HRT e, PAELEEARKFTHRE AETRES G,
1 AR A (PR) . 494138 (PC) . AN #H
(PP) . HxELS (L) . £ %E (PM) §i74
A REHAGEE,

4.1, AP
BT EET AHRESM AL, S EHIATE R LR
BT A MM AAE, $FHRTAHKAGE. i

R PEALIEAT % B BAZAT BB 1209 Z 48, Z{A KA 1.96

REZT AR 72 BEKE (p<0.05) (Bakeman &
Gottman, 1997) , 4= & 1 FrT.
271 12.23
3.49 4.99
| 18.25
14.68 119 ’ 32 ‘
o

1 RS 2 4T Ak A

B 1P TAER, 2AEANTEEXTUANH=BT4
Wi, B = R85 5 A AT-CD (Bp4E A5 Ak,
Fa Vi iE AL F) 3 PM-ID (BpE82 & iF fo AR A4S
RAAEHF) 3 LI-PLI (PEAEARFZZLY (AT
REFE) FPAERAEBERBE L MR (X
E) ) . BEFAEMERATRE (AT) , §351R 44
24— NG (CD) (A5 4 e HaEGH%E
AT A, BiITEBAE (PM) , BFeMBALE AL
HF (ID) RIRIFAEHAaB 6938 B 5 o, §FHFR
HuiEitidih, CHARARIKEL Y LW 0ELY

B30

5. HWmBEAREZ

HER, HAHTRELHEWITAMNEKTLE KRR
R, RAFHRAN AT REAMDETEEE, &
BT AP AmERBIR G HHNIT A, LATe95F
RET, BBEATARLEDEOEZ LR, EAAL
ARG EH LR AR KRS, TARS &
RALE It 5382 W RAEZ e 7B (S, Lee et
al,, 2011) o — R4 HRBHEFOHKTFTER: HHER
%, WERREAFEEEAD, TREVEZALVER
KF, HoH A RAR B A AR F]S RE
(Henter, 2014) . % ABHET AR Y S LG EE,
ERBERVBRAGRERE., iz, SHBIT A
ERBEHTFRPNTHEERGEELRAL SRR
%% /8 (Huang & Hwang, 2013) . &% 4 M5 &£
ERYT LR AN, MAREMLRE., B2,
P A SP3EH bR AR S B B 5 A BT REE E AH
fFjesh m A3 (Atas, 2015) .

AR EBKTREAMNTE, RRAFEERLA
FARE AL K AR RIFEFG AL, I HF A NI Al
oA, TRERXBET, AFHBAEY, ZAHFTHK
B, FAARFE ORI AIRT HALGH
1, RESFALZEZORNIDETHF, AT Tk
RE ERGOEHF, RTAE ERFRRFETR
FOREE ., BFEMNTFEIMGT HMB, KR
FUHEELERE EFZORGFE, &FH LA TR
BRE TR, REFLAEREFFORE, wRE
HARB RS ARG LM TEH BT RBEL
By, BT MESE K R il FE O RMALF RAER
4 1E,

6. H#
KA 7 B AL R AF 73T £ % 3% MOST 108-2511-H-
003 -056 -MY3 #9385 4% 8 .

7. 3F LK
Al-Khasawneh, F. M. (2016). Investigating Foreign
Language Learning Anxiety: A Case of Saudi

Undergraduate EFL Learners. Dil ve Dilbilimi Calismalart
Dergisi, 12(1), 137-148.

Alemi, M., Meghdari, A., & Ghazisaedy, M. (2014). The
Effect of Employing Humanoid Robots for Teaching
English on Students' Anxiety and Attitude. Proceedings of
2014 Second RSI/ISM International Conference on
Robotics and Mechatronics (ICRoM). IEEE, 754-759.

Atas, M. (2015). The Reduction of Speaking Anxiety in EFL
Learners Through Drama Techniques. Procedia-Social
and Behavioral Sciences, 176, 961-969.

Atmatzidou, S., & Demetriadis, S. N. (2012). Evaluating the
Role of Collaboration Scripts as Group Guiding Tools in
Activities of Educational Robotics: Conclusions from
Three Case Studies. Proceedings of 2012 IEEE 12th
International Conference on Advanced Learning
Technologies. IEEE, 298-302.

60



Bakeman, R., & Gottman, J. M. (1997). Observing
interaction: An introduction to sequential analysis.
Cambridge University Press.

Benitti, F. B. V. (2012). Exploring the Educational Potential
of Robotics in Schools: A Systematic Review. Computers
& Education, 58(3), 978-988.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational Thinking and Tinkering:
Exploration of an Early Childhood Robotics Curriculum.
Computers & Education, 72, 145-157.

Blanchard, S., Freiman, V., & Lirrete-Pitre, N. (2010).
Strategies Used by Elementary Schoolchildren Solving
Robotics-based Complex Tasks: Innovative Potential of
technology. Procedia-Social and Behavioral Sciences,
2(2), 2851-2857.

Botic¢ki, 1., Pivalica, D., & Seow, P. (2018). The Use of
Computational Thinking Concepts in Early Primary
School. Proceedings of International Conference on
Computational Thinking Education 2018. EAUHK, 8-13.

Chou, M. H. (2018). Speaking Anxiety and Strategy Use for
Learning English as a Foreign Language in Full and Partial
English-Medium Instruction Contexts. TESOL Quarterly,
52(3), 611-633.

Eguchi, A. (2010). What is Educational Robotics? Theories
Behind It and Practical Implementation. Proceedings of
Society for Information Technology & Teacher Education
International Conference. AACE, 4006-4014.

Elaldi, S. (2016). Foreign Language Anxiety of Students
Studying English Language and Literature: A Sample
from Turkey. Educational Research and Reviews, 11(6),
219-228.

Garck-Pefalvo, F. J. (2018). Editorial Computational
thinking. IEEE Revista Iberoamericana de Tecnologias
del Aprendizaje, 13(1), 17-19.

Hamouda, A. (2013). An Exploration of Causes of Saudi
Students' Reluctance to Participate in the English
Language Classroom. International Journal of English
Language Education, 1(1), 17-34.

Hashemi, M., & Abbasi, M. (2013). The Role of the Teacher
in Alleviating Anxiety in Language Classes. International
Research Journal of Applied and Basic Sciences, 4(3),
640-646.

Henter, R. (2014). Affective Factors Involved in Learning a
Foreign Language. Procedia-Social and Behavioral
Sciences, 127, 373-378.

Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign
Language Classroom Anxiety. The Modern Language
Journal, 70(2), 125-132.

Huang, P., & Hwang, Y. (2013). An exploration of EFL

Learners' Anxiety and E-learning Environments. Journal
of Language Teaching and Research, 4(1), 27.

Hwang, G. J., Hsu, T. C., Lai, C. L., & Hsueh, C. J. (2017).

Interaction of Problem-based Gaming and Learning
Anxiety in Language Students' English Listening
Performance and Progressive Behavioral Patterns.
Computers & Education, 106, 26-42.

Khanlari, A. (2013). Effects of Robotics on 21st Century
Skills. European Scientific Journal, 9(27).

Lee, 1., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, Malyn-smith J., & Werner, L. (2011).
Computational Thinking for Youth in Practice. ACM
Inroads, 2(1), 32-37.

Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G., Sagong, S., &
Kim, M. (2011). On the Effectiveness of Robot-assisted
Language Learning. ReCALL, 23(1), 25-58.

Liu, H. J.,, & Chen, T. H. (2014). Learner Differences
Among Children Learning a Foreign Language: Language
Anxiety, Strategy Use, and Multiple Intelligences. English
Language Teaching, 7(6), 1-13.

Marwan, A. (2016). Investigating Students’ Foreign
Language Anxiety. Malaysian Journal of ELT Research,
3(1), 19.

McKay, S. L., & Bokhorst-Heng, W. D. (2017).
International English in its sociolinguistic contexts:
Towards a socially sensitive EIL pedagogy. Routledge.

Melouah, A. (2013). Foreign Language Anxiety in EFL
Speaking Classrooms: A Case Study of First-year LMD
Students of English at Saad Dahlab University of Blida,
Algeria. Arab World English Journal, 4(1).

Moreno-Le6n, J., & Robles, G. (2015). Computer
Programming as an Educational Tool in the English
Classroom a Preliminary Study. Proceedings of 2015
IEEE Global Engineering Education Conference
(EDUCON). IEEE, 961-966.

Park, G. P., & French, B. F. (2013). Gender Differences in
the Foreign Language Classroom Anxiety Scale. System,
41(2), 462-471.

Penmetcha, M. R. (2012). Exploring the Effectiveness of
Robotics as a Vehicle for Computational Thinking.
Doctoral Dissertation, Purdue University.

Repenning, A., Webb, D., & loannidou, A. (2010). Scalable
Game Design and the Development of a Checklist for
Getting Computational Thinking Into Public Schools.
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education. ACM, 265-269.

Teimouri, Y., Goetze, J., & Plonsky, L. (2019). Second
Language Anxiety and Achievement: A Meta-analysis.
Studies in Second Language Acquisition, 1-25.

Yen, Y.-C., Hou, H.-T., & Chang, K. E. (2015). Applying
Role-playing Strategy to Enhance Learners’ Writing and
Speaking Skills in EFL Courses Using Facebook and
Skype as Learning Tools: A Case Study in Taiwan.
Computer Assisted Language Learning, 28(5), 383-406.

61



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,
M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.
Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Teacher Development

62



Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,
M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.

Hong Kong: The Education University of Hong Kong.

Workshops and Co-design Can Help Teachers Integrate Computational Thinking
into Their K-12 STEM Classes

Sally P. W. WU, Amanda PEEL?, Connor BAIN?, Gabriella ANTON*, Michael HORN®, Uri WILENSKY?®
123456Northwestern University, United States
sally.wu@northwestern.edu, amanda.peel@northwestern.edu, connorbain2015@u.northwestern.edu,
gabriellaanton3.2020@u.northwestern.edu, michael-horn@northwestern.edu, uri@northwestern.edu

ABSTRACT

This work aims to help high school STEM teachers integrate
computational thinking (CT) into their classrooms by
engaging teachers as curriculum co-designers. K-12 teachers
who are not trained in computer science may not see the
value of CT in STEM classrooms and how to engage their
students in computational practices that reflect the practices
of STEM professionals. To this end, we developed a 4-week
professional development workshop for eight science and
mathematics high school teachers to co-design
computationally enhanced curriculum with our team of
researchers. The workshop first provided an introduction to
computational practices and tools for STEM education.
Then, teachers engaged in co-design to enhance their science
and mathematics curricula with computational practices in
STEM. Data from surveys and interviews showed that
teachers  learned  about  computational  thinking,
computational tools, coding, and the value of collaboration
after the professional development. Further, they were able
to integrate multiple computational tools that engage their
students in CT-STEM practices. These findings suggest that
teachers can learn to use computational practices and tools
through workshops, and that teachers collaborating with
researchers in co-design to develop computational enhanced
STEM curriculum may be a powerful way to engage
students and teachers with CT in K-12 classrooms.

KEYWORDS
computational thinking, STEM education, K-12, teacher
professional development, curriculum design

1. INTRODUCTION

Initiative to incorporate computational thinking (CT) in K-
12 education face challenges on several fronts, particularly
in the United States. CT education often takes place within
computer science courses, which may limit access to those
who traditionally take computing courses (Heinz, Mannila,
& Farnqvist, 2016). Moreover, there is a dearth of K-12
teachers trained in computer science and technologies
(Advocacy Coalition, 2018; Cuny, 2012).

In order to address the systemic barriers to CT education,
researchers argue for the integration of CT in K-12 STEM
classes (Wilensky, Brady, & Horn, 2014). Integrating CT in
STEM classes can broaden access to computational practices
for all students, as STEM classes are required in middle and
high school. Further, students’ use of computational tools
has been shown to deepen learning in mathematics and
science domains (e.g., Brady et al., 2016; Wilensky, 2003).
Weintrop and colleagues (2016) organize computational
thinking practices in mathematics and science classrooms
into four strands: data practices, modeling and simulation

practices, computational problem-solving practices, and
systems thinking practices. In this paper, we focus on
modeling and simulation (using, modifying, and creating
computational models) and data practices (collecting,
visualizing, and analyzing data). Engaging in these CT-
STEM practices can help students develop science and
mathematics content understanding through authentic
STEM practices used in modern science (Weintrop et al.,
2016).

Integrating CT in STEM classes further addresses the
shortage of teachers trained in computer science by shifting
the focus to training STEM teachers in the computational
tools and practices relevant to their associated fields. This
shift requires both curriculum designers and teachers to
reimagine classroom practices and to learn how to
incorporate computational methods and tools (Ball &
Forzani, 2009; Windschitl et al., 2012). We address this shift
using a Design Based Implementation Research (DBIR)
framework (Penuel et al., 2011) that supports teachers in
professional development and integration of
computationally enriched STEM units. Over multiple years
of partnering with teachers and schools, our team has shifted
from providing day-long professional development to
ongoing teacher-driven support. Through these design
iterations, we have sought to support teacher ownership,
agency, and comfort in teaching with computational tools.

In the latest design iteration, we position teachers as active
co-designers in modifying their existing STEM curricula to
include computational tools and practices. Our approach
foregrounds teachers’ views on how the curriculum aligns
with teaching strategies and expectations for student
learning (Allen & Penuel, 2015; Coburn, 2005; Penuel et al.,
2009). Researchers serve as computational experts and work
alongside teachers to develop new computationally enriched
STEM curricula that align with individual teacher’s views
and goals. The co-design process aims to (1) help teachers
develop an understanding of CT and (2) empower teachers
to integrate and teach CT in their STEM courses. In this
paper, we present the results of a month-long professional
development in which high school teachers co-design CT-
STEM curricula with researchers. We investigate the
research questions: (1) What did teachers learn about CT
through a 4-week professional development? and (2) How
did teachers integrate CT into their curriculum?

2. METHOD

To investigate our research questions, we developed the CT-
STEM Summer Institute (CTSI), a 4-week professional
development workshop that positioned teachers and
researchers as co-designers of curriculum. Teachers and
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researchers formed design teams by subject area: three
biology teachers (pseudonyms: Betty, Briana, Brooke); one
chemistry teacher (Carrie); three physics teachers (Penny,
Peter, Philip); and one mathematics teacher (Matt). The
eight participants teach high school science or mathematics
in four U.S. public schools (2 urban and 2 suburban).
Teachers received $1000 U.S. dollars per week of
participation in CTSI and were asked to create a CT-STEM
curriculum for their classroom that would be implemented
in the following school year. Seven graduate students and
one post-doctoral researcher were assigned to work with
teachers based on their prior experience working with
specific subject areas and participating teachers.

Table 1. Overview of Professional Development Activities
over Four Weeks of CTSI, Organized by Day.

Week | Monday Tuesday Wednesday  Thursday Friday

1 Pre-survey  Computational Computational Computational = Work from

Introductions Models and ~ Tools Tools home
Demo CT CT-STEM Unit planning
Lesson Practices Reflection

2+3 | Work from Discuss Co-design (2-3 Co-design (3.5 | Work from
home feedback hours) hours) home
Review Co-design (2- CT-STEM Reflection
partner’s 3 hours) Workshop
work

4 Work from  Discuss Co-design (3  Co-design (3.5 Post-survey
home feedback hours) hours) Post-interview
Co-design (1

Review Co-design (2- CT-STEM Reflection hour)
partner’s 3 hours) Workshop Curriculum
work Showcase

Table 1 shows an overview of activities during the 4-week
professional development. Teachers and researchers met in-
person for 14 days from 10am-3pm, with one hour for a
catered lunch.

The first week of CTSI (4 days) comprised of workshops led
by the researchers. Each workshop introduced
computational practices and tools by engaging teachers in
lessons designed for students. Each lesson demonstrated
how computational tools can engage students in CT-STEM
practices while learning disciplinary content. For example,
one lesson (https://tinyurl.com/IntroToCT) first asked
teachers to use, modify, and debug a series of computational
models that simulate how fire spreads through a forest
(http://tinyurl.com/netlogofire;  Wilensky, 1997) using
NetLogo, a multi-agent programmable  modeling
environment (Wilensky, 1999). Next, teachers collected and
analyzed ‘density vs. percent burned’ data using CODAP
(https://codap.concord.org/; Common Online Data Analysis
Platform), a web-based data analysis environment. Then,
they posed research questions about other variables that may
affect the spread of fire and discussed how scientists use
such computational models. Finally, teachers reflected on
the pedagogy of CT-STEM practices and how they may use
computational models and/or data analysis tools with
students.

In addition to NetLogo and CODAP, teachers engaged in
Unplugged CT activities, which teach CT without
computing tools (e.g., writing loops on paper), and
NetTango, a blocks-based programming interface for
exploring NetLogo Web models (Horn et al., 2014), in the
context of a chemistry unit on molecular particle collisions.

The last three weeks of CTSI provided co-design time for
teams of teachers and researchers to sit together as they
worked on computational models and units. Teams engaged
in approximately 24 hours of in-person co-design time. On
Fridays and Mondays, teams worked from home and
communicated via email as needed. Each team reviewed
each other’s work on Monday afternoons and discussed the
feedback on Tuesdays. In addition, teams engaged in
supplemental CT-STEM workshops that focused on CT
tools or pedagogy on Wednesdays and participated in a
reflection session on Thursdays. Each co-design team
differed in how they collaboratively built models and
curricula materials (Kelter et al., 2020).

At the end of CTSI, the teachers and researchers showcased
their co-designed CT-STEM curriculum in an event open to
the community: https://tinyurl.com/CTSI2019Expo. All
teachers also responded to pre/post surveys and post-
interviews, as described below.

2.1. Data Sources

To assess what teachers learned from CTSI (RQ1), the 33-
item pre/post surveys asked teachers to rate on a 5-point
Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree):
their perception of CT (Adapted from Cabrera et al., 2018)
and comfort with CT-STEM practices. Further, in the post-
interview, we asked teachers what they learned from CTSI.

To assess how teachers integrated CT into their curriculum
(RQ2), we asked teachers to describe their curriculum in the
post-interview and examined the computational tools and
practices used in their CT-STEM curriculum.

3. RESULTS

3.1. What Teachers Learned about CT

To address RQ1 (what teachers learned about CT through
professional development), we first analyzed teachers’
ratings on the pre-/post-survey. Due to the small sample size,
we qualitatively compare differences from pre to post. Note
that Brooke did not complete the pre-survey (4.8 average
across all categories on post-survey) and Philip did not
complete the post-survey (4.4 average on pre-survey).

Table 2. Average Pre/Post Survey Response by Category.

CT CTin CT Modeling  Data  Overall
Value STEM Integration Practices Practices
Pre 41 41 41 3.8 3.0 3.7
Post 4.3 4.6 44 4.2 4.0 4.2

As shown in Table 2, teachers were more likely to agree or
strongly agree on all item categories on the post-survey,
compared to the pre-survey. That is, after the professional
development, teachers reported that they understood the role
of CT in STEM education and valued CT to a greater degree.
Teachers also reported higher confidence in their ability to
identify and integrate computational modeling and data
practices into their teaching.

Next, we analyzed the post-interview responses to: “What
have you learned from CTSI?” We qualitatively reviewed
responses of all eight teachers to identify themes mentioned
by multiple teachers. Below, we present teachers’ responses
with the four themes underlined: computational thinking,
computational tools, coding, and collaboration.
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3.1.1. Computational thinking

Two teachers described learning about CT: Briana (see
Section 3.1.3) and Peter. Peter described different levels of
CT practices in how they affect students’ thinking:

| think being able to see the different domains of
computational thinking and the different levels was
important. That at one level, it's just: Can you use a model?
Can you change a model? Right? Can you collect data? Can
you represent data? That's one level, but then can you dig in
deeper? Can you change a model? Can you design a model?
Can you manipulate data and represent it in different ways?
Those are deeper levels that the goal is to try to push down
as far as you can to get the kids’ thinking, at a really deep

Although Betty feels she can only make “a tiny little change”
in code, another teacher Penny discussed learning “a lot”
about coding by building NetLogo models for her
curriculum and participating in the introductory workshops:

I never knew anything about NetLogo before and I've now
learned a lot about NetLogo and modified or helped build
some simulations. And that's largely my first and only
exposure to coding. So that's relatively new...I thought a
couple of the coolest things that we did were within the first
week workshops you have for us: the forest fires
simulation....that was the first thing where we really looked
at the code behind it- and why aren't the trees burning? And
| thought that was fun. As well as just seeing the emergent

level. So that's one thing that I've learned about
computational thinking itself.

Peter learned that CT can engage students in more
procedural thinking, such as using models and collecting
data, as well as more deep conceptual thinking, such as
changing and designing their own models. His goal now is
to focus on “push[ing]” students’ thinking “at a really deep
level” because “the different levels [are] important.”

3.1.2. Computational tools

Four teachers stated what they learned about specific
computational tools (Peter, Matt, Philip, and Carrie). Peter
and Matt listed different computational tools that they
learned about and plan to use in their classroom.
Additionally, Matt discussed how the computational tools
can help students engage in math as professionals do:

I'd never heard of CODAP or NetLogo or NetTango or any
of those. So for me, it just gave me some tools that I can use
in stats and hopefully geometry to present math in a relevant
way to today's learners. | think it will help me answer the
question: Why are we learning this? When am | ever going
to have to use this? ‘Cause it'll be easy to show them, this is
what actual researchers are using. ‘Here's what actual
statisticians are using, rather than we're using the calculator
because that's what the AP exam requires you to use.’

Philip and Carrie, who had prior experience building models
or implementing CT-STEM lessons, both stated that they
became aware of new tools. Carrie added that she was “very
excited that [she’s] integrating some CODAP this
year...[She] already see[s] other possible places in [her] year
that [she] can use [CODAP].” Even though the workshops
only aimed to help teachers integrate tools into their CT-
STEM curriculum, teachers identified CT tools as resources
they can use for other lessons in their classroom.

3.1.3. Coding/programming

In contrast to the four teachers above who seemed “excited”
and comfortable integrating computational tools into their
classrooms, three of the female teachers mentioned learning
about coding in general because they had little or no prior
experience (Betty, Penny, Briana). For example, Betty said
she cannot “code anything” but learned how code works and
how to explain it to her students:

I knew nothing about coding /.../ I cannot code anything,
maybe a tiny little change | can make, but I at least see now
what goes into it and | think I'll be better at explaining things
to the kids.

phenomena in that throwing in the same density doesn't
always result in the same forest burn rates. So that was cool
for me.

While Penny learned that coding was “fun” and “cool” in the
first week, Briana stated that she learned to love coding in
the second week as she started writing her curriculum and
now wants to learn more about how to build models herself.
She also mentions learning about all four themes stated
across teachers (computational thinking, computational
platforms/tools, coding, and collaboration):

| learned more about what computational models are, what
computational thinking is. | learned how to incorporate that
into my classroom and my lessons more easily.
Collaboration is so important. | learned a little bit of how to
do some coding and learned different modalities that can be
used for different platforms that can be used for different
types of analysis....the second week, my Aha moment was |
think that creating models is way cooler than writing
curriculum...l thought | hated the coding process. At first, |
was like it's gonna be terrible, but when I actually learn the
foundation/fundamentals, | was like: well this is actually
really cool: how a line | write can completely change how
something else works. So that was an Aha moment for me is
that 1 would love to learn more about how to do that.

3.1.4. Collaboration

Lastly, four teachers mentioned the value of collaboration
in their curriculum design process (Briana, Betty, Brooke,
Carrie). Betty learned that “a whole team of people”
contribute to constructing computational models:

| learned that the value of co-design is very important. Yeah, I'm
just more comfortable with using NetLogo...I think just
understanding that things have to be coded, like preferences have
to be put in there. Someone put that in ‘cause I'm like: how do these
models know to do this? So you have to actually do some of the
research ahead of time, then put it in. And you need a whole team
of people. It's not- a computer programmer doesn't know the
science necessarily, so you need a scientist with a computer
programmer to work together. | love that. | love that idea.

Betty learned that “co-design is very important” because
models involve collaborative design decisions from experts
from different fields. Similarly, Brooke noted that she
benefited from collaborating and brainstorming with the
researcher in her team who had a different expertise:

It's just been really nice to have the time to sit down and have
conversations around some of this stuff. That's giving me time to
dig into the content, research more about what actually- | want it
to be about think a little bit more deeply about like the alignment
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of the unit itself. And that's just been really great to have
[researcher] there to say: Okay, this is the idea. What might fit
well? And he'll be like: ‘Oh, you could do this or you could do that.’
Or just that piece of brainstorming around expertise that | don't
have.

In addition to brainstorming, Carrie also mentioned that “[h]aving
a researcher with us the whole time was so beneficial” because she
could get help on her questions right away from a collaborator
sitting right next to her.

3.1.5. Summary of what teachers learned from CTSI

In sum, teachers generally learned more about CT after
CTSI. Some of them learned about computational tools and
practices that they can integrate into their classroom. Other
teachers with limited CT experience learned coding so that
they can engage in and explain CT to their students. Further,
multiple teachers mentioned collaboration, which supported
them in building and integrating computational tools and
practices into a CT-STEM curriculum.

3.2. How Teachers Integrated CT

To assess how teachers integrated CT into their curriculum
(RQ2), we analyzed how teachers used computational
practices and tools in their CT-STEM curricula. We first
describe their curriculum below and then discuss their use of
CT-STEM practices (summarized in Table 3):

1. Experimental Design and Computational Thinking: 8-
day AP Biology unit that uses a physical lab, CODAP,
NetTango, and NetLogo to conduct experiments on
animal behavior, further described below (Betty)

2. Evolution Part 11: Natural Selection (Darwin's Finches
and The Case of the Rock Pocket Mouse): 20-day
Freshmen Biology unit that uses CODAP and NetLogo
models to collect and analyze data on the mechanisms
of natural selection (Briana)

3. Climate Change in the Great Lakes: 10-day
Environmental Science unit that uses Unplugged
activities, CODAP, and NetLogo models to investigate
various environmental factors and make sense of
climate change models (Brooke)

4. Energy in Chemical Reactions: 13-day Chemistry unit
that uses NetLogo and CODAP to explore changes in
energy when bonds break and form during chemical
reactions (Carrie)

5. Charge Interactions: 8-day Physics unit that uses a
physical lab, CODAP, NetLogo, and PhET simulations
to explore the behavior of charges in electricity and
magnetism, further described below (Penny and Peter)

6. 1-D Kinematics Motion Maps: 3-day Physics unit that
uses NetLogo and NetTango to analyze and draw
velocity in kinematics motion maps, building on
Philip’s 1-D Kinematics NetLogo model, further
described below (Penny and Peter)

7. 1-D Kinematics and Newton's Laws: six Physics
lessons that use CODAP, NetTango, and NetLogo to
collect and analyze data through writing formulas and
generating graphs on kinematics and Newton’s Laws,
implemented throughout the fall semester (Philip)

8. Descriptive Statistics: 8-day AP Statistics unit using
Python notebooks and Unplugged activities to generate
formulas, data tables, and plots that describe various
real-world datasets (Matt)

Table 3. CT-STEM Practices Targeted in Curriculum

Curricular Unit
(see Section 3.2)

1] 2] 3]4]5][6[7]8

Modeling and simulation practices

Using computational models (CMs)to | x| x| x| x| x| x| x| x
understand a concept

Using CMs to find and test solutions X| X[ X x| X
Designing CMs X X
Assessing CMs X | X[ x| x| X X
Constructing CMs x| X X

Data practices

Collecting data X

Manipulating data

Analyzing data X

x

XXX | X

Visualizing data X

XX | X [X X
XX | X [X X
XX | X [X X
XX | X [X X

Creating data X X

The descriptions of CT-STEM curriculum show that all
teachers integrated several computational tools into their
curricula to teach disciplinary content. In addition, Table 3
shows that all CT-STEM curricula targeted multiple CT-
STEM modeling and data practices. To better understand
how teachers integrated computational practices and tools,
we present three example curricula (#1, #5, #6) below.

Biology. Betty, with her co-design partner, developed
Experimental Design and Computational Thinking (#1) for
her AP Biology course. She described it as: “really about
scientific design and inquiry.” In the unit, students design
experiments to find the preferred habitat conditions of the
pill bug (rolypoly). Betty decided that students start with a
physical lab experiment using two connected chambers, one
damp and one dry. The students place 10 pill bugs and
observe change in population of the two chambers over time.
After the physical experiment, students then explore, modify
and recreate the animal behavior experiment digitally using
NetLogo and NetTango models.

Betty also explained that her unit engages students in
multiple CT-STEM data practices: “the kids learn how to set
up a controlled experiment, how to collect data, how to make
graphs, and it's also where we start to teach them how to
analyze some of that data.” She integrated these data
practices with the CT-STEM practice of using models:

[My class uses] the computational model to learn about the
importance of sample size because we only get to use 10
rolypolies and then when we do Chi Square, we don't always
get good answers. And then we looked it up, they're like: oh,
you need at least 30, for your sample size...So with the
model, they can say: oh, what happens if we have 20
rolypolies, 40 rolypolies?

Betty wanted students to not only use models but modify
them based on a physical lab: “[students] are now also
learning how to change the model. So the first model just has
wet and dry, and then in the second activity, they actually
changed the code and add their variable, like the one that
they tested in class.” Specifically, Betty wanted students to
learn “that the model is actually coded by a human, based
on things that actually happened in real life,” as she herself
learned at CTSI (see Section 3.1.4). Her integration of
NetTango block-based programming makes this design
decision particularly salient: “[students] build their chamber
using NetTango. Then they put the rolypolies in and all the
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rolypolies escape because they didn't tell them to stay within
the chamber.”

Although Betty expressed that she “cannot code anything”
(see Section 3.1.3), her CT-STEM curriculum is the only
unit that integrates all modeling and data practices into
science content (see Table 3) and forefronts CT in its title.

Importantly, after Betty taught this unit in the fall, classroom
observations and an interview suggests that this unit helped
students learn science content and engage in CT-STEM
practices because Betty discussed coding and CT in context
of disciplinary science content, as a result of the professional
development (Peel et al., 2020).

Physics. Peter and Penny, who work at the same school,
developed two units together for their general Physics
classes. With their co-design partners, they designed Charge
Interactions (#5), which focused on “electrostatics: electric
charge, Coulomb's law, electric fields” (Peter), and a short
unit on 1-D Kinematics Motion Maps (#6).

The electrostatics unit first asks students to engage in
physical lab experiment with sticky tape and then explore a
NetLogo library model on electrostatics (Sengupta &
Wilensky, 2005), which was modified with researchers to fit
the curriculum. Penny described the unit as primarily
focused on the model and how the code works:

Most of it is around the simulation and specific questions
asking them to observe particular behaviors or how things
happen using their prior knowledge to try to explain why
those are things that are happening. And then a few
questions asking them to look at the code and, fine, where
did we program in that the electron should repel from each
other? Like where did we program in that the conductor's
color is gray. Could you change that?

Then, students use CODAP to understand Coulomb’s Law,
as Peter explained: “If we really want them to come up with
Coulomb's law, which is our goal, then you have to keep one
thing constant and vary another. And CODAP lets you do
that really quickly. So that's why we chose that.” Finally,
students examine a PhET simulation of charges.

Penny and Peter finished their first unit in Week 3, and then
modified Philip’s 1-D Kinematics NetLogo model for the
motion maps unit (#6). Peter saw this short unit as a way to
help students dynamically see changes in velocity:
“[students] don't often see the map being drawn, as
something moves. | think that the simulation that we put
together does that and sort of bridge that gap between what
we want them to see and what they actually see.” The unit
also asks students to build their own motion map using
NetTango, as Peter explained: “The NetTango thing is a way
to help kids gain more control over making a motion
map...they have that ownership of the whole process and |
think they'll be able to internalize what's going on better.”

As of this writing, Penny and Peter have not yet
implemented their Charge Interactions unit, but classroom
observations of students engaging with the 1-D Kinematics
Motion Maps unit showed that both teachers encouraged
students to not only understand the science content, but to
“explore the code” and “try to break the model.”

4. DISCUSSION

Results from our qualitative study suggests that engaging
high school STEM teachers in workshops and co-design of
CT-STEM curricula in a 4-week professional development
can help them develop an understanding of CT and integrate
CT into their classroom. We are particularly encouraged by
the fact that although these eight teachers already valued CT
at the beginning of the workshop because they chose to
participate in the professional development, all teachers
reported even more favorable perceptions of CT and greater
confidence in integrating it into their classroom at the end of
the professional development. Teachers shared in post-
interviews that they learned not only about CT and
computational tools for their classroom, but also about
coding in general and the value of collaboration in the co-
design process. Due to the relatively recent emergence of CT
in STEM for K-12 teachers, particularly in the United States,
this work takes one step towards understanding where
teachers may need particular support when learning about
CT and how to help teachers integrate CT into their
classroom practices.

Our analysis of co-designed curriculum showed all teachers
were able to integrate multiple computational tools that
engage their students in CT-STEM practices. Teacher
interviews and classroom observations show that teachers
designed and implemented activities that reflect what they
personally learned about coding, computational tools, and
CT during the professional development. For example, Betty
learned that computational models involve design decisions
made by people and thus engaged her students in designing
computational models where they write code for the
behaviors that they expect to see. Further, because Penny
found it “fun” and “cool” to see the code behind a model to
understand how it works, she encouraged her students to
similarly explore and break the code.

Taken together, these findings suggest that teachers
benefited from both parts of our professional development:
workshops in Week 1 and co-design in Weeks 2-4.
Particularly, learning about specific computational tools and
how to use them in the context of disciplinary content was
important for four of the eight teachers, who reported being
“excited” about integrating the tools into their classrooms.
However, three of our teachers had little experience with
coding and may not have the ability to integrate new
computational tools into their classroom without the
additional support provided in Weeks 2-4. At the end of the
professional development, these three teachers reported
learning to be comfortable with code and one teacher,
Briana, even learned to love coding in the second week when
she began working side-by-side with researchers to co-
design curriculum. Moreover, multiple teachers viewed
researchers as valuable thinking partners with expertise in
CT. Hence, co-design may be an effective way to help
teachers in integrate CT into their curriculum, particularly
those with little or no CT experience. This finding aligns
with prior work which showed that teachers’ confidence in
CT and ability to reach their curricular goals grew over a
multi-week process of working with researchers as co-
designers (Wu et al., 2020). We propose that additional
research support integration of CT in K-12 by positioning
teachers not only as learners of CT in workshops or
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trainings, but as co-designers and collaborators who can
augment existing STEM disciplinary content with CT in
their classroom.

