

Editor

Siu-cheung KONG

The Education University of Hong Kong, Hong Kong

Josh SHELDON

Massachusetts Institute of Technology, The United States

Robert Kwok-yiu LI

City University of Hong Kong, Hong Kong

Copyright 2017 The Hong Kong Jockey Club

All rights reserved.

ISBN: 978-988-77034-4-0

ISSN: 2664-035X (CD-ROM) / 2664-5661 (online)

Publisher

The Education University of Hong Kong

Preface

International Conference on Computational Thinking Education 2017 (CTE2017) is the first

international conference organized by CoolThink@JC, created and funded by The Hong Kong Jockey

Club Charities Trust, and co-created by The Education University of Hong Kong, Massachusetts

Institute of Technology, and City University of Hong Kong.

CoolThink@JC strives to inspire students to apply digital creativity in their daily lives and prepare

them to tackle future challenges in any fields. Computational thinking (CT) is considered as an

indispensable capability to empower students to move beyond mere technology consumption and into

problem-solving, creation and innovation. This 4-year initiative educated over 16,500 upper primary

students at 32 schools on computational thinking through coding education. Moreover, through

intensive professional training, the Initiative develops the teaching capacity of 100 local teachers and

helps them master the coding and computational thinking pedagogy. Over time the project teams target

to affect greater change by sharing insights and curricular materials with policymakers and educators

in Hong Kong.

 “Computational Thinking Education” is the main theme of CTE2017 which aims to keep abreast of

the latest development of how to facilitate students’ CT abilities, and disseminate findings and

outcomes on the implementation of CT development in school education. It comprises keynote and

invited speeches by internationally renowned scholars, panel discussions, academic paper presentation,

booth exhibition on STEM/Coding products and solutions, and student and teacher poster presentation

and demonstration.

CTE2017 gathers educators and researchers around the world to share implementation practices and

disseminate research findings on the systematical teaching of computational thinking and coding

across different educational settings. There are 15 sub-themes under CTE2017, namely:

Computational Thinking

Computational Thinking and Unplugged Activities in K-12

Computational Thinking and Coding Education in K-12

Computational Thinking and Subject Learning and Teaching in K-12

Computational Thinking and IoT

Computational Thinking Development in Higher Education

Computational Thinking and STEM/STEAM Education

Computational Thinking and Non-formal Learning

Computational Thinking and Psychological Studies

Computational Thinking and Special Education Needs

Computational Thinking and Inclusive Society

Computational Thinking and Early Childhood Development

Computational Thinking in Educational Policy

Computational Thinking and Teacher Development

General Submission to Computational Thinking Education

The conference received a total of 43 papers (25 long papers, 12 short papers and 6 poster papers) by

authors from 13 countries (see Table 1).

Table 1: Distribution of paper submissions for CTE2017

Each paper with author identification anonymous was reviewed by at least 3 International Program

Committee (IPC) members. Related sub-theme chairs were responsible to conduct meta-reviews and

make final decisions on the submitted papers based on IPC members’ recommendations. With the

comprehensive review process, the conference accepted 17 long papers, 12 short papers and 8 poster

papers (see Table 2).

Table 2: Review results of submission acceptance for CTE2017

Country/Region No. of
submission

Country/Region No. of
submission

The United States 15 United Kingdom 1

Hong Kong 9 Canada 1
Taiwan 3 Israel 1
Singapore 3 Australia 1
Malaysia 3 China 1
Germany 2 Spain 1
Korea 2

Sub-theme Long paper Short paper Poster Total

Computational Thinking 0 1 1 2

Computational Thinking and Coding

Education in K-12
1 1 1 3

Computational Thinking and Subject

Learning and Teaching in K-12
3 1 1 5

Computational Thinking and IoT 0 1 0 1

Computational Thinking

Development in Higher Education
1 0 0 1

Computational Thinking and

STEM/STEAM Education
5 1 1 7

Computational Thinking and Non-

formal Learning
2 0 0 2

Computational Thinking and

Psychological Studies
1 1 1 3

Computational Thinking and

Inclusive Society
0 0 1 1

Computational Thinking and Early

Childhood Development
2 1 0 3

Computational Thinking and Teacher

Development
1 1 2 4

General Submission to

Computational Thinking Education
1 3 1 5

TOTAL 17 12 8 37

CTE2017 has three conference days comprising five keynote speeches, two invited speeches, three

panel discussions, five academic paper presentation sessions, booth exhibition on STEM/Coding

products and solutions, and student and teacher poster presentation and demonstration.

Keynote and Invited Speeches

CTE2017 has invited five internationally renowned scholars as the conference keynote speakers: (1)

Prof. Hal ABELSON from Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, The United States (“Computational Thinking, Computational

Values, Computational Actions”); (2) Ms. Marjorie YANG from Esquel Group, Hong Kong (“Why is

Computational Thinking Education Important as the Foundation for Innovation?”); (3) Prof. Tom

CRICK from Cardiff Metropolitan University, The United Kingdom (“‘It’s not the Coding

Curriculum’: Embedding Computational Thinking into England’s New Computing Curriculum”); (4)

Dr. Shuchi GROVER from SRI International, The United States (“Computational Thinking in K-12:

Considerations for Pedagogy and Assessment”); and (5) Prof. Uri WILENSKY from Northwestern

University, The United States (“Transforming Knowledge and Learning through Agent-Based

Modeling”).

The conference has also invited two internationally renowned scholars as the conference invited

speakers: (1) Prof. Gautam BISWAS from Vanderbilt University, The United States (“CTSiM: A

Computational Thinking Environment for Learning Science using Simulation and Modeling”); and (2)

Ms. Eliane METNI from International Education Association, Lebanon (“Empowering Teachers to

Nurture Computational Thinking and Innovation in K-12”);

Panel Discussions

CTE2017 has three panel discussions: (1) “Computational Thinking and Education Policy” (Facilitator:

Prof. Siu-Cheung KONG from The Education University of Hong Kong, Hong Kong); (2) “Promotion

of Computational Thinking Development in Local School Education” (Facilitator: Principal Tsz-wing

CHU from Baptist Rainbow Primary School, Hong Kong); and (3) “STEM Education and

Computational Thinking Development” (Facilitator: Dr. Daner SUN from The Education University

of Hong Kong, Hong Kong).

Poster Presentation and Booth Exhibition

CTE2017’s Poster Presentation aims at showcasing worldwide researches on computational thinking

education and CoolThink@JC achievement in the first year. There are four poster categories, namely

international academic poster papers, posters presenting local teachers’ reflection prepared by The

Association of I.T. Leaders in Education (AiTLE), posters displaying local students’ achievement

presented by The Hong Kong Association for Computer Education (HKACE) and posters about 2017

CoolThink@JC Competitions participating teams.

The academic poster papers cover diversified international computational thinking research outcomes

highlighting the importance and pathways of computational thinking development in aspects covering

K-12 education, teacher development and STEM education.

The posters prepared by AiTLE share with participants on how Hong Kong teachers design and

implement lessons and post-lesson activities on computational thinking development, coding

education and STEM / STEAM education. Teachers’ pedagogy approaches, teaching methods and

schemes, and reflection are also illustrated with real classroom examples.

For the posters presented by HKACE, students show their computational thinking learning experiences

of different events such as Hong Kong Olympiad in Informatics (HKOI) and IT Challenge Award

(ITCA). Also, they explain how these learning activities equip students with programming and

problem solving skills.

This year the CoolThink@JC Competition attracted more than 100 applications from 40 primary

schools. In the first round of the competition, the participating teams produced a 3-min video to

describe the problem they would encounter in their daily lives and then apply their knowledge and

skills on Computational Thinking to produce a creative and innovative solution with coding technique.

30 teams were shortlisted in June to enter the final of the competition which will be held in October

2017. The videos of these 30 finalists are showcased here at the conference poster display session.

Apart from poster display and presentation, there are 20 booth exhibitions, among which 4 are in-

charged by 12 CoolThink@JC Cohort One School teachers and students demonstrating students’

actual learning outcomes and how they benefit from computational thinking education. Students also

share their experience with participants on designing Apps and programming robots. The other 16

booths are conducted by local technological companies and organizations related to computational

thinking education and development. They exhibit a wide range of STEM/coding solutions and

products.

On behalf of the Conference Organizing Committee, we would like to express our gratitude towards

all members for their contribution to the success and smooth operation of CTE2017.

We sincerely hope everyone would enjoy and get inspired from CTE2017.

On Behalf of CoolThink@JC

Siu-cheung KONG

The Education University of Hong Kong, Hong Kong

Conference Chair of CTE2017

Tsz-wing CHU

Baptist Rainbow Primary School, CoolThink@JC Resource School, Hong Kong

Conference Chair of CTE2017

Table of Contents
Computational Thinking.. 1

Evaluations of Programming Complexity in App Inventor

Lisa L RUAN, Evan W PATTON, Mike TISSENBAUM ... 2

An investigation into susceptibility to learn computational thinking in post-compulsory education

Ana C. CALDERON, Tom CRICK , Catherine TRYFONA ... 6

Computational Thinking and STEM/STEAM Education .. 10

Assessing Students’ Computational Thinking in a Learning by Modeling Environment

Ningyu ZHANG, Gautam BISWAS .. 11

Computational Thinking in the Science Classroom

Hillary SWANSON, Gabriella ANTON, Connor BAIN, Michael HORN, Uri WILENSKY 17

Constructing Models in Physics: What Computational Thinking Occurs?

Sarah POLLACK, Bruria HABERMAN, Orni MEERBAUM-SALANT ... 23

Domain Specific Modeling Language Design to support Synergistic Learning of STEM and Computational

Thinking

Asif HASAN, Gautam BISWAS .. 28

The Role Gender Differences in Computational Thinking Confidence Levels Plays in STEM Applications

Nicole M HUTCHINS, Ningyu ZHANG, Gautam BISWAS .. 34

K-12 Computational Thinking Education in Germany

Nguyen-thinh LE, Niels PINKWART .. 39

Computational Thinking and Subject Learning and Teaching in K-12 .. 44

Gamified Mathematics practice: Designing with e-commerce and computational concepts

Chien-sing LEE, Jing-wen WONG, Peh-yenc EE,... 45

How Computer Scientists and Computing Teachers Think Differently in the Concepts to be Included in a

Secondary School Computing Curriculum

Chiu-fan HU, Cheng-chih WU, Yu-tzu LIN, An-tsu WANG .. 50

file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700360
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700366
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700395

Teaching Computational Thinking by Gamification of K-12 Mathematics: Mobile App Math Games in

Mathematics and Computer Science Tournament

Chee-wei TAN, Pei-duo YU, Ling LIN, Chung-kit FUNG, Chun-kiu LAI, Yanru CHENG 55

Profile of a CT Integration Specialist

Joyce MALYN-SMITH, Irene A. LEE, Joseph IPPOLITO ... 60

Enhancing the Link between Parent-Child in Learning Computational Thinking

Jane Yat-ching WONG, Pam Hau-yung WONG, Robert Kwok-yiu LI, Chee-wei TAN, 64

Computational Thinking and Teacher Development .. 66

Teaching Computational Thinking with Electronic Textiles: High School Teachers’ Contextualizing Strategies

in Exploring Computer Science

Deborah A. FIELDS, Debora LUI, Yasmin B. KAFAI ... 67

Application of the Four Phases of Computational Thinking and Integration of Blocky Programming in a Sixth-

Grade Mathematics Course

Ting-chia HSU, Hsin-chung HU .. 73

The Design and Evaluation of a Teacher Development Programme in Computational Thinking Education

Siu-cheung KONG , Ming LAI , Josh SHELDON , Mike TISSENBAUM .. 77

Connecting Design Thinking and Computational Thinking in the Context of Korean Primary School Teacher

Educatiom

Hyungshin CHOI, Mi-song KIM.. 81

Computational Thinking and Coding Education in K-12 .. 83

Curriculum Activities to Foster Primary School Students’Computational Practices in Block-Based

Programming Environments

Siu-cheung KONG, Hal ABELSON, Josh SHELDON, Andrew LAO, Mike TISSENBAUM, Ming LAI,

Karen LANG, Natalie LAO.. 84

Emergent Roles, Collaboration and Computational Thinking in the Multi-Dimensional Problem Space of

Robotics

Florence R. SULLIVAN, P. Kevin KEITH .. 90

A Framework of Computational Thinking Curriculum for K-12 with Design Thinking by App Inverntor

Peng CHEN, Ronghuai HUANG ... 94

file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700413
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700425

Computational Thinking and Psychological Studies ... 96

Development and Validation of a Programming Self-Efficacy Scale for Senior Primary School Learners

Siu-cheung KONG ... 97

Computational Thinking as a Key Competence – a Research Concept

Amelie LABUSCH, Birgit EICKELMANN .. 103

Can Music Exposure Enhance Computational Thinking? Insights from the Findings on the Music-Creativity

Relations

Mei-ki CHAN, Wu-jing HE, Wan-chi WONG .. 107

Computational Thinking and Early Childhood Development ... 117

Imagining, Playing, and Coding with KIBO: Using Robotics to Foster Computational Thinking in Young

Children

Amanda A. SULLIVAN, Marina UMASCHI BERS, Claudia MIHM .. 110

Programming with ScratchJr: a review of the first year of user analytics

Kaitlyn D. LEIDL, Marina UMASCHI-BERS, Claudia MIHM .. 116

Technology Strategy Mapping in My First Skool Childcare Centres, Singapore

Ai-ling THIAN, Belinda CHNG, Meei-yen LONG ... 122

Computational Thinking Development in Higher Education .. 134

Integrating Computational Thinking into Discrete Mathematics

Kwong-cheong WONG .. 127

Computational Thinking and Non-formal Learning .. 132

Computational Thinking Affordances in Video Games

Sue-inn CH’NG, Yunli LEE, Wai-chong CHIA, Lee-seng YEONG ... 133

You Can Code – An innovative approach to transform the workforce in the textile and apparel industry

Bessie CHONG, ... 139

Computational Thinking and IOT .. 144

Off the Screen, and Into the World of Everyday Objects: Computational Thinking for Youth with the Internet

of Things

Mike TISSENBAUM, Josh SHELDON, Evan PATTON, Arjun GUPTA, Elaine ZHANG, Divya

GOPINATH .. 145

file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700434
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700455
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700460
file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700466

Computational Thinking and Inclusive Society ... 146

Developing interest to share and craft based on the Technology Acceptance Model

Chien-sing LEE, Samuel Hong-shan LOW .. 150

General Submission to Computational Thinking Education.. 153

Complementary Tools for Computational Thinking Assessment

Marcos ROMÁ N-GONZÁ LEZ, Jesús MORENO-LEÓ N, Gregorio ROBLES 154

App Inventor VR Editor for Computational Thinking

Jane IM , Paul MEDLOCK-WALTON, Mike TISSENBAUM ... 160

Computational Thinking and Coding Initiatives in Singapore

Peter SEOW, Chee-kit LOOI, Bimlesh WADHWA, Longkai WU, Liu LIU ... 164

Enabling Multi-User Computational Thinking with Collaborative Blocks Programming in MIT App Inventor

Xinyue DENG, Evan W. PATTON.. 168

Evidences of Self-Development of TAs in CT Education

Ray CHEUNG, Ron Chi-wai KWOK, Matthew LEE, Robert LI, Chee-wei TAN 172

file:///C:/Users/haidichan/Desktop/CTE2017%20Proceedings/CTE2017%20Proceedings_new.docx%23_Toc482700480

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

1

Computational Thinking

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

2

Evaluations of Programming Complexity in App Inventor

Lisa L. RUAN, Evan W PATTON, Mike TISSENBAUM

Massachusetts Institute of Technology

llruan@mit.edu, ewpatton@csail.mit.edu, mtissen@mit.edu

ABSTRACT

To understand computational thinking in App Inventor, it is

important to be able to effectively evaluate computational

complexity in block-based programming languages. In the

past, there have been a handful of complexity measures

proposed for text-based languages (Weyuker, 1988). In this

paper, we will attempt to implement 2 such measures,

Halstead’s Programming Effort and statement count, in App

Inventor on a dataset of projects from 50 random users. The

goal is to determine whether or not text programming

standards for complexity can be generalized to block

programming languages. This paper shows that the 2

complexity measures we implemented are not adequate

measures for complexity in App Inventor. This result

indicates a need for different measures of complexity that

more accurately portray block programming proficiency.

We hope this study will be a gateway into a better

understanding of the intricacies of App Inventor’s block

programming language and its unique contributions to the

development of computational thinking.

KEYWORDS
Data Analytics, Computational Thinking, Block-based

Programming, Programming Complexity, App Inventor

1. INTRODUCTION
In an increasingly automated age, there is a growing

recognition for individuals in all walks of life, not just

programmers, to develop their computational thinking

(Wing, 2006). Computational thinking is generally

understood as the ability to recognize and solve problems

using computational means (Brennen & Resnick, 2012) In

this spirit, we aim to further understanding of how learners

build computational thinking by analyzing the differences

and similarities between block-based programming

languages and text-based programming languages.

In this paper, we apply a data-driven approach to apply text

programming complexity standards to block-based

programming and discuss the implications of the resulting

complexity progression for each sampled user, as well as

several App Inventor-specific takes on the meaning of

complexity, and possible directions for future work.

2. BACKGROUND

2.1. App Inventor

App Inventor is a block-based programming language

(Glinert, 1986) that aims to increase access to programming

capabilities and further the reach of programming education

by simplifying programming concepts with visually

intuitive blocks. The design of visual blocks in these

environments make the flow of logic and programming

easier to understand for young learners (Weintrop &

Wilensky, 2015). App Inventor leverages this programming

approach to allow users to create fully functional mobile

applications for Android devices.

App Inventor has nearly 3 million users from 195 different

countries and has given rise to more than 7 million android

apps (http://appinventor.mit.edu/explore/about-us.html).

App Inventor's audience stems from a variety of

backgrounds including educators, designers, researchers,

government workers, and entrepreneurs; as such, the App

Inventor dataset is rich in quantity and breadth. Also, since

it occupies a niche between everyday logical thinking and

traditional programming languages, it is an optimal to

language to study for conclusions on the progression of

computational thought.

2.2. Software Complexity

In his 1977 book, Elements of Software Science, Maurice

Howard Halstead introduced a software metric intended to

measure program complexity and give structure to the

understanding of the software development process. This

metric, aptly dubbed “Halstead’s programming effort” aims

to compute the time (defined as “effort”) a user takes to

create a program by analyzing the relationship between

operators, operands and their appearances in a program. In

this study we define operands as bodies of information and

operators as functions that interact with those bodies of

information. This measure focused on the relationship

between the total number of operands/operators and the

number of unique operands and operators. The calculation

for programming effort (E) was performed in 2 parts:

difficulty (D) and volume (V). The difficulty and volume

were defined as follows:

Given: n1 = # distinct operators; n2 = # distinct

operands; N1 = total # operators; N2 = total # operands

Effort = n1/2 * N2/n2 * (N1+N2)*log2(n1+n2)

Thus, this difficulty measure rewards programs that use

less distinct operands and instead reference previous

operands. In other words, more consolidated programs will

evaluate with higher complexity. For example, a program

that utilizes one central function to execute similar

procedures would be more complex than a program that

defines each procedure individually. In the blocks given

below, the first row represents a more complex program

than the 2nd row.

In 1988, this measure was evaluated by Elaine J. Weyuker,

who concluded 2 main drawbacks. First, the effort to write

one program P may be greater than the effort to write a

composite program P;Q. Second, the effort measure makes

no use of statement order. We combat the first drawback

3

by employing another complexity measure, statement

count (also mentioned in the same paper), in addition to

the effort measure. We assume the second drawback holds

less importance in terms of programming effort in App

Inventor since App Inventor is a block-based language and

statement order is generated by compiler code.

Figure 3. Complex vs not complex block programs

3. METHODOLOGY

3.1. Data Source, Sampling, File Types

For this study we looked at users who had created at least

20 projects, which we define as “experienced” users. This

was so we would have sufficient data to analyze learning

progression for each user. Attempting this type of analysis

on users who have only created very few (such as 1 or 2)

projects would be unreliable and would not give us a

reasonable understanding of progression over time. It is

important to note that we looked at users' entire

programming history, not just their high complexity

projects. Experienced users were at some point also

beginners, and thus their project history also contains

projects representative of beginner behavior.

From this pool of experienced users, we randomly sampled

50 and extracted their projects. Since the sample is

completely random, we assume no knowledge of any

demographical effects. We filtered out projects with more

than one screen, since we believe multiple screens offer data

transferring capabilities that should be further studied

separately. Projects that used multiple screens accounted for

less than 20% of all projects, so we still retained a large part

of our dataset. A small number of corrupted or outdated

projects without timestamps were omitted.

3.2. Built-in Blocks vs. Component Blocks

Within App Inventor, there are 2 broad classifications for

blocks. First, built-in blocks are available for use in any

program and are universal in application and are divided

into 8 categories; control, logic, math, text, lists, colors,

variables, and procedures.

The other group contains component blocks, which are

specific to the components, or parts of the app. Components

are akin to features of an app. For example, an app might

use a text box. The text box as a component has component-

specific blocks, such as a block that will change the font size

of the text in the text box. Such blocks are very component-

specific, and can vary wildly depending on the components

that are used in a program. There are more than a hundred

components, and each can have more than 20 component-

specific blocks. As such, while built-in blocks can be

tabulated and manually analyzed, component blocks are

treated a little differently and grouped according to

behavior. We will highlight the differences in analysis in

section 3.4.

3.3. Implementing Measure Complexity

Our first approach to programming complexity was to use a

statement count. The statement count represents the size of

the program and acts as a naive measure of complexity. In

App Inventor we define a statement as a block. To

implement the statement count, we simply iterate through

each xml file (which we convert to an element tree using the

python element xml tree library) and count all the block

declarations we have.

3.4. Programming Effort

Our second approach to programming complexity,

Halstead’s programming effort, is much more complex and

nuanced. In order to adequately implement this complexity

measure, we went through several steps.

3.4.1. Operator vs. Operand

First, we needed a clear way to differentiate operators and

operands. In this paper, we assume that every block is either

an operator or an operand. This seems intuitive for

component blocks as each component block interacts with

the component in some way, so they must either retrieve

information (which we will classify as an operand) or

change the component somehow (which we will classify as

an operator). The component blocks come in 4 different

categories with the following classifications; methods,

component blocks (reference blocks for the entire

component), events, and set/get blocks (which modify or

retrieve component variables, respectively). In the above

order, we classified all blocks in the subcategories as

operators, operands, operators, and operators for set blocks

and operands for get blocks.

We mentioned above that we assume all blocks are either

operators or operands. The distinction is not as obvious for

built-in blocks, so we manually classified each built-in

block as an operand or operator.

3.4.2. Determining Uniqueness and Final Calculations

For component blocks, each component block has an

internal mutation (properties of blocks that allow them to

change shape or slightly alter function) regardless of

whether or not it has an external mutation, and this internal

mutation combined with the block definition uniquely

determines the block identity. For built-in blocks, we

assumed each block tag is unique save for blocks that have

dropdown menus that change the operation, definition

blocks, and large grouped blocks defined by all parameters

(such as "procedures_callnoreturn”), which we

differentiated using additional block properties.

We also found that, due to the nature of App Inventor, it is

possible to create many functioning programs that only use

operators and thus cannot be evaluated in the original

effort formula. We propose 2 treatments of such cases. The

first and naive treatment is to assume that the effort made

by the user is 0. This is clearly not always true, as there are

many perfectly functioning apps that use no operands

(such as the App Inventor tutorial “Hello Purr”). The

second approach is to assume that the ratio of operators to

operands is 1. In this case we end up with the following

formula:

E = (N1)*log2(n1)*n1/2

4

3.5. Creating a picture of a user

Once we have functions to calculate the complexity of each

project, we combine the complexity and timestamps of each

project to create a graph of the progress of complexity of

each user. At this point we note the timestamps of the

projects we previously filtered out (projects with multiple

screens or malformed files) and include them in the graphs

as breaks in the graph. This is to preserve accuracy when

comparing users against each other. An example of how

such a graph would appear is shown next.

Figure 4. Statement count vs. project number

Above, the 6th project is not included in the data set.

4. RESULTS
Figure 5 plots the statement count vs. project number for all

fifty sampled users (i.e. 4 on the x axis indicates a user’s

fourth project). Figure 6 represents the effort measure vs.

project number.

Figure 5. Statement count vs. project number

Figure 6. Effort vs. project number

Both sets of graphs are noisy, punctuated with peaks and

appear as if there is no clear pattern of complexity

progression as defined in both Halstead’s effort measure

and the statement count.

5. DISCUSSION
Results show that Halstead’s programming effort and line

count do not provide adequate insight into how users are

becoming more proficient at block programming. As such,

to understand complexity in block programming languages

we cannot simply apply existing text programming

language metrics. Given that metrics are invaluable for

understanding important measures such as complexity, this

paper is an important step towards developing measures that

can help us better understand how people’s code evolves in

block programming. This in turn, has important

implications for understanding the different ways to build

computational thinking. Knowing that text and block

programming languages have some key differences

highlights the need to adapt learners’ approaches to

computation. Below we discuss the implications of these

findings for blocks-based languages, with a particular focus

on several key features of App Inventor.

5.1. App Inventor Components

A central difference between App Inventor and traditional

text programming languages is its feature-based approach to

programming. Let us first elaborate on the programming

process in App Inventor. There are 2 main interfaces of App

Inventor, the designer and the blocks editor. The Designer

is used to modify the layout of elements (components) on

the screen - text boxes, buttons, sound players, etc. while the

blocks editor lets a user access actual programming blocks,

such as if statements and booleans. To create a functional

app, a user must first drag and drop components onto the

screen in the Designer view, and then decide how the rest of

the programming blocks are going to interact with the apps’

components. The bulk of the computational thinking needed

to create a program involves this latter step of

communicating with components through component

blocks and using them in tandem with built-in blocks to

create solutions.

This way of programming embeds a mental distinction

between components and other variables and makes it

possible to make valid programs that don’t use any operand

blocks at all. If we consider such programs, since the

operators are communicating with information from the

components, one approach could be to treat components as

operands. However, this doesn’t make sense because

components are clearly more complex operands than an

average block. In this sense components might act not as

variables but as information sinks and sources. This means

users’ patterns of interaction with components and blocks

are fundamentally different from text programming

languages where everything is treated equally.

5.2. Effects of Visual Intuition

Another major aspect of block programming languages not

available in text programming languages is the visual

implications of the blocks themselves. Since the blocks can

be placed in a 2-dimensional space, it is possible users may

be clustering blocks according to their computational

thought process. The 2D space adds an extra layer of

consideration to the organization and subsequent

understanding of blocks and how they relate to each other.

5.3. Rigidity

Users of App Inventor are restricted to the blocks that exist

in App Inventor. This is very different from text

programming, where there is a lot of freedom to define

whatever functions or methods are needed. Computational

thinking in this constrained environment could be different

than in a more open text programming environment and thus

affecting our results.

5.4. A Problem-Solving Mentality

It is likely many users are approaching App Inventor with

the purpose of solving a specific problem, rather than to

create increasingly complex projects. Thus, the complexity

5

of the project will likely depend on the complexity of the

problem itself and may not represent a user’s proficiency in

using the language. This kind of understanding may require

finer grained analysis comparing the problem space and an

individual user's solution in comparison to an "expert's"

solution to the problem.

5.5. Consequences in Educational Programs

Studying the intricacies of computational thought behind

block programming languages may enable us to better

understand how to design curricula for a given purpose. For

example, if the end goal of a program was to teach text-

based programming using App Inventor as an introduction,

then it is imperative to understand the differences between

the complexity of block-based programs and text programs

so we could better design the transition from one to another

(Parsons & Haden, 2007).

5.6. Classification of Blocks

In the process of implementing the complexity measures we

also began classifying blocks in App Inventor as operands

and operators. This is a shift from treating blocks as a means

to achieve a product or desired function towards treating

blocks as more traditional computational elements. This

allows us to analyze blocks in App Inventor as a different

type of computational thinking. Instead of analyzing if a

user can create a specific end product using given blocks,

we can focus on how users might be perceiving each block

if they are building intuition for text-based programming

concepts.

6. LIMITATIONS AND FUTURE WORK
Due to additional questions about data transfer, we did not

include any programs with multiple screens, which is

another possible area for us to study. Nevertheless, we hope

the findings of this work will pave the way for other

investigations of programming complexity in block-based

programming languages, as well as opportunities for further

research on communication between different bodies of

information and how they relate to complexity.

6.1. New Measures of Complexity

In section 5, we mentioned many properties of App Inventor

are unique and different from most text programming

languages. A logical next project would be to create a new

measure that accurately captures these differences and

allows us to more accurately evaluate the computational

complexity of apps created in App Inventor. Possible

directions could be to focus on component-block interaction

or visual clustering of blocks. Other approaches include

row or column organization, or novel ways of using existing

blocks to replicate text programming functions that do not

exist in App Inventor. Even more possible measures include

the speed of adaptation of new App Inventor features, or the

amount of data transfer between screens.

7. CONCLUSION
Text programming complexity standards, in particular

Halstead’s Programming Effort and Statement count, are

not very applicable in determining App Inventor fluency.

This paper is a call to action for more studies on revealing

the nuances of complexity in block-based languages and

towards providing insight into factors such as the physical

organization of code blocks within a program.

8. REFERENCES
Wing, J. (2006). Computational Thinking.

Communications of the ACM: Viewpoint, vol. 49, 33-

35.

Brennan and Resnick. (2012). American Educational

Research Association annual meeting. Vancouver,

BC.

Glinert, E. P. (1986). Towards second generation

interactive graphical programming environments.

In Proceedings of IEEE Workshop on Visual

Language. IEEE CS Press, Silver Spring, MD 61-70.

Weintrop, D., & Wilensky, U. (2015, July). Using

Commutative Assessments to Compare Conceptual

Understanding in Blocks-based and Text-based

Programs. ICER, vol. 15, 101-110.

Halstead, M. H. (1977). Elements of software science. New

York: Elsevier.

Weyuker, E. (1988). Evaluating Software Complexity

Measures. IEEE Transactions On Software

Engineering, VOL. 14. 1357-1365.

Parsons, D., & Haden, P. (2007). Programming osmosis:

Knowledge transfer from imperative to visual

programming environments. S. Mann & N. Bridgeman

(Eds.), Procedings of The Twentieth Annual NACCQ

Conference. Hamilton, New Zealand. 209–215.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

6

An investigation into susceptibility to learn computational thinking in post-

compulsory education

Ana C. CALDERON1*, Tom CRICK1 and Catherine TRYFONA1

1 Department of Computing & Information Systems, Cardiff Metropolitan University, Cardiff CF5 2YB, UK

{acalderon,tcrick,ctryfona}@cardiffmet.ac.uk

ABSTRACT
This paper presents the results of a preliminary investigation

into how the teaching of computational thinking --

particularly algorithmic thinking and programming -- to

university undergraduate students varies depending on

aptitude and perceived enjoyment of STEM subjects during

their secondary-level (pre-university) education. We

investigated a specific component of computational

thinking, algorithmic thinking, comparing against a

student's ability to develop knowledge and understanding of

introductory programming.

KEYWORDS
Perceptions, Algorithmic thinking, Computational

thinking, STEM

1. INTRODUCTION
Computational thinking [Papert 1996; Guzdial 2008; Wing,

J. (2008)] is increasingly being integrated into various

national curricula, being regarded as a key skills, with wide

potential utility, for school-age children. It is recognised

both for its important role in developing knowledge and

understanding of foundational computer science concepts,

but also for its potential in developing more general-purpose

problem-solving skills across the curriculum. This paper

investigates whether algorithmic thinking (an integral part

of computational thinking) can be as easily taught to those

with a natural interest in computational science and those

who do not process such an interest, and whether this

changes with aptitude to more technical subjects in school.

Aptitude and interest are restricted as to what students

preferred subjects subjects were at the time of secondary

school graduation.

There are many views of computational thinking, for

instance a recent report of a workshop shows the range of

definitions, and opinions on the subject (NRC 2010) Some

researchers adopt the original notions of procedural

thinking, as developed by (Papert 1981) to define what

Computational Thinking is. This view sees it as a step-by-

step list of detailed and unambiguous instructions such that

can be interpreted and executed by an automated agent.

Others view it as an effort to expand the human capacity for

problem solving, by providing abstract tools able to aid in

the management of tackling complex tasks. A lot of

researchers also dismiss the notions of linking

computational to the processing of numbers, whereas some

argue it is a way of enabling humans to solve problems by

means of providing precise methods for doing so. Whatever

viewpoint adopted, most researchers seem to agree that

computational thinking is an integral part of computer

science [Tedre 2016]. The skill set learn by studying

Computational Thinking is complementary to more

established areas taught at HE computing degrees. This

investigation looks at students’ aptitudes to STEM and

Humanities in the final two years of school, in an attempt to

see whether there are negative or positive correlations to

leaning elements of Computational Thinking and of a core

element of Computing degrees, programming. Focusing

particularly on algorithmically thinking and on object-

oriented programming, we found that an aptitude in STEM

favoured performance in learning object-oriented

programming notions, but found no difference between

aptitudes in humanities and in sciences when learning

Algorithmically Thinking (Futschek 2006) with a

methodology highlighted in later sections.

2. Methodology
2.1 The Research Question

Our interest is on whether particular preferences in

secondary school have a positive correlation with ability to

learn algorithmically thinking in Higher Education. Using

the methodology above we measured data gathered from

students about attitudes and aptitudes of STEM-based and

other subjects and how well they performed on the

particular algorithm course.

2.2 Pedagogical Investigation

The investigation took part over two semesters in one

academic year; one semester the students participated in an

algorithm class, and the second semester different students

participated in an object-oriented programming class. The

choice for using different groups of students was due to the

transfer of knowledge, performance in a latter module, for

instance object-oriented programming could have been

enhanced by attending an earlier, for instance, algorithmic

thinking module.

We designed a one semester course such focusing on

teaching algorithmic thinking to first-year, first-semester

students enrolled in three undergraduate degree

programmes: Computer Science, Software Engineering and

Business Information Systems. Students participated in a

total of 11 weekly sessions, where each session consists of

three components, distributed during the week.

Algorithmic Thinking

The sessions consisted of:

 Part A consists of a one hour session (workshop) of a

hands-on puzzle solving activity.

 Part B consists of a formative learning session (a one

hour lecture)

7

 Part C consists of a one hour session (workshop) of a

puzzle that includes writing pseudocode.

For the workshops (Parts A and B) students were required

to work in groups. The fist session was purposely kept

simple, and we now use it as an example of the

methodology, it consisted of:

 Part A (workshop): present students with physical

copies of Tower of Hanoi puzzles with a large number

of even and of odd disks.

 Part B (lecture): lecture on recursion

 Part C: (workshop) Tower of Hanoi puzzles handed out

to students again, and asked them to write pseudocode

to solve a Tower of Hanoi with either an even or an

odd number of disks (students who do not immediately

recognize recursion are given extra support until they

are able to connect the concept from the lecture to the

example from the workshop).

For another illustrative example, we detail the second

session. The main aim behind this session was to develop

understand of sorting algorithms. Students were given

cardboard pieces with numbers written on it, ranging 1-100,

and asked to find the maximum. Following the same pattern

as all other sessions, students were placed in groups.

Differently from other sessions, they were asked (in their

groups) to first think about attempting to find the maximum

value of the numbers (sorting the cards) if they could only

work by themselves, then if they could only work within the

group, and finally to think about how they would solve if

the groups could talk to each other and divide the cards. The

idea behind this is to aid participants in teaching themselves

what an algorithm is as well as to bring their awareness to

the existence of parallelism as a means to efficiency. This

session is based on ideas developed in (Adams 2005).

For the formative learning portion of the session students

were taught the concept of a sorting algorithm and presented

with some standard examples of sorting algorithms, namely

insertion sort, selection sort, merge sort, heapsort, quicksort,

bubble sort and variants. For the final workshop (Part B)

of this particular session, students were given Rubik's cubes

and given 3 sequences of moves, then asked to use these

sequences to solve the cube, and write a pseudocode for

their solution (an algorithm that would sort all sides to the

desired configuration).

Programming

Teaching introductory programming within Higher

Education can be particularly challenging due to the

diversity of educational background of incoming

undergraduate students, as a single annual intake of students

is likely to include a broad range of prior learning

experiences. As a consequence of school-level computer

science education reform (Brown et al, 2014), an increasing

number of first year students are likely to have had some

exposure to programming in schools or colleges. Some

students, perhaps through their own extracurricular efforts,

may have developed considerable technical skills. This

variance in ability seemingly increases the risk of

disengagement because the teaching material may either be

viewed as too difficult (Mohd et al, 2013) or too simplistic.

It could be argued, however, that software development and

programming is an art as much as it is a science and that

undergraduate students can best develop their programming

skills through apprentice-style learning (Kolling and

Barnes, 2008; Bennedsen and Caspersen, 2008). Recently,

there has been more emphasis placed on the importance of

“software carpentry” skills, so that student can develop a

sense of “craftsmanship” towards the design and

development of software solutions to real world problems.

Seminars and tutorials can particularly lend themselves to

this style of delivery, where experienced teaching staff are

not only able to demonstrate the technical skills, but also

explain the thinking behind the decisions that they make

(Kolling and Barnes, 2008).

Given that sound computational thinking skills aids in most

stages of the software development process, there is an

increasing and explicit emphasis on developing these skills

in modern undergraduate computing curricula. By focusing

on key skills such as algorithmic thinking from early on in

a programmer’s career, students can more readily

contextualise programming as a tool to be used for

expression of creativity and for problem solving. Students

are able to analyse problems and formulate a solution

computationally (Cesar et al, 2017). An emphasis on

computational thinking within the context of apprentice-

style learning, may reduce the risk of disengagement as

more technically-able skills will have the opportunity to

refine their skills under the guidance of a more experienced

academic member of staff.

Similarly to algorithmic thinking, the sessions were broken

down into formative and practical learning, namely they

consisted of:

 Part A consists of a formative learning session (a one

hour lecture)

 Part B consists of a two hour practical session

(coding the concepts learnt in the lecture).

In particular, during the term each week (note that each

week contained Part A together with Part B), was given by:

 Week 1: Introduction to programming, including

varying programming paradigms.

 Week 2: Introduction to integrated development

environments.

 Week 3: Understanding how to perform operations,

and their implications to varying paradigms.

 Weeks 4 and 5:Understading statements and directing

values.

 Week 5: Manipulating Data.

 Weeks 6, 7 and 8: Object Oriented concepts.

3. Results
We compared students’ aptitude to STEM subjects and

humanities at both A-levels and GSCE with their ability to

learn algorithmic thinking, with the methodology

highlighted above. More specifically, we focused on

students who had grade C and above at a combination of

mathematics, computing and physics at A-level, and those

who had a grade C and above at a combination of history,

literature and drama. The performance of both groups was

similar; the first group had an average grade of 62.4%, with

8

a standard deviation of 13.4, whereas the humanities group

had an average grade of 61.3% with a standard deviation of

9.4 (see Figure 1 for more details). Of the 92 students used

for the first study (algorithmic thinking), 23 had taken the

requirements of aptitude in the three stem subjects:

mathematics, computing and a science subject, and 17

satisfied the requirements of having taken the humanities

English literature, history and drama. For the second study

(programming) 21 had taken the requirements of aptitude in

the three stem subjects: mathematics, computing and a

science subject, and 18 satisfied the requirements of having

taken the humanities English literature, history and drama.

Although the difference between STEM and humanities for

the algorithmic group was significantly small, the difference

for a more traditional approach to teaching object-oriented

programming was more significantly different, the average

programming grade for students with a STEM aptitude was

17.9%, with a standard deviation of 67.1, and those with an

aptitude in humanities was 16.7% with a standard deviation

of 47.5, more details can be found on Figure 1. This suggests

that Computational Thinking approaches are more readily

taught to varied skilled students, as compared to the core

elements of Computer Science. This suggests that along side

standard computer science subjects, HE students might

benefit from having a dedicated module of "Computational

Thinking" as that would "even the playfield" and thus allow

educators to keep the levels of motivation similar to students

regardless of their background. We also analysed their

ability to write pseudocode.

Figure 1. Distribution of grades for algorithmic thinking

against humanities and STEM preferences at A-levels

Figure 2. Distribution of grades for programming against

humanities and STEM preferences at A-levels

4. CONCLUSION
We presented the beginnings of an on-going investigation

into how susceptible students, of varying aptitudes and

attitudes, are to learning computational thinking skills.

5. REFERENCES
Adams, R., Bell, T., McKenzie, J., Witten, I. H., & Fellows,

M. (2005). Computer Science Unplugged: An enrichment

and extension programme for primary-aged children.

Bennedsen, J., & Caspersen, M. (2008). Exposing the

Programming Process. In J. Bennedsen, M. Caspersen, &

M. Kolling (Eds.), Reflections on the Teaching of

Programming: Methods and Implementation. New York:

Springer.

Brown, N., Sentance, S., Crick, T., & Humphreys, S.

(2014). Restart: The Resurgence of Computer Science in

UK Schools. ACM Transactions on Computing Education,

14(2), 9:1–9:22.

Cesar, E., Cortés, A., Espinosa, A., Margalef, T., Moure, J.

C., … Suppi, R. (2017). Introducing computational thinking

, parallel programming and performance engineering in

interdisciplinary studies ✩. J. Parallel Distrib. Comput.

http://doi.org/10.1016/j.jpdc.2016.12.027

Futschek, G. (2006, November). Algorithmic thinking: the

key for understanding computer science. In International

Conference on Informatics in Secondary Schools-Evolution

and Perspectives (pp. 159-168). Springer Berlin Heidelberg.

Guzdial, M. (2008). "Education: Paving the way for

computational thinking". Communications of the ACM 51

(8): 25.

Kolling, M., & Barnes, D. (2008). Apprentice-based

Learning Via Integrated Lectures and Assignments. In J.

Bennedsen, M. Caspersen, & M. Kolling (Eds.), Reflections

on the Teaching of Programming: Methods and

Implementation (p. -). New York: Springer.

Matti Tedre and Peter J. Denning. 2016. The long quest for

computational thinking. In Proceedings of the 16th Koli

Calling International Conference on Computing Education

Research (Koli Calling '16). ACM, New York, NY, USA,

120-129. DOI: https://doi.org/10.1145/2999541.2999542

Mohd, S., Shukur, Z., & Mohamad, H. (2013). Analysis of

Research in Programming Teaching Tools : An Initial

Review. Procedia - Social and Behavioral Sciences, 103,

127–135.

National Research Council. (2010) Report of a Workshop

on the Scope and Nature of Computational Thinking.

Washington, DC: The National Academies Press.

doi:10.17226/12840.. Chapter 2, page 4.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc..]

https://doi.org/10.1145/2999541.2999542

9

Seymour Papert, 1981, Mindstorms: Children, Computers,

and Powerful Ideas. New York: Basic Books)

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. (2008) Computational thinking and thinking about

computing. Philosophical Transactions of the Royal Society

A, 366(1881), 3717-3725

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

10

Computational Thinking and

STEM/STEAM Education

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

11

Assessing Students’ Computational Thinking

in a Learning by Modeling Environment

Ningyu ZHANG*, Gautam BISWAS

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

ningyu.zhang@vanderbilt.edu, gautam.biswas@vanderbilt.edu

ABSTRACT
Researchers have hypothesized strong connections

between Computational Thinking (CT) practices and

STEM learning. However, there is a lack of consensus on

what constitutes an adequate set of CT knowledge and

skills. In this paper, we present an initial framework for

evaluating students’ CT learning. We introduce the

primary CT concepts and practices that students can learn

and apply in a learning by modeling environment. Our

overall goal is to develop assessments that study the

synergy between STEM and CT concepts in K-12

curricula. Towards this end, we discuss the results from a

teacher-led classroom study we conducted on STEM- and

CT-learning in our CTSiM environment.

KEYWORDS
Computational thinking, learning by modeling, CT

assessment, evidence-centered design, classroom study

1. INTRODUCTION
Computational thinking (CT) involves a collection of

abilities and practices for solving problems analytically,

thinking recursively, and using abstraction (Wing, 2006).

CT could benefit communities beyond computer science

practitioners, by drawing from fundamental skills and

practices of various disciplines (Wing, 2006). In addition,

CT can benefit teaching and learning in other domains,

using skills and practices that originate within CT (Wing,

2011; Barr & Stephenson, 2011).

A series of studies have shown that appropriate use of CT

skills and corresponding tools can deepen the learning of

science, technology, engineering, and mathematics

(STEM) subjects (García-Peñalvo et al., 2016). CT shares

a reciprocally enriching relationship with math and

science, meanwhile, synergistic learning of science and

CT skills has been demonstrated through a series of

studies (e.g., Weintrop et al., 2016a; Basu, Biswas &

Kinnebrew, 2017). The deep CT skills can transfer to and

benefit other learning and problem-solving contexts

(Grover, 2015), as CT requires fundamental

understanding and development of solutions rather than

rote learning (Wing, 2006). Therefore, CT is essential for

preparing students for future learning (Bransford, Brown,

& Cocking, 2000).

These potential benefits of CT have led to the inclusion of

CT into STEM classrooms. For example, the Next

Generation Science Standards (NGSS) in the United

States have included CT as a core scientific practice (The

NGSS Lead States, 2013, Barr & Stephenson, 2011).

However, although K-12 educators pushed for the

advancement of computing curricula, many aspects of CT

concepts remained underrepresented in corresponding

assessments (Grover, Cooper, & Pea, 2014). Therefore,

fine-grained assessments are required to evaluate the

subtle aspects of students’ CT learning in STEM domains.

Our lab has developed Computational Thinking using

Simulation and Modeling (CTSiM), a computer-based

learning environment that promotes learning of science

and computational thinking (CT) concepts and skills

using a learning by modeling approach (Wilensky, Brady,

& Horn, 2014; Sengupta et al, 2013). In this paper, we

present an initial CT assessment framework linked to

CTSiM and evaluate its effectiveness. The assessment

framework defines key CT skills and practices that

students need when they are building models in CTSiM,

as well as the methods for assessing them. Section 2

reviews three aspects of relevant work from which we

define the methodology used in this paper. Section 3

introduces CTSiM and the focal CT-related knowledge,

skills, and practices that students need to learn and

develop to become proficient model builders and problem

solvers. In Section 4, we present a classroom study that

was administered by a middle school teacher with no

intervention from the researchers. In Section 5, we report

the main results of (1) incorporating key CT components

in CTSiM, and (2) assessing these components in the form

of a case study. Finally, we discuss the implications of our

results and future work in Section 6.

2. RELATED WORK

2.1. CT Constructs

Given the wide scope of CT, there has been little

agreement among researchers on what constitutes CT

(National Research Council, 2010; Brennan and Resnick,

2012). In addition, the close relationship between CT,

mathematics, algorithmic thinking, and problem-solving

skills also veils core ideas in computation that it

encompasses (García-Peñalvo et al., 2016; Weintrop et

al., 2016a).

To understand how programming supports the

development of CT, Brennan and Resnick (2012) defined

a framework for CT with three components: (1)

computational concepts, (2) practices, and (3)

perspectives. In this framework, computational concepts

include the fundamental knowledge of a computing

system, such as loops and conditionals; computational

practices involve actions such as iterative building,

testing, as well as debugging; and computational

perspectives describe the learner’s CT world-view

(Brennan & Resnick, 2012). In addition to focusing on

12

what students learn about CT, Weintrop et al. (2016a)

proposed key CT practices that are commonly applied in

STEM domains that include (1) data, (2) modeling and

simulation, (3) problem-solving, and (4) systems

thinking. These CT practices define how students learn

CT and provide a theoretical foundation for integrating

CT in STEM classrooms.

2.2. Assessment of CT

Assessments provide information on how well students

understand and apply the content they are taught. Such

information can help instructors infer the effectiveness of

their teaching and learning (Mislevy, Almond, & Lukas,

2003).

CT assessments have been applied in various learning

domains, for example, authoring environments that cater

programming game design activities for novice learners

(e.g., Repenning, Ioannidou, & Zola, 2000; Berland et al.,

2013; Moskal, Lurie, & Cooper, 2014; Weintrop et al.,

2016b). For example, Scratch (Brennan & Resnick 2012)

uses multiple means of assessment that involve analysis

of student-created programming portfolios, artifact-based

interviews, and design scenarios; meanwhile,

AgentSheets (Ioannidou et al., 2011) uses reoccurring

patterns in game design and science simulation contexts

to evaluate students’ understanding of CT. Despite the

progress in advancing CT assessments, many

fundamental aspects of CT have not received sufficient

attention especially in the context of block-based

programming environments (Grover et al., 2014).

Therefore, more advanced test instruments need to be

developed to enrich the CT assessment toolbox.

2.3. Evidence-centered Design of assessment

Evidence-centered design (ECD) is a methodology that

emphasizes the use of evidentiary reasoning as the

determining factor in designing assessments (Mislevy et

al., 2003). Three components, i.e. the student model, the

task model, and the evidence model, are essential while

defining assessments under the ECD framework (Mislevy

et al., 2003; Chrysafiadi & Virvou, 2013).

The student model consists of the knowledge, skills, and

abilities (KSAs) that can be used to infer students’

knowledge states. The task model describes a collection

of tasks, their presentation material, and work products.

The evidence model serves as the bridge between the

student model and the task model that defines instructions

on how a task response provides evidentiary information

about the student’s knowledge state (Mislevy et al., 2003).

Since there is a lack of consensus in describing what

constitutes CT constructs, our methodology presented in

this paper eclectically draws from a set of key CT aspects

presented in the literature to form CTSiM-specific

knowledge, skills, and abilities (KSAs) (Mislevy et al.,

2003). We give a detailed description of the student, task,

and evidence models of CTSiM in Section 3.

3. THE LEARNING ENVIRONMENT

3.1. CTSiM

Open-ended learning environments (OELEs) have the

potential to provide meaningful learning opportunities to

students. While working with an OELE, students usually

construct solutions to authentic problems. They may also

generate and test hypotheses with artifacts (in the form of

student-generated programs (Land 2000)).

CTSiM is an OELE that promotes synergistic learning of

science and computational thinking (CT) concepts and

skills using a learning by modeling approach (Sengupta et

al, 2013). In CTSiM, students use block-structured

constructs to model scientific scenarios using an agent-

based framework (Wilensky, et al., 2014). Student models

are converted into NetLogo simulations (Wilensky,

1999). The learning and model-building tasks in CTSiM

involve five primary activities: (1) reading and

comprehending domain contents and CT-related concepts

from two built-in resource libraries; (2) building a

conceptual model of the science scenario using an agent-

based framework (defining the hierarchies of the agents’

and their environment’s properties and behaviors); (3)

constructing computational models that define the agents’

behaviors using a block-based visual programming

language; (4) running their models as NetLogo

simulations to analyze the behaviors generated; and (5)

comparing their models’ behaviors to an expert model that

executes synchronously with theirs (Basu, Biswas, &

Kinnebrew, 2017).

Figure 1. Computational model building interface.

CTSiM has a learning progression that consists of two

introductory training activities and a series of modeling

activities (Basu, Biswas, & Kinnebrew, 2017). Students

begin by constructing shape-drawing agents in the two

training units and then proceed to the primary learning

and modeling activities that cover five science topics:

kinematics, dynamics, collisions, diffusion, and ecology.

Figure 1 shows a screenshot of CTSiM’s user interface

and the block-oriented domain-specific language for

building the rollercoaster model (kinematics). The

13

learning activity on the foreground is constructing part of

the computational model for the rollercoaster car agent.

3.2. Student, Task, and Evidence Models in CTSiM

We use the overlay model (Desmarais & Baker, 2012;

Chrysafiadi & Virvou, 2013) to describe the states of

students’ knowledge. Students’ mastery of CT aspects, as

well as their ability to combine the CT constructs to solve

complex problems in CTSiM, are inferred from their

performance (i.e., whether or not they correctly answer a

question). An overlay of students’ correct answers on the

student model captures their CT knowledge state. The

learning gains between the pre- and post-tests indicates

whether a student has improved his or her understanding

of a CT concept. Although the value of learning gains

does not necessarily associate with a probabilistic model,

comparing an individual learning gain with the

aggregated results from a classroom can give a reasonable

measurement of how much a student’s CT knowledge has

progressed with respect to the average. Alternatively, one

can also study students’ progress by looking at their

knowledge states through a series of assessments.

Summative paper-and-pencil pre- and post-tests on both

the CT and the science domain topics constitutes

CTSiM’s assessment task outside of the system. In this

paper, we focus on these paper-and-pencil CT

assessments. It is noteworthy that the task model under

the ECD assessment framework is different from the

learning task model that involves modeling scientific

scenarios and running simulations as described in

previous work by our research group (e.g., Basu &

Biswas, 2016). For the paper-and-pencil assessment, four

types of question are administered: multiple choice, fill in

the blank, short answer, and design. Each question will

have a presentation format and an associated level of

complexity.

The evidence model of CTSiM defines the grading rubrics

for the summative test questions that human raters use in

processing a student’s responses on the tests. Each test

question is associated with one or a combination of CT

knowledge, skills, and abilities (e.g., determining which

statement will be executed in a conditional structure). The

evidence rules in the assessment can also update the

question-KSA mapping in the student model when a

student creates a work product (responding to a question).

4. STUDY SETTING
The data we analyze in this paper came from a classroom

study with 37 eighth-grade students in the USA. The study

lasted 9 days (one-hour per day) and was administered by

a science teacher. Another purpose of conducting this

study was to use the kinematics modeling activity of

CTSiM to prepare for a hands-on activity of building

paper rollercoasters in the teacher’s science class. Prior to

the study, we offered copies of CTSiM to the teacher and

assisted her to become proficient with the functionalities

of the learning environment.

On the first day (day 1) of the study, all participating

students took paper-based pre-tests on CT skills and

kinematics contents. On day 2 through day 4, the students

worked together as a class on the introductory units to

familiarize themselves with the system’s interface and

basic concepts of agent-based modeling (e.g., agents and

the environment, properties and behavior of agents). From

day 5 to day 8, students worked individually on the

rollercoaster modeling activity. Students modeled a

rollercoaster car that moved on a track in 4 stages: (1)

being pulled up by a motor at a constant speed, (2)

accelerating along down slopes, (3) moving on a flat

segment at a constant speed (ignoring friction), and (4)

climbing up slopes and decelerating. As students built the

computational representation of the motion of a

rollercoaster car, they interacted with computational

concepts, such as variables, if-conditionals, and loops.

They also familiarized themselves with domain concepts

such as acceleration, speed, distance, and their

relationships. For example, that distance is a (linear)

function of speed over time. On the last day, all students

took the CT and science post-tests, which had the same

questions as the pretest (the teacher and students never

discussed the questions or solutions during the study).

5. RESULTS
We present a theoretical result and an analytical result in

this paper. The theoretical result is a collection of key

knowledge, skills, and abilities (KSAs) that we defined

using ECD principles while drawing from the existing CT

literature. We then analyze and discuss students’

performance on the KSAs (as the analytical result).

Vanderbilt researchers were not present during the study,

and we did not collect any demographic information from

the class. As a result, students’ name, gender, and

ethnicity are not known to us, so we cannot discuss issues,

such as gender difference, in this paper.

5.1. CT Knowledge, Skills, and Abilities

With the methods described in Section 2, we define two

categories of KSAs in CTSiM: (1) 4 key CT constructs

and (2) 11 key CT skills and practices. The CT constructs

in CTSiM are (1) sequential execution of statements, (2)

loop structures, (3) conditionals, and (4) variables and

assignments. The CT constructs consist of the most

fundamental and domain-general computational block

structures of CTSiM.

In addition, the CT skills and practices are: (1) gathering

information; (2) defining the agents’ properties as abstract

conceptual models; (3) specifying in the conceptual

model interface, environmental properties that affect

agent behavior; (4) defining agent behaviors by building

computational models; (5) Assessing student-constructed

models by running simulations; (6) debugging models; (7)

dividing problems into sub-problems; (8) modularizing

and reusing computational solutions; (9) understanding

relationships between variables in a system; (10)

understanding systems at different levels of abstraction;

and (11) solving inquiry problems using their models.

This collection of CT skills and practices is defined by

synthesizing well-known CT frameworks (e.g. Brennan &

Resnick, 2011; Weintrop et al, 2016a) and emphasizing

CT aspects that are specific to CTSiM. For example,

14

gathering information is comparable to the collecting data

practice in Weintrop et al (2016a); understanding systems

is related to the Systems Thinking practices; and our agent-

based-modeling-related CT skills and practices (No. 2, 3,

4, and 5) correspond to the Modeling and Simulation

practices.

We believe the key CT constructs, as well as CT skills and

practices, are necessary for the student to become

successful in the learning activities in CTSiM. Some

KSAs, although not directly linked to CT, also foster

student’s learning. For example, while gathering

information, students generate evidence as they read the

two resource libraries in CTSiM. This information is

necessary for understanding the domain content

knowledge, building computational models, and

reasoning about system behaviors. On the other hand,

some KSAs involve metacognitive strategies and are

difficult to assess in paper-and-pencil based assessments.

For example, students divide problems into sub-problems

in CTSiM as they work on the learning tasks and

incrementally build computational models on a smaller

scale. Yet this KSA cannot be directly assessed in our pre-

and post-tests. Similarly, debugging and querying skills

are not assessed as well.

To illustrate the questions asked in the pre- and post-tests,

we present and briefly discuss question 3 as an example.

Q3 Consider the following program

 If (quiz score is greater than 7)

 Then: If (quiz score is equal to 10)

 Then: Get the ‘You’re a pro’ sticker

 Else: Get the ‘Good job’ sticker

 Else: Get the ‘Try harder’ sticker

Bill gets a score of 9 on the quiz while Janet scores 10

points and Kim scores 5 points on the quiz. What stickers

should each one receive?

This question assesses students’ understanding of nested

if-conditional structures that requires them to analyze a

conjunction of logic statements. Only when both

conditions (“quiz score is greater than 7” and “quiz score

is equal to 10”) evaluate to true is the statement “Get the

‘You are a pro’” executed.

We show the links between KSAs and the questions in our

pre- and post-tests in Table 1. Based on the distribution,

CT constructs are assessed in the format of multiple

choice and fill-in-blank questions (Q1 through Q4), and

CT skills and practices are mostly assessed as short

answer questions and design code snippets (Q5 through

Q8).

Table 1. KSAs assessed in CTSiM questions.

KSA Appearance

Sequential execution

(KSA1)

All questions

Loop structures (KSA2) Q1, Q6

Conditionals (KSA3) All questions except

Q1

Gather information (KSA4) Q5, Q6, Q7, Q8

Define agent properties

(KSA5)

 Q6, Q7

Define agent behaviors

(KSA6)

 Q5, Q6, Q7, Q8

Define environment

(KSA7)

Q6, Q7

Simulate w/ model (KSA8) Q5, Q6

Divide and conquer (KSA9) Q7, Q8

Modularize and reuse (KSA10) Q7, Q8

Define relationships in systems

(KSA11)

Q6, Q8

Define multi-agent systems

(KSA12)

 Q7

5.2. Summative Assessment Results

We then performed paired t-tests on the participating

students’ pre-test and post-test scores. On an aggregated

level, the students showed significant learning gains in CT

(𝑝 = 0.000025). We also used Cohen’s 𝑑 to measure the

effect size associated with the learning gains. Table 2

summarizes the analysis of CT pre- post-test results.

Table 2. Means (and standard deviations) of pre- post

assessment scores.

Pre-

test

Post-

test
t-stat p-value Cohen’s d

14.05

(2.36)

21.59

(2.47)
4.61 < 0.001 0.91

 We also divided the aggregated results according to

individual KSAs. Table 3 summarizes the students’

learning gains in each KSA. We discuss the results and

their implication in the next section.

Table 3 . Average pre- post assessment scores

(standard deviations) and p-values per KSA.

 Pre-test Post-test p-value

KSA1 14.05

(2.36)

21.59

(2.47)
< 0.001

KSA2 2.46 (2.13) 4.57 (2.10) < 0.0001

KSA3 13.78

(8.70)

20.78

(7.81)

< 0.0001

KSA4 8.89 (7.07) 15.81

(7.76)

< 0.0001

KSA5 2.78 (3.08) 6.65 (3.63) < 0.0001

KSA6 8.89 (7.07) 15.81

(7.76)

< 0.0001

KSA7 2.78 (3.08) 6.65 (3.63) < 0.0001

KSA8 4.22 (2.36) 6.30 (2.12) < 0.0001

KSA9 4.68 (5.55) 9.51 (6.59) 0.0002

KSA10 4.68 (5.55) 9.51 (6.59) 0.0004

KSA11 5.84 (5.65) 10.38

(5.65)

0.0002

KSA12 0.81 (2.26) 2.89 (2.76) 0.00012

15

6. DISCUSSION

From the results of the classroom study, we found that

students not only achieved significant learning gains at the

aggregated level, but also in each of the KSA’s we defined

using the ECD framework. As the existing work on CT

education has stated, teaching CT content should not be

carried out as a standalone subject that is isolated from the

real world; instead, students should learn CT in the

context of problem-solving and its application (Weintrop

et al., 2016a). During the classroom study, the teacher

documented a few anecdotes, which provided empirical

evidence of benefits and rationales for continually

integrating CTSiM into STEM classes.

To begin with, the teacher reported that the participants

enjoyed the system. A girl told the teacher that she did not

realize that she could fall in love with programming

(Teacher: “I think one girl may have even found her

calling in life, as she is a real ‘natural’ with the coding part

and has never done it before”). Additionally, students

benefited from CTSiM when they built actual paper

rollercoasters. The teacher reported that the participants

showed improvements compared to students in previous

years, who only sketched and built the paper rollercoaster.

For example, none of the students designed a loop at the

beginning of the track, which was not uncommon among

previous cohorts. The teacher also felt that the CTSiM

activities helped her better manage the class because

students more easily realized their own difficulties while

interacting with the system and asked relevant and

specific questions, making it easier to for the teacher to

adapt her scaffolding in a more effective manner. Finally,

the teacher herself gained programming experience with

the system. The study helped her become more

comfortable with programming and agent-based

modeling concepts.

The classroom case study shows that CTSiM is effective

in helping middle students learn and improve their

understanding of CT concepts and skills. In addition,

CTSiM fitted well into the science classroom and helped

students learn their science content better (Basu et al.,

2016). To better define and assess CT with CTSiM, our

future work will focus on (1) refining the CTSiM CT

KSAs described in this paper to include concepts and

practices from more studies; (2) increasing the CT

assessment tools’ coverage on these KSAs with questions

that address concepts with a finer granularity (e.g. adding

CT skills and practices such as debugging and resolving

inquiry with computational models that are not currently

being assessed), (3) delving into the test reliability and

validity (e.g., showing that students behave similarly on

questions covering same KSAs), and (4) aligning

students’ performance on the CT tests to characterizations

of learning behaviors in CTSiM (Zhang, Biswas, &

Dong, in press).

7. CONCLUSION
In this paper, we presented a case study of students’

learning and using computational thinking with an open-

ended learning environment in a classroom setting. We

defined our focal knowledge, skills, and abilities in CT

that are synthesized from the literature of CT pedagogy

and assessment. Results of this case study showed the

potential of our assessment framework in understanding

students’ learning of CT concepts and skills as the

participants achieved significant learning gains in the CT

KSAs defined in our assessment framework. This paper

also demonstrated the benefits and feasibility of

integrating CTSiM in everyday STEM learning contexts

even for teachers with little experience with computer-

based learning environments.

ACKNOWLEDGEMENTS
This work has been supported by NSF Cyberlearning

Grant #1441542.

REFERENCES
Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: what is Involved and

what is the role of the computer science education

community?. ACM Inroads, 2(1), 48-54.

Basu, S., Biswas, G., Kinnebrew, J.S. (2017) Learner

modeling for adaptive scaffolding in a computational

thinking-based science learning environment. User

Model. User-Adapt. 27

Basu, S. & Biswas, G. (2016). Providing adaptive

scaffolds and measuring their effectiveness in open-

ended learning environments. In 12th International

Conference of the Learning Sciences (pp. 554-561).

Singapore.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., &

Davis, D. (2013). Using learning analytics to

understand the learning pathways of novice

programmers. Journal of the Learning Sciences, 22(4),

564-599.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000).

How people learn.

Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the

development of computational thinking. In

Proceedings of the 2012 annual meeting of the

American Educational Research Association,

Vancouver, Canada (pp. 1-25).

Chrysafiadi, K., & Virvou, M. (2013). Student modeling

approaches: A literature review for the last decade.

Expert Systems with Applications, 40(11), 4715–4729.

Desmarais, M. C., & Baker, R. S. (2012). A review of

recent advances in learner and skill modeling in

intelligent learning environments. User Modeling and

User-Adapted Interaction, 22(1-2), 9-38.

García-Peñalvo, F. J., Reimann, D., Tuul, M., Rees, A.,

& Jormanainen, I. (2016). An overview of the most

relevant literature on coding and computational

thinking with emphasis on the relevant issues for

teachers. Belgium: TACCLE3 Consortium.

Grover, S. (2015). “Systems of Assessments” for Deeper

Learning of Computational Thinking in K-12. In

Proceedings of the 2015 Annual Meeting of the

American Educational Research Association (pp. 15-20).

16

Grover, S., Cooper, S., & Pea, R. (2014, June).

Assessing computational learning in K-12. In

Proceedings of the 2014 conference on Innovation &

technology in computer science education (pp. 57-62).

ACM. Chicago

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H.,

& Basawapatna, A. (2011). Computational Thinking

Patterns. 2011 Annual Meeting of the American

Educational Research Association (AERA), 2, 1–15.

http://doi.org/10.1098/rsta.2008.0118

Land, S. M. (2000). Cognitive requirements for learning

with open-ended learning environments. Educational

Technology Research and Development, 48, 61–78.

Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2003). A

brief introduction to evidence‐centered design. ETS

Research Report Series, 2003(1), 1–29.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating

the effectiveness of a new instructional approach. ACM

SIGCSE Bulletin, 36(1), 75-79.

National Research Council (U.S.). (2010). Report of a

workshop on the scope and nature of computational

thinking. Washington, D.C: National Academies Press.

NGSS Lead States (2013) Next generation science

standards: for states, by states. The National

Academies Press, Washington, DC.

Repenning, A., Ioannidou, A., & Zola, J. (2000).

AgentSheets: End-user programmable simulations.

Journal of Artificial Societies and Social Simulation,

3(3), 351-358.

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., &

Clark, D. (2013). Integrating Computational Thinking

with K-12 Science Education Using Agent-based

Computation: A Theoretical Framework. Education

and Information Technologies, 18(2), 351-380.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona,

K., Trouille, L., & Wilensky, U. (2016a). Defining

computational thinking for mathematics and science

classrooms. Journal of Science Education and

Technology, 25(1), 127-147.

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U.

(2016b). Computational thinking in constructionist

video games. International Journal of Game-Based

Learning, 6(1), 1-17.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35

Wing, J.M. (2011) Research Notebook: Computational

Thinking–What and Why?. Retrieved January 1, 2017

from https://www.cs.cmu.edu/link/research-notebook-

computational-thinking-what-and-why

Wilensky, U. (1999) NetLogo. Center for Connected

Learning and Computer-Based Modeling,

Northwestern University, Evanston. Retrieved January

1, 2017 from http://ccl.northwestern.edu/netlogo

Wilensky, U., Brady, C., & Horn, M. (2014) Fostering

computation literacy in science classrooms. Commun

ACM 57(8):17–21

Zhang, N., Biswas, G., & Dong, Y. (in press)

Characterizing Students’ Learning Behaviors Using

Unsupervised Learning Metho

http://ccl.northwestern.edu/netlogo

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

17

Computational Thinking in the Science Classroom

Hillary SWANSON, Gabriella ANTON, Connor BAIN, Michael HORN, Uri WILENSKY

Northwestern University

hillary.swanson@northwestern.edu, gabby.anton@gmail.com, ConnorBain2015@u.northwestern.edu, michael-

horn@northwestern.edu, uri@northwestern.edu

ABSTRACT
The importance of Computational Thinking (CT) as a goal

of science education is increasingly acknowledged. This

study investigates the effect of computationally-enriched

science curriculum on students’ development of CT

practices. Over the course of one school year, biology

lessons featuring the exploration of NetLogo models were

implemented in the classrooms of three 9th grade biology

teachers at an urban public secondary school in the United

States. One-hundred thirty-three biology students took

both pre- and post-tests that were administered at the

beginning and end of the school year. The students’

responses to relevant assessment items were coded and

scored using rubrics designed to evaluate their mastery of

two learning objectives relating to modeling and

simulation practices. The first learning objective was to

explore the relationship between a system’s parameters

and its behavior. The second learning objective was to

identify the simplifications made by a model. Each item’s

pre- and post-test scores were compared using a Wilcoxon

signed-rank test. Results indicate a statistically significant

improvement with respect to the second of the two

learning objectives, suggesting that the computationally-

enriched biology curriculum enhanced students’ ability to

identify the simplifications made by a model.

KEYWORDS
Computational Thinking, STEM Education, Learning

Objectives, Curriculum, Assessment.

1. INTRODUCTION
The importance of Computational Thinking (CT) as a goal

of science education is increasingly acknowledged

(Quinn, Schweingruber, Keller, 2012; Wilensky, Brady &

Horn, 2014). Teaching CT in the context of science not

only presents students with a more authentic image of

science as it is practiced today, it also increases access to

powerful modes of thinking and marketable skills for

many careers (Levy & Murname, 2004). It is estimated

that by 2020, one out of every two STEM jobs will be in

computing (ACM Pathways Report 2013). However,

students from groups that have been historically

underrepresented in STEM fields (such as women and

racial minorities) are less likely to enroll in computer

science classes (Margolis, 2008; Margolis & Fisher, 2003)

and thus are not traditionally exposed to CT practices. We

believe we can improve access for all students, especially

those underrepresented in CS, by embedding CT practices

in subjects such as biology, chemistry, and physics, which

all high school students are expected to take. While this

does not ensure that these students will be personally

motivated to engage in our CT curriculum, it ensures that

they will at least be exposed to CT practices and given the

opportunity to learn about them.

For the reasons given above, we believe that developing

CT practices in the context of science subjects is a

productive endeavor. However, the character of CT

practices in the science disciplines is not yet well

understood, nor is how to create curriculum and

assessments that develop and measure these practices

(Grover & Pea, 2013). To address this gap, our group has

worked to explicitly characterize core CT practices as

specific learning objectives and used these to guide our

development of science curriculum and assessment. We

developed our learning objectives upon a theoretical

taxonomy of CT in STEM that our group previously

proposed (Weintrop et al., 2016). The taxonomy consists

of four strands of CT practices: Data Practices, Modeling

and Simulation Practices, Computational Problem

Solving Practices, and Systems Thinking Practices. We

translated elements from each strand of the taxonomy into

learning objectives through a process involving interviews

with computational scientists and feedback from high

school science teachers.

The general aim of our larger research agenda is to address

the question: “Can engaging in computationally-enriched

science curriculum help students develop CT practices?”

In the present study, we address a more focused version of

this question and investigate whether engaging in three

computationally-enriched biology units over the course of

the school year helped participant students develop CT

practices, specifically two practices within the Modeling

and Simulations strand of our taxonomy. Below, we

describe our study design and analytical approach, then

present results from a comparison of students’ scores for

pre- and post-assessments. Our results provide support for

our claim that computationally-enriched science

curriculum can foster students’ development of particular

CT practices.

2. STUDY DESIGN
We investigated our research question by analyzing data

from the fourth iteration of a design-based research cycle

(Collins, Joseph, Bielaczyc, 2004). The implementation

spanned the 2015-2016 school year and was tested in three

9th grade biology classrooms at our partner school.

Students were given a CT practices pre-test at the

beginning of the school year and a CT practices post-test

at the end of the school year. Over the course of the school

year they participated in three CT science units, each unit

approximately four days long. We investigated the role of

the CT science units in students’ development of particular

CT practices by looking for statistically significant gains

in scores for particular items from pre- to post-test.

18

2.1. Participants

We partnered with a public secondary school (serving

grades 7 – 12) in an economically depressed neighborhood

in a large city in the Midwestern region of the United

States. The school was selected on the basis of the

willingness of its teachers and students to participate in

our study. The size of the school was typical for an urban

public secondary school, with approximately twelve

hundred students enrolled. The majority of the students at

the school are considered to be of racial minority within

the United States (71.1% Black, 24.5% Hispanic, 1.6%

Asian, .3% American Indian, .2% Pacific Islander, .9% Bi-

Racial, 1.4% White), with sixty-two percent from low

income households. The school is characterized as

selective-enrollment, meaning that the student population

is academically advanced and highly motivated. We

addressed our research questions by analyzing a selection

of the pre- and post-test responses given by participating

9th grade biology students. A total of 133 of these students,

distributed across three biology teachers, took both tests.

Due to time constraints, a number of these students did not

complete the entire assessment. Ten students did not

complete the assessment item measuring learning

objective 1 and 24 did not complete the assessment item

measuring learning objective 2; these students’ responses

were therefore not included in the analyzed datasets.

2.2. CT Science Lessons

The biology students participated in three

computationally-enriched biology units over the course of

the school year. Each unit took approximately four school

days and emphasized the exploration and manipulation of

computational models of scientific phenomena or

concepts. The first unit was on predator-prey dynamics

and ecosystem stability. For this unit, students explored

population dynamics in a simulation of an ecosystem

consisting of three organisms (grass, sheep, and wolves)

(Wilensky, 1997b). Students investigated the population-

level effects of parameters for individual organisms (such

as initial population and reproduction rate) by running the

simulation with different values for each organism.

Through their exploration, the students learned about the

complex population dynamics that emerge from the

interactions between individual organisms. The second

unit was on AIDS. For this unit, students explored a model

that simulated the diffusion of the infectious disease

through a population (Wilensky, 1997c). Students

investigated the effects of parameters for individual

interactions (such as the probability of individuals to form

a couple, and the probability of the disease transfer

between partners) on the rate of spread of the disease. The

third unit was on genetics. For this unit students explored

a model that allowed them to change mating rules in a

population of fish. Students investigated how changing

parameters such as life span and mating choice could

bring about changes in the overall allele frequencies in a

population of fish. All units were meant to help students

develop expertise regarding learning objectives for

Modeling and Simulations Practices by engaging in

science content through the exploration of NetLogo

(Wilensky, 1999) simulations. NetLogo simulations were

chosen because the agent-based modeling environments

make complex systems phenomena (such as those featured

in the biology lessons) more intuitively accessible

(Wilensky, 2001). Additionally, the NetLogo user

interface makes transparent the relationship between a

model’s code and the phenomenon it simulates. This

makes NetLogo a powerful tool for scaffolding students’

transition from consumers, to designers and builders of

computational models. In order to help students develop a

flexible set of CT practices, other CT-STEM units feature

simulations built in modeling environments such as

Molecular Workbench (Concord Consortium, 2010) and

PhET (Perkins et al., 2006) and introduce students to a

range of computational tools for data analysis and problem

solving.

2.3. CT Assessments

The pre- and post-tests were designed to evaluate students’

mastery of CT practices. In this report, we present results

concerned with two particular learning objectives within

our Modeling and Simulations Practices strand. The first

learning objective falls under the sub-strand element

Using Computational Models and states that a student

should be able to “explore a model by changing

parameters in the interface or code.” This is a very basic

skill but it plays an important role in students’ (and

scientists’) abilities to learn about the relationship between

particular parameters and system behavior at the macro-

level. The second learning objective falls under the sub-

strand element Assessing Computational Models and

states that a student should be able to “identify the

simplifications made by a model.” This learning objective

is important to students’ epistemological development, as

it relates to their understanding of a computational model

as a tool that is both powerful and limited with regards to

the construction of new knowledge.

Both pre- and post-tests required students to interact with

computational simulations. For the pre-test, students

interacted with a simulation (shown in Figure 1, below)

that modeled climate change and showed the relationship

between temperature and amount of CO2 in the

atmosphere (Tinker & Wilensky, 2007). For the post-test,

students explored a simulation (shown in Figure 2, below)

that modeled the relationship between the pressure of a gas

and its volume and number of particles in a sealed

environment (Wilensky, 1997a; 2005).

19

Figure 1. Screenshot of pre-test simulation modeling the

relationship between temperature and atmospheric CO2

levels.

Figure 2. Screenshot of post-test simulation modeling the

relationship between the pressure of a gas and its volume

and number of particles.

To assess students’ abilities to explore a model by

changing parameters in the interface or code, we analyzed

their responses to test items (quoted below) that asked

them to attend to the relationships between adjustable

parameters and system-level characteristics. In order to

assess students’ abilities to identify simplifications made

by a model, we analyzed their responses to test items that

asked them for the ways in which the simulations differed

from the real-world. These assessment items were selected

to investigate students’ mastery of the same learning

objectives across two very different computationally

modeled phenomena.

2.4. Data Analysis

We used a combined top-down (learning objective driven)

bottom-up (data driven) approach to create rubrics for

evaluating students’ responses to pre- and post-test

questions and characterizing their mastery of both learning

objectives.

2.4.1. Learning Objective 1

For the pre-test, in the context of the greenhouse gas

simulation, students were asked to explore the relationship

between a system’s parameters and its behavior by

changing a particular parameter and reporting on the

resulting system-level behavior. In particular, they

responded to the prompt: “Set cloud coverage to 0%. Take

some time to experiment with different settings for the

‘CO2-amount’ slider. What happens to the temperature if

you increase the amount of the CO2 in the model?” For

the post-test, in the context of the gas-law simulation,

students were asked to explore the relationship between a

system’s parameters and behavior by changing parameters

to get a specific result. In particular, they responded to the

question: “What values for container size and number of

particles will result in the lowest pressure in the container?

What steps did you take to come up with these values?”
i

We examined students’ pre- and post-test responses,

sorting responses into categories based on similarities that

were relevant to our focal learning objective. Four

categories emerged that characterized response types

across both pre- and post-test responses. These categories

are Noticing Parameter-System Relationships, Including

Explanatory Factors, Comparing Across Trials, and

Correctness.

These categories are outlined, described and illustrated

with examples from the data in Table 1, below. We scored

students’ responses by awarding one point for each

category included in their response and taking the sum of

these points. This resulted in scores ranging from 0-3.

Table 1. Pre- and post-test rubric for analyzing students’

responses and characterizing their ability to explore a

model by changing parameters in the interface or code.

 Student Example

Relationships

Response describes relationship between system

parameters and macro-level patterns.

Pre-Test “The temperature increases.”

Post-Test

“I slid the wall-position to its maximum

and the number of particles to its

minimum.”

Explanatory Factors

Response provides some explanation for relationship

between system parameters and macro-level patterns.

Pre-Test
“IR light does not get a chance to go into the

sky because it is blocked by CO2.”

Post-Test
“A bigger area and less particles shouldn't

produce a large amount of pressure since

it’s a lot of space for the particles.”

Comparison

Response compares data across multiple simulation

trials.

Pre-Test

“When I increase the CO2 amount there

seem to be IR light flying all over the place.

But when there are smaller amounts of CO2

molecules the IR light have a better chance

of going straight into the sky.”

Post-Test

“To come up with these values I first tried

putting the number of particles and the

container size at its max. After that, I tried

the number of particles at its minimum and

the container size at its maximum.”

Correctness

Response correctly addresses the assessment prompt.

Pre-Test “The temperature increases.”

Post-Test
“Number of particles: 25 Wall

position: 96”

20

2.4.2. Learning Objective 2

As part of the pre-test, students were asked to identify the

simplifications made by the greenhouse simulation. As

part of the post-test, students were asked to identify the

simplifications made by the gas-law simulation. For both

tests, they responded to the question: “All computational

simulations are only approximations of reality. What are

some of the simplifications of this simulation that make it

different from the real world?”

We examined students’ pre- and post-test responses,

sorting responses into categories based on similarities that

were relevant to the learning objective we were analyzing.

Six categories emerged that characterized response types

across both pre- and post-test responses. These categories

are General Issues, Representational Issues,

Controllability, Completeness, Procedural Limitations,

and Off-Task. They are arranged in order of increasing

sophistication ii, described and illustrated with examples

from the data in Table 2, below. We scored students’

responses by awarding them the point-value of the highest

category included. “Off-Task” (of point-value zero) was

given to responses that did not address the assessment

item, or consisted of “I don’t know.” Scores ranged from

0-3.

Two researchers analyzed students’ responses to the two

assessment items for both pre-and post-tests. They coded

responses (identifying the categories presented in the

rubrics) and then scored them. The researchers’ inter-rater

reliability for the pre-test was at 97% for the item

measuring the first learning objective and 90% for the item

measuring the second learning objective. Inter-rater

reliability for the post-test was at 95% and 80%,

respectively.

Table 2. Pre- and post-test rubric for analyzing students’

responses and characterizing their ability to identify

simplifications made by a model.

 Student Example

General Issues – Score: 1

Response refers to general, as opposed to specific,

inaccuracies or missing factors.

Pre-Test
“In reality, other factors could come into

play rather than just CO2 and clouds.”

Post-Test
“Inaccuracy in particles and wall position

can make it different from the real world.”

Representation Issues – Score: 1

Response refers to representational limitations of the

model.

Pre-Test
“Obviously, sunlight is not a bunch of little

sticks raining down.”

Post-Test “It’s not actually life size.”

Controllability – Score: 2

Response refers to the existence of control over factors in

the model that one does not have control over in real life.

Pre-Test
“Because you can control how much CO2

and cloud coverage there is.”

Post-Test

“In real life, you cannot add or subtract

molecules nor can you adjust the wall

positioning.”

Completeness – Score: 2

Response refers to specific elements or factors that are

missing from, or extraneous to, the model.

Pre-Test
“There are humans on earth and humans

also can add to the amount of heat.”

Post-Test

“The real world, does not have this many

boundaries and an infinite number of

particles.”

Procedural Limitations – Score: 3

Response refers to interactions, behaviors, or

relationships within the model that differ from real life.

Pre-Test
CO2 might not speed up that much when it

absorbs IR light.

Post-Test
Particles don’t travel in and out of room in

this simulation, when in real life they do.

To test whether the intervention played a role in their

development of CT practices, students’ scores for each

item on both pre- and post-tests were compared using a

Wilcoxon signed-rank test. The findings of this analysis

are reported below.

3. Findings

3.1. Learning Objective 1

Students’ average score for the pre-test item measuring

their ability to explore a model by changing parameters in

the interface or code was 2.03. Their average post-test

score was 2.19. The p-value obtained using the Wilcoxon

signed-rank test was 0.23 (V = 1486). The difference in

student scores is therefore not statistically significant and

we cannot make the claim that engagement in our

curriculum helped students improve their CT skills with

regard to this learning objective.

In addition to comparing students’ pre- and post-test

scores for this learning objective, we compared the

frequencies of categories of ideas that appeared in

students’ pre- and post-test responses. Examination of the

bar chart below reveals that during the pre-test, many

students were concerned with macro-level effects of

changing parameters, while at the time of the post-test,

many more students referred to explanatory factors in their

responses. This suggests they looked more closely at the

model and tried to understand the interactions at the

micro-level that explained the macro-level phenomenon.

While the comparison of pre- and post-test scores

indicates that students are not necessarily developing

sophistication regarding their ability to explore a model,

the changing frequency of categories gives us insight into

21

one specific way students may in fact be developing

expertise.

Figure 3. Frequencies of categories included in students’

responses to the pre- and post-test items assessing their

mastery of learning objective 1.

3.2. Learning Objective 2

Students’ average score for the pre-test item measuring

their ability to identify simplifications made by a model

was 1.39. Their average post-test score was 1.63. The p-

value obtained using the Wilcoxon signed-rank test was

0.02 (V = 647.5). The difference in student scores is

therefore statistically significant (at the 5% significance

level) and this supports our claim that engagement in our

curriculum helped students improve their CT skills with

regard to this learning objective.

In addition to comparing students’ pre- and post-test

scores for this learning objective, we compared the

frequencies of categories of ideas that appeared in

students’ pre- and post-test responses. For ease of coding,

we combined categories of the same score. This is

reflected in the categories shown in the bar chart below.

Examination of this bar chart reveals that during the pre-

test, many students reported general or representational

simplifications, whereas at the time of the post-test, this

number decreased and the number of students reporting

controllability or completeness as a limitation increased.iii

The number of students reporting procedural

simplifications also increased. While the comparison of

pre- and post-test scores indicates that students are

developing sophistication regarding their ability to

identify simplifications within a model, the changing

frequency of categories gives us insight into the specific

ways in which students are becoming more sophisticated.

Figure 4. Frequencies of categories included in students’

responses to the pre- and post-test items assessing their

mastery of learning objective 2.

4. Discussion
This study extends our group’s previous work by

translating our theoretical taxonomy into learning

objectives that can be used to guide the design of

curriculum and assessment. The study makes an empirical

contribution by presenting evidence that engagement in

our CT-STEM curriculum helped participating students

develop their ability to identify simplifications made by

computational models. Our data also gives us insight into

how students might develop their ability to explore a

computational model. Toward this, we will conduct

qualitative analysis of particular students and examine

individual developmental trajectories. Our next steps also

include refining our pre- and post- assessment items so

that they are more closely aligned with each other, and

with our learning objectives. As well, we are refining our

curriculum (across the science subjects) so that it is more

closely aligned with our learning objectives and

assessment items. This refinement includes creating more

opportunities for students to explicitly reflect on and

discuss their individual ways of exploring models, as well

as the simplifications they notice in different models.

5. References
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design

research: Theoretical and methodological

issues. The Journal of the learning

sciences, 13(1), 15-42.

Concord Consortium. (2010). Molecular

workbench. Java simulations and modeling

tools), (2004–2013).

Grover, S., & Pea, R. (2013). Computational Thinking in

K-12: A Review of the State of the Field.

Educational Researcher, 42(1), 38–43. 

Levy, F. & Murname, R. (2004). The new division of

labor: How computers are creating the new job

market. Princeton, NJ: Princeton University

Press. 

Margolis J (2008) Stuck in the shallow end: education,

race, and computing. The MIT Press, Cambridge

Margolis J, Fisher A (2003) Unlocking the clubhouse:

women in computing. The MIT Press,

Cambridge

Perkins, K., Adams, W., Dubson, M., Finkelstein, N.,

Reid, S., Wieman, C., & LeMaster, R. (2006).

PhET: Interactive simulations for teaching and

learning physics. The Physics Teacher, 44(1),

18-23.

Quinn, H., Schweingruber, H., & Keller, T. (Eds.). (2012).

A framework for K-12 science education:

Practices, crosscutting concepts, and core ideas.

National Academies Press.

22

Tinker, R. & Wilensky, U. (2007). NetLogo Climate

Change model. Center for Connected Learning

and Computer-Based Modeling, Northwestern

University, Evanston, IL.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and

science classrooms. Journal of Science

Education and Technology, 25(1), 127-147.

Wilensky, U. (1997a). NetLogo GasLab Gas in a Box

model. Center for Connected Learning and

Computer-Based Modeling, Northwestern

University, Evanston, IL.

http://ccl.northwestern.edu/netlogo/models/Gas

LabGasinaBox.

Wilensky, U. (1997b). NetLogo Wolf Sheep Predation

model. Center for Connected Learning and

Computer-Based Modeling, Northwestern

University, Evanston, IL.

http://ccl.northwestern.edu/netlogo/models/Wolf

SheepPredation.

i It is important to note that while both items are concerned

with students’ abilities to learn about a parameter’s

influence on a system’s behavior, they are inversely

structured. While the pre-test item instructs students to

change a parameter and report its effect on the system, the

post-test item instructs students to change parameters until

they achieve a specified system behavior. We argue that

while they are different in this way, both items are

concerned with the causal relationship between parameter

values and system-level behavior and are therefore

comparable assessments of students’ abilities to explore a

model by changing parameters in the interface or code.
ii General comments about accuracy and representational

limitations seemed to be the easiest to make with attention

to mere surface-features. These simplifications were

therefore awarded the lowest score (one point). The

Wilensky, U. (1997c). NetLogo AIDS model.

http://ccl.northwestern.edu/netlogo/models/AID

S. Center for Connected Learning and Computer-

Based Modeling, Northwestern University,

Evanston, IL.

Wilensky, U. (1999). NetLogo. Evanston, IL. Center for

Connected Learning and Computer-Based

Modeling, Northwestern University.

http://ccl.northwestern.edu/netlogo/.

Wilensky, U. (2001). Modeling nature’s emergent patterns

with multi-agent languages. In Proceedings of

EuroLogo (pp. 1-6).

Wilensky, U., Brady, C. E., & Horn, M. S. (2014).

Fostering computational literacy in science

classrooms. Communications of the ACM, 57(8),

24-28.

Wilensky, U., Novak, M. & Levy S.T. (2005). NetLogo

Connected Chemistry 6 Volume and Pressure

model. Center for Connected Learning and

Computer-Based Modeling, Northwestern

University, Evanston, IL.

completeness of the model and control given to its various

parameters seemed to require more careful consideration

of the interface and comparison with the real-world. These

simplifications were therefore awarded a slightly higher

score (two points). Finally, comments about the

procedural correctness of behavior and interactions within

the model required students to run the model and track

cause and effect relationships between elements at the

micro-level and comparison of this with scientific laws or

theories. These simplifications were therefore awarded the

highest score (three points).
iii This point is especially interesting given that the gas-

law simulation is just as unrealistic, regarding the visual

representation of the system, as the greenhouse effect

model.

http://ccl.northwestern.edu/netlogo/models/GasLabGasinaBox
http://ccl.northwestern.edu/netlogo/models/GasLabGasinaBox
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/AIDS
http://ccl.northwestern.edu/netlogo/models/AIDS
http://ccl.northwestern.edu/netlogo/

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

23

Constructing Models in Physics: What Computational Thinking Occurs?

Sarah POLLACK1*, Bruria HABERMAN2, Orni MEERBAUM-SALANT3

1,3 Davidson Institute of Science Education, Weizmann Institute of Science, Israel

2 Holon Institute of Technology, Holon, Israel, and Davidson Inst. of Science Education, Israel,

Sarah.Pollack@weizmann.ac.il, Bruria.Haberman@weizmann.ac.il, Orni.Meerbaum-salant@weizmann.ac.il

ABSTRACT
Computational thinking (CT) practices, especially

abstraction and evaluation, are central to developing

expertise in scientific disciplines, and considerable

synergies exist between CT and scientific expertise. We

present a pedagogical model based on the Equation-

Based Model (EBM) for developing computerized

simulations to describe physical phenomena.

Specifically, EBM emphasizes the importance of

mathematics as a central tool in science, and aims at

fostering students’ abstraction and evaluation practices,

as part of their modeling processes.

We analyzed a final team-project of participants who

decided to investigate a specific physical phenomenon in

a course based on the EBM approach. Our analysis

focused on characterizing the abstraction and evaluation

practices, and the role they play in the scientific inquiry.

The students applied multiple levels of abstraction,

starting with the mathematic-system-level perspective of

the conceptual model, and eventually constructed a

computerized model of the conceptual model. They

applied mathematical tools throughout the process, and

verified and validated their models. The graphical

simulation that the students built enabled them to

investigate and enhance their comprehension of the

problem explored. We concluded that this pedagogic

approach has the potential to promote meaningful

learning and knowledge transfer of computational

thinking that were acquired during the course.

KEYWORDS
Computational thinking, scientific inquiry, equation-

based model, abstraction, model evaluation.

1. INTRODUCTION
Computational thinking (CT) draws on concepts and

practices that are fundamental to computer science and

computing (Wing, 2006). Some of these practices are

also central to developing expertise in scientific

disciplines, and there are considerable synergies between

CT and scientific expertise (Sengupta et al., 2013,

Weintrop et al., 2016). Therefore, it is not surprising that

recently, much effort has been invested in exploring the

potential of CT to enhance model-based learning

approaches using computing in STEM education.

Indeed, using computing in model-based learning has

been recently recognized as a suitable pedagogical

means to engage students in scientific inquiry (National

Research Council (U.S.), Pellegrino and Hilton, 2012).

“Scientific models are tools for expressing scientific

theories in a form that can be directly manipulated,

allowing for description, prediction, and explanation.”

(Rapp & Sengupta, 2013, p. 2320). Scientific modeling

is an iterative process, consisting of building, testing, and

revision. More specifically, this process involves: (a)

embodying key aspects of theory and data of phenomena

into a model, (b) evaluating the model using the criteria

of accuracy and consistency, (c) investigating the

characteristics of the model in order to illustrate

theoretical arguments about the mechanism or internal

structure, and (d) interpreting the model and obtaining

insights about the investigated phenomenon (Schwarz

and White, 2005; Hughes, 1977). Furthermore, today

computers serve as an important tool for creating and

using scientific models. Thus, modeling requires

students to develop, among others, the following

interrelated key practices: abstraction and evaluation, on

which this paper focuses.

Abstraction enables the problem-solver to handle

complex data and to think in terms of conceptual ideas

rather than merely in terms of their details (Wing, 2006).

Therefore, Wing (2006, 2008) claimed that abstraction is

a key practice in computing and that the abstraction

process concerns making decisions as to what to

emphasize and what to hide. This process, when

successful, brings about a representation of the

phenomena studied, that is, a generalized idea or an

abstract structure, from which one can learn about a wide

range of more concrete items with shared characteristics.

Additionally, there are multiple levels and ways of

abstracting. Therefore, mastering this practice involves

the ability to understand the relationships between the

different levels, transform from one level to another, and

choose the most suitable form to represent the model.

Abstraction also plays an important role in scientific

inquiry, since scientific inquiry requires one to

generalize a range of phenomena into one coherent

conceptual model. Sengupta et al. (2013) investigated the

degree of correspondence between abstractions in

computational thinking and scientific inquiry. Modeling

in scientific inquiry using computing involves two types

of models: a conceptual model and a computerized

model whose output consists of a simulation that enables

one to study the behavior of the investigated physical

system (Oberkampf, Trucano and Hirsch , 2004).

Specifically, in physics, a conceptual model consists of a

mathematical description of the physical phenomenon,

and a computerized model that consists of

implementation of the conceptual model in terms of

programing a computerized system.

Because abstraction concerns constructing a conceptual

presentation of the phenomenon, evaluation is necessary

throughout every phase of the modeling process.

24

Therefore, the following question should be asked by the

problem-solver: “How confidence in modeling and

simulation should be critically assessed?” (Oberkampf,

Trucano and Hirsch , 2004, p. 352). Accordingly,

evaluation consists of the following dimensions: (a)

Verification refers to determining whether the

computerized model is an accurate implementation of the

conceptual model and (b) Validation involves

determining whether the computerized model accurately

represents the real-world experimental measurements.

This is achieved by using the simulation obtained from

the computerized model. Accordingly, when evaluating

their modeling artifact, students should carefully

examine the simulation’s obtained output; they should

justify the output logically and avoid intuitively relying

merely on the similarity to the results of other

experiments.

2. RATIONALE AND RESEARCH

GOALS
Scientific modeling, and in particular, abstraction and

evaluation, are not trivial practices. In fact, there is much

empirical evidence on students’ difficulties when they

are asked to employ these practices. One prominent

example is the report by Schwarz and White (2005),

according to which students’ understanding as to how to

evaluate and revise a model in light of new data and

insights remained limited, after they participated in an

inquiry-oriented physics curriculum and engaged in the

process of building computerized models.

Here we describe a pedagogical model aimed at fostering

students’ abstraction and evaluation practices, as part of

their modeling processes in physics; we also present the

results of our investigation into students’ work. Our main

objectives are as follows: (a) to identify and describe the

abstraction and evaluation practices that were manifested

in students' physics modeling processes, (b) to

understand how (if at all) these practices can enhance

deep scientific inquiry, and (c) whether and how the

pedagogical model can enhance or hinder these practices.

3. PEDAGOGICAL MODEL
We describe a unique program in computational physics

aimed at introducing students to content knowledge and

practices involving analyzing and solving physics

problems by building computer simulations. Using an

integrative approach, the program introduces, concepts,

tools, and practices from physics, computer science, and

applied mathematics (Landau, Paez and Bordeianu,

2011).

The program was implemented at The Davidson Institute

of Science Education, the educational arm of the

Weizmann Institute of Science, in Israel. Thirty high-

school students (11th grade), who major in physics at

school, attend 4-hour weekly meetings during which they

study topics in physics, math (differential equations), and

MATLAB programming.

The processes of scientific inquiry and the building of

computerized models are demonstrated, with emphasis

on evaluation practices. More specifically, in addition to

physics content, the pedagogical approach exposes

students to the inquiry approach and practices that

physics experts consider and apply when modelling

physics phenomena. Special emphasis is on teaching

content knowledge in the physics domain when relating

to the knowledge of how, why, and when to apply this

knowledge to answer questions and to solve problems

(National Research Council (U.S.), Pellegrino and

Hilton, 2012). We believe that this pedagogic approach

may promote meaningful learning and knowledge

transfer.

The course is based on the Equation-Based Model

(EBM) in which modeling is first performed by

describing the conceptual model of the system using a set

of differential equations. EBM was chosen because it

resembles a general systems-level approach to describe

physical phenomena (Parunak et al., 1989). Uhden et al.

(2012) referred to the role of mathematics in physics:

“the role of mathematics in physics has multiple aspects:

it serves as a tool (pragmatic perspective), it acts as a

language (communicative function) and it provides a

way of logical deductive reasoning (structural

function).” (p. 486). Indeed, EBM emphasizes the

importance of mathematics as a central tool in sciences

and in physics, in particular. The participants in the

course practice programming in MATLAB, which is a

high-level language and is used in scientific and

engineering computation, especially when dealing with

differential equations, manipulating data and functions,

and visual representation (Sen and Shaykhian, 2009).

MATLAB was used for implementing the conceptual

model as computer simulation.

The course is based on a learning-by-doing approach.

Initially, participants are given a scientific paper that

presents a physics problem and its computerized solution

using the EBM approach. The students are requested to

reconstruct the experiment described in the paper, and

use it to evaluate the model, the experimental data, and

the results described in the paper. In addition, they are

requested to raise a new question and to inquire about it

by using the model that they developed.

At the end of the course the students develop a final

project. They choose and define a new problem and

perform the whole process in pairs. While the process

develops, they write a report in which they describe the

conceptual and computerized models and the scientific

inquiry processes that they encounter. They are asked to

describe their considerations, assumptions, and to justify

their actions. In the next section, we describe the analysis

of one report out of 15 projects that students conducted

at the end of the 2015 course. This particular work was

chosen by the teacher of the course, who justified his

choice, since this work reflects in general his students'

projects.

4. FINDINGS
We analyzed the final report of the team project of two

students who decided to investigate the two-body

problem in physics. In the analysis, we focused on

25

characterizing the abstraction and evaluation practices,

as identified in the students’ report, and related to their

explanations and justifications.

4.1. Abstraction

Development and representation of the conceptual

model: To define a system-level perspective of the

problem that needs to be solved, the students began their

investigation by using Newton’s equation, which

describes the magnitude of the gravity force that occurs

between two objects in space.

 Figure 1. Newton's gravitation laws

Next, the students used vector representation to describe

the gravity force by relating to its direction as well:

 Figure 2. Vector representation

In the next step, the students decided to use Newton's

second law with the previous vector equations to find

new equations that enable one to find the location and

speed of an object at any time in space.

Further steps led to new second-order differential

equations, which, as the students explained, "connect

between the position vector and the acceleration vector.

This is possible because the gravitation force is the only

force acting on the bodies."

 Figure 3. Representation of differential equations

Finally, in order to enable the system to be tested for

specific cases, the students defined a set of initial

conditions. They justified this decision as follows: "It

must be remembered that the solution of these equations

will actually provide a set of functions, rather than one

specific function. Hence, to find a specific function we

must define a set of initial conditions; different initial

conditions will lead to different functions.”

Multiple levels of representation: Beyond the system-

level perspective of the conceptual model in terms of

Newton's laws, presented in the previous section (which

we will refer to as “The First abstraction level”), the

students described three additional levels of abstraction,

needed to construct a computerized model of the

conceptual model, and they explained the role of each

level.

The second abstraction level was to represent the system

in terms of a set first-order differential equations. The

students explained that they need to transform the second

order differential equations to the first order differential

equations because they use Ordinary Differential

Equation (ODE) solvers in MATLAB (Sen &

Shaykhian, 2009).

The third abstraction level is implementing the system in

terms of a MATLAB code. In this stage a computerized

model of the conceptual model is obtained.

The fourth abstraction level is graphically representing

the objects’ movement, obtained through simulation,

which is actually an output of the computerized model.

The students explained that the information, illustrated

by the simulation, was obtained by solving the position

and velocity functions: "We construct the simulation and

use the information to create different graphs, to draw the

objects’ paths, and to present the dynamic occurrence

and the objects’ movement through time." This level

actually enabled the students to perform inquiry using

different case studies and enhanced their comprehension

of the physical problem investigated.

4.2. Evaluation

The students wrote a 30-page report; half of it (15 pages)

was dedicated to a chapter entitled "evaluation of the

model and discussion of the results". The students stated:

"In this part we will try to examine the simulation we

have built. We will also compare the simulation to other

known experimental data and we will use different tools

and try to understand if the description and the results of

the simulation are correct, reliable, and realistic."

Validating the model: Initially, the students used the

computer simulation that they built to examine the

conceptual model. To this end, they used the existing

experimental data starting with Kepler's three laws of

planetary motion. Owing to the limited scope of this

paper, here we will describe only the evaluation of the

results obtained from the simulation using Kepler's first

law of planetary motion. Accordingly, the students tried

to confirm that the simulation creates an elliptical path

for all the planets, with the sun as one of ellipse’s focal

points. To test this, they determined that "the initial data

that will comply with Kepler's laws… the mass of the sun

is 10,000 kg and the other planet's mass is 1 kg." They

created the simulation accordingly and observed the

visual display (Figure 4) to determine whether the

objects’ paths indeed look like an ellipse.

Figure 4. Simulation of Kepler’s first law

Next, they set the goal of proving that what they see is

indeed an ellipse using the mathematical definition of an

ellipse. After they had proved it, they checked the path

26

obtained with different initial values. Finally, they also

mathematically proved the second part of Kepler's first

law, according to which "the sun is one of the focal points

of the ellipse." Similarly, they examined the second and

third laws of Kepler.

Verifying the model: When analyzing the simulation’s

results over time, they noted an error expressed in several

paths: "After the first round, it can be seen that the graph

becomes much less regular … as time progresses." They

explained the error as being a result of the numerical

computation, claiming that "Most of the inaccuracy in

the simulation is due to a lack of precision in solving this

differential equation. Therefore, as time progresses, the

path changes and diverges from reality.”

As a result, aiming to improve the computerized model,

they decided to develop an alternative algorithm for

computing the objects’ paths. They explained: "One way

to check the correctness of the analytic algorithm [of the

solution of differential equations] by using a computer is

to compare it to a different algorithm." They chose a

numerical algorithm to calculate a planet's path based on

dividing it into fragments.

Next, the students ran the models (based on the two

alternative algorithms) multiple times and examined the

graphs of the object’s movement, which were obtained.

They concluded that "it shows that the orbits are very

similar to each other, which means that the two

algorithms are “close” and approximately describe the

reality."

However, they noted some time-dependent differences

between the paths obtained from the analytical algorithm

and the numerical algorithm: "the longer the time since

the beginning of the simulation, the differences (between

paths) become bigger and they drift apart; this also

occurs as the velocity speeds up."

Based on the simulation results, the students also noted

that the deviations in the paths obtained by the numerical

algorithm are smaller than those obtained by the analytic

algorithm. Their analysis led them to the following

conclusions:

 (a) The first conclusion relates to the computing effect,

in the context of proximity to reality: "the numerical

solution remains closer to reality than does an analytical

solution. This can be explained by the possible lack of

precision of the computing. At lower speeds and less

acceleration, the difference may be negligible and hardly

noticeable; however, when dealing with high velocities,

the velocity affects the position each time it becomes

larger, and this might lead to different results."

 (b) The second conclusion relates to cumulative errors

resulting from the computing process: the students

concluded that computing the analytic algorithm causes

a cumulative error that significantly increases over time,

compared with computing the numerical algorithm.

5. DISCUSSION AND CONCLUDING

REMARKS
The analysis of students' reports revealed that the

students used high-level abstraction and evaluation

practices, which in turn, enhanced their scientific

inquiry. The students created multiple abstraction levels,

explained the assumptions they had made, and this

helped them to deal with the system’s complexity. They

described mathematically a computational abstraction of

the physics system governing the two-body problem,

transformed this representation to code in the MATLAB

environment, and created a graphical simulation to

describe the dynamics of the physical system they chose

to investigate. They also performed various actions in

order to evaluate the conceptual and computerized

models. They validated the conceptual model using

experimental data (Kepler's laws of planetary motion)

and verified the computerized model using different

algorithms. Based on the above, we can infer that the

students’ performance, actions, and decisions resemble

experts' scientific inquiry.

Moreover, we assume that the modeling used in the EBM

approach will enable students to acquire CT practices

and will promote understanding the synergy between CT

and scientific thinking. In the EBM approach, the

modeler first has to define the conceptual model of the

system, usually using mathematics, as our study

demonstrated.

Mathematical thinking has been perceived by the

researchers as a tool that helps one to reason precisely

and analytically about formally defined abstract

structures and it "helps to move from [an] informal and

complicated real world to a simplified abstract model"

(Kramer, 2007, p. 41). Indeed, the students in our study

used mathematical thinking to describe the physical

phenomena, and transferred between multiple

abstraction levels. We concluded that mathematical

thinking was also important for students when they

verified and validated the conceptual and computerized

models and communicated their ideas.

In today’s global and digital age, students need to master

computational practices that will enable them to solve

problems in different contexts and various domains.

Thus, students should take advantage of deep learning

opportunities and use transferable knowledge (Pellegrino

and Hilton, 2013). Transferable knowledge involves the

ability to use concepts and practices learned in one

context, transfer them to another one, and apply their

cognitive ability, which Salmon and Perkins (1989)

termed as high-level transfer. More specifically,

knowledge transfer can be defined as mindful action

based on analytic analysis and reasoning about the

connection between the two contexts, and then suitable

ways can be found to use the knowledge in a new

context.

We can conclude that the course described here indeed

exposes students to knowledge regarding the use of

abstraction and evaluation in scientific modeling. More

specifically, students were constantly exposed to the

27

tools, strategies, considerations, and assumptions that

scientists used in the modeling process. They also were

requested to describe the artifacts they had built as well

as explain and justify their actions during the

development process. We believe that this pedagogical

approach will contribute to students acquiring the

cognitive knowledge and practices that are needed to

perform high-level transfer of CT.

Finally, there are many studies that describe students'

difficulties in using mathematical thinking in physics and

science. However, educators should support and

encourage excellent students, as we demonstrated in this

study. More work is needed to examine the role of

mathematics in enhancing high-level computational

thinking, which may encourage students to engage in

deep learning and transferrable knowledge.

6. ACKNOWLEDGMENT
We would like to thank Dr. Arik Ben-Haim, the

Davidson Institute of Science Education, for his many

helpful comments and insights.

7. REFERENCES
Hughes, R. I. G. (1997). Models and Representation.

Philosophy of Science, 64, S325–336.

Kramer, J. (2007). Is abstraction the key to computing?

Communications of the ACM, 50(4), 36–42.

Landau, R. H., Paez, J., & Bordeianu, C. C. (2011). A

survey of computational physics: introductory

computational science. Princeton University Press..

National Research Council (U.S.), Pellegrino, J. W., &

Hilton, M. L. (2012). Education for life and work:

Developing transferable knowledge and skills in the

21st century. Washington, D.C: The National

Academies Press.

Oberkampf, W. L., Trucano, T. G., & Hirsch, C. (2004).

Verification, validation, and predictive capability in

computational engineering and physics. Applied

Mechanics Reviews, 57(5), 345-384.

Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998).

Agent-based modeling vs. equation-based modeling: A

case study and users’ guide. In International Workshop

on Multi-Agent Systems and Agent-Based Simulation

(pp. 10-25). Berlin, Heidelberg: Springer.

Pellegrino, J. W., & Hilton, M. L. (Eds.). (2012).

Education for life and work: Developing transferable

knowledge and skills for the 21st century. A report of

the National Research Council. Washington, DC:

National Academies Press.

Rapp, D.N., & Sengupta, P. (2012). Models and

modeling in science learning. Encyclopedia of the

Sciences of Learning (pp. 2320-2322). New York:

Springer.

Salomon, G., & Perkins, D. (1988). Teaching for

transfer. Educational Leadership, 22-32.

Schwarz, C., & White, B. (2005). Meta-modeling

knowledge: Developing students’ understanding of

scientific modeling. Cognition and Instruction, 23(2),

165-205.

Sen, S. K., & Shaykhian, G. A. (2009). MatLab tutorial

for scientific and engineering computations:

International Federation of Nonlinear Analysts

(IFNA); 2008 World Congress of Nonlinear Analysts

(WCNA). Nonlinear Analysis: Theory, Methods &

Applications, 71(12), e1005-e1020.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &

Clark, D. (2013). Integrating computational thinking

with K-12 science education using agent-based

computation: A theoretical framework. Education and

Information Technologies, 18(2), 351-380.

Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G.

(2012). Modelling mathematical reasoning in physics

education. Science & Education, 21(4), 485-506.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona,

K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science

classrooms. Journal of Science Education and

Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35

Wing, J. M. (2008). Computational thinking and thinking

about computing. Philosophical Transactions of the

Royal Society of London A: Mathematical, physical,

and engineering sciences, 366(1881), 3717-3725.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

28

Domain Specific Modeling Language Design to support Synergistic Learning of

STEM and Computational Thinking

Asif HASAN1*, Gautam BISWAS1

1 Institute for Software Integrated Systems, Department of Electrical Engineering and Computer Science, Vanderbilt

University, 1025 16th Avenue South, Nashville, TN 37212, USA

d.asif.hasan@gmail.com, gautam.biswas@vanderbilt.ed

ABSTRACT
Computational Thinking involves core computer science

concepts and practices that apply to multiple disciplines

including science and mathematics. Currently, there is a

strong drive toward integrating computer science into the

K-12 STEM curricula. Several general-purpose

programming environments have been developed to

support the learning of CT and computing concepts and

practices. Domain-specific modeling languages (DSMLs),

on the other hand are designed for specific applications in

engineering domains. As compared to general-purpose

programming languages, DSMLs provide ease of use and

more power to express domain-specific concepts, thus

increasing productivity in specific application domains. In

this paper, we present design guidelines and a design

process for constructing DSMLs to facilitate STEM

learning by computational modeling. To illustrate the

process, we provide a case study of designing a DSML

specifically for the kinematics domain.

KEYWORDS
Computational thinking, Domain specific modeling

languages, Visual programming environments, STEM

learning, Design guidelines

1. INTRODUCTION
Computational thinking involves crosscutting concepts

and practices that apply to multiple disciplines including

science and mathematics (National Research Council

2008). Wing (2006) introduced the term “Computational

Thinking (CT)” stressing “It represents a universally

applicable attitude and skill set everyone, not just

computer scientists, would be eager to learn and use.” But

the idea of synergy between programming and science

learning goes back decades, e.g., Papert’s (1980, 1991)

pioneering work with Logo programming that showed

procedural thinking development in children, and Perkins

and Simmons (1988) research that showed the existence

of similar patterns of novice misconceptions in math,

science and programming. Other researchers have

explored similar ideas to leverage the synergistic benefits

of computational modeling and STEM learning

(Sengupta, et al., 2013).

Several programming environments have been developed

to support the learning of CT and computing concepts and

practices (e.g. Alice (Pausch, et al., 1995), AgentSheets

(Repenning, 2000), Scratch (Resnick, et al. 2009)) and for

synergistic learning of CT and science (e.g. CTSiM (Basu,

et al. 2013), CTSTEM (Jona, et al., 2014)), DeltaTick

(Wilkerson-Jerde, Wagh & Wilensky, 2015). These

environments employ visual programming languages

(VPLs) to facilitate program and model building, and

graphical simulation output tightly integrated within the

environment to demonstrate the results of executing the

program and model structures. VPLs limit the chances of

making syntactic errors allowing learners to focus more on

the logic and execution flow of their programs, and to

visualize the results of program execution.

When building complex scientific and mathematical

models using general purpose VPLs, students may require

significant support (Wilkerson-Jerde, Wagh & Wilensky,

2015). System designers may provide students with pre-

implemented modeling constructs, to scaffold modeling

tasks that are beyond the scope of what they need to learn.

Providing students with a framework of such constructs

may help them focus on tasks that are matched to concepts

and processes they are expected to learn while the

complex, and sometimes, unnecessary details of the

implementation are kept hidden.

Such a framework can be systematically developed using

domain specific modeling languages (DSMLs). DSMLs

are frequently used in software design to systematize and

facilitate the development of systems for specific

application domains. The DSML concept is explained in

Van Deursen, et al. (2000): “A domain-specific language

(DSL) is a programming language or executable

specification language that offers, through appropriate

notations and abstractions, expressive power focused on,

and usually restricted to, a particular problem domain.”

Characteristics of this approach are that they define

constructs based on domain terminology for building

models and applications, and specific constraints imposed

by the domain can be incorporated into these constructs to

avoid violations of domain principles.

In this paper, we describe a design process and design

guidelines for constructing DSMLs in support of learning

environments in science disciplines. To illustrate the

process, we provide a case study of designing a DSML for

the learning of Physics by building computational models,

specifically in the domain of mechanics revolving around

Newton’s laws of motion.

2. BACKGROUND
Visual environments for programming typically provide a

set of block constructs to build computational artifacts.

For example, Scratch (Resnick, et al. 2009), a widely used

visual programming environment adopts a Lego-like

framework for joining blocks to construct programs

29

(artifacts). Under the hood, these blocks are converted into

textual code, which is executed, much like a traditional

interpreted programming language. Snap! (Harvey &

Mönig, 2010) expands Scratch's features. Though students

have used these environments to build models that support

STEM learning, their primary focus has been on learning

programming and computing concepts, and by extension,

the learning of CT concepts and practices (Maloney, et al.

2008, Brennan, et al. 2012, Werner, et al. 2012, Koh, et al.

2010).

AgentSheets (Repenning, 2000) is mainly targeted to learn

CT by making games and science simulations. Alice

(Alice (Pausch, et al., 1995), is another rich programming

environment where students can build 3D virtual worlds.

RoboBuilder (Weintrop, et al. 2012), FormulaT racing

(Holbert et.al. 2010) and IPRO (Martin et al., 2013) are

examples of game-based visual programming

environments where students program agents or game-

parts using DSMLs.

In contrast, systems like CTSiM (Basu, et al., 2013),

DeltaTick (Wilkerson-Jerde, Wagh & Wilensky, 2015)

and CTSTEM (Jona, et al., 2014), are visual

computational modeling environments that are designed

specifically to support synergistic learning of STEM and

CT concepts. They differ from systems like Scratch and

Snap! in that their building blocks are derived from

DSMLs specifically designed for the target science

domain that is the focus of student learning.

3. MOTIVATION
Although general-purpose programming environments

provide the power and functionality to build models in

STEM domains, basing the model building language on

DSML constructs may help students to:

 Express solutions in the terminologies and at

the level of abstraction of the target domain

 Build programs that are concise and self-

documenting

 Enhance productivity

 Make it easier to reuse knowledge and

procedures

 Make it easier to verify and validate models

and results generated from the models

 Relate the constructed model with the actual

phenomenon

4. DSML DESIGN GUIDELINES
In our work, we have adopted the following design

guidelines/principles for DSML design for science

learning environments. These guidelines are inspired by

Van Deursen, et al., 2000 and Karsai, et al., 2014 among

others.

Simplicity: The language constructs should be intuitive.