This work has the potential to engage more K-12 teachers
and students in computational practices and tools by
integrating CT into existing K-12 STEM classrooms.
Through one summer professional development, teachers
were empowered to develop and implement eight
computationally enhanced STEM curricula for up to three
weeks in mathematics and science classrooms. Our
observations of these classrooms showed that the teachers
talked about their experience during the 4-week professional
development and leveraged what they learned about CT to
help students become more comfortable with CT and engage
in CT-STEM  practices.  Additional  professional
developments will help us identify what factors contribute to
our success, beyond those specific to our eight teachers. This
will help us scale this work to a larger population using in-
person and online support on CT integration. By helping
more teachers understand CT and computational tools, we
can empower K-12 STEM teachers to engage their students
in authentic scientific practice while also broadening
participation in computing.
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ABSTRACT

The implementation of programming in primary education is
currently receiving a considerable amount of attention in the
context of developing 21% century skills and digital literacy.
The application of programmable robots is a playful integration
of developing programming skills and computational thinking.
Once pupils understand the basics of robot programming, they
can solve challenging new programming tasks themselves
without the teacher taking over too much of the learning
process. It is therefore worthwhile to investigate the extent to
which teachers’ instructional approach and guiding
interventions influence the development of pupils’
computational thinking. Furthermore, programming robots
have some special affordances for educational purposes as
robots typically have to be programmed to interact with their
environment. Little evidence is known to which extent
programmable robots using the SRA-approach contribute to the
development of computational thinking skills among primary
school pupils. The use of Sense, Reason and Act (SRA)
programming includes the application of loops, routines and
conditionals when controlling actuators on the basis of sensory
information with which the robot can anticipate changes in the
environment. Our findings indicate that teachers versus
students experience the way of teaching (perceived monitoring
and scaffolding) significantly different when programming
robots. We make recommendations as to which competences
the guiding teacher needs. It is also shown that programming
robots using an SRA-approach contribute to the development of
specific characteristics (reformulating problems, problem
decomposition, abstraction, algorithms and procedures &
parallelisation) of computational thinking.

KEYWORDS

programming, sense-reason-act,
thinking, teacher interventions

1. INTRODUCTION

In all educational sectors from primary school to higher
education one key question is how to integrate the development
of computational thinking in the curriculum. Little is known
about the possibilities and impact and there are many questions
such as: what contribution does learning to program make to
cognitive development, what is the relationship between
programming and computational thinking, and what is the
influence of the teacher's actions in this regard (McCombs,
Lauer, & Peralez, 1997; Morehead & LeBeau, 2005).

Computational thinking is the ability to solve complex
problems using the basic concepts of computer science (Wing,
2006). The integration of programming in education is a way to
stimulate the development of computational thinking among
pupils and requires specific teacher competences (Lye & Koh,
2014). In our explorative research project we therefore
investigate to what extent the way of providing instruction and

robotics, computational

teacher interventions (e.g. asking questions, giving a hint,
showing/following, taking over) during teaching programming
influences the development of computational thinking (e.g.
algorithmic thinking, problem decomposition, debugging,
parallel thinking).

Sense, Reason and Act (SRA) programming is a special
approach of programming. It requires the creation of programs
that implement control structures using sensors and actuators
with the application of variables, loops and conditionals, for
example when using programmable robots (Slangen, 2016).
The SRA-loop is the process whereby detection (sensing)
continuously generates new information that is entered into a
logic reasoning component (reason), which subsequently leads
to the resulting actions (act) (Lith, 2006).

Robots programmed using the principle of SRA can react to
changes in their environment on the basis of sensory
information. This requires pupils to think anticipatively in the
task solution. Programming according to the principle of sense-
reason-act requires problem-solving skills and abstract
thinking. Pupils' programming of robots based on the SRA-
principle requires skills related to creative thinking and critical
thinking, such as: analysing, elaborating, causal reasoning,
synthesizing, imagining, etc. This requires the teacher to
provide a pedagogical space to apply these skills in practice.
This demands an environment that is strongly linked to inquiry-
based learning (Slangen, 2016; Valcke, 1985).

Teaching to program SRA needs special teacher strategies and
competences and is more than just a transfer of knowledge
(Slangen, 2016). Moreover, very few teachers have the
experience and skills to conduct this kind of activity (Breed,
2003). Bers, Ponte, Juelich, Viera, and Schenker (2002) have
found that teachers who start with a constructivist instructional
approach when teaching programming, quickly revert to a more
directive way of teaching to provide guidance to learners when
solving complex problems. Slangen (2016) recommends that
teachers best support such a learning process by means of a
scaffolding-based approach and to design a learning
environment to support children in their explorations and to
scaffold learning (Sullivan & Bers, 2016). In that sense learning
to program is more effective when the learner can construct his
own knowledge from guided programming experiences. It is the
teacher who has to set up a well-defined learning space and
should apply appropriate guidance that allows pupils to gain a
deeper understanding of how to program (Fanchamps, Slangen,
Hennissen, & Specht, 2019). Thus, learning must be active;
pupils must construct knowledge assisted by guidance from the
teacher and best also with feedback from other pupils (Buitrago
Florez et al., 2017). Furthermore, in order to become familiar
with complex programming such as SRA, a scaffold is required
or a research-based structure must be followed.

Previous research shows that teacher interventions during
programming lessons influence pupils' decision making skills
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in solving programming problems (Fanchamps, 2016), and
have a positive effect on the development of computational
thinking skills of primary school pupils (Pat-El, Tillema,
Segers, & Vedder, 2013). Teachers often intervene in a
directive style; they start from their own insight and often
provide an overload of information too quickly (Petrou &
Dimitrakopoulou, 2003). For teachers, it seems difficult to be
reluctant when pupils have to solve a problem using
programming (Valcke, 1985). This reluctance on the teachers’
part seems to be an important prerequisite for pupils to be able
to learn inquisitively and to take problem-solving action when
working with programming environments (Slangen, 2016).
Furthermore, in programming education there is a need for
different teacher behaviour (Sentance & Csizmadia, 2017). It is
expected that teachers who provide guidance using a
scaffolding based approach (asking questions, providing help
when needed and in the way needed) will be able to get pupils
further in the development of programming than teachers who
use a more direct approach.

Considering previous research, we were interested to explore
the following research questions:

1. To what extent does the teacher's own estimated
instructional approach correspond with the pupils'
perception of that instructional approach?

2. Which instructional approach (directive instruction -
scaffolding) do teachers mainly use to influence the
learning of programming in a robotics SRA learning
environment?

3. To what extent does SRA-programming with Lego
Robots  contribute to the development of
computational thinking skills?

2. METHOD

To investigate our research questions we used a pretest-posttest
design. This includes a) among pupils pre-measurement of
computational thinking skill and, for teachers, the extent of their
own self-assessment of support, b) a robotics-intervention, and
¢) a post-test among pupils measuring computational thinking
skills and the extent to which teacher support is perceived.
During the execution, the instructional approach used by the
teacher and the type of interventions were recorded. Among
pupils, the ability to program was measured and the level of
quality of the constructed program was assessed. We also
measured the difference in terms of the support provided by the
teacher and how it was perceived by the pupils.

2.1. Participants

This exploratory research was conducted among pupils and
teachers of a Dutch primary school. Programming sessions with
both primary school teachers and primary school pupils were
organised. To make an inventory of the instructional
approaches used, and in order to measure which interventions
were mainly applied by the teachers, we chose to incorporate
pupils and teachers from grade 3 to grade 8 in this research. We
would like to indicate that that these Dutch grade levels
correspond with age 6 to 12.

2.2. Materials

We used Lego Robots EV-3 as a SRA programming
environment. This environment offers possibilities to control a
robot using sensors and actuators. The programming of this
environment is characterized by visual programming by means

of drag and drop command blocks. By manipulating the
programming variables per block and putting them in a specific
order, pupils construct their program. This visually
programming environment is also suitable for use in primary
education (Korkmaz, 2018).

In order to reflect the self-assessment of the teacher’s
pedagogical level of support, and to determine how pupils
experienced this support as such (research question 2), the
Assessment for Learning questionnaire was used (Pat-El et al.,
2013). This validated questionnaire, consisting of a separate
teacher part and a specific pupil part, which measures
individually the perception of both teachers and pupils, is based
on a 5-point Likert scale (range from “completely disagree” —
“completely agree”) and consists of two categories:
"Experienced monitoring/supervising the learning process"
(Perceived monitoring - 16 items) and “Experienced
level/application of scaffolding” (Perceived scaffolding - 12
items). This questionnaire includes questions such as: "The
teacher provides opportunities to set learning objectives" and
"The teacher provides hints to help understand the subject".
The questionnaire is deliberately presented to both teachers
(teacher version) and pupils (pupil version), so that the
perception of teachers can be tested against the perception of
pupils. This allows, by monitoring differences in teaching and
learning, to visualise the influence of a different pedagogical
approach (in this case a directive approach compared to a
scaffolding approach).

In order to measure an effect on computational thinking among
pupils (research question 3) the validated Computational
Thinking test (Roméan-Gonzalez, Pérez-Gonzélez, & Jiménez-
Fernandez, 2017) was used as a pre- and post-measurement
among pupils. This questionnaire consists of 28 questions in
which pupils have to link programming commands to various
situations (and vice-versa), measuring characteristics of
computational thinking.

2.3. Procedure

After teachers followed three training sessions provided by the
researcher, in which they learned how to program Lego EV3
robots, the teacher independently and without the intervention
of the researcher taught five programming lessons using the
Lego environment. In these 5 lessons the teacher guided the
pupils, who worked together in pairs, to solve various robotics
programming problems. Pupils were confronted with 20
programming problems that became more and more difficult.
The teacher specified the task the robot had to perform using
the computer program created by pupils. The teacher used a
personal instructional approach and his or her own interventions
to guide pupils through the learning process.

By means of observation to determine which instructional
approach (directive instruction or scaffolding) the teacher has
used and what kind of interventions the teacher has applied
(asking questions, giving a hint, showing/following or taking
over the learning process), the researcher recorded a) the type
of instructional approach and which type / to what extent
interventions have been used by the teacher to identify what the
effect was (research question 1), and b) the extent to which
SRA-programming by pupils has been applied in solving
programming problems.

3. RESULTS AND DATA-ANALYSIS

Examination of the results of the first research question
concerning the influence of the instructional approach on
learning to program indicates that the instructional approach of

70



the teacher is of great influence. An analysis of the observations
shows that pupils from grade 1 to grade 6 are perfectly capable
of functionally programming Lego Robots by using the
computer program provided. Pupils who have been guided
according to a scaffolding approach frequently make use of the
knowledge they have already acquired during new
programming tasks are further advanced in a problem-solving
approach compared to guidance according to a directive
instructional approach.

Further indications show that teachers who use a scaffolding
based instructional approach mainly promote a self-
management and problem-solving, self-analytical capacity of
learners, and in particular use questioning and hints. Teachers
who use a directive instructional approach mainly promote
procedural thinking, initiate functional programming and
enhance pupils’ success experience, and mainly make use of
showing/following and taking over the learning process, and
ask few questions.

The results concerning the second research question about the
extent to which the teacher's estimated instructional approach
matches the student's perception of that instructional approach,
show a difference in estimation (Table 1).

Table 1. Assessment for Learning Questionnaire
Perceived monitoring (16 items)

Group n M sSD range Mdn
Teacher 13 3.93 45 3.75-4.75 3.94
Pupil 21 3.68 45 2.75-4.50 3.75
Perceived scaffolding (12 items)
Group n M SD range Mdn
Teacher 13 4.15 .32 3.58 -4.58 4.17
Pupil 21 3.76 .32 3.25-4.42 3.75

Note. n = number of respondents; M = average; SD = standard deviation;
range = spread in measurement; Mdn = median

Pupils do not value the teachers’ instructional approach as
highly as the teachers themselves. Table 1 shows that the
averages (M) on both categories (monitoring, scaffolding) of
the questionnaire are very different and the difference for
perceived scaffolding is statistically significant t (32) = 1.57, p
=0,001, 95% CI [0,15, 0,62]. This is indicatively more accurate
to deduce from the median (Mdn), which for pupils in both
categories is significantly lower, and from the range, in which
the distribution of pupils' results is more dispersed. A closer,
more detailed study of the collected questionnaires makes it
quantitatively visible that teachers respond to more questions
with the answer "agree™ and "completely agree", but that pupils
give significantly lower scores for this, i.e. they experience the
teachers approach differently. A comparison in perception
between the two research groups is quite striking and can be a
fundamental ground for the accompanying teacher to take a
critical look at applied instructional approach and interventions
used during programming lessons.

The answer to the third research question on the extent to which
SRA-programming contributes to the development of
computational skills can be found in Table 2.

Although not significant, the measured results (Table 2) show
an increase in the characteristics of computational thinking
skills (reformulating problems, problem decomposition,
abstraction, algorithms and procedures and parallelisation)
among pupils. In the post measurement, pupils solve more tasks
correctly and therefore show a higher level of computational
thinking skill compared to the pre-measurement. The
computational  thinking  characteristics  "completion",

"debugging" and "sequencing" show in the post measurement a
higher average score (M), a lower standard deviation (SD) and
less spread in the measured values (range). Based on these
results, the conclusion can be drawn that by application of SRA-
programming pupils develop a higher level of computational
thinking skills.

Table 2. Development of Computational Thinking Skills

Pre-test (n=21)

Variable M SD range Mdn
Total (28) 101 .36 0.25-1.42 1.13
CT-skill .33 A1 0.08 — 0.50 0.33
completion
CT-skill 19 A1 0.00-0.33 0.11
debugging
CT-skill 49 19 0.17-0.75 0.46
sequencing

Post-test (n = 21)

Variable M SD range Mdn
Total 114 22 0.83 -1.50 1.13
CT-skill .35 .09 0.25-0.50 0.33
completion
CT-skill .25 .10 0.08 -0.42 0.10
debugging
CT-skill .54 13 0.25-0.67 0.58
sequencing

Note. Variable = measurable value; Total = number of questions correct
CT-questionnaire; completion = completed by CT; debugging =
reformulate problems; sequencing = sequence; M = average; SD
standard deviation; range = spread in measurement; Mdn = median

4. CONCLUSION AND DISCUSSION

This research helps teachers who want to implement
programming lessons in the classroom. Because learning to
program seems to depend on the instructional approach and the
appropriate interventions, the question arises whether a more
directive instruction or a scaffolding-based approach is more
appropriate for teaching programming. This requires a more
inquiry-based approach for pupils, and for teachers knowledge
of scaffolding and the guidance to be used as well as the type of
interventions to be applied. The necessary competences can be
developed through training and further experience.

This research makes the effect of the type of teacher
intervention visible when teaching programming robots in the
classroom. The results also contribute to sharpening the
definition of what computational thinking means for the
development of primary school pupils. It leads to four
recommendations:

e  First, LEGO Robotics can be used as a programming

learning environment.

e Second, specific programming lessons can increase
classroom yields.

e Third, SRA-programming contributes to the
development of computational thinking skills of
primary school pupils with a transfer to other
disciplines and educational areas/other primary school
subjects.

e Fourth, a thorough implementation of teaching
programming in the classroom requires a further
professionalisation of the teacher on scaffolding and
guidance with specific interventions.

71



4.1. Limitations and further directions

Despite the limited number of respondents in this study, a
measurable development (although not significant) in
computational thinking skills has been demonstrated. In follow-
up research, larger numbers of respondents will be used for
which it is expected that significant results can be demonstrated.
It is also worthwhile to investigating whether other types of
programming environments generate the same yields.

The indications from this research show that it is relevant for
teachers to become more aware of the fact that the nature of
support is important to help pupils further in SRA-
programming. This means, on the one hand, that teachers need
to have their own content programming insights and, on the
other hand, that they can also use guidance skills.

In order to further develop the construct of the SRA approach
theoretically, it is relevant to further investigate and develop the
relationship between computational thinking and SRA
programming.
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ABSTRACT

This study was performed to explore the views of preservice
teachers of computational thinking (CT) through a pilot
survey. A total of 329 preservice teachers from the National
Institute of Education Singapore took part in this pilot
survey. These preservice teachers were trained to teach
STEM and non-STEM subjects. The overall findings
showed that the preservice teachers do not yet have an
adequate understanding of CT. Most of them perceived CT
as logical thinking or reasoning. This is followed by no idea
or no understanding or not sure, using ICT or computer,
coding or programming, problem-solving and so forth.
Besides that, STEM preservice teachers had different views
of CT compared to non-STEM preservice teachers. These
initial views of CT among the preservice teachers can serve
to inform the design of teacher preparation programs,
policies and syllabus materials to support the preservice
teachers to infuse CT into their future teaching practices.

KEYWORDS
computational thinking, preservice teacher, view, pilot
survey

1. INTRODUCTION

In Singapore, developing computational capabilities is one
of the key enablers for the Smart Nation initiative. Several
programs have been conducted to introduce and enhance
computational thinking (CT) skills and coding abilities
among the Singaporean, from pre-school students to adults.
Nevertheless, one of the main concerns is how to best
prepare and support teachers to incorporate CT into their
teaching in the classroom (Yadav, Hong, & Stephenson,
2016). We are a research group that explores the design of
new programs to train the preservice teachers and in-service
teachers in CT. A recent program that has been implemented
was CTFest: Sharing and Learning about CT which
sponsored by a grant from the Google Data Centre
Community Fund. During the CTFest, featured talks and
discussions were held for the teachers to learn about the best
practices in the teaching of CT. The attendees included
teachers of computer science, computer programming and
applications, computing, design and technology, and
computing-related  Applied  Learning  Programmes;
colleagues from Curriculum Planning & Development
(CPDD) of MOE, polytechnics lecturers and Singapore
Science Centre. Industry partners were also invited to
exhibit their work in computing education.

Educational experiences are needed for the teachers from all
levels to prepare them well to teach CT concepts effectively.
Knowing the standpoints of preservice teachers towards CT

can serve as applicable resources for creating teacher
preparation programs, policies, and syllabus materials to
support the teachers to integrate CT into their teaching
practices (Rich, Yadav, & Schwarz, 2019). Thus, this study
is intended to determine preservice teachers’ views of CT
through a pilot survey. It is led by these research questions:

(@) How do preservice teachers view computational
thinking?

(b) What are the differences in the view of computational
thinking between STEM and non-STEM preservice
teachers?

2. LITERATURE REVIEW

CT has the potential to promote problem-solving skills and
capabilities among the students as they start to think in new
ways (Yadav et al., 2014). Therefore, the students should be
taught to understand computational procedures and develop
skills for representing and abstracting information (Lu &
Fletcher, 2009). Hemmendinger (2010) also claimed that the
aim of teaching CT was “to teach them how to think like an
economist, a physicist, an artist, and to understand how to
use computation to solve their problems, to create, and to
discover new questions that can fruitfully be explored” (p.
4). Yadav et al. (2011) asserted that teacher education was
one discipline where CT would have a noteworthy effect on
K-12 education. This was because if the preservice teachers
were able to present their CT ideas in the teaching, the
students would have the superior experience of computing
in general.

Some works have been executed to determine how
preservice teachers view CT. For instance, Chang and
Peterson (2018) accomplished a study to identify the
perceptions of CT among preservice teachers. The
preservice teachers define CT as an important literacy, with
elements of thinking in a logical series and steps, thinking
for solution and creating strategies, and demonstrating
thinking. Furthermore, Bower and Falker (2015) conducted
a study to investigate the understanding of CT among
preservice teachers. The results indicated that almost one-
third of the preservice teachers regarded CT as problem
solving using technology, and utilizing technology. Another
study was done by Yadav et al. (2014) to evaluate the
understanding of CT among preservice teachers. The
preservice teachers perceived that CT as heuristics and
problem solving, algorithms, use of computers or
technology, and critical thinking.

3. METHOD
3.1. Respondents
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329 preservice teachers in the National Institute of
Education, Singapore who participated in this study. They
had just completed their year-long teaching training courses,
and were about to go to school for their practicum before
graduation as a teacher. They were trained to teach at least
two subjects. Most of them (n=147, 44.7%) had the
curriculum subject of English Language / Literature /
General Paper. This is followed by the subjects of Mother
Tongue (n=92, 28%), Mathematics (n=82, 24.9%), Science
(n=59, 17.9%), History / Social Studies / Geography /
Economics (n=76, 23.1%), Art / Music / Drama (n=21,
6.4%), Computer Applications (n=3, 0.9%), Principles of
Accounts (n=3, 0.9%), Elements of Business Skills (n=2,
0.6%), Character and Citizenship Education (n=2, 0.6%),
Social Studies (n=1, 0.3%), and French (n=1, 0.3%). 121 of
them were trained to teach STEM subjects including
Mathematics, Science, and Computer Applications. We
considered them as STEM preservice teachers if they were
trained and prepared to teach at least one STEM subject.
Meanwhile, 208 of them were trained in teaching non-
STEM subjects. All of these preservice teachers were
required to attend a one and half hour long CT introductory
session as part of their Beginning Teacher Orientation
Programme.

3.2. Pilot Survey

At the beginning of the session program on CT, the
respondents had to complete a pilot survey which consisted
of two questions. The first question was in multiple-choice
format, and the second question was open-ended. The first
question was “What subject areas have you been prepared to
teach?” and the second question was “What is your current
understanding of computational thinking?”” The respondents
answered the questions using google forms. The responses
of the second question were analyzed using an open coding
approach to identify the preliminary analytic categories. If
the responses contained multiple features, they were put
under two or more categories, for instance ‘Problem solving
with the use of computers’ was included in the categories of
‘problem-solving’ and ‘using ICT/computer’ (Bower &
Falkner, 2015).

4. FINDINGS

4.1. Preservice Teachers’ Views of CT

Table 1 presents the views of CT among preservice teachers.
In Table 1, we notice that the majority of the preservice
teachers perceived that CT was logical thinking or reasoning
with a total frequency of 80. It was surprising that a number
of preservice teachers (n=43) did not have any idea or
understanding of CT. Most of them (n=38) also regarded CT
involve the use of ICT or computer. 32 of the respondents
viewed CT as coding or programming. Besides that, the
preservice teachers also thought that CT was related to
problem-solving, with a frequency of 30 and CT was
systematic or systematic thinking with the frequency of 19.
They deemed that CT was thinking or thinking process
(n=13), computation or calculation (n=10), and algorithm
(n=10). This is followed by mathematics (n=8), analytical
thinking or analytical thinking (n=8), and programming
(n=8). Six of the respondents conceived that CT was step
by step and thinking like a computer. Methodical thinking

and analysis were perceived as CT with a frequency of 4
respectively. Furthermore, CT was also considered as
computing skills or principles (n=3), sequencing or
sequential thinking (n=3), artificial intelligence (n=3),
structured or structured thinking (n=2), and using software
(n=2). The other CT views with a frequency of 1 were
including stepwise thinking, thinking like a bot, thinking
like a coder, rational thinking, IT-related thinking,
engineering-related and so on.

Table 1. Preservice Teachers’ views of CT

No CT Views Frequency
1 Logical thinking/reasoning 80
2 No idea/No understanding/Not sure 43
3 Using ICT/computer 38
4 Coding/Programming 32
5  Problem solving 30
6  Systematic/Systematic thinking 19
7  Thinking/Thinking Process 14
8  Computation/Calculation 10
9  Algorithm 10
10 Mathematics 8
11 Analytical/Analytical thinking 8
12 Steps/Step by step 6
13 Thinking like a computer 6
14 Methodical thinking 4
15 Analysis 4
16 Computing skills/principles 3
17 Sequencing/Sequential thinking 3
18 Aurtificial intelligence 3
19 Structured/Structured thinking 2
20 Using software 2
21 Algorithmic thinking 1
22 Strategy 1
23 Robots 1
24 JavaScript 1
25 Out of box thinking 1
26 Recursion 1
27 Stepwise thinking 1
28  Giving instructions 1
29  Rational conclusions 1
30 Commands 1
31  Thinking like a bot 1
32 Thinking like a coder 1
33 Thinking like a machine 1
34 Numbers 1
35  Higher order thinking 1
36 Excel 1
37  Statistics 1
38  Permutation 1
39 Combinations 1
40 Configurations 1
41  Decision making 1
42 Directions for machines 1
43 Computer terminology 1
44 Technical 1
45  Algebraic thinking 1
46  Binary codes 1
47 lterations 1
48  Processing thoughts effectively 1
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49  Thinking procedurally 1 Coding/Programming 10.7 9.1
50 Procedure 1 Systematic/Systematic thinking 8.3 4.3
51 Mathematical thinking 1 Thinking/Thinking Process 5 3.8
52 Rational thinking 1 Computation/Calculation 5 1.9
53 Memory work 1 Algorithm 1.7 3.8
54  Managing complexity 1 Mathematics 2.5 2.4
55 Using models 1 Analytical/Analytical thinking 3.3 1.9
56  Proactive thinking 1 Steps/Step by step 3.3 1
57 ICT lesson 1 Thinking like a computer 2.5 14
58 IT-related thinking 1 Methodical thinking 1.7 1
59 Optimization 1 Analysis 0.8 14
60 Function 1 Computing skills/principles 0.8 1
61 Graph theory 1 Sequencing/Sequential thinking 0.8 1
62 Standardized thinking 1 Artificial intelligence 0 14
63 Solutions 1 Structured/Structured thinking 0 14
64 Making teaching easier 1 Using software 0.8 0.5
65 Engineering-related 1
35
4.2. Comparison of the view of CT between STEM and 30
non-STEM preservice teachers ,e
Based on Table 1, the views of CT that had a frequency of 2
or more than 2 were included in the analysis to compare the 20
differences in the view of CT between STEM and non- 15
STEM preservice teachers. From Table 2 and Figure 1, it can 10 | ‘
be observed that more STEM preservice teachers (28.9%)
viewed CT as logical thinking or reasoning than non-STEM | “ |
preservice teachers (21.6%). Most of the non-STEM LHTH T N T
preservice teachers (15.9%) did not know about CT RN »@:ﬁa a‘@ 2P S
compared to that of STEM preservice teachers (8.3%). @?;‘g?i-yi-*ﬁﬁﬁ,‘?}f‘.f\@{;@ﬁw@":@iﬁ‘\ i\qfﬁi‘@\_‘%s_‘i S
When compared to non-STEM preservice teachers, the S O )
STEM preservice teachers were more likely to consider CT ST EIEE \\\-&‘s‘\v & S
as coding or programming (10.7%), systematic or systematic ;;3\*‘ %@“@ h w ‘jjch &
thinking (8.3%), thinking or thinking process (5.0%), ) MSTEM M Non-STEM
computation or calculation (5.0%), mathematics (2.5%),

analytical or analytical thinking (3.3%), steps or step by step
(3.3%), thinking like a computer (2.5%), methodical
thinking (1.7%), and using software (0.8%). The percentage
for the non-STEM preservice teachers for these ten CT
views was 9.1%, 4.3%, 3.8%, 1.9%, 2.4%, 1.9%, 1.0%,
1.4%, 1.0%, and 0.5% respectively. In the contrast, the
STEM preservice teachers were less likely to regard CT as
using ICT or computer (10.7%), algorithm (1.7%), analysis
(0.8%), computing skills or principles (0.8%), and
sequencing or sequential thinking (0.8%). The percentage
for non-STEM preservice teachers was higher than STEM
preservice teachers for these five CT views, i.e. 12%, 3.8%,
1.4%, 1.0%, and 1.0%. Both STEM and non-STEM
preservice teachers deemed CT as problem-solving which
had the same percentage of 9.1%. Non-STEM preservice
teachers considered CT as artificial intelligence and
structured or structured thinking with a percentage of 1.4%
each, but there was 0% for the STEM preservice teachers.

Table 2. Comparison of views of CT between STEM and
non-STEM preservice teachers

CT Views STEM Non-
STEM
Logical thinking/reasoning 28.9 21.6
No idea/No understanding/Not sure 8.3 15.9
Using ICT/computer 10.7 12
Problem solving 9.1 9.1

Figure 1. Comparison of views of CT between STEM and
non-STEM preservice teachers

5. DISCUSSIONS AND CONCLUSION

The overall findings demonstrated that preservice teachers
did not have a sufficient understanding of CT. This indicated
that a lack of awareness of how CT skills can be
incorporated into their teaching practices, thus implying that
more work needs to be put in to expose them to knowledge
and practices about the integration of CT in the classrooms.
The majority of preservice teachers perceived that CT as
logical thinking which is analogous with the result of a study
from Chang and Peterson (2018) where CT is seen as
thinking in logical steps. The preservice teachers had
comparable responses with the study of Sands, Yadav and
Good (2018) where CT involved problem-solving, logical
thinking, thinking like a computer, mathematics, using ICT
or computer, coding or programming, and algorithm. CT
was regarded as problem solving and mathematics which is
also consistent with the finding of Rich, Yadav and
Schwarz’s (2019) study. The preservice teachers were
capable to determine the types of thinking connected with
CT, such as analytical thinking, mathematical thinking,
logical thinking, and structured thinking, which is
compatible with the study of Bower and Falkner (2015). By
referring to Table 1, some of the preservice teachers were
able to identify the concepts and elements that related to CT,
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for example, algorithmic thinking, iterations, function, using
models, sequencing or sequential thinking, and thinking
procedurally. However, there were some responses in Table
1 that did not relate to CT or had no clear meaning, such as
JavaScript, configurations, memory work, solutions, and
graph theory.

Preservice teachers, regardless of STEM and non-STEM,
ought to have similar thoughts about CT. However, in this
study, it was found that the STEM preservice teachers had
different views of CT compared to non-STEM preservice
teachers. Unlike the non-STEM preservice teachers, the
STEM preservice teachers were more likely to perceive CT
as logical thinking or reasoning, coding or programming,
systematic or systematic thinking, thinking or thinking
process, computation or calculation, analytical or analytical
thinking, steps or step by step, thinking like a computer,
methodical thinking, and using software. On the other hand,
the STEM preservice teachers were less likely to regard CT
as using ICT or computer, algorithm, analysis, computing
skills or principles, and sequencing or sequential thinking.
More non-STEM preservice teachers did not have an idea or
understanding concerning CT. This is most likely because
STEM preservice teachers may have more exposure to
Computing courses in their tertiary education before joining
the preservice teaching course. Both STEM and non-STEM
preservice teachers had the same response for CT as
problem-solving. Two remarkable differences of view of CT
between STEM and non-STEM preservice teachers were the
artificial intelligence and structured or structured thinking as
none of the STEM teachers gave these responses. This could
attributed to non-STEM teachers perception that CT is
related to the use of technology.

In some countries such as the United Kingdom, efforts have
been made to integrate CT into all subjects at all levels, If
teachers have pre-conceptions of CT that differ from the
concepts of CT, it would be difficult to require teachers to
integrate CT into the curriculum, Our findings of this study
can serve as useful resources to help create teacher
preparation programs, policies, and syllabus materials to
help the preservice teachers to embed CT into their future
classrooms. It is proposed to implement more teacher
preparation programs on CT for the preservice teachers to
help them to be more familiar with the CT concepts and have
a better grasp on how CT can be employed in their future
teaching. The teacher preparation programs play an
important role in making a large-scale shift towards
embedding CT into K-12 education. Hence, preservice
teachers should have opportunities to experience CT during
their preservice courses. During the course, tangible or
practical examples of how to integrate CT into different

subject areas should be provided. Future research needs to
include a bigger sample of participants with diverse
demographics. Besides, this pilot survey does not tell us
much about the views of preservice teachers in detail. In
future research, we can further investigate where the
teachers are getting their ideas about CT from through in-
depth interviews and elaborate on them.
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ABSTRACT

Information technology is developing rapidly, and there is a large demand for scientific and technological talents, such as the
Internet of Things, Big data, Artificial Intelligence, etc. Therefore, how to cultivate the next generation with information
technology concept and program implementation technology ability and computational thinking ability has become a very
important and urgent problem to be solved in countries around the world. This study proposes that a set of 10T teaching
activities using the CT-6E model will be developed. Through 8 weeks of inquiry learning and practical teaching, students will
learn the concepts of the Internet of Things, explore applications in life, write programs and assemble electronic components,
and make 10T topics that integrate various modules. In addition, an empirical study is planned to explore whether this course
can more effectively improve students' 10T learning effectiveness, computational thinking ability, and self-efficacy than
traditional courses.

KEYWORDS
Internet of Things, computational thinking, self-efficacy, 6E model
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A Study on Influential Factors of Primary School Students' Computational
Thinking in Interdisciplinary STEM Teaching

Pinghong ZHOUY, Yi ZHANG?, Wei MO?, Jue WANG*
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4School of teacher education, Huzhou University, Huzhou Zhejiang
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ABSTRACT

This study explores the relationship among learners' metacognition, learning motivation and engagement and Computational
Thinking in interdisciplinary STEM teaching. A questionnaire survey was carried out in a primary school of Wuhan Economic
Development Zone. 593 samples were collected from 6 classes in grade 3, 4 and 5 of the primary school. The results of
structural equation model analysis showed that: (1) metacognition, learning motivation, engagement and computational
thinking were significantly positively correlated; (2) the direct and indirect effects of Metacognition on Computational
Thinking were significant. Indirect effect includes two paths: through the partial mediating role of learning participation and
through the chain mediating role of learning motivation and engagement; (3) the direct effect of learning motivation on
Computational Thinking is not significant, but it can affect Computational Thinking through the mediating role of
engagement. This conclusion provides the relevant strategy reference for the cultivation of students' computing thinking
ability.
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computational thinking, metacognition, learning motivation, engagement
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ABSTRACT

While the Next Generation Science Standards (NGSS) have
presented computational thinking (CT) as an integral part of
scientific inquiry, little work has been done to explicitly
enable this connection in classrooms. We report on the
efforts of one such design-based implementation research
project which, with participation from local teachers, has
been implementing CT infused STEM units in biology and
chemistry classrooms. Using teacher reflections facilitated
by an external evaluator, research field notes, and
interviews, we identify possible issues of frame alignment in
our implementations—that CT practices, particularly using
computational models, were valued but would not enable
students to gain a deeper understanding of scientific content.
We then use this analysis and Schulman’s definition of
teacher case knowledge to design a new element of the
project that aims to enable teachers to promote collaborative
scientific practice using computational models in the
classroom that we call Lesson 0. We conclude with the
discussion of a pilot implementation of this new lesson.

KEYWORDS
computational thinking, STEM education, teacher learning,
computational modeling

1. INTRODUCTION

For many years, Computational Thinking (CT) practices
have tended to only be featured in standalone computer
science (CS) courses, resulting in unequal access for
students from historically underrepresented groups in CS,
such as women and racial minorities (Margolis & Fisher,
2003). However, in our increasingly computational world,
CT has become a necessary and integral part of nearly every
discipline, particularly STEM disciplines (Weintrop et al.,
2015). In recent years, the Next Generation Science
Standards (NGSS) have made clear that using computational
thinking (CT) is a cornerstone of modern science education
(Quinn et al., 2012; Wilensky, Brady & Horn, 2014). By
embedding CT practices into high school STEM classrooms
like biology, chemistry and physics, we can simultaneously
improve access to CT for all students, particularly those
underrepresented in CS, while also providing a more
authentic STEM experience for students in these classes.

This work is part of a research practice partnership between
a Midwestern U.S. research university and a network of
urban high schools in a large Midwestern U.S. city. In this
paper we analyze and discuss the experiences of 6 teachers
who taught one of our CT-embedded curricula during the
academic year in the 2nd iteration of a design-based
implementation research (DBIR) project, where research
and practice are collaborative, iterative, and systematically
analyzed (Fishman et al., 2013). We identify shortcomings
of our previous curricular design and professional

development program that may have caused an issue in
frame alignment between scientific inquiry and CT. We then
propose a new introductory lesson to our curricula which
attempts to address these differences by framing CT as an
authentic part of scientific inquiry.

2. THEORETICAL FRAMEWORK

The character of CT practices in the science disciplines is
not yet well understood, nor is how to create curriculum and
assessments that develop and measure these practices
(Grover & Pea, 2013). To address this gap, our group has
explicitly characterized core CT practices through a
taxonomy of CT practices in STEM (Weintrop et al., 2016).
The taxonomy consists of practices related to Data,
Modeling and Simulation, Computational Problem-Solving,
and Systems Thinking. We translated our taxonomy into a set
of learning objectives and used these to guide the
development of the two CT science curricular units, one
biology and one chemistry, used in this study. Our curricular
approach, which aligns with that of the NGSS, emphasizes
figuring out core ideas through engaging in CT practices,
rather than treating the dimensions separately (NRC, 2012).

In this manner, we see frame alignment as one of the major
roadblocks to integrating CT into STEM classes (Farrell et
al., 2018). Frame alignment refers to “the linking of two
ideologically congruent but structurally unconnected frames
regarding a particular issue or problems” (Benford & Snow,
2000, p. 624). While NGSS embeds CT as one of its core
practices, competing frames of promoting scientific
discourse in the classroom, integrating CS for all ideas, and
even simply encouraging student agency in using CT for
inquiry can all be vying for precedence in a teacher’s
sensemaking of new curricula.

3. METHODS

As part of the second iteration of the DBIR project, 6
teachers, 2 biology and 4 chemistry across 2 high schools,
implemented one of our two week (10 class period)
curricular units during the 2016-2017 school year. The two
schools (one urban and one suburban) were all located near
a large Midwestern U.S. city. Each of the teachers had at
least five years of experience in their respective subject.
Prior to their implementation, each of the six teachers
participated in a professional development program which
defined CT practices in STEM, familiarized the teachers
with the curricular units they would implement through
selective enactment, and allowed teachers to review and
redesign the curricula with edits and tweaks based on their
particular classroom needs.

3.1. CT Science Curricular Units

Both the chemistry and biology curricular units were
explicitly designed to teach traditional subject matter
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content through the enactment of CT practices. The units
focused on helping students develop practices for Modeling
and Simulation through exploring NetLogo (Wilensky,
1999b) models. NetLogo models were chosen because the
agent-based representations in this modeling environment
make complex systems phenomena (like population
dynamics in ecosystems), more accessible (Wilensky,
2001). The chemistry unit covered the basics of the Ideal Gas
Laws through exploring how micro-level particle
interactions give rise to the macro-level effects like pressure
and temperature (Wilensky, 1999a). The biology unit
focused on the principles of ecosystems and evolution with
students designing and interacting with models of
competition between species to discover how ecosystems
reach equilibrium.
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Figure 1. A chemistry model of gas particles colliding with
the walls of a box which gives rise to the emergent
phenomenon known as pressure (link blinded for review).

In both units, students explore the relationship between
micro elements of the models and how they give rise to
system level effects. Students observe trends within their
data, use models to make and test predictions, and follow the
steps of scientific inquiry in order to construct a deeper
understanding of these phenomena (Wilensky & Reisman,
2006). These units are intentionally designed so that students
engage in CT practices as part of an authentic scientific
inquiry experience (NRC, 2012). The units are presented in
the form of guiding questions, which encourage students to
use either their prior knowledge or the exploration of a
computational model to engage with the curricular content.

3.2. Data Collection

Data collection took place across twenty-two classes
amongst our 6 teachers. Class periods were videotaped
resulting in around 118 hours of video data. In addition, at
least one researcher attended each class period and recorded
written field notes. Because the curricula were hosted on our
website, all student responses were recorded digitally).
Finally, the teachers participated in interviews with an
external evaluator about their experience with the
professional  development program and curricular
implementation. For this paper, we use these teacher
reflections and field notes to discuss frame alignment issues
and motivate our new design efforts to mitigate those.
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Figure 2. A biology model which allows students to
manipulate behaviors of wolf and moose and
reason about their emergent population
dynamics (link blinded for review).

4. RESULTS

We had theorized that the students would emergently
collaborate using this shared curriculum and computational
models, with the teacher acting as a facilitator and modeling
classroom talk (McNeill & Pimentel, 2010). In this manner,
students would be participating in teams for scientific
discovery—to discover the core ideas of gas laws and
ecosystem stability. Computational models have been
shown to be fruitful for this sort of classroom-level
knowledge building (Wilkerson et al, 2007). In addition, in
a pre-survey, 484 of 526 student participants agreed with the
statement ‘“People who have careers in science or computing
need to work well in teams.” In essence, we expected that
students would use the computational models of anchoring
phenomena for classroom talk and construct knowledge at
the classroom level.

While we did see episodes of students debating
computational methodologies in order to solve problems, we
rarely saw classroom-level discussions of using a
computational model for scientific inquiry. Some teachers
facilitated classroom discussions at the end of each period
on the “takeaways” (i.e. “organisms can compete indirectly
if they are sharing a finite resource”) for the day—an activity
they classified as “usual practice” in their classrooms.
Although these takeaways served as fruitful points of
classroom discussion, none of the teachers explicitly talked
about CT practices in these wrap-up discussions. In fact, one
chemistry teacher Veronica saw the CT and chemistry
content in direct conflict with each other.

| felt that, if the purpose is for them to see CT within content,
yeah, but content was—/ don ’t think it was as cohesive. Like
the idea [was supposed to be], “Okay, so we re gonna teach
gas laws and incorporate CT.” It was more, “We're using
that law to teach you computational—to teach you how to—
to show you how models work.”

Even the most experienced teacher in our study Ulyana, who
was the head of the biology department at her school,
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admitted that her number one concern during her
implementation was to teach her students the biology
content of the unit. Francine, another chemistry teacher
made a similar comment,

I like the use of models in the classroom... | would have liked
to see more of them walking away with more of the typical
expectations for gas laws that you would expect students to
get in those kind of conversations, but I like the use of models
and the learning that they had with the models.

As such, Francine followed wup the two-week
implementation with a lecture-based repeat of gas laws to
each of her classes. Her interview suggested she saw the
models as a way of reinforcing a concept rather than an
introductory or exploratory instrument. While each of our
teachers saw the need to have CT embedded in the
classroom, there was no indication that they saw our
curricular approach, emphasizing figuring out core ideas
through engaging in CT practices, as aligned with their
content-specific goals.

While we believed our curricular design would help teachers
elicit student thinking about both content and CT, from these
results, we see that there was a significant discrepancy
between how our team and how the teachers/students saw
the alignment between content and the computational
models and activities. We became interested in how to
address this lack of frame alignment and whether we could
design an introductory lesson that would provide a frame
from which all the goals could be seen as aligned. In the rest
of the paper, we describe our proposed solution.

5. PROPOSED SOLUTION AND PILOT

OUTCOMES

Our analysis of teacher reflections revealed that the lack of
clarity about connections between content and CT to the
students and teachers may have led to the lack of
collaboration and discussion related to CT practices and
scientific inquiry. To use Schulman’s (1986, pg. 11) term,
we had provided teachers with a small amount of case
knowledge—a parable which conveyed CT practices as the
norm of the scientific community—without providing the
associated prototype and precedent (1986). We used this
framing from Schulman to design a new preparatory element
for each of the curriculum we call Lesson 0: How to Learn
with Computational Models (see it here: link removed for
blinding). The lesson is meant to be used by both teachers
and students as a sort of rehearsal of learning with
computational models in order to get ready for the more
discipline specific content coming later in each curriculum.

New science standards and reforms articulate a commitment
to greater student agency with a disciplinary focus: that
students should take on increased responsibilities for
deciding what to figure out in science classrooms and how
(Berland et al., 2016). In our curricular implementations,
these frames seemed to conflict with the frame of CT as a
way of scientific inquiry. As such, Lesson 0 is designed with
three main principles: 1. Scaffold students into discussions
of how scientists use models; 2. Engage students with
computational models as a method of scientific

experimentation; 3. Demonstrate how to develop new
understandings of using a computational model.

The lesson centers on a computational model of a forest fire
and is divided into four sections meant to make explicit the
ways in which computational models can be used to explore
scientific concepts and engage in scientific inquiry
practices. It was designed to scaffold teacher and student
sensemaking with Schulman’s (1986) three types of case
knowledge in mind. In Step 1 (Using models to learn
science), we make explicit the precedent that scientists use
models, and specifically computational models, as methods
of inquiry. In Step 2 (A not-so-sneak peek into the code), we
encourage classroom-level discussion of debugging as a
parable, establishing discussions about the code behind
computational models are a valued norm of a CT classroom.
In Step 3 (Systematically investigating the spread of
wildfire), we present an implementation of a prototype of
scientific inquiry, where students make hypotheses, design
computational experiments, and draw conclusions based on
the computational models. Finally, in Step 4 (Constructing
knowledge by engaging in scientific inquiry practices), we
further enforce the parable of the classroom as an arena for
knowledge construction through discussion of both
experimental conclusions as well as computational model
design.

We implemented this new lesson with a group 8 High School
science teachers at a Computational Thinking in STEM
workshop hosted at a large Midwestern U.S. University. The
second author served as the instructor, taking on the role as
teacher educator. Teachers were asked to “play-as” students
with the teacher educator serving as the teacher with the goal
of the teachers entering into a participatory relationship with
the lesson.

Ulyana, the same teacher from the prior iteration of the
study, was one of the participants in this workshop. In
addition to participating in the lesson as a student during the
workshop, she also implemented the very same lesson in her
classroom as the very first lesson of her biology unit. When
asked about her experiences teaching the unit in this new
iteration, Ulyana reflected upon her new understanding of
what it meant to use computational models in the learning
process:

So...in my head, my models were always the ones | did with
very physical models. | never thought about using
computational models until I met you guys. And those are
even more important, because they can then use those
computational models. That it can be seamless that you can
take the concepts that you're already going to teach and put
them into this model...and show the kids the value of
computational models. Yeah, | mean, they were | felt like
they what | learned is that they were [doing] what a real
scientist would do in collecting the data.

In addition to seeing students participate in the practice of
real science, Ulyana singled out how framing debugging and
code inspection as an expected classroom practice, as is done
in Lesson 0, allowed students to interact with models in a
deep way:

...We are going into the code and fixing any problem there
was so yeah, the kids, I can see that you could put a bug in,
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and the kids can fix it. And sometimes there were bugs in
accidentally, and we still had to fix so and that it isn't like
the end of the world is a win. It's just a code. You fix the
code. So nothing was ever really broken.

She also remarked how her students performed well on her
typical AP-style assessments after completing the CT
curricula: “So, they not only learned how to use a
computational model, they learned the content | needed for
their AP test.” In short, Ulyana saw the computational
models as opportunities for students to engage
simultaneously in both science and CT. In the coming
months, additional teachers will be implementing a similar
curricular structure featuring Lesson 0 as the beginning of a
CT infused STEM unit. We hope to continue to analyze
student and teacher data to further learn how we can refine
Lesson 0 to support CT as a hormal classroom practice.

6. CONCLUSIONS

In this paper, we presented an analysis of data from an
iteration of DBIR project that suggested that frame
alignment was an obstacle in our goal of allowing students
to use computational models to discover core disciplinary
content ideas. We then presented a modification to our
curricula: a prepended lesson to help both teachers and
students better understand how computational models might
serve as tools (and objects) of scientific inquiry. In order to
assist teachers in integrating CT into STEM classrooms, we
see a need to provide explicit prototypes, precedent, and
parables in order to help teachers align the seemingly
competing frames of teaching expected content, scientific
inquiry practices, and computational thinking. We see
Lesson O as one possible method of allowing both teachers
and students to make sense of how these frames align in
service of a new form of scientific learning.
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ABSTRACT

With Industrial Revolution 4.0, the need to develop
interdisciplinary skills has been highlighted in many
curricula globally. Programming skills is one of the core
skills. Aiming to develop creativity and computational
thinking skills through collaborative storytelling using
blocks of Python codes in a system called FunPlay Code;
technology acceptance factors have been identified in an
earlier study. This paper presents the initial developed
prototype. A work-in-progress, future work involves user
testing and further development, possibly, involving more
open co-design.

KEYWORDS
FunPlay Code, computational thinking, Python, storytelling,
collaborative

1. INTRODUCTION

Industries and trends are constantly changing and evolving.
The Fourth Industrial Revolution (IR4.0) further poses an
ever-looming potential threat of the loss of certain jobs in
the foreseeable future. To address these concerns, much
emphasis has been included in curricula to encourage the
learning of programming concepts and principles and to
develop programming skills to cope with the immense
growth of technology in the 21% century.

In addition, Deloitte and other TechTrend analysts have
encouraged developing flexibility and transfer. For instance,
Stubbings in PricewaterhouseCooper’s (PwC) 2018 analysis
report, agrees with the general sentiments of countries and
industries. She notes that “The secret for a bright future
seems to lie in flexibility and in the ability to reinvent your-
self.” As such, in her projection of the future of work in
2030, she emphasizes the need to broaden mindsets and
perspectives across different knowledge branches. “Think
about yourself as a bundle of skills and capabilities, not a
defined role or profession”.

1.1. Problem Statement

The scenarios introduced earlier imply that we need to be not
only predictive but also adaptive and agile across
disciplines. It is no longer adequate to concentrate only on a
single way of thinking, learning and even working. There is
a need to bridge the gap between the Arts/Humanities and
the ever-expanding field of technology. This applies to every
field from education, to art, fashion and even politics.

Scratch and Alice (Figures 1a and 1b) are examples of such
endeavours. They combine graphical blocks but remove the
obstacle of traditional programming code syntax and
debugging-oriented graphical user interface. In that way,

programming is made more understandable, clearer,
accessible and more appealing to a broader audience.

Figure 17b. Alice User Interface

Lee and Jiang’s (2019) study further assesses computational
thinking skills of students’ fractal Scratch projects based on
Dr. Scratch’s assessment rubric. Findings indicate that the
main difference between experts and novices is abstraction,
different perspectives and different types of media. This
confirms the viability of combining both logical thinking
and design thinking through collaborative storytelling.
Furthermore, in line with computational thinking, the
experimental playground needs to be programming-related.

The hypothesis is that since stories are logic-based, they may
provide an easier and more interesting entry for novices.
Furthermore, if eventually computational art comes into the
picture, it may be even more motivating.

1.2. Project Objectives

This system is developed pursuant to Lee and Jiang’s (2019)
studly and Lee and Ooi’s (2019) FunPlay Code
conceptualization study. It is intended as collaboration
between three universities, two in Malaysia and one in
China. Lee and Ooi’s (2019) study seeks to identify design
factors, which would encourage young people to code, given
a collaborative storytelling system. Findings indicate that
perceived ease of use, perceived usefulness and social
factors are likely to influence technology adoption.

This Python-based application, FunPlay Code for the Web,
aims to narrow the gap between design and science by:

a) encouraging youth to think logically and motivating
them to adopt and/or adapt codes to create their own
digital stories in a more creative way;

b) encouraging re-evaluation and/or reframing and/or
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c) traversal between the Arts/Humanities and Science.

Correspondingly, in this FunPlay Code Python-based Web
application, participants can:

a) continuously create stories or blocks of stories or
contribute to others’ stories or blocks of stories in
Python codes;

b) compile the whole ‘story” and run upon request;

c) allow users to ‘like,” comment and share a specific
story, or part of it onto the user’s own homepage;

d) reframe the codes to form another perspective to fit their
objectives; recreating something new.

1.3. Project Solution

Python is the intended language when utilizing FunPlay
Code. To make the integration of the project less
complicated, the Application Programming Interface (API)
will also be coded in Python. In order to allow the use of
Object-Relational Mapping in Python, Krebs’ (2017)
SQLAIchemy will be used.

1.4 Project Approach

The initial collaborative storytelling system utilizes social
media and intelligent recommendation of resources (Wong
& Lee, 2011). It does not involve learning of codes. FunPlay
Code’s design challenge is to tell experiences using codes,
to imitate social media functions such as like, share,
comment, reuse and modify others’ codes to create a
continuous logical collaborative story. Preliminary user
requirements reported in Lee and Jiang (2019) stress on
perspectives and abstraction. Lee and Ooi (2019) indicate
the importance of human factors to technology adoption.

Hence, Agile Methodology is used to carry out this project.
It is chosen as it allows opportunities to assess the project’s
direction and allows room for change throughout its
development (Gongalves, 2019).

1.5 Scope of the Project

FunPlay Code will be a platform that allows participants to
create their own digital stories, adapt and reuse codes. It also
allows editing of existing codes and functions to like, share,
comment. The program must also be able to recognise
patterns and the semantics of programming logic. It should
however, only allow Python codes.

2. LITERATURE REVIEW

In 2013, ‘Higher Order Thinking Skills’ (HOTS) are
emphasized in the Malaysian curricula across primary,
secondary and tertiary education to transform education
from the traditional ‘drill-and-kill> method of learning to
nurturing flexible, inventive mindsets (Rajaendram, 2018).
The importance of HOTS has increased since then. Some
theoretical foundations are presented below.

2.1. Creative Learning

Creative thinking can be seen via Problem-Based Learning.
“Psychological research and theory suggest that by having
students learn through the experience of solving problems,
they can learn both content and thinking strategies” (Hmelo-
Silver, 2004). She states that in Problem-Based Learning, a
student learns not only through facts and textbooks. Instead,
it is centered on addressing complicated questions that have

no fixed answers. Furthermore, students are encouraged to
work cooperatively in order to determine what they need to
solve the problem.

In his paper Sowing the Seeds for a More Creative Society,
Resnick (2007) opines that success does not fully depend on
one’s knowledge. It also depends on one’s “ability to think
and act creatively”. He thus urges modern-day students to
learn to “think creatively, plan systematically, analyse
critically, work collaboratively, communicate clearly,
design iteratively, and learn continuously”. This gives rise to
the “creative thinking spiral” (Figure 2), to guide them to
“imagine” more, in multiple iterations.
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Figure 7 Creative Thinking Spiral

2.2. Computational Thinking (CT)

Another aspect of creativity is highlighted by Wing (2006).
Wing describes computational thinking as a necessary skill
for everyone, from young children to working adults, even
if they are not in the Information Technology field.

CT involves asking questions that are frequently
encountered in software patterns and even software
development: What is the problem in this situation? How
difficult is it to solve this problem? What is the optimum
method to solve it? These are questions that build the
theoretical foundations of computer science. They can also
function as a set/list to solve an existing issue. It allows us
to break down large numbers of probabilities and
information into smaller, digestible portions.

“Computational thinking is thinking recursively. It is
parallel processing. It is interpreting code as data and
data as code.”

“Computational thinking is using abstraction and
decomposition when attacking a large complex task or
designing a large complex system.”

Wing’s definitions help to form the bases of what the system
should do. By mapping computational thinking to how a user
would relate to the flow of the software, it would help
enhance user’s experience and assist them in understanding
code logic. It also makes it easier to weigh the benefits and
consequences of choices that we make.

2.3. Waterfall Methodology

The Waterfall Methodology does not allow room for the
development to adapt to changes, when it is far into the last
stages. For the FunPlay Code project, Waterfall
Methodology would not be recommended as there is a high
probability of changes to the functional requirements in the
future. Since the project would be a collaboration between
multiple universities, changes due to feedback are much
expected especially later in the development process.
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2.4. Agile Development Methodology

Agile Methodology centres around the ability to accept and
adapt to change. It allows software development to progress
and smoothly work through uncertainties faced. According
to Gongalves (2019), there are four vital values to Agile
Development:

e Focus on individuals and interactions, less, on the
development processes and the tools.

e Prioritize properly functioning software over overly
thorough documentation.

e Build cooperative relationships between customer and
developer more than contract negotiation.

e Enable flexible development and responsiveness to

change, not just follow a strict plan and schedule.

With values that heavily emphasize cooperation and
collaboration between the developing team and the client, it
allows potential for the development team to respond to a
client’s feedback throughout the development process. This
is especially important since FunPlay Code is mainly a
collaborative project between Universiti Tunku Abdul
Rahman and Sunway University at this point.

3. METHODOLOGY

3.1. Development Methodology

The first objective of FunPlay Code for Web is to build a
platform that can act as a bridge between the Arts/
Humanities and Science. The methodology selected for this
project is the Dynamic Systems Development Model
Methodology (DSDM). DSDM is an agile iterative,
incremental framework (Buehring, 2019). DSDM is chosen
because DSDM focuses on a project’s specific goals and
objectives; shaping the project’s development around its
goals.

For instance, besides the set functions of creating,
contributing, deleting and social sharing of digital stories,
DSDM allows sufficient space for improving and adding
features without compromising the main key features of the
software. This is done by specifically prioritising each
requirement with DSDM’s principle of using MoSCow:
keeping track of a requirement’s priority by labelling them
with ‘MUST’, ‘SHOULD’. ‘COULD’ and ‘WILL NOT".
Thus, the flow of the project development would focus on
fulfilling the requirements before moving on to what the
software is further capable of.

Furthermore, since FunPlay Code is intended to be
interactive and used by users who may have little to no
Information Technology knowledge, it is vital that the
interface of the software be easily navigational and
understandable to the wusers. DSDM’s principle of
prototyping ensures that for every prototype created, users
would be involved to test it in order to ensure it is
functioning and ‘user-friendly’; allowing early discovery of
flaws and bugs, room for change and possibilities and
software development grows over time. Hence, as DSDM
allows user involvement, and changes to be implemented
during development, the outcome should be better.

3.2. Development Tools

Software development tools are used by developers for the
purpose of accomplishing a specific task such as compiling,
testing, maintenance or debugging. The subsections below
state and describe the tools used for this project.
Development tools are ReactJS and GitHub.

GitHub is good for tracking as it is possible to list down a
series of functions that the software must have and should
have by using a feature called GitHub Issues. This relates to
the DSDM’s principle of prioritising features to ensure that
the project meets its stated requirements. The way that
GitHub Issues function is by creating an ‘issue’ and
specifically tagging them (Figure 3) with certain labels.
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Figure 3. GitHub Issues obtained from ROBINPOWERED

GitHub would ease the load of project documentation. As
project development grows, it becomes easier to forget
smaller notes or minor bug fixes. Bigger loads mean more
things to remember, and with GitHub feedbacks, notes can
be made as reminders and flagged once completed. This
ensures that most problems can be tracked and recalled
more easily rather than leaving it to manual documentation.
As everything would be stored and noted on GitHub, these
would help developers check if what is done during
development matches the requirements.

4. PROJECT INITIAL SPECIFICATION
FunPlay Code for Web is a web-based application that
allows users to create their own digital stories and contribute
to digital stories created by others. The software must allow
sharing, commenting and ‘liking’ of stories.

4.1. System Requirements

4.1.1. Login

4.1.2. Create Digital Stories

4.2.3. Contribute to Digital Stories

4.2.4. View Digital Stories

4.2.5. Share Digital Stories

4.2.6. Like and Comment on Digital Stories

A sample use case description is presented in Table 1.

Table 1. ‘Create Digital Stories’ Use Case Description
No. 2

Use Case Name Create Digital Stories

Actor(s) User with Account

Short Description Authorized Users (users with a valid account)
can create new digital stories.

User clicks the “create” button

Action only valid for users with existing account

Trigger
Preconditions

Flow 1. User logs into account
2. User clicks ‘Create New Story’

5. INITIAL PROTOTYPE DESIGN

The initial prototype design is as illustrated in Figures 5a, b,
¢. This initial prototype has not been tested yet by users as
we are concerned with technology acceptance factors
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identified earlier in Lee and Ooi (2019). Further
development is for Android (Vegean, Lee & Ooi, 2019) and
user testing. Figure 5d shows a sample screenshot of
FunPlay Code for Android.

v v v

Figure 5a. Home Screen

Figure 5b. Create Screen
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Figure 5c. View Screen
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Figurebd. Sample screens from the Android version
6. CONCLUSION
The world demands innovation, creativity; a combination of
design, and logic. With the theoretical foundations and

methodologies in mind, we hope to minimize mental blocks
involving more open co-design and to appreciate the power

of computer science and its relevance in diverse aspects of
our daily lives. FunPlay Code’s success/failure will depend
partly on socio-technological factors but we hope it would
develop further.
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ABSTRACT

Machine learning (ML) courses have traditionally been
taught through a math-first approach. They generally begin
by establishing mathematical theories behind ML, such as
the perceptron algorithm, logistic regression, and
backpropagation, and then use these building blocks to
motivate more complex structures such as neural networks.
Such educational resources may not be sufficient or
preferable for audiences who wish to use ML to build useful
artifacts but do not have a strong mathematical or
programming background. In this paper, we introduce a new
framework for teaching actionable ML that combines three
components in a Use-Modify-Create progression: (1)
technical modules taught through hands-on labs, (2) a
capstone project, and (3) supplemental lectures for new
areas of research. This framework was applied in two
iterations of a semester-long practicum at Massachusetts
Institute of Technology (MIT) as a beginner-accessible
course aimed at helping a broad range of students gain the
ability to ideate and implement independent ML projects.
We present the curriculum, student projects, pre and post-
course survey responses, assignment grades, reflective
discussions, and learnings from both iterations of the course.
Our results indicate that the proposed actionable
pedagogical framework for ML along with the content and
practices of the course were effective for increasing students’
practical self-efficacy in ML and computational identity as
developers of ML applications. The findings of this study
illuminate patterns of interaction with ML systems that
support a practical approach to teaching ML in order to
increase knowledge acquisition, future learning ability, and
motivation in beginner students.

KEYWORDS
machine learning, deep learning, actionable pedagogical
framework, experiential learning, small practicum

1. INTRODUCTION

As artificial intelligence (Al) and machine learning (ML)
have gained prevalence in public education over the past
decade, many interpretations of the two terms have been
presented. We define ML as models trained on large
amounts of data to inductively find patterns while Al also
includes algorithms crafted from general deductive
principles to solve specific problems (e.g. alpha-beta
pruning and minimax); and deep learning as a subtopic of
ML that uses neural networks with more than one hidden
layer (Lao, Lee, & Abelson, 2019). In order for an ML
system to “work”, it is dependent on the availability of high
quality data, scientific insights on features, appropriate
model architectures, and computational processing power.
Instead of being generally deterministic programs, ML

results in powerful statistical algorithms that can be hard to
debug and understand on a detailed level, such as when
analyzing a single error in a large neural network (Shapiro,
Fiebrink, & Norvig, 2018). Therefore, it may not be the most
effective to teach ML in the style of other algorithms courses
if we want to educate critical thinkers from a wide variety of
backgrounds. In designing our teaching framework, our
guestions were:

e Can students with no/minimal ML or CS experience
quickly apply ML to interesting and suitable problems
without being explicitly taught the underlying
mathematical theories?

What human and computational resources are needed
for an introductory, projects-based ML course?

This paper serves as an experience report that describes the
pedagogical learnings from designing and implementing a
small-scale, project-focused practicum that was successful
at helping students of various technical backgrounds
develop self-efficacy as machine learning project creators
(Lao, Lee, & Abelson, 2019).

2. BACKGROUND

2.1. Theoretical vs. Practical Approaches

Most current ML courses teach the mathematics of ML
during lessons (e.g. the perceptron algorithm or linear
regression), and ask students to work on proofs or math-
heavy problems for homework, which may involve
translating the relevant math into code (Dror & Ng, 2018;
see also Mobhri, 2018). However, such methodologies may
not work well for students who do not yet have a strong
foundation in probability, calculus, or linear algebra. In
contrast, practicums are often run as laboratory classes
where students work on assignments and projects during
class time with the support of mentors and/or teaching
assistants. This Deep Learning Practicum course is an
example of an ML practicum targeted towards university
students of a broad range of backgrounds that takes a
practical approach—its focus is on the “doing and use of
ML” and the creation of personal projects and applications.

2.2. Experiential Learning: Use-Modify-Create

In experiential learning, or “learning through reflection and
doing” (Kolb, 2014), learning can be elicited through direct
manipulation of objects or systems as “objects to think with”
(Papert, 1980). In our course design, experiential learning
exercises are combined with a capstone project through the
Use-Modify-Create Progression (Lee et al., 2011). We posit
that Use-Modify-Create can help students deepen
understanding of ML concepts and master practical skills: (1)
students use ready-made ML models within fast-response
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and user-friendly interfaces to develop high-level intuitions
about training, testing, and the importance of data, (2)
students manipulate the models directly to understand how
architectural modules, hyperparameters, and datasets impact
results for different problems, (3) students scope a problem
suitable for ML and create their own application.

This methodology can now be applied to ML due to the
creation of libraries that support in-browser ML experiments
such as TensorFlow.js (Smilkov et al., 2019), and user-
friendly applications such as Teachable Machine (Stoj.io et
al, 2018) and ModelBuilder (Google, 2018). These tools
allow students to modify powerful ML models (either
through a user interface or code) and test the results in real-
time, which enable novices to quickly gain experience
through direct manipulation of ML systems. Students can
quickly iterate through building a model, inputting data,
training the model, and analyzing results. Furthermore, these
“laboratory” experiences with ML systems provide students
with experiences that directly relate to the future of work at
the human-machine frontier.

2.3. Self-Efficacy and Engagement

This practicum's framework for teaching actionable ML
incorporates several mechanisms for engagement:
empowering students, creating meaningful experiences
through scaffolded, inquiry-based learning, and authentic
learning opportunities (Wu & Huang, 2007). The framework
also emphasizes self-efficacy, a belief in one's chances of
successfully accomplishing a task and producing a favorable
outcome (Bandura, 1977). Students with high self-efficacy
develop deeper interests in the tasks at hand and are more
motivated to learn challenging material (Bandura et al.,
2001). Recent work shows that self-efficacy is developed
and strengthened through seeing others like themselves
succeed, being persuaded by respected friends and advisors,
and reflecting on one's own capabilities (Bandura, 2004). As
such, our framework was designed to emphasize
collaborative work, work with near-peer mentors, and
exposure to ML professionals of diverse demographics
(gender, age, and race/ethnicity).

3. INSTRUMENTS AND ASSESSMENT
The data sources used to analyze the course’s impact
included anonymous responses to pre and post surveys and
analysis of capstone projects. At the time of the study, there
were no validated instruments for measuring self-efficacy in
ML. We created our post survey instrument based on
validated instruments for measuring self-efficacy in general
sciences, including Children's Science Curiosity Scale
(Harty & Beall, 1984) and Modified Attitudes Towards
Science Inventory (Weinburgh & Steele, 2000).

4. DEEP LEARNING PRACTICUM V1

The first version of the course ran for 1.5 hours 2x a week
over a 15-week semester in spring 2018 at Massachusetts
Institute of Technology (MIT). The course did not count
towards core undergraduate requirements and was an
elective course. In pre-registration, the instructors
emphasized that the course was meant for students who did
not feel comfortable working with ML and not experts
hoping to gain advanced techniques. Class size was

restricted due to the personalized, project-based nature of
instruction. Twelve students completed the course.

During the course, instructors aimed to ground theoretical
constructs of ML in hands-on applications that spanned
different topics. Six genres were covered in the pilot that
included predictive and generative applications of ML. The
order of genres followed the historical development of ML,
and naturally presented a progression in the sophistication of
ML models. There were 3 starter topics followed by 3
advanced topics. The instructors gave short explanatory
technical lectures (<15 min.) with in-class exercises in
TensorFlow.js that students ran on their own laptops. The
activities often leveraged existing datasets, pre-built models,
and web-based tools for ML. For each set of exercises,
students were asked to discuss their findings with a partner
or with the class. Student teaching staff provided technical
and instructional support. Weekly take-home assignments
provided an extension to the environment and the exercises
introduced during class.

The last 9 weeks of class focused on capstone projects and
guest lectures (GLs) from ML professionals and researchers.
Students chose a problem that personally interested them
and was suitable for an ML application. Mentors were paired
to each project. A week-by-week map of the version 1
curriculum is presented in Table 1.

Table 1. V1 of the curriculum annotated with the
ITEST Use-Modify-Create progression per week.
wk. Topics Progression
Use: Teachable Machine

1 K-Nearest webapp (Stoj.io et al, 2018).
Neighbors Modify: Confidence algorithms
in source code.
Use: Model Builder webapp
. (Google, 2018). Modify: Starter
2 Multilayer TensorFlow.js and HTML code
Networks - .
for programming multilayer
networks.
Use: Model Builder webapp,
Convolutional  filter visualization webapp
3 Neural (Harley, 2015), Fast Style
Networks Transfer webapp (Nakano,
(CNNs) 2018). Modify: Starter code for
programming CNNs.
Use: Embedding Projector
webapp (TensorFlow, 2018),
Generative Latent Space Explorer
4 Models and (deeplearn.js., 2018). Modify:
Embeddings Feature projection functions in
Latent Space Explorer source
code.
. Use: GAN Playground webapp
Gdeneratl\_/el (Nakano, 2017). Modify:
5 Adversaria Starter TensorFlow.js and
Networks .
(GAN) HTML code for programming
GANSs.
Recurrent Use: RNN text generation
Neural webapp (Karpathy, 2015),
Networks SketchRNN webapp (Ha,
6 (RNNs) and Jongejan, & Johnson, 2019).
Long Short- Modify: Architecture and
Term Memory  parameters in webapp source
(LSTMs) code. Create: Music generation
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RNN application through
TensorFlow Python notebook.