Well-established notations from the domain should be

used rather than inventing new ones. The constructs

should be descriptive and distinguishable, yet compact.

Conciseness: Only relevant concepts in the domain

should be targeted. Duplicate constructs that serve the

same purpose should be avoided.

Separation of Concerns: If the target concepts can be

separated into multiple non-overlapping sets, separate

DSMLs may be designed for each which will enable each

to grow independently and be more adaptable for future

changes.

Consistency: All the constructs of the DSML should

contribute to the purpose of the language.

5. THE DSML DESIGN PROCESS
In this paper, we target only task independent DSML

constructs that can be used across tasks and possibly

across different units in a specific domain (e.g.,

mechanics, electricity, fish tank ecology). In some

situations, it may be desirable to scaffold students with

task specific high level modeling constructs, but our focus

in this paper is on the more generic modeling constructs

(e.g., variables, laws) that support model building in a

domain. Furthermore, assessment characteristics may also

impact the design decisions of DSML, but in this paper,

we consider the task independent DSML to be agnostic of

the assessments we may develop in the learning

environment. This does not preclude assessments being

designed around specific DSML constructs. DSML design

to support a science learning environment is likely to be

iterative since it involves close interactions between the

instructional design expert, the language developer, and

domain experts. To simplify the language definition task,

one may go through three step process for designing a

particular DSML.

5.1. Define the learning and instructional goals in the

domain

The target of this phase is to identify the learning and

instructional goals, jointly by the domain, instructional,

and system designers (one person may play multiple roles

in this task). This will generally involve specifying

domain concepts at the right levels of abstraction, and

practices that the instructional tasks will be based on. The

learning goals will also include CT concepts and practices,

which will further influence how domain concepts are

represented. A formal process, such as Evidence Centered

Design (ECD) may provide a systematic approach for

developing goals, tasks, practices, and constructs (Harris,

et al. 2016).

5.2. Identify the scope of the computational modeling

tasks

The learning goals and instructional tasks identified need

to be translated into the scope of the modeling and

problem solving tasks that the students will work on in the

domain. In doing so, the types of tasks students will

perform are to be identified. Therefore, it is essential to

identify at the conceptual level, how students will perform

each type of task, what computational constructs that they

may use, what domain constructs they may be provided

with and what kinds of relationships they would need to

define among these constructs. The scope of the tasks will

also identify features that need to be included in

30

programming and modeling environments. Sometimes the

target environment may be pre-decided, and this impacts

how students will perform the required tasks.

5.3. Link the designed DSML structures to their

implementation in a specific environment.

Finally, design decisions are to be made on how the

conceptual form of the domain constructs defined in the

previous step are to be mapped to the implementational

details. These decisions will be specific to the target

modelling environment, but the designer must consider

how each construct will be implemented in the modeling

environment. For example, model building may employ a

simple drag and drop interface, but to simulate the model,

it will have to be converted into a form that runs in a

separate programming environment (e.g., Netlogo,

Simulink). Another example is to have the modeling

constructs integrated into the target programming

environment.

At this point, the design must consider the student’s

perspective (e.g. complexity of modeling, ease of use,

system performance, etc.) and then refine accordingly.

Often the need for new constraints or the need to modify

the current constructs to meet specified learning goals may

become apparent. These findings may result in

backtracking to the first step of instructional design.

Some of the domain constructs may be mapped to library

modules instead of language constructs. Providing

libraries is an elegant approach to scaffolding, and making

the learning process manageable.

6. Case Study: Developing a DSML in

Kinematics
We will use Snap! (Harvey & Mönig, 2010) as our target

modeling environment to develop and illustrate our case

study of developing a DSML in kinematics. Snap! is an

agent based visual programming environment, where each

agent is represented by a Sprite. Snap supports creating

and destroying sprites programmatically as well as

manually. Each sprite can have its own set of variables

(properties), functions and a script defining its behavior.

There are options to create global variables and functions

which may be shared between the sprites. Using Snap! as

our implementation environment, we now describe the

design of a DSML for 1- and 2-dimensional study of

motion in Kinematics.

6.1. Define the learning goals and instructional tasks

in the domain

As the first step, we identify the scope of the domain and

then define the concepts and practices that matches the

scope. Lastly, we will identify the instructional tasks.

6.1.1. Define the scope of the target domain

For this case study, we choose two-dimensional motion as

our domain, and limits its scope to the kinematics concepts

of position, velocity, acceleration, and time. We exclude

circular motion from the scope of learning domain. The

concept of gravity is simplified and represented as

acceleration in a specific, i.e., negative y direction. We

further assume that all motion is relative to a fixed frame

of reference. In the modeling environment, this is

represented by an x-axis parallel to the bottom edge of the

computer display with positive values corresponding to

moves to the right. Similarly, the y-axis is orthogonal to

the x-axis with a positive y implying moves upward on the

y-axis.

6.1.2. Define the concepts & practices within the scope

The target concepts we want to cover in this case study

are: (1) position, which is specified as a vector with two

components x and y specified relative to the origin; (2)

displacement, which is the difference between current

position and a pre-specified origin; (3) distance, which is

a scalar quantity implying how far away an object is from

the origin; (4) velocity as the vector rate of change of

position; (5) speed, which is the magnitude of the rate of

change of position (velocity has two components: a speed

(magnitude) and a direction which is defined with respect

to the x and y axes; and (5) acceleration, which is the

vector change in velocity.

There are many practices that may be targeted when

designing a complete curriculum, but here we target the

following: develop a model representing the acceleration,

speed, and position of a point object that is derived from

the laws of kinematics, and use the model to solve

problems or generate data to support explanations, predict

phenomena, analyze systems, and/or solve problems.

As part of the modeling tasks, we want students to use

various computational constructs, such as variables,

functions, control flow, conditional statements, and

Boolean operators to model kinematics phenomena. We

also want them to learn CT practices categorized as data

practices, modeling & simulation practices, computational

problem solving practices and systems thinking practices

in Weintrop, et al., 2016.

6.1.3. Define the instructional tasks

For this case study, we assume that the students will work

with a single physical object which starts at a specified

position. We want them to go through the following tasks:

 If the object has a constant velocity, incrementally

record the distance traveled over a period of time.

 If the object has a constant velocity, calculate the

time required to travel a certain distance or to go to

a certain position.

 If the object has a constant acceleration, calculate

the velocity and position of the object over a

specified time interval.

 Calculate the acceleration needed to reach a

velocity in a specified period of time.

 Calculate the acceleration needed to travel given

distance in a specified period of time.

 Calculate the acceleration needed to bring an

object to zero velocity in a certain time or at a

certain distance or position.

31

To accomplish these tasks, the students may use plotting

functions provided by the system. This helps them learn

and explain the targeted domain and CT practices.

6.2. Identify the scope of the computational modeling

tasks

As part of this phase, we discuss how the various

instructional tasks are to be mapped to computational

modeling tasks. For this case study, the basic flow for all

the modeling tasks would be as following:

 Students will be provided with a scenario with one

or more objects. The objects may or may not be

assigned an initial position and initial speed.

 Students have to specify what variables to

associate with each of the objects, these variables

are linked to physical quantities defined in the

DSML.

 Students will build and execute computational

models that described the motion of those objects.

In other words, they will need to model the

relationships between different physical properties

such as how velocity impacts the position,

acceleration impacts the velocity using Newton’s

laws as interpreted in kinematics. Their models

have to be consistent in the way they specify

scalars and vectors and their relations.

 Students will verify the correctness of their models

by comparing the behaviors generated by their

model against those produced by an expert

simulation model. They will not have access to the

expert model. The comparison of behaviors will be

done by studying animations of the scenario

modeled and plots of variable values across time.

In some cases, students may not be provided with

the results of an expert simulation. They may have

to study the plots to determine the correctness of

their models.

 Students may change parameters in their models

and simulate them again to solve additional

problems and answer questions. They can use the

plots to justify their answers.

To accomplish such modeling tasks, students will also

have access to general-purpose computational concepts

such as constructs for updating variables, using

conditional statements, Boolean operators, specifying

functions, and imposing a control flow.

6.3. Link the designed DSML structures to their

implementation in a specific environment

We will provide two versions of the DSML to illustrate

the ease with which DSMLs may be scaled to include

other tasks and constructs. For this case study, the DSMLs

will be used to program the behaviors of Snap! Sprites.

The first version of the possible DSML appears in Tables

1-3. Table 1 lists the variables, Table 2 the behaviors, and

Table 3 lists the functional constructs.

The simulation of the physical objects (Sprites) in Snap!,

can be thought of as a continuous representation process

in which at every simulation step (multiple times in a

second) it inquires the state of the model and graphically

represents the state. To scaffold the simulation model

building task for the students, the DSML provides a

template behavior, where the students model how the state

of the physical object should be updated for one

simulation time step, and this repeats for a period of time

that may be specified in the problem definition or by a

variable set by the students. That template behavior is

listed in Table 2 as “UpdateModel”.

Table 1 lists all the variables. Basically, the variables

students manipulate are a subset of variables defined in the

DSML. Most variables represent physical quantities

associated with objects, a restriction that the DSML

imposes on the modeling environment to avoid physically

meaningless models. The names of the variables are self-

explanatory other than “DeltaTime”. The variable

“DeltaTime” records the period of elapsed time from the

last simulation step to the current, which may be used to

calculate for example, how much the physical object

moves from a current position to the next position based

on the current velocity and acceleration.

Table 3 lists all the functional constructs. The term

setPosition(X, Y) sets the variable PositionX and

PositionY to the values passed in as parameter X and

parameter Y respectively. The construct

setDisplacement(X, Y), setDistance(distance),

setVelocity(Vx, Vy) and setAcceleration(aX, aY) acts

accordingly. ChangePosition, ChangeVelocity and

ChangeAcceleration updates their corresponding physical

properties with respect to their current values and the

values provided.

The rest of the functions support plotting capabilities. The

term plot(name, x, y) can be used generally to plot a point

on the graph. Assuming the target environment supports

plotting on multiple graphs, each of the plotting functions

takes in as parameter, the name of the graph to plot on.

Rest of the plotting functions take in “Axis” as a

parameter. The value of the parameter “Axis” can be “X”

or “Y”. Each of these functional term plots the value of the

corresponding physical property on the axis provided and

on the other axis automatically tracks the time elapsed

from the start of the simulation. If no axis is provided it

will use “Y” as the default value of the parameter “axis”.

Table 1. DSML version 1 – Variables.

DeltaTime

PositionX

PositionY

DisplacementX

DisplacementY

Distance

VelocityX

VelocityY

AccelerationX

AccelerationY

Table 2. DSML version 1 – Behaviors.

UpdateModel()

32

Table 3. DSML version 1 – Functions.

setPosition(X, Y)

setDisplacement(X, Y)

setDistance(distance)

setVelocity(Vx, Vy)

setAcceleration(aX, aY)

changePosition(dX, dY)

changeVelocity(dX, dY)

changeAcceleration(dX,

dY)

plot(name, x, y)

plotPositionX(name, axis)

plotPositionY(name, axis)

plotVelocityX(name, axis)

plotVelocityY(name, axis)

plotAccelerationX(name,

axis)

plotAccelerationY(name,

axis)

plotDistance(name, axis)

setLabel(name, xLabel,

yLabel)

To simplify design, the plotting and kinematics constructs

are kept separate as shown in Tables 4 and 5. The variables

and behaviors are omitted as they are same in both

versions. The advantage of separating the DSMLs is that

they can evolve independently, when more features or

behaviors are added to one or the other. Another advantage

is that a very high level of abstraction can be used for one,

without affecting the other. For example, the plotting

DSML could be abstracted just saying Plot(varX,varY),

where the points X and Y are plotted at every simulation

step. This provides students a visualization of the dynamic

behavior without having to learn plotting functions. In

other cases, details of the plotting functions, such as

choosing axes, setting scales, and then plotting variables

may be adopted.

Table 4. DSML version 2 – Kinematics.

setPosition(X, Y)

setDisplacement(X, Y)

setDistance(d)

setVelocity(Vx, Vy)

setAcceleration(aX, aY)

changePosition(dX, dY)

changeVelocity(dX, dY)

changeAcceleration(dX,

dY)

Table 5. DSML version 2 – Plotting.

plot(name, xValue, yValue)

setLabel(name, xLabel, yLabel)

7. DISCUSSION
Visual programming languages emphasize the control

flow of a program and reduce the syntactic burdens of

programming in a conventional language, making

computational modeling and problem solving more

accessible to the students. In addition, DSMLs make the

primary focus on representing specific domain modeling

constructs, and how these constructs may be put together

to simulate behaviors of the system. Whereas

computational constructs are not the primary focus, they

create a nice synergy between domain focus and

computation focus in creating environments that students

may employ to study domain principles, use them to build

simulation models, and then study and justify the

behaviors described by these models. Therefore, DSMLs

provide a nice synergy in supporting both domain

modeling and computational practices.

In additions, DSMLs can be specified at different levels of

detail. The decision of ‘what abstraction level’ the DSML

shall be designed at, is much depended upon the design of

the curriculum. However, DSMLs also promote domain-

general computations. For example, a DSML designed for

kinematics can be merged with a DSML for electricity,

and used to model circuits, where charges move based on

kinematics principles. A carefully designed DSML should

be scalable and thus should support iterative evolution of

the language. For example, here we did not provide any

language construct for gravity. But, that can be added

without any changes to any current construct and can be

used with the existing functional constructs (e.g.

changeAcceleration).

8. CONCLUSION
In this paper, our focus was on the design of DSMLs for

learning Physics by computational modeling. In our

related work, CTSiM (Basu, et al., 2017), we have adopted

domain specific modeling constructs for students to model

various science phenomenon e.g. mechanics with roller

coaster, the fish tank ecosystem, for middle school

students. In the future, we would like to run formal

experiments to compare student’s performance of

programming and model building with and without a

DSML-based environment. Furthermore, we are currently

exploring the domain of high school Physics to identify

suitable set of DSMLs for high school students to develop

systems that support synergistic learning of CT and

STEM.

9. REFERENCES
Basu, S., Dickes, A., Kinnebrew, J.S., Sengupta, P., &

Biswas, G. (2013). CTSiM: A Computational Thinking

En-vironment for Learning Science through Simulation

and Modeling. In Proceedings of the 5th International

Confer-ence on Computer Supported Education (pp. 369-

378). Aachen, Germany.

Basu, S., Biswas, G., Kinnebrew, J.S. (2017). Learner

modeling for adaptive scaffolding in a Computational

Thinking-based science learning environment. User

Modeling and User-Adapted Interaction, 27(1) (pp. 5-53).

Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada (pp. 1-25).

Harris, C. J., Krajcik, J. S., Pellegrino, J. W., &

McElhaney, K. W. (2016). Constructing Assessment

Tasks that Blend Disciplinary Core Ideas, Crosscutting

Concepts, and Science Practices for Classroom Formative

Applications.

Harvey, B., & Mönig, J. (2010). Bringing “no ceiling” to

scratch: Can one language serve kids and computer scien-

tists. Proc. Constructionism.

Holbert, N. R., & Wilensky, U. (2010, June). FormulaT

racing: Combining gaming culture and intuitive sense of

mechanism for video game design. In Proceedings of the

9th International Conference of the Learning Sciences-

Volume 2 (pp. 268-269). International Society of the

Learning Sciences.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton,

K., Weintrop, D., & Beheshti, E. (2014). Embedding

33

computational thinking in science, technology,

engineering, and math (CT-STEM). In future directions in

computer science education summit meeting, Orlando,

FL.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B.,

Schindler, M., & Völkel, S. (2014). Design guidelines for

domain specific languages. arXiv preprint

arXiv:1409.2378.

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning,

A. (2010, September). Towards the automatic recognition

of computational thinking for adaptive visual language

learning. In Visual Languages and Human-Centric

Computing (VL/HCC), 2010 IEEE Symposium on (pp. 59-

66). IEEE.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., &

Rusk, N. (2008). Programming by choice: urban youth

learning programming with scratch (Vol. 40, No. 1, pp.

367-371). ACM.

Martin, T., Berland, M., BenTon, T., & SMiTh, C. P.

(2013). Learning programming with IPRO: The effects of

a mobile, social programming environment. Journal of

Interactive Learning Research, 24(3), 301-328.

National Research Council. (2008). Taking science to

school: Learning and teaching science in grades K–8.

Washington, DC: National Academy Press

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc..

Papert, S. (1991). Situating constructionism. In I. Harel &

S. Papert (Eds.), Constructionism. (pp. 1–11). Nor-wood,

NJ: Ablex.

Pausch, R., Burnette, T., Capeheart, A.C., Conway, M.,

Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R.,

Koga, S., & White, J. (1995) Alice: Rapid prototyping

system for virtual reality. IEEE Computer Graphics and

Applications, 15(3), 8-11.

Perkins, D. N., & Simmons, R. (1988). Patterns of

misunderstanding: An integrative model for science, math,

and programming. Review of Educational Research,

58(3), 303-326.

Repenning, A. (2000). AgentSheets® : An interactive

simulation environment with end-user programmable

agents. Interaction.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,

N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,

E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch:

Programming for All. Communications of the ACM,

November 2009, 52(11), 60-67.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &

Clark, D. (2013). Integrating computational thinking with

K-12 science education using agent-based computation: A

theoretical framework. Education and Information

Technologies, 18(2), 351-380.

Moenig, J., & Harvey, B. (2012). BYOB Build your own

blocks (a/k/a SNAP!), Retrieved Feb 14, 2017

http://snap.berkeley.edu.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-

specific languages: An annotated bibliography. Sigplan

Notices, 35(6), 26-36.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A

program-to-play constructionist video game. In C.

Kynigos, J. Clayson, & N. Yiannoutsou (Eds.),

Proceedings of the Constructionism 2012 Conference,

Athens, Greece.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science

classrooms. Journal of Science Education and

Technology, 25(1), 127-147.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C.

(2012, February). The fairy performance assessment:

measuring computational thinking in middle school.

In Proceedings of the 43rd ACM technical symposium on

Computer Science Education (pp. 215-220). ACM.

Wilkerson-Jerde, M., Wagh, A., & Wilensky, U. (2015).

Balancing curricular and pedagogical needs in

computational construction kits: Lessons from the

deltatick project. Science Education,99(3), 465-499

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

22222222222

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

34

The Role Gender Differences in Computational Thinking Confidence Levels

Plays in STEM Applications

Nicole M HUTCHINS1, Ningyu ZHANG2, Gautam BISWAS3

1, 2, 3 Vanderbilt University, Nashville, Tennessee

nicole.m.hutchins@vanderbilt.edu, ningyu.zhang@vanderbilt.edu, gautam.biswas@vanderbilt.edu

ABSTRACT
Significant research has been done on gender disparities in

STEM and computer science with the goal of broadening

participation in these male-dominated fields. At the same

time, the role of computational thinking (CT) as a tool to

improve computer science skills along with STEM

learning is becoming increasingly significant. This work

seeks to add to this research through an analysis of the role

confidence in computational thinking plays in developing

STEM engagement and abilities. In the study reported in

this paper, 40 high school students (21 girls and 19 boys)

completed a Scratch project on modeling inelastic

collisions in their Physics class. Pre- and post- surveys

were conducted to analyze confidence levels in CT.

Results showed a statistically significant difference in

confidence levels in four CT dimensions: abstraction, flow

of control, decomposition, and conditional logic. The

results show that boys were more confident than girls in

applying each of these dimensions. However, performance

on the modeling assignment showed no statistical

difference. We discuss the results and its applications to

future work.

KEYWORDS
computational thinking, gender, STEM, motivation,

curriculum

1. INTRODUCTION
Rapid advances in technology have created an

environment in which computation is changing science

and math research and practice. This has also had

implications in pedagogy, where curricula are being

reshaped to ensure students experience, understand, and

learn to use computational tools in multiple disciplines.

Combining computational modeling with STEM content

has also been shown to synergistically deepen learning of

the STEM topic and computing concepts (Sengupta et al.,

2013, Wilensky, Brady & Horn, 2014). Furthermore,

Wing’s influential 2006 article, “Computational

Thinking,” has resulted in a growing number of studies

that have sought to describe and analyze the role

computational thinking (CT) encompasses in “solving

problems, designing systems, and understanding human

behavior by drawing on concepts fundamental to

computer science”(p.33). CT impacts a number of

educational disciplines – from science (Weintrop et al.,

2016) to literature (Burke, Q., & Kafai, Y. B., 2012).

At the same time, there is growing awareness of the gender

disparities in STEM. This has led to a number of studies

on building female interest in predominantly male

disciplines, such as computer science (Wang et al., 2015).

In environments where computation thinking (or CT) has

been used as a tool for learning domains other than

computer science, it is important to take into account

disparities in attitudes on computer science and the

specific STEM discipline as attitudes because differences

in attitude can impact learning. While Van Braak (2004)

concluded that girls felt less confident with computers

than boys, to our knowledge, no work has looked into

confidence levels in computational thinking and the

influence the levels have on performance in a science or

math activity.

The purpose of this study is to analyze the effect

confidence levels in CT dimensions have on cross-

disciplinary lessons that integrate computer science and

physics. This study analyzed individual CT confidence

ratings prior to the completion of an assignment utilizing

Scratch to build a simulation model of a physics scenario.

An analysis of students’ abilities in applying CT concepts

to build their models showed that girls’ ability to finish

their assignment correlated poorly with their overall

confidence in applying CT concepts and practices. We

discuss the results and their interpretation in subsequent

sections.

2. THEORETICAL PERSPECTIVE
Studies have been conducted that show girls have low

confidence in doing well in science topics (e.g., Kay, K. &

Shipman, C., 2017). As previously mentioned, they also

show low confidence in using computers (e.g., Van Braak,

J.P., 2014). We briefly review CT concepts and practices,

and then discuss prior work on girls’ confidence levels in

Computer Science subjects.

2.1. Computational Thinking

Our definition of CT is framed within two theoretical

constructs: 1.) The Royal Society’s definition of CT –

“Computational thinking is the process of recognizing

aspects of computation in the world that surrounds us and

applying tools and techniques from Computer Science to

understand and reason about both natural and artificial

systems and processes” (Wing, 2006; p.29). and 2.)

Grover and Pea (2013) list elements that comprise CT

including abstractions, systematic processing of

information, symbol systems and representations, flow of

control, decomposition, iterative, recursive, and parallel

thinking, conditional logic, efficiency and performance

constraints, and debugging (pgs. 39-40).

35

2.2. Girls’ Confidence Levels in Computer Science

Significant research has been done to study girls’ interests

in computer science; most notably, the effect of computer

science stereotypes on interest (Master, A., Cheryan, S., &

Meltzoff, A., 2015). The authors described three

predominant stereotypes that have been studied: (1) “male,

technologically oriented, and socially awkward,” (2) “a

perception that it requires ‘brilliance,’” and (3) computer

science “is isolating and does not involve communal

goals, such as helping or working with others” (2015).

This study takes into account the stereotype that computer

science requires a specific level of intelligence, and uses

pre-post test questions as a means for assessing confidence

levels.

In terms of building girls’ interest in computer science, a

study by Vekiri concluded that girls benefited from

instructional practices that highlighted the relevance of

information science to other disciplines (2013). This result

seemingly supports further integration of CT related

assignments into other STEM disciplines as it may

positively influence girls’ interest in the field of computer

science.

3. Method

3.1. The Classroom

This study was implemented in a high school physics

classroom in Nashville, Tennessee. The classroom,

consisting of 40 students (21 girls and 19 boys), previously

completed three physics assignments using Scratch:

forces, one-dimensional motion, and projectile motion.

Prior to the first assignment, the teacher introduced the

students to the Scratch environment.

3.2. Pre-Survey

For the purpose of analyzing confidence levels in CT, we

focused on four core dimensions of the CT framework:

abstraction, flow of control, decomposition, and

conditional logic. Students were given descriptions of

each dimension, as shown in Table 1.

pre-test were exported to a Google Sheet for analysis.

Table 1. Computational Thinking Dimensions

Dimension Description

Abstraction Hiding all but relevant data about an

object in order to reduce complexity and

increase efficiency

Flow of

Control

When designing an algorithm to solve a

problem, computer scientists have the

option of using control structures such as

sequential structures, selection, or

repetition

Decomposition Breaking down a complex problem or

program into parts that are easier to

create, understand, design, and maintain

Conditional

Logic

If an action or condition is true or false, it

will result in a specific action

The pre-survey consisted of a Google Form in which all

students were required to rate their confidence level in

applying each CT dimension to solve real-world problems.

Confidence levels were determined using a five-point

Likert scale. Students had access to the definition of the

four CT terms while working on the survey. Answers to

the

3.3. The Assignment

The learning objective of the collision project was to

construct an inelastic collision simulation model using

Scratch. Students set initial locations, direction and

velocities for their chosen sprites (representing rigid

objects) and then wrote code to model and visualize the

collision between two sprites. Students chose sprites, such

as spaceships, cars, or other relevant objects to visualize

their collisions. Students were also asked to depict the

mass of each sprite in the visual representation.

As previously mentioned, this physics class had

previously completed three Scratch assignments. In each

assignment, students were initially introduced to the

physics topic in class through lectures, readings, or non-

programming assignments. Then the students were given

the relevant Scratch assignment. A primary component of

each assignment involved each student’s ability to

translate concepts and laws in physics often represented

by equations that they had learned in class into a

computational model.

Final grades were determined by three factors: the

student’s ability to (1) include all variables specified in the

assignment instructions, (2) build the simulation model

using the block programming language (multiple flow of

control structures were allowed and utilized) from the

equations learned in class, and (3) provide an accurate

visualization of the collision process. In other words, their

task was to help others gain an intuitive understanding of

inelastic collision processes from the visualizations they

created.

The CT concepts and practices analyzed in this study were

chosen based on their relevance to the completion of the

assignment: abstraction (variable use), flow of control

(process chosen for demonstration), decomposition

(understanding relevance of each variable or in-class

discussion topic on ability to accurately model), and

conditional logic (what happens when the two sprites

collide).

3.4. Post-Survey

Following the completion of the assignment, students

were

asked to complete a CT post survey using Google Forms.

This form included all CT definitions previously given and

students were asked to provide an example of how they

utilized each CT dimension in their collision assignment

(if they thought it was applicable). Students were not

graded on their ability to define the CT concepts and

practices they used in their program on the post-survey.

Rather, the examples on each CT dimension provided

were used to relate their confidence levels to their

understanding of the respective CT dimension.

36

4. Results

4.1. CT Confidence Levels

As shown in Figures 1 and 2, there were considerable

differences between the initial confidence levels of the

boys and girls on each of the CT dimensions. Table 2

summarizes the quantitative results, and clearly indicates

that the confidence levels for the boys were significantly

higher (𝑝 < 0.05) than the girls on three CT dimensions

(Flow of Control, Decomposition, and use of Conditional

Logic). For the fourth dimension, 𝑝 < 0.1, indicating a

trend.

Figure 1. The Girls: Initial Confidence Levels in CT

Figure 2. The Boys: Initial Confidence Levels in CT

Table 2. t-test Results on Confidence Levels.

CT Dimension Girls Boys t-test Level of

Significance Mean

(SD)

Mean

(SD)

Abstraction 1.92

(1.12)

2.62

(1.45)

0.0921

Flow of

Control

1.538

(0.877)

2.5

(1.508)

0.0306

Decomposition 1.61

5(1.121)

2.538

(1.450)

0.0409

Conditional

Logic

1.769

(1.166)

3

(1.581)

0.0166

4.2. Assignment Grading

Students were required to use the Scratch snipping tool to

paste an image of their code to a Google Doc that was

submitted to their teacher. In addition, students were

required to submit a link to their projects in order for the

teacher to evaluate the visual performance of the model.

Assignments were graded by the physics teacher based on

the three project factors described in Section 3.1. Table 3

shows the average grade in the class for girls and boys as

well as the average grade on the collision assignment.

Table 3. Class and Assignment Averages.

 Class Assignment

Girls 89.9 92.4

Boys 88.2 88.4

Upon further analysis, the difference between

performances of girls and boys in terms of the class

average and the individual assignment is insignificant.

While confidence levels indicate that girls experience

lower confidence in CT applications, there is no difference

in abilities in both the model building task and in the class

average.

4.3. Post-Survey: Qualitative Review

Students were not required to complete the post-survey

due to time constraints; however, 18 students did complete

the survey. Table 4 showcases responses from two girl

students and two boy students along with their respective

confidence level in the CT dimension.

Table 4. Post-Survey Responses.

 CT* CL* Post-

G1 A 4 I only made new variables for

things that I would use, rather than

creating this based off of what I

originally thought I might need.

 FC 4 When making the scratch

(program) I used the sequential

structure for putting together the

commands.

 D 5 I broke it down by writing out the

momentum formula in terms which

I was then able to enter in.

 CL 5 This happened because of when

one of the sprites hit the other, they

would then move off the screen

together. This was the end game.

G2 A 2 I originally started with a big

equation to solve for final velocity,

but that didn't work. I then decided

to use only specific variables to

solve for Vf, using a different

approach and fewer total variables.

 FC 1 Repetition--I didn't think one of my

sprite's masses would work, but I

just put something in and it

happened to work, so I continued

my project that way while it was

working. I decided that as long as

the mass was working, I would

keep going.

 D 1 Instead of using one big equation as

I'd planned, I made several small

equations to solve for one thing.

 CL 2 I decided that if the mass for one

sprite worked, I could make the

37

other work based on the mass of

the one before.

B1 A 4 Writing out all necessary variables

before figuring out what I needed

to do with them.

 FC 3

 D 3 Setting up loops.

 CL 4 Making if/then situations.

B2 A 1 No unnecessary variables

 FC 1 The placement of the change in the

variable by which the sprite moved

and the command for movement

was purposeful, the command lines

for the two sprites were identical

barring individual variables, the use

of a forever loop and an if/else

clause

 D 1 Not much decomposition used as

the design was very simplistic

 CL 2 If/else loop with the Boolean of

contact used

*CT (Computational Thinking Dimension), CL

(Confidence Level from Pre-Survey)

In the table above, it is important to note that both the girl

and boy that submitted lower initial confidence levels in

the CT dimensions were able to produce quality examples

for each CT dimension used in their code for the post-test

survey. Also of note is the length of responses by the girls

versus the boys. We should also note that on the average,

girls tended to submit longer examples of each CT

dimension, with girls average 14.82 words per response

and boys average 9.65 words per response.

5. DISCUSSION
The role of confidence has been shown to play a

significant role in likelihood to pursue STEM careers (e.g.,

Moakler, M. & Kim, M., 2014) and the preliminary

findings of this study correlate to the lower computer

confidence levels experienced by female computer science

majors compared to their male counterparts (e.g., Beyer,

S. et al, 2003). These two studies were conducted with first

year college students, but based on the findings of this

study – confidence issues need to be addressed at an earlier

age.

As previously noted, the goal of this study was to

understand the effect of confidence levels on cross-

discipline abilities. With this work, it can be seen that

initial confidence levels are not a good indicator of content

understanding (Physics and CT) and ability to apply the

content to solving problems; however, the significant

difference between initial confidence levels in CT needs

to be addressed – particularly based on previous findings

relating confidence levels to career choices. For instance,

though no post-interviews were conducted to determine

girls’ confidence, it may be helpful to point out to them

how well they perform with respect to the rest of the class,

and they should be encouraged to become more engaged

in STEM disciplines.

A unique component of this study is that confidence levels

regarding computational thinking were assessed prior to

undertaking the physics activity. Previous studies have

ranged from research on opinions following an

educational activity (Atmatzidou, S., & Demetriadis, S.,

2015) to an understanding of computer science

perceptions in terms of motivation to take computer

science courses (Vekiri, 2013). This study highlights the

initial lack of confidence experienced by girls, and

suggests further studies that delve into improving initial

assignment scaffolding that can better address the initial

confidence disparities.

Lastly, although there is no significant variation in

performance in this classroom (the majority are high

performers), the takeaway message may be that a weaker

student, irrespective of gender, may need more scaffolding

to aid them in their model building tasks.

5.1. Project Limitations and Future Implications

Concept assessment results indicate that the girls may

benefit from the use of programming tools to simulate a

physics concept. While this study conducted a confidence

level survey prior to the completion of the assignment, an

analysis of post-assignment confidence levels (via a Likert

scale or similar) may provide additional insight into the

effect the completion of a programming assignment has on

not only confidence, but also interest in CT and computer

science in general. We conjecture that building scenario

models provide a better understanding of how STEM

concepts may relate to real-world scenarios, and that may

provide additional motivation for both girls and boys to

pursue STEM disciplines. Indirectly, this may also help

overcome the low confidence levels experienced by girls,

thus increasing their engagement with STEM disciplines

early in their education.

This study included a small cohort of students. Based on

confidence level and performance results, future studies

should be implemented that analyze the effect of CT

confidence levels in a programming in physics application

of a larger cohort to determine whether this trend holds. In

addition, this study specifically assessed the role of CT

confidence levels in a physics application. In order to

determine if a broader STEM impact exists, studies should

take into account multiple STEM disciplines to analyze if

the effect remains the same on a broader scale.

However, keeping in mind the importance of introducing

the relevancy of computer science in other disciplines,

described in the Theoretical Perspective, initial instruction

related to the computational tools needed to better

understand a scientific concept can be seen as a beneficial

approach to building confidence and interest in both

STEM and computer science. Content performance of the

girls indicated a significant ability to complete a STEM

assignment using a computer science tool. Future work

with this framework may contribute to an understanding

of the synergy between STEM and computer science – a

synergy that can impact future career directions.

Future applications of this approach would involve

multiple components. As a means of improving the

analysis of CT understanding in this physics assignment,

CT content assessments could be developed to analyze

each student’s understanding of a relevant programming

38

tool separate from its usage in the physics model.

Furthermore, research should be done on the translation of

programming and CT knowledge developed using block-

based programming languages into text-based

programming abilities. For example, in this physics

classroom students completed four Scratch assignments.

A unit could be developed with the four completed

assignments, as an increasing amount of CT and

programming ability is needed for each new assignment.

Following the completion of the unit, students could be

introduced to an object oriented programming language

and tested on their ability to program collision using the

new language with a focus on whether students were able

to capture CT dimensions, such as conditional logic,

abstraction, etc., using the new language.

The results from this study indicated that while girls have

a significantly lower confidence in CT applications, there

is no difference in their ability to perform CT tasks when

compared to their male counterparts. There are many

initiatives currently working to bring computer science

education to high school classrooms (Office of the Press

Secretary, 2014). This study further supported the concept

that the introduction of computer science and CT related

content to already existing STEM curriculum can provide

a resource for building girls’ interest and confidence in

computer science. As we move towards a broader

availability of computer science education at the

secondary school level, it is important to take into account

CT confidence levels as a means of more effectively

impacting a greater number of potential female computer

scientist.

6. REFERENCES
Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S.

(2003). In Proceedings of the 34th SIGCSE technical

symposium on Computer science education, (pp. 49-

53). ACM.

Burke, Q., & Kafai, Y. B. (2012, February). The Writers'

Workshop for Youth Programmers: Digital Storytelling

with Scratch in Middle School Classrooms. In

Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education (pp. 433-438). ACM.

Grover, S. & Pea, R. (2013). Computational Thinking in

K-12: A Review of the State of the Field. Educational

Researcher, 42(1), pp. 38-43.

Kay, K & Shipman, C. (2017). The confidence gap.

Retrieved April 26, 2017 from

https://www.theatlantic.com/magazine/archive/2014/05

/the-confidence-gap/359815/

Martin, M. & Kim, M. (2014). College Major Choice in

STEM: Revisiting Confidence and Demographic

Factors. The Career Development Quarterly, 62(2),

128-142.

Master, A., Cheryan, S., & Meltzoff, A. (2015).

Computing Whether She Belongs: Stereotypes

Undermine Girls’ Interest and Sense of Belonging in

Computer Science. Journal of Educational Psychology,

108(3), pp. 424-437.

Office of the Press Secretary. (2014). Fact sheet: New

commitments to support computer science education.

The White House. Retrieved February 4, 2017, from

https://obamawhitehouse.archives.gov/the-press-

office/2014/12/08/fact-sheet-new-commitments-

support-computer-science-education

Royal Society. (2012). Shut down or restart: The way

forward for computing in UK schools. Retrieved

February 4, 2017, from

https://royalsociety.org/~/media/education/computing-

in-schools/2012-01-12-computing-in-schools.pdf

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., &

Clar, D. (2013). Integrating computational thinking

with K-12 science education using agent-based

computation: A theoretical framework. Education and

Information Technologies, 18(2), pp. 351-380.

Van Braak, J. P. (2004). Domains and determinants of

university students’ self-perceived computer

competence. Computers and Education, 43, pp. 299-

312.

Vekiri, I. (2013). Information science instruction and

changes in girls’ and boys’ expectancy and value

beliefs: In search of gender-equitable pedagogical

practices. Computers & Education, 64, pp. 104-115.

Wang, J., Hong, H., Ravitz, J., & Ivory, M. (2015).

Gender Differences in Factors Influencing Pursuit of

Computer Science and Related Fields. In Proceedings

of the 2015 ACM Conference on Innovation and

Technology in Computer Science Education (pp.117-

122). ACM.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona,

K., Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science

Classrooms. Journal of Science Education and

Technology, pp. 1–21.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014).

Fostering Computational Literacy in Science

Classrooms. Commun. ACM, 57(8), pp. 24-28.

Wing, J. (2006). Computational Thinking.

Communications of the ACM, 49(3), pp. 33-36.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

39

K-12 Computational Thinking Education in Germany

Nguyen-thinh LE, Niels PINKWART

Department of Informatics

Humboldt-Universität zu Berlin

nguyen-thinh.le@hu-berlin.de, niels.pinkwart@hu-berlin.de

ABSTRACT
How is computational thinking education in Germany?

This paper aims to investigate computational thinking

education in K12 German secondary schools. The

methodology is based on analyzing the competence-based

curricula frameworks for Computer Science in four

highest populated federal states in Germany. In addition to

Computer Science education, we also consider other

subjects, e.g., Physics, because computational thinking

may also exist in other subjects. Finally, we compare

computational thinking education in Germany with

international level by taking the ACM recommendation

for Computer Science curriculum into account.

KEYWORDS
Computational thinking education, K12, Germany, ACM

Computer Science curriculum.

1. INTRODUCTION
What is Computational Thinking? No clear definition for

this concept has been developed yet. Yadav and

colleagues (Yadav et al., 2017,) and Denning (2009)

suggested that the notion of computational thinking had

the root in Computer Science when Polya (1945)

discussed about “algorithmic thinking” approaches in the

paper “How to Solve It”. Recently, this notion of

computational thinking is embedded in the work of Papert

(1980, 1991), which focuses on the LOGO programming

language and which aims at supporting student’s

algorithmic thinking and problem solving abilities. Yadav

and colleagues have summarized different components for

computational thinking based on Wing (2008) and Barr

and Stephenson (2011). According to Wing (2008),

computational thinking consists of the process of choosing

the right abstractions and automation of those abstractions.

Based on this idea, nine core computational thinking

concepts have been proposed by Barr and Stephenson

(2011): data collection (DC), data analysis (DA), data

representation (DR), problem decomposition (PD),

abstraction (AB), algorithms and procedures (AP),

automation (AU), parallelization (PA), and simulation

(SI).

Based on these nine components of computational

thinking, we aim at investigating the computational

thinking education in German schools (5th grade to 12th

grade).

2. METHOD
Germany has 16 federal states and each state defines a

framework of output-oriented requirements in terms of

expected competences for each grade. School teachers are

required to specify curricula by themselves considering a

state-specific curriculum framework.

We will analyze documents of requirement curriculum

framework for different federal states. Since the four

federal states (North Rhine-Westphalia, Baden-

Württemberg, Bavaria, and Lower-Saxony) have the

highest population and the population of these four states

is higher than half of Germany’s population, we intend to

analyze the curriculum frameworks in these states. Since

these four states are based in the West Germany, we also

take one state with highest population in East Germany

(Saxony) into account. The analysis is based on the nine

core components of computational thinking summarized

by Yadav and colleagues (2017).

Since most components of computational thinking are

related to Computer Science, we will investigate the state-

specific curriculum frameworks for Computer Science. In

addition, we also consider the curriculum framework in

other subjects, e.g. Physics, in order to examine the

coverage of computational thinking education.

We analyze whether any vocabulary in the description of

expected competences or learning objectives in the

curriculum frameworks match the term (or synonyms of

the terms) of a specific component of computational

thinking. In this case, we can conclude that this component

is covered in the curriculum framework being

investigated.

3. RESULTS
North Rhine-Westphalia has the highest population in

Germany (17.9 Mio., Statista, 2015). The curriculum

framework of this state is based on five competence areas

((1) argumentation, (2) modeling, (3) implementing, (4)

representation and interpretation, (5) communication and

cooperation) and five content fields ((1) data and

structuring, (2) algorithms, (3) formal languages and

automata, (4) computer systems, (5) computer science,

human and society). Here, we use the curriculum

framework for secondary education. The expected

competences “student identify by analyzing problems

objects, their attributes, their operations and their

associations” (NW, 2014, pp. 28) and “students identify

for a specific problem entities, attributes, and relationships

and their cardinalities and represent them in an entity-

relationship diagram” match the component problem

decomposition (PD). The competences „students model

classes with attributes, methods and association

relationships noted with cardinality“ and “students apply

the concept of polymorphy to appropriate problems”

(NW, 2014, pp. 28) are specific to object-oriented

programming paradigm. However, this competence may

40

be considered a part of the component abstraction (AB)

of computational thinking. Similarly, the expected

competences “students modify a database model” and

„students model a relational database schema for an entity-

relationship diagram“ (NW, 2014, pp. 34) are related to

database modeling, however, can be considered a part of

abstraction (AB). In the content field “Algorithms”, the

competences “students analyze, explain, and modify

algorithms and programs”, “students develop iterative and

recursive algorithms applying the strategies

Modularization, Divide and Conquer, and Backtracking”,

and “students evaluate the efficiency of algorithms with

respect to memory usage and the number of operations”

(NW, 2014, pp. 29, pp. 34) cover the component

algorithms and procedures (AP) of computational

thinking. In the content field “formal languages and

automata”, the competences “students analyze and explain

the attributes of finite automata/ push-down automata and

their behavior for a specific input”, “students develop a

formal language, which is accepted by a finite automaton

or a push-down automaton”, and “students develop and

modify finite automata or push-down automata for a

problem” (NW, 2014, pp. 30, pp. 36) can be

considered a part of the component automation (AU) of

computational thinking. Also in the same content field

“Algorithms”, “students explain the principle of

concurrency” (NW, 2014, pp. 35) may partly match the

component parallelization (PA) of computational

thinking.

The curriculum framework in Physics in North Rhine-

Westphalia seems to complement the curriculum

framework in Computer Science with respect to

computational thinking.

The curriculum framework for Physics addresses the

components data collection (DC) and data analysis (DA)

of computational thinking that we do not find in the

curriculum framework for Computer Science. The

following expected competences are specified in the

curriculum framework for Physics in North Rhine-

Westfalia address the component data collection (DC):

“Students have the ability to search, to analyze, and to

evaluate by comparison relevant information and data in

different sources as well as in selected scientific

publications for physical questions.” (NW-Ph, 2014,

pp.28); “Student have the ability to observe and measure

criterion-driven, and explain and use complex devices for

observations and measurements appropriately.” (NW-Ph,

2014, p.28). In addition to competences addressing data

collection (DC), several other competences emphasize

data analysis: “Students have the ability to analyze data

qualitatively and quantitatively with regards to

coherences, rules or mathematical axioms” (NW-Ph,

2014, p.28); “Student have the ability to develop models,

and explain and predict physical-technical processes using

theoretical models, mathematical modeling techniques,

thinking experiments and simulations.” (NW-Ph, 2014,

p.62).

Table 1. Coverage of computational thinking in

German schools.

 DC DA DR PD AB AP AU PA SI

Computer Science

North Rhine-

Westphalia

 x x x x x

Baden-

Württemberg
 x x x

Bavaria x x x x x x

Lower-Saxony x x x

Saxony x x x x x x x x

ACM CS x x x x x

Physics

North Rhine-

Westphalia

x x

Baden-

Württemberg
x x

Bavaria x x

Lower-Saxony x x

Saxony x x

Baden-Württemberg starts Computer Science education

from the 11th grade to 12th grade. From the 6th grade to

the10th grade, school students in Baden-Württemberg are

offered the so-called “information-technical basic

education” courses, which serve as the basis for Computer

Science education. The framework of requirements

comprise five areas: (1) Information and data, (2)

algorithms and data, (3) problem solving and modeling,

(4) work principles of computer systems, and (5)

informatics and society. Since in the 2nd area, the

framework specifies three competences: “Students have

the ability to apply basic datatypes and data structures”,

“students have the ability to develop algorithms and

implement them in programs”, and “students have the

ability to apply modularization techniques” (translated

from German, BW, 2004, pp. 439). These requirements of

expected competences cover the following components of

computational thinking: data representation (DR),

problem decomposition (PD), abstraction (AB),

algorithms and procedures (AP). In the area of problem

solving and modeling, two competences cover the

components problem decomposition (PD), abstraction

(AB), and algorithms and procedures (AP) of

computational thinking: “Students know basic principles

of problem solving”, “Students can decompose the

problem solving process”, “Students have the ability to

map real problems into objects and classes” (BW, 2004,

pp. 440).

Similar to the curriculum framework for Physics in North

Rhine-Westphalia, Physic education in Baden-

Württemberg addresses the two components data

collection (DC) and data analysis (DA) that complement

to Computer Science education with respect to

computational thinking education: “Students have the

ability to observe and describe phenomena and

41

experiments goal-oriented.”; “students have the ability to

collect measurement data digitally and assess them.”;

“students have the ability to conduct experiments, collect

and assess data” (BW-Ph, 2016, pp. 10); “Students have

the ability to evaluate results of experiments” (BW-Ph,

2016, pp. 12).

The present curriculum framework for Computer Science

in Bavaria is not based on output-oriented competences

yet, rather it is based on learning contents that need to

input into school curricula in Bavaria. The competence-

based requirement framework for schools in Bavaria has

been developed and is planned to be applied from the

school year 2017/2018
1

. Since the competence-based

requirement framework is available on the website of

Bavaria’s State Institute for School Quality and Education

Research (BA, 2017). According to this framework,

Computer Science education starts from the 9th grade.

After the 9th grade, the following competence is expected

from the student: “Students analyze and decompose data

of simple real authentic examples (e.g., inventory or client

administration) and represent the developed data model

graphically”

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/9/informatik). This competence covers the

components data representation (DR), problem

decomposition (PD), abstraction (AB) of computational

thinking. After the 10th grade, the following is expected:

“Students represent algorithms in pseudocode or

graphically for a given process-oriented problem using

control structures.”

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/10/informatik). This competence requires learning in

algorithms and procedures (AP).

After the 12th grade, “students have the ability to design

finite automata using formal languages.”

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/12/informatik). This competence is in accordance

with automation (AU). The competence “Students model

typical concurrent scenarios using Petrinets.” may be

achieved by the component parallelization (PA) of

computational thinking education.

Complementary to the curriculum framework for

Computer Science, the curriculum framework for Physics

in Bavaria address the components data collection (DC)

and data analysis (DA): “Students are in a position to

infer physical knowledge from course texts, to search

information and to work up results in documentation and

presentation appropriately.” (BA-Ph,2017) and “students

reflect impacts of physical insights in historical and

societal relations and are aware of chances and limits of

physical solutions.” (BA-Ph, 2017).

The curriculum framework of Lower-Saxony is

competence-based. This document distinguishes between

process-oriented and content-oriented competences.

Lower-Saxony offers Computer Science education from

the 5th grade. At this moment, only the curriculum

framework in Computer Science for 5th grade to 10th grade

1 http://www.isb.bayern.de/schulartuebergreifendes/paedagogik-

didaktik-methodik/kompetenzorientierung

is available on the Internet (NI, 2014). The specified

competences are summarized in four learning areas: (1)

data and their traces, (2) computer competence, (3)

algorithmic problem solving, and (4) automated processes.

In the learning field “algorithmic problem solving”, the

competences “students describe a given algorithm in their

own words”, “students represent an algorithm

graphically”, “students execute a given algorithm”, and

“students develop an algorithm using elementary control

structures” (NI, 2014, pp. 20-21) cover the component

algorithms and procedures (AP). In the learning area

“automated processes”, the competences “students

describe automata as a composition of their states and

transitions” and “students develop and implement an

automaton model in form of a state graph” (NI, 2014, pp.

20-22) match the component automation (AU) of

computational thinking. The competence “students model

and simulate a given automaton using an appropriate

simulation software” may be considered a part of the

component simulation (SI) of computational thinking.

The curriculum framework for 5th-10th grade schools in

Lower-Saxony supports few components (AP, AU, and

SI) of computational thinking. We hope that the

curriculum framework for secondary schools in Lower-

Saxony support more other components of computational

thinking.

Considering the curriculum framework for Physics in

Lower-Saxony, the expected competences specified in this

framework address the components data collection (DC)

and data analysis (DA) of computational thinking:

“Students plan simple experiments, carry out them and

document experiments’ results.”, “Students evaluate data

using appropriate diagrams and identify functional

relations” (NI-Ph, 2009, p.14), “Students add missing

information by themselves.” (NI-Ph, 2009, p.22),

“Students use for documentation and evaluation of

measurement data GTR/CAS or table calculation” (NI-Ph,

2009, p. 23), “students evaluate and justify a result of an

observation of measurement’s uncertainty.” (NI-Ph, 2009,

p. 27). These competences indicate a complementary part

to Computer Science curriculum in Lower-Saxony with

respect to computational thinking education.

Saxony has the highest population (4.0 Mio., Statista,

2015) among the five federal states in East Germany. Page

2 of the curriculum framework

(https://www.schule.sachsen.de/lpdb/web/downloads/lp_

gy_informatik_2011.pdf?v2) summarizes the goals of

Computer Science education. This summary of goals

includes the components data collection (DC), data

analysis (DA), data representation (DR), problem

decomposition (PD), abstraction (AB), algorithms and

procedures (AP). On the contrary to the four states in

West Germany, where DC and DA are not addressed in

Computer Science education, the federal state Saxony

does. The specification of the learning area “Theoretical

Informatics” addresses automation (AU) (SA, 2011, pp.

15). The learning area “Applied Informatics” covers the

http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/9/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/9/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/12/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/12/informatik
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2

42

component simulation (SI) (SA, 2011, pp. 17). Saxony’s

curriculum framework addresses almost all components of

computational thinking except parallelization (PA).

In the subject Physics, the curriculum framework in

Saxony addresses electric parallel circuits (SA-Ph, 2011,

pp. 15), which are not in the context of parallelization

(PA) (Barr & Stephenson, 2011). Similar to other Physics

curriculum frameworks, in the state Saxony, the

components data collection (DC), data analysis (DA) are

supported: “Students learn to acquire, to categorize, and to

use information in order to extend, to structure, and to

apply their knowledge. Acquisition, usage, evaluation and

presentation of information is important.” (SA-Ph, 2011,

pp. VIII).

4. ACM CURRICULUM FOR K–12 CSE
The ACM model curriculum divides Computer Science

education (CSE) into four levels: Level 1 - Foundations of

Computer Science, Level 2: Computer Science in the

Modern World, Level 3 - Computer Science as Analysis

and Design, and Level 4 - Topics in Computer Science.

On level 1 (recommended for grade K-8), students are

expected to “apply strategies for identifying and solving

routine hardware and software problems that occur during

everyday use.” (ACM, 2003, pp. 13), “understand the

graph as a tool for representing problem states and

solutions to complex problems” (ACM, 2003, pp. 14), and

“understand the fundamental ideas of logic and its

usefulness for solving real-world problems” (ACM, 2003,

pp. 14). These competences meet the components

problem decomposition (PD), and algorithms and

procedures (AP) of computational thinking. In addition,

the competence “Use content-specific tools, software, and

simulations (e.g., environmental probes, graphing

calculators, exploratory environments, Web tools) to

support learning and research” (ACM, 2003, pp. 13)

addresses the component simulation (SI) of

computational thinking. On level 2 (recommended for

grade 9 or 10), students should have conceptual

understanding of “the basic steps in algorithmic problem-

solving (problem statement and exploration, examination

of sample instances, design, program coding, testing and

verification)”, which meets again the components

problem decomposition (PD), and algorithms and

procedures (AP) of computational thinking. On level 3

(recommended for grade 10 or 11), students should gain

understanding of “fundamental ideas about the process of

program design and problem solving, including style,

abstraction, and initial discussions of correctness and

efficiency as part of the software design process.” (ACM,

2003, pp. 14) and “simple data structures and their uses”

(ACM, 2003, pp. 14) address the components data

representation (DR) and abstraction (AB) (in addition

to other components mentioned above). On level 4

(recommended for grade 11 or 12), students attend the

courses that deepen gained knowledge, abilities and skills

in Computer Science. Students have the choice between

an Advanced Placement (AP) Computer Science course

that “emphasizes problem solving and algorithm

development, and introduces elementary data structures”

(ACM, 2003, pp. 18) or a project-based course, or a

vendor-supplied course. Especially, in addition to gaining

knowledge, abilities and skills in Computer Science, ACM

model curriculum promotes “the connection between

elements of mathematics and computer science, including

binary numbers, logic, sets, and functions.” (level 2,

ACM, 2003, pp. 15) and “topics in discrete mathematics:

logic, functions, sets, and their relation to computer

science”. (level 3, ACM, 2003, pp. 14). These topics are

considered required important in Computer Science

education and for problem solving.

5. CONCLUSIONS
Table 1 shows that the federal states in Germany, that have

in total more than half population of Germany, cover

several components of computational thinking. The

coverage of computational thinking components is

heterogeneous among different federal states in Germany.

It is worth to note that data collection (DC), data analysis

(DA) are not considered in the four investigated

curriculum frameworks for Computer Science in West

Germany. However, these components are addressed in

the state Saxony in East Germany. Considering the four

states in West Germany, taking the curriculum

frameworks for Physics into account, we can notice that

both curriculum frameworks in Computer Science and

Physics are complementary with respect to computational

thinking education, since they cover most components of

computational thinking (except the component simulation

SI).

Surprisingly, the state Saxony in East Germany addresses

almost all components of computational thinking except

parallelization (PA).

Comparing the Computer Science education in Germany

and ACM model curriculum for K-12 Computer Science

with respect to computational thinking education, no

difference can be noted: the components problem

decomposition (PD), abstraction (AB), algorithms and

procedures (AP) are recommended in curriculum

frameworks for Computer Science in Germany and in

ACM model curriculum.

Based on the analysis results in this paper, we would

recommend educators to pay more attention to the

components parallelization (PA) and simulation (SI),

which are not considered in Computer Science curriculum

frameworks in three of five federal states in Germany. In

addition, since big data is increasingly a problem in

computation, we would also recommend to embed

methods of data collection (DC) and data analysis (DA)

in Computer Science curricula, because these components

could only be found in Physics curriculum frameworks.

6. REFERENCES
ACM, (2003). A Model Curriculum for K-12 Computer

Science: Final Report of the ACM K–12 Task Force

Curriculum Committee, ACM.

http://www.acm.org/education/education/curric_vols/k

12final1022.pdf

BA, (2017). LehrplanPLUS, Informatik, Bayern.

http://www.lehrplanplus.bayern.de

http://www.acm.org/education/education/curric_vols/k12final1022.pdf
http://www.acm.org/education/education/curric_vols/k12final1022.pdf
http://www.lehrplanplus.bayern.de/

43

BA-Ph, (2017). LehrplanPLUS, Physik, Bayern.

http://www.lehrplanplus.bayern.de/fachprofil/gymnasiu

m/physik/11

Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: What is involved

and what is the role of the computer science

education community? ACM Inroads, 2 (1), 48–54.

doi: 10.1145/1929887.1929905 .

BW, (2004). Bildungsstandard Informatik, Gymnasium -

Kursstufe, Baden-Württemberg, http://www.bildung-

staerkt-

menschen.de/service/downloads/Bildungsstandards/Gy

m/Gym_Inf_wb_bs.pdf

BW-Ph, (2016). Bildungsplan des Gymnasiums.

Ministerium für Kultus, Jugend und Sport, Baden-

Wütemberg http://www.bildungsplaene-

bw.de/site/bildungsplan/get/documents/lsbw/export-

pdf/depot-

pdf/ALLG/BP2016BW_ALLG_GYM_PH.pdf

Denning, P. J. (2009). The profession of IT: Beyond

computational thinking. Communications of the ACM,

52 (6), 28–30. doi: 10.1145/1516046.1516054 .

NI, (2014). Kerncurriculum für die Schulformen des

Sekundarbereichs I, Schuljahrgänge 5 – 10,

Informatik. Herausgeber: Niedersächsisches

Kultusministerium

http://db2.nibis.de/1db/cuvo/datei/kc_informatik_sek

_i.pdf

NI-Ph, (2009). Kerncurriculum für das Gymnasium –

gymnasiale Oberstufe die Gesamtschule –

gymnasiale Oberstufe das Fachgymnasium das

Abendgymnasium das Kolleg, Physik. Herausgeer:

Niedersächsisches Kultusministerium

http://db2.nibis.de/1db/cuvo/datei/kc_physik_go_i_2

009.pdf

NW, (2014). Kernlehrplan für die Sekundarstufe II

Gymnasium/Gesamtschule in Nordrhein-Westfalen

http://www.schulentwicklung.nrw.de/lehrplaene/upl

oad/klp_SII/if/KLP_GOSt_Informatik.pdf

NW-Ph, (2014). Kernlehrplan für die

Sekundarstufe II Gymnasium/Gesamtschule

in Nordrhein-Westfalen – Physik.
http://www.schulentwicklung.nrw.de/lehrplaene/upl

oad/klp_SII/ph/KLP_GOSt_Physik.pdf

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York: Basic Books.

Papert, S. (1991). Situating constructionism. In I. Harel

& S. Papert (Eds.), Constructionism (pp. 1–11).

Norwood: Ablex.