7 Project Create: Students scoped and
Overview presented 3 project ideas.
Create: Teams/individuals
8 Spring Break worked on the project proposal
writeup.
Project Mentor ~ Create: Teams submitted
9 Matching, GL:  proposals and were matched
Healthcare with industry mentors.
10 GGLl:_:rEgtlirr?ge?ﬁ d Cre_ate: Teams work on
Training Tools projects.
GL: Create: Teams work on
11 - :
Interpretability  projects.
Project
M'dpo'f_“ Create: Teams presented 5-
Checkpoint - .
12 p - minute project progress reports
resentations, . -
GL: At & in class, received feedback.
Music
13 i%';eizglri; Create: Work on projects.
Final
Presentation Create: Teams presented a
14 Dress practice run of their final 10-
Rehearsal, GL:  minute project presentations in
Adversarial class, received feedback.
Examples
Final Create: Present projects in
Presentation front of industry professionals
15 Showcase, and submit project writeups in
Project Writeup  the form of instructional blog
Due posts.

4.1. Student Demographics

Of the 12 students, there were 2 (17%) second-years, 4 (33%)
third-years, 5 (42%) fourth-years, and 1 (8%) graduate
student. Nine (75%) majored in EE/CS, 1 in Math, 1 in Math
& Physics, and 1 in Humanities. There were 3 black women,
3 Asian men, 2 Asian women, 2 white women, and 1 white
man. Ten students (83%) had basic exposure to Al or ML,
but wrote in the pre- survey that they wanted to take another
introductory course because they did not feel that they could
build practical applications. All students had at least some
coding experience, but only 8 (67%) had experience in
JavaScript.

4.2. Teaching Staff and Industry Mentors

There were 6 student staffers who helped debug in-class
exercises for each topic, answer questions, and lead
reflective discussions that directed towards learning goals
for the exercises. For the 9 projects in the class, 3 of the staff
mentored 1 project each and 3 mentored 2 projects each.
There were 9 industry mentors. We reached out to
companies and researchers in the area to ask for volunteers
who have experience with ML projects. We invited all
volunteers to a mixer with the students after project teams
had formed. At the beginning of the mixer, each mentor gave
a brief overview of their expertise and each student team
summarized their project goals. After the mixer, student
teams submitted their preferences for mentors and were
matched. Mentors met with teams during the beginning and
middle of their project cycles to help with high level ideas,
resources, and project scoping.

4.3. Capstone Projects

Within this “Create” stage of the course, students marshaled
the tools and techniques at their disposal along with
mentorship to create capstone projects. Students were
instructed to choose a project that they were personally
interested in, but were also cautioned that a realistic project
implemented well and evaluated thoroughly is better than a
half-implemented ambitious project with no result. Projects
could be a real-world Application of ML, an Exploration
of properties of neural networks, or a Replication of an ML
paper. To scaffold project scoping, students were given a “3
Ideas” assignment in which they presented 3 project ideas in
class. For each idea, students defined a “Safe” goal that they
were confident they could achieve by the end of the semester,
a “Target” goal that they hoped to achieve, and a “Stretch”
goal that would be good to achieve if extra time was
available.

Students had the option of finding a project partner after the
presentations. There were 9 projects consisting of 3 pair
projects and 6 solo projects. 7 projects were in the
Application category, 1 in Replication, and 1 in both
Application and Exploration. All teams achieved their Safe
goals. One team continued working on their project after the
class ended and was able to publish a paper.

4.4. Learnings for V2

Feedback was obtained through surveys and a discussion-
style post-mortem on the last day of class. Due to the small
class size, quantitative analyses are not presented to preserve
anonymity. Overall, students loved the interactive lab style
of the modules in the class. Two students with no prior
JavaScript experience felt that the course was surprisingly
JavaScript-independent, although some coding experience
was helpful. Students felt that the small class size was
beneficial in creating an environment that made them feel
comfortable speaking during the open reflective discussions
that accompanied in-class exercises. Nearly every student
felt that there was not enough time for project
implementation, but students also said that it was the most
valuable and enjoyable part of the course. Students
suggested that the course should cover data collection, data
processing, and using external computational resources to
better scaffold the projects. Students enjoyed the guest
lectures and thought that they helped “put what we learned
into a much bigger picture.” Students noted that some guest
lectures may have been useful before starting their final
projects and would have provided additional context for
project choices.

Several students said that the course demystified ML and
made it more approachable. Two students mentioned their
increased concern over bias in ML algorithms as well as a
deeper understanding of how to resolve some of these issues:
“Before this course, | thought of computer programs more
linearly — as if [programmers] were mostly in control of a
program's results. Now | have a much greater
understanding of how ML programs can be biased and
unfair... | learned the importance of providing good, varied
input data and how this data can have significant impact on
a network and ultimately the world.”
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5. DEEP LEARNING PRACTICUM V2

5.1. Changes from V1

The second version of Deep Learning Practicum was offered
at MIT in fall 2018, the semester following the pilot. There
were 6 main changes from version 1: (1) the final project
was introduced at the beginning of the semester and ran in
parallel to the modules portion of the course, (2) there were
two additional scaffolding workshops for the final project
(data mining and using computing clusters), (3) students
were required to have a partner for their project unless given
permission, (4) guest lectures were more interspersed
throughout the course instead of all at the end, (5) the staff-
to-student ratio decreased from 6:12 to 6:26, and (6) an
additional unit on reinforcement learning was added. The
full set of version 2 curricula, lectures, assignments, and
final projects can be found online at http://mit.edu/6.5198
(Lao & Abelson, 2018). A weekly summary of the version 2
curriculum is presented in Table 2 (Lao, Lee, & Abelson,
2019).

Table 2. V2 of the curriculum annotated with the
ITEST Use-Modify-Create progression per week.

wk. Topics Progression
K-Nearest Module from version 1 wk. 1
1 Neighbors, with more emphasis on
Transfer Learning  transfer learning techniques.
Multilayer Module from v1 wk2.
2 Networks, Project ~ Create: Scope 3 ideas for
Overview capstone final project.
Module from v1 wk3.
3 CNNs, GL: Modify: Starter adversarial

attack TensorFlow code on
CNNEs.

Use: Kaggle to find datasets
(Kaggle Inc., 2019). Modify:
3 project ideas based on
feedback. Create: Web
scraping scripts using
Beautiful Soup (Python
Software Foundation, 2019).

Adversarial Attacks

3 Ideas Project
4 Workshop, Data
Mining Workshop

Generative Models
and Embeddings,

. Module from v1 wk4. Use:
Computational

5 Resources Holyoke Computing Cluster
. tutorial (MGHPCC, 2018).
workshop, Project
Mentor Matching
6 GANs Module from v1 wk5.
Use: Metacar webapp
(thibo73800, 2019), OpenAl
Project Data Gym webapps (OpenAl,
7 Review, 2019). Modify: TensorFlow
Reinforcement starter code for RL. Create:
Learning Data review document to

describe project dataset
details.

Module from v1 wk®.

Create: Work on projects and
discuss progress with staff.

8 RNNSs and LSTMs

Informal Project
Checkpoint
GL: Art & Music,
10 GL: People + Al

Research

©

Create: Finish project
proposal.

Create: Work on projects and
show basic working demo to
staff.

Formal Project

1 Checkpoint

GL: Healthcare, Create: Present 2-minute

12 Project Practice project lightning talks, receive
Lightning Talks feedback for final showcase.
13 Office Hours Create: Work on projects.
Create: Presented capstone
Final Presentation projects to an audience of
14 Showcase varying ML experience with
lightning talks, then individual
booths.
. . Create: Submit project
15 PrOJecé\u/\érlteup writeups in the form of

instructional blog posts.

5.2. Student Demographics

Of the 26 students, there were 5 (19%) second-years, 6 (23%)
third-years, 11 (42%) fourth-years, 3 (12%) graduate
students, and 1 (4%) post-doc. Twenty students (77%)
majored in EE/CS, 2 in Architecture, 2 in Physics & EECS,
1 in Materials Science & Engineering, and 1 in Biological
Engineering & Math. There were 9 Asian women, 6 Asian
men, 5 white men, 3 Hispanic men, 1 black woman, 1 white
woman, and 1 black man. Similar to V1, 21 students (81%)
had basic exposure to Al or ML, but commented that they
wanted to participate in the course due to self-perceived lack
of ability to apply theory and math in building practical
applications.

5.3. Capstone Projects

For V2 of the course, students were asked to work in groups
of two for the final project due to the decrease in the staff-
student ratio. Students started work on the projects in wk. 2
of the course, so they had not been exposed to all of the topic
modules. The instructors were concerned that students may
avoid later topics and tried to mediate this by giving
lightning talks and sample use cases for the topics that would
be presented later. There were 14 projects, all of which
completed their Safe goal. All three project categories were
represented with the majority being Application projects.
More projects bridged multiple project categories than in V1,
likely due to students having more time.

The first project workshop was the 3 Ideas Workshop during
wk. 4, which changed in format from the pilot due to the
increased number of students: The staff ran two 30-minute
sessions of guided group presentations. For each session, the
class was divided into four groups of 5-6 students based on
shared project topic interests. One to two staffers led each
group, where students took turns presenting their 3 ideas.
During the final 30 minutes of the class, students were
encouraged to talk to others they had met and form groups.
After the 3 Ideas Workshop, there were two workshops
given on project skills: data collection and how to connect
to computing resources. There was also a data review
checkpoint assignment due in wk. 7 to confirm that students
had completed data collection and processing in a timely
manner.

5.4. Post Survey Responses

The post survey was emailed out after the course ended and
received 17 responses (65%). Demographic results indicated
that the participants were representative of the class in terms
of grade level, major, gender, and ethnicity. Table 4 presents
the responses to all linear scale questions, where 5 =
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“Strongly agree” or “Completely confident” and 1 =
“Strongly disagree” or “No confidence.”

Table 4. Means and standard deviations of post survey
linear scale question responses.

Item Mean S.D.

1 | felt that | was successful in this 44 06
class.
I am proud of what | was able to
accomplish in my final project.
I will be able to complete an ML
3 project (of a similar level and scale 4.6 0.5
to my final project) on my own.
In this class, | saw people like me
succeed at learning ML
When | saw people like me succeed
5 in ML, it made me feel that | could 4.3 0.7
succeed as well.
How confident do you feel about
6 describing your project to a non- 4.6 0.5
technical person?
The project work made me feel
uncomfortable

4.2 0.8

4.2 0.6

1.6 0.9

As a follow-up to Question 1, we asked “What did you use
to determine your sense of success in the class?”. The
majority of responders attributed their sense of success to
work on the final project (94%) and understanding of the
concepts presented in class (88%). Responses to “Which of
the following elements from the course did you use in your
project work?” also indicated that the modules and
workshops were helpful. More than half of responders said
they used concepts/architectures from the units (82%), used
independent researching skills [developed] through the
assignments (59%), or used the 3 Ideas Workshop to [help]
improve or refine [their] project idea (59%).

When asked “How can you see yourself using the tools,
techniques, and methods presented in the class?”, all

responders gave multiple use cases. The most prevalent were:

Applying ML to new domains (82%); Be(ing) able to talk
about it with experts (77%); Being able to talk about it with
non-experts (77%); Using it for fun (65%); Developing my
final project further (65%); Using it [for] another class
(65%); and Using it as part of a job (65%).

When asked “How did your views on ML change through
taking this course?”, 53% mentioned a “personal realization
of the easy application potential of ML”; 18% had
“increased enjoyment of the field”; 18% wrote “realizing
limitations of ML”; and 12% were “excited...the field is
rapidly evolving”.

6. DISCUSSION

The course aimed to help students with some coding
background and none to novice Al or ML knowledge gain
self-efficacy in ML. In general, students highly enjoyed the
course, felt that it helped demystify ML, and were
encouraged to pursue independent, personal ML projects in
the future. We felt that both iterations of the course were
successful in our goals, with V2 allowing students more time
for projects. Survey responses from V2 indicate that
successful completion of capstone projects most heavily
influenced development of self-efficacy in ML, and that the

modules portion of the course was successful at preparing
students for the projects. While our results are promising, we
recognize limitations to replication: there was a high staff-
to-student ratio and many students had exposure to ML/AI
before the course (although we found no significant
difference in performance between students of varying
levels of ML and coding backgrounds).

We believe that the following 4 components of the course
best contributed to its success: First, while the modules did
not teach all of the skills and concepts students needed for
every type of ML project, we hypothesize that the hands-on,
exploratory lab work for each application helped students
feel more comfortable playing with new architectures. This
encouraged students to conduct research and learn on their
own — 3 teams from V2 (21%) even applied methods not
taught in the class to their projects. Second, TensorFlow.js
allowed beginners to dive directly into exploring complex
and visually appealing ML applications — modifying ML
models in the browser allowed for near-instantaneous
feedback and reduced infrastructure problems. Third,
mentors for each project greatly assisted students in properly
scoping problems and finding resources. Fourth, the blog
post style for the final project writeup helped students learn
disciplinary sharing norms, situate their work in the
community, and identify with other ML developers,
enthusiasts, and researchers. Thirteen of the 14 projects from
V2 shared their project blog posts publicly on the web (Lao
& Abelson, 2018).

In replicating this course, the advanced modules (wk. 4+)
can be replaced based on the types of projects instructors
want to encourage (e.g. more types of RNNs, LSTMs, and
GAN:s for an arts-focused ML class). Additionally, we found
that transfer learning was extremely useful — students were
able to adjust and retrain high quality pre-built models with
great results for repurposed use instead of spending a long
time trying to create (often ineffective) models from scratch.
We recommend encouraging students to research and
experiment with different architectures as often as possible.
Many of the students without coding experience also
suggested that a version of the course could be adapted for
high school students.
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ABSTRACT

Recent advancements in deep learning have brought
machine learning and its many applications to the forefront
of our everyday lives. As technology has become more and
more integrated into our educational curriculum, researchers
have focused on creating deep learning tools that allow
students to interact with machine learning in a way that
incites curiosity and teaches important concepts. Our
research contribution focuses on applying transfer learning
and spectrogram audio classification methods to teach basic
machine learning concepts to students. We introduce the
Personal Audio Classifier (PAC), a web interface that allows
users to train and test custom audio classification models
that can classify 1-2 second sound bites recorded by the user.
We also contribute a custom App Inventor extension that
allows users to use the output of the web interface to create
App Inventor applications that rely on their trained custom
audio classification model.

KEYWORDS

machine learning, transfer learning, App Inventor

1. INTRODUCTION

From personal voice assistants to self-driving cars, machine
learning applications have permeated every aspect of our
daily lives. Much of these advances are thanks to the
subfield of machine learning known as deep learning, a field
primarily concerned with building large neural networks to
perform specialized tasks. Yet as researchers began to make
significant advancements in deep learning during the past
decade, it became clear that computational complexity,
training time, and esoteric development tools could pose as
a deterrent to widespread development of deep learning
applications. Transfer learning was born out of this
deficiency, spurred by Yosinski’s work (Yosinki, 2014) on
transferable features in deep neural networks.

1.1. Transfer Learning

Transfer learning is a machine learning method where an
existing deep learning model is used as the starting point to
train a model specialized for a slightly different task. The
ability to start with a pre-trained model allows new
developers to apply deep learning to solve novel problems
without the vast compute and time resources normally
needed to train neural networks from scratch. While the
conventional model-training process is likely only
accessible to researchers or institutions with deep pockets,
the result is one that should be available to developers of all
levels and even students of any age. Transfer learning has
allowed for just this, giving machine learning enthusiasts
around the world the ability to build their own models using
complex models as a starting point.

?

B — B

FINE TUNING
Trained neural
network

Figure 1. Transfer learning starts with a pre-trained model
and fine-tunes the output layers to specialize towards a new
task.

1.2. TensorFlow.JS and App Inventor

Wwe introduce two important technologies, Tensorflow.js
(Tensorflow.js, 2015) and MIT App Inventor (MIT App
Inventor, 2010), that this project utilizes to help students
develop exposure to machine learning concepts without
requiring a deep computer science background.
Tensorflow.js is a Javascript machine learning library that
has recently found success in the niche bridging machine
learning implementation and educational tools. It allows for
deep learning models to be trained and run right in the
browser, and when combined with a well-designed web GUI,
can hide the complexities of programming syntax while still
allowing users to interface with machine learning models.
Similarly, MIT App Inventor is a free open-source web
platform that allows users to create mobile applications via
a drag-and-drop interface, requiring little to no
programming experience while still offering rich application
functionality. App Inventor also offers the ability to add
custom extensions to any app, allowing us to build an audio
classification extension that students could upload and use
to help build his private diary app. With these two
technologies, we’ve created a web app that blends PIC (Tang,
2018) and Teachable Machine (Google, 2019), allowing
users to train an audio classification model that can
recognize 1-2 second audio clips. After using this web app
to train a custom model, users will be able to download this
model and plug it into MIT App Inventor as an extension to
build apps with custom audio-classification functionality.

2. APPROACH

3.1. Personal Audio Classifier

We present a web application (Personal Audio Classifier, or
PAC) that allows users to train a custom audio classifier
using Tensorflow.js within the browser. The application is
available to the public at https://cl.appinventor.mit.edu.
This section will detail the basic functionality, as well as the
machine learning tools that were used to implement an in-
browser audio classifier. First, users are prompted to add
custom labels that the classifier will attempt to differentiate
between. Users can then record an unlimited number of
audio clips for each label that will be used to train the
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internal model. Each audio clip is one second long, and
client side JavaScript is used to up-sample each audio clip to
384,000 Hz. Each element in the audio buffer is passed
through a Fast Fourier Transform to draw the audio
frequencies onto a single pixel sliver of our output
spectrogram. This spectrogram provides a visual
representation of the recorded audio bite, and is attached to
the corresponding label so that the user can view each audio
clip in the browser.

Close

Figure 2. The label view allows users to add custom labels
and record corresponding audio clips. Audio clips are up-
sampled
and converted to spectrograms in the browser.

After inputting a number of labels and recording the
corresponding audio clips, the user is prompted to train a
custom model using their provided training data, specifying
hyperparameters like Learning Rate, Optimizer, Epochs, and
Training Data Fraction. The web application then proceeds
to load a pretrained ImageNet model (MobileNet) and train
a custom machine learning model in the browser using the
activations outputted from passing the training data through
the pretrained model. After experimenting with a variety of
model architectures, we decided to standardize the custom
model to have a single convolutional layer, a single flatten
layer, and two dense layers. The output of the model is then
passed through a SoftMax layer to generate probabilities that
correspond to the user-inputted labels.

A separate page allows the user to use this custom trained
model as a classifier, recording audio clips that are passed
back through the model and assigned to one of their original
labels. The corresponding label confidences are displayed
after each clip is recorded, and we aggregate the test results
so the user can analyze the success of their custom classifier,
and even download the custom model for use in the App
Inventor extension.

Figure3. The test view allows users to record and
classify audio clips that are converted to spectrograms

and passed through the custom classifier.
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Figure 4. The test view also provides the aggregated results
from classifying user-recorded audio clips.
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ABSTRACT

This paper presents an approach to Al education, which
combines both Classical Al and Modern Al. It argues that
this approach can enhance students’ computational thinking
through explicit programming. The applicability of this
approach is illustrated with the design of a short course
aimed at introducing Al to secondary school students.

KEYWORDS
computational thinking, artificial intelligence education,
classical Al, modern Al, chatbots

1. INTRODUCTION

In recent years, in responding to the international call for
incorporating computational thinking and Al into school
education, many school educators have started to design Al
courses for their students; see, e.g., (Holmes, Bialik, & Fadel,
2019) and (Touretzky, Gardner-McCune, Martin, & Seehorn
2019). However, these Al courses tend to teach exclusively
Modern Al (which is based on Machine Learning,
particularly Deep Learning), at the expense of Classical Al
(which is based on symbolic logic). This tendency is hardly
surprising, given that Deep Learning is currently the most
powerful and high-profile approach to Al, and has generated
a lot of hype. However, it is my contention that Classical Al
still has its merits in Al education and we should take a
balanced approach, combining both Classical Al and
Modern Al There are several advantages for adopting this
balanced approach, the main one being that Classical Al is
better than Modern Al in teaching computational thinking to
school students.

2. CLASSICAL Al VS MODERN Al

Classical (Symbolic) Al, also called GOFAI (“Good Old-
Fashioned AI”), was born in the now famous Dartmouth
Conference of 1956 (Haugeland, 1989). It is also called the
Logic-Based Al as it is based on symbolic logic, and its idea,
according to John McCarthy, one of the pioneers of Al, is
that “an agent can represent knowledge of its world, its goals
and the current situation by sentences in symbolic logic and
decide what to do by inferring that a certain action or course
of action is appropriate to achieve its goals” (Minker, 2000,
p. 39). One distinctive feature of Classical Al is that
intelligence is explicitly programmed, say in the form of a
comprehensive list of if-then-else rules. Consequently, the
designer of a Classical Al system needs to think carefully
through all the possible combinations and devise a rule-
based system that can make decisions by traversing through
the pre-defined rule path. In stark contrast, Modern (Sub-
symbolic) Al is based on Machine Learning, which can be
defined, according to Andrew Ng, as “the process of
inducing intelligence into a system or machine without

explicit programming”. Deep Learning is just a particular
type of Machine Learning that deals with powerful
algorithms inspired by the biological structure of the human
brain, so-called deep neural networks, to endow machines
with intelligence. Consequently, the designer of a Modern
Al system does not need to encode the system with a
comprehensive list of all possible rules; all he does is let the
system learn on its own from the data.

Based on modelling logical reasoning, Classical Al, had, in
its early years, developed systems that successfully solve
interesting and important problems in specialized domains
(Neapolitan & Jiang, 2018, p. 4), e.g., the rule-based expert
system MYCIN and the rule-based chatbot ELIZA, both in
the restricted medical domain. Despite these early successes,
Classical Al in its traditional form is now widely agreed to
have failed in building true artificial intelligence (Miracchi,
2019, p. 594). In stark contrast, Modern Al, powered by
Deep Learning, has, in recent years, made extraordinary
advances in a broad range of varied pattern recognition
tasks, including classification, object detection, speech
recognition, etc. — though, importantly, reasoning tasks still
elude Deep Learning (Skansi, 2018, p. 13). As a result,
Modern Al has recently replaced Classical Al as the most
promising technology to realize true artificial intelligence.

However, Modern Al has its drawbacks, one of which
concerns explainability (or interpretability) — it is still not
very clear as to exactly how a problem is being solved,
especially for Deep Learning, since deep neural nets are still
poorly understood mathematically, though Explainable Al
or Interpretable Al is a hot research topic (Molnar, 2019).
Consequently, most users often treat a Modern Al system as
a black box. But this is unacceptable when the decision
provided by the system affects the person, e.g., a medical
diagnosis, in which the reasoning behind the decision is also
important (Kelleher, 2019, p. 245). In stark contrast, the
inner working of a Classical Al system, due to its being
explicitly programmed, is fully explainable.

3. ABALANCED APPROACH TO Al

EDUCATION
Based on the aforementioned differences between Classical
Al and Modern Al, | hereby propose a balanced approach to
teaching Al, chiefly in school education. This approach
combines both Classical Al and Modern Al. While the
inclusion of Modern Al hardly needs justification — it is,
after all, the focal point where all the current fascination and
excitement about Al lie, the inclusion of Classical Al, a
widely regarded out-of-fashion approach, demands some
justifications and explanations. All in all, there are four
reasons (or advantages) for teaching Classical Al in school
education: the pedagogical reason, the practical reason, the
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historical reason, and the philosophical reason. First, and the
foremost, unlike Modern Al, which is often treated as a
black box by the learner, Classical Al by its very nature
requires explicit programming from the learner. This
therefore can provide a valuable chance for students to
practice programming when building a Classical Al system,
e.g., a rule-based expert system or chatbot. Consequently,
teaching Classical Al can help train and enhance students’
computational thinking skills. Second, unlike Modern Al,
which is based on advanced mathematics, Classical Al is
based simply on symbolic logic (Kowalski, 2011) which, by
its logical nature, should be more accessible to school
students. Evidence, e.g., (Yuen, Reyes, & Zhang, 2019), has
shown that school students can learn symbolic logic
effectively through logic programming. Third, Classical Al
is an important part of the history of Al. It had made many
achievements in the past years, which are regarded as the
milestones in the human’s quest for artificial intelligence,
e.g.,, ELIZA, the Logic Theorist, the General Problem
Solver, MYCIN, and Deep Blue, just to name a few. All
these should be told to the students of Al so that they can
have a more complete picture of the development of Al as a
discipline. Fourth, the fact that Classical Al has been good
at reasoning tasks and Modern Al has been good at pattern
recognition tasks has made philosophers speculate that
reasoning is inherently rule-based and cannot be learned. So
perhaps Classical Al and Modern Al are complementary to
each other and one can never replace the other.

4, THE COURSE

To illustrate its applicability, | designed a short course using
this approach. The goal of this course is to introduce Al to
Form 3 and Form 4 students who have had some experience
in programming (e.g., Scratch). The duration of the course is
15 hours, divided into two main parts, with the first part
about Classical Al and the second part about Modern Al; see
Figure 1. In the first part, the instructor teaches students how
to program in the logic programming language Prolog. With
support from the instructor, students are then asked to
implement a simple rule-based expert system in Prolog
(Bramer, 2013), and a simple ELIZA-like rule-based chatbot
(O'Keefe, 1990). The second part of the course teaches
students the basic ideas of neural networks (which can be
introduced as extensions of linear regression). With support
from the instructor, students are asked to implement a
shallow, and then a deep, neural network in R to recognize
handwritten digits (Liu & Maldonado, 2018), which
involves very little coding, and to build a deep learning
chatbot without coding using a free online platform. At the
end of the course, the students will be able to compare and
contrast the two different approaches to Al, thereby
enhancing their understanding of both.

5. CONCLUSION AND FUTURE WORK

| have proposed a balanced approach to Al education in
school. This balanced approach has the advantage that
students can learn computational thinking through explicit
programming in Classical Al. As planned, this short course

will be delivered to a cohort of secondary school students.
Feedback about this approach will then be collected and
evaluation followed.

Part 1. Classical Al

1.1 The History of Al

1.2 Programming in Prolog

1.3 Implementing an Expert System and a Chatbot

Part 2. Modern Al
2.1 Implementing a Shallow Neural Network and a
Deep

Neural Network for Handwritten Digit Recognition
2.2 Building a Deep Learning Chatbot
2.3 The Future of Al

Figure 1. Contents of the course
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ABSTRACT

The rapid development and widespread application of artificial intelligence have attracted great attention from the education
community. The integration of artificial intelligence and education has played a huge role in educational reform in mainland
China. The article takes 7 major journals of educational technology majors in mainland China as data sources and uses a
bibliometric method to visually analyze articles on the subject of "artificial intelligence education™ from 2015 to 2019, and
summarizes research on artificial intelligence education in mainland China. Status and research hotspots. Through analysis,
it is found that research on artificial intelligence education in mainland China mainly focuses on how to develop education in
the era of artificial intelligence, how to organize teaching, how students learn, and the application of artificial intelligence
education supported by new technologies.
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ABSTRACT

Teaching computational thinking for business students at the
University level has been challenging because business
students normally have little and/or heterogenic computer
programming background. Also, there are very few
literature that examines the alignment of appropriate
teaching and learning theories/strategies with different
levels of cognitive processes/learning outcomes for teaching
business students computational thinking. This preliminary
study is to address these gaps by proposing and exemplifying
an alignment of six teaching and learning strategies with the
six levels of the Bloom’s taxonomy of learning outcomes for
teaching business students, with different computer
programming background, Python programming at the
University level. University lecturers could use these six
proposed teaching and learning strategies as a guideline to
design their course contents and materials for teaching
business students Python programming at the University
level. Further research direction was discussed.

KEYWORDS

computational thinking, Python programming, Bloom’s
Taxonomy, teaching and learning strategies

1. INTRODUCTION

Technology has been blooming and improving over the past
decade, computational thinking and programming
experience has become highly desirable skillsets required by
business industries. There are many programming languages
in the market, such as C++, Java, Matlab, etc. However,
Python stands out from other programming languages and is
growing in recent years.

Therefore, many business schools have been trying to
include Python into their curriculum to teach business
students computational thinking concepts and programming
skills. This raises the question of how to teach students,
especially business students, to learn Python effectively.
There are plenty of literature introducing various teaching
and learning theories and strategies in general subjects such
as marketing and economics, but teaching Python is
comparatively new in business schools. In particular,
teaching computational thinking for business students at the
University level has been challenging.

More specifically, one of the greatest challenges of teaching
Python is that students are having heterogenic programming
experience. Students may have experiences with different
programming languages prior to taking a Python
programming class. For instance, some students may have
learned different programming languages, while other
students may have never learned any programming language

at all. This makes it difficult for lecturers to prepare teaching
materials for students with differing levels of programming
experience. The heterogenic background of students poses a
challenge for lecturers to prepare class content or the
syllabus of the course, which definitely has an impact on
students’ learning experience. Thus, it is important to
investigate ways to manage the class to fit a wide range of
students.

Wang and his colleagues (2017) have written a paper about
teaching computer programming with Python for industrial
and systems engineers. The paper basically illustrates the
experiences of teaching and learning Python with an
academic setting. It also shows some analyses regarding the
learning preference of students with different background
like gender, class standing, and attendance differences. For
instance, Wang and his colleagues find that the learning
performance is slightly different for female and male
students. Yet, while Wang et al. solely provide statistics
about the relationship between learning experience and
different attributes of students, no teaching theory is
proposed or examined. To extend this line of research on
teaching Python, this preliminary study is to address these
gaps by proposing and exemplifying an alignment of six
teaching and learning strategies with the six levels of the
Bloom’s taxonomy of learning outcomes for teaching
business students, with different computer programming
background, Python programming at the University level.

2. THE BLOOM’S TAXONOMY

In this study, the revised Bloom’s Taxonomy (2001) was
applied to adopt a set of teaching and learning strategy for
teaching business students Python at the University level in
the Semester A of the academic year of 2019/20. The revised
Bloom’s Taxonomy is an ordering of cognitive processes
and learning outcomes, which is based on earlier version of
Bloom’s Taxonomy (1956) created by Bloom and
Krathwohl. Bloom’s Taxonomy had been used as a guide in
learning, teaching, and assessing learning outcomes for the
past 50 years or so. It illustrates the cognitive path of
learning from the beginning to a more advanced level of
thinking with respect to the ordering of cognitive processes
and learning outcomes. The Bloom’s Taxonomy has also
been a staple in teacher training and professional
preparation, especially for a class of students with
heterogenic background, addressed by this study.
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Table 5. The proposed alignment of the six teaching
and learning strategies with Bloom’s taxonomy
of learning outcomes.

computational thinking and Python programming at the
University level. The alignment table is illustrated in Table
1. The concept of the proposed alignment will be illustrated
by giving an example of the learning and assessment task in
regard to each of the teaching and learning strategies in the
following sub-sections. The given examples are adopted and
modified from a textbook of the python course (Schneider,
2016).

3.1. Remembering: Learn-by-typing

In this paper, learn-by-typing is defined as learning by
typing the given codes to recall the learned computational
thinking and programming concepts and syntaxes to
complete simple programming tasks. An example of the
learning and assessment task in regard to this teaching and
learning strategy is shown below:

Type the following lines of code and run to determine the
output.

listA = [5, -3, 6, 33, -10]
listA.sort ()

print (1istA)

In general, students are required to type out codes and
display the output. This teaching and learning strategy is
appropriate for students with no computational thinking and
programming experience.

3.2. Understanding: Learn-by-appreciating-examples

In this paper, learn-by-appreciating-examples is defined as
learning by reading, appreciating and comparing the given
examples of codes based on the computational thinking
concepts. An example of the learning and assessment task in
regard to this teaching and learning strategy is shown below:

Bloom’s Taxonomy: Levels and Proposed Proposed
Definitions Teaching Definitions
(Anderson & Krathwohl, 2001) and
Learning
Strategies

Remembering | Memorize and Learn-by- Learn by typing the
recall learned typing given codes to recall
materials like (Mitamura et | the learned
basic concepts, | al., 2012) computational
terminology, thinking and
and facts. programming

concepts and
syntaxes to complete
simple programming
tasks.

Understanding | Establish Learn-by- Learn by reading,
understanding appreciating- | appreciating and
of learned examples comparing the given
materials by (Guibert et examples of codes
comparing, al., 2004) based on the
translating, computational
interpreting thinking concepts.
main concepts.

Applying Apply learned Learn-by- Learn by exploring
knowledge to modifying- and modifying the
tackle practical | open- open-sourced and/or
problems in sourced- given codes to
certain codes (Saeed | complete the
situation. etal., 2011) computational

thinking and
programming tasks.

Analyzing Break down Learn-by- Learn by breaking a
information to partial- complex program
identify and coding into sub-programs
make (Garner, (modules) and
inferences on 2002) making use of the
relationship or given partially
causes of completed codes to
different complete the
factors. complex

computational
thinking and
programming tasks.

Evaluating Make Learn-by- Learn by evaluating
judgment and debugging flaws of the given
decisions after | (Lee, 2014) codes and make
considering corrections based on
factors computational
interfering the thinking concepts.
situation.

Creating Gather ideas Learn-by- Learn by creating
and problem- programs with
information to solving designated purposes
propose valid (Chao, 2016) | to solve problems or
alternative provide alternative
solutions. solutions based on

computational
thinking concepts.