Polya, G. (1945). How to solve it; A new aspect of

mathematical method. Princeton: Princeton

University Press.

SA, (2011). Lehrplan Gymnasium Informatik,

Sächsisches Staatsministerium für Kultus und Sport

https://www.schule.sachsen.de/lpdb/web/downloads/

lp_gy_informatik_2011.pdf?v2

SA-Ph, (2011). Lehrplan Gymnasium Physik,

Sächsisches Staatsministerium für Kultus und Sport

http://www.schule.sachsen.de/lpdb/web/downloads/l

p_gy_physik_2011.pdf?v2

Statista, 2015. Das Statistik-Portal.

https://de.statista.com/statistik/daten/studie/71085/umfr

age/verteilung-der-einwohnerzahl-nach-

bundeslaendern/

Wing, J. M. (2008). Computational thinking and thinking

about computing. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 366 (1881), 3717–3725.

doi: 10.1098/rsta.2008.0118 .

Yadav, A., Good, J., Voogt, J., Fisser, P. (2017).

Computational Thinking as an Emerging Competence

Domain. In, M. Mulder (ed.), Competence-based

Vocational and Professional Education, pp 1051-1067,

Springer Verlag. Doi:10.1007/978-3-319-41713-4_49.

http://www.lehrplanplus.bayern.de/fachprofil/gymnasium/physik/11
http://www.lehrplanplus.bayern.de/fachprofil/gymnasium/physik/11
http://www.bildung-staerkt-menschen.de/service/downloads/Bildungsstandards/Gym/Gym_Inf_wb_bs.pdf
http://www.bildung-staerkt-menschen.de/service/downloads/Bildungsstandards/Gym/Gym_Inf_wb_bs.pdf
http://www.bildung-staerkt-menschen.de/service/downloads/Bildungsstandards/Gym/Gym_Inf_wb_bs.pdf
http://www.bildung-staerkt-menschen.de/service/downloads/Bildungsstandards/Gym/Gym_Inf_wb_bs.pdf
http://www.bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_GYM_PH.pdf
http://www.bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_GYM_PH.pdf
http://www.bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_GYM_PH.pdf
http://www.bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_GYM_PH.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_informatik_sek_i.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_informatik_sek_i.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_physik_go_i_2009.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_physik_go_i_2009.pdf
http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/ph/KLP_GOSt_Physik.pdf
http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/ph/KLP_GOSt_Physik.pdf
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2
http://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_physik_2011.pdf?v2
http://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_physik_2011.pdf?v2
https://de.statista.com/statistik/daten/studie/71085/umfrage/verteilung-der-einwohnerzahl-nach-bundeslaendern/
https://de.statista.com/statistik/daten/studie/71085/umfrage/verteilung-der-einwohnerzahl-nach-bundeslaendern/
https://de.statista.com/statistik/daten/studie/71085/umfrage/verteilung-der-einwohnerzahl-nach-bundeslaendern/

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on Computational

Thinking Education 2017. Hong Kong: The Education University of Hong Kong

44

Computational Thinking and

Subject Learning and Teaching

in K-12

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on Computational

Thinking Education 2017. Hong Kong: The Education University of Hong Kong

45

Gamified Mathematics practice:

Designing with e-commerce and computational concepts

Chien-sing LEE, Jing-wen WONG, Peh-yenc EE,

Department of Computing and Information Systems,

Sunway University, Malaysia.

chiensingl@sunway.edu.my, jing.w8@imail.sunway.edu.my, peh.e@imail.sunway.edu.my

ABSTRACT
This paper addresses two problems which usually occur in

learning Mathematics: first, students who face difficulty

understanding and are too shy to participate in discussions

and subsequently do not manage to resolve their doubts,

and second, dull e-learning websites. The many rules in

Mathematics compounds the problem further. We thus aim

to address these problems through a gamified e-commerce-

oriented Mathematics learning practice system, Alzebra,

for informal learning. Focusing on principles of

Information Systems Analysis and Design, e-commerce-

oriented computational concepts are embedded in the game

to motivate online practice. The system concept, design

methodology and user testing outcomes are presented.

Significance lies in deriving perception towards

gamification and components which users liked or disliked

and the efficacy of our hybrid approach in systems

development.

KEYWORDS
Design; gamification; Mathematics practice; e-commerce;

computational concepts.

1. INTRODUCTION
Blended learning is increasingly popular. However,

educators may not be available face-to-face at all times to

help students with their problems. Hence, two problems

need to be addressed (Chen & Jones, 2007; Li, 2016). First,

students who have difficulties grasping concepts in class

and who are shy. They tend not to participate in the

activities or interact with their peers in class even though

they do not understand what they are learning in class.

Instead, they would be forced to revise topics on their own.

The second problem arises if the e-Learning platforms are

dull and mostly text-based or unexciting.

In the learning of Mathematics (MVid, 2016), the

enormous number of rules that need to be followed often

makes understanding complex Mathematics frustrating.

These pose challenges to motivate students to access online

materials to carry out self-study and to keep them engaged

throughout their online learning process. Hence, we aim to

develop a gamified computer-aided learning system,

Alzebra, to carry out revision and reinforcement outside the

classroom.

Bearing in mind several learning strategies, our objectives

are to:

a) assess the improvements that can be made to existing

related systems and choose the best features that can

be adopted;

b) explore the possibilities of gamified learning in online

education.

2. RELATED WORK

2.1 Learning difficulties faced by students in

Mathematics

Other than the small number of students who have been

identified as having dyscalculia (Mathematics learning

disability), there are a few reasons why students face

difficulties grasping concepts in Mathematics (Taylor &

Galligan, 2006; MVid, 2016):

a) students who experience this problem often possess

characteristics such as lack of confidence due to

constant failure, do not activate prior knowledge to

solve problems, have trouble memorizing basic Math

functions, have problems focusing when facing

questions involving multiple steps, lack of cognitive

thinking skills, and afraid of being wrong..

b) there are also a few teacher-related variables, which

cause students to have problems in understanding

concepts in Mathematics.

c) research has also suggested that curriculum-related

variables such as spiralling curriculum causes students

to experience significant problems learning and

applying Mathematics concepts. This may be due to

cognitive overload.

2.2 Mathematics Learning Strategies

Many Mathematics strategies have been around and are

used by educational institutions. Some of the approaches

available are classroom-based techniques such as

metacognitive strategies, cognitive strategies, and social or

affective strategies while others are software-based

approaches where educational technology, is used as one of

the teaching strategies (Taylor & Galligan, 2006; Yang,

Chang, Cheng, & Chan, 2016; Centre for Advanced

Research on Language Acquisition, 2016; MVid, 2016).

Due to the fact that both means of instructional delivery

methods are diverse, the outcomes from both approaches in

relation to students’ performance may however, also differ.

46

2.3 Gamification in Educational Websites

Gamified learning is a term used to describe the integration

of game mechanics in learning the process to make

instructions more engaging and fun. It has the potential to

help the way students need to feel engaged when learning,

that is, through growth and advancement, recognition and

rewards, a higher goal to pursue, and a sense of teamwork

Kapp’s (2012) study states that there are researchers who

suggest that gamification can be used as a tool in education

to spark interest in students to learn. Moreover, students

who have used a gamified e-Learning platform produce

higher practical test scores compared to those who use the

non-gamified version.

Furthermore, according to the Gamification Survey carried

out by Talent LMS (2016), 79% of the participants have

shown a positive attitude towards the integration of

gamification in their university or institution. Out of 75%,

the participants are already gamers themselves whereas

50% of them play casually and 27% of them moderately to

fairly often. In addition, over 60% of the participants would

be motivated by leader boards and increased competition

between students and 89% would be more engaged with an

e-learning application if it had a point system.

Based on this, it can be concluded that the strong interests

of the participants in game may indicate that

implementation of gamification in educational websites

can be accomplished. An example of existing systems

implementing gamification in education is the Khan

Academy.

3. SIGNIFICANCE
There are several contributions from this study:

a) This study contributes to how Information Systems

Analysis and Design principles and computational

components integrated with e-commerce and

gamification can be used to design applications

which have the potential to motivate online

practice. The application of computational

concepts to the real-world corresponds with

computational thinking (Wing, 2006).

b) A deeper understanding of the perceptions of the

student community needs to be first identified and

designed for if gamification is to work well. This

finding supports that of an earlier paper (Wong &

Lee, 2016).

c) Consistent with (TalentLMS, 2016), prior user

gaming experience influences acceptance of

gamified applications.

d) Object-oriented design is cost-effective and

sustainable.

4. METHODOLOGY

4.1 Sample

The sample students are 10 students who are weak in

Mathematics studying at the pre-university level. Learning

Mathematics online is foreign to them though they know

that these systems exist. The testing period is one week

each (initial survey and user-testing).

4.2 Procedure

Adopting agile methodology, rapid prototyping and design

thinking, two phases are carried out, involving two

iterations in each phase. The first phase involves the initial

survey and the second phase the beta testing. These are

elaborated on below.

First phase:

An evaluation of existing e-learning websites (objective a

above) based on Nielsen’s criteria: Website Content,

Website Interface, and Website Functionality is carried out

to determine improvements which can be made and

opportunities for developing systems meeting our

objectives.

Subsequently, for design and development, the first

iteration includes the basic content management features.

The second iteration includes the add questions page,

practice page, show hint and check answer section in

practice page, quiz page, and view result page. Next, a

survey is carried out to determine students’ attitude towards

the use of technology in learning Mathematics online.

Second phase:

The first iteration involves the point-accumulating function

in the prototype, user garden page, marketplace page,

leaderboard section, and FAQ page. Within the user

garden, e-commerce-oriented activities are introduced to

motivate practice. The second iteration includes a comment

section in all topic pages.

5. SYSTEM CONCEPT
This Website is developed to integrate the concept of

gamified learning into an online educational website. On

registering to become a member, users will get their very

own garden which they can visit through the link located at

the User Login Information dropdown list.

The system works like a normal online educational website

which enables students to learn on topics, do practices,

attempt quizzes, and view their results. Other than those

minimal requirements for an educational website, an extra

enhancement is incorporated into the system, that is, a

point-accumulating system.

The main idea of this point accumulating system is to

encourage students to revise topics by attempting practices

and quizzes and keep them engaged when they are on the

website. For every correctly-answered question, students

get to earn points. Points will also be given when students

have completed a quiz.

On registering, each student will have their own page called

“My Garden”, this is where they have plants they need to

nurture in order to gain more points. The way they cultivate

their plants is by buying materials from a page called

47

“Market Place”. There are four items that need to be used

on each seed in order for it to be fully grown. Once the plant

is fully grown, it can be sold to earn points. The names of

students with the highest points accumulated will be shown

on a leaderboard at the home page.

The final system’s use case diagram (Figure 1) and user

interfaces (Figures 2, 3, 4 and 5) are presented below.

Gamified Web-Based Learning System

Login into system

Security Check

<<inclu
des>>

Student AdministratorChoose Topic

Do Practice

Manage Topics

Manage Question

Bank

Comment on

Topics

Maintain Personal

Profile

Manage Garden

Security Check

View Garden

<<inclu
des>>

View “Market

Place”

<<extends>>

Buy items from

“Market Place”

<<extends>>

Logout of system

Figure 1. Use Case Diagram

Figure 2. Practice Page Screenshot

Figure 3 shows the layout for the User Garden Page.

Computational concepts are used here to design the game

story for the topic trigonometry. There are altogether ten

slots in the garden. Five of the slots are open, while the

other five of them are locked. These open slots will be

where the seeds received by users are planted. The locked

slots needs be purchased for 150 points each to get more

space for users to plant their seedlings. Upon registering,

each user will be given a seed. Each seed has to be watered,

weeded, fertilized, and cleared of pest once respectively to

be completely grown. To grow the seeds, users have to visit

the market place to buy the materials needed.

Grown plants can be sold by users to earn more points. A

mysterious seed will be given for free to users every time

their accumulated points have reached 100 points. Each

time users get a seed, it will be automatically be planted in

one of the open slots in their garden. If users do not have

any open slots left, the seed will be discarded. Users will

be competing with other members on the system to get the

highest ranking on the leaderboard based on the points they

have accumulated. To earn points, users must do practices.

With each question correctly answered, users will get five

points. Besides that, users can also gain points by doing

quizzes.

LOGO Navigation Links
User Login

Information

Open Slot

Locked Slot Locked Slot Locked SlotLocked SlotLocked Slot

Open Slot Open Slot Open Slot Open Slot

User’s Garden

Figure 3. User’s Garden

Figure 4. User’s Garden Page Screenshot

48

Figure 5. Market Place Screenshot

6. FINDINGS
6.1 Findings from the initial survey

Findings from the initial survey involving 30 users are as

follow:

 73% of the participants think that learning

Mathematics will be useful for them in their future.

20% of them do not think that learning Mathematics

will be important to them. The rest have a neutral

attitude towards learning Mathematics.

 61% of the participants have a great experience

learning.

23% of them do not have a positive attitude towards

classroom experience while 16% of them have a

neutral attitude towards the classroom experience.

Those who have a positive attitude towards the

learning experience mostly understand what they

have learned in class and have friends who can help

them when they face problems understanding

Mathematics.

 73% of the participants think that they can do well in

Mathematics. 13.5% of them think that they are not

good in Mathematics and another 13.5% of the

participants have a neutral attitude towards their self-

confidence in Mathematics.

 47% of the participants find learning Mathematics

through technology easier to understand. 23% of

them find it uncomfortable learning Mathematics

through technology while 30% of them have a

neutral attitude towards the use of technology in

learning Mathematics.

Subsequently, based on the result of this survey, a basic

gamified Web-based learning platform was developed.

6.2 Findings from beta testing

Beta testing involves 10 students. Findings based on the

Technology Acceptance Model indicates that overall,

Alzebra has received positive response from the ten

participants. Furthermore, it is observed that:

 All of the participants managed to use the website

without any difficulties (ease of use). 80% of the

students think that the design and layout of the

system are acceptable. They can navigate through

the site easily. 20% of the students find the layout of

the website can be made more interesting.

 70% of the participants have a positive attitude

towards the concept of game in educational website.

They are able to accept gamification in education

while 30% of the students prefer the normal web-

based learning system with no gamified concept

included.

 Similarly, 60% of the students think that online

competition such as leader board is challenging and

fun while the rest think that it is annoying.

 60% of the students will use the comment section

provided to interact with other members online when

they are facing problems understanding the concepts

of the topic while 40% of them think it is

unnecessary.

 A majority agree that they can do better if the

website is incorporated as part of the Mathematics

subject.

 Three of the suggestions made are to improve the

gamification portion in the website. The point-

accumulating system can be motivating as the

majority (6 out of 10) finds online competition

stimulating while the rest of the participants think

that the reward provided is gimmicky.

7. CONCLUSION
From these results, students appear to prefer attractive

websites and prefer not having their performance or

comments displayed publicly. The latter is typical of more

conservative Asian culture and the influence of prior

gaming experience towards acceptance of gamification in

e-learning. Furthermore, there is improvement in

acceptance towards such learning environments compared

to the initial survey. This finding supports that of two other

related projects, i.e., on teaching augmented reality to

youths and e-crafting (Wong & Lee, 2016; Low & Lee,

2016). Noting the comments and suggestions above, to

meet the needs of a majority of the users who are not

gamers, we need to improve on our design with game

mechanics which matter to the users.

This is a course assignment. The sample size is small and

findings are not generalizable. Nevertheless, we hope that

eventually, this e-Learning platform will provide a better

user experience for students, hence keeping them enthused

to carry on their self-studies outside of a classroom.

49

8. REFERENCES
Andriotis, N. & Panagiotis, Z. (2014). Gamification

Survey Results. TalentLMS Blog. Retrieved March 01,

2016, from http://www.talentlms.com/blog/gamification-

survey-

 results/

Centre for Advanced Research on Language Acquisition.

Learning Strategies for Mathematics (nd). Retrieved

March 01 2016, from

http://carla.umn.edu/cobaltt/modules/strategies/lstrategies/

CALLA_Table10-3.pdf

Chen, C. C. & Jones, K. T. (2007). Blended Learning vs.

Traditional Classroom Settings: Assessing Effectiveness

and Student Perceptions in an MBA Accounting Course.

Journal of Educators Online, 4 (1). Retrieved February 29,

2016, from

http://files.eric.ed.gov/fulltext/EJ907743.pdf

Dominguez, A., Saenz-de-Navarrete, J., de-Marcos, L.,

Fernández-Sanz, L., Pagés, C. & Martínez-Herráiz, J.

Gamifying learning experiences: Practical implications and

outcomes. Computers & Education. 63, 380-392. Retrieved

February 29, 2016, from

http://thinkspace.csu.edu.au/itc510amandaford/files/2014/

07/Gamifyinglearningexperiences-1z3dgt7.pdf

Li, W. (2015). Is your eLearning boring? Spice it up With

These 3 Innovative eLearning Ideas. eLearning Industry.

Retrieved January 22, 2016, from

http://elearningindustry.com/is-elearning-boring-3-

innovative-elearning-ideas

Kapp, K. M. (2012). The gamification of learning and

instruction game-based methods and strategies for training

and education. San Francisco: Pfeiffer.

Khan Academy. https://www.khanacademy.org/.

Low, H. S. & Lee, C. S. (2016). e-Crafting. Capstone

project, Sunway University, Malaysia.

MVid. Understanding Math Learning Problems. (n.d.).

Retrieved January 18, 2016, from

http://www.coedu.usf.edu/main/departments/sped/mathvid

s/understanding/understanding.html

Taylor, J., & Galligan, L. (2006). Mathematics for Maths

anxious tertiary students: Integrating the cognitive and

affective domains using interactive multimedia. Literacy

& Numeracy Studies, 15(1), 23-44.

Wing, J. (2006). Computational thinking. Communications

of the ACM, 49(3), 33-35.

Wong, C. K. & Lee, C. S. (2016). A better understanding

of how gamification can help improve digital lifestyles,”

International Conference on Virtual Systems and

Multimedia, Kuala Lumpur, Malaysia.

Yang, E. F. Y., Chang, B., Cheng, H. N. H. & Chan, T.

W. (2016). Improving pupils’ Mathematical

communication abilities through computer-supported

reciprocal peer tutoring. Educational Technology &

Society, 19(3), 157-169.

http://www.talentlms.com/blog/gamification-survey-%20%20%20%20results/
http://www.talentlms.com/blog/gamification-survey-%20%20%20%20results/
http://www.talentlms.com/blog/gamification-survey-%20%20%20%20results/
http://carla.umn.edu/cobaltt/modules/strategies/lstrategies/CALLA_Table10-3.pdf
http://carla.umn.edu/cobaltt/modules/strategies/lstrategies/CALLA_Table10-3.pdf
http://files.eric.ed.gov/fulltext/EJ907743.pdf
http://thinkspace.csu.edu.au/itc510amandaford/files/2014/07/Gamifyinglearningexperiences-1z3dgt7.pdf
http://thinkspace.csu.edu.au/itc510amandaford/files/2014/07/Gamifyinglearningexperiences-1z3dgt7.pdf
http://elearningindustry.com/is-elearning-boring-3-innovative-elearning-ideas
http://elearningindustry.com/is-elearning-boring-3-innovative-elearning-ideas
http://www.coedu.usf.edu/main/departments/sped/mathvids/understanding/understanding.html
http://www.coedu.usf.edu/main/departments/sped/mathvids/understanding/understanding.html

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

50

How Computer Scientists and Computing Teachers Think Differently in the

Concepts to be Included in a Secondary School Computing Curriculum

Chiu-fan HU, Cheng-chih WU*, Yu-tzu LIN, An-tsu WANG

National Taiwan Normal University, Taiwan

chiufan@ntnu.edu.tw, chihwu@ntnu.edu.tw, linyt@ntnu.edu.tw, atwang710@gmail.com

ABSTRACT
The new K-12 computing curriculum draft for Taiwan

secondary schools was designed to launch in 2018 but the

draft only outlined themes and contents for students to

learn, without further details on key concepts to be

covered in the contents. Therefore, in 2016, a Delphi

study was conducted to survey the opinions about what

“key learning concepts” should be included for

implementation at the secondary level based on the draft.

By adopting the Delphi method, different viewpoints from

computer scientists and secondary school computing

teachers were collected to build consensus of key concepts

through a series of convergence. Based on the research

results, we found the computer scientists and computing

teachers had opposing opinions about whether the

secondary school students should learn the advanced

concepts. The purpose of this study was to understand the

different views on learning concepts of the draft between

two groups. The data analyzed in this study were based on

the Delphi survey in 2016. This study found computer

scientists tended to be more conservative about this issue,

therefore they suggested that the advanced and theoretical

concepts are not essential at the secondary level, e.g.,

recursion, searching, sorting, data compression, data

conversion, and divide and conquer. This was because the

computer scientists considered these concepts as what

they had studied in college. Rather, computing teachers

knew how to simplify these concepts for teaching at the

secondary level. The research findings can serve as useful

references for revising and implementing the computing

curriculum in the future.

KEYWORDS
Computing curriculum, Delphi survey, Computational

thinking, K-12 education

1. INTRODUCTION
International Society for Technology in Education [ISTE]

(2014) and Computer Science Teachers Association

[CSTA] believed CT (Computational Thinking) is

essential for students, so collaborated on a project to

prepare students to become computational thinkers who

should understand how digital tools could help them solve

problems. In fact, in 2011, CSTA has issued a revised K-

12 computer science curriculum standard (CSTA, 2011)

that addresses the importance of computer science in

concept, practice and the application of cross-discipline

and outlines five strands of the curriculum standards (CT,

collaboration, computing practice and programming,

computers and communication devices, and community,

global, and ethical impacts). In this curriculum standards,

CT is regarded as an important concept to enable students

to apply appropriate strategies and tools to solve complex

problems effectively in the real world. Department for

education of England [DOE] (2013) issued a national

curriculum that renamed the subject name ICT into

Computing. The statutory programmes of study clearly

stated that “A high-quality computing education equips

pupils to use computational thinking and creativity to

understand and change the world.” Students in England

are taught to become digitally literate– able to use, and

express themselves, solve problems and develop ideas.

Australian Curriculum, Assessment and Reporting

Authority [ACARA] (2013) also published a new the

Foundation to Year 12 Australian Curriculum. The

Technologies learning area draws two subjects, which are

“Design and Technology” and “Digital Technologies”.

The goal of Digital Technologies is to enable students to

define, design and implement digital solutions. The

learning strands include: (1) knowledge and

understanding: students learn digital systems and

representation of data; (2) processes and production skills:

students can collect, manage and analyze data, and create

digital solutions by certain skills (investigating and

defining; generating and designing; producing and

implementing; evaluating; and collaborating and

managing). Throughout the learning contents of the

Foundation to Year 12 Australian Curriculum, one of vital

aims is to develop understanding the skills in

computational thinking in F-Y12.

According to the development of ICT (Information and

Communication Technology) curriculum standards,

planned by the ISTE, CSTA, Australian and England, it’s

obvious that computer science has become an important

field in K-12 schools and the concept of CT

(Computational Thinking) is the essence of the recent

curriculum development. Meantime, ISTE, CSTA and

related organizations in Australian and England outlined

the learning contents of curriculum standards, built up a

glossary to define the words and phrases of the curriculum

standard and provided teaching guidelines, examples and

the portfolio of students’ work. Those resources could

equip teacher for their future instruction under the new

curriculum standards.

In 2014, the ministry of education [MOE] in Taiwan

announced the Grades 1-12 Curriculum Guidelines. In the

Grades 1-12 Curriculum Guidelines, a new learning area -

Technology which includes Living Technology and

Information Technology, is added and will be launched in

2018 academic year. Computational thinking is the center

theme of the new K-12 computing curriculum draft in

51

Taiwan. The purpose is to develop students’ ability of

computational thinking and to enable them to formulate

abilities of problem solving, team collaboration,

creativity, and communicating and expressing. It is also

meant to make students’ great attitude in information

society and habits of utilizing information technologies.

In elementary school, the instruction focuses on the

practice and application to cultivate students’ ability of

utilizing information technologies in daily life. In Grades

7-9, the instruction emphasizes to utilize information

technologies and computational thinking to solve

problems. In Grades 10-12, by exploring computer

science, the instruction enables students to realize the

principle of computational thinking and it puts emphasis

on the integration and application.

A required course, named Information Technology, will

require students to take one hour per week or equivalent

time in Grade 7 through Grade 9 and two credits at Grades

10 to 12. The learning performance of Information

Technology includes (1) computational thinking and

problem solving, (2) information and collaborative

creation, (3) ICT and communication and expression, and

(4) using attitude of ICT. The learning contents includes

six categories, which are (1) programming, (2) algorithm

design, (3) system platform, (4) data representation,

processing and analysis, (5) application of ICT and (6)

ICT and social, legal and ethical issue. In fact, the

curriculum draft only outlines the key themes in each

content category. (see Appendix A for details).

Three selective courses are planned to implement at

Grades 10-12, including Advanced Programing, Projects

in ICT application, and Robotic Programming. Students

could learn more professional knowledge and skills

needed for future career and learning performances which

include expression and sequence of operation, ICT

creation and ICT attitude.

To provide teachers with great flexibility, the K-12

computing curriculum draft only outlines themes and

topics for students to learn, without further details on key

concepts to be covered. It will certainly be a challenge to

the textbooks writers and the computing teachers to decide

which concepts to teach and which to skip.

We conducted a Delphi technique study to give

suggestions for the “key learning concepts” to be included

in the K-12 computing curriculum draft in 2016. The first

draft of Delphi survey questionnaire consists of six themes

(programming; algorithm design; system platform; data

representation, processing and analysis; application of

ICT; ICT and social, legal and ethical issue) and 117

learning concepts developed from the computing

curriculum. After three-rounds of survey, the expert panel

derived 92 key learning concepts. Concepts which are not

yet get consensus from the experts had been examined and

provided recommendations for when included in learning.

The results serve as useful references for computing

teachers and textbook authors when implementing the new

curriculum. At the same time, the study found the

computer scientists and computing teachers had different

points. Computer scientists put great attention on the

depth, breadth and prior knowledge of learning contents,

and meanwhile computing teachers expressed their views

by teaching experiences. Therefore, we believed there

were some different points on those learning concepts

between these two groups and it is worth discussing.

So, the purpose of this study was to understand the

different views on learning concepts of the k-12

computing curriculum draft between computer scientists

and computing teachers.

2. METHOD
The data analyzed in this study were based on the Delphi

survey which investigating the key concepts

recommended for a proposed national K-12 computing

curriculum in Taiwan. The Delphi survey was to derive

consensus from a panel of twenty-one experts, including

nine computer scientists and twelve secondary school

computing teachers. Computer scientists were college

professors from CS related fields, who had research or

educational experiences in secondary school CS

education; whereas, computing teachers were certified

secondary Computing teachers who owned either a CS

related master or PhD degree.

This study was to analyze the results of the last survey.

After three rounds of surveys, all of experts should know

each other’s opinions, and the results of this phase present

their thoughtful views. In the results and discussions

section, we looked into the experts’ views from surveys

and round-table discussion to express the different points

in the two groups.

3. RESULTS
This section describes the results from the Delphi study

following the six categories of learning contents: (1)

programming; (2) algorithm design; (3) system platform;

(4) data representation, processing and analysis; (5)

application of ICT; (6) ICT and social, legal and ethical

issue. Based upon the results, the different views on the

secondary level learning concepts of computing

curriculum draft between computer scientists and

computing teachers had been depicted.

3.1. Programming

Experts from the two groups had different views about

what “key learning concepts” in three learning contents.

 (1) “1.1 Basic concepts of programming languages.”

Computing teachers thought students should learn the

types of programming languages to grasp the concepts

about the categories of programming paradigms.

However, in many of computer scientists’ opinions, the

programming paradigm was too abstract for students to

learn before they learn this programming language.

Computer scientists also argued that such learning

concepts would cause the students to learn in rote because

they could not understand about the paradigm exactly.

(2) “1.3 Implementation of arrays.” The main difference

was on the concepts of time complexity. Computing

teachers thought this was an essential concept that students

should know; however, in computer scientists’ opinion it

was too difficult for secondary school students to learn.

52

(3) “1.6 Implementation of fundamental algorithms-

recursion, searching, sorting, and divide and conquer.”

The difference between the two groups was the learning

of recursion. Lots of computer scientists thought recursion

was too difficult, but in computing teachers’ opinion, the

concept of recursion was related to mathematical

induction taught in mathematics class, therefore it would

not be too difficult for students to understand, in addition,

this concept was important for realizing the computing

power by programming.

3.2. Algorithm design

Experts from the two groups had different views about

what “key learning concepts” in four learning contents.

(1) “2.1 Basic concepts of algorithms-problem

decomposition and flow control.” The key difference was

in what grade should this content be taught. The content

was planned to taught at grade 7. From some computer

scientists’ perspective, teaching of this concept should

focus on expressing the problem-solving process by

flowcharts or pseudocodes rather than introducing the

algorithm to the grade 7 students.

(2) “2.4 concepts and application of fundamental data

structures- tree and graph.” Both groups agree that it was

important. However, due to the limited instruction time,

experts from the two groups had different opinions about

what concepts or skills about data structures should be

included, e.g., concepts and application of tree traversal.

(3) “2.5 concepts and application of fundamental

algorithms—recursion and divide and conquer.”

Computer scientists thought recursion was too difficult.

(4) “2.6 performance analysis of algorithms.” Computer

scientists suggested that at secondary level, the content of

performance analysis of algorithms should be focused on

observing the programming efficiency rather than deriving

the time/space complexity, which was too theoretical.

Students only need to learn simple tools and methods of

performance analysis and its concepts of program

optimization.

3.3. System platform

In this topic, experts from the two groups had different

view about what “key learning concepts” in one learning

contents.

“3.1 The development and evolution of system platforms.”

Both groups, especially the computer scientists, thought it

was not essential to learn the evolution and personage of

the computer science. They did not think those concepts

are not required for understanding computing, and they

were afraid that students would only memorize the

knowledge. The other reason was that there are debates on

representative personages.

3.4. Data representation, processing and analysis

Experts from the two groups had different views about

what “key learning concepts” in the learning contents.

“4.3 Concepts and methods of data processing-data

consolidation, data compression, data conversion.” Since

the computer scientists worried that the topic would be

taught as the “data mining” class in college, they argued

that this topic should only include fundamental concepts

and methods, e.g. the principles and importance of data

conversion, rather than theoretical parts of the data

conversion algorithms. More practical examples and

hands-on activities should also be included in instruction.

But the computing teachers did not mention about this.

3.5. Application of ICT

Experts from the two groups had consensus in all of

learning contents, “5.1 Data processing projects-data

searching, data organization and representation, data

computing and analysis”, “5.2 Information technology

projects-multimedia applications, programming

applications”, and “5.3 Concepts and tool use in

collaborative digital creation”. Because the 5.1 and 5.2

were planned at grades 7 to 9 in the computing curriculum

draft, some computer scientists believed that only senior

high school students had enough abilities to conduct

projects.

3.6. ICT and social, legal and ethical issues

Experts from the two groups had different views about

what “key learning concepts” in one learning contents.

“6.3 Information security, ethics, and legislation.”

Although the opinion was not obviously disagreed, some

computing teachers pointed out that due to students have

limited knowledge about advanced techniques in

computer science, the learning concepts of information

security should be emphasized on its importance but not

the algorithms.

4. DISSCISSIONS
In summary, the major differences between the computer

scientists’ and the computing teachers’ opinions on

learning concepts are as the following:

 (1) Projecting the curriculum from the learning contents

of different learners

Computer scientists in our study were college professors

in CS related fields, and they tended to view the k-12

computing curriculum draft on the basis of courses in

universities, especially when the same terminologies were

adopted in the curriculum draft. Besides, some learning

contents outlined in the curriculum draft are either well-

known courses in college computing curriculum or

matured fields in computing discipline, e.g., algorithm,

machine learning, and big data. Based on the computer

scientists’ past learning and teaching experiences in

universities, computer scientists tended to disagree to

teach secondary school students with similar concepts

taught in the college, especially those theoretical or

difficult concepts for college students. These differences

could be found in learning concepts of programming,

algorithm design and data representation, processing and

analysis. Computer scientists were opposed to including

theoretical or advanced concepts such as recursion,

searching and sorting, data compression and data

conversion.

53

Computing teachers, on the other hands, had practical

experiences in teaching computing in secondary schools.

They knew how to explain the core aspects of these

concepts by demonstrating relevant examples and

supporting students’ learning with appropriate tools (for

example, visualization programming platforms), therefore

were more inclined to include the theoretical contents.

 (2) Philosophy on how CS should be taught in schools

It is common in Taiwan that computing subject at

secondary level is either application-oriented, in which

application software (such as Microsoft Offices or

Photoshop) are delivered and the students only learn low-

level skills to use computer software/hardware; or

knowledge-oriented, which focuses more on theories and

factual knowledge in computer science. It is a general

impression that computing subjects in the schools are

either too trivial or too theoretical.

Computer scientists in this study, in general, hoped to

inspire students’ interests in learning computing and foster

their problem-solving ability by applying computing skills

for everyday life or careers, rather than to learn factual

knowledge. They thought secondary school students

should learn by hands-on experiences and develop their

interests in computing fields, especially in programming

and algorithm design. They also suggested that the history

of computer science is not required in learning computing,

because they were afraid that would become rote learning.

The points could be found from their disagreement with

teaching the development and evolution of programming

language and system platform.

 (3) Different professional background in computing

science

Some learning contents in the k-12 computing curriculum

draft are new ones which were not addressed in the

previous K-12 computing curriculum (e.g., divide and

conquer). Computing teachers were not familiar with

those contents, therefore had a conservative attitude

toward inclusion of these concepts.

As mentioned above, computing teachers might associate

some concepts listed in the k-12 computing curriculum

draft with computer application software (e.g., excel and

photoimpact) in present teaching experiences and as a

result it could affect their opinions of learning concepts.

This point could be found in the concepts of data

compression and data cleaning included in ‘Data

representation, Processing and analysis.’ Those are

complex and professional fields in the computing

discipline, and therefore computer scientists delivered

different opinions.

5. CONCLUSIONS
The purpose of the study was to explore the differences of

opinions about the learning concepts of the K-12

computing curriculum draft between computer scientists

and computing teachers, and discuss possible reasons.

Based upon the results, it was revealed that computer

scientists had more conservative attitude toward including

advanced learning concepts. They suggested that some

advanced and theoretical concepts should not be included

at the secondary level, e.g., recursion, searching, sorting,

data compression, data conversion, and divide and

conquer. This might due to the lack of teaching

experiences in secondary schools, or the past learning or

academic experiences in these topics. Generally, computer

scientists seemed not to believe that abstruse theories

could be simplified and taught at secondary level by

applying examples or learning tools.

The experts in this study were selected with the

consideration of their professional knowledge, teaching

experiences, and familiarity of the K-12 computing

curriculum draft. On the basis of the results the study

suggests that, in the related researches, the selected experts

could have all of the specific knowledge or be fully

debriefed the rationale of the K-12 computing curriculum

draft prior the research. As a result, they can consider

computing learning concepts from both sides of theory and

practice.

Based on the research findings, the researchers in the

future can develop the materials and tools or conduct

experiments in secondary schools to test the different

views which have found from the study (e.g., recursion,

searching and sorting, data compression, data conversion

and divide and conquer). Furthermore, the results can

serve as useful references for revising the computing

curriculum in the future.

6. ACKNOWLEDGMENT
This research is supported by the Ministry of Science and

Technology, Taiwan, R.O.C. under Grant no. NSC 103-

2511-S-003-023.

7. REFERENCES
Australian Curriculum, Assessment and Reporting

Authority (ACARA). (2013). The Foundation to Year

12 Australian Curriculum.

Computer Science Teachers Association (CSTA). (2011).

CSTA K-12 Computer Science Standards.

Department for Education, England. (2013). National

curriculum in England: computing programmes of

study.

International Society for Technology in Education

(ISTE). (2014). Computational Thinking for all.

Ministry of Education, Taiwan. (2014). The Grades 1-12

Curriculum Guidelines. Taipei: Author.

Ministry of Education, Taiwan. (2016). The k-12

computing curriculum draft.

Appendix A: The Learning Contents for the

Draft Computing Curriculum

1. Programming

1.1 Basic concepts of programming languages (G7)

1.2 Structured programming-conditional structures

and loops (G7)

1.3 Implementation of arrays (G8, G10-G12)

54

1.4 Concepts of modular programming (G8)

1.5 Implementation of modular programming (G8)

1.6 Implementation of fundamental algorithms-

recursion, searching, sorting, and divide and

conquer (G10-G12)

2. Algorithm Design

2.1 Basic concepts of algorithms-problem

decomposition, flow control (G7)

2.2 Concepts and application of arrays (G8)

2.3 Introduction to basic algorithms-searching and

sorting (G8)

2.4 Concepts and application of fundamental data

structures- tree and graph (G10-G12)

2.5 Concepts and application of fundamental

algorithms—recursion and divide and conquer

(G10-G12)

2.6 Performance analysis of algorithms (G10-G12)

3. System Platform

3.1 The development and evolution of system

platforms (G9)

3.2 The architecture and operations of system

platforms (G9)

3.3 Concepts of networking techniques (G9)

3.4 Concepts of network applications (G9)

3.5 Task management and resources allocation,

distributed system, routing (G10-G12)

3.6 The future trends of system platforms (G10-

G12)

4. Data Representation, Process, and Analysis

4.1 Principles and methods of data digitalization

(G9)

4.2 Methods of digital data representation (G9)

4.3 Concepts and methods of data processing-data

consolidation, data compression, data

conversion (G9)

4.4 Basic concepts of big data (G10-G12)

4.5 Basic concepts of data mining and machine

learning (G10-G12)

5. Application of ICT

5.1 Data processing projects-data searching, data

organization and representation, data computing

and analysis (G7)

5.2 Information technology projects-multimedia

applications, programming applications (G9)

5.3 Concepts and tool use in collaborative digital

creation (G10-G12)

6. ICT and social, legal and ethical issues

6.1 Future study and career development of

information technology related areas (G7, G9,

G10-G12)

6.2 Impacts of information technology on society

and human life (G8, G9, G10-G12)

6.3 Information security, ethics, and legislation (G7,

G8, G10-G12)

6.4 Fair-use doctrine for information technology

(G7, G10-G12)

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

55

Teaching Computational Thinking by Gamification of K-12 Mathematics: Mobile

App Math Games in Mathematics and Computer Science Tournament

Chee-wei TAN*, Pei-duo YU, Ling LIN, Chung-kit FUNG, Chun-kiu LAI, Yanru CHENG

Department of Computer Science, City University of Hong Kong

cheewtan@cityu.edu.hk, peiduoyu2-c@my.cityu.edu.hk, hkalexling@gmail.com,

sa9510@gmail.com, cklai24-c@my.cityu.edu.hk, 1754103129@qq.com

ABSTRACT
Teaching computational thinking can be viewed as

cultivating the capacity for logical thinking and problem-

solving skills applied to foundational subjects such as

mathematics. We report a pilot study on how carefully-

designed mobile app games that gamify elementary

algebra learning are used in an annual computer science

tournament and also at an annual mathematics festival in

Hong Kong. We define mathematics gamification as the

process of embedding mathematical concepts and their

logical manipulations in a puzzle game-like setting aided

by computing technologies. We have evaluated the

learning efficacy of our mobile app games to gain

numeracy proficiency in an annual computer science

tournament for middle school students in Hong Kong.

KEYWORDS
Mathematics education, mathematics gamification,

mobile app games, pedagogy, K-12 mathematics.

1. INTRODUCTION
Marvin Minsky, in his 1970 Turing Award Lecture,

asserted that, “The computer scientist thus has a

responsibility to education…how to help the children to

debug their own problem-solving processes.” [1]. Minsky

pointed out that cultivating the capacity for logical

thinking and problem-solving skills of students, while they

are young, to learn foundational subjects such as

mathematics is of the essence. The emphasis is on the tools

and motivations for students to acquire problem-solving

skills in lifelong learning of mathematics. Computer

science and its software technologies might just offer an

intriguing way for students to persist and persevere in

learning mathematics. We describe a pilot pedagogical

study on learning K-12 mathematics through mathematics

gamification ideas and tested at a computer science

tournament in Hong Kong.

We define mathematics gamification as the process of

embedding mathematical concepts into puzzle game-like

instantiations that are aided by computing technologies.

We focus on the software development for typical

computing technologies run on a mobile device of the

learner. Game playing is essentially the manipulative of

mathematical objects or structures in a logical manner

such to acquire useful mathematical insights that

otherwise are not obvious or taught in traditional

classrooms. Also, the engaging game-like nature can

potentially motivate students and serve as instructional

tools for regular practice to gain proficiency in

mathematics and numeracy.

2. ALGEBRA GAMIFICATION
Elementary algebra—the first cornerstone of K-12

mathematics—has been highlighted by the National

Academy of Engineering in [3] as a critical area to

improve in K-12 mathematics learning (in fact touted as

an Algebra Challenge). How should the Algebra

Challenge be addressed from teaching computational

thinking skills with an aim to underpin the foundation of

learning mathematics? Can this complement traditional

classroom learning? It has been recently recognized

(among them are mathematicians like Keith Devlin from

Stanford University) that game-playing activities allow

players to grasp mathematical concepts and foster a sense

of motivation that leads to numeracy proficiency

especially when the game is designed to embed abstracted

mathematical subjects [4-8].

Algebra gamification is a pedagogical approach to

learning elementary algebra. This can be especially useful

when used at an early stage of a K-12 education to give

students a heads up with learning an advanced topic that

might only be encountered later in classroom teaching. In

this paper, we report on how this idea of mathematics

gamification can be designed as mobile game apps that are

suitable for middle school students when the mobile apps

are deployed in mathematics-related game tournaments

and then to analyze preliminary efficacy of learning

behavior based on collected data. Put simply, this teaches

students how to think (about learning mathematics) at

multiple levels of abstraction – the goal of teaching

computational thinking [2]. The particular instance of

gamifying algebra in this paper is due to Terence Tao, a

mathematician at the University of California, Los

Angeles, who remarked in his online blog article [9] on

“Gamifying Algebra” that:

The set of problem-solving skills needed to solve algebra

problems (and, to some extent, calculus problems also) is

somewhat similar to the set of skills needed to solve puzzle

type computer games, in which a certain limited set of

moves must be applied in a certain order to achieve a

desired result one could then try to teach the strategy

component of algebraic problem-solving via such a game,

which could automate mechanical tasks such as gathering

terms and performing arithmetic in order to reduce some

of the more frustrating aspects of algebra ... Here, the

focus is not so much on being able to supply the correct

answer, but on being able to select an effective problem-

solving strategy.

56

Tao’s insightful remarks aptly highlight two key facts,

namely that (i) certain kinds of K-12 mathematics are

amenable to game design that can motivate student to

learn, and (ii) problem-solving skills can be cultivated

through this gamifying process as a means to learning the

mathematical subject. In other words, there are several

ways to solve elementary algebra — strategizing moves in

a mathematical puzzle game is one of them. With the aid

of computing technologies, this introduces novel

perspectives to learn elementary algebra for young

students. Also, in [10], Tao developed a software mock-

up of the game as shown in Figure 1.

Figure 1. Terence Tao’s software mock-up.

The idea of Tao's algebra game is to reduce a given linear

algebra equation to a form with only “x” and a numerical

value on the lefthand and righthand side respectively

through a selection of a finite number of given clues. Let's

give an example using a screenshot of the game as shown

in Figure 1. Initially, the puzzle state is the algebra

equation “5x + 3 = x + 11” and the given clues are the three

possibilities “Subtract 1”, “Divide by 2” and “Subtract x”.

The player chooses one of the three possibilities by

clicking on the avatar icon. Say, suppose the player

chooses “Subtract 1”, the algebra equation

(correspondingly, the puzzle state) then changes to “5x +

2 = x + 10” (since both sides of the original equation “5x

+ 3 = x + 11” get subtracted by one).

One possible “solution” to the puzzle given in Figure 1 is

the sequence of “Subtract 1” then “Subtract x” then

“Divide by 2” then “Subtract 1” and then finally “Divide

by 2” to yield “x = 2”. This requires a total of five moves

to reach the desired state. It is important to note that what

matters is not the final value of x, but it is rather the

inquisitive problem-solving process while playing that is

valuable.

The benefit to computational thinking is obvious: students

learn a foundational subject (e.g., mastering algebra) while

playing. There are several intriguing questions: first, how

to engineer the difficulty level of the game automatically?

Second, how does a computer (not human player) solve a

given puzzle efficiently, i.e., with the fewest number of

moves? And, third, how to engage the human players in

an entertaining manner so that they keep on playing it and,

unknowingly, develop a better number sense or

mathematical intuition and that such an improvement can

be measured? These questions were explored in The

Algebra Game Project founded by the first author [11],

and detailed answers to these questions along with the

software development will be published in other venues.

3. MOBILE APP GAMES WITH

MATHEMATICS GAMIFICATION

In this section, we briefly describe the mathematics

gamification building on Tao’s algebra game in [9] and the

software implementation in two mobile apps. One mobile

app is Algebra Maze and the other is Algebra Game, and

both mobile apps are freely-available for download at the

Apple iOS Store or Google Play Store [11].

In Algebra Maze, we combine maze solving and linear

algebra equation solving together as shown in Figure 2,

which is the game play screen shot of Algebra Maze. The

goal is to move the purple avatar toward the treasure (i.e.,

equivalently solving the linear equation). Each movement

of the avatar corresponds to a mathematical operation on

the equation given below the maze. For example, the

button “+1x” corresponds to the avatar moving upward

one unit, and the button “+2” corresponds to the avatar

moving leftward two units. Hence, the operation on x is an

up-down movement and the operation on the constant is a

left-right movement of the avatar. With the rules above,

we can deduce that the position of the avatar also has

algebraic meaning, i.e., each position in the maze

represents a different equation with the same solution but

with different coefficients or constants.

In the initial levels, the treasure is visible, and in

subsequent higher levels, the treasure is rendered

invisible, i.e., hidden from the player as shown in the right

hand side of Figure 2. Hence, the player needs to make use

of the “information” in the given equation to deduce the

location of the treasure. In some levels, the player has to

first get a key, which is in a certain position of the maze,

before opening a locked door located nearby to the

treasure. This setting is equivalent to asking the player to

reach to a certain equation first before they solve this

equation. Finally, when the avatar locates the (potentially

hidden) treasure, the algebra equation will be in the

desired form “x=numerical_solution”, i.e., the puzzle is

solved.

In Algebra Game, we split the clues into two parts, one is

the operator “+, -, *, ÷” and the other one is the operand

such as the x-term or the number as in Figure 3. Hence,

the combination of the clues is more general than the

original design. The goal in Algebra Game is the same as

Tao's algebra game: To reduce a given linear algebra

equation to “x=numerical_solution” through a selection of

a finite number of given clues. As shown in the right hand

side of Figure 3, if the player “drag” the button “÷” and

“drop” it on the button “2” then the equation will be

divided by two on both side. Algebra Game is not only

about solving a linear equation, it also contains other

mathematical insights. For example, consider an equation

“x-23=2” with the clues “+, -” and “2, 3”, then this is

equivalent to ask if we are able to use 2 and 3 to construct

57

23. The players can develop their number sense through

playing this game. Let us use another example, consider

an equation “24x=48” with the clues “*, ÷” and “2, 3”,

then this is equivalent to asking the players to factorize 24

by using 2 and 3 (prime numbers). Other than the

factorization concept, there are many instances of

mathematical manipulations that can be embedded in the

Algebra Game such as the Frobenius’s problem (also

known as the coin problem) in the form of making up a

number from two given clues. In essence, given the

available clues at each level, the player can only perform

a limited number of operations, and this restriction helps

to stimulate computational thinking in finding a sequence

of moves to solve the problem. Coupled with the

mathematical analysis underpinning the difficulty level

design in the Algebra Game, players can further develop

intuitions to develop mathematical insights and intuition

while playing the Algebra Game.

The mathematics gamification process also requires

analyzing the scoring at each puzzle game level that can

be evaluated according to different reasonable design

criteria. For example, scoring can be evaluated in terms of

the number of moves needed or the speed to solve each

level in the case of the Algebra Game and the number of

“redo” on hitting obstacles or the speed to locate the

hidden treasures in the case of the Algebra Maze.

Furthermore, concrete mathematics can be purposefully

interleaved at certain levels of the games. For example,

after a consecutive sequence of games involving

factorization in the Algebra Game, the mathematical

statement of The Fundamental Theorem of Arithmetic

(stating that all natural numbers are uniquely composed of

prime numbers) can be displayed to the player in order to

highlight game features (e.g., the prime numbers as clues)

with the mathematical rudiment. In this way, the players

learn about fundamental mathematical knowledge (such as

The Fundamental Theorem of Arithmetic in Euclid’s

Elements that is not typically taught in classroom). In

summary, we find that the Algebra Maze and the Algebra

Game can provide players with new perspectives to

gaining new mathematical insights while training their

individual number sense and problem-solving skills that

are critical to develop their capacity to view mathematics

at multiple abstract levels.

Figure 2. Algebra Maze mobile app game with maze-like

gamification design and freely-available for download at

iTunes App Store and Google Play Store.

Figure 3. Algebra Game mobile app game with the

selected choice displayed at the right-hand side and freely-

available for download at iTunes App Store and Google

Play Store.

4. CASE STUDY OF COMPUTER

SCIENCE CHALLENGE TOURNAMENT

IN HONG KONG
The Computer Science Challenge (CS Challenge) was a

tournament organized by the Department of Computer

Science at City University of Hong Kong on 21 May 2016

for both primary and secondary school students in Hong

Kong [12]. A pair of students forms a team, and there were

altogether 32 teams from 19 primary schools, and 53

teams from 33 secondary schools, making a total of 170

students. One of the tasks in the CS Challenge was called

the Algebra Game Challenge, in which the Algebra Maze

and Algebra Game are used for the primary school

students (as shown in Figure 4) and the secondary school

students (as shown in Figure 5) respectively. Each of these

two tasks lasts for a fixed duration of twenty minutes. We

experiment with a pedagogical initiative of teaching

computational thinking to the participants as follows: a

workshop for all participants was held a month before the

CS Challenge, whereby participants were introduced to

basic computer science knowledge and the mathematics

58

behind the games. On the day of the CS Challenge,

however, participants used the mobile app software

described in Section 3 that allow more diverse game-

playing dynamics and also enable the use of data

collection and data analytics to capture the users’ game-

playing behavior. The mobile apps in [11] were not

available to the participants as they were posted online

after the CS Challenge was over.

We describe in the following how the first task of Algebra

Game and Algebra Maze based on data analytics of the

data collected in the tournament. We analyze the

performance evaluation of learning efficacy based on the

time spent at each level, each move that a user has taken,

and the number of “redo” times at each level. The

difficulty at each level is calibrated based on our

mathematical analysis of the game (from easy to hard),

and we expect to have a reasonable difficulty curve so that

players gain confidence instead of frustration at early

levels. Let us evaluate Algebra Game first. In Figure 6, we

see that the number of student drops sharply, about twenty

percent, from Level 9 to Level 10 which can also be

observed in Figure 7, the time spent in Level 10 almost

doubled in Level 9. In fact, the number of moves needed

in Level 10 is also almost double that needed in Level 9 as

shown in Table 1. We conclude that the total number of

moves needed at each level is a crucial factor in the

difficulty-level calibration design of the game.

Interestingly, the average number of moves needed at

Level 12 is around 8.8, and yet the time spent in Level 12

is the highest. This implies that the total number of moves

needed is not the only factor that may affect the difficulty

of the game for human players. Finally, the reason for the

longer time spent in Level 1 is that students are initially

warming up (as they get familiar with the game interface

and rules). If we omit the information in Level 1 and

proceed to compute the correlation coefficient between the

time spent and the average number of moves taken, then

we have a correlation coefficient that is 0.807 which

reveals that they are highly correlated for the twelve levels

being analyzed.

Table 1. Table of average moves taken by players in each

level of the Algebra Game.

Level 1 2 3 4 5 6

Average

Moves

3 2.65 3.84 3 5 5

Level 7 8 9 10 11 12

Average

Moves

4 5 4.77 10.1 20.1 8.8

Figure 4. Primary school student tournament of Algebra

Maze at the Computer Science Challenge on May 2016.

Figure 5. Secondary school student tournament of

Algebra Game at the Computer Science Challenge on

May 2016.

Figure 6. Percentage of number of students vs. the total

number of completed levels of Algebra Game during the

twenty-minute duration. An unlimited number of levels

were designed in the Algebra Game.

59

Figure 7. Average time a player spent at each level of the

Algebra Game.

Figure 8. Percentage of number of students vs. the total

number of completed levels of Algebra Maze during the

twenty-minute duration. A total of forty-five levels were

designed in Algebra Maze.

5. CONCLUSIONS
We described a pilot study on teaching computational

thinking by cultivating the capacity for logical thinking

and problem-solving skills of students using carefully-

designed mobile app games based on the mathematics

gamification of elementary algebra learning. Through the

aid of mobile computing technologies, the logical

manipulatives of the mathematical Algebra Game and

Algebra Maze are embedded within puzzle game-like

instantiations in a logical flow to catalyze the development

of mathematical intuitions and insights. Through

competitive game-playing in a Computer Science

Challenge tournament, we studied the learning efficacy of

the game software. We have also recently deployed the

game software for non-competitive learning at the Julia

Robinson Mathematics Festival in Hong Kong [13] with

the aim to share the mathematics behind the Algebra

Game and to evaluate the efficacy of these software tools

to learning advanced mathematics, the topic of which will

be reported elsewhere.

6. ACKNOWLEDGEMENT
We thank Sui-Yan Kwok, Yilan He, Zheng Zeng, Yun-

Fung Tin for assistance in software development.

7. REFERENCES
[1] Minsky, M. (1970). Form and Content in Computer

Science – 1970 ACM Turing Award Lecture. Journal of the

Association for Computing Machinery, Vol.17, No. 2,

1970.

[2] Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, Vol. 49, No. 3, pp. 33-35.

[3] Lavernia, E. J. and VanderGheynst, J. S. (2013). The

Algebra Challenge. The Bridge, Vol. 43, No. 2, The

United States of America National Academy of

Engineering: https://www.nae.edu/File.aspx?id=88638

[4] Devlin K., Mathematics Education for a New Era:

Video Games as a Medium for Learning. A. K. Peters, Ltd.

Natick, MA, USA, 1st Edition, 2011

[5] Pope, H., & Mangram, C. (2015). Wuzzit Trouble: The

Influence of Math Game on Student Number Sense.

International Journal of Serious Games, 2(4), 5. Retrieved

from http://documents.brainquake.com/backed-by-

science/Stanford-Pope-Mangram.pdf

[6] Shapiro, J. Video Games Are The Perfect Way to Teach

Math, Says Stanford Mathematician, Forbes Magazine.

2013 Aug.29. Retrieved from

https://www.forbes.com/sites/jordanshapiro/2013/08/29/v

ideo-games-are-the-perfect-way-to-teach-math-says-

stanford-mathematician/#7e90367a385b

[7] Mackay, R. F. (2013, March 1). Playing to learn: Can

gaming transform education?. Graduate School of

Education, Stanford University. Retrieved from

https://ed.stanford.edu/news/playing-learn-can-gaming-

transform-education

[8] Novotney, A. (2015). Gaming to learn. Monitor on

Psychology, 46(4), p. 46, Retrieved from

http://www.apa.org/monitor/2015/04/gaming.aspx

[9] Terence Tao, Gamifying Algebra, Terence Tao’s

Wordpress blog article, 2012:

https://terrytao.wordpress.com/2012/04/15/gamifying-

algebra

[10] Terence Tao, Software Mockup of Algebra Game,

2012: https://scratch.mit.edu/projects/2477436

[11] The Algebra Game Project:

http://AlgebraGamification.com

[12] Computer Science Challenge Game Tournament in

Hong Kong: http://CSChallenge.io

[13] The Julia Robinson Mathematics Festival in Hong

Kong: http://www.AlgebraGamification.com/JRMF

https://www.nae.edu/File.aspx?id=88638
http://documents.brainquake.com/backed-by-science/Stanford-Pope-Mangram.pdf
http://documents.brainquake.com/backed-by-science/Stanford-Pope-Mangram.pdf
https://www.forbes.com/sites/jordanshapiro/2013/08/29/video-games-are-the-perfect-way-to-teach-math-says-stanford-mathematician/#7e90367a385b
https://www.forbes.com/sites/jordanshapiro/2013/08/29/video-games-are-the-perfect-way-to-teach-math-says-stanford-mathematician/#7e90367a385b
https://www.forbes.com/sites/jordanshapiro/2013/08/29/video-games-are-the-perfect-way-to-teach-math-says-stanford-mathematician/#7e90367a385b
https://ed.stanford.edu/news/playing-learn-can-gaming-transform-education
https://ed.stanford.edu/news/playing-learn-can-gaming-transform-education
http://www.apa.org/monitor/2015/04/gaming.aspx
https://terrytao.wordpress.com/2012/04/15/gamifying-algebra/
https://terrytao.wordpress.com/2012/04/15/gamifying-algebra/
https://scratch.mit.edu/projects/2477436/
http://algebragamification.com/
http://cschallenge.io/
http://www.algebragamification.com/JRMF

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

60

Profile of a CT Integration Specialist

Joyce MALYN-SMITH1, Irene A. LEE2, Joseph IPPOLITO1

1 Education Development Center

2 Massachusetts Institute of Technology

jmsmith@edc.org, ialee@mit.edu, jippolito@edc.org

ABSTRACT
This paper describes the findings from the Education

Development Center’s (EDC) project on Computational

Thinking (CT) called “Broadening Participation of

Elementary School Teachers and Students in Computer

Science through STEM Integration and Statewide

Collaboration.” It presents the process used to define the

primary job functions and work tasks of a CT Integration

Specialist in today’s education settings. Authors describe

how the requisite knowledge, skills and practices of the

CT integration specialist were assembled and vetted. The

article presents ways this profile can be used to guide

elementary school teachers in integrating CT into their

classrooms and as a framework to guide the development

of CT learning activities and assessments, then sets the

directions for future work.

KEYWORDS
Computational thinking, elementary education,

integration, skill standards, workforce development.

1. INTRODUCTION
There has been much recent debate about the definitions

of CT and the relative merits of different definitions

(Wing, 2006; Committee for the Workshops on

Computational Thinking, 2010; Cuny, Snyder & Wing,

2010; Barr & Stephenson, 2011; Lee et al., 2011; Grover

& Pea, 2013; Engelmann, 2014; Voogt et al., 2015;

Weintrop et al., 2016). This debate has created confusion

within education circles. EDC was funded by the

National Science Foundation to develop curricular

modules “iMods” that integrate CT into science and math

lessons at the 1st -6th grade levels. To build a better

understanding of CT integration within elementary

schools, the project spearheaded an effort to research

what Kindergarten-8th grade (K-8) teachers need to know

and be able to do to successfully integrate CT into

classroom lessons. The project team conducted a

modified DACUM (Developing a Curriculum) process,

a well-researched methodology used to develop

curriculum designed to prepare people for career success,

to create the profile. The resulting profile includes the

universe of work tasks associated with a specific job and

the skills, knowledge and behaviors needed to conduct

those work tasks successfully.

This paper describes the research process and findings

resulting from the application of a modified DACUM

process to describe the work activities of the classroom

teacher who integrates CT into disciplines they teach

and/or the specialist who assist them in CT integration.

At the time this research was conducted, no such job as

the “CT Integration Specialist” existed.

2. BACKGROUND
Building on a legacy of experience in developing

national skill standards (Leff & Aring, 1995; Norton,

1997; Dahms & Leff, 2002; Education Development

Center, 2012; Ippolito, Latcovich, Malyn-Smith, 2008)

EDC’s STEM+C project produced an occupational

profile that defined, in concrete terms, the work of a

“Computational Thinking Integration Specialist”; then

identified and validated with expert CT educators the

“computational thinking” skills and competencies that

are used by CT integration specialists. An occupational

profile of the type produced by EDC presents a detailed

synopsis of what a particular professional does, as well

as the skills, knowledge and behaviors that enable him/

her to succeed in the workplace. These occupational

profiles provide important information to educators who

use them to guide the design of pre-service and in-service

curriculum and training programs. The process

employed was one that had been used successfully for

decades to develop curriculum for technical occupations

(Big Data) and national skill standards for emerging

industries (Biosciences) and industries undergoing

substantive changes in professional and technical job

responsibilities (Human Services). This research is not

intended to contribute to or address ongoing discussions

related to transfer. It is meant to help describe what

classroom teachers and/or CS support specialists need to

know and be able to do when integrating CT into various

disciplines.

3. DEVELOPMENT PROCESS
A modified DACUM process (Developing A

CUrriculuM) (Norton, 1997) was used to produce the

profile of the CT Integration Specialist. DACUM is an

internationally known methodology used by expert

practitioners in an occupational field to identify the

major areas of work and the constituent tasks that define

successful job performance. The DACUM method has

been used internationally for more than half a century to

develop curricula based on identified core workforce

competencies. This process rests upon three basic

principles:

● Expert workers can describe and define their jobs

more accurately than anyone else.

● An effective way to define a job is to precisely

describe the tasks that expert workers perform.

● All tasks, in order to be performed correctly,

demand certain knowledge, skills, resources, and

behaviors.

Traditional DACUM analyses invite expert practitioners

representing a single occupation. The “modified”

mailto:ialee@mit.edu

61

DACUM approach used successfully by EDC engages

expert workers from a range of related occupations who

share a common core of work tasks, knowledge, and

skills.

The work process involved three distinct steps: building

a team, defining a learning occupation, developing a

profile of the CT integration specialist.

Building a team: EDC assembled a project team that

included 3 highly qualified skill standards developers

experienced in conducting occupational analyses. Their

first and perhaps most important task was to recruit

individuals recognized by their peers as experts in

integrating CT into K-8 curricula to serve on a national

panel to define the work of a CT Integration

Specialist. The DACUM process requires the following

criteria be used to select panelists: 1) recognition by

peers as experts in their field (integrating CT into

disciplinary lessons), and 2) a minimum of 2 years

experience in performing the work described in the

profile. In addition every effort was made to include

gender, geographic, and cultural diversity among the

panelists. The 11 panelists represented a range of subject

areas, occupational levels, and work settings (elementary

and middle school educators, technology specialists and

computer science educators). For the purposes of this

research we dubbed these individuals “CT Integration

Specialists” and framed the profile around their

definition of that role. The panel was convened by the

National Science Foundation funded STEM+C project

entitled “Broadening Participation in Elementary School

Teachers and Students in Computer Science through

STEM Integration and Statewide Collaboration.” The

panel’s work sessions were held at Education

Development Center’s world headquarters in Waltham,

MA in August 2016.

Defining a learning occupation: The panel’s first task

was to come to agreement on the learning occupation

defining the CT Integration Specialist. A “learning

occupation”, adapted from best practices in Germany and

other countries (Leff & Aring, 1995) is an invented

construct used to describe a set of cross cutting tasks,

skills, knowledge and attributes required to perform a

range of job functions conducted in a group of related

real-life occupations. In this regard the learning

occupation of CT Integration Specialist was meant to

help define the work of both teachers at various grade

levels, and also technology and computer science

specialists who support classroom teachers as they

integrate CT into their curricula. For the purpose of

developing curricula, the profile identifies the universe

of work functions and tasks that a CT Integration

Specialist might be called upon to perform. The Learning

Occupation provides a framework for development of

courses/professional development. It is not meant to be

a “job description” performed by a single individual.

The first task undertaken by this panel of experts was to

discuss and refine the proposed Learning Occupation so

that it captured the essence and commonalities of their

own work. Panelists came to consensus around the

following definition that set the boundaries for the

occupational profile. “The CT Integration Specialist

recognizing that CT is integral to learning, is a teacher

who models and integrates CT across academic

disciplines and/or /out-of-school activities by

establishing an inclusive culture while using, modifying

and creating CT activities and assessments of student

learning.”

Developing a profile of the CT Integration Specialist:
Once the learning occupation was defined and agreed

upon, the expert panel developed a profile of the CT

integration.

The profile development work session involved panel

members in a guided dialogue that includes

brainstorming, identifying and organizing work

responsibilities, revisiting and refining those work

responsibilities until consensus was reached. The

ensuing guided dialogue provided descriptions of

concrete, observable activities for which the panelists use

CT and that met the definition of the Learning

Occupation. The work session yielded the first draft of a

profile of the CT Integration Specialist. Subsequent to

the two-day work session, the expert panel members

reviewed and commented on the draft profile.

The panel identified 6 large functional groupings or “job

functions” described as follows: “A Computational

Thinking Integration Specialist ….”:

1. Establishes a CT learning

environment in the classroom

2. Creates lesson plans that integrate CT

with all subjects

3. Facilitates student learning

4. Engages stakeholders in support of

CT learning

5. Teaches students to apply CT

concepts and practices

6. Engages in professional learning/

development in support of CT and content areas

The panelists identified 68 activities/work tasks

performed by CT Integration Specialists described in the

learning occupation. Each of the 68 tasks was grouped

under the job function (or duty) category to which it best

corresponded. In addition, the panelists developed lists

of the Skills, Knowledge and Behaviors of CT

Integration Specialist as well as selected

Equipment/Tools and Supplies used as they are engaged

in those activities listed (see Table 1 below for the duties

and tasks of a Computational Thinking Integration

Specialist).

4. NEXT STEPS: Although the profile identified

the work tasks in which CT Integration Specialists

engage, concrete examples that describe what this work

“looks like in action” are needed to build a strong

dialog between CT Integration Specialists and non-

computer science educators who are struggling to

62

understand CT and connect it to learning objectives in

their classes. In summer and fall of 2017 EDC will host

a CT Workshop for a small group of NSF ITEST and

STEM+C grantees whose work focuses on integrating

CT into various disciplines. Workshop participants will

develop a framework that describes what CT looks like

“in action” at various grade levels and along learning

progressions related to the concept/constructs that

undergird their CT work. The profile of the CT

Integration Specialist, along with other CT resources

will inform the development of that framework.

Profiles such as these have many uses. The profile can be

used:

● by teachers learning how to integrate

computational thinking into their classes and as a

professional development resource;

● by faculty at the post-secondary and secondary

levels to design or modify programs and/or

courses;

● by school superintendents and other employers

creating job descriptions and interview questions

for hiring; and

● by job seekers developing their resumes and

preparing for interviews.

Authors hope that this work pushes the field forward in

thinking about what it takes to integrate computational

thinking into the disciplines; and helps to clarify the

emerging skill sets needed for teachers seeking to

become CT Integration Specialists.

Table 1: Duties and tasks of the CT integration

specialist (excerpted from EDC’s Profile of a

Computational Thinking (CT) Integration Specialist,

2016.)
Duty 1: ESTABLISHES A CT LEARNING ENVIRONMENT IN

THE CLASSROOM

Task 1A. Creates student-centered spaces that accommodate their needs.

Task 1B. Obtains physical resources (e.g., technology).

Task 1C. Establishes expectations and procedures.
Task 1D. Establishes systems for management of resources (e.g.,

equipment).
Task 1E. Creates an environment respectful of divergent ideas and

abilities.
Task 1F. Promotes student dispositions conducive to CT (e.g.,

celebrates failure as a first attempt in learning, encourages

persistence when setbacks occur, develops iterative

refinement of initial ideas).
Task 1G. Fosters collaboration.
Task 1H. Promotes student leadership (e.g. engages mentors).
Task 1I. Promotes ethical use of resources.
Task 1J. Encourages multiple solutions to the same problem.
Duty 2: CREATES LESSON PLANS THAT INTEGRATE CT

WITH ALL SUBJECTS
Task 2A. Determines CT outcomes as manifested within the subject

matter.

Task 2B. Researches lesson plans that lend themselves to CT.

Task 2C. Collaborates with peers to identify how to integrate CT (e.g.,
vertical alignment, cross curricular connections).

Task 2D. Aligns lessons to standards (e.g., NGSS, Common Core,

Mathematics, CSTA, State CS standards).

Task 2E. Develops a course outline that indicates location and

allocation of time for CT integration.

Task 2F. Identifies students’ prior knowledge and interests.

Task 2G. Creates Kinesthetic computer based learning activities that

infuse CT (e.g., algorithms, data, modeling/simulation,
programming).

Task 2H. Creates differentiated instruction to accommodate different

learners (e.g., remediation & enrichment activities, IEP,

ESL).

Task 2I. Provides modifications and accommodations for students with

special needs.

Task 2J. Provides supports to address common misconceptions about

CT and the discipline.

Task 2K. Procures materials and resources.

Task 2L. Creates contingency plan (e.g., technology failure).

Task 2M. Creates an assessment rubric.

Duty 3: FACILITATES STUDENT LEARNING

Task 3A. Builds CT vocabulary.

Task 3B. Uses CT technical language (e.g., algorithm, abstraction,

function, debugging) in a consistent manner.

Task 3C. Uses models to simulate real world phenomena and

processes. (e.g., makes connections between physical models

of real world phenomena and computer models of the same
phenomena).

Task 3D. Provides examples of CT ranging from concrete to abstract

(e.g., links common practices from the classroom to how they

pertain to computers using CT).

Task 3E. Provides open-ended guiding questions that promote

CT (e.g., provides opportunities for open ended artifact

construction that engage students in abstraction and
automation).

Task 3F. Calls out CT throughout the day (e.g., through thinking

aloud, identifying when algorithms are being used).

Task 3G. Exposes students to artifacts that use CT to solve real world
problems.

Task 3H. Empowers students to take ownership of learning through the

Use, Modify and Create process.

Task 3I. Manages student groups to promote collaborative learning
(e.g., pair programming, gender balance).

Task 3J. Provides opportunities to practice CT within subject matter

content (e.g., identifies patterns in nature and man made
phenomena, decomposes problems into sub-problems,

develops algorithms).

Task 3K. Provides opportunities to collect, use and represent authentic

data for storage, manipulation, and analysis on a computer.

Task 3L. Provides access to people who use CT in their professional

work (e.g., via teleconferencing, field trips, speakers).

Task 3M. Provides time for iteration design and development cycles.

Task 3N. Provides opportunities for students to share their
understanding of CT.

Task 3O. Guides students through self- evaluation and reflection.

Task 3P. Provides opportunities to program at various levels of

difficulty within subject matter content.

Task 3Q. Organizes students into teams based upon interests/
programming platforms.

Duty 4: ENGAGES STAKEHOLDERS IN SUPPORT OF CT

LEARNING

Task 4A. Hosts events that promote CT (e.g., model CT using

technology, Hour of Code, robotics competitions).

Task 4B. Communicates importance of CT and demonstrates activities

related to CT to community.

Task 4C. Advocates for CT integration at various venues (e.g.,

discipline specific conferences).

Task 4D. Shares CT standards and CT information resources.

Task 4E. Works with school system administration to support CT (e.g.
attends board meetings, invites administrators to observe).

Task 4F. Seeks support from professionals who use CT in their

everyday work.

Task 4G. Promotes CT through political avenues.

Task 4H. Partners with businesses for CT support (e.g., funding,
speakers, field trips).

Duty 5: TEACHES STUDENTS TO APPLY CT CONCEPTS

AND PRACTICES
Task 5A. Teaches how to compare and contrast human and computer

intelligences (in terms of power of and limits of each).

Task 5B. Teaches how to assess the difficulty of a problem from a

human and a computer perspective.

Task 5C. Teaches user interface of tool or environment for creating an
artifact (e.g., program, model, animation, mobile app.).

63

Task 5D. Teaches Computer Science concepts (e.g., instructions,
sequences, expressions and evaluation, booleans, variables,

and control mechanisms such as loops, conditionals,

randomness) and their applications.

Task 5E. Teaches iterative development.

Task 5F. Teaches debugging techniques.

Task 5G. Engages students in CT practices. (e.g., collecting and

analyzing data, using models, giving instructions,

decomposition).

Task 5H. Engages students in analyzing artifacts made by others using

CT.

Task 5I. Teaches how to modify artifacts to address a new problem.

Task 5J. Teaches how to create their own artifacts using abstraction

and automation.

Task 5K. Teaches how to use an artifact to study or solve a real-world
problem.

Task 5L. Teaches how to determine whether the artifact has met its

intended purpose.

Task 5M. Assesses student learning of CT concepts (e.g., CSTA, ISTE,
Common Core).

Duty 6: ENGAGES IN PROFESSIONAL LEARNING/

DEVELOPMENT IN SUPPORT OF CT AND

CONTENT AREAS
Task 6A. Stays current with emerging technologies, methods, tools,

standards, curriculum, programming languages / theory.

Task 6B. Maintains professional qualifications.

Task 6C. Seeks out mentors.

Task 6D. Mentors others.

Task 6E. Attends relevant conferences.

Task 6F. Engages in cross-discipline training.

Task 6G. Participates in professional organizations.

Task 6H. Develops ambassadors to promote CT.

Task 6I. Participates in a personal learning network (e.g, Twitter,

Google docs).

Task 6J. Shares best practices and resources.

5. REFERENCES
Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K–12: What is involved

and what is the role of the computer science

education community? ACM Inroads, 2(1), 48–54.

Committee for the Workshops on Computational

Thinking, 2010. Report of a Workshop on the Scope

and Nature of Computational Thinking, National

Research Council, Washington, D.C., National

Academies Press.

Cuny, J.E., Snyder, L., Wing, J.M., 2010.

Computational Thinking: A Definition. Unpublished

manuscript.

Engelmann, C. A. (2014). Final evaluation report:

Computational Thinking Symposium held on

Saturday, December 7, 2013 at the Santa Fe Institute.

Omaha, NE: Einstein Evaluation Group.

Dahms, A.S., Leff, J.A. Industry Expectations for

Entry-Level Technical Workers, Biochemistry and

Molecular Biology Education, 30, 4, (2002) 260-264.

Grover, S., & Pea, R. (2013). Computational Thinking

in K–12: A Review of the State of the Field.

Educational Researcher, 42(1), 38–43.

Integrating IT skills in law, public safety, corrections

and security career programs, second ed. (2008).

Education Development Center, Inc., Newton, MA

(Accessed 1/11/12 from http://itac.edc.org/)

Ippolito, J. Latcovich, M., Malyn-Smith, J. (2008). In

fulfillment of their mission: The duties and tasks of a

Roman Catholic priest, NCEA Publication, NY, NY.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Mayln-Smith, J., and Werner, L. (2011).

Computational thinking for youth in practice, ACM

Inroads Vol. 2 No.1.

Leff, J., & Aring, M. (1995). Gateway to the Future:

Skill Standards for the Bioscience Industry. Newton,

MA: Education Development Center, Inc., 27.

Norton, R. (1997). DACUM Handbook. Columbus, OH:

The Ohio State University.

Profile of a Computational Thinking (CT) Integration

Specialist. (2016). Education Development Center,

Inc., Newton, MA

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory

education: Towards an agenda for research and

practice. Education and Information Technologies,

20(4), 715–728. Retrieved from

http://link.springer.com/article/ 10.1007/s10639-015-

9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona,

K., Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and

Science Classrooms. Journal of Science Education

and Technology, 25(1), 127–147.

Wing., J. (2006, March). Computational thinking.

Communications of the ACM, 49(3), 33-35.

http://itac.edc.org/
http://link.springer.com/article/

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

64

 Enhancing the Link between Parent-Child in Learning Computational Thinking

Jane Yat-ching WONG1*, Pam Hau-yung WONG1, Robert Kwok-yiu LI1,3, Chee-wei TAN1,2,

1 CoolThink@JC Office

2 Department of Computer Science

3 Department of Physics and Materials Science

wong.jane@cityu.edu.hk, pam.wong@cityu.edu.hk, Robert.Li@cityu.edu.hk, cheewtan@cityu.edu.hk

ABSTRACT
To foster new generations becoming creators of

technology, CoolThink@JC (“Computational Thinking

Education,” n.d.), a four-year project sponsored by Jockey

Club Charities Trust in Hong Kong, aims to advocating

that “computational thinking is a fundamental skill for

everyone” (Wing, 2006, p.33). The project targets to

upper primary school students, and in that parent

education is one of the components. Particularly, parent

education focuses on parent-child relationship in learning

computational thinking. Thus, we propose several

approaches involving coding hands-on workshop,

instructional video learning and unplugged activities to

enhance the parent-child mode of learning in a large-scale

project involving 32 primary schools in Hong Kong.

KEYWORDS
Computational thinking, pedagogical challenges related to

parent-child education, CoolThink@JC

1. INTRODUCTION

CoolThink@JC (“Computational Thinking Education,”

n.d.) is a four-year project created and funded by the

Jockey Club Charities Trust, with support from the

Education University of Hong Kong (EdUHK), the

Massachusetts Institute of Technology (MIT), and the City

University of Hong Kong (CityU).

Parent education is one of the highlights of the project. Its

aim is to foster parents’ understanding of computational

thinking through activity-based workshops which involve

adult-youth partnership.

Based on our observation and ongoing experience of

organizing parent education workshop in primary schools,

we put forward pedagogical challenges and propose ideas

in the following sections, for enhancing the link between

parents and children in learning computational thinking in

Hong Kong.

2. PEDAGOGICAL CHALLENGES

Here we list down several pedagogical challenges:

1) What are effective methodologies under which

parent and child can learn basic computational

thinking knowledge?

2) Can parent-child pair learning complement

traditional classroom learning?

3) Parents come from diverse background and have

different opinions on education. Can

computational thinking education play a definite

role to convert parents’ value in computational

thinking?

4) How to instill the role of game playing to enhance

parent-child communications? For example, it

has been recently recognized (among them are

mathematicians like Keith Devlin from Stanford

University) that game-playing activities allow

players to grasp mathematical concepts and

foster a sense of fun leading to proficiency in

foundational subjects related to Science-

Technology-Engineering-Mathematics (STEM)

(Mackay, 2013).

5) Can we scale up the parent-child learning

activities to accommodate a large number of

learners?

These challenges may call for the need to trade-off

between learning efficacy at an early stage of a K-12

STEM education and the implementation complexity of

the learning tasks. The effectiveness of parent-child

learning should then be evaluated based on a long-term

study with rigorous statistical evaluation.

3. PROPOSED APPROACHES

Here we list down several approaches that will be carried

out under Coolthink@JC (“Computational Thinking

Education,” n.d.) and subject to pedagogical efficacy

evaluation.

1) Small Workshop: Coding experience workshops

that involve hands-on activities for creative

applications by both parents and children. It will

be run once per school annually in a 2-hour

workshop format, and the venue will be held at

the school compound. For each of these

workshops, we accommodate 20-30 parent-child

pairs and the content in these workshops follow

closely the progress of the computational

thinking curriculum being taught in the specific

school. These small workshops serve to inform

parents of a common language in learning

computational thinking.

2) Large Workshop: These coding experience

workshops typically involve around 100 parent-

child pairs. The materials in these workshops can

resonate with world-wide STEM movements

mailto:wong.jane@cityu.edu.hk
mailto:pam.wong@cityu.edu.hk
mailto:Robert.Li@cityu.edu.hk
mailto:cheewtan@cityu.edu.hk

65

such as the MIT Scratch Day (“About Scratch

Day,” n.d.) and the Hour of Code (“The Hour of

Code,” n.d.). The workshop can be instrumented

with a competitive nature to allow parents to

work with their child to collaborate on building a

working system and to self-assess on their

learning of computational thinking and how it is

relevant to the broader theme of STEM subjects

in schools. This means that the contents for these

workshops ought to be more experimental, even

allowing for trial-and-error form of learning that

encourages parent-child pair to put into practice

what they have learnt in schools. For example,

this might be using MIT Scratch or the MIT App

Inventor software to control hardware or to

configure a robot to navigate a maze. Trial-and-

error form of learning is the main focus.

3) Instructional Video: To complement the above

workshop, we will put online electronic

instructional videos in the form of Massive Open

Online Courses (MOOC) that are comprised of

easy-to-follow short video clips and to deliver the

content to parents. In this way, parents who are

unavailable to attend the previously-mentioned

workshops or who wish to refresh their memory

after attending these workshops can benefit from

these instructional digital materials.

4) Unplugged Activities: This involves the design

and delivery of activities that do not require a

computer and focus on fundamental ideas behind

computer science such as algorithm and its

connections to mathematics (“Unplugged

Activities in Code.org,” n.d.). The idea is to

create several tables each having its own

computer science-related theme and allow the

parent-child pair to work through problem sets

that are facilitated by personnel trained in

computer science (“Unplugged Activities in

Teaching London Computing,” n.d.). The

problems are designed in such a way that it starts

easy (potentially involving playing digital

games) and progressively become more

challenging in the latter part, whereupon the role

of parents in guiding the child becomes more

apparent. Note that the definition of digital games

means any form of games that involve discrete

mathematics. A collaborative form of learning is

the main focus in these unplugged activities.

In above approaches, due to the different number of

parent-child pair and the environment under which the

activities that are carried out, it is necessary to carefully

study how the learning contents, platforms and

technologies can be leveraged for effective delivery of

computational thinking education. We will study some of

these issues to address the learning efficacy and the

effectiveness of technologies to address the challenges

listed on Section 2 and report them in a longer paper.

4. CONCLUSION

This paper presents five pedagogical challenges in

developing activities for parent education. A number of

approaches, some have already been tried out in small

class section in primary schools, some are under planning

and to be launched in large class sections (100 parent-child

pairs) to be offered in the coming summer. It is hoped that

these activities can support the parent education in

CoolThink@JC (“Computational Thinking Education,”

n.d.).

5. REFERENCES

“About Scratch Day” (n.d.). Retrieved March 8, 2017,

from https://day.scratch.mit.edu/

“Computational Thinking Education” (n.d.). Retrieved

March 7, 2017, from

http://www.coolthink.hk/en/ct/

Mackay, R. F. (2013). Playing to learn: can gaming

transform education?. Graduate School of

Education, Stanford University. Retrieved from

https://ed.stanford.edu/news/playing-learn-can-

gaming-transform-education

“The Hour of Code” (n.d.). Retrieved March 8, 2017, from

https://hourofcode.com

“Unplugged Activities in Code.org” (n.d.). Retrieved

March 8, 2017, from

https://code.org/curriculum/unplugged

“Unplugged Activities in Teaching London Computing”

(n.d.). Retrieved March 8, 2017, from

https://teachinglondoncomputing.org/resources/in

spiring-unplugged-classroom-activities/

Wing, J. M. (2006). Computation thinking.

Communications of the ACM, 49, 33-35. doi: 0001-

0782/06/0300

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

66

Computational Thinking and

Teacher Development

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

67

Teaching Computational Thinking with Electronic Textiles:

High School Teachers’ Contextualizing Strategies in Exploring Computer Science

Deborah A. FIELDS1*, Debora LUI2, Yasmin B. KAFAI2

1 Utah State University
2 University of Pennsylvania

deborah.fields@usu.edu, deblui@.upenn.edu, kafai@upenn.edu

ABSTRACT
Understanding how teachers promote students’

computational thinking in computer science classes

addresses a critical need. We report on how high school

teachers implemented a 30-40 hour electronic textile unit

in which students designed different wearables with the

LilyPad Arduino as part of the Exploring Computer

Science curriculum in two classrooms. Our analysis

focused on how teachers brought out computational

thinking through students’ interactions and projects in

three key areas: strategic problem solving, iteration, and

interfacing between abstract and tangible computation. In

the discussion, we address what we learned about

teachers’ pedagogical content knowledge to make

computational thinking tangible to students.

KEYWORDS
Electronic textiles, computational thinking, computer

science education, teacher practices. pedagogical content

knowledge.

1. INTRODUCTION
The introduction of computational thinking into the K-12

curriculum has become a global effort. Computational

thinking (CT) was defined by Wing (2006) as a way of

approaching and conceptualizing problems, which draws

upon concepts fundamental to computer science such as

abstraction, recursion, or algorithms. Early work in this

area primarily focused on defining computational

thinking, specifically its cognitive and educational

implications as well as highlighting existing contexts for

teaching computational thinking (e.g., NRC, 2011). While

much subsequent work has focused on the development of

different environments and tools for CT, as well as

curricular initiatives in the K-12 environment, there is

growing need for more empirical work situated in actual

classroom environments (Grover & Pea, 2013).

One glaring absence from these efforts is a lack of

understanding of exactly how schoolteachers can

incorporate CT into their existing classrooms (Barr &

Stephenson, 2011). Thus far, most studies focused on CT

tools and environments had researchers themselves

implement projects or were situated in out-of-school

contexts where youth voluntarily engaged on topics of

their own choosing (e.g., Grover, Pea & Cooper, 2015;

Denner, Werner & Ortiz, 2012). While these studies

provided important insights about the feasibility of

engaging students in CT, they could not address the

critical issue of how computer science teachers, dealing

with large class sizes and curricular restrictions, can

integrate CT into their classroom activities—connecting

technology, content and pedagogy (Mishra & Kohler,

2006).

In this paper, we focus on the implementation of a 6-8

week (30-40 hour) electronic textiles unit within two high

school classrooms situated within the Exploring Computer

Science (ECS) curriculum (Goode, Margolis & Chapman,

2014). Electronic textiles (e-textiles), or fabric-based

computing, incorporate basic electronics such as

microcontrollers, actuators and sensors with textiles,

conductive thread and similar “soft” materials (see

Buechley, Peppler, Eisenberg, & Kafai, 2013). Two

experienced ECS teachers from two separate urban

schools implemented the curriculum in their classrooms

during the final two months of the school year. Two

researchers observed the daily implementation of the

curriculum, documenting classroom activities and

interactions in extensive field notes, video recordings and

photos of students’ work. The following research question

guided our analysis “What kind of teaching strategies did

the two teachers employ in supporting and situating

computational thinking within the e-textile unit?” Our

discussion focuses on the teachers’ contextualization and

personalization strategies to make computational thinking

accessible in students’ work.

2. BACKGROUND
While computational thinking is related to the creation of

code, it is important to note how understanding

programming is not the same thing as CT itself (Wing,

2006). As Wing (2006) states, “Thinking like a computer

scientist means more than being able to program a

computer.” In other words, it involves particular kinds of

approaches to problems that exist in the world (not just on

the screen). In terms of teaching programming,

considerable research has focused on content, drawing

attention to the ways in which particular programming

concepts and practices, such as loops and debugging, can

be taught within classrooms (e.g., Soloway & Spohrer,

1991). Here, research is driven by the need to recognize

what concepts and practices are difficult to learn and how

to scaffold students’ learning. More recent efforts have

focused on context, highlighting different kinds of project

spaces in which learning programming can occur, whether

in game design, robotics, creating apps, or constructing

wearables (e.g., Kafai & Burke, 2014). Here, efforts are

driven by the recognition that teaching and learning

68

programming needs to be contextualized in ways that

engage students’ existing interests.

Because teaching computational thinking is newer,

research has generally focused more broadly on

conceptual or hypothetical contexts (Grover & Pea, 2013).

One area of work defines the actual nature of

computational thinking (e.g., NRC 2011) in terms of

cognition and its relationship to existing disciplines (e.g.,

mathematics and engineering). Another area of work has

focused on developing CT-focused curricula for K-12

contexts (e.g., the AP Computer Science Principles

course, Exploring Computer Science, Bootstrap). Finally,

another significant area of work in this area relates back to

questions of designing contexts. As with teaching

programming, researchers have identified the importance

of developing particular environments and tools for

supporting CT, often overlapping with those that teach

programming (e.g., graphical programming interfaces,

digital and tangible computational construction kits).

While all this work tends to focus on the potential or need

to bring CT into education, what is missing are studies of

how teachers actually implement these ideas in their

classrooms and the particular ways in which technology

content and pedagogy intersect that has been described as

technological pedagogical content knowledge (Mishra &

Kohler, 2006).

The research on actual computer science teaching, in

particular with a focus on CT, has focused for the most

part on pre-service teachers and ways to integrate CT in

classrooms (e.g., Yadav, Mayfield, Zhou, Hambrusch &

Korb, 2014). Case studies have been developed to

examine the strategies used by teachers to address CT in

their classrooms (Griffin et al, 2016). The area that

overlaps most with CT is focused on algorithmic thinking

(Ragonis, 2012). Our work contributes to this emerging

body of knowledge by examining how experienced

computer science teachers teach CT using electronic

textiles. Much early research using e-textiles has focused

on broadening participation in areas of computing and

engineering by reshaping students’ perspectives of and

interests in those fields (e.g., Buchholz, Shively, Peppler

& Wohlwend, 2014; Kafai, Fields, & Searle, 2014). One

study (Kafai et al, 2014) identified several CT concepts,

practices and perspectives that students learned while

making an e-textiles human sensor project—a precursor to

one of the projects in the curriculum discussed in this

paper.

Using e-textiles affords different opportunities to observe

teaching strategies because they (1) integrate CT within

engineering (i.e., circuit design) and coding (i.e., software

design) and can illustrate how teachers make connections

between them; (2) are hybrid nature in nature (i.e., as

textual code on the screen and as physical circuits on the

textile) and can make visible how teachers navigate

between different modalities; and (3) allow for creative

expression and aesthetics through personalized projects

and can demonstrate how teachers respond to and are

supportive of student interest. Focusing on two classrooms

from the Exploring Computer Science (ECS) program

(Goode, Margolis & Chapman, 2014), we examined what

strategies these experienced ECS teachers used in their

implementation of the new e-textiles curriculum unit.

3. METHODS
3.1 Context
The Exploring Computer Science (ECS) initiative

comprises a one-year introductory computer science

curriculum with a two-year professional development

sequence. The curriculum consists of six units: Human-

Computer Interaction, Problem-Solving, Web Design,

Introduction to Programming (Scratch), Computing and

Data Analysis, and Robotics (Lego Mindstorms) (Goode

& Margolis, 2013). The instructional design of the

curriculum adopts inquiry-based teaching practices so that

all students are given opportunities to explore and design

investigations, think critically and test solutions, and solve

real problems. ECS has successfully increased diversity to

representative rates in Los Angeles and has subsequently

scaled nationwide to other large urban districts and

regions, now with over 500 teachers nationwide.

Within this successfully implemented, inquiry-based

curriculum, we noted an opportunity to bring creative

making in the form of e-textiles into computer science

classrooms. The curriculum was co-developed by e-

textiles and ECS experts to combine best practices of

teaching and crafting e-textiles based on a constructionist

philosophy alongside ECS principles, style, and writing.

The curriculum contains big ideas and recommended

lesson plans, with much room for teachers to interpret and

bring in their own style. The e-textiles unit consists of six

projects, each increasing in difficulty and creative

freedom, that introduced concepts and skills including

conductive sewing and sensor design; simple, parallel, and

computational circuits (independently programmable);

programming sequences, loops, conditionals, and Boolean

logic; and data from various inputs (switches and sensors).

As an example, the fifth project of the curriculum is a

“banner” project in which students worked in pairs to

create a letter in a classroom banner. Each letter includes

two switches used to generate four lighting pattern effects

with 4-5 individually programmable LEDs. The final

project consists of a personalized textile artifact that

incorporates a handmade human sensor created from two

aluminum foil conductive patches that when squeezed

generate a range of data. In this study, students used this

data to program different lighting effects so that the lights

changed based on how hard a user squeezed their project.

Student artifacts included stuffed animals, paper cranes,

and wearable shirts or hoodies, all augmented with the

sensors and actuators.

3.2 Data Collection & Analysis
In Spring 2016 two high school teachers, each with 8-12

years of computer science classroom teaching experience,

piloted the unit in their ECS classes with 24 and 35

students in two urban schools in a major city in the western

United States. During the implementation, two researchers

visited the classroom four days a week, documenting

teaching with detailed field notes and pictures of student

work supplemented by pre- and post-interviews with the

teachers, video recordings, and daily reflections by the

teachers.

69

For this paper, we conducted analysis of field notes taken

from the two classrooms. Out of a total of 25-27 days of

data for each classroom, we selected a set of six field notes

for each classroom. These focused on key lessons in the

curriculum, including: learning to sew using a stitchcard

(Project 2), working with a preprogrammed

microcontroller (Project 3), collaboratively programming

a microcontroller as part of a classroom banner (Project

5); creating and programming an individual human sensor

project (Project 6). Based on the existing framework for

the AP Computer Science Principles course

(CollegeBoard, 2016), we developed a preliminary coding

scheme looking at how teachers incorporated key

computational thinking principles into their classrooms.

Two researchers (Authors 1 and 2) entered into an iterative

cycle of coding the field notes, comparing their analysis,

and refining the coding scheme. Throughout three cycles,

we began to identify what was unique in e-textiles that

related to the core content and practices identified in AP

CS Principles.

4. FINDINGS
Within the e-textiles unit, we saw evidence of many ways

in which teachers brought out computational thinking

through students’ interactions and projects. Three of the

most prominent aspects include: 1) strategic problem

solving, 2) iteration, and 3) interfacing between abstract

and tangible computation. In order to clarify how the

teachers translated and implemented the curriculum within

their classrooms, we highlight the intersections between

how the curriculum promoted the particular CT element

and then how teachers expanded upon these elements

within their classrooms.

4.1. Strategic Problem Solving
One area of rich computational thinking was in strategic

problem solving, the deconstruction of problems into a

sequence of steps or “rules” with which to approach

problems, sometimes referred to as algorithms (Ragonis,

2014). We found that teachers developed means of

strengthening strategic problem solving across the

intersecting domains of code, circuitry, and craft in e-

textiles. In regard to coding, one of the teachers enabled

students to develop multiple ways of structuring code to

solve a problem. By not dictating to students a single way

to approach a problem, students themselves came up with

different approaches. For instance in the collaborative

banner project that required students to use two switches

as inputs to create four lighting patterns, student groups

used either nested conditionals or “and” statements as a

means for solving that challenge, the latter of which

(“and” statements) the teacher had not planned on

introducing. By subsequently highlighting the two main

approaches used by students, the teacher supported their

formalization as problem solving strategies that could be

(and were) applied to other problems as well.

In terms of circuitry, teachers helped students develop and

apply rules for connecting components in a functional

circuit, for instance considering polarity (“plus to plus,

minus to minus”), using a common ground line to connect

negative pins, and making circuitry efficient. Related to

the latter, one student drew a parallel between the

“traveling salesman” problem that he had encountered

earlier in the ECS curriculum with designing efficient

circuitry in e-textiles: “you have limited amount… of

string [conductive thread] so you have to kind of connect

all your lights, get it how you want in the cheapest way

possible.” This approach to finding the simplest circuitry

path without creating a short circuit was a type of strategic

problem solving that shows computational thinking off the

computer screen.

Likewise, with crafting, students learned other sorts of

algorithms for the physical construction of the project. For

instance, one teacher developed a simple means of

expressing a way to tackle the problem of sewing a two-

dimensional circuit on a three-dimensional space (i.e., a

stuffed animal): “fileting” the animal. This involved

sewing two identical cutouts of the stuffed animal (a front

and a back) together on part of one side— a “filet”—in

order to sew the circuitry before connecting the edges and

stuffing the creation. While the approach was not new

(outlined in Buechley, Qiu, & de Boer, 2013), the teacher

named the approach (a “filet”) and presented it in such a

way that students formalized it as a strategy for

approaching the creation of light-up stuffed animals. In

this type of situation, when the teacher models rules for

problem solving and creates an environment where

students can contribute their own problem solving

approaches, it may be argued that students not only

learned how to create algorithms, but also practiced how

to approach problems algorithmically, or develop an

“algorithmic stance” toward problem solving.

4.2. Iteration
Within the world of software design, iteration—or the

process of continual repetition and revision—is essential

for the completion and refinement of different algorithms

and programs. Iterative design, or the cycle of prototyping,

testing, and revision, is also key to engineering

production. Within the e-textiles unit, students were

engaged with iteration on both levels. Within the unit, the

production of individualized projects drove the process of

iterative design, that is, fixing and resolving mistakes

throughout design, visible in changed circuit diagrams,

several different versions of code, and constantly refined

projects.

Beyond the curriculum, teachers actively incorporated this

ethos of iteration into the classroom through several

strategies. While the curriculum outlined the basic

guidelines for projects, students were encouraged by

teachers to come up with original designs. As such,

problems and issues that individual students faced often

did not fit into an existing template of construction. Both

teachers therefore actively addressed the process of

dealing with mistakes and making revisions throughout

the unit in several ways. First, they created supports for

dealing with mistakes, for example, providing tools

explicitly designed for iteration (seam rippers), and

sharing concrete ‘tips and tricks’ of e-textiles construction

(e.g., how they dealt with broken thread). Second, teachers

explicitly valued the process of iteration, regularly sharing

students’ unfinished projects, including their mistakes, to

highlight something the creator had learned that was of

70

value to the class as a whole. In doing so, they stressed the

importance iteration and refinement alongside the final

product.

Teachers also positioned themselves as collaborators

(rather than authorities) within this environment of

iteration. Not only did they share the e-textiles projects

that they had personally made, but they also modeled the

many mistakes and revisions that they faced within their

own personal journeys of creation. Additionally, because

of the variety of unique issues of construction on student

projects, teachers worked alongside students to

troubleshoot in the moment. One teacher required students

to work in pairs to check each other’s circuitry diagrams

and code before they could move on to later tasks. This

supported peer troubleshooting and revision, allowing the

teacher to come over only when both students were

befuddled. From this perspective, iteration appeared both

in direct project work and in the teachers’ pedagogical

approach: through shared problem solving, modeling

projects at various stages, and building a shared

knowledge base about e-textiles by compiling tips and

tricks learned through mistakes.

4.3 Interfacing
As opposed to many computer science classes where

programming takes place mostly on the screen, one unique

and prominent affordance of using e-textiles to teach CT

is how it fosters a need for students to become more

familiar with the intersections between abstract and

tangible forms of computation Specifically, this results

from the high level of interaction that inherently occurs

when creating an e-textiles artifact: hand-crafting a

functional circuit that can be controlled via purposeful

planning and development of code. Through e-textiles,

teachers were given a highly visible and potent context

through which to teach important CT concepts including

information abstraction and manipulating data. Teachers’

encouragement of this intersection is discussed below,

followed by a discussion of how they used this to

contextualize understanding of information abstraction

and manipulating data.

E-textiles is a unique educational computing context

because it involves the creation of codable circuits and

sensors, artifacts which are situated at the intersection of

software and hardware. Teachers actively worked to make

this connection clear for students, supporting students’

fluency in moving back and forth between the realms of

designing, constructing, and troubleshooting tangible

circuits, while also planning, writing and troubleshooting

the code to control these circuits. One specific strategy

was to create conditions where student experiences with

programming and software were immediately (and

always) correlated with some piece of hardware; that is,

no one was ever expected to code purely for the screen

without a physical LilyPad Arduino circuit output. For

example, even during lessons primarily focused on

coding, both teachers actively pointed out the relationship

between the onscreen lines of code with physical

components (e.g. pins on the LilyPad for inputs and

outputs) and behaviors (e.g. this line of code makes that

LED turn on). Teachers further strengthened this

connection for students during the creation of their

individual codeable circuit projects (specifically the

collaborative banner and human sensor projects). Mostly,

this occurred through individual design consultations; for

instance one teacher worked with students to consider how

the programmability of their project was influenced by the

size of their sensor patches. As a result of this kind of

activity, students not only became familiar with working

on both hardware and software, but also started to develop

a capacity of moving back and forth fluidly between these

two domains.

Information abstraction is universally acknowledged to be

an important type of computational thinking, whether

dealing with binary numbers or subroutines and

procedures (Grover & Pea, 2013). In terms of e-textiles,

this mostly involves taking the real world phenomenon

related to an artifact (e.g., touch levels, placement of

LEDs) and converting it to digital representations on the

computer (e.g., variables, statements). Within the

curriculum, students had numerous opportunities to

practice formal information abstraction such as declaring

variables and incorporating Boolean logic into their

programs.

However, teachers’ contributions toward students’

understanding for information abstraction resulted most

strongly from their efforts to contextualize this concept

within the process of e-textiles construction. In other

words, because e-textiles creates a highly visible context

for moving in between real world phenomena (e.g.,

physical touch, switches) and computational inputs (e.g.,

numbers, ranges, conditions), both teachers leveraged this

as a natural context in which to instill an understanding of

information abstraction. For example, one teacher worked

to illustrate how variable declaration allowed the

computer to make use of real world data, stating, “So

depending on how hard you touch the foil, it [the variable

we created] will store it there and we can use it for our If-

Else Statements”. Teachers furthered the back-and-forth

nature of e-textiles construction through the process of

troubleshooting students’ individual projects. Both

teachers constantly went through a cycle of testing, where

students would be asked to “read” their code both in the

physical format (what it actually did) and in the abstract,

onscreen format (the code). While e-textiles provided a

format for this work, the teachers’ efforts made the move

between the tangible and the abstract, the physical and the

digital (e.g., onscreen) explicit for students, enabling them

to develop more experience with information abstraction

first hand.

Teachers similarly helped students gain experience in

reading and manipulating computational data—that is,

learning how to make sense of information gathered

through computational inputs or outputs and leveraging

these for a computational purposes. This skill was

cultivated most actively through the creation of the human

sensor project. In this project, students created personal

artifacts (e.g., a pink bear, a cosmically-themed top hat, a

large origami crane) that contained handmade touch

sensors (aluminum patches sewn onto their projects) that

were programmed to read the conductivity levels of a

71

person touching both patches. Teachers worked to give

students many visceral opportunities to deal with real

world data within the context of their human sensor

project. One teacher, for instance, described the process of

testing the conductivity of himself and his wife, describing

how they could each get different ranges based on their

different sizes. Based on this, he then required students to

test out the conductivity ranges of at least four different

people within the class and use these as baselines to

develop more universal ranges in developing their code.

This brought personalization to interfacing between

digitally written data and physical touch, especially as the

teacher modeled how he tested the sensor with his wife

and as students tested their sensors with each other. It is

impossible to tell how directly this affected students

overall, but at least one student described taking his

project home so he could test out his dad’s conductivity

range, even going so far as to use his hands while sleeping.

Notably, reading data from a sensor and breaking it down

into usable ranges that could be expressed mathematically

(i.e., “sensorvalue < 1000 && sensorvalue >750”) was a

particular challenge for students, evidenced in a related

question on a post-test. In the next year we plan to bring

more curricular scaffolding to this task while supporting

the efforts of teachers to personalize this aspect of

computational thinking for deeper learning.

5. DISCUSSION
Our paper contributes to the emerging body of research on

teaching practices of computational thinking that are not

just focused on coding but extend into other domains, such

as physical crafting and electronics. In our analysis we

focused on key aspects of computational thinking (CT)—

strategic problem solving, iteration, and interfacing

between abstract and tangible aspects of computing—that

teachers addressed within the new electronic textiles

curriculum. In the following sections, we further discuss

aspects of teachers’ pedagogy regarding computational

thinking in their classroom activities.

Across the analyses of the various teaching strategies in

their classrooms, we noted the element of personalization

as a critical aspect of teaching computational thinking in

this context. First, based on earlier research on the

importance of aesthetics in learning with e-textiles (Kafai

et al, 2014), the curriculum intentionally forefronted the

personal nature of each student project, resulting in

different implementations by each student. This aspect of

personalization is rarely discussed in contexts of

pedagogical content knowledge but can pose challenges in

teaching because of the vastly different problems that arise

in individual student projects. Teachers need to be flexible

in taking advantage of them to promote deeper learning.

Second, in this study the teachers took personalization

beyond individualized projects and worked it into their

classroom practice. For instance, teachers modeled their

own projects, mistakes, and design processes in ways that

validated “process” alongside “product”, highlighting

iteration as an important aspect of computational thinking.

This also provided a backdrop that facilitated sharing

mistakes and processes that could help the entire class

learn. It is less risky to share the mistakes you have made

when your teachers have already shared their own

mistakes. Further, by sharing their projects and discussing

multiple users of their projects (including one’s spouse)

the teachers brought out the broader usability of projects:

students’ projects (as their teachers’ projects) could have

relevance outside the classroom. These features are

important because personalization has been shown to

support student interest in CS classrooms (Griffin et al.,

2016). Furthermore, these practices highlight strategies

that can make teaching more culturally relevant, providing

one means for equity to become a key part of classroom

instruction with computational thinking (Goode, Margolis

& Chapman, 2014).

Further, we want to consider teaching strategies that focus

not just on content or projects but on the larger classroom

working environment, within which the electronic textile

ECS unit was implemented. The two teachers we studied

engaged with vastly larger numbers of students (24 and

35) and within more restricted time constraints (the class

period) and spaces (i.e., a classroom where material had to

be put away everyday) than encountered in most other e-

textile implementations, especially in afterschool, summer

camp, or weekend workshops. The teachers used

strategies such as modeling (both their own and students’

in-progress projects), peer support (checking each other’s

work), and tips and tricks to support students’ different

creations. Other strategies which this paper does not have

room to address deserve further attention such as the

organization and management of materials and time, and

validation of student work during class discussion.

By themselves the strategies discussed above are nothing

new in and of themselves, having been found in much

exemplary science and mathematics teaching (see Ball,

Thames & Phelps, 2008). However, it is the application of

these teaching strategies to computational thinking that

presents a unique and promising approaching to support

students in this emerging field of pedagogy. These

strategies are similar to what Mishra and Kohler (2006)

described as technological pedagogical content

knowledge (TPCK) or the unique knowledge that teachers

need to develop in order to embed technology in their

instructional practice to support student learning.

However, the original description of technological

pedagogical content knowledge focused on how to

integrate different technologies such as video or games

into the classroom, whereas in the ECS context, teachers

focused on integrating computational thinking with

content. To highlight this distinction, we should reframe

TPCK as “computational pedagogical content knowledge”

or (CPCK), acknowledging the specialized content

knowledge (Ball, Thames & Phelps, 2008) that is

emerging in relation to computational thinking in K12

education. Much more research is needed in documenting

CPCK teaching practice within other curricular efforts to

develop best practices that can be shared and developed.

In this paper we considered how experienced ECS

classroom teachers connected computational thinking in

the context of learning with e-textiles. While the unit was

designed with certain goals in mind, largely related to

programming, we sought to apply the AP CS Principles

guidelines to identify where and how aspects of

72

computational thinking such as iteration, abstraction or

problem solving were supported in teachers’ classroom

practice. We found particular affordances for learning

computational thinking that e-textiles may be uniquely

situated to promote, especially in regard to tangibility and

personalization. Because it was the first implementation of

this new ECS curriculum unit and one of the first e-textiles

projects where the teachers were the main leaders in the

classroom, our data collection focused primarily on the

teacher modeling, leading, and discussing with students.

In future iterations we plan to look more closely at how

teaching strategies intersect with student learning to

understand more about the depth and breadth of learning

across students in each classroom and to evaluate whether

equity is being reached in terms of rigorous learning.

6. REFERENCES

Ball, D., Thames M. H., & Phelps, G. (2008). Content

knowledge for teaching: What makes it special?

Journal of Teacher Education, 59(5), 389-407.

Barr, V. & Stephenson, C. (2011). Bringing

computational thinking to K-12: What is involved and

what is the role of the computer science education

community? ACM Inroads 2, 1, 48–54.

Buchholz, B., Shively, K., Peppler, K. & Wohlwend, K.

(2014). Hands on, hands off: Gendered access in

sewing and electronics practices. Mind, Culture, and

Activity, 21(4) 1-20
Buechley, L., Peppler, K., Eisenberg, M. & Kafai, Y.

(Eds) (2013). Textile Messages: Dispatches from the

World of E-Textiles and Education. New York: Peter

Lang.
Buechley, L., Qiu, K., & de Boer, S. (2013). Sew

Electric: A Collection of DIY Projects that Combine

Fabric, Electronics, and Sewing. HLT Press:

Cambridge, MA.
CollegeBoard (2016). AP Computer Science Principles:

Course and Exam Description Effective Fall 2016.

CollegeBoard: New York, NY. Retrieved from:

https://secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-

computer-science-principles-course-and-exam-

description.pdf
Denner, J., Werner, L., & Ortiz, E. (2012). Computer

games created by middle school girls: Can they be

used to measure understanding of computer science

concepts? Computers & Education, 58, 240–249.

Griffin, J, Pirman, T. & Gray, B. (2016). Two teachers,

two perspectives on CS principles. In Proceedings of

SIGCSE’16 (pp. 461-466). New York, NY: ACM.
Goode, J., & Margolis, J. (2011). Exploring Computer

Science: A Case Study of School Reform. ACM

Transactions on Computing Education, 11(2), 12.
Goode, J., Margolis, J. & Chapman, G. (2014).

Curriculum is not enough: The educational theory and

research foundation of the Exploring Computer

Science professional development model. In

Proceedings of SIGCSE’14 (pp. 493-498). New York,

NY: ACM.
Grover, S. & Pea, R. (2013). Computational Thinking in

K–12: A Review of the State of the Field. Educational

Researcher, 42(2),: 59-69.
Grover, S., Pea, R. & Cooper, S. (2015). Designing for

Deeper Learning in a Blended Computer Science

Course for Middle School Students. Computer Science

Education, 25(2), 199-237.
Kafai, Y. B. & Burke, Q. (2014). Connected Code: Why

Children Need to learn programming. Cambridge, MA:

MIT Press.
Kafai, Y. B., Fields, D. A., & Searle, K. A., (2014).

Electronic Textiles as Disruptive Designs: Supporting

and Challenging Maker Activities in Schools. Harvard

Educational Review, 84(4), 532-556.
Kafai, Y. B., Lee, E., Searle, K. S., Fields, D. A., Kaplan,

E., & Lui, D. (2014). A crafts-oriented approach to

computing in high school. ACM Transactions of

Computing Education, 14(1). 1-20.
Mishra, P. & Kohler, M. J.(2006). Technological

pedagogical content knowledge: A new framework for

teacher knowledge. Teachers College Record, 108(6),

1017-1054.
National Research Council (2011). Report of a Workshop

on Pedagogical Aspects of Computational Thinking.

Washington, DC: National Academy Press.
Ragonis, N. (2012). Integrating the teaching of

algorithmic patterns into computer science teacher

preparation programs. In Proceedings of ITiCSE’12

(pp. 339-344). New York, NY: ACM.
Wing, J (2006). Computational thinking.

Communications of the ACM, 49, 33-35.
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., Korb,

J. T. (2014). Computational thinking in elementary and

secondary teacher education. ACM Transactions on

Computing Education, 14(1), 1-1.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

73

Application of the Four Phases of Computational Thinking and Integration of

Blocky Programming in a Sixth-Grade Mathematics Course

Ting-chia HSU1*, Hsin-chung HU2

1 National Taiwan Normal University

2 Er-Cheng Elementary School

 ckhsu@ntnu.edu.tw, az8312@tmail.ilc.edu.tw

ABSTRACT
This study put four steps, problem decomposition, pattern

recognition, abstraction, and algorithm, into practice by

integrating the blocky programming language, Scratch,

into a mathematics course. The teacher guided the sixth-

graders to apply the four steps of computational thinking

to writing a blocky program to solve daily-life equality

axiom mathematics problems. The results showed that the

method was beneficial for promoting the learning

effectiveness of mathematics, and also found that there

was a significantly positive correlation between the

performance of blocky programming and the mathematics

post-test. There was no significant correlation between

creative tendency and self-efficacy after the experiment.

Self-efficacy had a positive correlation to learning

motivation both before and after the experiment.

KEYWORDS
Scratch, Computational Thinking, Mathematics, Self-

efficacy, Learning motivation

1. INTRODUCTION
Computational thinking has a broad definition which

refers to the thoughts and plans or comprehension process

when students are confronted with any uncertain factor or

new issue. Computational thinking also has a narrower

definition which means the basic concepts and processes

used for solving problems in the computer science domain.

The term was officially proposed in 2006 [12], and was

later divided into four phases [13], described as follows.

The first phase of the computational thinking process

is to decompose the problem so that one problem can be

analyzed and divided into several smaller questions. This

is called the “problem decomposition” phase. Then, the

second phase is to identify the patterns in the data

representation or data structure. In other words, if the

students observe any repeated presentation of data or

method, they can identify their similarities, regularities, or

commonalities. Therefore, the students do not need to

spend time on the repeated work when they write the

problem. The third phase is to generalize or abstract the

principles or factors to become a formula or the

corresponding programming language rules. The students

have to try to model the patterns they found in the previous

step. After testing, the students identify the key factor

presenting the model in this step. Finally, they design the

algorithm in the fourth phase, ensuring that they include

all the steps for solving the problem systematically.

Although computational thinking is not equal to

programming, the blocky programming languages, such as

Scratch, mBlock and so on, are good tools for developing

the capabilities of students’ computational thinking. The

current study not only employed Scratch to learn

computational thinking, but also used it to implement a

problem the students confronted in their Mathematics

course. One main purpose of these programming

languages is to solve computation problems. Scratch is a

visual programming tool and is suitable to be used in

different subjects such as games, science, music and so on

[5, 6].

Scratch has been introduced to young students from

eight to eighteen years old [4], and they have been found

to be highly motivated to write programs. Another study

found that fifth and sixth graders perceived usefulness,

high motivation, and positive attitudes toward Scratch [4,

5, 9]. Ke (2014) applied Scratch for secondary school

students to design mathematics games, and found that the

integration of the blocky programming and Mathematics

game design could promote the potential of the students to

learn Mathematics, and made the students have

significantly more positive attitudes toward the

development of Mathematics [2]. Furthermore, this

method was beneficial for activating the students’

reflection on their daily-life mathematical experiences.

The mathematics concepts and blocky programming were

integrated when the students solved the problems or

created the games. They not only took part in achieving

the learning target of mathematics, but also carried out

computational thinking, and transferred the reasoning

process into an abstract program. It has been found that

using Scratch in computer science can promote the

cognitive level and self-efficacy of the students, but it does

not result in high learning anxiety, and the students spend

less time learning and creating a new program [1]. The

blocky programming (e.g., Scratch, App Inventor) did

retain the learning motivation and interests of the students

[7]. The scholars employed another blocky programming

environment, Code Club, into elementary schools, and

found that it could motivate the creative digital design of

the young students [10].

Therefore, the current study also integrated the

mathematics course with the blocky programming

software, Scratch, and applied the four phases of

computational thinking to solve mathematics problems.

The purpose of the study was to explore the correlations

between self-efficacy and learning motivation, and

between self-efficacy and creative tendency. From the

mailto:ckhsu@ntnu.edu.tw

74

results, the critical factor correlated with self-efficacy

could be identified when the students were involved in the

proposed treatments. In addition, this study also aimed to

confirm whether the students made significant progress in

Mathematics and in problem solving by using the blocky

programming. Therefore, the research problems are listed

as follows:

(1) After the treatment, was the students’ learning

effectiveness of mathematics significantly promoted?

(2) Was there a significant correlation between the

performance of blocky programming with the

learning effectiveness of mathematics?

(3) Was there a significant correlation between self-

efficacy with creative tendency and learning

motivation before and after the treatments?

2. METHOD

2.1. Participants

The subjects included one class of sixth graders of an

elementary school in Taiwan. A total of 20 students

participated in the study. They were taught by the same

instructor who had taught that mathematics course and

Scratch for more than ten years. The average age of the

students was 12.

2.2. Measuring tools

The research tools in this study included the pre-test and

post-test of the mathematics learning achievements, the

post-test of Scratch Programming implementation, and the

questionnaire for measuring the students’ learning

motivation, creative tendency, and self-efficacy.

The test sheets of mathematics were developed by two

experienced teachers. The pre-test consisted of 10

calculation questions about the prior knowledge of

learning the course unit "equality axiom," with a perfect

score of 100. The post-test consisted of 10 calculation

questions for assessing the students' knowledge in the

equality axiom unit, with a perfect score of 100. The items

in the pre-test are different from the items in the post-test,

but they had the same difficulty degree.