3. PROPOSED ALIGNMENT OF SIX
TEACHING AND LEARNING
STRATEGIES WITH BLOOM’S
TAXONOMY OF LEARNING
OUTCOMES

In the revised Bloom’s Taxonomy, six cognitive
processes/learning outcomes are identified, including
remembering, understanding, applying, analysing,

evaluating, and creating. In this study, we propose and
exemplify an alignment of six levels of the Bloom’s
taxonomy of learning outcomes with six teaching and
learning strategies for teaching business students

Identify the pros and cons of the following two sets of codes
with the same expected output.
Expected output:

0123456789012345678901234567890123456789012345678
9

week no event \ holiday date
2 day following mid-autumn festival 14/09
5 national day 01/10
5 graduation date 02/10
6 chung yeung festival 07/10

First set of code:
print ("0123456789"* 5)

print ("{0:<9s}{1:<36s}{2:>5s}".format ("week no",
"event\holiday", "date"))

print ("{0:"9s}{1:<36s}{2:>5s}".format ("2", "day
following mid-autumn festival", "14/09"))

print ("{0:"9s}{1:<36s}{2:>5s}".format ("5",
"national day", "01/10"))

print ("{0:"9s}{1:<36s}{2:>5s}".format ("5",
"graduation date", "02/10"))

print ("{0:"9s}{1:<36s}{2:>5s}".format ("6", "chung
yeung festival", "07/10"))

Second set of code:
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print ("0123456789"* 5)

print ("week
no".ljust (8),"event\holiday".ljust (33),"date".rju
st (7))

print('2'.center(7), ' day following mid-autumn
festival'.ljust(35), '14/09'.rjust(8), sep="")

print('5'.center(7), '  onational day'.ljust(35),
vOl/lO'_rjust (8), sep="")

print('5'.center(7), ' graduation
date'.ljust (35), '02/10'.rjust(8), sep="")

print('6'.center(7), ' chung yeung
festival'.ljust(35), '07/10'.rjust(8), sep="")

3.4. Analyzing: Learn-by-partial-coding

In this paper, learn-by-partial-coding is defined as learning
by breaking a complex program into sub-programs
(modules) and making use of the given partially completed
codes to complete the complex computational thinking and
programming tasks. An example of the learning and
assessment task in regard to this teaching and learning
strategy is shown below:

In general, students are required to appreciate and compare
given sets of codes to identify their pros and cons. This
teaching and learning strategy is appropriate for students
with limited computational thinking and programming
experience.

3.3.  Applying: Learn-by-modifying-open-sourced-codes
In this paper, learn-by-modifying-open-sourced-codes is
defined as learning by exploring and modifying the open-
sourced and/or given codes to complete the computational
thinking and programming tasks. An example of the learning
and assessment task in regard to this teaching and learning
strategy is shown below:

Write a program that requests a person to input his/her
first name, last name, hourly rate and number of hours
worked in Company ABC. Then the program calculates
and displays person’s gross exactly same output as below:

Enter your first name: Tai Man

Enter your last name: CHAN

Enter hourly rate: 55

Enter number of hours worked: 40

The gross pay for Tai Man CHAN: $ 2,475.00

Tips: Please modify the function given below for
calculating the gross pay in Company ABC that employees

should be paid “time-and-a-half” for work in excess of 30
hours in a week.

The function for calculating the gross pay in Company
DEF, paying “time-and-a-half” for work in excess of 40
hours in a week is given below:

def calGrossPay (rate, hours):
if hours <= 40:
grossPay = rate * hours
else:

grossPay = (rate * 40) + (1.5 * rate * (hours
- 40))

return grossPay

In general, students are required to modify the given set of
codes (acts as open-sourced and/or given codes), and
complete the program. Thus, students do not have to spend
too much time on writing the entire program from scratch.
This teaching and learning strategy is appropriate for
students with limited computational thinking and
programming experience.

There are missing lines of code in the following program,
please fill in the missing lines of code to complete the
program with no errors.

## totalScore.py
def aboutSystem() :

print ("This program calculates your total
score and letter grade.")

print ("Please input your mid-term, and
final-exam score.")

print ("This program is made by CHAN Tai Man,
12345678")

## Task 1: Please add a line of missing code here

midterm = float (input ("Enter your mid-term
score: "))

## Task 2: Please add a line of missing code
here

totalScore = midterm*0.3 + exam*0.7
return round(totalScore,Z2)
## letterGrade.py
def getLetterGrade (total) :
if total >= 90:
return "A"
elif total >= 80:
return "B"

## Task 3: Please add a line of missing code
here

return "C"
elif total >= 60:
return "D"
else:
return "F"
## getYourGrade.py
from totalScore import aboutSystem
from totalScore import getTotalScore
## Task 4: Please add a line of missing code here

aboutSystem/()

total getTotalScore ()

letter = getLetterGrade (total)

## Task 5: Please complete the missing code below

print ("Your total score is " + + ", and
your letter grade is " ")

In general, students are given a set of incomplete coding and
were asked to fill in lines of codes or fill in the blanks to
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complete the program. This teaching and learning strategy is
appropriate for students with considerable computational
thinking and programming experience.

3.5. Evaluating: Learn-by-debugging

In this paper, learn-by-debugging is defined as learning by
evaluating flaws of the given codes and make corrections
based on computational thinking concepts. An example of
the learning and assessment task in regard to this teaching
and learning strategy is shown below:

In the following lines of code, identify all errors.
line = (“The”, “only”, “way”, “to”, “do”,
great”, “work”, “is”, “to”, “hate”, “what”,
“you”, “do”)

line[9] = “love”

print (“ ”.join(line))

In general, students are asked to find out flaws and error of
the codes provided. This teaching and learning strategy is
appropriate for students with considerable computational
thinking and programming experience.

3.6. Creating: Learn-by-problem-solving

In this paper, learn-by-problem-solving is defined as
learning by creating programs with designated purposes to
solve problems or provide alternative solutions based on
computational thinking concepts. An example of the
learning and assessment task in regard to this teaching and
learning strategy is shown below:

Mr. Lee just started his own business with very limited
budget. Although it is a small store, he has lots of products
needed to be managed. Without a store management
system, it is very difficult for him to keep track on his
product in store and carry out any stock control. Yet, he
does not have spare money to purchase one. To help Mr.
Lee to solve this business problem, you are asked to create
a program using Python that can perform basic store
management function, including creating invoice table in a
database file, insert data into the invoice table in a
database file, make query and request information
corresponding to certain criteria. The entities and the data
types should be included in the system are shown in the
table below.

Columns Data Type
InvoicelD INTEGER PRIMARY KEY [AUTQINCREMENT)
ContractNo INTEGER FOREIGN KEY (ContractNO of the
Contract Table)
InvoiceDate DATE
BillingAddress CHAR (100}
Amount FLOAT

In general, students are asked to solve a business problem by
using computational thinking and programming skills. This
teaching and learning strategy is appropriate for students
with rich computational thinking and programming
experience.

4. FEEDBACKS FROM STUDENTS AND

INSTRUCTORS

All six teaching and learning strategies were addressed and
demonstrated through examples from the learning and
assessment tasks given to students of the Python course in
the Semester A of the academic year of 2019/20. After the
semester was ended, we collected feedbacks from both
business students and instructors about the Python course.
Some of the comments were captured and shown in the
following subsections.

4.1. General Comments from Students

Some feedbacks are captured from the students of the
Python course via an e-learning platform and presented in
the following:

o | like this course as it provides a basic knowledge of
Python, which help me understand how python works.

e | can catch up the lesson because of the uploaded
examples and exercise. It is easy for me to follow the
class. | think the examples, exercise and assignment are
really useful for me to understand the chapter.

e Also, source codes are given to us, so we do not have to
work from scratch, but to understand how to apply the
programming languages to different scenarios.

e More actual examples and application of alternating
items in a text file and analyzing the Data in a CSV File
with a List as personally they are the most challenging
sections in the course, but they are useful and essential
skills applied on workplace.

4.2. General Comments from Instructors

Some feedbacks are captured from the instructors of the
Python course via an interview, and presented in the
following:

e Students were from a wide range of programming
experiences. Some students had rich experience in other
programming languages and struggled to accommodate
the syntax that they learned in other programming
courses to Python programming syntax. Examples and
open-sourced codes help students to accommodate in
using Python programming language.

e Students appreciated practical examples and scenarios
that can solve problems or facilitate works for people in
business settings. The assignments for problem solving
also showed how students utilize open source code,
acquired programming knowledge, and their creativity to
provide alternative solution for the situations.

e At the beginning of the course, students needed more
time for each assignment, even for those who had some
programming training prior to the course. But as the
course goes on, students with experience in
programming started to overcome their legacy, they tried
to help students who are new to programming. As
students begin to help each other, -collective
programming happens which lowers the workload and
burden from the teaching assistants’ perspective. Time
used for each assignment significantly decreased.
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o A fixed marking scheme is preferred at the beginning of
the course as to ensure students to learn the correct
syntax of Python. Yet, after students get used to writing
programming language, especially for those students
with previous programming experience, they tried to
combine or implement what they have learned in
previous programming courses to the Python class,
which leads to unexpected learning outcomes. Thus,
fixed marking schemes might not be applicable at this
point of the course.

5. CONCLUSION AND FUTURE WORK
To conclude, the main contribution of this paper is to
propose and exemplify an alignment of a set of six teaching
and learning strategies with the six levels of the Bloom’s
taxonomy of cognitive processes / learning outcomes
(Anderson & Krathwohl, 2001) for teaching Python
programming for business students (with different computer
programming background) at the University level.
University lecturers could use these six proposed teaching
and learning strategies as a guideline to design their course
contents and materials for teaching Python in the University
level.

In this paper, feedback from both instructors and students
are captured. Most of the comments are positive towards the
proposed teaching and learning strategies, which indicated
that the teaching and learning strategies are useful for better
students’ learning experiences, especially for those without
computer programming background.

For the future research direction, empirical studies with
large sample size and more robust measurement are
suggested for examining the effectiveness of the six
proposed teaching and learning strategies of teaching Python
programming for students of different majors and computer
programming backgrounds.
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ABSTRACT

Since Jeannette Wing proposed Computational Thinking
(CT) as a fundamental skill to everyone (Wing, 2006), CT
has become a phenomenon. In addition, it has been verified
by program accreditation and employer requirements that
undergraduate students in STEM need to develop higher-
order thinking and metacognitive skills in problem solving.
Thus, in our institution we intended to teach CT to students
in Applied Science majors and support them to master the
CT skill. While developing a CT course, we noticed that
there was little agreement on what and how to teach CT. In
this paper, we examine the CT course and provide a review
that addresses two questions: 1) What to teach CT and 2)
how to teach CT effectively. More specifically, we present
the course topics covered in the CT course and describe six
teaching strategies we utilized to engage students in learning
and doing CT. While analyzing the course development
reflectively, we become informed to continually improve the
course in order to teach CT effectively in future.

KEYWORDS
computational thinking, course development, Applied
Science majors, problem solving, student-centered learning

1. INTRODUCTION

Undergraduate students in STEM need to develop higher-
order thinking and metacognitive skills in problem solving,
which is verified by program accreditation documents and
employer requirements. In addition, since Jeannette Wing
proposed Computational Thinking (CT) as a fundamental
skill to everyone (Wing, 2006), CT has become a
phenomenon. According to Hu (2011), CT is present not
only because of the nature of computation but also because
of the way how people think critically—people gain
different kinds of critical thinking capabilities through
variety of means in CT. Inour institution, we intend to teach
and promote CT explicitly, and believe that every student in
Applied Science disciplines such as Informatics, Cyber
Operations, and Network Operations must master the CT
skill. In the Applied Science programs, students can use the
CT course as a critical thinking course to meet their Bachelor
degree requirement.

How to support students to develop the CT skill? Research
works done on thinking processes convinced that thinking
skills were most effectively taught when teaching them
directly and deliberately (Bono, 1992). Guzdial (2008) also
pointed out “the metaphors and ways of thinking about
computing must be explicitly taught.” To exploit the idea to
teach CT explicitly, we developed a CT course and offered
it to students in the Applied Science programs. By viewing
CT as a skill in general, we intend to teach CT by supporting
students to acquire CT as competencies over time with

practice but not facts or information compiled during the
student learning process.

While developing the course, we found that even though CT
had drawn a lot of attentions and become a popular subject,
there was little agreement on what should be taught and how
to teach CT effectively. For our CT course development, we
designed the course by investigating literatures and
resources on CT as well as the prior skills and knowledge of
students who we intended to teach and support. Especially,
in our approach we used Kansanen’s didactic triangle
(Kansanen, 1999) as a framework to design and evaluate the
course content, considering what and how students would
learn, what instructor’s roles would be, and how students,
instructor, and course content should work together using a
student-centered approach to deliver the course.

In particular, to engage students into the teaching/learning
process, we applied the preference matrix focusing on the
two key dimensions including “make sense" and “get
involved" to develop the CT course. The preference matrix
method is based on an observation (Paxton, 2006): If an
individual can “make sense" of and “get involved” in the
course learning environment, the individual prefers the
environment and then it is likely that the person will spend
time within the environment; As a side effect of “make
sense" and “get involved", learning will take place, which
leads the individual to function effectively and have a
productive learning. Moreover, we strongly believe that
students are able to acquire the CT skill through hands-on
projects. Therefore, we utilized problem-based learning
(PBL) to engage students with hands-on projects, and
students actively involved in doing CT practice persistently
during the course delivery terms.

To summarize what and how we did, we centered our
teaching on engaging and supporting students so that
students conducted their learning by solving problems in
multiple projects throughout every course delivery term. In
parallel with the problem-solving activities, the course
supported students to direct a self-regulated learning that
refers to “the process whereby learners personally activate
and sustain cognitions, affects, and behaviors that are
systematically oriented toward the attainment of personal
goals” (Zimmerman & Dschunk, 2011). Additionally, the
course utilized writing, which provided one of the best ways
to help learn the active, dialogic thinking skills according to
Bean and Weimer (2011).

In this paper, we examine the course development and focus
on addressing two questions: 1) What should be taught in
order to support students to develop the CT skill, and 2) what
are the effective teaching strategies, i.e., how we can teach
and promote CT to the Applied Science majors effectively
during the learning process. While developing the course,
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we have persistently and reflectively touched on the two
questions. Section Course Topics presents the covered CT
topics when delivering the course in our institution. Section
Teaching Strategies focuses on two aspects: 1) Practice CT
skills by solving problems; and 2) explicitly guide learners
to promote meta-cognitive awareness and conduct guided
learning on CT. Section Findings presents four course
deliveries by an instructor and discusses the impacts of
course topics and teaching strategies on student learning.
Finally, Section Conclusions concludes the study.

2. COURSE TOPICS

Among the CT literatures, we couldn’t find a clear-cut
definition of CT. In this paper, we highlight a definition
Wing presented in a later paper (Wing, 2011), where she
defined CT as “the thought process involved in formulating
problems and their solutions so that the solutions are
represented in a form that can be carried out by an
information-processing agent.” The CT course development
was based on the fact that CT uses a set of concepts drawn
from Computer Science (CS) to solve problems and design
systems. To help students to understand and practice CT,
we designed the course for students to develop a foundation
of CT concepts and techniques, practice the various CT
tools, and eventually synthesize them in critical thinking and
problem solving.

When developing the course, we didn’t intend to come up
with an ultimate definition of CT to students. Instead, we
explored various definitions and guided students to identify
recognizable CT concepts such as abstraction, simulation,
and algorithm design. While introducing multiple CT
definitions, we highlighted Wing’s arguments and
definitions on CT so that students could see how the
definitions, concepts, techniques and tools are related and
put together. More specifically, we proposed a list of course
topics including introduction to computational thinking,
algorithm design, programming languages, data abstraction,
programming in Python, thinking Object Oriented (OO),
abstraction, simulation, shell programming in UNIX, and
theory of computation.

First, we started the class with the instruction topic to allow
students develop insight on what is CT, what are available
CT definitions by researching CT literatures in ACM digital
library and other online resources addressing CT. Students
compared, analyzed, and identified the concepts and skills
between the CT definitions and from what aspects people
think about CT. After the introduction topic, student learned
algorithm representation and creation in pseudo code that
was written in Python style. (Python was used as the
primary programming language in class.) After the
algorithm topic, students learned variables and expressions,
control structures, programming paradigms, and data
structures in Python and bash. While students were
acquiring knowledge on the essential concepts and
techniques in programming languages, they also utilized and
practiced programming to explore meanings of the CT
concepts as well as problems such as Caesar cypher coding
and random walking. Later, students further studied how to
think in terms of objects, form communities by putting the
objects/agents to act together, and design systems based on

system behaviors and agent responsibilities. While
exploring OO programming in Python, students used Python
code to conduct simulation, and analyzed the steps of a
simulation study. In addition, student studied theory of
computation to understand what computers can do and what
they cannot do in practice.

Through the course, we intended to support students to
define and identify CS terms and concepts in CT; analyze
and estimate what and how computers do; program
operations in at least two programming languages (Python
and bash); and apply CT to solve problems and design
systems in practical applications. Among the topics, we
emphasized concepts including algorithm, programming,
and abstraction in a problem-solving context. ~When
approaching problems, students needed to apply abstractions
and make transitions among the different levels of
abstractions. Students learned to use, analyze, and create
algorithms by applying tools such as decomposition and
generalization along with others such as planning and
evaluations.

We introduced programming quite early in the course so that
students were able to use programming as a vehicle to
practice CT rigorously. Through programming, students
were able to realize the power of computing by bridging the
gap between informally expressed problems and formal
solutions. They learned to invent formalisms by coming up
with operations they designed and implemented. While
programming, students approached to write procedures and
functions in imperative program modules and later moved to
program objects and classes using OO programming
paradigm.

Note that in the course development we viewed CT as a skill
rather than a set of knowledge facts. Such view was
remarkable to guide our course development when we were
deciding how to assess student learning while addressing the
various concepts, techniques, and tools. We believe the
course topics must be relevant and make sense to students
regarding CT, and the CT skill must be acquired and
constructed while students are doing CT and deeply
involved in the learning process. Therefore, we carefully
designed the learning assessment focusing on skill
acquisition and CT development among students. To
accomplish the learning goals, we used quizzes, online
discussion, and programming/writing assignments. In
particular, we included a final project where students needed
to solve a problem.

3. TEACHING STRATEGIES

To effectively teach CT, we employed multiple teaching
strategies to build a student-centered learning environment
focusing on problem solving and guided learning with
student self-awareness.

3.1. Problem Solving and Skill Construction

According to Lu and Fltscher (2009), CT provides a
conceptual way to “systematically, correctly, and efficiently
process information and tasks” to solve problems. We argue
that CT is a skill that students acquire so that they can think
like computer scientists to approach problem solving. Even
though problem-solving skills are not specific to CT, as John
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Dewey (1916) rooted critical thinking in the students’
engagement with a problem, we recognized that problem
solving was relevant to engaging and promoting CT, and
intensively employed problems to stimulate thoughts and
inspire learning while developing the CT course.

3.1.1. Strategy 1: Scaffold with Progression Model
During the learning process, we guided students to learn
using a progression model composed of three steps: use,
modify and create. We intended to use the model as a pattern
of engagement to support student learning and maintain a
level of challenge while avoiding too much learning anxiety.
To practice a tool such as data abstraction, students used data
structures such as arrays, lists, and dictionaries, to approach
pre-defined tasks including file processing and behavior
simulation. Then, we provided code that approached a
problem with an incomplete solution. Students needed to
modify the given code, trace execution steps, and
empirically explore data structures being practiced in order
to approach a complete solution. For the last step of the
progression model, students needed to create customized
data structures while approaching a problem. When
designing the course content, we carefully conducted
scaffolding the course materials to support student learning
using the three-step progression model.

3.1.2. Strategy 2: Break Down and Synthesize

To align with the root of CT in problems, while introducing
CT to students during the first topic, we referenced and
shared the operational definition of CT introduced by
International Society for Technology in Education (ISTE).
The definition defines CT as a problem-solving process with
characteristics including: formulating problems in a way that
enables us to use a computer and other tools to help solve
them; logically organizing and analyzing data; representing
data through abstractions such as models and simulations;
automating solutions through algorithmic thinking;
identifying, analyzing, and implementing possible solutions
with the goal of achieving the most efficient and effective
combination of steps and resources; and generalizing and
transferring this problem-solving process to a wide variety
of problems. The operational definition provides a
breakdown of CT skills for both the instructor and the
students to identify and connect the key concepts and means
in CT. Our objectives to teach CT consist of the acquisition
of the ability to apply the CS concepts and techniques
flexibly and creatively in a variety of contexts and situations.
The course intentionally introduced the means and tools in
CT such as algorithms, data structures, abstractions, thinking
Object Oriented, and programming so that students were
equipped with tools when they were approaching problems
designed in the course assignments and the final project. The
set of assignment problems was well structured and designed
to promote learning in purposeful and engaging activities.
The final project was to support students to synthesize their
learning on CT and transfer the CT skill to problem solving.

3.1.3. Strategy 3: Abstract to Solve Problems

While referencing the ISTE operational definition of CT, the
course development focused on the core CT skills identified
by Selby and Woollard (2013), including abstraction,
algorithmic thinking, decomposition, evaluation, and

generalization. According to Kramer (2007), abstraction is
the key to computing. In the CT course, we guided students
to explore how to use abstraction to model problems and
create solutions. To highlight the concept, we explicitly
taught abstraction as a topic after introducing procedural and
algorithmic thinking. In addition, when exploring CT from
multiple aspects, students experienced practicing multiple-
level abstractions with other tools such as programming and
simulation. We also followed what Hazzan (2008) suggested
that we should educate students to move between
abstractions consciously. In particular, in our course
development, we applied instructional scaffolding strategies
to teach the various levels of abstractions involved in CT
including data representation, procedures, objects, and
problem solving.

3.2. Guided Learning and Self-Awareness

According to Kaplan & Kaplan (1983), the single most
effective step one can take in improving the process of
sharing knowledge is understanding and respecting the
cognitive requirements of the intended recipient. The CT
course development supported learners to promote
metacognitive awareness, and built multiple channels for
students and the instructor to interact and facilitate the
student-centered learning process.

3.2.1. Strategy 4: Set Up Learning Goals and Objectives
While designing the CT course, we were aware that students
needed to be coached to become self-regulated learners.
The CT course development carefully presented the learning
goals for students to accomplish from the beginning and
throughout the course term. For each learning topic such as
algorithm or programming, there were learning objectives
and activities explicitly instructed to students. During the
learning process, we used the course goals and module
learning objectives to support students to monitor and assess
their learning persistently. At the beginning of each course
term, we informed every student and expected him or her to
be proactive and reflective.  While the student was
progressing the learning process, he or she needed to
constantly evaluate instructor/peer feedbacks and comments
as well as learning performances, and gradually the student
adjusted his or her learning approaches to master the CT
skill, and developed self-regulated learning skills on
thinking computationally.

3.2.2. Strategy 5: Engage to Read Critically

To effectively approach each subject covered in the CT
course, students needed to read critically to gain essential
conceptual knowledge and comprehension. Additionally,
we aimed to support students become engaged readers on the
CT topics. Our reading-engagement models emphasized on
students’ motivational beliefs such self-efficacy, interest,
and value (Guthrie & Humenick, 2004). First, the course
had a required textbook to cover algorithm, programming
languages, data structures, and theory of computation. For
more practical subjects such as programming in Python and
bash, we provided hands-on notes and an online interactive
book to guide reading and practice programming. In
addition, we provided optional reading materials including
podcasts, videos, and Voice Thread slides available online.
To make sure students get involved in reading, we utilized
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reading-quizzes, online

discussions.

practice assignments, and

3.2.3. Strategy 6: Write Reflectively and Persistently
Hazzan (2008) suggested conducting reflections and stated
that reflection “increases one’s awareness of the objects with
which one thinks, and may therefore systematically and
consciously lead one to think ...” We exploited writing and
reflections as two primary means to guide students to deepen
their understanding on the CT concepts and develop the CT
skill iteratively. To implement the writing strategy to teach
CT, we deliberately required students to conduct weekly
reflective writing to recognize, evaluate, and refine their
learning on CT as well as stages of problem solving. To
guide the weekly reflective discussion, we designed a set of
scaffolding online-discussion questions with the expectation
that student would write and unfold the computational
concepts that form the foundation of CT. Moreover, in their
reflective writing, students described their learning state and
provided details for the instructor to monitor student
learning.

4. FINDINGS

The CT course developments aimed to support a student-
centered, participatory approach to teach and learn CT skills.
We present what we found in the below subsections.

4.1 Course Deliveries

The course was initiated in 2013. Since then, we offered the
course annually and in 2017 we started to offer it two times
each year. In this paper, we would like to discuss the most
recent four course deliveries offered by one single instructor.
Table 1 presents the overview of the four course deliveries.
In spring 2016 and spring 2017, we offered the course using
16 weeks. In spring 2016, 26 enrolled the class, one
dropped, and one failed to pass it. In spring 2017, 31
enrolled, two dropped and two failed the course. In fall
2017, we offered the same course within 7.5 weeks. There
were 31 students enrolled, one dropped, and two failed. In
summer 2019, the course was offered within 7.5 weeks.
There were 15 students enrolled and one student failed.
Based on the Teacher-Course-Evaluation (TCE) reports
collected by the end of each term, the teaching effectiveness
is 4.65 over 5 in spring 2016, 4.32 in spring 2017, 4.65 over
5infall 2017, and 4.57 in summer 2019. The TCE numbers
are positive to indicate that our teaching on CT has been
effective.

Table 1. Overview of Course Deliveries

Enrollment/ No. Of
Dropped/Failed Weeks TCE
SP 2016 26/1/1 16 4.65
SP 2017 31/2/2 16 4.32
FA 2017 31/1/2 7.5 4.65
SU 2019 15/0/1 75 4.57

Since we employed programming as the primary means to
carry out abstraction and automation while students were
practicing the CT skill, we asked student input at the
beginning of each term so that we were aware of their prior
knowledge and experiences on programming. Due to a new
and quickly growing Cyber Operations program developed
in our institution, we’ve learned that more students enrolled
in the course with little CS or programming experience. In

2016, about 40% of the students who enrolled the course had
very little programming experience prior to the class. In
spring and fall 2017, the numbers were about 60% and 75%.
In summer 2019, only one of the 15 students had prior
programming experience.

By monitoring student performance data and how students
conducted their learning process, we observed that usually
students were able to identify the CT concepts rapidly. For
the reading quizzes, which we designed to assess how
students understood the CT concepts, all 25 students who
completed the course had passing grades (C or better) in
spring 2016, one of the 29 students in spring 2017, two of
the 30 students in fall 2017, and two of the 15 students in
summer 2019 failed to pass the reading quizzes. For the
online discussion component, which we employed to assess
how students explained and applied the CS concepts in
writing, only two of the 23 students didn’t pass the online
discussion component in spring 2016, four of the 29 students
didn’t pass in spring 2017, and four of the 30 students failed
the online discussion in fall 2017. In summer 2019, one
student failed online discussion.

In addition to analyzing student learning performance on
reading quizzes and online discussions, we also investigated
how students conducted CT to solve problems. Based on
student learning performances on the assignment questions,
which required students to apply and synthesize the means
and tools in CT to address, we found three students in spring
2016, seven students in spring 2017, three students in fall
2017 and two students in summer 2019 failed to pass the
assignments. In fall 2017, we started to provide a few more
problem-solving hints on the coding assignments based on
student questions and feedback comments we collected from
students enrolled in spring 2017. The revision certainly
helped students in fall 2017 to succeed their assignments. In
summer 2019, we tried adding more programming
components to support students practice Object Oriented
(O0) programming and simulation, which followed a
suggestion from the Cyber Operation program. The new
added programming activities to employ OO programming
paradigm certainly provided more practice for students to
think OO and program simulation more rigorously.
However, we also observed that the additional OO
programming paradigm introduced in the short summer term
generated more confusion between procedural and OO
programming. And two students failed their programming
assignments in the past summer.

Although students reported that practicing CT in the
assignments and the final project increased their
professional skills, it was obvious that students had
difficulty on synthesizing the CT means and tools into their
final project. In 2016, three of the 25 students who
completed the course failed the final project even though
two of the three students still completed proposing their
projects and reported their progress on project development.
In spring 2017, seven students didn’t complete the final
project but six of them completed their proposals and
progress reports. In fall 2017, we delivered the course using
7.5 weeks, half of the time that we spent to deliver the course
in the previous two spring terms. We found six students
were not able to propose their projects and another six
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students didn’t submit their project posters. In summer 2019,
based on our collected 7.5-week teaching experiences, we
updated the final project by asking students to solve a single
problem. In the revised final project, the program statement
was provided and students needed to model the problem and
implement their solution in Python. However, based on the
final project submissions, the revision didn’t improve
student learning performance: only two thirds of the students
created and implemented solutions to the problem, and the
other five students failed to approach the final-project
problem. Note that since the final project was the designated
final exam, which contributed 15% of the overall grade,
some students chose not to complete their final projects due
to their busy schedules during the final exam period,
especially if they felt satisfied with their accumulated
grades. Thus, the performance data on the final project
might be depressed to represent how students learned to
employ CT to solve problems. Nevertheless, by analyzing
the learning data and student comments in fall 2017 and
summer 2019, we think that the shorter terms didn’t work
well as the longer ones for students to transfer their CT skill
into problem solving while approaching the final project.

4.2 Discussion

Based on TCE reports and comments at the online
discussion forums, students reported that they enjoyed and
engaged in reading the course materials, and they liked how
the course used the online discussions in conjunction with
the assignments and reading quizzes to make all work
together, and the online reflective writing contributed to
establish a safe environment where students felt like they
could be open and not get criticized. As they built the
supportive, inclusive learning community, most students
were willing to put more efforts to deal with the learning
challenges even though they admitted several of the course
topics could be overwhelming.

The course topics covered programming in Python and bash,
which we essentially intended to provide two problem-
solving contexts to tackle abstractions and automate
execution of algorithms. Programming was a focal point in
the CT course development to carry out important concepts
and skills in authentic contexts of use. Even though students
perceived programming as the most challenging subject, we
observed that programming was engaging for students,
especially for students who had little or none programming
experience, to master as a means to express algorithms and
accomplish abstractions and automations. However, we
were also aware and let students well informed that
programming and CT are not equivalent and programming
is but one context for the practice of CT (Voogt, Fisser,
Good, Mishra, & Yadav, 2015).

Note that we utilized programming in our course rightly
after CT was introduced and students finished the topic
algorithm. We delayed programming later than introducing
CT so that students could acquire a bare model of CT first
instead of being overwhelmed with programming and
programming languages since the beginning. Considering
the students in the Applied Science disciplines had various
programming experiences and some of them had none, we
were concerned that premature attempts to introduce
programming with CT simultaneously could lead to

confusions on understanding CT and failures to see the
relevancy of the other course topicsto CT. We believe such
arrangement was fruitful---the writing reflections affirmed
that students were able to understand CT and connect the CT
skill to the various topics we practiced during each delivery
term.

One critical learning component in the course development
was the programming assignment part, which was designed
based on Problem Based Learning (PBL). In PBL, it is
common to give students a large ill-defined problem and let
students figure out how to resolve it. Such practice is useful
for students to practice tolerating ambiguities, to identify
and formally define problems. However, to avoid
overwhelming students, we carefully provided well-defined
problems in each programming assignment so that the
assignment problems were able to promote learning with
purposes and challenges. Student learning performance was
mostly positive while students were practicing CT in the
assignments. The learning reflections and TCE comments
also indicated that students were challenged and deeply
engaged in resolving the problems computationally.

Nevertheless, for the 16-week deliveries and the first
shorter-term delivery, we asked students to propose
problems and create solutions in their final projects. We
found that students had hard time to transfer the topics
including programming into problem solving in their project
development, especially when they were in charge of
modeling their own problems of interest. In the most recent
summer-term delivery, even with the provided problem
statement describing a task to extract networking frame data,
student performance data indicated that students were
challenged significantly when they needed to synthesize
various tools in CT as well as programming to create the
problem solutions.

On the other hand, it was obvious, based on the student
reflections and TCE comments, that the use-modify-create
model helped student to make progress and acquire the CT
skill and competencies gradually. Even for the shorter terms
including fall 2017 and summer 2019, most students
commented that the course delivery paced well. For students
who had no prior programming experience or just returned
back to school, their input including midterm surveys
regarding learning progression was positive. However,
since programming has been used as the primary means to
express problem models and implement solutions, for
students who hadn’t done any rigorous programming before,
creating a sound and complete solution to a problem was an
intimidating challenge. Especially, based on the learning
performances on the final project in the four course
deliveries, we found that the complexity to move around the
multiple-level abstractions when solving a complex problem
and/or conducting a self-regulated project learning on the
final project required time and practice for students to move
around and gradually generalize and transfer the CT skill
between problem contexts.

We found that the learning reflections we conducted were
definitely helpful for students to retain their knowledge
cognitively and ensure the whole learning make sense to
students. During the learning process, the writing provided
reliable, persistent learning traces for the instructor to
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support student learning. The student reflections revealed
the various backgrounds of the Applied Science majors.
While reflecting what they were learning, students also
brought up different knowledge and skill frameworks, which
led to acquire the CT skill in different manners.
Additionally, the learning reflections effectively involved
both students and the instructor to be aware of the learning
obstacles as well as critical issues to address. It was not
unusual to see some students described that they couldn’t
continue due to certain programming bugs they confronted
or they had no clue on how to approach a problem. In
response to such reflections/questions, the instructor would
guide their thinking, point out learning materials to refresh a
review, and set up meetings to discuss the issues if
necessary. Moreover, their peers often recommended
problem-solving approaches or external materials/tips they
found helpful. Last but not the least, since the course
development required persistent learning reflections, writing
became part of the systematic process for students to
regulate and monitor their learning. Students became better
communicators by transmitting and receiving messages
clearly and reading the input from their peers and the
instructor.

5. CONCLUSIONS

To draw our conclusions, we present and provide a review
on a course development that intends to promote and teach
CT to students in Applied Science disciplines. In particular,
we address the questions including what and how to teach
CT by identifying six effective teaching strategies. Our
investigation focuses on the course content, students, and the
instructor as well as relationships among the various
learning components. Based on student learning outcomes
and performances, we conclude that the course development
is promising to engage and teach students to acquire CT as a
skill to solve problems computationally. While we become
more informed by analyzing and reflecting on the course
development, we hope the course design and teaching
strategies could be useful for our colleagues when they teach
similar courses in their institutions.
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ABSTRACT

Artefact creation as part of constructionist approaches
towards learning has seen an increase pertaining to the
growth and ease of availability of design tools. Projects that
involve artefact creation allows the learner to experience the
problem solving process while being situated in a real-life
context. Tinkering is one such approach to problem-solving.
In this paper, we present a design of our tinkering
intervention for teaching and learning of computational
thinking. The intervention is a composition of four major
components, namely the Pedagogy, Problem, Resources and
Mentor. The proposed Explore-Solve-Evolve pedagogy
incorporates aspects of constructionism, progressive
formalisation, learning situated in a real-life context and
immediate feedback for reflection. Lego Mindstorm is
provided as a building resource, and an app seamlessly
provides information about the resources. The mentor
encourages the learners towards exploration and play with
the resources in the problem space and scaffolds them with
strategies to overcome challenges. A proposed study has
been discussed to further understand the development of CT
with tinkering. The paper is concluded with presenting the
mapping between the phases of our intervention and the
three dimensions of the CT framework.
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1. INTRODUCTION

Computational thinking has been defined as “The thought
processes involved in formulating problems and their
solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing
agent” (Brennan & Resnik, 2012). Computational thinking
has been taught not only through programming but also
through activities like playing games, building a robot to
solve challenges, creating e-textiles and range of activities
that involve concepts of computational thinking. The idea is
to be able to express yourself using computational artefacts
which have been identified as an essential aspect of
computational literacy. While developing artefacts, learners
also deal with failure in physical components and
compatibility issues that can be frustrating. However, they
are an essential part of solving problems where one is often
required to use of computational thinking, not limited to just
writing code (which has been termed as the material aspect
of CT). In addition to the material aspects of CT (which is
the how), learning-environments that include artefact
building as a part of the problem-solving process also focus
on the social (which is the where and whom) and extends it
to the cognitive aspects ( which describe the why). Building
artefacts to solve a given problem situates the problem-
solving process in a physical context that is closer to an
authentic scenario.