In terms of the post-test of programming performance,

there were totally five situated problems for the students

to solve using the blocky programming with the four

phases of computational thinking. Each programming

problem was scored as 20 points, including 5 points for

assessing whether the students employed proper blocks, 5

points for checking the usage of variances, 5 points for

evaluating the formula transferred from the meaning of the

problem by the students in the program, and 5 points for

confirming if the output was correct or not. Consequently,

five programming problems were worth a total of 100

points.

The questionnaire of learning motivation was modified

from the measure published by Hwang, Yang, and Wang

(2013) [3]. It consisted of seven items (e.g., "It is

important for me to learn what is being taught in this

class") with a 5-point rating scheme. The Cronbach's alpha

value of the questionnaire was 0.823.

The self-efficacy questionnaire originates from the

questionnaire developed by Pintrich, Smith, Garcia and

McKeachie (1991) [8]. It consists of 8 items with a 5-point

Likert rating scheme. The Cronbach's alpha value was

0.894. The Creativity Assessment Packet (CAP) was

revised from Williams (1991) [11], including the scales of

imagination, curiosity, and so on.

2.3. Experimental procedure

Before the experiment, the students were given time to get

used to the blocky programming environment. Figure 1

shows the flow chart of the experiment. Each period in the

mathematics class is 40 minutes in elementary schools in

Taiwan. At the beginning, the instructor spent eight weeks

(i.e., once period a week, and totally 8 periods) teaching

the students to become familiar with the blocky

programming environment.

Before the learning activity of applying the four phases of

computational thinking systematically, the students

completed the Creativity Assessment Packet measure,

took the pre-test, and completed the learning motivation

and self-efficacy questionnaires.

Figure 1. Experimental procedure

Thereafter, the study spent three weeks (i.e., once period a

week, and totally three periods) on the enhancement of

applying the four phases of computational thinking and

integration of blocky programming in a sixth-grade

Mathematics course. In other words, during the learning

activity, the teacher guided the students in how to employ

the four phases of computational thinking for analyzing

the situated problems in the mathematics course, and

finally how to write blocky programs for calculating the

results of each problem. The teacher explained how to

employ the four phases of computational thinking, step by

step. From the first phase, the students tried to analyze and

decompose the situated problem which the teacher

designed for demonstration. Secondly, the students were

guided to find out whether there was a pattern or similar

situation based on the results of the analysis, that is,

pattern recognition. Thirdly, they had to conclude or

transfer the analysis to a formula or programming

presentation. Finally, they found the limited problem

75

solving steps, or algorithm, so that the program could be

written based on the steps.

The students practiced this method six times, each time

taking half of a period. Therefore, there were totally six

situated examples implemented during the three periods of

the mathematics course. At the same time, the students

learned mathematics from solving the blocky

programming problems through the four computational

thinking phases.

Figure 2. Example of an elementary school student’s

solution

After the learning activity, there were totally five

programming problems for evaluating the blocky

programming performance of the students, with the four

computational thinking phases involved in both the blocky

programming and the mathematics problems. The test

took 1.5 periods.

Finally, they also spent one period on the post-test of the

pen-and-paper-based mathematics test for measuring their

learning achievements. They also answered the motivation

and self-efficacy questionnaires so as to identify whether

any changes had occurred in their learning motivation and

self-efficacy after the different learning method was

employed for learning mathematics. There were totally 15

periods spent on the experiment, which lasted for a total

of around three-fourth semester (i.e., 15 weeks). The

experimental treatment after pretest was five weeks.

2.4. Data analysis

The pre- and post-test were compared via a paired-sample

t-test. Therefore, whether the students made progress or

not was assessed. The same analysis method was also

employed for comparing the students’ learning motivation

and self-efficacy before and after the learning activities.

Their blocky programming performance was also assessed

by the teacher. Correlation analysis was performed to

identify the relationship between the students’ blocky

programming performance and their post-test results.

Correlation analysis was utilized for checking the

correlation among the students’ learning motivation, self-

efficacy and creative tendency when they were learning

mathematics by means of conventional instruction.

Moreover, the same method was used for checking the

correlation among the learning motivation, self-efficacy

and creative tendency after the students learned

mathematics from the Application of the Four Phases of

Computational Thinking to Integrate Blocky

Programming into the Mathematics Course.

3. Results

3.1. The paired sample t-test on the pre-test and post-test

in mathematics

The research design hypothesized that the students would

make progress in the learning objectives of the

mathematics unit. Therefore, a paired-sample t-test was

performed on the pre-test and post-test in the mathematics

unit.

The students did not use conventional instruction to learn

mathematics; rather, the four phases of computational

thinking were applied to integrate blocky programming

into the mathematics course. Table 1 shows that this

approach did indeed contribute to the learning

effectiveness of the students. They made significant

progress in the mathematics unit of equality axiom after

the experimental treatment (t=2.72*; p<0.05).

Table 1. paired sample t-test on the pre- and post-test

 N Mean SD t

Post-

test

20 86.35 17.60 2.72*

Pre-test 20 80.75 16.66

*p<0.05

3.2. The correlation between the performance of blocky

programming and the mathematics post-test

In this study, we attempted to verify the correlation

between the performance of blocky programming and the

mathematics post-test. The results showed that they did

have a significantly positive correlation (Pearson=0.673**,

p<0.01), as shown in Table 2. When the students had

better performance on applying the four phases of

computational thinking to write a blocky program which

solved the situated problems of the equality axiom

mathematics unit, they also had better learning outcomes

on the post-test of the conventional pen-and-paper-based

mathematics test.

3.3. The correlation between students’ self-efficacy and

their creative tendency and learning motivation

The self-efficacy of the students applying the four phases

of computational thinking to integrate blocky

programming into the mathematics course was

significantly correlated with their learning motivation

(Spearman correlation value=0.623**; p<0.01), but was

not noticeably related to their creative tendency

(Spearman correlation value=0.232; p>0.05), shown as

Table 2.

Table 2. Correlation between self-efficacy and creative

tendency and learning motivation (N=20)

Spearman correlation

coefficient

Motivation Self-

efficacy

Creative

tendency

Motivation 1 0.623** 0.189

Self-efficacy 0.623** 1 0.232

Creative tendency 0.189 0.232 1
**p<0.01

76

4. DISCUSSION AND CONCLUSIONS
This study not only put the four phases of computational

thinking into practice, but also applied it to solve

mathematics problems with Scratch, one of the blocky

programming languages. The results indicate that the

implementation of the programming was effective; in

addition, the students’ learning effectiveness, and their

results in the mathematics concepts post-test both

improved remarkably in comparison with the pre-test of

the same mathematics unit.

The implementation of the programming had a

significantly positive correlation with the learning

effectiveness of mathematics, implying that the students

who had better Scratch scores outperformed the other

students in the mathematics concepts post-test. The

students’ self-efficacy was correlated with their learning

motivation, but not with their creative tendency. In other

words, the students who had higher learning motivation

possessed higher self-efficacy. In future studies, teachers

could try to design mathematics games for students to

design programs and learn mathematics at the same time,

as the teachers in this study only designed daily-life

situated mathematics problems related to the mathematics

learning unit for the students to apply computational

thinking to solve the problems. Future studies could also

integrate different subjects to learn computational thinking,

programming, and certain subject knowledge (e.g.,

physics, mathematics) at the same time.

ACKNOWLEGEMENTS
This study is supported in part by the Ministry of Science

and Technology in Taiwan under contract number: MOST

105-2628-S-003-002-MY3. This study was conducted in

an elementary school, and the authors are grateful to the

YiLan County Government Education Department.

REFERENCES
[1] Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M.

(2015). From scratch to “real” programming. ACM

Transactions on Computing Education (TOCE), 14(4),

25.

[2] Ke, F. (2014). An implementation of design-based

learning through creating educational computer games:

A case study on mathematics learning during design

and computing. Computers & Education, 73, 26-39.

[3] Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A

concept map-embedded educational computer game for

improving students’ learning performance in natural

science courses, Computers & Education, 69, 121-130.

[4] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M.,

& Rusk, N. (2008). Programming by choice: urban

youth learning programming with scratch. ACM, 40(1),

367-371.

[5] Maloney, J., Resnick, M., Rusk, N., Silverman, B.,

& Eastmond, E. (2010). The scratch programming

language and environment. ACM Transactions on

Computing Education (TOCE), 10(4), 16.

[6] Moreno-León, J., Robles, G., & Román-González,

M. (2015). Dr. Scratch: automatic analysis of scratch

projects to assess and foster computational

thinking. RED. Revista de Educación a

Distancia, 15(46). Retrieved

http://www.um.es/ead/red/46/moreno_robles.pdf on

December 12, 2016.

[7] Nikou, S. A., & Economides, A. A. (2014, April).

Transition in student motivation during a scratch and

an app inventor course. In 2014 IEEE Global

Engineering Education Conference (EDUCON) (pp.

1042-1045). IEEE.

[8] Pintrich, P.R., Smith, D.A.F., Garcia, T., &

McKeachie, W.J. (1991). A manual for the use of the

motivated strategies for learning questionnaire

(MSLQ). MI: National Center for Research to Improve

Postsecondary Teaching and Learning. (ERIC

Document Reproduction Service No. ED 338122).

[9] Sáez-López, J. M., Román-González, M., &

Vázquez-Cano, E. (2016). Visual programming

languages integrated across the curriculum in

elementary school: A two year case study using

“Scratch” in five schools. Computers & Education, 97,

129-141.

[10] Smith, N., Sutcliffe, C., & Sandvik, L. (2014). Code

club: bringing programming to UK primary schools

through scratch. In Proceedings of the 45th ACM.

technical symposium on Computer science education

(pp. 517-522). ACM.

[11] Williams, F. E. (1991). Creativity assessment

packet: Test manual. Austin, TX: Pro-Ed.

[12] Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

[13] Wing, J. M. (2008). Computational thinking and

thinking about computing. Philosophical transactions

of the royal society of London A: mathematical,

physical and engineering sciences, 366(1881), 3717-

3725.

[14]

http://www.um.es/ead/red/46/moreno_robles.pdf
http://eric.ed.gov/?id=ED338122
http://eric.ed.gov/?id=ED338122
http://eric.ed.gov/?id=ED338122

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

77

The Design and Evaluation of a Teacher Development Programme in

Computational Thinking Education

Siu-cheung KONG 1*, Ming LAI 1, Josh SHELDON 2, Mike TISSENBAUM 2

1 The Education University of Hong Kong

2 Massachusetts Institute of Technology

sckong@eduhk.hk, mlai@eduhk.hk, jsheldon@mit.edu, mtissen@mit.edu

ABSTRACT
This article documents the design and evaluation of a

teacher development programme in computational

thinking (CT) education. The results suggested that after

taking a teacher development course (TDC), teachers

enhanced their CT content knowledge; however, some

teachers still did not have sufficient confidence in teaching

CT in their classrooms. Subsequent modification to

address this lack of confidence among this cohort of

teachers is discussed.

KEYWORDS
teacher professional development, computational thinking

education, evaluation, teacher development

1. INTRODUCTION
In her influential article, Wing (2006) convincingly argued

that computational thinking (CT) is “a fundamental skill

for everyone, not just for computer scientists” (p.33).

Every child should possess not only the abilities of

reading, writing, and arithmetic, but also the analytical

skills involved in CT. CT can be considered as the thought

process involved in effectively formulating problems and

their solutions through a computational or digital means

(Cuny, Snyder, & Wing, 2010). After Wing’s (2006)

article, CT has been incorporated into K-12 education

around the world (Grover & Pea, 2013; Voogt et al.,

2015). Block-based programming environments such as

Scratch (Resnick et al., 2009) and App Inventor (Wolber,

Abelson, Spertus, & Looney, 2015) are one approach used

in K-12 education for facilitating students’ CT

development (Lye & Koh, 2014).

While CT education is being emphasized in many

different countries (Voogt et al., 2015), an important

challenge in its implementation in K-12 education is the

shortage of teachers capable in delivering CT education

(Menekse, 2015). It was reported that a large number of

teachers taking professional development programmes in

CT or computer science are new to computer science

(Century et al., 2013). Even teachers who majored in

computer science in their undergraduate studies may not

be familiar with block-based programming environments.

Besides the subject content of CT or computer science, the

implementation of CT education requires teachers to have

the relevant pedagogical content knowledge as well (Saeli,

Perrenet, Jochems, & Zwaneveld, 2012). This knowledge

involves the understanding of the content of coding, and

the pedagogy of delivering the content, which is not an

easy task (Grover & Pea, 2013). Therefore, it is important

to offer quality teacher development programmes (Yoon,

Anderson, et al. 2016) for building the capacity and

confidence of teachers in delivering CT education. This

article reports on the design, implementation, and

evaluation of a teacher development programme in CT

education in the context of the CoolThink@JC initiative

(CoolThink).

1.1. Effective Teacher Development Programmes

The literature on teacher professional development has

identified several key elements for the capacity building

of teachers. First of all, knowing the content knowledge of

the subject is not enough for teaching the subject, as a

teacher also need to know the most appropriate pedagogy

for teaching the content to students, and this kind of

knowledge is referred to as pedagogical content

knowledge (PCK) (Shulman, 1986). Previous studies

suggest that effective professional development for

teachers usually involves a sustained period of time, with

participants actively engaged, with opportunities to

practice and reflect, and situated in a community of

practice (CoP) (e.g., Borko, Jacobs, & Koeliner, 2010).

CoP is not a stable and short term working session, but an

interactive and recursive continuum with complex

reactions among multiple factors (Clark & Hollingsworth,

2002). In a CoP, knowledge is situated in the daily

experience of community members, and learning is a

social process which involves participation and interaction

(Lave & Wenger, 1991). A CoP model of teacher

development allows participants to discuss, peer assess,

and self-reflect on their teaching and learning (Scribner,

Cockrell, Cockrell, & Valentine, 1999).

2. THE PROGRAMME

2.1. CoolThink@JC Initiative

The background of this study is a four-year initiative of

CoolThink@JC (http://www.coolthink.hk/en/) aimed at

promoting CT education among primary schools in Hong

Kong beginning from 2016. A total of 32 primary schools

have been recruited as the Network Schools in this

initiative. Among these 32 schools, 12 are Cohort-1

schools, which started their CT education programme in

the academic year of 2016/17. The remaining 20 are

Cohort-2 schools, will start their CT education programme

on year later. Three teachers from each school are selected

to participate in the teacher development programme and

subsequently teach the CoolThink curriculum.

A 3-level curriculum for Hong Kong grade primary 4

(Level 1) to primary 6 (Level 3) was developed as a

78

collaboration between The Education University of Hong

Kong (EdUHK) and the Massachusetts Institute of

Technology (MIT). Another partner in the CoolThink

initiative is City University of Hong Kong (CityU), which

provides parent education on CT, and in-school co-

teaching support by recruiting and training undergraduate

students from universities in Hong Kong as teaching

assistants. The curriculum aims to foster students’ CT

concepts, practices, and perspectives (Brennan & Resnick,

2012). Each grade level has 10 units of activities and one

or two final project(s) for students to develop CT through

programming activities in the environments of Scratch and

App Inventor. In addition to the formal curriculum, two

sets of co-curricular activities, one on interacting with

physical objects through coding, another on solving

community problems using computational thinking, were

developed by EdUHK for the participation of P5 and P6

students respectively. EdUHK, with the expertise in

teacher education, and MIT, with the expertise in the

development of programming environments and

experience in training teachers, are responsible for

designing and implementing the teacher development

programme. A total of two TDCs, of 39 hours each, are

offered for each cohort of teachers.

2.2. Teacher Development Course 1

TDC 1, mainly designed and delivered by staff from MIT,

aims to enrich the content knowledge of participants on

CT and to allow them to have some initial thoughts on how

to deliver CT education in senior primary schools. The

major component of TDC 1 was a 5-day (6 hours per day)

intensive training conducted by MIT staff over one week.

In addition, a 3-hour pre-MIT session and two post-MIT

sessions (each with 3 hours) for consolidation and project

presentation respectively were conducted by EdUHK

staff. The pre-MIT session aimed to lay a foundation for

teachers to get ready for the training afterwards. Schools

were paired up starting in this session so that they could

provide support and feedback to one another throughout

the programme.

In the 5-day training, the teachers were guided through the

Level 1 formal curriculum that had been developed by

EdUHK and MIT, so that they could be more familiar with

the content knowledge to be delivered, and have a basic

idea of how to implement CT education in their primary

classrooms. Besides coding tasks that had to be finished

with the computers, unplugged activities (Bell, Alexander,

Freeman, & Grimley, 2009) for deepening their

conceptual understanding of CT were also included, which

was similar to the design of the formal curriculum. The

teachers also engaged in pair programming (Denner,

Werner, Campe, & Ortiz, 2014) by working in pairs to

finish a mini Scratch and a mini App Inventor project,

which were also features of the Level 1 curriculum for

primary students.

Throughout the five days, teachers took part in group work

both with other teachers from their own school, and with

teachers from their partner school, to receive feedback in

using MIT App Inventor to design and develop a mobile

app to address a teaching or classroom need. To allow

sufficient time to design and build the app, the

presentation of the app was scheduled in the second post-

MIT session.

The first post-MIT session aimed to review what the

teachers had learned in the 5-day training and to prepare

the teachers to finish and present their mobile app. In the

second post-MIT session, each school’s group of three

teachers presented their app as a group, and received

feedback from classmates, instructors, and guests who

were experienced teachers in CT education. TDC 1, from

the first 3-hour pre-MIT session, through the intensive

MIT-led week, to the two 3-hour post-MIT sessions, lasted

for about one month. This article aims to report the

evaluation of TDC 1, especially on the enhancement of

knowledge and confidence of teachers in teaching CT, and

how it affects the subsequent design in TDC2.

2.3. Teacher Development Course 2

While TDC 1 emphasized content knowledge of CT and

basic ideas for CT pedagogy, TDC 2 had a greater focus

on pedagogy. As effective teacher development requires a

sustained period of time, within which the participants can

be actively engaged and have the opportunity to practice

and reflect (Borko et al., 2010), TDC 2 lasted for a total of

13 weeks, with weekly 3-hour sessions. The teachers had

the opportunities to teach the Level 1 curriculum in their

schools, and shared their teaching experience with one

another for feedback and reflection. The final project in

TDC 2 required groups of 3 teachers from each school to

design and present a complete unit for CT education,

which enabled them to think more deeply about what they

had learned in the programme and how to deliver CT

education.

TDC 2’s content included discussion of appropriate

pedagogies for CT education; analysis of video clips taken

in primary classes implementing CT; and examination of

student created artifacts and discussion on how to use

those artifacts to assess student learning. To enable

teachers to capably conduct the co-curricular activities,

there were sessions on interacting with physical objects

through coding as well as solving community problems

with CT. Guest instructors, including experienced teachers

in CT, school principals, and practitioners in coding

education with frontline experience in facilitating students

to apply coding knowledge to solve community problems,

were invited to share their experiences and deliver the

lessons.

A CoP approach was employed in TDC 2. Following the

collaborative activities within and between schools in

TDC 1, there were opportunities for teachers in the same

school to work together to solve learning tasks and to

discuss with teachers of the partner schools for feedback.

To facilitate discussion among teachers, a WhatsApp

group for the whole class, and small WhatsApp groups for

each pair of partner schools were created for sharing

reflections and ideas on coding knowledge and teaching

methods. We anticipated that participants with less

experience in coding and CT education could benefit from

interaction with more experienced counterparts. Also, all

teachers could learn from one another and elaborate their

understandings of content knowledge and PCK of CT.

79

2.4. Participants

Participants in this study were 36 primary school teachers

from 12 Cohort-1 schools of CoolThink, and four staff

members from CityU who are responsible for the training

of teaching assistants. Among the 12 schools, 10 are with

Chinese as the medium of instruction while 2 are with

English as the medium of instruction. Among the 36

teachers, 25 are male and 11 are female. Their average

years of teaching experience are 12.5, and average years

of experience teaching the subject of Computer or

Information and Communication Technology are 7.9.

2.5. Instrument

To evaluate TDC 1, and see whether any refinement was

needed for TDC 2, a survey based on the standard course

evaluation instrument in the institution was implemented

at the end of TDC 1. The survey has three main parts: 1)

Likert-scale questions about the teaching; 2) Likert-scale

questions about the course design; and 3) Open-ended

questions on the most useful aspects of the course and how

the course could be changed to help the participants learn.

Each Likert-scale question is based on a 4-point scale.

3. RESULTS
The evaluation results related to the teaching of the course

and the course itself are as presented in Tables 1 and 2

respectively. It can be seen that in general, the participants

were satisfied with the teaching of the course, as the scores

were above 3 on a 4-point scale as indicated in Table 1.

The participants particularly agreed that the instructors

encouraged exchange of ideas among participants in their

learning (mean=3.34). They also agreed that the overall

teaching was of high quality (3.13).

For the evaluation about the course (Table 2), while most

participants regarded the course enhanced their knowledge

and skills in developing block-based programs with

Scratch (3.21) and App Inventor (3.16), some of them

indicated that they did not have sufficient confidence in

applying the knowledge in their teaching (2.87) and to

equip their students with CT capabilities (2.79).

Table 1. Evaluation on the teaching of the course.

 Mean SD

Q1 Delivering the course in an

organized way.

3.03 0.54

Q2 Inspiring students to think and

learn.

3.08 0.49

Q3 Providing appropriate feedback

to enhance student learning.

3.05 0.46

Q4 Encouraging exchange of ideas

among students in their

learning.

3.34 0.53

Q5 Providing opportunities for

students to learning from a

variety of ways.

3.11 0.51

Q6 Guiding students to think from

different perspectives.

3.05 0.4

Q7 Encouraging students to

proactively engage in their own

learning.

3.18 0.56

Q8 Being enthusiastic in teaching. 3.11 0.56

Q9 The overall teaching was of high

quality.

3.13 0.53

Table 2. Evaluation on the course.

 Mean SD

Q10 The learning activities of the

course stimulated my interest in

the subject.

3.03 0.59

Q11 The course enhanced my

knowledge and skills in

developing block-based

programs with Scratch.

3.21 0.7

Q12 The course enhanced my

knowledge and skills in

developing block-based

programs with App Inventor.

3.16 0.75

Q13 I have acquired sufficient

knowledge and skills of

computational thinking for my

teaching.

2.87 0.53

Q14 I am confident in equipping

students with computational

thinking capabilities through

what I have learnt from the

course.

2.79 0.62

Q15 The course was valuable to my

development.

3.16 0.59

3.1. Qualitative Feedback

Overall, in terms of the qualitative feedback, the

participants recognized that block-based programming

environments were effective for encouraging beginners to

step out of their comfort zone to learn coding, and the

interface was user-friendly. However, they expressed that

the linkage between acquisition of CT concepts and

practices, and the learning of coding needed elaboration.

In real classrooms, they would have to explicitly illustrate

what CT concepts and practices students were learning

when finishing a project. They also appreciated the

arrangement of unplugged activities and design tasks

which enabled them to better comprehend the CT concepts

and aroused their interest in learning deeper. They also

agreed that the mini projects were useful for them to

explore and develop what they were interested in freely

and creatively.

4. DISCUSSION & CONCLUSION
The results suggested that after TDC 1, the teachers agreed

that their content knowledge of CT had been enhanced.

However, some teachers were not highly confident in their

ability to deliver CT education in their classrooms. This

makes sense, as TDC 1 mainly focuses on content

knowledge of CT, while TDC 2 on pedagogy. In

particular, as we found that the teachers were not confident

80

enough in teaching their students to use App Inventor to

build mobile apps, we have modified the design of TDC 2

to include coding tasks in the first few lessons to further

their understanding in the use of App Inventor for creating

mobile apps and how to connect it with the development

of CT. And as the qualitative results suggested that the

linkage between programming activities and the

acquisition of CT concepts and practices needs to be more

explicit, we have articulated more on the linkage in TDC2.

The evaluation on TDC2 will be conducted to see whether

teachers’ PCK and confidence in delivering CT education

have been improved.

5. REFERENCES
Bell, T., Alexander, J., Freeman, I., & Grimley, M.

(2009). Computer science unplugged: School students

doing real computing without computers. The New

Zealand Journal of Applied Computing and

Information Technology, 13(1), 20–29.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of

computational thinking. 2012 Annual Meeting of the

American Educational Research Association

(AERA’12), Canada.

Borko, H., Jacobs, J., & Koeliner, K. (2010).

Contemporary approaches to teacher professional

development. International Encyclopedia of Education

(3rd ed), 548-555.

Century, J., Lach, M., King, H., Rand, S., Heppner, C.,

Franke, B., & Westrick, J. (2013). Building an

operating system for computer science. Chicago, IL:

CEMSE, University of Chicago with UEI, University

of Chicago. Retrieved from

http://outlier.uchicago.edu/computerscience/OS4CS/

Clarke, D., & Hollingsworth, H. (2002). Elaborating a

model of teacher professional growth. Teaching and

Teacher Education, 18(8), 947-967.

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying

computational thinking for noncomputer scientists.

http://www.cs.cmu.edu/~CompThink/resources/TheLin

kWing.pdf

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014).

Pair programming: Under what conditions is it

advantageous for middle school students? Journal of

Research on Technology in Education, 46(3), 277-296.

Grover, S., & Pea, R. (2013). Computational thinking in

K-12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Lave, J., & Wenger, E. (1991). Situated learning:

Legitimate peripheral participation. Cambridge:

Cambridge University Press.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching

and learning of computational thinking through

programming: What is next for K-12? Computers in

Human Behavior, 41, 51-61.

Menekse, M. (2015). Computer science teacher

professional development in the United States: A

review of studies published between 2004 and 2014.

Computer Science Education, 25(4), 325-350.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,

N., Eastmond, E., Brennan, K., et al. (2009). Scratch:

Programming for all. Communications of the ACM,

52(11), 60-67.

Saeli, M. Perrenet, J., Jochems, W. M. G., & Zwaneveld,

B. (2012). Programming: Teachers and pedagogical

content knowledge in the Netherlands. Informatics in

Education, 11(1), 81-114.

Scribner, J. P., Cockrell, K. S., Cockrell, D. H., &

Valentine, J. W. (1999). Creating professional

communities in schools through organizational

learning: An evaluation of a school improvement

process. Educational Administration Quarterly, 35(1),

130-160.

Shulman, L. S. (1986). Those who understand:

Knowledge growth in teaching. Educational

Researcher, 15, 4-14.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory

education: towards an agenda for research and practice.

Education and Information Technologies, 1-14.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2015). App Inventor 2: Create your own Android apps.

Sebastopol, CA: O’Reilly.

Yoon, S. A., Anderson, E., Koehler-Yom, J., Evans, C...

& Klopfer, E. (2016). Teaching about complex systems

is no simple matter: building effective professional

development for computer-supported complex systems

instruction. Instructional Science, 1-23

http://outlier.uchicago.edu/computerscience/OS4CS/
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

81

Connecting Design Thinking and Computational Thinking

in the Context of Korean Primary School Teacher Education

Hyungshin CHOI1, Mi-song KIM2

1 Chuncheon National University of Education

2 University of Western Ontario

hschoi@cnue.ac.kr, misong.kim@gmail.com

ABSTRACT
This current study as part of multi-year design-based

research reports our attempt to design and implement a

course in teacher education in Korea. We have

incorporated design thinking (DT) into the course design

and investigated how primary teachers appreciate the role

of DT and recognize the connection between teaching

computational thinking and DT. This paper reports the

course design, its progression, reflections, and learning

outcomes.

KEYWORDS
Computational thinking, Design thinking, Physical

computing, Teacher Education

1. INTRODUCTION & LITERATURE

REVIEW
Drawing upon the power and limits of computing

processes (Wing, 2006), the influence of computational

thinking (CT) in the 21st century has become widely

recognized in innovative educational theory and practice

(Resnick & Siegel, 2015; Shodiev, 2014). It is often

recognized that, however, little attention has been paid to

develop teacher education or teacher professional

development with regard to CT. This current study as part

of multi-year design-based research reports our attempt to

design and implement a course in teacher education in

Korea. Specifically, we aimed to introduce design

thinking (DT) into a CT course for primary school

teachers who were interested in applying CT into their

lesson design for primary school students. The study will

uncover how primary school teachers perceive impacts of

DT on integrating CT into their lesson design. This paper

also reports our design which is a new graduate course

titled “Creativity in the Technological Field using Design

Thinking”.

2. THE STUDY & METHODOLOGY
Despite the fact that DT has been the topic for

educational innovation over the last few years in many

countries including Korea, there are no teacher education

courses integrating DT with CT for teacher education. To

respond to this challenge, as teacher educators, we decided

to design and implement a graduate course in the field of

computer education in Korea.

Our design-based research (DBR) (Collins, Joseph, &

Bielaczyc, 2004) adopted the design thinking process to

empower in-service teachers who attempted to employ CT

in their classrooms. The research questions are: (1) how

are this course design experienced by in-service teachers?;

and (2) what are the implications of this course design to

improve teacher knowledge of computational thinking

through the lens of design thinking? As Table 1 indicated,

we designed the course including 12 modules, and each

module takes 3 hours. The course was designed to

introduce three in-service teachers the five stages of

design thinking (DT) (IDEO, 2014) while making a

connection with physical computing using Arduino,

Lilypad, Makey Makey, and 3D printing.

Table 1. Course Modules and Related Activities
Module Themes & Activities
1 Design Thinking Overview and Cases
2

3-5
6-7

8
9
10-11
12

Computational Thinking and Physical
Computing
Design Thinking for Educators
Reflections on Design Thinking (while
reading ‘Change by Design’ and ‘Design
Thinking Lecture Note’ in Korean)
eCrafting with Lilypads
3D Printing and Physical Computing
Designing an Authentic Plan
Presentations and Feedback

 We used both face-to-face interactions and on-line

discussions using Padlet where in-service teachers were

able to share reading materials, reading summaries,

questions, feedback, reflection papers, and assignments

throughout the course (see Figure 1).

Figure 1. The Course Online Space

3. FINDINGS

3.1. In-Service Teachers’ Understanding of Design

Thinking Processes

Padlet was collaborative in nature and facilitated in-

service teachers’ design process experiences. Specifically,

82

it helped them collaboratively engage in design thinking

processes such as the ‘define’ stage followed by the

‘ideation’ stage with either virtual or real post-it notes in

Modules 3-5 (see Figure 2).

Figure 2. The ‘Define’(left) and ‘Ideation’(right) Stages

For example, drawing upon her experiences in teaching

courses in software education, one teacher identified the

design challenge of software education for her primary

school students: “How could I make software education

space for my students?”. Like the other in-service

teachers, she became more comfortable with the design

thinking processes and developed a prototype-driven

solution (see Figure 3). She also gained an appreciation for

making and improving prototyping by collaborating with

many stakeholders (e.g., teachers, colleagues, school

staffs, financial administrators, students).

Figure 3. Design Thinking in Computer Education

3.2. Impact of a Design Thinking Course on Teacher

knowledge of teaching Computational Thinking

In Modules 10 and 11, as their final projects, teachers

developed either authentic lesson plans in their own

educational contexts or reflection papers regarding the

design thinking processes to address their own educational

problems. Two participants created lesson plans and one

came up with a reflection paper. One of the lesson plans is

‘a high-level lesson plan for 10 modules to integrate

software education for computational thinking into design

thinking’. The lesson plan has five stages (learn, ideate,

design, make, share). In the ‘learn’ stage, students learn

basic skills for block-based programming. In the ‘ideate’

stage, students design a project as a team. In the ‘design’

stage, students sketch their ideas visually, express the

movements and complete a scenario. In the ‘make’ stage,

students create programs by objects, implement various

programs to produce outputs, record the development

processes, and test. Finally, in the ‘share’ stage, students

upload their projects online, present them in the class, and

evaluate their own learning processes. Instead of a lesson

plan, one teacher decided to write a reflection paper using

PPTs and developed a solution by applying the design

thinking processes. Their final projects reveal that the

course helped in-service teachers reflect on a way to make

a connection between design thinking and computational

thinking through physical computing. One teacher

mentioned that “I can incorporate physical computing in

my lesson as a tool to make prototypes during design

thinking process.” Another teacher also noted that “[t]hey

have something in common. They involve promoting

students’ creativity. Physical computing helps students

implement tangible objects creatively while design

thinking encourages them to search for the solutions

requiring creativity.” In a similar vein, the other teacher

concluded that “[t]hey are connected in terms of

educational effects: emphasizing collaboration and

learning through failures.”

4. CONCLUSIONS & IMPLICATIONS
This design-based research reports initial design and

implementation of one graduate course to connect

computational thinking and design thinking for primary

school teachers in Korea. As our findings indicate, in-

service teachers appreciated the role of design thinking to

reflect on and solve their problems collaboratively while

integrating computational thinking into their lesson plans.

This suggests the need to further explore teacher education

by integrating design thinking processes and

computational thinking. Our exploration of in-service

teachers’ reflections and lesson designs also highlights

several key features of physical computing such as

promoting creative confidence, making, empathy, and

collaboration.

5. REFERENCES
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design

research: Theoretical and methodological issues.
Journal of the Learning Sciences, 13(1), 19-32.

IDEO. (2014). Design Thinking for Educators. Retrieved
December 10, 2016, from
http://www.designthinkingforeducators.com/toolkit/

Resnick, M., & Siegel, D. (2015). A different approach
to coding. Bright/Medium.

Shodiev, H. (2014). Computational thinking and
simulations in teaching science and mathematics. Paper
presented at the Applied Mathematics, Modelling, and
Computational Science.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 19(3), 33-35

http://www.designthinkingforeducators.com/toolkit/

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

83

Computational Thinking and

Coding Education in K-12

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

84

Curriculum Activities to Foster Primary School Students’

Computational Practices in Block-Based Programming Environments

Siu-cheung KONG1, Hal ABELSON2, Josh SHELDON2, Andrew LAO1,

Mike TISSENBAUM2, Ming LAI1, Karen LANG2, Natalie LAO2

1The Education University of Hong Kong
2Massachusetts Institute of Technology

sckong@eduhk.hk, hal@mit.edu, jsheldon@mit.edu, acclao@eduhk.hk,

mtissen@mit.edu, mlai@eduhk.hk, karlang@mit.edu, natalie@csail.mit.edu

ABSTRACT
As digital technology is increasingly a part of all sectors

of society, educational approaches must be developed in

order to nurture students’ ability to see the world through

a computational lens. One way to achieve this goal is to

promote Computational Thinking (CT) for young

learners. The CoolThink@JC project is a four-year

curriculum pilot designed to integrate CT into Hong

Kong upper-primary level schools. The CoolThink

framework for curriculum development is structured

around computational concepts, practices and

perspectives adapted from the framework of Brennan

and Resnick (2012). This adapted framework motivated

the choice of learning activities for CoolThink. This

paper focuses on one aspect of that framework, namely

computational practices. Here, we describe how

activities in the CoolThink curriculum can promote the

computational practices highlighted by the framework.

KEYWORDS
Computational thinking, Programming education,

Curriculum activities, K-12 education

1. INTRODUCTION
Digital technologies are transforming virtually all

aspects of modern living. The ability to productively

engage with digital tools has become a requisite skill for

empowered citizens. More and more, people need to

confront and solve problems in computational terms in

order to drive innovation and improve quality of life

(Looi, Chan, Wu, & Chang, 2015; Yadav, Mayfield,

Zhou, Hambrusch, & Korb, 2014).

As we educate tomorrow’s leaders, there is a growing

need to nurture young people’s computational thinking

(CT) abilities in order to help prepare them to engage

effectively in a digital world. CT is drawing worldwide

attention from educational planners and policy makers. It

is increasingly being singled out as a skill that students

should acquire (Wing, 2006). Many advocates contend

that more traditional subjects in K-12 education should

be integrated with CT development through a curriculum

where students engage in computer programming (Barr

& Stephenson, 2011; Fluck et al., 2016; Grover & Pea,

2013; Kaifai & Burke, 2013; Tucker, 2003).

The CoolThink@JC Project (CoolThink) is a four-year

curriculum pilot aimed at integrating CT into Hong Kong

schools. The work focuses on senior primary school

learners (grades 4 through 6) aged 9-12, in the belief that

this is the appropriate age to spark student emerging

interest in computing, whereas waiting until middle

school or high school may be too late (Tai et al., 2006).

The curriculum design of CoolThink follows the

framework for CT set out by Brennan & Resnick (2012),

which breaks CT into three parts: computational

concepts (CT Concepts) that designers engage with in

programing, computational practices (CT Practices)

designers exercise while programming, and

computational perspectives (CT Perspectives) that

programmers develop about themselves and the world

around them.

This paper describes three programming activities that

CoolThink is currently piloting at a dozen Hong Kong

primary schools. We focus on activities designed to

guide the development of computational practices within

the CT curriculum.

2. LEARNING OUTCOMES OF

COMPUTATIONAL THINKING

The term “computational thinking” in education was first

used in relation to child education by Papert (1980) with

reference to Logo, a computer language designed for

children. As Papert wrote, “I believe that certain uses of

very powerful computational technology and

computational ideas can provide children with new

possibilities for learning, thinking, and growing

emotionally.” In 1980, computers were neither powerful

nor affordable enough for Papert’s vision to be widely

realized, but that changed over next two decades. As

computers became less expensive, more powerful, and

more accessible to many, the term “computational

thinking” became prominent in computer science

education starting with a highly influential article by

Jeanette Wing (2006). She defined computational

thinking as “the thought processes involved in

formulating problems and their solutions so that the

solutions are represented in a form that can be effectively

carried out by an information-processing agent” (Cuny,

Snyder, & Wing, 2010). Today, it is widely recognized

that CT is a broadly applicable set of skills that can help

people in fields as diverse from astronomy to zoology,

http://web.mit.edu/
mailto:sckong@eduhk.hk
mailto:hal@mit.edu
mailto:jsheldon@mit.edu
mailto:acclao@eduhk.hk
mailto:mlai@eduhk.hk
mailto:karlang@mit.edu

85

and seemingly everything in between. While CT has long

been regarded as a specialized skill that only computer

scientists need to develop, it is increasingly being

considered an essential cognitive ability for everyone in

a digital-mediated world, due to its alignment with

twenty-first century skills such as problem-solving and

creativity (Binkley et al., 2012).

Figure 1 shows CoolThink’s framework for learning

outcomes (Kong, 2016). It is structured as the foundation

of the curriculum by placing emphasis on the outcomes

of CT development, following the three key dimensions

of CT (i.e. computational concepts, practices and

perspectives) developed by Brennan and Resnick (2012).

Figure 1. CoolThink framework of learning outcomes

of CT adapted from Brennan and Resnick (2012).

In this paper, we focus on CT Practices. Following

Brennan and Resnick, we call out the practices of reusing

and remixing, being incremental and iterative,

abstracting and modularizing, testing and debugging, and

employing algorithmic thinking. Helping students

develop these skills is a key part of a programming

curriculum for computational thinking. As an example,

we consider how to guide the development of CT

Practices within the context of the CoolThink

curriculum.

3. DESIGNING LEARNING

ACTIVITIES TO SUPPORT CT

PRACTICES

3.1 Making CT Learning Environments for K-12

Students

This section illustrates, with concrete examples, how

learning activities for upper-level primary school

learners can be designed to support the CT Practices

highlighted in the CoolThink framework. While

programming is challenging to learn, there have been

considerable efforts to make it more accessible to novice

learners. One approach that has been proven successful

in teaching novice programmers is the use of block-based

programming environments (Meerbaum-Salant, Armoni

& Ben-Ari, 2010). For example, Scratch (Maloney,

Resnick, Rusk, Silverman, & Eastmond, 2010) and App

Inventor (Wolber, Abelson, Spertus, & Looney, 2011)

are two commonly used block-based programming

environments for novice programmers (Price & Barnes,

2015).

First introduced in 1986 (Glinert, 1986) and again in

LogoBlocks (Begel, 1996), block-based environments

provide blocks that can be dragged and dropped into a

scripting pane to build stacks of blocks. This allows

learners to develop programs without programming

syntax. The shape and the visual layout of the blocks

allow learners to understand the logic flow, making

programming more concrete and easier to use by young

learners (Weintrop & Wilensky, 2015). Syntax errors are

also reduced in block-based programming contexts as the

blocks only “fit together” when the code makes sense.

Therefore, the learning activities in the CoolThink

curriculum are designed in the context of Scratch and

App Inventor.

The CoolThink curriculum has three levels. These are

intended in our pilot for Hong Kong grades 4, 5, and 6,

respectively (roughly ages 9-12). The curriculum begins

with a series of Scratch units in level 1, which comprise

the first half of level 1. The Scratch units serve as an

easily accessible introduction for learners new to

programming. After the Scratch units equip learners with

some programming concepts and practices, App Inventor

is introduced as the environment for the rest of the

curriculum, beginning with the second half of level 1 and

continuing through levels 2 and 3. Taken altogether, the

three levels will be completed over the course of three

school years. Designed to progress as students grow in

both experience and ability, the curriculum introduces

more complex and authentic computational tasks as it

progresses.

3.2. Providing for CT Practices in Curriculum Design

We suggest that development of CT practices through

programming tasks should be a key goal of this

curriculum in order to nurture and enhance learners’

problem-solving ability. In the learning outcomes for the

CoolThink CT framework, five sets of the CT practices

are targeted in the design of the programming activities.

This section demonstrates how the activities in the

CoolThink curriculum can help support the CoolThink

framework’s CT practices.

Creation involves combining existing and new ideas

(Chan, Looi, & Chang, 2015). Therefore, to nurture

leaners as creative problem solvers, it is important to

support them in developing the CT practices of reusing

and remixing. Reusing refers to recalling code student

have used in previous projects and incorporating it again

in new programming tasks. Remixing involves building

on their work or the work of others to create new and

more complex artifacts (Brennan & Resnick, 2012). For

example, consider the activity “Making a Maze Game

with Scratch” (Level 1, Unit 2). This activity uses

86

coordinates to control the movement of a sprite (the

panda in Figure 2). The same code can be reused in the

Scratch Mini Project (to be completed after the Scratch

units that make up the first half of Level 1). For this

project, students must create either a story or a game.

One strategy learners may employ is to reuse maze game

code by extracting it from their “Backpack” (a tool in the

Scratch environment for storing and sharing code across

programming projects) into a new programming project

for their Scratch Mini Project. (see the green box in

Figure 4). Students can remix the event and the “forever”

loop to make the cat move continuously (see Figure 5).

In order to enhance the practices of reusing and remixing,

the learning activities of the curriculum should be inter-

related and increasingly complex.

Figure 2. The maze game in

unit 2 at level 1.

Figure 3. The use of the

coordinates in the maze

game.

Figure 4. Reuse the codes of the coordinates (red box),

extracted from “Backpack” (green box) in Scratch Mini-

Project.

Figure 5. Remix the event and forever loop to enable the

cat to move continuously.

3.3. Example: The Addition Game Activity’s Support

for Multiple CT Practices

The CoolThink curriculum’s “Addition Game” (Level 1,

Unit 6) supports multiple CT practices. In this App

Inventor game, three numbered balls roll horizontally

from left to right at a slow pace. Players must determine

whether any two of the three numbers sum to 10 and

press the “yes” or “no” button before the balls reach the

screen edge. This Unit provides students with an

opportunity to use the CT practice of developing

incrementally and iteratively.

In developing the game, learners must generate three

numbers in each round. Early in the unit, learners are

asked to build a program that generates three random

numbers (see Figure 6 for one possible solution to this

challenge). Learners quickly observe that two of the

numbers rarely sum to 10. This is problematic if the goal

of the game is to have two numbers sum to ten before the

player adds the third number. Therefore, learners need to

iterate on their design to increase the probability that the

sum of two of the three numbers is ten. Learners, under

their teachers’ guidance, will refine the design to

guarantee that two of the numbers do sum to 10. One

possible approach is to generate a second number from

the difference between 10 and the first random number

(Figure 7).

Figure 6. Code with a very low probability of getting a sum of

10 from two of the three random numbers.

Figure 7. Modified code that always yields get a sum of 10

from two of the three random numbers.

87

Figure 8. Another modification where there’s nearly a

half chance of getting a sum of 10 from two of the three

random numbers.

However, this change makes the first two numbers

always sum to 10 (making the game boring). In order to

create a more engaging game, with teachers’ guidance,

learners are encouraged to refine their code such that

both situations (rarely having a sum of 10 versus always

having sum of 10) occur with nearly equal chance.

Learners may further iterate on their design by

randomizing the two situations with the use of a “global

dice”, as shown in Figure 8, in order to produce a roughly

equal chance of having a sum of 10 and no sum of 10. By

developing this solution, learners get the opportunity to

experience and understand the iterative and incremental

processes for constructing a computational artifact.

As computer programs become more complicated, it is

useful to organize the programs by abstracting and

modularizing code. The addition game app provides an

opportunity to expose learners to abstracting and

modularizing their code. Abstraction is the CT practice

of defining patterns, generalizing from instances, and

parameterization, and is essential to deal with complexity

and scale (Wing, 2011). Modularizing is the

decomposition of complex problems, which helps

structure large-grain programs (Parnas, 1972). In order

to enhance young learners’ understanding of the CT

practices, learners can be guided to modify their solution

in Figure 8 into the one in Figure 9.

As shown in the version of the code Figure 9, the main

program helps develop learners’ abilities for high-level

abstraction by calling with equal chance the module of

rarely having a sum of 10 and the module always having

a sum of 10 (i.e., when the program randomly generates

either 1 or 2, using the “global dice”, the corresponding

action is called). For example, when the “global dice”

rolls 1, the program will generate three random numbers

without guaranteeing that some pair of numbers sums to

10.

Figure 9 shows a version of the program where the two

actions are coded as independent modules implemented

as procedures in the program. This modification helps

instill in learners the importance of abstracting and

modularizing when programs become more complex,

thus requiring the tasks to be decomposed and tackled

one-by-one.

Figure 9. The main program and two procedures in the

Addition Game for reinfrocing the abstracting and

modularizing skills of learners.

The process described above of making small, frequent

refinements is an example of another of the CT practices,

namely being incremental and iterative.

As well, the Addition Game activity reinforces the CT

practices of testing and debugging. Students often

encounter these practices through trial and error or

through “support from knowledgeable others” (Brennan

& Resnick, 2012). In a programming curriculum, all the

learning tasks should involve the practice of testing and

debugging designs as they evolve. One pedagogical

technique for reinforcing testing and debugging is to

provide learners with a program that involves errors in

its logic. Figure 10 shows a version of the Addition

Game code that contains a logical error (a self-

referencing variable). The blocks could be debugged by

a teacher pointing out the error directly. However, if the

teacher presents this code for the class to test and repair,

it can be a valuable opportunity for the whole class to

collectively develop their testing and debugging skills.

The intent of the design shown in Figure 10 is to

randomly generate three numbers such that two of the

three numbers sum to 10. It is expected that some

learners will be able to immediately spot the bug in the

code, realizing that none of the numbers are coupled, that

the Q1 statement only changes Q1. It is not dependent on

either Q2 or Q3. Other learners may need to test the code

to discover that the code doesn’t work as intended.

Learners will then need to go through the process of

revising the code, testing and debugging it until the

program is bug-free (see Figure 11 for one possible

solution). Through this process, learners will learn about

iterative cycles of coding, testing, and debugging.

88

Figure 10. A logical error in the design of codes in

always getting a sum of 10 from two of the three

random numbers.

Figure 11. The correct sequence of codes in always

getting a sum of 10 from two of the three random

numbers.

3.3. Supporting Algorithmic Thinking

The practice of algorithmic thinking is a key element in

the development of CT (Angeli et al., 2016; Barr &

Stephenson, 2011; Selby & Woollard, 2013; Wing,

2006). It can equip learners with the ability to

systematically process information, understand symbol

systems and representations, flow of control, and

conditional logic (Grover & Pea, 2013). The CoolThink

curriculum’s “Voting App” (Level 3, Unit 1) is an

example of support for algorithmic thinking. This App

Inventor activity asks students to develop an app that

presents various options to be voted on and records the

votes from multiple voters in a cloud database. Votes are

tallied and displayed for voters on their individual

devices. Figure 12 shows a high-level approach to

developing this kind of app, together with the associated

data flow. Asking learners to draw dataflow diagrams

can reveal to what degree they understand the necessary

data flow of the app and the logic they will code in order

to achieve that data flow.

Figure 12. The data flow diagram that helps elucidate

showing the learner’s algorithmic thinking skills.

Following the detailed design of data flows, learners can

start building the Voting App. These two stages of high

level abstraction and algorithmic design can help

learners’ process information in a more systematic way

and facilitate the development of their algorithmic

thinking.

Figure 13 shows the algorithmic design of adding the

count of each “vote” by one. When an option is voted on

by a user, the algorithm starts by requesting the current

vote counts of the voter’s choice from the cloud database.

When the current vote is returned, that value is

incremented by one, and sent back to be stored as the new

value for that choice in the cloud database.

Figure 13. An algorithmic design showing the

algorithmic thinking skills of learner with

implementation details on the data flow.

4. CONCLUSION AND FUTURE WORK
To nurture young learners as creative problem solvers in

this digital world, requires development of

computational thinking early in K-12 education. This

paper illustrates how the CoolThink framework

incorporates learning activities aimed at developing CT

Practices in a programming curriculum for upper-level

primary school students. Future work will address the

additional CoolThink framework elements of CT

concepts and CT perspectives. Based on the example of

algorithmic thinking in the CoolThink curriculum, it will

be worthwhile to explore some other computational

concepts such as synchronization and atomicity in

multiple user databases since experience with young

learners exploring these concepts in Scratch is the subject

of a recent doctoral dissertation (Dasgupta, 2016). It will

also be necessary to assess student learning outcomes for

the CT elements and determine if the CoolThink design

principles do indeed support the development of

computational thinking in students in the target grades.

This may be particularly challenging for CT practices,

where learning manifests as activities learners perform

and objects they build. In order to more accurately

understand student CT learning, it seems preferable to

use a breadth of tools, including not only standardized

tests, but also instruments based on students’ developed

artifacts (e.g., design documents, written code, and final

products), and even classroom observations and small

group interviews.

5. REFERENCES
Angeli, C., Fluck, A., Webb, M., Cox, M., Malyn-

Smith, J., & Zagami, J. (2016). A K-6 Computational

Thinking Curriculum Framework: Implication for

Teacher Knowledge. Educational Technology &

Society, 19(3), 47-57.

Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: What is involved and

what is the role of the computer science education

community? ACM Inroads, 2(1), 48-54.

Begel, A. (1996). LogoBlocks: A Graphical

Programming Language for Interacting with the

World. Cambridge: Massachusetts Institute of

Technology.

89

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley,

M., Miller-Ricci, M., & Rumble, M. (2012). Defining

twenty-first century skills. In P. Griffith, B. McGaw,

& E. Care (Eds.), Assessment and teaching of 21st

century skills (pp. 17-66). Netherlands: Springer.

Brennan, K., & Resnick, M. (2012). New frameworks

for studying and assessing the development of

computational thinking. In Annual American

Educational Research Association meeting,

Vancouver, BC, Canada.

Chan, T. W., Looi, C. K., & Chang, B. (2015). The IDC

Theory: Creation and the Creation Loop. In T. Kojiri,

T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen,

S. C. Kong, & F. Qiu (Eds.), Workshop Proceedings

of the 23rd International Conference on Computers in

Education (pp. 814-820). Hangzhou, China: Asia-

Pacific Society for Computers in Education.

Coolthink (2016). “Grounded in computer science

principles, computational thinking empowers students

to move beyond mere technology consumption and

into problem-solving, creation and innovation.”

http://coolthink.hk

Cuny, J., Snyder, L., & Wing, J. M. (2010).

Demystifying Computational Thinking for Non-

Computer Scientists. Work in Progress.

Dasgupta, Sayamindu (2016). Children as Data

Scientists: Explorations in Creating, Thinking, and

Learning with Data (Doctoral dissertation).

Massachusetts Institute of Technology, September,

2016.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-

Smith, J., Voogt, J., & Zagami, J. (2016). Arguing for

Computer Science in the School Curriculum.

Educational Technology & Society, 19(3), 38-46.

Glinert, E.P. (1986), Towards “Second Generation”

Interactive, Graphical Programming Environments

Proceedings of the 2nd IEEE Computer Society

Workshop on Visual Languages, 61-70.

Grover, S., & Pea, R. (2013). Computational Thinking

in K-12: A Review of the State of the Field.

Educational Researcher, 42(1), 38-43.

Kafai, Y., & Burke, Q. (2013). Computer programming

goes back to school. Phi Delta Kappan, 95(1), 61-65.

Kong, S. C. (2016). A framework of curriculum design

for computational thinking development in K-12

education. Journal of Computers in Education, 3(4),

377-394.

Looi, C. K., Chan, T.-W., Wu, L., & Chang, B. (2015).

The IDC Theory: Research Agenda and Challenges.

In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H.

Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.),

Workshop Proceedings of the 23rd International

Conference on Computers in Education (pp. 796-

803). Hangzhou, China: Asia-Pacific Society for

Computers in Education.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The Scratch Programming

Language and Environment. ACM Transactions on

Computing Education, 10(4), 16.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M.M.

2010. Learning computer science concepts with

scratch. Proc. of the 6th Annual ICER Conference

(2010), 69–76.

Papert, S. A. (1980). Mindstorms: Children, Computers,

and Powerful Ideas, Basic Books.

Parnas, D. L. (1972). On the criteria to be used in

decomposing systems into modules. Communications

of the ACM, 15(12), 1053-1058.

Price, T. & Barnes, T. (2015). Comparing Textual and

Block Interfaces in a Novice Programming

Environment. In Proceedings of the eleventh annual

International Conference on International Computing

Education Research (pp. 91-99). Omaha, USA: ACM.

Selby, C., & Woollard, J. (2013). Computational

Thinking: The Developing Definition. In 19th Annual

Conference on Innovation and Technology in

Computer Science Education. Canterbury, Great

Britain.

Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006).

Planning early for careers in science. Life sci, 1, 0-2.

Tucker, A. (2003). A Model Curriculum for K-12

Computer Science. Report of the ACM K-12

Education Task Force Computer Science Curriculum

Committee – Draft. Retrieved January 26, 2017, from

http://www.acm.org/k12/k12Draft1101.pdf

Weintrop, D., & Wilensky, U. (2015). To Block or not

to Block, That is the Question: Students’ Perceptions

of Blocks-based Programming. In M. Lee & T.

Strelevitz (Eds.), Proceedings of the 14th

International Conference on Interaction Design and

Children (pp. 199-208). New York, NY: ACM.

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2011). Research notebook: Computational

thinking—What and why? The Link Magazine,

Carnegie Mellon University, Pittsburgh. Retrieved

from http://link.cs.cmu.edu/article.php?a=600

Wolber, D., Abelson, H., Spertus, E., & Looney, L.,

App Inventor: Create your own Android Apps, (2011),

O’Reilly Media.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., &

Korb, J. (2014). Computational Thinking in

Elementary and Secondary Teacher Education. ACM

Transactions on Computing Education, 14(1), 1-16.

http://www.acm.org/k12/k12Draft1101.pdf
http://link.cs.cmu.edu/article.php?a=600

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

90

Emergent Roles, Collaboration and Computational Thinking in the Multi-

Dimensional Problem Space of Robotics

Florence R. SULLIVAN1*, P. Kevin KEITH2

1University of Massachusetts, Amherst

2Landmark College

fsullivan@educ.umass.edu, kevinkeith@landmark.edu

ABSTRACT
This study presents a sequential analysis of the

relationship of emergent roles to student collaboration and

computational thinking in the multi-dimensional problem

space of educational robotics. The interactions of six

groups (n=17) of middle-school aged girls participating in

a one-day introduction to robotics workshop were video

and audio recorded. Here we analyze one group of three

girls’ interactions and the emergence of distinct roles that

correlate with periods of collaboration and periods of

parallel solo work, which, in turn, impact student’s

engagement in computational thinking including solution

planning, algorithmic operations, and design of the robotic

device. Suggestions for future research are provided.

 KEYWORDS
Robotics, Collaborative Learning, Computational

Thinking, K-12 Education, Roles

1. INTRODUCTION
Computational thinking is foundational to success in

computer science (Wing, 2006). A current goal in the

context of education in the USA, is to provide computer

science instruction for all students in K-12 settings

(National Science Foundation, 2016). Robotics is an

activity that has the potential to stimulate students’

computational thinking (Sullivan & Heffernan, 2016).

Yet, there is little research devoted to this relationship.

Here, we focus on how collaborative arrangements in

robotics learning environments influence group

participation and engagement in computational thinking

for girls, with an emphasis on the impact of group roles on

collaboration.

Group roles are an important element of computer

supported collaborative learning (Hoadley, 2010). They

help to define the expected behavior of the members of the

group (Jahnke, 2010). Scripted roles are those that are

assigned by a teacher to facilitate the process of

collaborative learning. This is contrasted with emergent

roles that “emerge spontaneously or are negotiated

spontaneously by group members without interference by

the teacher or researcher” (Stijbos & De Laat, 2010).

Emergent roles are typical in open-ended robotics activity,

such as in this study.

In discussing group work, it is important to understand

when groups are working collaboratively vs.

cooperatively. In cooperative group work, the task is

divided among the members, knowledge building occurs

through individual actions, the results of which are later

shared with the group (Dillenbourg, 1999). Successful

collaborative group work requires ongoing, well

coordinated group interactions (Barron, 2003), while

cooperative group work only requires an initial division of

the task. Arguably, collaborative learning results in greater

learning outcomes for students. In our study, students were

asked to collaborate, but were not assigned specific roles.

Rather the students were urged to work together and take

turns, hence, group roles emerged.

Robotics learning environments are multi-dimensional

problem spaces which afford multiple roles that may be

taken up. These problem spaces consist of a computer

(programmer), a robotic device (builder), and a space to

test the robot (analyst). The multiple tools in this problem

space can create a situation where students vye for control

of the tools through adopting certain roles (Jones &

Issroff, 2005).

Computational thinking (CT) has been defined as

formulating problems in ways that enable us to use a

computer to solve them, and automating solutions through

algorithmic thinking (Computer Science Teacher

Association – CSTA, 2016). Moreover, these skills are

important because they create a tolerance for ambiguity,

allow for persistence in working with difficult problems,

and for practicing communication in working with others

to achieve a common goal (CSTA). In this study, we

focus on how emergent roles in the multi-dimensional

problem space of robotics relates to collaboration and to

different types of computational thinking. The aim of this

research is to improve robotics curriculum and teaching

for students.

2. SAMPLE
This study took place at a one-day, all girls introduction to

robotics event. The participants in this study included 17

girls ages 8-13 (M = 11.725). All of the participants were

working with robotics for the first time. The students

worked on solving robotics challenges drawn from the

First Lego Leagues (2011) food factor challenge. The

students were divided into six teams (five teams of 3 and

one team of 2). Due to size limitations, this paper focuses

on three students that comprise one team. The data set that

was analyzed for this study consists of 3 hours and 11

minutes of problem solving video observations (11,516

seconds). Pseudonyms are used throughout.

3. METHODS
This study utilized the iterative sequential mixed method

design and consists of three phases (Teddie & Tashakkori,

2009, p. 155). In the first phase, emergent roles were

91

identified and quantitative means were used to establish

the amount of time that each individual team member

engaged in each role as well as the time that they were

acting on their own, working cooperatively or

collaboratively. In the second phase, the transcript of all

utterances were coded using an a priori (Teddlie &

Tashakkori, 2009, p. 252) coding structure of different

categories of discourse, including computational thinking

categories that were subsequently observed as being used

by novice students in a robotics environment. In the third

phase, quantitative methods were used to describe the

sequence of events as they unfold in time and the

likelihood of the interrelation of the roles, collaboration,

and computational thinking.

3.1 Phase I – Quantitative

The first quantitative phase of this study was to record

onset and offset times of certain behaviors. All 3 hours and

11 minutes of video were coded (for each student) and no

overlapping of the codes occurs. The unit of analysis for

this phase of coding was ‘change of focus.’ The codes for

the roles were: Programmer (Active or Observer), Tester-

Debugger, Builder (Active or Observer), Analyst, Other.

The codes for collaboration (Table 1) are based on Forman

and Cazden's (1985) codes for participation in groups as

markers of coordination.

Table 1. Collaboration Codes

Type Description

Parallel Little to no focus on the group.

Cooperative Working together, focused on own

results.

Collaborative Working together and sharing ideas

External Focused on something outside the

group.

Inter-rater reliability was assessed by training a second

coder and then having them view a portion of the data.

Results for inter-rater reliability for the role were κ = .83

which indicate that inter-rater reliability for this study was

adequate. Results for collaboration were κ = .92.

3.2 Phase II – Qualitative

The qualitative phase focused on the transcripts of the

discourse related to the robotics activity. The transcripts

were coded using a-priori codes based on the work of

Wing (2006) and Barr and Stephenson (2011), including

analysis, algorithmic thinking, designing, non-specific test

outcome, points – competition and other. These codes

have been synthesized to be relevant for the activities and

type of coding expected and observed for novice

programmers in a robotics environment. Inter-rater

reliability was calculated utilizing Krippendorff's alpha

(Krippendorff, 2004). Results for inter-rater reliability for

the discourse were α = .901 which indicate that inter-rater

reliability for this study was high. The coded utterances

were then assigned to a time sequence in the video

corresponding to when they were spoken.

3.3 Phase III Quantitative

The first step in the phase III quantitative analysis was to

calculate descriptive statistics to summarize the coded

observations for each individual student. The total time

and relative duration were calculated for each observed

timed event (role and collaboration). The second step in

the quantitative analysis was to describe the joint

probabilities of certain pairs of coded behaviors for each

individual student. A joint probability is the probability

that an event will occur given another event. When the

time that the event occurred is also coded, the joint

probability includes the element of time and the

probability is calculated such that it is the probability that

an event will occur given another event in the same time

frame. This is also called Lag(0) (Bakerman & Quera,

2011) analysis since the calculation describes the co-

occurrence of events in the same time frame given that the

displacement in time is zero. Joint probabilities, or Lag(0)

analysis, were calculated to compare role to collaboration,

role to computational thinking, and collaboration to

computational thinking.

4 Results
Data were analyzed with GSEQ 5.0 (Bakerman & Quera,

2011) to examine the students’ behavior. GSEQ is a data

analysis program designed to explore observational

sequential data. This program allows for the computation

of both simple statistics, such as frequencies, and

contingent statistics, such as relative frequency or

conditional probabilities.

4.1 Roles Exhibited by Students

To begin exploring for patterns, the total duration and

relative duration that each student assumed a role was

calculated and presented in Figure 1. For this analysis,

duration was expressed in seconds.

Figure 1. Relative Duration of Role

The results indicate that Fiona's primary role was that of

programmer. Of the observed time, she spent 38% of her

time in this role. Izzy's primary role was builder. This is

evident by 42% of her time was spent in this role. The

data also shows that she was never engaged with the

programming of the robot. Kelly never had a primary role,

and spent 33% of her time doing other tasks.

4.2 Collaboration

No episodes of cooperation, as defined by this study, were

observed. Students were either working together with one

set of materials (collaboration) or working alone (parallel).

Duration and relative duration were calculated for each of

0
0.1
0.2

0.3
0.4
0.5

Fiona

Izzy

Kelly

92

the students and the relative duration results are presented

in Figure 2.

Figure 2. Relative Duration of Collaboration

The data indicates that the students spent at least half of

the time jointly attentive with at least one other student.

Additional analysis was done to determine how much of

the time that all three students were simultaneously

involved in collaboration. The data was recoded and

showed that all of the students were simultaneously coded

as being collaborative for only 34% (3,937 seconds) of the

observed time.

4.3 Computational Thinking

As regards CT, Izzy appears to have taken the lead in the

analysis (n =124, 43%) which is supported by the video

data. Izzy maintains control of the challenge instructions

at the beginning of the work time and leads the discussion

of how the team can win the challenge. However,

although she had a lot to say about the initial analysis, she

said very little to say about how this was carried out. This

is apparent in her low percentage of algorithmic thinking

(n = 21, 7%) and testing outcomes (n = 29, 10%). The rest

of Izzy’s discourse mostly revolved around the design of

what she was building (n = 105, 36%).

The data also indicates some conclusions that refer

directly to the questions being asked in the study regarding

computational thinking. Twenty-two percent of Fiona’s

discourse relates to the operations of the program (n = 58,

22%). However, when we look at the discourse around

the variable, it is almost non-existent. When it did occur,

the majority of the discourse about a variable was from

Fiona (n = 13, 5%). This is not a surprise since she took

on the primary role of programmer and rarely relinquished

that role. Another interesting fact that is apparent in the

data is the high frequency of talk regarding the design. In

order to be successful with many of the challenges,

additional design was required to create an implement to

be added to the robot. Izzy and Kelly both had a very high

frequency (n = 105, n = 123 respectively) of discourse

related to the design of the implement.

4.4 Joint Probability – Role and Collaboration

The next phase of the quantitative analysis was to begin to

examine patterns between the role that the student

assumed and the type of collaboration that was observed.

One notable outcome from this analysis show that when a

team member is involved in their primary role (e.g.,

programmer, builder), they perform that role in a non-

collaborative way. Two roles do stand out as having a

higher probability of being collaborative. One is the tester

role which has a relatively high probability for all of the

students. This was especially true for Kelly with a

probability of being collaborative when taking on the

testing role of 95%. Kelly participated in almost every test

of the robot at the challenge arena with at least one other

member from the team. Fiona’s calculated probability of

being collaborative when testing was also high at 82%.

Izzy’s results are similar to Fiona’s at 83% probability of

being collaborative and 17% probability of not being

collaborative when testing. The other role that has a high

probability of being collaborative is the analyst role. For

Fiona, the probability of being collaborative is 75% and

for both Izzy and Kelly the probability is 89%. Most of

the analysis work was done at the beginning of the

challenge when all of the students were initially working

together.

Joint Probability – Role and Discourse Type

The last phase was to examine the patterns between the

role and the type of discourse. Joint probabilities were

calculated and patterns emerged. For all three students, a

majority of their discourse about the analysis of the task

was done when they assumed the analyst role. The largest

of these was Kelly, who exhibited a 93% probability of a

joint occurrence of this discourse type and role. For Fiona

the probability was 89% and for Fiona the probability was

78%. For Fiona, the discourse around computational

thinking was associated with her main roles of active

programmer and her secondary role of tester. Izzy’s

discourse related to the operations of the robot occurred

mostly when she was involved in the tester role (n = 10,

50%). Kelly was also more likely to discuss the operations

of the robot while testing (n = 22, 65%). Kelly had 5

instances of discourse related to the variable. Of these, 4

occurred while taking on the programmer role and 1

occurred while testing.

5 DISCUSSION
Our analysis indicates that roles play an important part in

the level of collaboration that occurs within the group.

The roles afforded by the environment: (a) were taken up

and never relinquished, (b) influenced the type of

discourse that was used to discuss the activity, and (c)

affected the common understanding of the different

systems in a robotics environment. The roles emerged

early on in the process and where fairly stable throughout

the activity. The roles may also have been partially

structured by the group sharing a single technology

resource (Jones & Issroff, 2005). The laptop and the robot

are sized to be utilized by a single individual. The low

frequency of discourse for both of the programming roles

leads credence to this interpretation. The testing area was

a four foot by eight-foot arena which facilitated the group

coming together to discuss the outcomes of not only the

programming of the robot, but also the building of the

implement designed to help solve the challenge.

The analysis of the discourse shows that the type of speech

used when discussing the program, mostly when testing,

was very similar in structure to the type of speech used

during analysis. Students continued to use words such as

forward, backward, and turn but added non-specific

modifiers such as: more, less, sharper. Given the nature

of the programming environment and the structure of the

0
0.2
0.4
0.6
0.8

Fiona

Izzy

Kelly

93

programs, for computational thinking to be more evident,

we would have expected to hear discourse about the

different types of blocks used and the values of the

variables. We expect students to understand the factors

that determine the robots speed, turning radius, or power

rather than just expressing that the robots is going fast or

slow (Barak & Zadok, 2009).

This is in sharp contrast to the type of speech used when

the students were engineering and building their robot.

The discourse associated with building, at times, used very

specific language to indicate the part needed. The factors

influencing this disparity in establishing intersubjectivity

require further research. These roles were emergent roles

and not structured, possibly affecting the way that the

group collaborated. If the roles had been rotated by some

structured means or if there had been an opportunity to

create intersubjectivity early on, there may have been

some increase in the ability of the group to create a shared

understanding of how the robot is programmed. Likewise,

if the materials were easier to share, for example if a large

touchscreen computer was used to program, this too, may

alter student interactions. Future research should

investigate these possibilities.

6 REFERENCES
Bakerman, R., & Quera, V. (2011). Sequential Analysis

and Observational Methods for the Behavioral

Sciences. New York: Cambridge University Press.

Barak, M., & Zadok, Y. (2009). Robotis projects and

learning concpets in science, technology, and problem

solving. International Journal of Technology and

Design, 289-307.

Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: What is involved and

what is the role of the computer science education

community? ACM Inroads, 48-54.

Barron, B. (2003). When smart groups fail. Journal of

the Learning Sciences, 12(3), 307-359.

Cohen, J. (1960). A coefficient of agreement for nominal

scales. Education and Psychological Measurement,

37-46.

CSTA. (2016). Computational Thinking. Retrieved from

https://csta.acm.org/Curriculum/sub/CurrFiles/Comp

ThinkingFlyer.pdf

Dillenbourg, P. (1999). Collaborative Learning:

Cognitive and Computational Approaches. Advances

in learning and instruction series. New York, NY:

Elsevier Science.

Forman, E. A., & Cazden, C. B. (1985). Exploring

Vygotskian perspectives in education: The cognitive

value of peer interaction. In J. V. Wertsch (Ed.),

Culture, Communication, and Cognition: Vygotskian

perspectives (pp. 323-347). New York: Cambridge

University Press.

Hoadley, C. (2010). Roles, design, and the nature of

CSCL. Computers in Human Behavior, 551-555.

Jahnke, I. (2010). Dynamics of social roles in a knowledge

management community. Computers in Human

Behavior, 533-546.

Jones, A., & Issroff, K. (2005). Learning technologies:

Affective and social issues in computer-supported

collaborative learning. Computers & Education, 395-

408.

Krippendorff, K. (2004). Content analysis, and

introduction to its methodology 2nd edition. Thousand

Oaks, CA: Sage Publications.

National Science Foundation (2016). Building a

foundation for CS for all.

https://www.nsf.gov/news/news_summ.jsp?cntn_id=1

37529

Stijbos, J. W., & De Laat, M. F. (2010). Developing the

role of concept for computer-supported collaborative

learning: An explorative synthesis. Computers in

Human Behavior, 495-505.

Sullivan, F.R. & Heffernan, J. (2016). Robotic

construction kits as computational manipulatives for

learning in the STEM disciplines. Journal of

Research in Technology Education, 49(2) 105-128.
DOI: 10.1080/15391523.2016.1146563

Teddie, C., & Tashakkori, A. (2009). Foundations of

Mixed Methods Research. Thoursand Oaks, CA: Sage

Publications.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 33-35.

Acknowledgements: The research reported in this

manuscript was supported by a grant from the National

Science Foundation DRL#1252350. Any opinions,

findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not

necessarily reflect the views of the National Science

Foundation.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

94

A Framework of Computational Thinking Curriculum for K-12 with Design

Thinking by App Inverntor

Peng CHEN1,2, Ronghuai HUANG1*

1 Smart Learning Institute, Beijing Normal University, Beijing

2 Department of Educational Technology, Capital Normal Universityirst, Beijing

pengchenbnu@163.com, huangrh@bnu.edu.cn

ABSTRACT
Computational Thinking (CT) has become popular in

recent years and has been recognized as an essential skill

for the digital generation. Students are exposed to

computational thinking when they do programming, and

MIT App Inventor is currently one of the most popular

block based programming environments. Meanwhile,

Design thinking is considered as a creative, human-

centred, participative, exploratory and problem-solving

process that values different perspectives of a problem.

In this study, we aim to bring the design thinking in a

curriculum framework of K-12 to promote

computational thinking by App Inventor. The future

work is to implement and evaluate CT curriculum.

KEYWORDS
Computational Thinking, App Inventor, Design

Thinking, Curriculum Design

1. INTRODUCTION
Over the past three decades, CT has gained extensive

attention and become accepted as one of the skills

required by those growing up in the digital era; especially

after being defined by Wing in 2006. She presented that

computational thinking as a way of “solving problems,

designing systems and understanding human behavior by

drawing on the concepts of computer science”, and she

argued that CT ‘‘represents a universally applicable

attitude and skill set everyone, not just computer

scientists, would be eager to learn and use’’ (Wing,

2006). After that, CT has gained a lot of attraction, and

many countries and researchers have involved in this

topic. Computer programming is an excellent way to

develop computational thinking skills(Orr, 2009),

because it involves the use of computer science concepts

such as abstraction, debugging, remixing and iteration to

solve problems(Brennan & Resnick, 2012; Ioannidou,

2011; Wing, 2008). MIT App Inventor is currently one

of the most popular blockbased programming

environments. The main goal of App Inventor is to teach

computing and programming to students with limited

prior programming knowledge and to democratize app

creation by providing an easy-to-learn environment. It

has experienced broad adoption in diverse venues, and

researchers have used it in summer camps and other

outreach activities for K-12 students for several years

now (Ericson & McKlin, 2012; Roy, 2012;

Wagner, Gray, & Wolber, 2013). Conform to the

situation of China, how to develop the solution program

for the different level of K-12 information technology

courses to foster computational thinking and innovation

capacity is the most important thing we focus on. Our

whole project aims to use the App Inventor combine with

the information technology course to cultivate K-12

students' computational thinking. In this study, we

describe a framework of computational thinking

Curriculum for K-12 with Design Thinking by App

Inventor.

2. THEORETICAL FRAMEWORK
Design thinking is considered as a creative, human-

centred, participative, exploratory and problem-solving

process that values different perspectives of a problem

(Brown, 2008; Dunne & Martin, 2006; Melles, G. and

Misic, V., 2011). In our research, we adopted the

Standford d.school (D.school, n.d.) process of design

thinking which including empathize, define, ideate,

prototype, and test. The design action plan is an iterative

process, and each action phase should achieve some

deliverable outcomes.

(1) Empathize (to understand our users)

Activities: User interview, Observation, Immersion.

Deliverables: Empathy map, list of user feedback,

problems identified.

(2) Define (to define clear project objectives)

Activities: Workshops, Stakeholder meetings.

Deliverables: Design brief, stakeholder map, context

map, customer map, opportunity map.

(3) Ideate (to explore ideas and solutions)

Activities: Ideation activities, brainstorming, mindmaps,

sketching/drawing. Deliverables: Ideas/concepts,

sketches, prioritisation map, affinity map, idea

evaluation.

(4) Prototype (to build and visualise ideas and solutions)

Activities: Space prototyping, physical prototyping,

paper construction, wireframe building, storyboards,

role-plays. Deliverables: Physical prototypes,

wireframes, storyboards.

(5) Test (to review and decide)

Deliverables: List of user feedback, observation,

evaluation

3. RESEARCH PLAN

3.1. Setting and participants

The case setting was seven schools in Beijing, Zibo and

Huhehaote, which include 1 primary school, 3 junior

schools and 3 high schools, and two classes in each

school join the research. Students are grouped in 3-4

95

person, and are asked to develop a app through

collaborative learning based on the design thinking

process.

3.2. Course structure and activities

The Course consisted of three main modules, lasting 12

weeks in one semester. Each week, we are expected to

expend 2 hours of effort in class. Module 1 (6 Weeks):

In the beginning, the teacher introduced App Inventor.

Participants learned about basic components for building

apps and built practice apps. Computational thinking

concepts and associated techniques are instructed.

Module 2 (2 Weeks): This module introduced

participants to the five steps of the design action plan,

and participants discuss the topic in groups. Module 3 (4

Weeks): App design. Participants empathize, define and

ideate the topic through the design action plan. They

need to do some activities, complete deliverable

outcome, and draw the sketches of their game. Then,

Participants built one practice app, proposed an app of

their own and built a working prototype or completed

app.

3.3. Data collection and analysis
This study adopted a mixed-method approach to collect

and analyze the following data: student digital artifacts,

classroom observations, survey, test and individual

student interviews.

4. CONCLUSION AND FUTURE

WORK
The current research employed design thinking to

develop a framework of the App Inventor curriculum for

cultivating K-12 students' computational thinking. There

are a number of future research tasks being considered in

the agenda of this study. First, design and implement a

K-12 programming curriculum constructed based on the

framework. Second, design instruments to assess CT

knowledge, skills, and perspectives of learners in the

programming curriculum. Third, evaluate the design

thinking framework is effective by evaluating the

progression of learning outcomes of CT knowledge,

skills, and perspectives which include computational

identity and digital empowerment.

5. REFERENCES
[15] Brennan, K., & Resnick, M. (2012). New

frameworks for studying and assessing the

development of computational thinking. In In AERA

2012.

[16] Brown, T. (2008). Design Thinking. Harvard

Business Review, 86(6), 84–92.

[17] Dschool, 2015. (n.d.). The Design Thinking

Process | ReDesigning Theater. Retrieved from

http://dschool.stanford.edu/redesigningtheater/the-

design-thinking-process/

[18] Dunne, D., & Martin, R. (2006). Design

Thinking and How It Will Change Management

Education: An Interview and Discussion. Academy of

Management Learning & Education, 5(4), 512–523.

https://doi.org/10.5465/AMLE.2006.23473212

[19] Ericson, B., & McKlin, T. (2012). Effective

and Sustainable Computing Summer Camps. In

Proceedings of the 43rd ACM Technical Symposium

on Computer Science Education (pp. 289–294). New

York, NY, USA: ACM.

https://doi.org/10.1145/2157136.2157223

[20] Ioannidou, A. (2011). Computational Thinking

Patterns. Online Submission. Retrieved from

https://eric.ed.gov/?id=ED520742

[21] Melles, G. and Misic, V. (2011). Introducing

design thinking to undergraduate students at Swinburn

university. Japanese Society for the Science of

Design, (18(1) (69)), 4–9.

[22] Orr, G. (2009). Computational Thinking

Through Programming and Algorithmic Art. In

SIGGRAPH 2009: Talks (p. 31:1–31:1). New York,

NY, USA: ACM.

https://doi.org/10.1145/1597990.1598021

[23] Roy, K. (2012). App Inventor for Android:

Report from a Summer Camp. In Proceedings of the

43rd ACM Technical Symposium on Computer

Science Education (pp. 283–288). New York, NY,

USA: ACM.

https://doi.org/10.1145/2157136.2157222

[24] Wagner, A., Gray, J., & Wolber, D. (2013).

Using app inventor in a K-12 summer camp. In

Proceeding of the 44th ACM technical symposium on

Computer science education (pp. 621–626).

https://doi.org/http://dx.doi.org/10.1145/2445196.244

5377

[25] Wing, J. M. (2006). Computational Thinking.

Commun. ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

[26] Wing, J. M. (2008). Computational thinking

and thinking about computing. Philosophical

Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences,

366(1881), 3717–3725.

https://doi.org/10.1098/rsta.2008.0118

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

96

Computational Thinking and

Psychological Studies

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

97

Development and Validation of a Programming Self-Efficacy Scale for Senior

Primary School Learners

Siu-cheung KONG

The Education University of Hong Kong

sckong@eduhk.hk

ABSTRACT
Programming is one of the important literacies in the

digital age. The acquisition of such knowledge and skills

is of vital importance to the next generation. This study

aimed to develop and validate an instrument to measure

programming self-efficacy of senior primary school

learners (Grade 4 - Grade 6) in a block-based environment.

The proposed scale consisted of two subcomponents

related to learners’ perceptions of their own competence

in (1) programming knowledge and (2) programming

skills. In order to assess the validity of the scale, online

questionnaires were distributed to 106 primary school

students who joined a course of a new programming

curriculum. The objective of the curriculum is to nurture

young learners to solve daily life problems. The reliability

of the scale was good. The confirmatory factor analysis

(CFA) supported the validity of the instrument. More

specifically, results indicated that the hypothesized

measurement model of the scale fit the data collected. It

confirmed that the scale was valid and adequate for

measuring programming self-efficacy of senior primary

school learners. Theoretical and practical implications of

this study were discussed at the end of the paper.

KEYWORDS
Programming, Programming self-efficacy, Scale

development, Scale validation, Self-efficacy

1. INTRODUCTION
With the fast development of technology today, the

younger generation is exposed to the digital world where

they not only need to develop “the ability to chat, browse,

and interact, but also the ability to design, create, and

invent with new media” (Resnick, Maloney, et al., 2009,

p. 62) so as to thrive for a better life. Computer scientists

see programming as a new literacy that everyone has to

acquire in this century, especially for the young

(Hutchison, Nadolny, & Estapa, 2015; Vee, 2013). Papert

(1980) also pointed out that procedural thinking of

children can be fostered by learning programming. Thus,

children are highly encouraged to develop programming

skills to become creative problem-solvers in the

digitalized world.

Evaluating learners’ understanding of programming

concepts and skills is a major challenge at this stage (e.g.,

Wang, Li, Feng, Jiang, & Liu, 2012; Yang et al., 2015).

Evidence of a validated instrument regarding students’

perceptions on programming is even more scarce. It is

indisputable that tests of programming knowledge and

skills are fundamental in examining the learning

performance (Yang et al., 2015), but it is also important to

capture learners’ beliefs of their own competence in

programming as their performances will be influenced by

their self-perceptions. Pajares (1996, p. 543) stated that

“the beliefs that individuals hold about their abilities and

about the outcome of their efforts powerfully influence the

ways they will behave”. In order to facilitate the

implementation of programming education in senior

primary schools, there is a pressing need for academics to

design instruments to measure learners’ perceptions/

attitudes of programming after they are involved in some

kind of learning. Based on self-efficacy theory (Bandura,

1986), we developed a programming self-efficacy scale

among senior primary school students. According to the

theory, when learners have similar level of domain

knowledge and skills, their actual performances will be

affected by their perceptions of personal efficacy

(Bandura, 1986; Zimmerman, 1995). In other words, a

person may gain sufficient knowledge and skills for the

task, but he/she may fail to achieve desired results due to

lack of confidence and motivation. Thus, this scale could

predict the performance of the learner (Askar &

Davenport, 2009).

2. BACKGROUND OF STUDY

2.1. Programming Self-Efficacy

A definition of programming self-efficacy might first

begin with the explanation of self-efficacy. Bandura put

forth the self-efficacy theory in the late 1970’s. He defined

it as “people’s judgments of their capabilities to organize

and execute courses of action required to attain designated

types of performance” (Bandura, 1986, p. 391). Self-

efficacy of a person can be obtained from four aspects,

including “personal performance accomplishments”,

“vicarious experience” of observing others’ behaviors,

“verbal persuasion”, and “state of physiological arousal”

(Bandura, 1977). There is a strong relation between self-

appraisals of capability and performances (Bandura &

Adams, 1977; Schunk, 1981). Studies pointed out that

personal efficacy influences individual’s choice of

activities, amount of effort invested, persistence in the face

of obstacles, and performance (Bandura, 1977; Schunk,

1989). People with higher self-efficacy are more willing

to invest effort to cope with challenging tasks (Bandura,

1994). Self-efficacy is not about the traits of a person, but

it is a kind of self-evaluation specific to a particular

domain of activities (Bandura, 2006). Therefore, a self-

efficacy scale about computer programming should be

developed when researchers attempt to investigate

98

learners’ efficacy of computer programming. Based on the

theory, programming self-efficacy reflects one’s

perception and judgment of his/her ability in solving

computational problems with programming knowledge

and skills. Learners with high programming self-efficacy

are more willingly to apply their knowledge and utilize

skills to solve computational problems.

Despite the fact that programming is a key ability and

literacy that the next generation should acquire, there have

been few attempts to create instruments to measure

learners’ self-efficacy of programming. Ramalingam and

Wiedenbeck (1998) pioneered a notable self-efficacy scale

for undergraduates in the context of C++ programming

language. Some previous studies also adapted this scale to

explore learners’ self-efficacy of C+++ programming

(Korkmaz & Altun, 2014; Ramalingam, LaBelle, &

Wiedenbeck, 2004) and Java programming (Askar &

Davenport, 2009). All these scale items are positive-

worded statements, which reflect learners’ confidence of

their capability of handling programming related concepts

and skills. These studies reflect that these are the main

components of the scale in measuring learner’s efficacy of

programming knowledge and skills. However, we need an

instrument that focuses on senior primary school learners

(i.e. Primary 4 to 6). Since the existing scales were

designed for undergraduates, some of the programming

concepts are too difficult for primary school learners. In

addition, our instrument is designed for a programming

curriculum aiming at developing Computational Thinking

(CT) through programming where the programming

languages used in this study are Scratch and App Inventor.

2.2. Dimensional Structure of a Two-Factor Model

In light of the past literature, the programming self-

efficacy scale consists of two components: (1)

programming knowledge and (2) programming skills. As

our evaluation targets are senior primary school learners,

the knowledge and skills that they should acquire are

supposed to be simpler than the undergraduates. Brennan

and Resnick (2012) studied the programming activities of

the kids in the Scratch online community and workshops

over a few years to develop a three-dimensional CT

framework. Therefore, we also borrowed key ideas from

Brennan and Resnick (2012) to the programming self-

efficacy scale in the current study. In brief, Brennan and

Resnick's framework covers CT concepts, practices, and

perspectives. CT perspectives refers to learners’

understanding of themselves, their relationships to others

and the technology world, which goes in line with our

instrument that tries to measure the perception and

understanding of programming.

One dimension of programming self-efficacy is

programming knowledge. It refers to the programming

concepts and knowledge that learners apply in

programming. Brennan and Resnick (2012) identified

seven basic computational concepts that are commonly

used among young novice programmers, including

sequences, loops, parallelism, events, conditionals,

operators, and data (i.e. variables and lists). In most block-

based language assessments, the ability of dealing with

loops (e.g., Ericson & McKlin, 2012; Meerbaum-Salant,

Armoni, & Ben-Ari, 2013; Zur-Bargury, Parv, &

Lanzberg, 2013), conditionals (e.g., Ericson & McKlin,

2012; Seiter & Foreman, 2013; Zur-Bargury et al., 2013),

and variables (e.g., Ericson & McKlin, 2012; Meerbaum-

Salant et al., 2013; Seiter & Foreman, 2013) are

considered as the fundamental programming knowledge

for novice. Researches also emphasized the importance of

handling concepts of sequences, and operators (e.g., Seiter

& Foreman, 2013). The ability to apply procedure to finish

programming tasks is also regarded as basic building

blocks of a program. It can be used to avoid repetition of

codes and duplicating commands so that novices are able

to make the programs more modular and easier to test and

debug (Marji, 2014). Thus, understanding of procedure is

also suggested to be incorporated into the items of

programming knowledge.

The other dimension is CT practices. Programming

concepts and CT skills are supposed to be developed in the

problem-solving process by using features of a

programming environment. In other words, learners not

only need to apply programming concepts but also use a

variety of skills to tackle computational problems (Olson,

Sheppard, & Soloway, 1987). Brennan and Resnick

(2012) proposed four sets of practices that are related to

the process of solving problems using a programming

language, namely being incremental and iterative, testing

and debugging, reusing and remixing, and abstracting and

modularizing. Debugging practice is always regarded as a

crucial skill for novices (Hwang, Wang, Hwang, Huang,

& Huang, 2008). Apart from these suggestions, other

studies argued that planning and designing solutions

before programming (e.g., Burke, 2012; Fessakis, Gouli,

& Mavroudi, 2013), and algorithmic thinking (e.g.,

Denner, Werner, Campe, & Ortiz, 2014; Duncan & Bell,

2015; Seiter & Foreman, 2013), which means to design a

solution through a series of steps, are indispensable for

creating a program. The above concepts and skills are

developed and deployed during the process of solving

computational problems, yet there must be a problem

arisen before they plan and design a solution. It is more

crucial to raise questions than to solve problems (Einstein

& Infeld, 1938). Consequently, problem formulation

should also be perceived as an important component

among the skills in solving problems using a programming

language.

3. METHOD

3.1. Item Development and Validation

The programming self-efficacy scale was developed in

accordance with a comprehensive literature review of

programming self-efficacy, and the CT framework

proposed by Brennan and Resnick in 2012. Detailed

discussions were conducted with a leading research team

including professors and researchers from the Education

University of Hong Kong to ensure that the language used

in each item is understandable to senior primary school

learners. The scale consists of two components with 15

items in total (programming knowledge: 7 items;

programming skills: 8 items). Item example for CT

knowledge is “I have basic knowledge to finish coding

tasks”. Item example for CT skills is “I can build the code

99

in an incremental way with a number of iterations”. All the

items are anchored with 5-point Likert scale, from 1

“unable to master” to 5 “fully master”. This study

followed Brislin’s (1970) suggestion for back-translation.

English items were translated into Chinese, and

discrepancies were discussed and carefully modified.

Finally, we examined the face validity of the scale items

for further adaptation into primary school settings.

3.2. Participants and Procedures

Participants of this study had some experience of

programming before taking up this survey. The

questionnaires were administered to learners in a primary

school where the new programming curriculum has been

implemented for a semester. The scale is targeted at

primary 4, 5 and 6 learners. Online survey was adopted.

All the participants filled in the questionnaire since they

were asked to finish the survey and submit the answers

during class time. In total, 42.5% of the participants were

female, and 57.5% of them were male. Among all the

participants, 25.5% of them were from Grade 4, 51% were

from Grade 5, and 23.5% were from Grade 6. The

demographics of the learners are shown in Table 1.

Table 1. The demographics of the participants of the

study.

Grade Gender

4 5 6 Female Male

27 54 25 45 61
25.5% 51.0% 23.5% 42.5% 57.5%

4. RESULTS
The measurement structure is confirmed with

confirmatory factor analysis (CFA) using Amos 24.

Maximum likelihood estimation was used in CFA. χ2(df),

CFI, TLI, RMSEA were used as the fit indices for the

measurement model of programming self-efficacy

construct. According to Bentler (1990), CFI and TLI

which is greater than .90 suggests a good fit, and greater

than .95 suggests an excellent fit. For RMSEA, a cut-off

value close to .06 (Hu & Bentler, 1999) or more recently

the upper limit of .08 seems to be acceptable among most

researchers. In the current study, χ2(87) = 184.78

(p<.000), CFI = .92, TLI = .90, and RMSEA = .10. Both

CFI and TLI indicate that the hypothesized measurement

model is well fitted with the data collected for the scale

development. Although RMSEA is not satisfying, it is

probably because the sample size is small for such two-

factor model. In addition, all factor loadings are ranged

from .59 to .87, further confirming convergent validity of

programming self-efficacy. The CFA and reliability of

programming self-efficacy scale are shown in Table 2.

Figure 1 demonstrates the measurement model of

programming self-efficacy.

Table 2. Confirmatory factor analysis and reliability of

programming self-efficacy.

Factors and Items

Factor 1: programming knowledge, α=.88
1. I have basic knowledge to finish coding

tasks.
.76

2. I can complete coding by identifying a
series of steps in task and solve them
subsequently (sequence).

.79

3. I can code with “If…then…else”
(conditionals) sentence.

.68

4. I can complete coding tasks with the
concept of loop, that is, repeating an
action.

.66

5. I can apply variables to finish coding tasks,
for example, to set “a” with a number
(variable).

.78

6. I can apply operators to finish coding tasks,
for example, to use operators such as >
(larger than) or < (less than).

.70

7. I can apply procedures to finish coding
tasks.

.59

Factor 2: programming skills, α=.93
1. I can overcome the difficulties in coding

tasks by dividing them into multiple
subtasks and solve them one-by-one.

.74

2. I can test and debug a completed program. .76
3. I can reuse and / or remix existing codes to

build up my own program.
.76

4. I can make an abstraction on a coding task. .87
5. I can build the code in an incremental way

with a number of iterations.
.85

6. I can think of solutions to a computational
problem with a series of steps.

.80

7. I can formulate a computational problem
from daily life.

.79

8. I can plan and design a solution from a
computational problem.

.78

Figure 1. 2-factor model of programming self-efficacy.

100

In addition, the study also tried to merge the two factors

into one single factor by creating a common latent variable

such that all 15 items could load on it. CFA results

suggested that this alternative model is not as good as the

previous two-factor model (χ2(88) = 192.50 (p<.000), CFI

= .91, TLI = .89, and RMSEA = .11). Therefore,

programming self-efficacy should be better modeled as a

two-factor construct as proposed based on the theoretic

stance.

5. DISCUSSION
The aim of this study was to develop and validate a

programming self-efficacy measure among senior primary

school learners. CFA results indicated that the

measurement structure has achieved good fit according to

the fit indices (χ2(87) = 184.78 (p<.000), CFI = .92, TLI

= .90, and RMSEA = .10), though the RMSEA is not that

good due to the sample size. The programming self-

efficacy as a two-factor model was confirmed. In addition,

factor loadings are ranged from .59 to .87, demonstrating

the two subcomponents are adequately measuring the

latent factor of programming self-efficacy.

5.1. Theoretical and Practical Contributions, and

Future Research Directions

The programming self-efficacy scale has theoretical

implications for future research. As the next generation is

required to acquire the ability to design and create with

new media, programming is widely accepted as one of the

indispensable literacies in the digital era. Young learners

are highly recommended to acquire and master basic

programming knowledge and skills so as to become

computationally literate learners. Currently, educators

examine learners’ capability of programming by means of

tests and examinations. However, this practice overlooks

the significance of learners’ perceptions of their abilities

in programming. Self-efficacy theory implied that

learners’ persistence in the face of obstacles and actual

performances would be affected by their level of efficacy

(Bandura, 1977; Schunk, 1989). Yet, there is no existing

scale for investigating self-efficacy of programming

among primary school learners. Therefore, programming

self-efficacy scale is developed in this study, which would

facilitate a deep understanding on primary school learners’

self-competence of programming before and after learning

programming. The results of the scale might also be used

as a tool to predict learners’ course performance.

For practical implications, researchers found out that there

was a strong correlation between learners’ self-efficacy

and their actual performance (Bandura & Adams, 1977;

Schunk, 1981). Therefore, our future research direction is

to explore the relationship between learners’ programming

self-efficacy and the test results of their programming

knowledge and skills. Besides, self-efficacy theory stated

that past experience of learning and practicing the skills

would influence learners’ belief of their competence

(Bandura, 1977). Thus, it is expected that learners’ self-

efficacy will rise because of frequent exposure to the

programming course (Ramalingam et al., 2004). Pre- and

post-tests can be further conducted to measure learners’

self-efficacy over the course. It is a reliable indicator for

researchers to understand the improvements of learners

and reflect the effectiveness of the curriculum so as to

improve the pedagogy if necessary.

5.2. Limitations

It is also essential to identify the limitations of the current

study. According to Bandura (1977), self-efficacy

judgements consist of three dimensions, namely

magnitude, strength, and generality. In the context of

programming, Strength of self-efficacy refers to learners’

conviction and confidence of their abilities to complete the

programming task. The survey design of this study merely

focuses on measuring the strength of self-efficacy by the

5-point Likert scale ranging from “unable to master” to

“fully master”. In future research, effort have to be put on

other dimensions. For instance, the magnitude of self-

efficacy can be measured by asking learners to judge their

capabilities of completing programming tasks in various

difficulty levels (Ramalingam & Wiedenbeck, 1998).

Additionally, the generality of self-efficacy can be

evaluated by adding items which are about learners’ self-

assurance of handling tasks in different situations like with

or without others’ help (Ramalingam & Wiedenbeck,

1998). In our study, in-depth interviews of participants

after online surveys were conducted in order to have a

more accurate understanding of their attitude and

perceptions on programming. Future research studies are

encouraged to cover a broader scope of research methods

to test/ validate the programming self-efficacy scale.

6. CONCLUSION
Programming is regarded as a new literacy in the twenty-

first century. It helps equip young people with the ability

of expressing themselves in the digital era (Hutchison et

al., 2015). Hence, it is significant for young people to

possess basic programming knowledge and skills in the

digitalized world. In order to investigate learners’

perception of their own competence of programming, this

study developed and validated a programming self-

efficacy scale for senior primary school learners. The scale

is a two-factor model with 15 items in total. The

subcomponents are related to learners’ belief about their

abilities in utilizing different kinds of programming

knowledge and skills to solve computational problems.

Future research will be conducted to investigate the

correlation between learners’ programming self-efficacy

and the test results of their programming knowledge and

skills.

7. REFERENCES
Askar, P., & Davenport, D. (2009). An investigation of

factors related to self-efficacy for java programming

among engineering students. The Turkish Online

Journal of Educational Technology, 8(1), 23-32.

Bandura, A. (1977). Self-efficacy: Toward a unifying

theory of behavioral change. Psychological Review,

84(2), 191-215.

Bandura, A., & Adams, N. E. (1977). Analysis of self-

efficacy theory of behavioral change. Cognitive

Therapy and Research, 1(4), 287-310.

101

Bandura, A. (1986). Social foundations of thought and

action: A social cognitive theory. Englewood, Cliffs,

NJ: Prentice–Hall.

Bandura, A. (1994). Self-efficacy. In V. S.

Ramachaudran (Ed.), Encyclopedia of human behavior

(pp.71-81). New York, NY: Academic Press.

Bandura, A. (2006). Guide for constructing self-efficacy

scales. In F. Pajares, & T. Urdan (Eds.), Self-efficacy

beliefs of adolescents (pp.307-337). Greenwich, CT:

Information Age Publishing. Bentler, P. M. (1990).

Comparative fit indexes in structural models.

Psychological bulletin, 107(2), 238.

Brennan, K., & Resnick, M. (2012, April 13-17). New

frameworks for studying and assessing the

development of computational thinking. In Proceedings

of the 2012 annual meeting of the American

Educational Research Association (25 pp.). Vancouver,

Canada: American Educational Research Association.

Brislin, R. W. (1970). Back-translation for cross-cultural

research. Journal of cross-cultural psychology, 1(3),

185-216.

Burke, Q. (2012). The markings of a new

pencil: Introducing programming-as-writing in the

middle school classroom. Journal of Media Literacy

Education, 4(2), 121-135.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014).

Pair programming: Under what conditions is it

advantageous for middle school learners? Journal of

Research on Technology in Education, 46(3), 277-296.

Duncan, C., & Bell, T. (2015, November 9-11). A pilot

computer science and programming course for primary

school students. In Proceedings of the 10th Workshop

in Primary and Secondary Computing Education (pp.

39-48). New York, NY: ACM.

Einstein, A., & Infeld, L. (1938). The evolution of

physics: The growth of ideas from early concepts to

relativity and quanta. New York, NY: Simon and

Schuster.

Ericson, B., & Mcklin, T. (2012, February 29-March 3).

Effective and sustainable computing summer camps. In

Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education (pp. 289-294). New York,

NY: ACM.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem

solving by 5–6 years old kindergarten children in a

computer programming environment: A case study.

Computers & Education, 63, 87-97.

Hutchison, A., Nadolny, L., & Estapa, A. (2015). Using

coding apps to support literacy instruction and develop

coding literacy. The Reading Teacher, 69(5), 493-503.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit

indexes in covariance structure analysis: Conventional

criteria versus new alternatives. Structural equation

modeling: a multidisciplinary journal, 6(1), 1-55.

Hwang, W. Y., Wang, C. Y., Hwang, G. J., Huang, Y.

M., & Huang, S. (2008). A web-based programming

learning environment to support cognitive

development. Interacting with Computers, 20(6), 524-

534.

Korkmaz, Ö , & Altun, H. (2014). Adapting computer

programming self-efficacy scale and engineering

students’ self-efficacy perceptions. Participatory

Educational Research, 1(1), 20-31.

Marji, M. (2014). Learn to program with Scratch: A

visual introduction to programming with games, art,

science, and math. San Francisco, CA: No Starch Press.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.

(2013). Learning computer science concepts with

scratch. Computer Science Education, 23(3), 239-264.

Olson, G. M., Sheppard, S., & Soloway, E. (1987).

Empirical studies of programmers: Second workshop.

Norwood, NJ: Ablex Pub.

Pajares, F. (1996). Self-efficacy beliefs in academic

settings. Review of Educational Research, 66(4), 543-

578.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York, NY: Basic Books.

Ramalingam, V., & Wiedenbeck, S. (1998).

Development and validation of scores on a computer

programming self-efficacy scale and group analyses of

novice programmer self-efficacy. Journal of

Educational Computing Research, 19(4), 367-381.

Ramalingam, V., Labelle, D., & Wiedenbeck, S. (2004,

June 28-30). Self-efficacy and mental models in

learning to program. In Proceedings of the 9th annual

SIGCSE conference on Innovation and technology in

computer science education (pp. 171-175). New York,

NY: ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,

N., Eastmond, E., Brennan, K., Millner, A.,

Rosenbaum, E., Silver. J., Silverman, B., & Kafai, Y.

(2009). Scratch: Programming for all. Communications

of the ACM, 52(11), 60-67.

Schunk, D. H. (1981). Modeling and attributional effects

on children's achievement: A self-efficacy analysis.

Journal of Educational Psychology, 73(1), 93-105.

Schunk, D. H. (1989). Self-efficacy and cognitive

achievement: Implications for students with learning

problems. Journal of Learning Disabilities, 22, 14-22.

Seiter, L., & Foreman, B. (2013, August 12-14).

Modeling the learning progressions of computational

thinking of primary grade students. In Proceedings of

the ninth annual international ACM conference on

International computing education research (pp. 59-

66). New York, NY: ACM.

Vee, A. (2013). Understanding computer programming

as a literacy. Literacy in Composition Studies, 1(2), 42-

64.

Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012).

Assessment of programming language learning based

on peer code review model: Implementation and

experience report. Computers & Education, 59, 412–

422.

102

Yang, T. C., Hwang, G. J., Yang, S. J., & Hwang, G. H.

(2015). A two-tier test-based approach to improving

students’ computer-programming skills in a web-based

learning environment. Education Technology &

Society, 18(1), 198-210.

Zimmerman, B. J. (1995). Self-efficacy and educational

development. In A. Bandura (Ed.), Self-efficacy in

changing societies (pp.202-231). New York, NY:

Cambridge University Press.

Zur-Bargury, I., Pârv, B., & Lanzberg, D. (2013, July 1-

3). A nationwide exam as a tool for improving a new

curriculum. In Proceedings of the 18th ACM

Conference on Innovation and Technology in Computer

Science Education (pp. 267-272). New York, NY:

ACM.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

103

Computational Thinking as a Key Competence – a Research Concept

Amelie LABUSCH1, Birgit EICKELMANN1

1Paderborn University, Germany

amelie.labusch@upb.de, birgit.eickelmann@upb.de

ABSTRACT
Computational thinking is well-known in computer

science and is currently entering the field of education.

Due to changes in the private and professional life by

modern technologies all students are with increasing

relevance expected to possess sufficient knowledge in

computer-related problem-solving (e.g. Fraillon et al.,

2014). The acquisition of key competences related to this

assumes an enhancement of knowledge in learning as well

as computational thinking processes. Although many

concepts for computational thinking education have been

created (e.g. Barr & Stephenson, 2011; Krauss &

Prottsman, 2017), in fact, an evidence-based competence

model is not yet available, thereby it represents a

significant desideratum.

Considering these aspects, the contribution at hand aims

to contribute to this and focuses on the construction and

investigation of a model, taken theoretical aspects and the

current state of research into account. The principle of this

procedure is to break down the term and construct of

‘computational thinking’ to core elements by working

with a literacy approach and presuppose that

computational thinking can only be implemented in

lessons in a competence-oriented way referring to an

evidence-based approach to computational thinking as a

key competence of the 21st century. Starting from this, the

research presented in this paper describes and explains

preliminary work in the context of the preparation of IEA-

ICILS 2018 (International Computer and Information

Literacy Study). In this context, the authors of this paper

are involved as members of the national study center in

Germany, which is among other countries taking part in

this international study.

KEYWORDS
Computational thinking, ICILS 2018, evidence-based

model, key competence of 21st century

1. INTRODUCTION

In the course of the second cycle of ICILS in 2018, the

IEA (International Association for the Evaluation of

Educational Achievement) for the first time implements

the additional option ‘computational thinking’, by

applying computer-based tests for students in Grade 8

(Fraillon et al., in press), wherefore research will be able

to clearly examine the interplay between competencies in

computational thinking, the students’ use of ICT in and

outside school as well as individual students’ background

characteristics (Fraillon et al., in press). In this respect, the

structure of theoretical models of computational thinking

can also be reviewed by using representative data sets of

Grade 8 students in a number of countries around the

world. Furthermore, the study will allow to describe the

relationship between students’ information literacy and

computational thinking and by this will contribute to the

question which competencies refer to ICT-literacy

(Ainley, Schulz & Fraillon, 2016).

The research presented in this paper starts from the

premise that understanding the core elements of

computational thinking would enable teachers to integrate

it in their teaching concepts. Moreover, understanding and

integrating computational thinking in curricula would

allow students (K-12) for developing ‘computational

thinking’ as a key competence (see also Barr &

Stephenson, 2011) and part of every type of reasoning:

“The power of computational thinking is that it applies to

every other type of reasoning. It enables all kinds of things

to get done: quantum physics, advanced biology, human

computer systems, development of useful computational

tools” (Barr & Stephenson, 2011, p. 51). This takes into

account that enabling students not only to consume but

also to create technology is of increasing relevance. The

emerging challenge is to make educational systems to

react to these new challenges and to make use of the afore-

mentioned power in the most efficient way for all students.

Therefore, the purpose of this contribution is twofold:

Firstly, to review the current state of art of conceptualizing

and research towards computational thinking (section 2),

theoretical aspects (section 3) and explaining a process

model to understand the underpinning concept (section 4).

Secondly, the paper presents and discusses a more detailed

research concept (section 5).

2. CURRENT STATE OF RESEARCH

Wing (2006) stated that computational thinking

“represents a universally applicable attitude and skill set

everyone, not just computer scientists, would be eager to

learn” (p. 33). A first point to note is that this assumption

is the reason of the great discussion about computational

thinking of the last few years. Thus far, hardly any studies

researching computational thinking education and

measuring computational thinking competences are

available. In contrast to this, literature reviews show that

there are different concepts of the construct, mostly

referring to the first concept, presented by Wing (2006).

Barr and Stephenson (2011), for instance, have developed

a concept of computational thinking, including several

components, e.g. data collection, data analysis, algorithms

and procedures etc. In accordance with this and also

aiming for making computational thinking teachable in

104

schools, Krauss and Prottsman (2017) recently published

a teacher’s getting-started guide.

Since these and other concepts are not founded on a

universal definition, a generally accepted definition of

computational thinking has not been set and finding it “has

proved difficult for the CS [computer science] education

community” (Mannila et al., 2014, p. 2). However, most

of the definitions include core elements or rather processes

as part of computational thinking (e.g. Wing, 2008; Lee et

al., 2011; Barr & Stephenson, 2011, Krauss & Prottsman,

2017). Therefore, the aim is not to find a universal

definition but to create an evidence-based competence

model, which clarifies the key competence of

computational thinking, while embedding the model into

a comprehensive theory. From the perspective of

empirical educational research, such a model can be

developed by using appropriate tests and develop an

evidence-based competence model.

Last but not least, the primary use of Wing’s assumption

in the context of this contribution is that computer-linked

problem-solving can be reframed to psychological

problem-solving processes. Thus, we can benefit from

many studies in this area (e.g. Popper, 1994; Marshall,

1995; Robertson, 2001). Román-González, Pérez-

González & Jiménez-Fernández (2016) describe “a

worrying vacuum about how to measure and asses CT

[computational thinking]” (p. 2), wherefore they also

suggest a psychometric approach. Relating to this

understanding, it can be stated that understanding the

process of problem-solving also contributes to clarify

computational thinking and to add to computer scientists’

research.

3. THEORETICAL ASPECTS

First, it should be noted that – in contrast to a state-of-the-

art computer – a human being is able to solve problems

without regulations. This is also taken into consideration

when trying to reason the need for conceptualizing

computational thinking in the scope of ICILS 2018:

“Computers themselves cannot think: they have to be

programmed before they can function” (IEA, 2016, p. 2).

From a psychological point of view, processes of

computational thinking show many similarities with

problem-solving processes, both of which arrive from

Bandura’s theory of observational learning (Bandura,

2001). Problem-solving in comparison to performing a

task with clear rules is a rather complex process and one

way of thinking among others, such as conceptualization

and logical reasoning.

In a problem-solving process, the point of departure is a

problematic situation, which is followed by situation

analysis (Edelmann, 2000). The way in which the brain

works in a problem-solving process is much contested

among scholars. As a result, and following very early

theories, it can be stated that problem-solving is

productive thinking (Duncker, 1926). In this context, the

aim of problem-solving processes is to close the gap

between a problematic situation and the required solution,

using operators, which partly need to be invented by

heuristics (Huitt, 1992).

In this context, the use of an algorithm represents a

particular form of problem-solving (Kant & Newell,

1984). Compared with humans, a computer can follow

orders more quickly but in so doing, it requires algorithms.

On an abstract level, the human takes over the thinking

process within problem-solving and delegates tasks to a

computer in the form of algorithms by analyzing the

problem which is needed beforehand and which “requires

thinking at multiple levels of abstraction” (Wing, 2006, p.

34).

Pointing out one of the theoretical frameworks, core

elements of computational thinking, which are mentioned

in different definitions, can be portrayed. The emerging

challenge is – as already mentioned – to create an

evidence-based model that enables researchers to

systemize and based on this, teachers to systematically

teach computational thinking – with as well as without

applying computer systems and ICT and exploring

different ways of transferring and teaching these skills to

different contexts.

4. PROCESS MODEL

In the following, figure 1 shows our analytic model of

computational thinking processes. Within this model, four

core elements and one undefined sub-process,

representing unknown sub-processes, which may arise

during the research process, are focused:

Figure 1: Model of computational thinking processes.

These determinants are assumed to have an impact on

computational thinking in general. In the context of

computer science, decomposition is the ability to

subdivide a (complex) structure into fragments. In

principle, this is analytic thinking during which a situation

or problem is also split into fragments. Decomposition

represents a latent variable, such as computational

thinking.

Pattern matching also represents an ability and a latent

variable. It enables a person to find common features

105

among and differences between fragments that have been

generated by the decomposition process. In this context,

Krauss and Prottsman (2017) differentiate between “the

practice of finding similarities” (p. 60) (pattern

recognition) and “the realization that something matches”

(p. 60 f.) (pattern matching).

Abstraction refers to the ability to eliminate details,

reasoning from the particular to the general, also known as

induction (ibid.).

Last but not least an algorithm provides a guideline for

action, which is usually modeled and encoded (ibid.).

Producing a guideline for action does not necessarily

entail mastering a programming language; it can also be

expressed in another way, e.g. in a construction manual or

a recipe.

The variable x in the model indicates all sub-processes

which are not already mentioned within the model. These

processes may include logical reasoning, object-oriented

thinking and evaluation and possibly debugging of

algorithmic solution. During the ensuing research, the

variable x will be substantiated.

The model does not only raise the question of unknown

variables but also of correlations between the mentioned

sub-processes and computational thinking in general. It

has both a heuristic and a didactic function: It should pave

the way for further research and facilitate the transfer of

knowledge and competencies. In the following, the

research concept will be explained.

5. RESEARCH CONCEPT

Taking the current state of art into account, the core

elements of computational thinking mentioned above can

be reframed to psychological processes and afterwards

transferred to competencies in order to generalize these

competencies and formulate items. Against this backdrop,

we focus the following research question:

1. How can computational thinking be reframed to

psychological problem-solving processes and how

does this contribute to the understanding of

computational thinking as a key competence in the

21st century including different parts of the construct?

Thanks to the IEA, students’ computational thinking

competencies will be operationalized within ICILS 2018.

Based on that, the aim of the research for which a starting

point is presented in the scope of this paper, we will add

some national extensions to the study to examine the

afore-mentioned research questions. Data will be gathered

from a representative sample of ICILS 2018, testing 8th

grade students (in ICILS 2013, N = almost 60,000 students

worldwide) and the German subsample in 2018 will

comprise 4,500 students. As already described above, our

method provides working at multiple levels using the

afore-mentioned model (figure 1). The advantage is,

however, that the underlying study ICILS represents a

theoretical and empirical basis for the study and helps to

develop a meaningful understanding of the interface of

existing computational thinking concepts and processes

related to general problem-solving skills. Referring to this,

this contribution aims to explain the research approach in

a more detailed way and provide a basis for a broader

discussion in the scientific community. In this context, we

will also provide information to discuss hypothesis about

the relationship of computer and information literacy (as

conceptualized in ICILS 2018, see for Fraillon et al., 2014)

and computational thinking. Following Ainley’s and his

colleagues’ approach (Ainley et al., 2016) the paper aims

to discuss how computational thinking can be summarized

under the broader understanding of ICT-literacy.

Referring to the premise in the introduction, that

understanding several core elements of computational

thinking would enable schools and teachers to develop

students’ competencies in ‘computational thinking’, this

contribution raises attention to the need of developing an

evidence-based competence model taking different

understandings of computational thinking into account.

To round off this picture, and to prepare for a national

extension of ICILS 2018 data collection by taking more

general concepts of problem-solving into account, we add

a holistic theoretical model and present a research concept

to investigate the underpinning theoretical structure.

6. REFERENCES

Ainley, J., Schulz, W. & Fraillon, J. (2016). A global

measure of digital and ICT literacy skills. Background

paper prepared for the 2016 Global Education

Monitoring Report. Paris: UNESCO.

Bandura, A. (2001). Social cognitive theory: An agentic

perspective. Annual Review of Psychology, 52(1), 1-26.

Barr, V. & Stephenson, C. (2011). Bringing computational

thinking to K-12: What is involved and what is the role

of the computer science education community? ACM

Inroads, 2(1), 48-54.

Duncker, K. (1926). A qualitative (experimental and

theoretical) study of productive thinking (solving of

comprehensible problems). Pedagogical Seminary,

33(4), 624-708.

Edelmann, Walter (2000): Lernpsychologie (6th ed.).

Weinheim: Beltz/ Psychologie Verlags Union.

Fraillon, J., Schulz, W., Duckworth, D. & Ainley, J. (in

press). ICILS 2018 Assessment Framework. Amsterdam:

IEA.

Fraillon, J., Ainley, J., Schulz, W., Friedman, T. &

Gebhardt, E. (2014). Preparing for life in a digital age.

The IEA International Computer and Information

Literacy Study. International Report. Amsterdam:

International Association for the Evaluation of

Educational Achievement (IEA).

Huitt, W. (1992). Problem solving and decision making:

Consideration of individual differences using the Myers-

Briggs Type Indicator. Journal of Psychological Type,

24(1), 33-44.

IEA (2016). The IEA's International Computer and

Information Literacy Study (ICILS) 2018. What's next

for IEA's ICILS in 2018? Retrieved February 6, 2017

from

106

http://www.iea.nl/fileadmin/user_upload/Studies/

ICILS_2018/IEA_ICILS_2018_Computational_Thin

king_Leaflet.pdf.

Kant, E. & Newell, A. (1984). Problem solving techniques

for the design of algorithms. Information Processing

and Management, 20(1), 97–118.

Krauss, J. & Prottsman, K. (2017). Computational

Thinking and Coding for Every Student. The Teacher’s

Getting-Started Guide. Corwin Press Inc.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Malyn-Smith, J. & Werner, L. (2011).

Computational thinking for youth in practice. ACM

Inroads, 2(1), 32–37.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo,

C., Rolandsson, L. & Settle, A. (2014). Computational

Thinking in K-9 Education. ACM, 1–29.

Marshall, S. P. (1995). Schemas in problem solving.

Cambridge University Press.

Popper, K. (1994). Alles Leben ist Problemlösen. Ü ber

Erkenntnis, Geschichte und Politik. München: Piper.

Robertson, S. I. (2001). Problem Solving. Hove, UK:

Psychology Press.