One such practice that includes artefact creation with
problem-solving is tinkering. It has been considered as a
novice and expert practice which sets it apart from most of
the classroom practices (Danielak, 2014). It does not make
tinkering better or worse but it does make it an authentic
professional practice (Berland, 2016). Tinkering provides
the opportunity to work in a realtime environment with
immediate feedback on actions taken hence making it a
potential means for developing computational thinking. We
believe that tinkering with robotics Kkits like Lego
Mindstorm provide a medium and opportunities for the
development of computational thinking. We are interested
in the ways that tinkering activities with programmable
tangible robotics Kits, like the Lego Mindstorm, can support
the development of computational thinking in students in
higher education which is highly dependent on learning of
programming languages (Brennan & Resnick, 2012).

2. THEORETICAL BASIS

2.1. CT Framework

Computational-Thinking has further been classified into CT
Concepts that learners develop while learning to program
like loops, conditionals, sequences, parallelism, data
structures, operators, event handling, procedures and
initialisation. CT ~ Practices that  learners  repeatedly
demonstrate in the programming process like problem
formulation, problem decomposition, abstracting and
modularising, algorithmic thinking, reusing and remixing,
being iterative and incremental, testing and debugging. CT
Perspective’s talk about the Learners’ understanding of
themselves and their relationships with others and the world
of technology, also termed as Computational Identity
(Brennan & Resnik, 2012). It also includes programming
empowerment as well as provides a perspective of
expressing, connecting and questioning with programming.
The elements of CT as mentioned earlier in its three
dimensions have also been included in the operational
definition of CT for K-12 education by the International
Society for Technology in Education and Computer Science
Teachers Association (ISTE & CSTA, 2011).

2.2. Tinkering Practice

The growing availability design tools have led to a
commitment to learning through design activities in a
constructionist approach (Harel & Papert) to a level of
learning that highlights the importance of young people
engaging in the development of external artefacts (Kafai &
Resnick, 1996). Besides, progressive formalisation
(Bransford, Brown & Cocking, 2000) requires teaching to
be designed to encourage students to build on their informal
ideas in a gradual, structured manner that enables them to
acquire the concepts and procedures of the discipline.
Moreover Learning situated in a real-life context (Bransford,
Sherwood, Hasselbring, Kinzer, & Williams, 1990) enables
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a better understanding of abstract concepts by establishing
there need in a real-life context using everyday examples. In
addition to situated learning, play becomes an essential tool
for learning in real-life context as it allows experimentation
with the available resources and one's ideas in the actual
problem space with just in time feedback that enables
reflection. It also allows one to take multiple perspectives on
an action and its impact, which is an essential social skill for
the development of the mind (Bailey, 2002). Tinkering has
been addressed to be at the intersection of all the above
(Roque, Rusk & Blanton, 2013). A definition of tinkering
calls it as a playful, experimental, iterative style of
engagement, in which people are continually reassessing
their goals, exploring new paths, and imagining new
possibilities (Honey & Kanter, 2013). Here play has been
referred to as experimental play. Tinkering provides a
multitude of possible paths taken progressively while
situated in problem space working with immediate
feedback.

2.3. Explore-Solve-Evolve Pedagogy

Based on our synthesis from the literature on tinkering for
problem-solving, we have identified a few operational
aspects of tinkering as Exploration, Play and Reflection.
Exploration is used to determine the affordances or can
do’s of the available resources and possible solution or want
to do for the problem at hand. Play is used to determine if a
solution could emerge by mapping the can do’s and want to
do’s. Reflection is used to overcome  states
of stuck and fixation that arise due to unexpected
contingencies (exception violation (Schank, 1983)) or
failure. Using strategies like questioning, repurposing,

reflective strategies on productive failure (Kapur, 2008)
provide the means to overcome such challenges. Reflection
on the tinkering trajectories to enable modification of
understanding and learning about the problem space.

We used the above operational aspects along with tinkering
frameworks like Spark, Sustain and Deepen (Honey &
Kanter, 2013), and Think, Make and Improve (Martinez &
Stager, 2013) to derive a three-phase pedagogy named
Explore, Solve and Evolve for taking a tinkering approach
to computational thinking. The features of free exploration
to capture intrinsic motivation have been incorporated in the
explore phase. Progressive formalisation has been
implemented in all the three phases of explore, solve and
evolve. In explore learners start with small problems situated
in context robotics, which requires them to interact with the
physical space using the components of the robotics kits to
solve the problem. In the problem given in the solve phase
allows the learners to build their solutions with small
component problems solved in the previous phase. This
method also allows the reuse and iteration of previous
solutions. Finally, in evolve, the learners frame and solve a
problem to advance the solution they develop in the solve
phase. The learning environment comprises of building
resources and some pre-build solution of similar problems.

We believe the features of the pedagogical design and the
element of the learning environment based on tinkering
which has been aligned to the operational elements of CT
aided with an explicit reflection on the action will lead to the
development of CT among the students. The problems that
have been chosen align to the High school curriculum of
various educational boards in India.

Table 1. Summary of the pedagogy with its mapping to available resources and activities to be performed.

Resources Activities
Pedagogy Problem
Building Information Learner Mentor
Small problems that are a With the focus on use of Using the AR component | Interaction with Encourage
part of the challenge for the | basic individual resources view from the app for resources while exploration and
Explore next phase. E.g. build a and their affordances. E.g. affordances of the solving problems to play with
chases with wheels. Connecting motors and the individual resources. understand their resources
EV 3 brick. affordances.

One open-ended challenge With the focus on combined | Additionally, information | Determining the sub Additionally,
that is derives from problems | use of the resources and their | about the interaction of | problems and primary | provide prompts
of “Explore” phase with interactions with each other. | different resources and | functional modules. and scaffolds for
opportunities for reuse. E.g. | E.g. Mounting the EV3 on available use cases. Use pre-built solutions | techniques like

Solve build a wheeled bot that can | the chassis and building the | Scaffolds for techniques from previous phase reflection and
move and turn. turning mechanism. for getting unstuck productive failure.
Additional challenge to Use of additional complex Similar as above Frame the new Indirect guidance
increase the complexity of resources to enhance problem, choose the using instances
the previous challenge capability of the current sub problems and from the previous

Bualve requiring the need of build. E.g. Adding IR, address the sub phases.
abstraction modularization Ultrasonic sensors and problems while using
and iteration. E.g. Make the | building a parallel process techniques to
bot avoid obstacles of obstacle detection. overcome challenges
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3. INTERVENTION DESIGN

The Tinkering environment for learning with CT comprises
of the problem whose potential solutions derives from CT.
Available resources allow free exploration, have a low floor
and high ceiling and align to the constructs of computational
thinking. Both the problem and the resources ensure the
requirement of tinkerability (Resnick & Robinson, 2017).
The pedagogy encompasses features like progressive
formalisation, alignment to intrinsic motivation, guided
reflection. Finally, a mentor provides scaffolds for the use of
strategies like re-purposing, question-posing and reflection
for working with expectation violation and productive
failure. A summary of the entire intervention is as presented
in table 1.

3.1. Problems

Though any problem with its corresponding resources could
be provided in a tinkering based learning environment, we
choose Lego Mindstorm Robotics kit and design a maze that
would have to be solved as a part of the activity. This activity
provides enough freedom to the learners for designing the
robot as per their choice to solve a given maze. Keeping
progressive formalisation in mind the problems are divided
into two categories. The first category of problems is toy
problems that help the learners to explore the resources
available in Lego Mindstorm and get used to them. E.g. one
of the problems requires the learners to determine the
volume of the room given the Lego Mindstorm EV3 brick
and the ultrasonic sensor. The objective of this problem is
for the learners to understand the usage of ultrasonic sensors
and also to be able to build a quick prototype and use the
data representation features of the EV3 brick. Additionally,
they are being exposed to the concept of input and output of
data using physical sensors, or what we call they are getting
a sense of the kind of output the sensor can provide. Though
this question requires them to work with the ultrasonic
sensor, the mentor encourages them to use all possible
actuators and sensors to get a sense of the devices. Similarly,
one of the problems requires the learners to build a two-
wheel powered bot and a four-wheel powered bot to
determine the use cases of each configuration. These
problems are candidate sub problems to the bigger problem
that the participants will solve in the next phase.

In the second phase “Solve” we provide them with a maze
that their bot has to navigate. The maze is an NxXN matrix
where obstacles have been places, and the bot must follow
the unblocked edges and reach the destination. The learners
are given the maze along with the edges that will be blocked.
This problem becomes a standard path traversal problem
where the learner must sequence a set of instructions, and
the sequence would determine the path that is traversed by
the bot. The length of the edges are standard; hence the
learners must determine the distance the bot would move
and code it accordingly. Though the length is the same
distance would vary based on the bot they have built or the
motor parameters they are using. Thought a hard-coded
solution is not the ideal solution for this problem, the
problem the idea is to take the learners through this journey
to understand the different solutions and challenges they
pose and evolve them towards building using constructs to
build better / dynamic/efficient solutions.

In the third phase named “evolve,” they are given a new
challenge where they are to program and modify the robot
in such a way that it could traverse the maze even if the
obstacle locations have not been determined initially. They
could add markers on the obstacles for the bot to identify and
take action accordingly. The objective here is to allow the
learners to understand the concept of functions and
modularisation so their bot can take decisions based on the
maker. This problem evolves the learners to thinking in
terms of higher-order CT concepts while providing them
with the freedom of incorporating their idea of how to
implement them.

3.2. Resources

Resources in the learning environment refer to the
components of the learning environment. These are divided
into building resources and information resources. Building
resources refer to raw building materials, fabricated building
materials and electronic components. As an example, in our
case, the building resources would consist of the Lego
Mindstorm kit and a few other resources like tape cardboard
etc. Further classification of the components could be done
based on their nature of use and other characteristics.

=

Figure 1. Building Resources and Mobile Application

The information-seeking resource consists of repositories of
information on a mobile application. The mobile app also
has an interface to interact with the learning environment
using Augmented Reality. The learners work in the problem
space with the available tools and resources to find solutions
to the problem at hand. Prior knowledge of affordances of
tools and resources available for tinkering through a problem
or ability to acquire such information in the time of need is
a challenge for learners who intend to take a tinkering
approach. Gathering this information from manuals and
online resources frequently requires switch context, which
inhibits or discourages explorations with the unknown
components. Hence this app will enable the learners to seek
information about problem statements, help them track their
session, provide information about components. The app
will have a different section for the different phases of the
pedagogue. The app will also act as a platform where
prompts and scaffolds will be presented. The apps also
enable delivering just in time information by presenting
information in an augmented manner to ensure
seamlessness, as seen in Figure 2 below.

3.3 Pedagogy

The pedagogy has evolved from our explorations with
tinkering and literature (Honey & Kanter, 2013) (Martinez
& Stager, 2013). The initial motive is building curiosity into
the mind of the learners by exposing them to various
complex solutions and stories about solving them. The
learners are guided to explore and play with the available
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solutions to build their understanding of the environment.
One of the intended ways of doing it is by starting with
candidate subproblems of the main problem that they will be
solving in the second phase. These subproblems are
introduced as primary problems for exploration with simple
resources to interact with and gradually increase the
complexity of the problems and the use of resources.

Figure 2. AR Component view of the Lego EV3 brick.

The motive is to encourage exploration of the resources for
indented use. At the end of this activity, the students should
have an understanding of the different components of the
robot, their function, and how they can be
arranged/combined to achieve a more significant function.

In the second phase, they are given a problem to solve within
the same environment. Initially, the learners are mentored to
find a starting point and then are left free to begin working
on the starting point of their choice. Here the learners
interact with the building resources based on their
understanding from the previous phase of the problem. The
disposition that learner should take is of experiencing what
would happen than predict the outcome by observing or
thinking about challenges. With practice, one may be able to
predict the outcome by mentally experimenting with the
problem space. This experience will later give rise to the
needs of the solution or what kind of function/behaviour
would be required by the solution. Another challenge they
might face is of being stuck. Stuck is to be interpreted as the
state when the participants are not able to ask the right
questions. Being in one state but still being able to ask the
right questions is still considered the state of flow. In the
stuck state, the role of the mentor is to guide the participants
to ask the correct questions. The app acts as the repositories
of information about building resources and examples. Some
necessary information maybe even augmented using the app
on the resources for a quick understanding. The learns may
record their progress on their app as a medium intended for
logging. This can also be used by the learners to reflect and
make decisions. The final part of this phase of the workshop
is to enable reflection on the solutions the learners have built
from the problem they were provided. The reflection would
be triggered by posing questions regarding the requirements
of the problem. The type of question to be posed. The
learners will also be encouraged to use their logs to aid this
reflection process. These reflections will be recorded by
learns in the app. The objective of reflection is to make the
explicit realisation of the CT elements and connect them to
the activities performed by this. It ensures the development
of an understanding of the use of CT as per the three
domains.

This stage, the learners will evolve their solution to either
enhance their capabilities or refine its function or

performance. One of the objectives is to introduce them
towards abstraction of primary function and their
modularisation. Also, expose them to parallelism. In this
phase, the mentor will be available only on demand as the
mentor does not take an active role in the solution process.
The purpose of the mentor would be to observe learners
actions to monitor their approaching. The mentor may
choose to intervene in some situations mentioned in the
mentor's guide. The intervention would be limited to
directing the learner's approach by asking broad questions.
The objective of this phase is to determine if the learner can
initiate explorations, make observations and ask questions
about it. The mentor may choose to allow the learns to exit
without building the refined solution if enough evidence of
the objective is available. These will be available as
guidelines to the mentor. In the final stage of the workshop,
the mentor will trigger reflections among the learners on the
entire actions to develop an understanding and use of the
elements of CT.

3.4. Mentor

The Mentor is more of a facilitator to observe the activities
and the process the students are following. The motive of
doing this is to help them reflect on their actions. Guide them
towards exploration and play. Guide them the overcome
challenges by identifying the reasons. The reasons could
vary from not being able to construct the intended the
solutions, not being able to use the resources at hand, not
being able to identify resources and/or the corresponding
affordances or unpredicted behaviour. To direct the students
to the flow state, the mentor themselves must become a
genuine participant of the activity. They should try to figure
out what is the problem. The mentor can probe using
questions like what seems to be the challenge? What seems
to be your approach? If the learner can answer mapping to
solving a problem and changing the design, then the learner
is actually in the flow state. To probe further, the instructors
could explicitly ask "Which questions are you trying to
answer?" if the participant shows signs of frustration or
seems to have given up. These would be responses like | do
not know what to do next, | have tried many things. It will
not work. This cannot be solved. The Mentors could guide
them by asking questions as stated above that would help
them proceed with the approach. The participants could
respond with answers that talk about the loss of interest or
boredom like | am getting bored, and | do not feel interested
in doing the same. | am not able to think more. The mentors
could guide them towards skipping the current challenge and
work on a different aspect or just ask them to take a break.
If the mentor feels the participant is struggling due to lack of
information, they may guide them towards the information.
The objective is to make them realise that such information
can be looked at.

The mentor should be able to take a multi-level view to
weight between the more significant problem and the
problem they are stuck. The criticality of the current problem
for the more significant problem can help determine to
solution approach. If it is critical, we need to find a way to
work it out or if not, can we manage to solve the bigger
problem without the problematic component at hand. The
mentor should guide the students via open-ended prompts
describing the behaviour of the component at hand. The
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prompts should target misconception or refer to some other
project and explaining the function of the component and
have them try it. Another way of doing this is by posing
questions starting with What are they trying to achieve?
Why are they doing it this way? How will it achieve what
they intend to achieve? When and where does this help to
solve the bigger picture?

3.5 Proposed Study

The study is targeted at High school students who have just
started using programming languages and do not have
exposure to Lego Mindstorm robotics kits. This version of
the study will be done with one individual per kit. We plan
to introduce elements of collaboration in later studies. The
objective of the study is to explore the use of tinkering as a
strategy for learning elements of CT. Will the tinkering
learning environment designed with an alignment of CT
elements lead to explicit learning of CT in its three
dimensions? This will us with a deeper understanding of the
alignment and the features that may or may not work as
intended.

The study is based on the Explore, Solve and Evolve
pedagogy and distributed over three days. On the first day,
the learners will be introduced to Lego kit using the
candidate sub-problems. They start with problems to
introduce them to the EV3 brick along with the sensor and
the motor functions. Similarly, they will be given problems
that lead them to explore the construction blocks and beams.
The learners are allowed to dismantle a few prebuilt bots. In
the final part of the day, they would be given problems that
would require them to code, either the prebuilt bots or the
bots they have built. The day would end with the mentor
asking the learners about the kind of bots they would want
to build and making them reflect on their observations and
understanding of the building resources.
On the second day in the “Solve” phase, the learners would
be provided with the challenge of solving a static maze.
They could reuse the bots from the previous day or build
new ones. At the start of this session, the learners will try to
find out the essential requirement of traversing the maze.
The bot will have to perform two functions which are
moving on clear lines and turning to avoid obstacles. The
mentors may lead the participants to play in the problem
space to physically experience the problem by manually
navigating the maze using a non-motorised bot. Once the
participants have realised the essential functions, the
instructor will facilitate the participants in realising the
needs from the previous exercise and then try to translate
them into functions and behaviour for their solutions. Once
the desired behaviours have been achieved, learners can
move forward to the next essential objective. Learners may
perform as many numbers of trials on the maze and only
when they determine or the time is done, they would require
to demonstrate their solution. The learner determines the
final demonstration beforehand. If the learner finishes before
the time the mentor asks them to improve the efficiency in
terms of time taken by the bot to complete the maze. The day
ends with the mentors making the learners reflect on the
solution trajectories. The reflection will be carried out
through activities where the learner would be told about the
CT elements, and they would map it to their solution

strategies and later determine one use-case for their
application.

On the third and final day called “Evolve,” the learners are
required to solve a similar maze, but they would not know
where the obstacles would be placed. In this case, the
obstacles would have a provision to place markers. The
learner could use these markers to make the bot respond with
a specific action like turning left or right. In this phase, the
mentors will gradually reduce the scaffolds and prompt
limited to making them recall things they did on the previous
day, so they can make associations from what they learned.
To increase the complexity of the problem, the standard
length between the nodes may vary. The mentor facilitates
reflection by having the learners talk about their experience
and pointing out key actions they performed and having
them articulate what they exactly did and what did they
achieve. The mentor may ask learners to demonstrate the use
of CT concepts that could be implemented if a given
behaviour was to be achieved? Once the reflection session is
over the learner are given scenario-based MCQ.

4, CTINTINKERING

In this paper, we present the design of an intervention and a
proposed study to explore the use of tinkering as a means for
developing an operational level understanding of the
different dimensions of CT. In the explore phase, activities
that emphasise the interaction with the sensors and the EV3
brick help the learners to understand with programming is
and empowers them with the opportunities of being able to
program physical objects. Constructing small artefacts
exposes them to CT concepts of operators, procedures etc.
In the solve phase, the learners are introduced to sub-
problem generation and encouraged to reuse and remix
solutions from the previous phase adding a few more CT
concepts. In the evolve phase, the learners are made to
reflect on the iterative and incremental way of solving
problems. The slight increase in complexity of the problem
introduces them concepts of abstraction modularisation of
the turning function. They also learn about parallel
processing to achieve the motion and obstacle detection
function. Table 1 below provides a summary of the mapping
between the activities performed in the tinkering
environment and operational elements of CT from the CT
Framework. Table 2 also presents the distribution based on
the three dimensional CT framework aligned to the essential
phases of our tinkering pedagogy. We believe that by such
an alignment of dimensions of CT with our tinkering
pedagogue, the learners will be able to develop an
operational understanding of using CT for solving problems.
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Table 2. Activities done in different phases of the pedagogy and their mapping to dimensions of CT.

Making moving bots, right left turns
Stopping and moving on obstacle

Phases Activity CT Concepts CT Practices CT Perspectives
Interaction of sensors with the environment Operators, Procedures, Problem Formulation, Programing empowerment,
Explore Finding their affordances Data structures Questing Perspective of expressing.

Use pre-built solutions from previous phase
Solve Determining the subproblems and primary
functional modules

Sequencing, Event
handling

Problem Decomposition,
Algorithmic Thinking,
Reusing Remixing

Connecting Questioning

Using the learning from explore about sensors
functions and bot motion

Evolving the solution to a modular approach.
Achieving obstacle detection while moving

Evolve

Loops, Conditionals
Parallelism

Iterative Incremental,
Abstracting Modularising

Connecting Questioning

5. CONCLUSION

As present above, we proposed intervention for teaching
computational thinking (CT) as a part of the high school
curriculum. The first component of the intervention is
problems that provide learners with opportunities to use CT.
We have used problems with robotics. The second
component of our intervention are resources to work with.
We have chosen Lego Mindstorm and a few everyday
materials for construction. Our application provides
information about the resources textually, visually
seamlessly using augmented reality. The third aspect of our
intervention is that the Explore-Solve-Evolve pedagogy
ensures a rich, authentic problem-solving experience for the
learners. Reflections after each phase introduce the learners
to the concepts, practices and perspectives of computational
thinking. The mentor assumes the role of a noncontributing
companion by scaffolding the learner towards exploration
and play using strategies like question posing. They mentor
learners with strategies to overcome challenges and
reflection to ensure an explicit understanding of learns
action.

The question that we pose to ourselves is that “Will the
tinkering learning environment designed with an alignment
of CT elements lead to the development of such an
understanding of CT in its three dimensions?” Before we
could aim at answering this question, this study will provide
us with a deeper understanding of the alignment and the
features that may or may not work as intended. With an
evolved Tinkering enabled learning environment we plan to
conduct more studies using techniques to evaluate the
learning of CT as reported in the literature (Kong & Abelson,
2019) to be able to determine the impact of using a tinkering
approach towards developing computational thinking.
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ABSTRACT

Search engine optimization has often been through tagging
(metadata descriptions) and appropriate placement of these
metadata in inherent document structures e.g. XML. This
paper presents a complement whereby the structure and
information design based on design thinking and
computational thinking results in more effective scoping of
user requirements and leaner, agile design. This form of
human-computer interaction-search engine optimization is
much used in successful e-commerce websites due to Data
Science. Comparison between the standard 4 CT aspects
approach and Brennan and Resnick’s 3 CT aspects approach
and implications to STE(A)M teaching and learning are
investigated through a meta-analysis of two Project
Management course assignments. Significance of the paper
is direct link and greater specificity between design thinking,
computational thinking, human-computer interaction,
Project Management and search engine optimization within
an entrepreneurial project management framework.

KEYWORDS
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1. INTRODUCTION

The trends in project management (PMI, 2017) highlight the
need for first, entrepreneurial project managers who are able
to think and decide not only quickly but also analytically and
judiciously, by utilizing and managing frameworks and
diverse decision support tools. This leads to judicious
application of agile project management as well as
hybridization of project management methodologies from
different industries to promote different ways to build things
and enhance processes and outcomes.

Analytical, judicious thinking and the ability to synthesize

are characteristic of creative thinking (Arnold, 1959).

Arnold’s (1959) Theory of the Creative Process regards the

creative process as:

a) applicable to several domains to a certain extent;

b) dependent on the processes a person follows;

c) a search and problem-solving process aimed at better
meeting basic human needs;

d) influenced by meta-cognitive processes, which identifies
and regulates creative progress.

Another two trends which are increasingly gaining attention
are man-machine collaboration and gamification. If
designed well, these can sustain e-commerce, supply chain
and growth. Hence, there is a need to train students to design
through modelling and computational thinking. The
question is how to scaffold generative deep thinking?

1.1 Objective

Computational thinking (CT) commonly emphasizes four
aspects (Figure 1a). A critical CT concern is also to link with
real-life applications, scenarios. A real-life example of
decomposition and algorithmic thinking (Olaf can rearrange
parts of himself) in CT is in Figure 1b.

COMPUTATIONAL THINKING

Figure la. Four key aspects  Figure 1b. Example of CT

For this paper, implementations of the popularly accepted
four CT aspects and Brennan & Resnick’s (2012) 3 CT
aspects: computational concepts, computational practice
and computational perspectives are juxtaposed and the
implications to teaching and learning are compared. For both
case scenarios, project management knowledge areas are
integrated within an entrepreneurial framework.

Both studies/systems aim to increase Search Engine
Optimization (SEO), sustainability and interactivity. For the
standard 4 CT aspects, we choose to focus on an e-commerce
website that sells furniture, Furnitize (Chew, Chee, Wong,
Hiew, 2017). Patterns (templates), with decomposition
(parts of objects), abstraction (different levels of details) and
algorithmic thinking (processes to create the simulated
desired interior) using the software. For Brennan and
Resnick’s CT aspects, we choose an e-commerce-
crowdsourcing recycling website, The Enchantress (Yew,
Lim & Sugumar, 2017), which questions how we define
fashion, diverse perspectives of fashion design as well as
entrepreneurial possibilities.

2. RELATED WORK

In this section, we present the design factors considered. To
scaffold goal-based contextual thinking, goal-based
scenarios (GBS) proposed by Schank, Fano, Bell and Jona,
(1993) recommends the use of mission as overriding goal.
The mission can be reflected in themes and these can be
adapted into different cover stories with variations in
situations, roles and challenges. These cover stories
consequently, result in interrelated smaller missions. This is
necessary to mediate from easy to difficult situations, roles
and challenges.

Schank, Fano, Bell and Jona’s (1994) GBS finds support in
design thinking. Design thinking focuses on context,
empathy and user experience as starting points. Asa Human-
Centered Design methodology, design thinking incorporates
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consumer insights as the first design space (Dym & Little,
2003). Apple is a representative example of systemic
solutions, partly emotional and partly cognitive, within
knowledge-based ecosystems.

Brennan and Resnick’s (2012) CT aspects are concepts,
practice and perspective. Examples of concepts are events,
conditions, sequence, and loops. These are similar to
information system’s conceptual schema, conditions, data
flow. Practice in incremental improvement and testing are
akin to pilot, alpha-beta testing, reusing and remixing
strategies/assets. Practice in abstracting and modularizing is
pattern-based. Perspectives are expressive, connecting and
questioning, to encourage meaningful iterations. These
researches point out that more needs to be understood in
terms of how design and computational thinking helps to
develop creativity among designers, in higher education.

3. METHODOLODGY

The students are not Computer Science students. Hence,
Brennan and Resnick’s (2012) perspectives is first utilized.
Students are asked to identify which current trends and
issues in project management they find interesting from the
PM Institute’s Pulse of the Profession (2017) report. Project
Management and HCI concepts are integrated with
information systems analysis and design (ISAD) constrained
by impact on society and sustainability of products/services.
ISAD provides the computational thinking aspects, e.g.
patterns (templates), decomposition, abstraction (different
levels of details) algorithmic thinking (processes/data flow),
prototyping and user testing.

4. SYSTEM DESIGN & DEVELOPMENT
Project Management considerations are first applied for
systems analysis and design. This is followed by
Waterfall/agile methodology for systems development.

4.1. Furnitize’s design factors

For Furnitize (Chew, Chee, Wong, Hiew, 2017), the first
Project Management consideration is Project Integration
Management. Their design factors for Furnitize are
extracted as follows:

a) User satisfaction, behaviors

Fayad and Paper’s (2015) Technology Acceptance Model
(TAM): perceived usefulness, perceived ease of use, and
intentions; add four predictor variables to the original TAM:
expectations, process satisfaction, outcome satisfaction, and
e-commerce use — to extend TAM from measuring
intentions to measuring actual behavior. Expectations (ease
of use, usefulness), customer satisfaction (process and
outcome satisfaction) and intention (e-commerce use) as
design guidelines are thus utilized.

b) Cross-sell and Up-sell

Choosing which products to offer to which customers to
maximize the marketing return on investment and to work
around business constraints is complex but necessary to
retain customers (Salazar, Harrison & Ansell, 2007).

i) Market segmentation analysis, purchase acquisition trees
and survival analysis can be applied in many contexts;

ii) Lim and Lee’s (2010) study on online analytics using
classification and association rule mining.

c) Social Media and influencers

d) Gamification

Gamification, is transforming business models. It
integrates game mechanics into non-game environments to
motivate  participation, engagement, and loyalty.
Gamification works because it leverages on our motivations
and desires for community, feedback, achievement, reward
(Yang, Asaad & Dwivedi, 2017).

The derived system requirements are in Table 1.

Table 1. System requirements

Company Company services
strategies
Increase e  Customer relationship management
customers’ system (live chat, social media, forum,
satisfaction, subscribe, membership, news)
confidence, e Customize: allow customers to have their
and loyalty own experiments with concepts (design
their own floor plan, own decoration
using templates, tutorials)
e Google analytics, Gamification (future)
Increase e Joint venture with other companies
variety of Delivery system (Supply Chain Delivery
produt_:ts, System)
cost, time e Agent, to save cost and time

Installation and renovation services

The outcome of Project Integration is in Figure 2a.

MODERN
DESIGN
MEETS COZY
COMFORT

Figure 2a. Wing’s 4 CT aspects: Furnitize
https://pailekchew963.wixsite.com/mysite

The second round of considerations are Project Scope
Management, Project Time management, Project Cost
Management and Project Quality Management. The
outcome from this second round of considerations is
illustrated in the choice of floor plans, and customization of
interior design and furniture selection. Examples shown
(Figures 2b, c, d) are customized screenshots, using the open
source RoomSketcher software.

/. 8

Drag your faveurite furniture into the software
and receive them within a week!
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Figure 2c. Interior Design and Furniture Selection

Figure2d. Forum

To confirm feasibility, a third round of considerations are
factored in. These are Human Resource Management,
Communication  Management, Risk  Management,
Procurement Management and Stakeholder Management.
This layered-iterative methodology reflects agile principles.

4.2 Evaluation (user perception)

The user testing questionnaire is designed based on generic
human-computer interaction (HCI)/TAM  principles.
HCI/TAM principles, optimize search. Findings extracted
from the report are presented in Table 2 below.

Table 2. User testing findings

The current information matches what you expect to find.

The content language is clear and simple.

8 (60%)

4 (40%)

The site structure is simple and clear without any unnecessary

complications
o h
; n g

T z 3
There are no instances of extra information

I There are no instances of misplaced Information.

dability.
7 (0%

Color choices allow for easy rea

4.3. The Enchantress’ design factors

Inspired by Starbucks’s gamified crowdsourcing ideation
system, The Enchantress (Yew, Lim & Sugumar, 2017) is a
crowdsourcing platform. Their proposition is to encourage
the community to develop a new habit i.e., to recycle. To
encourage and to sustain such new habits, would require not
only time scheduling and task load considerations, but also,
development of new perspectives through new value
propositions. The Enchantress (Figure 3) piques imagination
to the highest of what fashion is or can be. Hence, it’s like a
nested loop of perspectives.

RECYCLE YOUR CLOTHES

~<Q*
J b

- N

%W;;; P

Figure 3. Brennan & Resnick’s 3 CT aspects:
The Enchantress

4.4. Evaluation (user perception)

Technology acceptance by users has also been promising
though there are challenges as not everyone is interested in
design. Nevertheless, due to its social innovation orientation
of conserving the environment by encouraging product
innovation and entrepreneurship, it is still worth a try. To
sustain, a knowledge management framework has been
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investigated (Yew & Lee, 2019). Findings are promising but
indicates the need for smart partnerships.

5. IMPLICATIONS AND CONCLUSION
Prior research is aimed at investigating how we can scaffold
generative/deep processing, i.e., how we can design deep
reflective questions, which would contribute towards pattern
recognition, theorizing, knowledge construction, and
subsequently, creativity and transfer of learning along with
the development of epistemic agency.

Both systems indicate that inter-disciplinarity in realistic
ecosystems aimed at meeting real needs are the most
effective motivators, confirming the efficacy of goal-based
scenarios. Interestingly, design factors are similar and the
two most important are the supply chain and cross-sell and
up-sell; and the ultimate goal: sustainability.

These findings confirm success factors identified in Lee and

Wong (2014; 2015; 2017; 2018):

a) design thinking (viability and sustainability of
innovations) and computational thinking; [2015]

b) design as search/SEO/navigational structure (Interaction
Design Institute); [2014]

c) Project Management (PM) grounded in Information
Systems Analysis and Design and correspondingly, the
Technology Acceptance Model (TAM), PMI; [2017]

d) marrying PM-TAM concepts with human-computer
interaction metrics enhances design

e) marrying the above within a knowledge management
framework ensures cycles of innovation. [2018]

The implications to teaching and learning are, first, the four
key CT aspects are more oriented towards Computer Science
projects in diverse contexts, with heavier research and Data
Science underpinnings. Brennan and Resnick’s (2012) 3 key
CT aspects naturally have research and Data Science
underpinnings, but are more easily understood and do-able
for the masses, given Resnick’s years of creativity research
e.g. Scratch. Reducing entry level/cognitive access, fun,
community engagement, overlay Computer Science/Data
Science underpinnings. It is also easier for the masses to
develop and transform value propositions.

Furthermore, adaptations are based on different centralities
in design. Interestingly, Furnitize leans more towards
structure, behavior, and function first whereas The
Enchantress leans towards function, behavior, structure
first. Hence, juxtaposing the 4 CT aspects against the 3 CT
aspects highlight their complementarity based on goal-based
scenarios, HCI and TAM principles to different contexts and
spectrum of abilities in education.
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ABSTRACT

The purpose of this study was to develop a self-efficacy scale for students in the field of information studentss about
programming thinking procedures. The questionnaire consisted of 21 questions which divided into three dimensions such as
"importance”, "confidence" and "anxiety". The research object is the college students who have taken programming courses
in Taiwan. There were 208 participants from northern, central, and southern Taiwan. The statistical methods used in this
research include descriptive statistics, item analysis, exploratory factor analysis and Cronbach a internal consistency analysis.
The internal consistency coefficient of the scale is between .950 and .957 and the validity of the construction is verified by
factor analysis. On the whole, the scale has good reliability and validity.

KEYWORDS
information domain, programming, self-efficacy, programming self-efficacy scale
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ABSTRACT

Computational thinking has been identified as an essential
problem-solving skill in the information age. Although more
specialized, programming is an essential manifestation of
computational thinking, and in turn, source code
comprehension is a vital subskill of programming. The study
reported here compares the effects of different source code
examples on source code comprehension and different
learning hints as a starting point for a dynamic learner
support system. Our analysis relies heavily on using eye
tracking data in combination with specific data models and
visualizations. This form of behavioral analytics is
complemented with answers to comprehension questions to

assess the effects of these hints with different code examples.

Our findings indicate that syntax highlighting is of limited
benefit for better comprehension, and a dynamic
highlighting of the scope of code blocks and variables is less
used than expected.

KEYWORDS
eye tracking, program comprehension, computational
thinking, learning analytics

1. INTRODUCTION

In a society permeated by digital representations and tools in
professional and everyday life, the desirable general
knowledge of science, technology, engineering, and
mathematics (STEM) must be combined with more meta-
level skills like critical thinking, adaptive problem solving,
and creativity. As argued by Wing, "computational
thinking™ (CT) is an important ingredient in this context
(Wing, 2006). Although CT cannot be reduced to
programming, programming is an activity that both builds
on CT and can support the development of CT. Accordingly,
it has been argued that there is an overall value in learning
basic concepts and skills of programming. However,
programming is a complex cognitive activity (Pea &
Kurland, 1984). When learning to program, comprehending
source code is the priority.

Eye tracking is more and more integrated into the process of
analyzing learners and creating better support systems
(Njeru & Paracha, 2017). Additionally, it is a powerful
ingredient in the context of learning analytics (Greller &
Hoppe, 2017).

In this paper, we describe the analysis of comprehension
problems participants encounter while reading source code
and answering comprehension questions. Especially, the
detection of common reading patterns may reveal
differences in computational thinking and understanding
among participants.

2. ANALYSIS APPROACH

The basis of every eye tracking analysis is fixation hits on
specific regions. In the source code examples, AOls are
placed around every code line (line model) or every
important workspace area (workspace model). (Deitelhoff,
Harrer & Kienle, 2019b) These are marked with letters, in
the line model from top to bottom, with additional AOls for
the question and answer areas, and in the workspace area
model with A = answer, C = code, and Q = question.
Additionally, we label non-hits with "_", to identify gaps in,
e.g., transitions.

We used the recorded eye tracking data to calculate fixations
based on the raw data. The fixation calculation is done with
an I-VT filter (Velocity-Threshold Identification) with a
maximum radius of 60 pixels, a minimum fixation duration
of 60 ms, and a maximum of 55 missing gaze samples to
count as a fixation.

For analyzing the reading behavior of participants, we are
using a top-down approach with predefined patterns. Two
global patterns are, e.g., the Linear Scan and Jump Control,
also known as Story Order Reading (SOR) and Execution
Order Reading (EOR) (Busjahn et al., 2015). SOR is a
reading pattern from top to bottom, like a story in a normal
text, while EOR follows the program execution. Besides, we
use one visualization to show the fixation order of AOlIs
(Deitelhoff, Harrer & Kienle, 2019a). Furthermore, we use
our analysis tool CodeSight, which provides the feature to
search for eye movement patterns (fuzzy search).

3. RESEARCH QUESTION

Previous research has shown the effects of different source
code examples on reading patterns, and of syntax
highlighting as a form of learning hint. Some studies found
effects for novices or in general (Asenov, Hilliges & Miiller,
2016); some do not (Hannebauer, Hesenius & Gruhn, 2018).
The highlighting is used as a visual cue for programmers to
decrease the time required for mental execution. Novices
tend not to use/ignore the highlighting or misinterpret the
meaning completely. The objective of our study was to
investigate the effect of learning hints on the outcome of
source code comprehension processes. Additionally, we
analyzed how learners use and perceive the source code
examples. In summary, we tested the following research
questions and hypotheses.

H answer-quality VWe examined how the answer quality differs
between the various source code examples and learning
hints. We assume that more complex code examples have
less correct answers overall and that learning hints influence
the answer quality.
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Figure 5. The study prototype with the code example “Bubble” and with syntax highlighting.

H answer-quality VWe examined how the answer quality differs
between the various source code examples and learning
hints. We assume that more complex code examples have
less correct answers overall and that learning hints influence
the answer quality.

Hpatterns-Answer-Quality VWe found the patterns Story Order
Reading (SOR), Execution Order Reading (EOR), and
Flicking in the visualized AOI-DNAs. We assume that the
presence of these patterns is correlated to more correct
answers.

Hworkspace-Area-switches VWe analyzed, which visual context
switches between important workspace areas of the study
prototype are common between learners. We propose that
different context switches, and therefore comprehension
strategies, are visible. A different perception of the
workspace can lead to different approaches in solving the
comprehension questions, which may affect CT strategies.

4. STUDY PROTOTYPE

We used three code examples Bubble, GCD, and Vehicle as
stimuli. They correspond to the algorithms Bubble Sort,
Greatest Common Divisor, and a class that represents a
Vehicle with methods like accelerating and decelerating.
The complexity of these code examples varies between
complex (Bubble), medium (GCD), and easy (Vehicle),
assessed with the help of researchers involved in education,
learning analytics, and teaching. Error! Reference source
not found. shows an example screenshot for the Bubble
source code. To measure how successful participants
comprehend the source code, we asked the following
comprehension questions:

Bubble "What does the list look like after two runs of the
outer loop?"

GCD "To which values are the variables 'numberl' and
‘number2 set after three runs of the loop?"

Vehicle "To which values are the objects 'vOne' and 'vTwo'
set at the end of the program?"

The code examples are fixed in their order (Bubble > GCD
-> Vehicle), but with varying hints. We distinguish between
passive and active learning hints. The first is always
available, and the latter needs to be used actively by the
participant. The hint Syntax Highlighting highlights the Java
code is passive and helps to navigate the code and focusing
on parts like variable assignment and logic (see figure 1).
The second hint, called Dynamic, allows learners to focus a

variable or curly bracket with the mouse to highlight the
scope of either the usage of the variable or the, of a source
code block. Therefore, this hint is active. The third hint,
called Plain, is our control group without any hints.

5. DATA BASIS & ANALYSIS RESULTS

In this section, we report the results of our quantitative and
qualitative analysis of every hypothesis. As the data basis,
we recorded n = 24 participants from the nearby University
campus, out of which seven were females and 17 males, with
a mean age of 26.29 (SD = 4.28). The participants were all
Computer Science students (semesters 1-10).

5.1. Answer Quality

The overall correct answers for the Bubble source code are
12, for the GCD again 12, and for the Vehicle 5. Therefore,
the Vehicle code example seems to be more complex. This
result is contrary to our assumption, from an algorithmic
perspective, that the GCD is the most complex code
example. It seems that many participants had problems with
the object-oriented task. If we additionally consider the time
limit of every code example, we can confirm our impression
that many participants had problems with the Vehicle task.
Four participants exceeded the time limit for the Bubble
source code, 2 for GCD, and 9 for the Vehicle.

The data also shows that the syntax highlighting learning
hint is balanced for the correct/incorrect answers. Syntax
highlighting seems not to be an essential factor related to
answering a comprehension question. Complex code is still
complicated. However, the difference between the dynamic
learning hint and the plain code examples are indecisive for
the Bubble and GCD code examples. For the first code, plain
has a more significant effect on correct answers than the
dynamic learning hint (5 to 3 participants). This result is
reversed for the GCD code examples, with a more
substantial effect for the dynamic help on correct answers (2
to 6 participants). This is positive for the dynamic learning
hint of the GCD code example and interesting for the Bubble
code example. Overall, this needs a more in-depth analysis,
how often the dynamic learning hint was used across code
examples. For the Vehicle code, both conditions with the
dynamic help and the plain text seems to have no positive
effect on the comprehension result. Again, this needs to be
analyzed further on how often the dynamic learning hint was
used.
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Figure 6. AOI-DNAs for the participants 1 and 15 for the code examples Bubble, GCD, and Vehicle.

5.2. Reading Patterns to Answer Quality

As a first step, we are visualizing the gaze patterns of
participants in our analyzing platform CodeSight to reveal
the reading behavior. The visualization, in the form of our
AOI-DNAs, shows some similarities between the
participants. We describe our findings for participants 1 and
15 as examples. Error! Reference source not found. shows
the AOI-DNAs for both participants for all three code
examples. The visualization uses a grayscale color coding
for visualization of the source code lines from 1-n for the
line AOI model. The parts with, e.g., loops and methods, are
brighter, and the main method is darker. The question area
is light purple, whereas the answer area is light green.

For the Bubble code example, both participants almost
immediately start with reading the question, followed by
reading the main method and a SOR phase subsequently.
Afterward, the answer and code fragments are read
alternately. For the GCD code example, participants again
start with the question, followed by reading some parts of
the code. Afterward, participants, like 1 and 15, are
alternately reading the answer and sections of the code, with
participant 15 reading the main method more often. For the
Vehicle code example, participant 15 focuses more on the
question in the beginning, while participant 1 reads the code,
mostly the main method, first. Afterward, both participants
read parts of the code and the answer area.

Our analysis platform CodeSight supports searching for eye
movement patterns based on regular expressions, to find
common patterns linked to the assumption that they have
advantages for comprehending source code. For our
analysis, we searched for the Execution Order Reading
(EOR) and Flicking patterns. The SOR pattern is already
visible with the grayscale visualization and, because of the
length and diversity, hard to search for directly. The patterns
EOR and Flicking should show advantages for the
participant for answering the comprehension question
correctly. Searching for patterns is dependent on an
appropriate regular expression. The expressions are based on
the character labels for the AOIs. Therefore, we are
describing the transitions we found with these labels. For the
EOR, we are searching for AOI transitions like F|G|H|l >
E|D (Bubble), E|H|D = C (GCD), and T|U - C|D|E or Y|Z
- M|NJO (Vehicle) whereas the vertical separators are used
only to indicate the different AOIs within the patterns
visually. For the Bubble code example, the pattern search
revealed, that the patterns F|G|H|l = E are often present in
the AOI-DNAs. These eye movement patterns are essential
because they encode reading and comprehending the loop
structures. The fuzzy pattern search also shows that most of

these patterns, especially F > E, and G = E, are visible for
participant 1 with a far better comprehension result
compared to participant 15. Reading and tracking the loop
structures is vital for comprehending the Bubble example.
For GCD, the second code example patterns like E|H|D =
C|D are important. We found multiple hits for E[D - C and
H - C|D. These are important patterns for the while loop
and jumps from the two branches within the if statement to
the while loop. Both necessary for comprehending the
structure and behavior of the GCD algorithm. As for the
Bubble code, we found differences between the two
participants. Reading and tracking the loop and the if
structures are vital for comprehending the GCD example.

These results are also true for the Vehicle code example. We
identified important patterns like T|U - C|DIE, X = G|H|I,
or Y|Z > MIN|O. These are encoding (a) jumps from the
main method, were, among other things, constructors are
called, to the constructor definitions, and (b) jumps from the
for loop in the main method with method calls to the
corresponding method definitions. In contrast to the other
two code examples, we found only a small amount of pattern
matches for both participants.

5.3. Workspace Switches

First, we analyzed the overall fixation time for the source
code examples and the distribution of these durations on the
three AOIs in the workspace AOI model. The overall
fixation time for the question area is the highest for the
Bubble source code. This result is not a surprise, because
sorting an array takes many fixations and thereby time to
complete. The highest fixation time for the Vehicle source
code without any help is too as expected and in line with our
other analysis. The Vehicle example is the most difficult one
according to the participants, and the plain condition without
any additional help amplified this difficulty level. For the
Bubble source code example, the most fixation time spent
on the code AOI with the dynamic learning hint. For the
GCD code example, the most fixation time spent again on
the code AOI, but this time with the syntax learning hint
available. The fixation time results for the Bubble and GCD
code examples are a bit surprising. We assumed that for the
syntax and dynamic learning hints, these values should drop.
One reason could be the lower usage rates we see in the data.
Another possible reason is, that for the syntax learning hint
transitions and therefore fixations are getting higher,
because participants can read the source code much better,
and for the dynamic learning hint transitions and fixations
between the source code and answer area are higher because
participants getting help from emphasized variables which
helps them answer the question.
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5.4. Overall Comprehension Problems

Overall, we find more comprehension problems in the
Vehicle code example than in the other two code examples.
We visually analyze the fixation distributions on the stimuli.
For that reason, we superimpose the fixations on top of the
source code examples. In three cases, it is noticeable that
these participants do not have enough fixations on the for
loop in the main method. Therefore, it is explainable why
these participants failed the source code comprehension
questions. But overall, the fixation distribution is equally
good or bad compared to the other two code examples. We
assume that this difference has to do with object-oriented
programming because the Vehicle example uses a class with
methods, which are called in the loop within the main
method.

After the participants did the comprehension tasks, we asked
them in the conclusive interview the question, among others,
if they can identify the source code examples. Not on a
specific algorithmic level, but in a more meta-level way. The
specific question in the interview was: “What was the aim of
the individual program codes?”. For the code examples
Bubble and GCD, the participants could answer this
question very specifically most of the time (70%). Whereas,
the answers for the Vehicle code example were much less
precise. In most of the cases (> 80%), the participants could
only tell that it has something to do with “a vehicle, which
can be controlled”.

Besides, we analyze the duration time and fixation count of
every participant on the AOIs. Therefore, we can count the
overall durations and fixation counts per source code line.
The results show that the duration of important areas of the
source code examples is no decisive factor for a correct
comprehension question. For the Bubble source code,
important areas are D and E for the loop, F for the if
statement, and G, H, and | for swapping the values of two
array elements. Participants with a (very) high fixation
duration, and these AOIs are not answering the
comprehension question more correctly overall. The inner
loop (AOI-E) of the bubble sort seems to be the most
important one regarding the answers, but for the other AQls,
the results are inconclusive, which is a bit different for the
GCD and Vehicle code examples, whereas the fixation
duration on important AOIs seems to have an impact on the
answer quality of the source code comprehension. In
contrast to our expectation, we found that the fixation
duration is not a good predictor of comprehension success.
This result is quite different for the fixation counts. We can
summarize that a participant, who fixates an important AOI
more often, gives overall more correct answers for the
comprehension questions, which is especially true for the
GCD and Vehicle code examples and source code elements
like loops and if statements.

6. SUMMARY & DISCUSSION

To our surprise, the Vehicle code example was the most
difficult one, regarding the answers of participants. We
initially assumed that the Bubble code is the most complex

one, regarding the complexity of the program structure
(nested loops). However, the study showed that many
participants have problems with the object-oriented code, no
matter which learning hint was available.

The dynamic learning hint was less used than expected. We
thought that our target group, with knowledge in
programming and therefore, development environments
would use this hint more frequently. Overall, the hint may
be useful for the GCD example but ambiguous for the other
two code examples. This finding needs more in-depth
analysis and a specific study if the dynamic learning hint is
a candidate for the dynamic learner support system.

Regarding the reading patterns on both used AOI models,
we found common patterns across all participants, code
examples, and learning hints. The analysis showed that these
patterns form groups. Furthermore, a first analysis showed
that these patterns are not the distinguishing factor for the
answer quality of participants.
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ABSTRACT

This study aimed at integrating computational thinking board game with robots, so that learners put computational thinking
process into practice when they completed the tasks on the board game by controlling the action of the robots. The participants
were the sixth-grade students in Singapore. Two students divided into a team collaborated with each other and competed with
the other team composed of two students. This study developed a table of the behavioral coding schema according to the
observations of the students’ behaviors. From analyzing the overall learning behaviors of the students, this study evaluated
and found the learning behavioral patterns of the students in the learning circumstances.
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computational thinking, board game, collaborative learning, behavior analysis
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ABSTRACT

This paper shares the implementation of a robotic coding
curriculum for the students to develop Computational
Thinking skills through non-formal learning at a secondary
school in Singapore. These after-school activities are
implemented for students who are members of the school’s
Infocomm Club. The students learn to program the robotic
balls using block-based coding and apply problem solving
skills in their projects using recycled materials for green
environment. The projects are also designed for the students
to apply Mathematics and Science concepts.

KEYWORDS

non-formal learning, coding,
curriculum, implementation.

computational thinking,

1. INTRODUCTION

At the Bukit View Secondary School, 38 students of the
Infocomm Club are between age 12 and 17 years old. These
students acquire Computational Thinking skills (Wing,
2006) through non-formal learning in the after-school
activities (Lee et al., 2019).

The Infocomm Club runs various programmes for the
students to learn coding such as Scratch programming
(Maloney et al., 2010), Python programming (Rashed &
Ahsan, 2012) and MIT’s App Inventor (Wagner et al.,
2013). A new Robotic Ball Coding Programme has been
implemented to excite the students through coding of the
Sphero balls (www.sphero.com) using block programming.

2. RATIONALE FOR USING ROBOTIC

BALLS

There are various electronics platform available for the
teaching of coding to infuse Computational Thinking skills.
In the new programme, teachers of the school’s Infocomm
Club facilitate the students to code on robotic ball as it comes
with built-in sensors such as accelerometer (measure
motion), gyroscope (measure tilt angles), light sensor
(measure luminosity), infrared sensor (measure relative
distance between robotic balls) and compass sensor
(measure orientation in real-world directions).

Other microprocessor boards usually require motors and
wheels to be attached for movement. With robotic balls, the
students can now focus on coding activities to move or rotate
these balls without other hardware accessories.

3. THE ROBOTIC BALL CODING

CURRICULUM
Under the Robotic Ball Coding Programme, the students
learn through activities which make use of the built-in
sensors of the Sphero robotic balls such as the accelerometer

sensor, gyroscope sensor and control its sound and LED
lights. The students also create prototypes such as maze and
tractor vehicles using recycled materials for green
environment including card boards, ice-cream sticks and
paper cups. Table 1 shows the topics and activities of the 6-
week Robotic Ball Coding Curriculum with projects on
Music, Mathematics and Science.

Table 1. Robotic Ball Coding Curriculum.
Week Topic Activity
Week 1 Introduction and Navigate the Robotic Ball
Loop Statements through a maze.

Week 2 Variables and Create games with the built-in
Conditional if-else  sensors.
Statements
Week 3 More fun with if- Create a futuristic Robotic Ball
else Statements using the Accelerometer Sensor.
Week 4 Mathematics Control the LED lights based on
Project the Gyroscope Sensor’s axes of
rotation.
Week 5 Music Project Synchronize the Robotic Ball
dancing with a song.
Week 6 Science Project Build a tractor vehicle and

explore force and motion.

4. IMPLEMENTATION OF THE
ROBOTIC BALL CODING

CURRICULUM
The students learn to program the robotic balls using Sphero
Edu App installed on the iPads. This app allows students to
code through Draw Programming, Block Programming and
Text Programming using Javascript (Sphero Edu, 2019).

As the Infocomm Club comprises of both junior and senior
members, the students are taught the Block-based
Programming (Kelleher & Pausch, 2005; Weintrop &
Wilensky, 2017) which is easier to learn than Text
Programming. A block program code using the Sphero Edu
App is shown in Figure 1.

Figure 1. Block program code using Sphero Edu App.

To infuse more elements of fun, a Sphero Race Competition
is held and the students are required to code their robotic
balls to move through a race course where speed, inertia and
obstacles have to be taken into account. After each stage, the
students are allowed to improve their program code. Figure
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2 shows the final stage of the race with 2 Sphero balls in the
competition.

Figure 2. Final stage of the Sphero Race Competition.

5. SURVEY RESULTS

After the 6-week Robotic Ball Coding Programme, a survey
was conducted for the 38 students of the Infocomm Club.
95% of the students enjoyed coding activities on robotic
balls. 87% of the students have expressed that they can
develop Computational Thinking skills to solve real-world
problems as shown in Figure 3. Similarly, 87% of the
students also expressed that they can apply Mathematics and
Science concepts in the coding activities as shown in Figure
4. Some students have faced challenges in testing and
debugging the errors in their programs.

. .
1304

Disagree

= Strongly Agree = Agree

Figure 3. Survey Question 1: | can develop Computational
Thinking to solve real-world problems with
robotic balls.

Disagree

Agree

5 10 15 20 25

u Apply Science concepts  m Apply Mathematics concepts

Figure 4. Survey Question 2: | can apply Mathematics and
Science concepts in the coding activities.

At the end of the programme, some students gave the
following feedback:

“I am able to use coding to control the ball.”

“I like the coding when the balls start dancing.”

“I can apply Mathematics and Science in the coding.”

’

“I like making the ball move to a light source.’

“I can use the raw motors to make the balls bounce like
crazy.”

6. CONCLUSION

This paper shares the rationale, curriculum and
implementation of Computational Thinking with robotic
coding activities on Sphero balls through non-formal
learning at the school’s Infocomm Club. The 6-week
programme enables students to develop Computational
Thinking through block-based coding with built-in sensors
and create prototypes using recycled materials. The survey
results show that the students are motivated as they find
coding with Sphero balls to be fun and they could apply
Science and Mathematics concepts in their projects. Future
study will explore on coding with projects that involve
integration of knowledge from various subject matters.
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ABSTRACT

A large body of literature emphasizes the importance of
effective integration of computational thinking at preschool
education (Ching, Hsu, & Baldwin, 2018) as it is enlisted in
the 21% century skills (Lye & Koh, 2014). Nonetheless, the
factors related to the development of computational thinking
are under investigation (Roman-Gonzéalez, Pérez-Gonzélez,
Moreno-Leén, & Robles, 2018). Consequently, the study
herein investigated the impact of scaffolding and gender in
the development of one hundred and eighty children’s
computational thinking. The results indicated strong
interaction (p<0.000) between the aforementioned factors
and the advancement of computational thinking producing
practical suggestions for the preschool educators and the
computing community in general.

KEYWORDS
computational thinking, scaffolding tools, gender, young
children, robotics

1. INTRODUCTION

Science, technology, engineering and mathematics (STEM)
are the cornerstones of our society that upon them its healthy
development is constructed (Chabbott & Ramirez, 2000).
However, there is an oppressive shortage of human
resources in the aforementioned areas and simultaneously a
declining trend in the number of students choosing STEM
courses (Bge, Henriksen, Lyons, & Schreiner, 2011). In
addition it is predicted that by 2020, the 50% of STEM jobs
will be in computing (ACM Pathways Report, 2013).
Computational thinking is a fundamental concept of
computer science emerging from its basic principles and
practices (Sengupta, Kinnebrew, Basu, Biswas, & Clark,
2013) while at the same time improves computing education
since it derives methods from different disciplines (Guzdial,
2008). In environments where computation thinking has
been used as a tool for learning STEM content it has been
shown to synergistically deepen learning of the STEM topics
and computing concepts (Sengupta et al., 2013).

Computational thinking is being described as a key set of
skills (Guzdial, 2008; Wing, 2008) involved in problem
solving (Bocconi et al., 2016). Its core elements are:
abstraction, generalization, decomposition, algorithmic
thinking and debugging (detection and correction of errors)
(Angeli et al., 2016). It is discussed in the computing
community that is of great importance the development of
computational thinking to be realized within school contexts
and furthermore to be integrated in the curricula (Grover &
Pea, 2018). Although several empirical studies have been
conducted studying the development of computational
thinking in elementary and high school settings however, the
research area of the development of computational thinking

in preprimary education is still in its infancy (Bers, Flannery,
Kazakoff, & Sullivan, 2014).

The teaching and the development of computational
thinking especially in the early childhood education is
mainly being implemented with the use of the robotics (Bers
et al., 2014). Recent studies support the introduction of
robotics in preprimary education since they reported that the
active manipulation of the various robotics tools can
enhance the learning experience of the children. In addition
the use of robotics can advance the development of cognitive
skills (Papert, 1980); social skills and engineering design
skills (Bers, 2008).

Programming is theorized as a teaching approach
interwoven with the learning of robotics (Papert, 1980)
supporting the implementation of cognitive tasks directly
correlated to the development of computational thinking
(Lye & Koh, 2014). in this study the design pattern of Papert
(1993) “low floor and high ceiling” was embraced which is
considered suitable for programming educational robots
(Resnick & Silverman, 2005).

Among the contributing factors that are directly connected
to the development of computational thinking is gender
since there are consistent findings in the literature that
support the claim that gender differences influence student
learning (Duckworth & Seligman, 2006) and school
achievements (Sousa & Tomlinson, 2011). More
specifically neuroscience studies recite that these differences
are interwoven with the fact that girls’ and boys’ brain have
morphological variances resulting to more cortical areas
devoted to verbal functioning and visual-spatial information
processing respectively (Baron-Cohen, 2004). Accordingly
girls are better at verbal and sensory memory and boys at
visual memory (Bonomo, 2011), justifying the fact that girls
are excelling in complex tasks of reading and writing
whereas boys in tasks which involve mental rotation (Maeda
& Yoon, 2013).

Another factor which is scrutinized in the present study is
scaffolding. It is well documented in the literature that the
use of scaffolding is imperative in education especially,
when learning is accompanied by technological tools
(Azevedo & Hadwin, 2005). Moreover scaffolding
provision is essential especially for young students (Belland,
2014) since in its absence students may fail to complete the
task (Van de Pol, Volman, & Beishuizen, 2010). Studies
connected scaffolding with the theory of the cognitive load
due to the fact that scaffolding tools support the reduction of
cognitive load that is being imposed to student during
learning (Myhill & Warren, 2005) while at the same they
improve the acquisition of cognitive skills (Reid-Griffin &
Carter, 2004).
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2. RESEARCH PURPOSE

Very little research has been conducted exploring gender
differences and the impact of different types of scaffolding
tools in young children’s robotics and programming abilities
(Angeli & Valanides, 2019; Sullivan & Bers, 2013) most
likely because the use of robotics and programming in early
childhood classrooms is relatively new.

The research aim is two folded as it focus on investigating
the effects of different scaffolding tools on children’s
computational thinking in preprimary education and at the
same time it examines whether the two different types of
scaffolding tools have a different impact on boys’ and girls’
performance on the scores of computational thinking.

3. THEORITICAL BACKGROUND

3.1. Participants

The participants were one hundred and eighty preschoolers,
ranging in mean age from five to six years old. The
researchers obtained written consent from their parents to
participate in the study.

3.2.  Research Materials

3.2.1. Problem-solving Tasks

Three different problem-solving tasks, corresponding to
three different research phases, were designed for the
children to program and direct the Bee-Bot into different
paths. Children had twenty minutes at their disposal to
complete each problem-solving task. The first problem-
solving task engaged children into an exploration of the
commands of the programming language of the Bee-Bot and
it consisted of thirteen subtasks. The second task consisted
of five subtasks aiming to teach children how to formulate
sequences of commands in increasing levels of complexity.
Finally the third task comprised of five subtasks that were
used to evaluate children’s computational thinking.

3.2.2. Modeling-Based Scaffolding

This scaffolding tool is a representation of the floor mat, the
robotic toy Bee-Bot and the programming commands all in
reduced size. The child thought about the algorithm and
constructed a representation of it using the model that was
used to support his/hers endeavor to guide the Bee-Bot into
the task’s path.

3.2.3. Code Structure-Based Scaffolding

This type of scaffolding included small laminated cards
representing each of the Bee-Bot commands and a larger
laminated card and was developed to simulate the way the
code is being written while programming. For this reason the
participants were asked to choose the cards and attached
them in the larger card in the order they believed it was the
correct one. With this way they formed a sequence of
commands that visualize the algorithm and then tested it.

3.3.  Research Procedures

Research procedures consisted of three research phases that
were administered in three consecutive days. All of the
research phases were conducted individually for each
participant. The first day, during Phase 1, all the children
became acquainted with the basic commands of the Bee-Bot
and small sequences of commands.

On the following day, during Phase 2, the children were
randomly divided into three equivalent groups as shown in
Table 1. In the first experimental group, children used the
modeling-based scaffolding tool, while in the second
experimental group, they used the code structure-based
scaffolding tool. The last group of children constituted the
control group where they worked with no scaffolding tool.
During this phase, children learned small codes that
comprised sequences of commands with a minimum length
of four commands and a maximum of seven. Children were
evaluated for their initial attempts to solve the problem
solving task. More specifically, children developed a
sequence of commands and used it by pressing the
corresponding buttons. Then, they observed which path
Bee-Bot would follow and if the path was not correct, they
had the opportunity to try again. During the last phase, Phase
3, the scaffolding tools were withdrawn and children’s
performance was assessed while trying to carry out the third
problem-solving task.

Table 1. Participants’ Distribution into the Two
Experimental Groups and the Control Group According to
Their Gender

Groups Participants

Control Group 60 Boys Girls
37 23

Model-Based Scaffolding 60 Boys Girls
35 25

Code-Based Scaffolding 60 Boys Girls
26 34

Total 180 96 82

3.4. Data Analysis

This study used a total of one hundred and eighty hours of
video data. The entire process of the individualized
instruction that resulted from children’s interactions with the
Bee-Bot was videotaped, transcribed and analyzed over one
year period. Many researchers propose various software for
coding recorded data however their use was not applicable
in the present study. The reason for this is that the human
interpretation process of the data was deemed necessary in
this research since the robotic device (Bee-Bot) that was
used in the herein study, is designed to support a playful
learning process (Bers et al., 2014) and in such learning
environments, children's actions are coded by researchers
(Basu, Biswas, & Kinnebrew, 2017). Consequently, the
researchers had to observe the videotaped videos and record
the actions of the children corresponding to the command’s
choices. Specifically, the researcher recorded which buttons
the children selected in their various attempts to solve the
problem of each teaching intervention. Following, the
research data were analyzed using the method of process
coding (Saldafa, 2015), which is considered to be ideal
when the observed actions of the participants include
problem solving (Corbin & Strauss, 2008). At first, four
videos from each group were coded from two researchers to
ensure validity and afterwards researchers' coded videos
independently.
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4. Results

4.1. Computational Thinking Assessment Rubric

The researchers collected data from all the one hundred and
eighty students for each problem-solving task and then
identified whether students solved the tasks correctly on
their first attempt or whether they required more attempts.
Based on the analysis, a rubric was created that scores
students’ total effort along two aspects: (a) number of
attempts and (b) the ability to complete the tasks step by
step.

4.2. Computational Thinking

The picture emerging from the descriptive statistics shown
in Table 3 indicates an advantage of male participants. In all
groups, during the initial and final assessment of the
computational thinking in Phase 2 and Phase 3, boys seem
to outperform girls. A 2 X 3 analysis of variance was
conducted to determine whether there was statistically
significant difference between boys and girls on the different
forms of scaffolding strategies during the assessment of
computational thinking in Phase 2. The results revealed that
only the use of scaffolding tool (F (2, 179) = 49.26, p <
0.000) was statistically significant for the scores of
computational thinking. In order to detect the differential
performance on the computational thinking regarding to
scaffolding tools, the researchers performed post-hoc LSD
comparisons. The results showed that both modeling-based
scaffolding and code structure-based scaffolding
outperformed the control group.

Table 2. Descriptive Statistics of Children’s Computational

Thinking in Phase 2 for each Scaffolding tool and Gender
Research Phase2

Mean SD N
Modeling-Based Scaffolding
Girls 246,08 17,94 25
Boys 239,40 43,81 35
Total 485,48 61,75 60
Code Structure-Based Scaffolding
Girls 226,11 39,75 34
Boys 230,13 22,92 26
Total 456,24 62,67 60
Working without Scaffolding (Control Group)

Girls 156,60 57,11 23
Boys 180,21 44,00 37
Total 336,81 101,11 60

During the third research phase boys outperformed girls in
all groups (Table 4). In addition, the children who belonged
in the control group scored higher than the children who
belonged in the two scaffolding groups. A 2 X 3 analysis of
variance was conducted to investigate the differences
between boys and girls and the different forms of scaffolding
strategies used in the previous research phase. The findings
showed that only gender had a significant main effect (F (1,
179) = 12.82, p < 0.000) in the computational thinking score,
revealing that the intervention produced significantly higher
gains for the male participants.

Table 3. Descriptive Statistics of Children’s Computational

Thinking in Phase 3 for Each Scaffolding tool and Gender
Research Phase2

Mean SD N
Modeling-Based Scaffolding
Girls 164,60 41,05 25

Boys 202,09 58,91 35

Total 366,69 99,96 60
Code Structure-Based Scaffolding
Girls 168,61 57,73 34
Boys 195,76 53,86 26
Total 364,37 111,59 60
Working without Scaffolding (Control Group)
Girls 175,86 52,01 23
Boys 206,59 47,02 37
Total 382,45 99,03 60

5. DISCUSSION

Interventions that are being implemented with the use of
robotics and contemplate the development of computational
thinking have become increasingly popular within the
school system (Grover & Rea, 2018). This study brings into
focus a large contributor to the discussion of how to integrate
the development of computational thinking in preprimary
education, a notion affecting the computing community in
general. In this study the authors investigated and
documented gender differences in educational robotics
instruction. Unlike Sullivan and Bers (2013) that reported no
gender differences regarding the performance on robotics
and on the development of computational thinking of young
children respectively, the findings of the herein study are in
line with findings of the studies of Angeli and Valanides
(2019) and Romén-Gonzalez et al. (2018) that reported that
boys outperformed girls during the assessment of the
development of the computational thinking.

This result could be justified by a range of factors that are
studied in the study herein. The gender disparities on the
development of computational thinking might be related to
the spatial ability of the participants, since the majority of
this study’s problem-solving tasks required the formation of
sequences of commands that comprised the spatial referents
“left” and “right”. Researchers cited that especially in tasks
that involve mentally rotation of figures (Maeda & Yoon,
2013), that the stereotype threats are often particularly
noticeable for female, the task’s performance may be
attributed to a lack of ability. Mental rotation requires the
operation of visual-spatial working memory (Hyun & Luck,
2007) which is being influenced by the cerebral cortex and
is larger in boys than girls supporting the fact that boys'
learning is improved through visual-motor experiences
(Bonomo, 2011). Indeed, some studies have shown evidence
that males, with their better visual-spatial working memory,
are likely to perform better in visual-motor tasks than girls
(e.g. Maeda & Yoon, 2013) resulting to this study’s
observed male advantage on task’s performance.

Alternatively, another possible interpretation of the strong
effect of gender in our data might be related to the
scaffolding tools used for the development of the
computational thinking. More specifically the modeling and
code structure-based scaffolding tools may have contributed
to a lack of engagement of the female participants resulting
to their lower performance on the problem solving tasks in
comparison with their male counterparts. A different type of
scaffolding tool including storytelling activities might have
showed different results (Kelleher, Pausch, & Kiesler,
2007). More precisely girls that used storytelling showed
more evidence of engagement with programming and
expressed greater interest in future use of coding than girls
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who did not have storytelling support. Findings obtained by
Angeli and Valanides (2019) report the importance of
gender oriented scaffolding tools. In their study, higher
means in the computational thinking scores were found in
the male and female group that used manipulative-based and
collaborative writing activity respectively.

No significant differences were found between female and
male attrition from robotics activities during Phase 2.
However, significant differences were found between the
experimental groups and the control group: in scaffolding
salient condition the performance of children was
substantially better from the performance of children in the
control condition. Specifically children who had been
provided with scaffolding outperformed children that had no
scaffolding. These results are consistent with previous work
by Jonassen (1992) and more contemporary work by Angeli
and Valanides (2004) that showed the necessity of
scaffolding techniques, such as, external memory systems to
facilitate students’ learning with technological tools. In
addition the results of the herein study are collinear with the
results of studies that outlined that necessity of scaffolding
especially when students of preschool education use
technological tools (Azevedo & Hadwin, 2005) since the
cognitive load that is being imposed to students during
learning is reduced (Van Merriénboer, Kirschner, & Kester,
2003).

The observed low scores of the children of the control group
on the measurement of computational thinking, during the
second research phase, are caused from their difficulties that
they encountered while visualizing the procedure needed to
execute a program (Fessakis, Gouli, & Mavroudi, 2013).
Children’s problems with the visualization of the commands
sequences can be attributed to children’s misconceptions
situated in the mental rotation (Sarama & Clements, 2009).
More specifically children are not able to correctly
discriminate their left and right body parts; use and apply the
word left and right; label the directions correctly as ‘left” or
‘right” (Sarama & Clements, 2009). However children with
appropriate scaffolding can understand and use the concept
of left and right correctly (Shusterman & Spelke, 2005)
while being engaged in activities that include concepts
strongly correlated with the rotation such the use of
commands that directed the floor robot to turn right or left.
Therefore the use of the scaffolding tools materialized the
visualization of the algorithm used to program the floor
robot and supported the learning of computational practices
(Lye & Koh, 2014) that enabled children to excel in the
problem-solving learning environment.

These findings have a number of implications of both
theoretical and practical significance. Regarding the
theoretical significance, this study contributes to the
literature addressing gender effects on computational
thinking achievement by examining the contribution of
scaffolding tools on children’s computational thinking
development during preprimary education. This study
extends previous findings in gender differences in visual
spatial memory providing additional data indicating that
gender differences in visual spatial working memory
appears also in younger ages.

Despite the fact that adults can use visualization effectively
in many tasks (Wohldmann, Healy, & Bourne, 2007) it is
clear that this strategy is not available for children resulting
to an incensement of their cognitive load. The role of
scaffolding in educational robotic settings should be
communicated since scaffolding assist students to
successfully complete a complex task (Belland, 2014).

It has been reported that early childhood educators lack of
competence and confidence while teaching robotics
therefore they need training and resources (Bers, Seddighin,
& Sullivan, 2013). Therefore, in regards with the practical
implications, this study provides insights integrating
computational thinking with the use of robotics into teaching
practices of preschool education verifying the effectiveness
of scaffolding tools as an instructional design framework for
the development of computational thinking. At the same
time this study contributes to the resources for professional
development which are considered crucial for the curricular
changes.

Furthermore the herein results document that engaging
children into problem solving tasks with robotics, constitutes
a beneficial instructional method that advances
computational thinking in early childhood settings. There is
a great necessity to design environments that encourage and
enhance computational thinking from a young age through
meaningful playing. By introducing robotics activities that
include problem solving to the early education curriculum,
the play experiences of the children can be enhanced.

In conclusion, the authors in the herein study accomplished
to: (a) integrate computational thinking into the learning of
programming with robotics, (b) propose a set of learning
activities that provide low-high ceiling problem solving
tasks at preschool level and (c) advocate the use of specific
scaffolding tools for supporting the development of
computational thinking.

6. LIMITATIONS AND FUTURE

DIRECTIONS
Our analyses provide critical insight into the association
between the trend of gendered attrition with robotics
activities and the development of computational thinking.
Nonetheless, a number of limitations should also be
considered. The findings obtained during the last research
phase, when the scaffolding tools were withdrawn, reported
that the differences on the scores on the assessment of the
computational thinking among the experimental and control
groups were not statistically significant. This result can be
attributed to a number of reasons. Firstly, the duration and
the number of the lessons proved to be inadequate to enable
the transfer of knowledge as other researchers concur (e.g
Bers et al., 2014). In regards of children’s computational
thinking development, it has been established by researchers
that developing cognitive skills in young children requires
sustained and immersive effort (Bers et al., 2014). Lastly, to
trigger the augmentation of the pedagogical gains of the
scaffolding is essential that the scaffolding to gradually fade
out (Van de Pol et al., 2010). Therefore future research effort
should focus on expanding the duration of the interventions.
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While prior research has shown gender variation in
computational thinking task’s performance at elementary
and high school level showing relative advantages for male
students (e.g. Atmatzidou & Demetriadis, 2016) little is
known about which cognitive strategies are directly linked
with gender differences in attrition with robotics activities
and most importantly, what factors contribute to female fully
engaged in robotics activities. In addition gaining a better
understanding and addressing the underlying causes of
gender disparities to the development of young children’s
computational thinking will likely require focusing on
different skills of computational thinking: abstraction and
debugging.

Another possibility requiring further exploration is whether
particular groups of children benefit more substantially from
interventions that include a focus on their cognitive style. In
this context, robust research that can shed further light on the
relationship of young children’s cognitive style is needed
(Georgiou & Angeli, 2019).

A dimensional approach will be of interest in future research
investigating different levels of competence - for example,
whether gender-related attitudes are associated with
computational thinking skills or whether a threshold effect
is observed. These questions have important implications for
formulating and evaluating interventions targeting to
advance computational thinking. Future intervention
research should also test the mechanisms through which any
effect of positive computational thinking growth on learning
occurs. For example whether gender disparities impact on
the development of computational thinking via social
pathways such as teacher-student interactions.
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ABSTRACT

This paper presents the preliminary study of integrating
computational thinking (CT) into K-12 education. In order
to successfully integrate CT into school curriculum, we need
to enhance teachers’ understanding on CT. In this paper, we
explore the possibilities for widening teacher’s CT
understanding by merging CTPACK framework, which
combines CT in technological pedagogical content
knowledge (TPACK). Aim of the study is to understand how
CT intersects with elements of TPACK in the context of ill-
structured digital fabrication activities. We examined three
cases where 71-9™ grade students visited a makerspace as
part of school curriculum. Through interviews and
observations, we found that CT was interconnected with
technological knowledge and pedagogical knowledge
highlighting the use of advanced technologies and
pedagogical propositions of the context, learning by doing.
We also found vague connections between CT and content
knowledge (subject matters). The study urges further
research on CTPACK framework which potentially enhance
integration of CT in K-12 education.

KEYWORDS
computational thinking, ill-structured problem-solving,
digital fabrication, TPACK, CTPACK

1. INTRODUCTION

1.1. Computational Thinking in K-12 Education and
Emerging CTPACK Framework

Currently, there is a growing need in educational contexts to
develop students’ ability to deal with non-routine and
abstract tasks (Kirschner, 2002). One of the important skills
to confront ill-structured problems in this digitalized society
is Computational Thinking (CT). CT refers to a way of
solving complex problems by applying the set of thinking
skills, practices and approaches which are fundamental to
computer science (Wing, 2006). CT leads to understanding
how computer works as well as possibilities and limitations
of technologies, which is vital for taking advantage of
technology-infused social world (Denning & Tedre, 2019).

Wing (2006) encourages to apply CT in K-12 education
describing CT as “a fundamental skill for everyone, not just
for computer scientists” (p.33). Previous studies have
identified needs for further research to enhance integration
of CT in K-12 education. Those research needs include
combining CT with other subject studies, and teachers’
professional development to synthesize CT with existing
contents and pedagogical strategies (Howland, Good,
Robertson, & Manches, 2019; Makitalo, Tedre, Laru, &
Valtonen, 2019).

Mékitalo and colleagues (2019) propose CTPACK
framework to support integration of CT into school
curriculum. CTPACK framework combines CT in the
framework of technological pedagogical content knowledge
(TPACK). TPACK framework, introduced by Mishra and
Koehler (2006), has been used in educational contexts to
integrate technologies, pedagogies and subject matters in
teaching and learning. CTPACK represents skill set for
teachers to guide development of CT through subject study
with appropriate technologies and pedagogy in K-12
educational contexts (Makitalo et al., 2019). Although
CTPACK is still an emerging framework, it has potential to
enhance integration of CT in educational contexts.

1.2. Aim of the Study

The aim of this study is to understand how elements of CT
intersects  with  technological pedagogical content
knowledge (TPACK). CTPACK framework supports the
integration of CT in K-12 education by 1) recognizing CT as
part of aspects which teachers need to consider in order to
position CT as an objective of learning at K-12 schools and
2) providing practical framework to combine CT with
teachers’ existing practices of designing and implementing
learning activities. Results contribute in advancing practices
of integration of CT in K-12 education and establishing
applicable CTPACK framework.

1.3. Digital Fabrication as a Context to Integrate CT in
K-12 Education

We use ill-structured digital fabrication activities as contexts
to integrate CT in K-12 school curriculum. Previous studies
showed digital fabrication, a process of making artefacts
with digital technologies, is a potential context to develop
CT (Borges, de Menezes, & da Cruz Fagundes, 2017; lwata,
Pitkdnen, Laru, & Makitalo, 2019). In K-12 education,
digital fabrication can be used to learn different subjects,
such as mathematics, physics, art, and history (e.g., Blikstein,
2013; Pitkénen & Iwata, 2019).

The theory underlies digital fabrication in educational
contexts  is  constructionism  (Blikstein,  2013).
Constructionism emphasizes individuals learn effectively in
interactions with the physical and social environment, such
as making personally meaningful artefacts and publicly
sharing objects (Papert & Harel, 1991). Pitk&nen, Iwata, and
Laru (2019) emphasize teachers’ significant roles and the
needs of pedagogical views in designing and implementing
ill-structured digital fabrication activities. Although digital
fabrication activities tend to be student-centered, effort to
support students’ learning based on pedagogical
understanding is necessary. There are less studies which
utilize TPACK framework in digital fabrication in formal
education. However, Smith (2013) applied TPACK
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framework to examine afterschool digital fabrication
activities. She analyzed instructional strategies related to
each element of TPACK as well as in pairs and a
combination of three. Results showed encouraging technical
resourcefulness as technological knowledge, utilizing
constructionism approach as pedagogical knowledge, and
developing multiple modes of literacy as content knowledge
(Smith, 2013). Thus, this study shows the importance of
developing all areas. Integrating CT into TPACK framework
provide the tool for teachers to better understand the holistic
perspective of CT.

2. RESEARCH METHODS

2.1. Research Context and Cases

The context of the study is a makerspace in Finland. The
makerspace offers digital fabrication facilities, such as 3D
printers, laser cutters, vinyl cutters and programmable
microcontrollers. The makerspace arranges digital
fabrication activities for school visitors. We focus on three
cases of school visits where 71-9™ grade students engaged in
digital fabrication activities at the makerspace in 2016.
Student groups from three different schools visited the
makerspace as part of multidisciplinary learning module,
which emphasizes integrating multiple subject domains
(Finnish National Agency for Education, 2016). Overview
of the cases and differences were as follows:

Case | (School A): 12 students (9™ grade) accompanied by a
teacher worked on digital fabrication projects for five days.
The projects were, for example, electronic controlled lock,
jukebox game, and music car. Students had autonomy of
what to make with only a few requirements, such as using a
microcontroller.

Case Il (School B): 20 students (7-8" grade) and two
teachers visited the makerspace for three days. Students
developed project ideas, such as Finland 100 years calendar,
Finland 100 years history wheel, and Finland flag day clock,
based on the theme provided by teachers and requirement of
using a microcontroller.

Case 111 (School C): 9 students (9" grade) with two teachers
visited the makerspace for five days. Students had initial
project ideas as visiting the makerspace was a part of the
ongoing project: designing a playhouse for the school
community.

Table 2. Summary of Technologies Used in the Activities.

Technologies School A School B School C
. Inkscape, Inkscape,
Design tool Tinkercad Inkscape SketchUp
Arduino Uno,
Servos, .
Electronics buttons, Arduino
. . Uno, servos
piezoelectric
buzzer
Programming Arduino Arduino
Laser cutter,
Machines Laser cutter, Laser cutter vinyl cutter,
3D printer sewing
machine

Students used different technologies during the activities
(see Table 2). All the projects were implemented as

collaborative projects, where students worked together on
one project as a group. Activities were run by two facilitators
who work at the makerspace. The facilitators’ main role was
to provide instructions of basic operations of facilities and
digital tools and to help students when they had problems in
the processes. Teachers’ role at the makerspace was mainly
observing activities and general time management.

2.2. Data Collection and Analysis

Data was collected through 1) observation, 2) semi-
structured informal interviews with teachers, students and
facilitators during or after the activities, and 3) two semi-
structured focus group interviews with teachers (focus group
interview 1) and facilitators (focus group interview II).
During the observation, we took notes and photos focusing
on overall structure, contents and instructions of the
activities. In the semi-structured informal interviews, we
asked about their perspectives on the digital fabrication
activity. The interviews were recorded in video and audio.

In data analysis we focused on how CT was seen and
described in relation to each element of TPACK framework.
The main data for this study was focus group interviews.
Observation data was used to deepen understanding of the
contexts and to refine the research design and questions.
Data was analyzed through theory-driven approach. We
coded the data based on definitions of CT (Barr, Harrison,
& Conery, 2011), which have been used in K-12 contexts,
as well as each element of TPACK framework (Mishra &
Koehler, 2006). We performed matrix coding analysis to see
how CT and each element of TPACK framework are
interconnected. NVivo software was used to support data
analysis process.

3. RESULTS

Table 3 shows CTPACK elements, which represent
connections of CT and TPACK, identified in focus group
interviews. CT was mainly discussed in relation to each
TPACK element: technological, pedagogical and content
knowledge separately. Also, CT was discussed together with
technological pedagogical knowledge as a pair.

3.1. CT and Technological Knowledge: Advanced
Technologies and Mechanics for Developing CT

Teachers and facilitators mentioned that students’ CT was
developed through the following processes: 1) programming
of microcontrollers, 2) machining, including preparing files
in a certain format and operating machines correctly, and 3)
making artefacts which have mechanical function. These
results are in line with our previous study (Iwata et al., 2019),
yet provide new insights of how CT intersects with
technologies together with other elements of TPACK (see
later sections).

3.2. CT and Pedagogical Knowledge: Solving Complex
Problems through Learning by Doing

Students used CT in the processes of learning by doing.
Constructionism, which underlies digital fabrication,
encouraged solving complex problems while they were
working on the projects. In the iterative processes of
complex problem-solving, students analyzed the possible
solutions to improve the next design cycle.
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School B had a unique division of roles among groups. Two
groups worked collaboratively on one project by dividing
the tasks: one group was responsible for outer design and
another group for inside mechanics of the product. Although
communication load between design and mechanics groups
increased, in this way, students were able to focus on
specific aspects of complex ill-structured digital fabrication
activity. A student from School B explained as follows:

There was two groups working for the same product, but
both had own tasks. We had to decide all those dimensions
together, between two groups, that the product will be right
size. It wasn’t hard, we get along well, and we managed to
do right everything. (Student, informal interview)

Table 3. CTPACK Elements in Focus Group Interviews.

Focus group Focus group

interview | interview Il
n(total)®=8,387 n(total)=6,328
n(CT)® = 944 n(CT) = 826
CTPACK elements cce nd cc n
CT Technological 35.8% 187 64.6% 268
knowledge
CT Pedagogical knowledge  34.7% 181 11.3% 47
CT Content knowledge 0.0% 24.1% 100

CT Technological 29.5% 154 0.0%

Pedagogical knowledge

CT Technological Content 0.0% 0.0%
knowledge

CT Pedagogical Content 0.0% 0.0%
knowledge

CT Technological 0.0% 0.0%
Pedagogical Content

knowledge

Total 100% 522 100% 415

a Total number of words in the focus group interview; b Number of words
regarding CT; ¢ Coding coverage: percentage of the number of words
coded at the node; d Number of words at the node.

3.3. CT and Content Knowledge: Applying Multiple
Subjects in Complex Problem-Solving

The activities included multiple school subjects, such as

math, physics, art, craft and English, as well as programming

and coding (cf. Pitkdnen & lIwata, 2019). One facilitator

highlighted applying CT and school subjects in the context

of digital fabrication as follows:

Computational thinking it’s best applied to a little bit larger
design problems, really have to divide your work into pieces
that you have to solve piece by piece. But maybe at schools
the curriculum is just their subjects, they are not linked
together. But in [the makerspace] when we make a device,
we have several subjects we have to combine into one device.
(Facilitator, focus group interview)

In complex problem-solving in digital fabrication, which
requires using knowledge of multiple school subjects, CT
can be effectively developed.

3.4. CT and Technological Pedagogical Knowledge:
supporting development of CT with technologies
and pedagogy
In the case of School A, facilitators arranged a short lecture
where they explained how logic ports on microcontroller
work. Having lecture to theoretically understand logic port
function effectively supported students in learning CT.
Using microcontroller enhanced students’ learning by
enabling to apply theoretical knowledge of logical port
functions into practices.

Teachers from School C explained that they used a digital
mind map tool to support the students in ideation process. It
helped logically organize and analyze their ideas. Teacher
from School C reflected as follows:

In a start point.... the students made that mind map very
quickly, just some words, and after two days, they have to
make second mind map, and they just know that, “now I have
so much more ideas to go through in this week”. Also, they
recognized the whole process and the whole project, what to
do, and what we need, and how to solve the different kind of
problems and so on. (Teacher, focus group interview)

In different phases of the project, the mind map tool helped
students to generate ideas, to understand whole processes of
the project, and to organize small steps required to complete
the project.

4, DISCUSSION

CT and pedagogical knowledge were highlighted by two
means: 1) Pedagogical approach of learning by doing
enhanced developing CT. Students faced complex problems
in the processes of making artefacts. Smith (2013) describes
constructionism and learning by doing as the core of
pedagogical knowledge in digital fabrication. 2) Dividing
responsibilities may support dealing with complex problems.
Digital fabrication project in few day activity tends to give
heavy workload for K-12 students (Pitkénen & lwata, 2019).
Distribution of responsibility allows focusing on a small part
of the whole project. Activities can be designed considering
complexness which contributes to the development of CT,
as well as students’ limited capacity. Dividing responsibility
may be effective in providing balanced workload.

We found two factors in which CT intersects with
technological pedagogical knowledge: 1) Advanced
technologies enhance feedback process of learning by doing,
which contributes to developing CT. By using technological
tools and machines, students can get feedback of their trial
quickly, which resulted in encouraging trial and errors
(Pitkanen & Iwata, 2019). As Papert (1980) described
computer as an ‘“object-to-thing-with” (p. 23), students
develop CT through interacting with technological tools. 2)
Technologies helped the process of supporting students’
thinking process during ill-structured activities.

Results show that neither teachers nor facilitators discussed
intensively how subject matters directly relate to CT. One of
the potential reasons is that three cases of makerspace visit
were implemented as part of schools’ multidisciplinary
learning module. Thus, teachers did not intend to let students
learn specific aspects of subject matter. Based on the results,
it is a challenge to widen teachers’ understanding about CT,
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because of the lack of long-term design and discussion about
the skills and competencies of CT — from the holistic
perspective (Denning & Tedre, 2019) and it’s relation to
technology, pedagogy and content. Another possible reason
is that cognitive demand of the activity was high, thus
participants had only limited room to focus on subject
matters during the activities. Pitk&nen et al. (2019) argue
potential challenges which students face during ill-
structured digital fabrication activities due to high cognitive
demand. Cognitive demand in digital fabrication activities
can be increased by digital tools and machines with which
students and teachers are not familiar. In addition, ill-
structured activity design with minimal instructions might
contribute to increasing cognitive demand.

Limitations of the study are in data collection and analysis
processes. In the interviews, we did not ask questions
focusing on learning of subject matters. It might affect to
results of vague connection between CT and content
knowledge. In data analysis, we used operational definition
of CT introduced by Barr et al. (2011). However, aspects of
CT in the definition are not directly related to processes of
digital fabrication. Using a definition of CT which takes the
research context (digital fabrication) into account, such as
Borges et al. (2017), may increase reliability of results.

5. CONCLUSION

This paper presented preliminary study examining the
current practices of digital fabrication activities for K-12
students to understand how CT and elements of TPACK are
interconnected. We found connections of CT and part of
TPACK elements. Results provide the basis for
understanding the role of CT in ill-structured digital
fabrication activities. Further, CTPACK framework provide
practical solutions to connect CT in subject matter with
appropriate technologies and pedagogy in order to widen
teachers’ understanding about CT. In future study, CTPACK
framework can be used as a tool to develop digital
fabrication activities to integrate CT in school curriculum.
To examine applicability of CTPACK, students with broader
grade levels can be chosen as participants, and data can be
analyzed considering different level of subject studies,
students’ age, sex, and background.
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ABSTRACT

The study analyzed the literature of computational thinking (CT) in CNKI by using the Knowledge Graph, and analyzed
the main characteristics and the level of the research field of CT in China by using the keyword word frequency co-occurrence
analysis method. The results show that the research on CT in China gradually returns to the rational state. Drag-and-drop
programming for children provides an opportunity for the development of computational thinking in primary and secondary
schools. The training of computational thinking mainly relies on programming, information technology, mathematics and
other science and engineering courses. This paper sorts out the development of computational thinking, and puts forward
enlightenment for future research development: Introduction of standardized quantitative or qualitative assessment method of
CT; Exploration of the development of learners' CT from multiple perspectives; Enhancement of the awareness of in-service
teachers’ CT, and investigation of the teaching approach and pedagogy of the in service teachers' CT.
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(ERLY PH— kR BB ERIKREZLNIKS
BRL, BEBECEAREZRET AL BERE, BFEL
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YA ATURAT A AN 52 5] H5 &R R BF8 %02, 7
£ 15 FAELFABCERE N, PEBEXKF. R
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HREEAB T, HUERFEI—REIRNFHAALAEEZSR
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P E RARAE T H AU B IRAZ AAL P IR IRAZ, A AR H
FYEEAREHRRAE, HFREARRBAZXABIE,
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The Impact of Using Mobile Block-based Programming to Control Robots on the
Performance of the Fifth Grader Students Learning Computational Thinking in
Singapore

Tien-hsiu JEN?, Ting-chia HSU?*
12National Taiwan Normal University, Taiwan
tt40621t@gmail.com, ckhsu@ntnu.edu.tw

ABSTRACT

This study attempted to cultivate the students to apply computational thinking process to solving the problems when the
students play the interactive game with the educational robots. The instructional experiment participants were the fifth grader
students in Singapore. The educational robots were controlled to interact in Chinese with the block-based programming. The
results found that the students made significant progress both in the competence of computational thinking and the proficiency
of conditional sentences in Chinses through the game-based learning tasks with robots.

KEYWORDS
computational thinking (CT), game-based learning (GBL), robot
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S-S

AR FE T RGP E S AR AE X 4
By, FRGHBZRAARXRBEREANIHNE,
RAFAGREHLTHBERRMRBETREALE
BRPATE R A MAL, KRR AR A FRGNE
4, FRAMARAZXIZFEKEALRNEFZETLS, o
RAERBEAEBRE AN GEEXNE T, TARS
FAEFURLLE LW m, AHRAFAEGES
TAFAAR AT o

M 4 F
EH T, BRA BERXEY
1. &%

BEAH Bk 8B 0 T ARG P, EH B MR R A
&8 A M6 K K B A% (Yadav, Mayfield, Zhou,
Hambrusch, & Korb, 2014) , i€ 5 2 4 1 3 40 B a9 B 4y
Bl % BAZ XA, TISAZ X ZI, EHETHES
EHF AV L B AR S K 2 ( Bocconi,
Chioccariello, Dettori, Ferrari, & Engelhardt, 2016) , 3%
ASEEHTHGR, RAKABBHATTRA,

WHER, BRERALHTHRLAMIE, AL ERE
RREMEZREANOALT, MEBRBHGENHLET K
R, AR BAKT, e A 2014 FaEEe (=
B R AHH RALAELA) LIE XA 2019 S48
B, AP EAMBEBRIRLNRUIEAZEEN
Bz EA AT, TAGEAREYE., FERAH% S
Z RS, RAEENIFAEERAE LM ELE, AR
TR ARABw S A B (242 2017) .

BEHFREF KRB RGN, AR —AAHE R
TR —HY, HAEBROBELSTETSOKF R
T+ 138 & B (Donmus, 2010) , ARIERK % F 50 & ik
HEFMARE, VRS OFARAR B AR
# % % B (Qian & Clark, 2016) , %% Reinders #=
Wattana (2015) % o B °T VA By AN, 4K H +F
iR, EEBIERS —FT (L2) WL,

B, AR FHEREZXERLFTHREA
MERL, REFELF _FZFHOR A, AR
FH R RNAL X PR ANAL X B F T EBRELTHRE
A, SREFEBHEERD], FRBERPIEAEL
LRSI RET), RAFF A EGRBAEY, EHE
RS B iR ATB B MM, t HBEFEELEE
AABA.

2. XRBRIREH
2.1, EH B4

i€ # %4k (Computational Thinking, CT) &4 & s f=
WEAF LT Ve, EF A RMEMA, &
HhH AR R, TEBARGRERZFITS
(Buitrago Florez et al., 2017) . Korkmaz. Gakir #=
Ozden (2017) 24Tl [EH T4 | HERE KA
EARAIERNTHEBrREEFTOAEAETMANLE 4
W Hpefe B, SHEESTXHEHAEZARET
P A A A AB AR B A £ % & & (Buitrago Florez et al.,
2017) . (Wing, 2006) & F— 24 4 ¥ 48 78 B4
AR, AR T LM AL R A B M A5 A A AR 3R

fEBEGTHEF, EL TGOS %
ARG, EMAAXNK., EHEFTHE, EHFHABRT
MR L 69 M 2 (Bocconietal., 2016) , M F#R %
BB fAAZRRBAFTIAZS R, @8 FHAE (%
FRBEELZLEARRAKX TN B ELIEEL

(Moreno-Ledn, Robles, & Roman-Gonzélez, 2016) , i&
HERMMR AL —ALERGR), B LFWEEH4
BT O F, EARMERSEE T 28R
% (Voogt, Fisser, Good, Mishra, & Yadav, 2015) -

R, BHEHETEEBIRAIEL REARRA
& 48 (Sanford & Naidu, 2016) , 1& 542 X &t 4+
WEAEFARI S, LEARIFOEBRRER, 12
RAALREH 7 ERE T 4B AL P RS A R
B A e M AR S T R 28 A& (Garch-
Pefialvo, 2018) .

22. #EA
WMBA—HSRARRARS G E, TARBALKT
VA % AL A AR AT A9# S F B (Cheng, Sun,
& Chen, 2017) . #3 AAE X T AR 5| A6 E H 33,
ATE B A% 0 9 i€ % 4 ik /7 (Witherspoon, Higashi,
Schunn, Baehr, & Shoop, 2017) . Z£# R BN, LK
Fo B 2 K EF B EHEFIBIEFRE XXFHF (Noh &
Lee,2019) « HHEMBALX LA KR ZHETHR PR
i, $EHAEKETBRRERRELET (Miller &
Nourbakhsh, 2016) .

dod HBEMBACCHLAERBEARE, K87
&4 09 #% 7 X Jin, Xie, Ma, & Ye, 2019) . #EAHK
WO EEARAKFTRAGELSNERE S, HEAHK
WP A R ARRARE B (Besari et al., 2016) o
BWEAHMAALSERXFTRHGELE PR RM AR
k. XA, B, HE, HEELE T LSRR
(Miller & Nourbakhsh, 2016) -

2.3. TN G LA
AR FAMA Y 4T RAES R B AR OEL
B (Bandura, 2006) . BAZR < HH &, W BAZ
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TUARZHFH SIEHGER, 228 B2 AT A,
AAZT R & EA BT BAD I TRL, &R LK
#%  (Baron, Mueller, & Wolfe, 2016) .

ML B R 40 B BARA AR B ATEY 5] N B #7l
R, AAHHEFGETEMAZ BT ZMA (Mun
& Hwang, 2003) . AREMHRERZLHES B F A
EFORRCRTFHEL, EMOELZERNETA L
BT R HATEATIED, Blho: TAS A KA. A&
& A, B A A F K (Paraskeva, Bouta, &
Papagianni, 2008) . Karsten 3% Roth (1998) #94F %4
R, TR ARARAGRBZRET A AGERE,
A PABEIN B, FARHTHZHRAERAE
HE 69 RE A o

24, BHEAXLE

R, #HEAA R E K XS E (Digital Game-Based
Learning, DGBL) # 2t 69 & 43 /& AR RAR 5| A2 AMT89
#14% (All, Castellar, & Van Looy, 2015) , H#&#» % %
MRIFEERHFH O BYE, BRESHHRTA
BEAAMBHE ERK, MUESL 4L AP 21 H4LH
At a9 4 & (Qian & Clark, 2016) . EH# Kk ®#F % 7
MR, F LR ARG R A A P AR e
“IBRCERRNAE, URSEFHELEHT FH AR
# /4 (Al-Azawi, Al-Faliti, & Al-Blushi, 2016) . #7549
R HE T RN R A, Pl ERTHEP
12 A -FREM (TPC) S AT AR bR 7] Foiti 25
SAGEAR, TRHEMERE T EFHEZM (Hung,
Sun, & Yu, 2015) . @ EK T LAY AT, TEAKSE Py
WA, EHBIFERS —FF (L2) 9L
(Reinders & Wattana, 2015) .

25. SMEET

BB EOEFT, AMRELMELYRMOAL—A
B, HREAZEP, FAEAUNAY X THE, TR
HEo)N 4R Y & BN 4358 By R 3A ST (Slavin, 1980) . A
WSHLER A N A TR S AT AR KIR A AR
A TAf b9 H (Smith, 1996) . @8 #E$ H H
R % ) RrMA, THRHEAGBEILSEFRAZENR
Fo B M GG R R 7 5, B AR BT LAH Bh R e Aot AE
Hapegak (Lee et al, 2016) . BB AF4&% 7,
HREFBEANEAEABREFIHORA, RPHEEH L
%, EREHRRGIEEEL, I 7B g
BB UAR T EENKGEFNGNE, 2T 5
I HEMfEMAR, AP LOEABRMG, AR
By Rk, SHEERE, AY., BHBR LS
At 71 ' & A PraR st (Smith, 1996) .

3. HRF &
3L Fa##H %

ARFWRHE S A B2 M EZEAS —FZFH N
WERDNEFHEAE, BASHAHFH 30 42 (58%) ,
dotk 22 12 (42%) , T 2REBFHERALXEHKT
MBEAAMERAER, U EFAPENELTHT

BBk EARRA, AR EE KOS E R
’j)l(o

32. HFXLA
AFRAERNKRBEAEZLOTEEREREHAZX A&
AL B REATE H A E

321 HREAEZLGTFEGTE
AFREMGEBEAEZL)TEHEANRE T
EEM), FEHENERAARINESARREMRZ E
A, ES AR, F I AAEA R AL,
Bod RS EAENBE, HEAnRAEREAED
FBANGTF, RAF b E B AR

322, CTHMEAOGAKELZAELX
HEEAUBAHA A TEMKI S A RHIET. A
Tsai, Wang $% Hsu (2019) Fié iz [EASA4L X A KL
RERETER | LR RET, BoMg, TN
AR EMAAXARKAERAAT, RZAAAK,
TROSCBEES A TRBESE || 424 ]
(st |, TBEDF | Hamsa, [543 [tk
@S 3, AFH 108, EHBXBAFAHNN LS
i#8, (1] 2xF7%ARYE, [5] 2782 E; &
NEERMBRFHYLIR LS r TR R, EHREH
AT AR A B 69 Fh R,

3.3. FLAESF
AREBRGERE S A 52 LM EBHAF _ETELY
AP BR DB A B AT
iT4e8, HREMER T X &8 FHRE AL XEHK
FMRAMARSERN, T2WBORFPREE
HEGR N AA AEALE XS T ALY 28N
HLERA, T EBMELELE, LRSI BrE
LHBAAPHBENMRA, SEARBEANLEFE
FEX A LA RBA,

o8 1 &7, ETRMBZAT, EARBEAEELYT
LHBREKAAX AR EARLT L, £HE LM
AR, ARG EZBREL DGR H, BEET)
MBI HISRAANE, SHDERAEK, Wiy
MR ARE RN, AR FHRERAALX RENE
do 8 2 FT) EHREFEBAERBDZETRE R, FAT
HAERE R ARE B, WS E T 4 969 B 8L 5 K 69 568
Mg, BHERREFORFTXRSE LGS T R,
AR FAANERIE, BREABGHEITAR IS
BAMBAEELSTEEERERKAX A KA
kR, TRERSREAEERKRG ALY,
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ABSTRACT

The rapid development and popularization of information technology has changed people's behavior and thinking
characteristics. Among them, computational thinking is considered to be an indispensable basic ability in life, and
computational thinking has been identified as the core literacy of the information technology discipline at the K-12 stage.
Implementation and teaching methods are of concern to educational researchers and front-line teachers. Based on the
development of computational thinking and computational thinking education, this article focuses on the core concepts and
training methods of computational thinking, and refers to the 2017 high school information technology curriculum standards
in China, and determines the teaching materials to implement calculations from the orientation and training methods of
computational thinking. The four dimensions of thinking are used to compare the implementation of computational thinking
in 5 Chinese textbooks, and corresponding teaching suggestions are provided to provide theoretical and practical references
for the cultivation of computational thinking in students.
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