Román-González, M., Pérez-González, J.-C. & Jiménez-

Fernandez, C. (2016). Which cognitive abilities underlie

computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human

Behavior, 1-14.

Wing, J. M. 2006 Computational thinking. Commun.

ACM, 49(3), 33–35.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

107

Can Music Exposure Enhance Computational Thinking? Insights from the

Findings on the Music-Creativity Relations

Mei-ki CHAN1, Wu-jing HE1*, Wan-chi WONG2

1 The Education University of Hong Kong, Hong Kong

2 The Chinese University of Hong Kong, Hong Kong

meiki@eduhk.hk, mavishe@eduhk.hk*, wanchiwong@cuhk.edu.hk

ABSTRACT
This study aimed to uncover the underlying mental

processes that might facilitate creative thinking after

listening to a 10-min music excerpt. A qualitative

component was incorporated in a quantitative study

regarding the effect of music listening on creative thinking.

Among 192 participants, a total of 24 college students

were interviewed immediately after they listened to the

10-min music excerpts and completed some creativity

tasks. The results suggested a possible facilitative role of

music listening on creative thinking through optimizing

individuals’ arousal level, and strengthening individuals’

associative abilities, holistic perception and abstraction.

As these mental processes are also important attributes of

computational thinking (CT), the findings may shed light

on the favourable impact of music listening on CT.

KEYWORDS
Computational thinking, creative thinking, music listening,

qualitative study, emotion

1. INTRODUCTION
The effect of music exposure on intellectual functioning

has become an important research topic since the findings

about the Mozart effect (He, Wong, & Hui, in press),

which suggest that listening to music composed by Mozart

leads to significant improvements in cognitive functioning

(e.g., Rauscher, Shaw, & Ky, 1993). Commonly

conceptualized as consisting of originality and

appropriateness (Sternberg & Lubart, 1999), creativity has

become one of the important foci in recent educational

reforms (Hui & Lau, 2010). A better understanding on

how music exposure correlates with creativity has

important implications. Although there are many studies

reporting a positive effect of music listening on creativity

(e.g., Schellenberg, 2006), it remains unclear what

underlying mental processes contribute to such a positive

effect. The present study aimed to understand the impact

of music exposure on creative thinking through a

qualitative approach with the aims to obtain data to reveal

the underlying mental processes that might contribute to

the positive music-creativity relationship.

In addition to creative thinking, Computational Thinking

(CT) is also an essential skill in nearly all fields (Bundy,

2007). The term CT originates from studies of computer

sciences, referring to the mental processes consisting of

constructing problems and solutions which can be carried

out by human or machine (Wing, 2006). Although CT and

creative thinking seem to relate to different disciplines,

interestingly, the two terms has been suggested to contain

similar constructs, (DeSchryver & Yadav, 2015). On the

ground of the explorative nature of a qualitative approach,

this study also aimed to explore the possible effect of

music listening on CT. It may extend our understanding

on the beneficial effect of music listening to a new avenue.

2. METHOD
The present study was a subcomponent of a larger research

project on music listening and thinking skills. Among the

192 college students being recruited to join the project

from two universities in Hong Kong, twenty-four

participants (22 females) agreed to accept a follow-up

interview. All participants signed consent and took part on

a voluntary basis. The age range of the interview sample

was 1727 (Mean = 20.75; SD = 2.56).

Semi-structured interviews were conducted with the

participants after they listened to the 10-min music

excerpts and completed two creative thinking tests,

namely the The Test for Creative Thinking – Drawing

Production (TCT–DP; Urban & Jellen, 1995/2010) and the

Torrance Tests of Creative Thinking (TTCT; Torrance,

1974). The music excerpts were extracted from ‘Butterfly

Lovers Violin Concerto’`, which have been shown to be

able to induce positive or negative emotions (Zhang &

Chen, 2009). Each interview was tape-recorded with the

permission of the participant and lasted approximately 15-

20 minutes. They were asked explicitly to explain the

effects of music listening on their performance on the

tasks.

3. RESULTS AND DISCUSSION
Transcriptions of the interviews were analyzed following

the procedures of content-analysis suggested by

Graneheim and Lundman (2004). The results showed that

four themes were identified, namely a) optimal arousal

level, b) associative abilities, c) abstraction and d) holistic

perception.

3.1. The Effect of Music Exposure on Creativity

First, in terms of optimal arousal level, the interviewees

reported that in an aroused state, they could “think

flexibly,” or “have more inspirations.” This is in line with

previous studies, which suggest that an optimal activation

level is critical in promoting creative thinking

(Schellenberg, Nakata, Hunter, & Tamoto, 2007). Second,

the interviewees indicated that their associative flexibility

and fluency were strengthened after the intervention. The

findings on the associative abilities echo the long proposed

assumption of associative process playing a vital role in

creativity (Mednick, 1962). Third, the interviewees also

mailto:mavishe@eduhk.hk*
mailto:wanchiwong@cuhk.edu.hk

108

reported that music listening was conducive to a broader

attention scope and a more holistic perception. This

finding is consistent with past studies that suggest a

positive relationship between creativity and the breath of

attention (Kasof, 1997). Fourth, the interviewees

described that their thinking became more abstract, so that

it was easier for them to find commonalities between the

given objects in the creativity task and those objects found

in one’s daily life, giving evidence to the involvement of

abstraction in creativity (Welling, 2007). The results

suggested that music exposure might have a favourable

impact on creative thinking through four important mental

processes.

3.2. The Possible Beneficiary Effects of Music on CT

It has been suggested that creative thinking and CT

comprise similar mental processes (DeSchryver & Yadav,

2015). The findings of this study may shed light on the

possible beneficial effect of musical listening on CT. The

interview data obtained in this study suggest that music

listening can facilitate creative thinking through optimal

arousal, abstraction, attention scope, and holistic

perception. Such mental processes might contribute to CT,

which is characterized by symbol representation, parallel

thinking, synthesis and abstraction (Barr, Harrison &

Conery, 2011; Wing, 2006). According to Wing (2006),

for instance, abstraction skills, an important component in

CT, enables pattern observation, identifies core features

and omits details of perceptions. On the ground of music

facilitating the underlying mental processes of CT, music

listening will probably be beneficiary to CT, implying the

potential benefits of incorporating music into CT

education.

3.3 Limitations and Merits

Some limitations should be noted. First, the exploration

into the mental process subsequent to music listening is

based on subjective knowledge of the participants. Second,

the sample size of the interview was relatively small.

Further studies should be conducted to explore if the

findings can be generalized to a wider population.

Despite the mentioned limitations, this study is the first

qualitative study that addresses the research question on

why and how music listening can enhance creative

thinking. The explorative nature of the interviews depicts

the important mental processes that may facilitate creative

thinking. As these mental processes are important

attributes of CT, the findings of the present study extend

the discussion from creativity to the possible beneficial

effect of musical listening on CT. The finding extends our

understanding of the impact of music exposure on

creativity to revealing the thought processes involved in

engaging in a creative task, as well as CT.

4. REFERENCES
Barr, D., Harrison, J., & Conery, L. (2011). Computational

thinking: A digital age skill for everyone. Learning &

Leading with Technology, 38, 20-23.

Bundy, A. (2007). Computational thinking is

pervasive. Journal of Scientific and Practical

Computing, 1, 67-69.
DeSchryver, M. D., & Yadav, A. (2015). Creative and

computational thinking in the context of new literacies:

working with teachers to scaffold complex technology-

mediated approaches to teaching and learning. Journal

of Technology and Teacher Education, 23, 411431.

Graneheim, U. H., & Lundman, B. (2004). Qualitative

content analysis in nursing research: concepts,

procedures and measures to achieve

trustworthiness. Nurse education today, 24, 105-112.

Hui, A. N., & Lau, S. (2010). Formulation of policy and

strategy in developing creativity education in four Asian

Chinese societies: A policy analysis. The Journal of

Creative Behavior, 44, 215-235.

Kasof, J. (1997). Creativity and breadth of attention.

Creativity Research Journal, 10, 303315.

Mednick, S. A. (1962). The associative basis of the

creative process. Psychological Review, 69, 220–232.

doi:10.1037/h0048850

Rauscher, F.H., Shaw, G.L., & Ky, K.N. (1993). Music

and spatial task performance. Nature, 365, 611.

Schellenberg, E. G. (2006). Long-term positive

associations between music lessons and IQ. Journal of

Educational Psychology, 98, 457.

Schellenberg, E.G., Nakata, T., Hunter, P.G., & Tamoto,

S. (2007). Exposure to music and cognitive performance:

tests of children and adults. Psychology of Music, 35,

519.

Sternberg, R. J., & Lubart, T. I. (1999). The concept of

creativity: Prospects and paradigms. Handbook of

creativity, 1, 3-15.
Torrance, E. P. (1974). The Torrance Tests of Creative

Thinking-Norms-Technical Manual Research Edition-

Verbal Tests, Forms A and B-Figural Tests, Forms A &

B. Princeton, NJ: Personnel Press.

Urban, K. K., & Jellen, H. G. (1995/2010). Test for

Creative Thinking – Drawing Production (TCT–DP).

Manual. Frankfurt am Main, Germany: Pearson

Assessment & Information GmbH.

Welling, H. (2007). Four mental operations in creative

cognition: The importance of abstraction. Creativity

Research Journal, 19, 163177.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 49, 3335.

Zhao, H., & Chen, A. C. (2009). Both happy and sad

melodies modulate tonic human heat pain. The Journal

of Pain, 10(9), 953-960. 

Acknowledgement: This study was partially supported by

a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (Project No:

28605615)

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

109

Computational Thinking and

Early Childhood Development

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

110

Imagining, Playing, and Coding with KIBO:

Using Robotics to Foster Computational Thinking in Young Children

Amanda A. SULLIVAN1*, Marina UMASCHI BERS2, Claudia MIHM3

The DevTech Research Group1 2 3

 Tufts University, United States1 2 3

Amanda.Sullivan@tufts.edu, Marina.Bers@tufts.edu, Claudia.Mihm@tufts.edu

ABSTRACT
The KIBO robotics kit offers a playful and tangible way

for young children to learn computational thinking skills

by building and programming a robot. KIBO is

specifically designed for children ages 4-7 years old and

was developed by the DevTech research group at Tufts

University through nearly a decade of research funded by

the National Science Foundation. KIBO allows young

children to become engineers by constructing robots

using motors, sensors, and craft materials. Children also

become programmers by exploring sequences, loops, and

variables. Through programming KIBO, children engage

with computational thinking skills and ideas including

algorithms, modularity, and control structures. Unlike

other programming interfaces for children, the KIBO

robot is programmed to move or to respond to sensor

input by using tangible programming blocks—no

computer, tablet, or screen-time required. This paper

provides an overview of the design features of KIBO and

a synthesis of the research that has been done throughout

the development of this kit. It provides examples of

curriculum for playfully engaging young children with

computational thinking using KIBO.

KEYWORDS
Early childhood, engineering, robotics, programming,

computational thinking

1. INTRODUCTION
Early childhood is an important time for young children

to grow, play, and explore the world they live in.

Developmentally, it is a life stage characterized by

genuine curiosity and desire for learning. In order for

young children to master new knowledge about the

world, they need hands-on experiences to construct their

learning (Piaget, 1936). New technologies such as

robotics kits and coding applications offer children a

hands-on way to learn about many of the things they

encounter every day but do not understand, such as

sensors, batteries, and lights (Papert, 1980). Robotics is

an ideal tool for early childhood because it facilitates

cognitive as well as fine motor and social development

(Bers, 2008; Clements, 1999; Lee, Sullivan, & Bers,

2013; Svensson, 2000). It engages children creatively, as

an expressive medium, allowing young children to

become engineers by playing with motors and sensors as

well as storytellers by creating and sharing personally

meaningful projects that react in response to their

environment (Bers, 2017; Bers 2008).

When learning to build and program robots, young

children are also engaging in a type of problem solving

and analysis called computational thinking. The term

“computational thinking” can be defined as solving

problems algorithmically and developing a sense of

technological fluency (Bers, 2017; Bers, 2010; Papert,

1980) Children as young as four years old can learn

foundational computational thinking concepts (Bers,

2017; Bers, 2008) and this kind of learning can support

their literacy, mathematical, and socio-emotional

development (Kazakoff & Bers, 2012; Kazakoff,

Sullivan, & Bers, 2013).While computational thinking is

rooted in computer science, many have argued that it is a

universally applicable attitude and skillset that is

fundamental for everyone to master, just like reading,

writing, and arithmetic (Wing, 2006).

KIBO (see Figure 1) was born out of research led by

Marina Bers at the DevTech Research Group at Tufts

University (Bers, 2017). The goal was to foster playful

exploration of computational thinking during early

childhood through tangible objects. Later on, KIBO

became commercially available through KinderLab

Robotics with funding from the National Science

Foundation and a successful Kickstarter campaign (Bers,

2017). KIBO’s design was based on years of child

development research in collaboration with teachers and

early childhood experts to meet the learning needs of

young children in a developmentaly appropriate way

(Sullivan, Elkin, & Bers, 2015; Sullivan & Bers, 2015;

Kazakoff & Bers, 2014). This paper provides an

introduction to the design of KIBO and presents an

overview of the worldwide research conducted with

KIBO for the last several years to promote computational

thinking in young children.

 Figure 1. KIBO robot with a sample block program, art

platforms, and art supplies for decorating.

2. DESIGN FEATURES OF KIBO
KIBO is a robotics construction kit that involves both

hardware (the robot itself) and software (tangible

111

programming blocks) used to make the robot move. The

kit contains easy to connect construction materials

including: wheels, motors, light output, and sensors as

well as a variety of art platforms (See Figure 1 on the

previous page).

KIBO is programmed using interlocking wooden

programming blocks (see Figure 2). These wooden blocks

contain no embedded electronics or digital components.

Each wooden block has a colorful label with an icon, text

and a bar code; as well as a hole on an end and a peg on

the other. The KIBO robot has an embedded scanner that

allows users to scan the barcodes on the programming

blocks and send a program to their robot instantaneously.

No computer, tablet, or other form of “screen-time” is

required to learn programming with KIBO. This is aligned

with the American Academy of Pediatrics’

recommendation that young children have a limited

amount of screen time per day per day (American

Academy of Pediatrics, 2016).

Figure 2. KIBO’s tangible programming language. Each

block has a unique barcode that is scanned by the robot.

This programming language was inspired by early ideas

from tangible programming beginning with Radia

Perlman’s work in the mid 1970’s (Perlman, 1976) and

revived by the work of Suzuki & Kato (1995) nearly two

decades later. In recent years, there have been several

tangible languages have been created in a number of

different research labs around the world (e.g. McNerney,

2004; Smith, 2007; Horn & Jacob, 2007).

In contrast to graphical programming, which relies on

pictures and words on a computer screen, tangible

programming uses physical objects to represent the same

concepts (Manches & Price, 2011). Wooden programming

blocks are naturally familiar and comfortable for children,

in the tradition of learning manipulatives already used in

early childhood classrooms to teach shapes, size, and

colors (Froebel, 1826; Montessori & Gutek 2004).

KIBO’s programming blocks are shared easily and

manipulated by young users with limited fine motor

capacity.

KIBO’s programming language is composed of over 18

individual wooden programming blocks. Some of these

blocks represent simple motions for the KIBO robot such

as, move Forward, Backward, Spin, and Shake. Other

blocks represent complex programming concepts such as

Repeat Loops and Conditional “If” statements that involve

sensor input (See Figure 3).

Figure 3. This figure provides an example of a

conditional statement with KIBO.

3. EARLY COMPUTATIONAL

THINKING

3.1. What is Computational Thinking?

In recent years, there has been a growing focus on

improving children’s technological literacy and making

computational thinking a priority in early childhood

school settings in the United States (e.g. U.S. Department

of Education, 2010). According to Wing (2006)

computational thinking is defined as, “solving problems,

designing systems, and understanding human behavior, by

drawing on the concepts fundamental to computer

science” (p.33). Computational thinking involves a set of

skills that include problem-solving, design and

expression, and systematic analysis (Bers, 2017; Bers,

2010). Computational thinking represents a type of

analytical thinking that shares many similarities with

mathematical thinking (e.g., problem solving),

engineering thinking (designing and evaluating

processes), and scientific thinking (systematic analysis)

(Bers, 2017).

Brennan & Resnick (2013) explain that computational

thinking involves the concepts designers engage with as

they program, the practices designers develop as they

engage with the concepts, and the perspectives designers

form about the world around them and about themselves.

Concepts may include very specific programming

concepts (such as repeat loops or conditional statements),

the practices may include methods of problem-solving or

collaboration, and perspectives may include questioning

things beyond the interface you are working with (such as

questioning how other things in the world are automated,

besides KIBO). Bers (2017) expands on the notion of

computational thinking, describing it not only as a

problem solving process, but as an expressive process; a

skillset that allows for new ways to communicate, to tell

stories and convey ideas.

It is important to note that there are many non-technical

and even non-academic examples of instances that call for

computational thinking skills (Wing, 2008; Yadav, 2011).

These everyday activities draw on the same type of

problem solving, but do not involve programming. Wing

(2008) presents a series of examples including: sorting

Legos (using the concept of “hashing” to sort by color,

shape, and size), learning to cook a meal (using “parallel

processing” to manage cooking at different temperatures

for different amounts of time) and looking up your name

in an alphabetical list (linear: starting at begininng of the

list, binary: starting at the middle of the list). Each of these

examples are activities young children are beginning to

encounter in their everyday lives.

112

3.2. Fostering Computational Thinking with KIBO

KIBO is designed to promote a specific set of

computational thinking skills. KIBO aims to foster seven

“powerful ideas” of computational thinking described by

Bers (2017). These ideas include: 1) algorithms, 2)

modularity, 3) control structures, 4) representation, 5)

hardware/software, 6) the design process, and 7)

debugging. Table 1 below describes these concepts and

how children explore them with KIBO. In the following

section we provide examples of curricular units that foster

these computational thinking concepts in a hands-on and

playful way.

Table 1. Computational Thinking Concepts Explored

with the KIBO Robotics Kit
Concept Examples

Algorithms Children use KIBO to explore logical

organization and sequencing using the

tangible programming blocks

Modularity

Control

Structures

Children learn how to break up a large

job into smaller steps when

programming KIBO to navigate mazes

or complete challenges

Children explore the ways KIBO can

make decisions based on conditions

using Repeat Loops and Conditional

Statement blocks

Representation

Hardware &

Software

Design Process

Debugging

Children learn that the colors and

symbols on the blocks represent

different types of actions

Children learn that computing systems,

like KIBO, need both hardware (robotic

parts) and software (blocks) to operate

Children move through an iterative

process used to develop programs and

tangible artifacts

Children troubleshoot their code when

KIBO does not behave as expected

4. KIBO CURRICULUM
While the act of coding often evokes a very serious image

of someone quietly working through lines of code on a

computer, KIBO offers a more playful approach that is

aligned with the spirit of early childhood education. Play

in early childhood is not just fun; research has shown that

it enhances children’s capacity for cognitive flexibility

and, ultimately, creativity (Russ, 2004; Singer & Singer,

2005).

The DevTech Research Group has developed over a dozen

curriculum units that focus on playful learning with KIBO

in order to teach the computational thinking skills listed in

the previous section. These curricular units also focus on

STEAM (Science, Technology, Engineering, Arts, and

Mathematics) content integration. In this section, we

provide three examples of STEAM curriculum designed

for KIBO: Dances from Around the World, Robotic

Animals, and Patterns All Around. These illustrate how

KIBO can be used to explore computational thinking

while teaching other STEAM content such as dance, social

studies, and math.

4.1. Dances from Around the World

The Dances from Around the World (DevTech, 2015) unit

is designed to combine music, culture, dance, and

language with programming and engineering content. The

end project involves children programming their KIBOs

to perform their favorite dance from anywhere in the

world. It is completed over the course of approximately

seven weeks. Each week, teachers introduce new robotics

and programming concepts, from basic sequencing

through conditional statements, to their students within the

curriculum’s music and dance theme. For the final

project, students work in pairs or small groups to design,

build, and program a dance of their choosing. This

involves not only robotics and programming knowledge,

but also research into the music, history and cultural

relevance of the dance, and facts about the country or

culture in which the dance originated. The unit culminates

in a dance recital for both the children and the robots to

perform in together. Children engaged with open-ended

free-play time to listen to their chosen music and come up

with a dance on their own.

While this project engaged children with all of the seven

powerful ideas of computational thinking described in

Table 1, children had to devote particular focus on the idea

of sequencing when choreographing and programming

their robot dances. They had to carefully consider the

timing of the music and any traditional dance steps that

needed to be included (and if so, in what order). They

needed to program their robot’s actions in a sequential

order that matched the order of the dance they

choreographed for them to perform. Most students also

had to explore control structures, learning how to use

KIBO’s Repeat Loop commands in order to ensure their

robot dances repeated the appropriate number of times to

match the music.

4.2. Robotic Animals

Integrating the natural sciences with robotics and

engineering, in the Robotic Animals curriculum (DevTech,

2015), children explore animals and their natural habitats.

After choosing an animal and researching its behavioral

and physical characteristics, students create a robotic

representation of that animal and its habitat for their final

projects (See Figure 4).

 Figure 4. The

image (left) shows

final project

examples from the

Robotic Animals

curriculum.

When building and programming their robotic animals,

children grappled with the concept of hardware and

software. They learned that to create an effective robot

that looks, moves, and reacts like a cat or wolf, they

113

needed to understand and use KIBO’s hardware elements

such as motors, sensors, and wheels as well as the right

software, or program, to make the robot move the way the

animal does. Children moved through an iterative design

process, building their physical robot structure and made

improvements to its sturdiness and aesthetic features.

They also moved through an iterative process developing

their programs.

4.3. Patterns All Around

The Patterns All Around unit (DevTech, 2015) focuses on

an explicit exploration of math through KIBO. This unit

integrates mathematics with fundamental engineering and

programming concepts. Throughout the curriculum,

students learn about different types of patterns using

mathematics. They also explore other foundational math

skills such as counting, shape recognition, and more. As a

final project, students then have the opportunity to create

a class “quilt” using large pieces of posterboard. By

attaching a pen or crayon to KIBO, they were able to

complete hands-on programming challenges where they

were prompted to program KIBO to draw specific shapes

or create different types of patterns on paper. This unit

also offered many opportunities for free play and artistic

exploration.

In this unit, students explored the computational concept

of modularity, or breaking down a large task into a series

of smaller steps. While programming complex patterns

was often a daunting task for the kids, their teachers

prompted them to focus on programming just one part at a

time. After coming up with a series of short programs,

children were able to put it all together and debug, or

troubleshoot if it still did not look quite right.

5. RESEARCH WITH KIBO

5.1. Methods

During the research and development of KIBO, we have

collected quantitative and qualitative data and published

findings from N=322 children and N=32 early childhood

teachers over the course of dozens of studies looking at

what children have learned about robotics, engineering,

sequencing, and more using KIBO (See Table 2 on the

following page). Our research has been conducted across

the United States, in Denmark, and as part of a large-scale

study in Singapore (Sullivan & Bers, 2017). In order to

measure children’s mastery of computational concepts,

the DevTech Research Group developed the “Solve-Its”

assessment (Strawhacker, Sullivan, & Bers, 2013;

Strawhacker & Bers, 2014). Solve-Its entail listening to

different stories or songs being read or sang aloud by a

researcher. After listening to the story or song, the Solve-

Its prompt children to arrange paper blocks into a

sequential program that matches what they heard (See

Figure 6). Each task assesses a different computational

concept such as control flow or sequencing.

Figure 6. The image (above) shows an example of a

child completed Solve-It task assessing their knowledge

of repeats.

Highlights from this work are summarized in the

following section. For a full list of publications detailing

our studies with KIBO and to find out about the materials

we have developed including teacher surveys, interview

protocols, observation protocols, behavioral checklists,

and more please visit:

http://ase.tufts.edu/devtech/publications.html

Table 2. Summary of Topics Researched with

KIBO

5.2. What Do Children Learn?

Our research has shown that learning to program with

tangible robotics kits allows young children to practice

sequencing, logical reasoning, and problem solving

skills, along with positive behaviors such as collaboration

and communication (Kazakoff, Sullivan, & Bers, 2013;

Bers, 2015; Sullivan & Bers, 2015). In addition, we have

shown that children as young as 4 years old can master

powerful ideas from computational thinking and early

engineering (Bers, 2017).

In a study with children in pre-kindergarten through

second grade (N = 60) using a prototype of the KIBO

robotics kit, results showed that beginning in pre-

kindergarten, children were already able to master basic

robotics and programming skills (Sullivan & Bers, 2016).

This same study also demonstrated that older children

were able to master increasingly complex concepts using

the same kit in the same amount of time (Sullivan & Bers,

2016). Based on these findings, DevTech’s most recent

Sample

 Study Instruments

Sequencing

Computational

Thinking

Robotics &

Programming

Knowledge

Gender

Coding in

Preschool

Teachers

Positive

Technological

Behaviors (PTD)

Total

N=27

N=28

N=60

N=45

N=64

N=32

N=98

N=354

Baron-Cohen et al. picture
sequencing cards

Solve-Its
Debugging Assessment

Solve-Its
Robot Parts Task

Solve-Its

Interviews

 Solve-Its

Observations

Teacher surveys

Interviews

PTD Checklists

http://ase.tufts.edu/devtech/publications.html

114

study with KIBO focused explicitly on the pre-

kindergarten years and what these very young children are

capable of building and creating (Elkin, Sullivan, & Bers,

2016). In this study, with 64 children from seven

preschool classrooms, findings indicated that although

KIBO was originally designed for ages 4 and up, children

as young as age 3 could create syntactically correct

programs for KIBO (Elkin, Sullivan, & Bers, 2016).

 These findings demonstrated that KIBO embodies the

“high ceiling/low floor” approach to technology design.

This means it is easy to get started with KIBO (i.e. “low

floor”), in this case, even for children as young as 3 years

old. But there is also a “high ceiling” (i.e. a lot of complex

possibilities) for what you can do with KIBO as you get

older and gain more mastery for the concepts. Resnick,

et al. (2005) also describes the idea of “wide walls” saying

that “tools should support and suggest a wide range of

explorations.” In order to address this, the DevTech

Research Group has created over a dozen curriculum

units, such as the three described in the previous section,

that explore the ways that robotics can be integrated across

a variety of domains. Our research has demonstrated that

it is not just children who need support and materials:

teachers do too. We have seen that early childhood

teachers need training, support, and resources in order to

feel confident and compentent teaching robotics (Bers,

Seddighin, & Sullivan, 2013). Therefore, we have now

made training videos, curriculum units, and other

resources feely available on the Early Childhood Robotics

Network (www.tkroboticsnetwork.ning.com).

5.3. Computational Thinking

 A big piece of our research on computational thinking has

focused on the impact of robotics and computer

programming on young children’s sequencing skills.

Sequencing, a key aspect of computational thinking

outlined by Bers (2017), is also an important pre-math and

pre-literacy skill for early childhood found in both

curricular frameworks and learning assessments

(Kazakoff, Sullivan, & Bers, 2013).

Our research has demonstrated that beginning in pre-

kindergarten, learning to program a robot significantly

improves children’s ability to logically sequence picture

stories (Kazakoff, Sullivan, & Bers, 2013). This suggests

that the sequencing skills gained through programming

can be translated to sequencing things beyond code, such

as stories.

In a recent study by Pugnali, Sullivan, & Bers (under

review) the authors have begun to explore the impact of

user interface on children’s computational thinking skills,

comparing the tangible KIBO programming language to a

graphical tablet-based programming language. This study

found that children in the tangible KIBO group scored

significantly higher on two key aspects of computational

thinking: sequencing and debugging. While further

research is required, this may suggest that the tangible

nature of KIBO’s block language may make it more

accessible to young children than onscreen langauges.

6. CONCLUSION
The KIBO kit is being used by a growing number of

children, parents, teachers, schools, camps, museums, and

after school programs all around the world. Since its

launch in 2014, KIBO is now used in 48 states across the

U.S. as well as 43 countries worldwide. Countries such as

Singapore are now using KIBO on a widespread basis to

address technological literacy in the early childhood years

(Sullivan & Bers, 2017). The research summarized here

demonstrates the power of a tool like KIBO to effectively

teach computational thinking beginning as early as pre-

school and kindergarten. It also highlights the many ways

that robotics and computer programming can easily

integrate into traditional early childhood domains such as

math, science, and social studies. Moreover, the work

done with KIBO over the past five years has shown the

possibilities for teaching computational thinking without

forgetting that young children are still young children.

Learning to code should not come at the sacrifice of

learning to play and socialize. The curriculum units

developed for KIBO have demonstrated successful ways

to teach coding while still engaging in physical movement,

listening to music, dancing, and collaborating. All of these

are key components of a well-rounded early childhood

experience.

7. REFERENCES
American Academy of Pediatrics (2016). Media and

young minds. Pediatrics,138(5).

Bers, M.U. (2017). Coding as a Playground:

Programming and Computational Thin=king in the Early

Childhood Classroom. Routledge press.

Bers, M. (2008). Blocks to Robots: Learning with

Technology in the Early Childhood Classroom. Teachers

College Press, NY, NY

Bers, M.U., Seddighin, S., & Sullivan, A. (2013). Ready

for robotics: Bringing together the T and E of STEM in

early childhood teacher education. Journal of Technology

and Teacher Education, 21(3), 355-377.

Brennan, K., & Resnick, M. (2012). New Frameworks

for Studying and Assessing the Development of

Computational Thinking. Proceedings of the 2012 annual

meeting of the American Educational Research

Association, Vancouver, Canada.

DevTech (2015). Dances from Around the World

Curriculum. Retrieved from: tkroboticsnetwork.ning.com

DevTech (2015). Robotic Animals Curriculum. Retrieved

from: tkroboticsnetwork.ning.com

DevTech (2015). Patterns All Around Curriculum.

Retrieved from: tkroboticsnetwork.ning.com

Elkin, M., Sullivan, A., & Bers, M.U. (2016).

Programming with the KIBO Robotics Kit in Preschool

Classrooms. Computers in the Schools, 33(3), 169-186

Clements, D. H. (1999). Young children and technology.

In G. D. Nelson (Ed.), Dialogue on early childhood

science, mathematics, and technology education.

Washington, DC: American Association for the

Advancement of Science.

http://www.tkroboticsnetwork.ning.com/

115

Froebel, F. (1826). On the Education of Man (Die

Menschenerziehung), Keilhau/Leipzig: Wienbrach.

Horn, M. S., & Jacob, R. J. (2007). Tangible

programming in the classroom with tern. In CHI'07

extended abstracts on Human factors in computing

systems (pp. 1965-1970). ACM.

Kazakoff, E., & Bers, M. (2012). Programming in a

robotics context in the kindergarten classroom: The

impact on sequencing skills. Journal of Educational

Multimedia and Hypermedia, 21(4), 371-391.

Kazakoff, E., Sullivan, A., & Bers, M.U. (2013). The

effect of a classroom-based intensive robotics and

programming workshop on sequencing ability in early

childhood. Early Childhood Education Journal, 41(4),

245-255.

Lee, K., Sullivan, A., Bers, M.U. (2013). Collaboration

by design: Using robotics to foster social interaction in

Kindergarten. Computers in the Schools, 30(3), 271-281.

Manches, A., & Price, S. (2011). Designing learning

representations around physical manipulation: hands and

objects. In Proceedings of the 10th International

Conference on Interaction Design and Children (pp. 81-

89). ACM.

McNerney, T. S. (2004). From turtles to tangible

programming bricks: Explorations in physical language

design. Personal and Ubiquitous Computing, 8(5), 326-

337.

Montessori, M., & Gutek, G. L. (2004). The Montessori

method: The origins of an educational innovation:

including an abridged and annotated edition of Maria

Montessori’s the Montessori method. Lanham, MD:

Rowman & Littlefield Publishers.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York: Basic Books.

Piaget, J. (1936). Origins of intelligence in the

child. London: Routledge & Kegan Paul.

Perlman, R. (1976). Using computer technology to

provide a creative learning environment for preschool

children.

Pugnali, A., Sullivan, A., & Bers, M.U. (under review).

The impact of user interface on young children’s

computational thinking. Journal of Information

Technology Education: Innovations in Practice.

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B.,

Pausch, R., Selker, T., & Eisenberg, M. (2005). Design

principles for tools to support creative thinking. The

School of Computer Science at Research Showcase at

Carnegie Mellon University.

Russ, S.W. (2004). Play in child development and

psychotherapy. Mahwah, NJ: Earlbaum.

Singer, D.G.& Singer, J.L. (2005). Imagination and play

in the electronic age. Cambridge, MA: Harvard

University Press.

Smith, A. C. (2007). Using magnets in physical blocks

that behave as programming objects. In Proceedings of

the 1st international conference on Tangible and

embedded interaction (pp. 147-150). ACM.

Sullivan, A., & Bers, M.U. (2015). Robotics in the early

childhood classroom: Learning outcomes from an 8-week

robotics curriculum in pre-kindergarten through second

grade. International Journal of Technology and Design

Education. Online First.

Sullivan, A. & Bers, M.U. (2017). Dancing Robots:

Integrating Art, Music, and Robotics in Singapore's Early

Childhood Centers. International Journal of Technology

& Design Education.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO

Robot Demo: Engaging young children in programming

and engineering. In Proceedings of the 14th International

Conference on Interaction Design and Children (IDC

'15). ACM, Boston, MA, USA.

Suzuki, H., & Kato, H. (1995). Interaction-level support

for collaborative learning: AlgoBlock—an open

programming language. In The first international

conference on Computer support for collaborative

learning (pp. 349-355). L. Erlbaum Associates Inc..

Svensson, A. K. (2000). Computers in school: Socially

isolating or a tool to promote collaboration? Journal of

Educational Computing Research, 22(4), 437–453.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 49(3), 33–36

Wing, J. M. (2008). Computational thinking and thinking

about computing. Philosophical transactions of the royal

society of London A: mathematical, physical and

engineering sciences, 366(1881), 3717-3725.

Yadav, A. (2011). Computational Thinking and 21st

Century Problem Solving.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

116

Programming with ScratchJr: a review of the first year of user analytics

Kaitlyn D. LEIDL1*, Marina UMASCHI-BERS2, Claudia MIHM3

 The DevTech Research Group1 2 3

Tufts University, United States1 2 3

Kaitlyn.Leidl@tufts.edu, Marina.Bers@tufts.edu, Claudia.Mihm@tufts.edu

ABSTRACT
ScratchJr is a free programming application for young

children ages 5-7, available for most tablet devices. This

programming environment, developed by the DevTech

Research Group at Tufts University, the Lifelong

Kindergarten Group at MIT, and the Playful Invention

Company, was launched in July, 2014. During the first

year after the app’s launch, no information was collected

regarding usage other than informal communication with

local educators and parents. Starting in January 2016, the

ScratchJr team began to use the tool Google Analytics to

gain a deeper insight into user behavior, and began to

investigate the learning analytics data that could shed light

on computational thinking in early childhood. This paper

presents the first year of user data collection of ScratchJr.

KEYWORDS
Computational thinking, programming, early childhood,

educational technology, analytics.

1. INTRODUCTION
ScratchJr is a free tablet app that provides an introductory

programming environment for young children ages 5-7. It

was developed as a collaboration between the DevTech

Research Group at Tufts University, the MIT Lifelong

Kindergarten Group, and the Playful Invention Company,

with funding from the National Science Foundation

(DRL-1118664). ScratchJr was first launched as a freely

downloadable app on iPads in July, 2014, and has since

been released for use on several other platforms including

Android tablets, Amazon tablets, and Chromebooks. Used

in classrooms and homes worldwide, ScratchJr enables

children to create interactive stories and games by

snapping together graphical programming blocks to make

characters move, jump, dance, and sing. As shown in

Figure 1, the ScratchJr interface allows children to use

blocks that control motion, looks, sound, character

communication, and more. Through these programming

blocks, young children learn the basic concepts and

powerful ideas of coding while creating personally

meaningful projects (Bers, 2017). The programming app

has been widely available for over two years, and in that

time, educators, parents, and children around the world

have used it to expand the range of creative programming

projects and to connect coding to traditional school

subjects such as science, mathematics, literacy, history,

and more (Bers & Resnick, 2015).

Figure 1. ScratchJr programming app interface

In January, 2016, the ScratchJr team was able to integrate

Google Analytics to examine how people are using the

programming app. This tool has allowed the team to better

understand when and where ScratchJr is being used, which

programming blocks are most popular, how many projects

are being created, and how long users spend during

sessions with ScratchJr. Data collected for a year provides

insights into early coding and computational thinking.

2. COMPUTATIONAL THINKING IN

EARLY CHILDHOOD
ScratchJr was developed to encourage all young children

to engage in computational thinking while coding. Within

the open-ended programming environment, children learn

the basic powerful ideas of computer science, such as

algorithms, debugging, and modularity by snapping

together programming blocks. While programming in

ScratchJr, children think creatively, logically, and

sequentially (Bers, 2008, 2012, 2017). Computational

thinking has the potential to benefit all individuals as it

involves understanding sequencing and order, as well as

logical thinking. This type of thinking is involved in many

everyday tasks, such as learning the steps to ride a bike,

following a recipe, or editing and rewriting a research

paper (Bers, 2017; Wing, 2006).

When computational thinking is supported at a young age

by teaching children about coding, it has the potential to

supplement and solidify many other social and behavioral

skills, which will be valuable to society whether or not the

child becomes an engineer or a computer scientist in the

future (Wing, 2006). Therefore, we designed ScratchJr to

be a developmentally appropriate programming language

to engage children in computational thinking, and to

provide a space for them to encounter powerful ideas from

computer science (Bers, 2017).

117

3. ScratchJr PROGRAMMING APP
ScratchJr can be described as a technological

“playground” for young children (Bers, 2012). They are

encouraged to learn by experimenting, to try out new

programming blocks, to express themselves creatively and

artistically, to tell stories, and to collaborate with peers

while having fun. When the ScratchJr app is opened, users

are prompted to create a new project, open an existing

project, or explore various learning resources (Bers &

Resnick, 2015). Once a user is on the project screen, there

is no one right way to begin coding with the available

programming blocks. Users have the opportunity to

explore the block categories and interface features by

testing them out and “tinkering” with different options

(Flannery et al., 2013).

Users can start by dragging programming blocks into the

programming area, snapping them together using their

puzzle piece-like features to create a program sequence

(see Figure 1). There are six categories of programming

blocks: Triggering Blocks, Motion Blocks, Looks Blocks,

Sound Blocks, Control Blocks, and End Blocks (see

Figure 2) (ScratchJr, 2017).

Figure 2. ScratchJr programming blocks

Users can add different characters and backgrounds to

their project, or create their own using the Paint Editor

Tool. This feature was intended to enhance the

personalization of projects, as children can edit existing

characters and backgrounds, or completely create their

own from their imagination (Strawhacker, Lee, Caine, &

Bers, 2015). When characters are added, users are free to

explore different block options, and to create programs for

their characters by snapping the blocks together in the

programming area. Users can create code with just motion

blocks, or move on to more complex concepts such as

making their characters communicate with each other via

message blocks. Users can also create interactions

between characters using unique triggering blocks like

“Start on Bump,” where one character will not start their

program unless another character physically bumps into

them. This open-ended, “low floor and high ceiling”

programming environment design makes ScratchJr

approachable for young children and novice programmers

alike, as it is easy to start programming by trying out

different features, yet there is still room to grow in

program complexity (Flannery et al., 2013).

4. METHODS

4.1. Google Analytics Tool

To better understand how and where children and adults

use ScratchJr, and, how often they program with it, the

ScratchJr team uses Google Analytics. Google Analytics

is a free tool developed by Google Inc. in 2005 that gives

small or medium-sized companies or teams insights on

users’ behaviors to understand areas for improvement

(Google Inc., 2016; Luo, Rocco, & Schaad, 2015). The

program acquires information about how ScratchJr is

being used by installing a “cookie” on devices that

download ScratchJr from the respective app store. Cookies

are small bits of information that are stored on devices,

without personally identifiable information (Clark,

Nicholas, & Jamali, 2014; Google Inc., 2016).

As noted by other researchers using the Google Analytics

tool to gain insight on users’ behavior, “Google

Analytics…makes it easy to identify patterns and trends in

user behavior by combining specific dimensions and

metrics to be investigated and plotting the results in its pre-

formatted or customized reports,” (Luo et al., 2015, p.

265).

There are four main categories within Google Analytics

that the ScratchJr team uses to investigate user activity:

1. Real-Time: Displays user activity as it happens in

real-time on the ScratchJr app. Allows the team to

monitor the number of people using ScratchJr at a

given time, their geographic locations, which pages

they are on within the app, and which app version they

are using.

2. Audience: Provides information about how many

individuals use ScratchJr, how many sessions have

occurred, the average time a user spends in ScratchJr,

which devices have downloaded ScratchJr, which

languages these devices are set to, and where in the

world ScratchJr is used.

3. Acquisition: Gives insight into how many new users

begin programming with ScratchJr.

4. Behavior: Includes information about which screens

are used most often, which programming blocks and

characters are used in ScratchJr and how often, and

screen-flow within the app.

Google Analytics organizes the data received from unique

devices’ cookies and IP addresses into data that can be

visualized in line graphs, bar graphs, pie charts, flow

charts, and map overlays (see samples of data

visualization in Figure 3). This practice of data

visualization allows quantitative figures about ScratchJr

users to be better understood by the team.

118

Figure 3. Google Analytics visualization data for

ScratchJr

4.2. Using Analytics in Education

Data analytics tools can be used for a myriad of reasons.

Large companies and small businesses alike often turn to

data collection tools to redefine marketing strategies,

increase revenue, and utilize user behavior patterns to

improve overall user experience (Luo et al., 2015; Martin

et al., 2015).

However, more recently in research, examples of studies

around analytics data have emerged in the realm of

education. In this context, the practice is known as

learning analytics, and focuses on learners, the process of

learning over time, and the context in which learning takes

place (Baker & Inventado, 2014; Berland, Martin, Benton,

Petrick Smith, & Davis, 2013; Luo et al., 2015).

As more data about learners becomes available due to the

increased amount of and access to online courses,

educational traffic on the web, and educational software

and technology, more opportunities to expand educational

research have subsequently emerged (Greller & Drachsler,

2012). Being able to transform the abstract progression of

learning into tangible numbers and visual data gives

researchers insight into learning patterns that could have

major implications on the way educators teach core

subjects in schools (Greller & Drachsler, 2012).

There have been several recent studies that use learning

analytics to track how individuals learn how to program

(Baker & Inventado, 2014; Berland et al., 2013; Blikstein

et al., 2014). A common method of gathering data is taking

screenshots of students’ code generation over a period of

time (Berland et al., 2013; Blikstein et al., 2014).

Researchers can use computer algorithms to categorize

these screenshots in terms of programming development

by asking questions such as: how did the code change in

complexity, length, and content over time? How did these

changes impact the effectiveness of the programs overall?

Did the later programs indicate growth in programming

knowledge? (Berland et al., 2013; Blikstein et al., 2014).

By using computer programs to quantify learning curves

among students while they learn programming languages,

researchers are uncovering learning patterns that could

have major implications on how we teach computer

science in educational institutions (Blikstein et al., 2014).

Using data analytics in ScratchJr, we have gained insight

into how the number of users, sessions, and locations has

evolved over the course of one year. In this paper, we

report these results.

4.3. ScratchJr in Google Analytics
Since January, 2016, the ScratchJr team has utilized the

Google Analytics program to gain a better understanding

of how ScratchJr is used across the globe. Although tools

like Google Analytics are often used by businesses to track

revenue and improve marketing strategy (Google

Analytics Solutions, 2017; Luo et al., 2015), in the case of

ScratchJr, our focus is on user behavior, location, patterns

in new user acquisition, and the app features themselves.

To protect the privacy of our young users, we do not

collect personally identifying information, such as unique

project content. Therefore, using Google Analytics alone,

we cannot track the progression of project content and

programming behaviors of individual users over time.

Instead, we focused on data points presented and defined

in Table 1:

Table 1. Data points and definitions (Google Inc., 2016)

Name of Data

Point
Definition of Data Point

Session
The period time a user is actively engaged

with the website, app, etc.

Users

Users that have had at least one session

within the selected date range. Includes

both new and returning users.

Returning

Users

A user with existing Google Analytics

cookies from a previous visit.

New Users

The number of first-time users during the

selected date range. A new user is one

who did not have Google Analytics

cookies when they first opened the app. If

a user deletes their cookies and re-opens

the app, they will be counted as a new

user.

Average

Session

Duration

The average length of a session.

Events
The categories that were assigned to

triggered events.

Language
The language settings in the users’

browsers. Analytics uses ISO codes.

Location
The location from which the session

originated.

Real-Time

Data updates continuously and each

pageview is reported seconds after it

occurs. Shows the number of people on

the app right now, their geographic

locations, etc.

119

Through Google Analytics, the team collects data on

where users click or tap within the app, which parts of the

app users use, and geographic location of where the app is

being used based on device IP addresses and network

location. The “click data” helps the team determine ways

to improve both the app interface and available learning

and teaching resources. The geographic location data

helps to understand where ScratchJr is and is not being

used. ScratchJr does not share any specific user

information it collects with Google, and Google does not

collect any personally identifying information about users.

Since January, 2016, the ScratchJr team has been gaining

insight into how users, both adults and children alike, use

the app. Google Analytics allows teams to see reports from

any date range, and view data in terms of hours, days,

weeks, and months. This allows the ScratchJr team to

refine data regarding time in meaningful ways. For

example, it is possible to determine which month, week,

day, or hour is the most popular time to use ScratchJr, in

terms of both how many users are active at those times,

and how many sessions occur in those times. This has been

especially useful to gauge the impact of computer science

and programming education events that occur around the

world in which ScratchJr is present. In observing the

hourly and weekly data patterns of when ScratchJr is used,

we can infer if the majority of children are programming

with ScratchJr in classrooms with educators or in their

homes with family.

Throughout 2016, the ScratchJr team discovered several

notable patterns in behavior of ScratchJr users, and has

subsequently begun to make steps towards improving the

app and its resources.

5. FINDINGS

Overall, the average amount of sessions and number of

users increased as the year progressed, yet other data

points such as average session duration, percentage of new

users per week, and users per week remained consistent.

These are all telling data points regarding user loyalty to

the programming app. The analytics highlights from 2016

are described in the following subsections.

5.1. Users & Sessions

There were nearly 2 million total ScratchJr users in 2016.

There were more than 104,000 average active users per

week, and nearly 27,000 average users on Thursdays

alone, the most popular day to use ScratchJr in 2016. Only

slightly more sessions occurred on Thursdays in 2016 than

on Fridays (see Figure 4).

Figure 4. The most sessions occurred on Thursdays

The number of sessions on each of those days of the week

came to over 1.7 million. The time of day that saw the

most sessions in ScratchJr was 9:00 AM EST (7.83% of

the total sessions occurred during this hour). Spikes and

patterns in weekly and hourly users are shown in the

graphs in Figures 5 and 6. Consistently, 20% of users each

week were new to ScratchJr, and 80% were returning

users.

Figure 5. Google Analytics ScratchJr users daily view:

peaks tend to be Thursdays and Fridays, low points tend

to be Saturdays and Sundays.

Figure 6. Google Analytics ScratchJr users hourly view:

peaks tend to be at 9:00 AM EST and 2:00 PM EST; low

points tend to be at 11:00 PM EST and 12:00 AM EST.

There was an average of nearly 37,000 new users to

ScratchJr each week in 2016. The week that recorded the

most new users was December 4-10, 2016, with nearly

97,000 (see spike on right side of graph in Figure 7). This

week was “Computer Science Education Week” in the

United States, in which government officials encouraged

engagement in programming in classrooms, and websites

like Code.org provided numerous resources for learning

how to code, including ScratchJr lesson plans (Code.org,

2016; Computer Science Education Week, 2016; The

White House, 2016). Furthermore, the DevTech Research

Group at Tufts University created ScratchJr videos

teaching pillars of computational thinking, or “powerful

ideas” (Bers, 2017; Papert, 1980), which were viewed

hundreds of times, indicating a definite presence of the

programming app in the United States throughout the

week (DevTech Research Group, 2016).

Figure 7. New Users per week in 2016; spike on right

side of graph indicates Computer Science Education

week in the U.S., which brought many new users to

ScratchJr.

In 2016, there were nearly 9.8 million recorded sessions in

ScratchJr. The average session duration was 13 minutes

and 58 seconds. Users averaged viewing 5.6 screens per

session. The most common flow of screens for both iOS

and Android operating systems began with the Index

screen that appears when users first open the app, followed

by the Home Lobby screen, then the Editor to create

programs, followed by the Home Lobby screen again, and

then the Editor again. A smaller percentage of users went

from the Index screen to the “Getting Started” screen to

learn how to use ScratchJr.

120

5.2. Programming Projects Content

The year 2016 saw over 7.5 million projects created in

ScratchJr. Furthermore, there were over 9 million existing

projects edited, showing that users tend to go back into

projects to work on them. There were 254,000 ScratchJr

projects shared via either email or Apple AirDrop in 2016.

In 2016, there were nearly 148 million ScratchJr

programming blocks added by users to the programming

area in the app. The ten most popular programming blocks

added were the Forward block (25 million added), Start on

Green Flag, Move Up, Move Back, Say (a speech bubble

block that allows characters to converse), Record Block

(allows users to record their own sounds and add them into

their program), Move Down, Shrink, Turn Right, and

Grow. The least popular blocks were Reset Size, Send

Message, Start on Message, Start on Bump, and Stop

(Figure 8).

Figure 8. Most and least popular ScratchJr blocks in

2016

The most popular characters used by children in 2016

were those self-created or edited by the children in the

Paint Editor, the Child, the Teen, Tac, and the Dragon

(Figure 9). Users entered the Paint Editor to customize

their characters and backgrounds over 23 million times.

Figure 9. Most popular characters in ScratchJr in 2016

The ScratchJr app includes eight sample projects to

provide examples of programs users can make. These

sample projects were viewed 1.6 million times in 2016.

5.3. Location & Language

In 2016, ScratchJr was used in all 50 states in the United

States of America, and in all but five countries worldwide.

The top 10 countries using ScratchJr based on the number

of sessions recorded are displayed in Table 2.

The top language codes on devices using ScratchJr include

English-US, English-Great Britain, English, English-

Australia, Spanish-Spain, English-Canada, Swedish-

Sweden, French-France, Korean-Korea, and Finnish-

Finland.

Country % of Total Sessions

United States 31.65%

United Kingdom 17.35%

Australia 10.32%

Canada 4.33%

Sweden 3.30%

Spain 3.16%

Finland 2.52%

France 2.28%

South Korea 2.24%

China 2.10%

Table 2. Top nations using ScratchJr

6. CONCLUSION
In using Google Analytics, the ScratchJr team is able to

understand user behavior in a quantitative way. The team

has been able to better comprehend the global reach of

ScratchJr, using location and language statistics to

determine the best methods for localization of ScratchJr.

In learning that ScratchJr was used in 191 of 196

registered countries worldwide in 2016, the importance of

and demand for computer science education across the

globe became clear.

Furthermore, the tremendous growth in numbers during

Computer Science Education Week in December, 2016 is

an indication that ScratchJr was a popular vessel for

learning about computer science and programming when

classrooms reserved the time to teach the topics. This

gives the team reason to continue making resources

available for educators and parents, particularly during

national and global initiatives to promote computer

science.

Data that the ScratchJr team has gathered about when

ScratchJr is used also gives a unique insight into how to

support users. Thursdays and Fridays were the two most

popular days for ScratchJr in 2016, and the most popular

time of day was around 9:00 AM EST. This suggests

teachers are using ScratchJr on a weekly basis towards the

end of the week and in the mornings. The ScratchJr team

could use this information to promote educational

resources, tips, and ideas for ScratchJr at these times.

Although the ScratchJr team does not collect individual

projects and thus cannot currently see the learning

progression of users programming in ScratchJr, there are

many insights we can still gain by having visual and

numerical data. Based on the data we collected in 2016, it

is clear that educators, parents, and children are finding

ways to learn programming, and ScratchJr has the

potential to be one of the leading platforms young children

use to engage in computational thinking.

121

7. FUTURE WORK
Moving forward, the ScratchJr team will continue to use

Google Analytics to better understand user behavior. The

team will use the data gathered to optimize localization

efforts, and provide resources based on project content

trends. Using data regarding the most popular days and

times of day ScratchJr is used, the team will use social

media outlets to support educators who may be teaching

with the programming app at those times, and continue to

build a ScratchJr community for users to share their ideas

and experiences. Furthermore, the team will develop

surveys to gather data that is not currently collected to be

able to start inferring learning trajectories.

8. REFERENCES
Baker, R. S., & Inventado, P. S. (2014). Educational data

mining and learning analytics. In Learning analytics

(pp. 61-75). Springer New York.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., &

Davis, D. (2013). Using learning analytics to

understand the learning pathways of novice

programmers. Journal of the Learning Sciences, 22(4),

564-599.

Bers, M. (2008). Blocks to Robots: Learning with

Technology in the Early Childhood Classroom.

Teachers College Press, NY, NY.

Bers, M.U. (2012). Designing digital experiences for

positive youth development: From playpen to

playground. Cary, NC: Oxford.

Bers, M.U. (2017). Coding as a Playground:

Programming and Computational Thinking in the

Early Childhood Classroom. Routledge Press.

Bers, M.U. & Resnick, M. (2015). The Official ScratchJr

Book. San Francisco, CA: No Starch Press.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper,

S., & Koller, D. (2014). Programming pluralism: Using

learning analytics to detect patterns in the learning of

computer programming. Journal of the Learning

Sciences, 23(4), 561-599.

Clark, D. J., Nicholas, D., & Jamali, H. R. (2014).

Evaluating information seeking and use in the changing

virtual world: the emerging role of Google

Analytics. Learned Publishing, 27(3), 185-194.

Code.org (2016). Hour of Code. Retrieved from

https://code.org/learn.

Computer Science Education Week (2016). Computer

Science Education Week. Retrieved from

https://csedweek.org/.

DevTech Research Group (2016). DevTech Celebrated

Computer Science Education Week! Retrieved from

http://ase.tufts.edu/DevTech/CSEdWeek2016.html.

Flannery, L.P., Kazakoff, E.R., Bonta, P., Silverman, B.,

Bers, M.U., & Resnick, M. (2013). Designing

ScratchJr: Support for early childhood learning through

computer programming. In Proceedings of the 12th

International Conference on Interaction Design and

Children (IDC ’13). ACM, New York, NY, USA, 1-

10. DOI=10.1145/2485760.2485785

Google Analytics Solutions (2017). Success Stories.

Retrieved from

https://www.google.com/analytics/success-

stories/?product=analytics#?modal_active=none.

Google, Inc. (2016). Google Analytics Solutions.

Retrieved from: https://www.google.com/analytics/.

Greller, W., & Drachsler, H. (2012). Translating Learning

into Numbers: A Generic Framework for Learning

Analytics. Educational Technology & Society, 15 (3),

42–57.

Luo, H., Rocco, S., & Schaad, C. (2015, October). Using

Google Analytics to Understand Online Learning: A

Case Study of a Graduate-Level Online Course. In 2015

International Conference of Educational Innovation

through Technology (EITT) (pp. 264-268). IEEE.

Martin, T., Petrick Smith, C., Forsgren, N., Aghababyan,

A., Janisiewicz, P., & Baker, S. (2015). Learning

fractions by splitting: Using learning analytics to

illuminate the development of mathematical

understanding. Journal of the Learning Sciences,

24(4), 593-637.

Papert, S. (1980). Mindstorms: Children, computers and

powerful ideas. New York, Basic Books.

ScratchJr (2017). Learn Page. Retrieved from

http://scratchjr.org/.

Strawhacker, A., Lee, M., Caine, C., & Bers, M.U.

(2015). ScratchJr Demo: A coding language for

Kindergarten. In Proceedings of the 14th International

Conference on Interaction Design and Children (IDC

'15). ACM, Boston, MA, USA.

The White House (2016 December 5). FACT SHEET: A

Year of Action Supporting Computer Science for All.

The White House Office of the Press Secretary.

Retrieved from

https://obamawhitehouse.archives.gov/the-press-

office/2016/12/05/fact-sheet-year-action-supporting-

computer-science-all.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 49(3), 33–36.

https://code.org/learn
https://csedweek.org/
http://ase.tufts.edu/DevTech/CSEdWeek2016.html
https://www.google.com/analytics/success-stories/?product=analytics#?modal_active=none
https://www.google.com/analytics/success-stories/?product=analytics#?modal_active=none
https://www.google.com/analytics/
http://scratchjr.org/
https://obamawhitehouse.archives.gov/the-press-office/2016/12/05/fact-sheet-year-action-supporting-computer-science-all
https://obamawhitehouse.archives.gov/the-press-office/2016/12/05/fact-sheet-year-action-supporting-computer-science-all
https://obamawhitehouse.archives.gov/the-press-office/2016/12/05/fact-sheet-year-action-supporting-computer-science-all

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

122

Technology Strategy Mapping in

My First Skool Childcare Centres, Singapore

Ai-ling THIAN, Belinda CHNG, Meei-yen LONG

My First Skool, NTUC First Campus, Singapore

thianailing@myfirstskool.com, belinda.csm@myfirstskool.com; longmeeiyen@myfirstskool.com

ABSTRACT
This paper shares the background, vision, the eclectic

approach and sharing of the technology-supported

initiatives introduced for young children in the network of

129 My First Skool (MFS) childcare centres in Singapore.

Focus is given to the communication of a widespread

initiative to bring multiple technologies to young children

in a large network of schools and systemic provisions for

teacher equipping to use these technologies.

KEYWORDS
early childhood, technology strategy, professional

development, affordances, play-based learning

1. INTRODUCTION
This paper shares the overarching eclectic approaches for

the adoption of technology for teaching and learning with

an aim to introduce a sustainable and scalable technology-

infused teaching practice to the network of 126 My First

Skool early-childhood centres. Our centres provide

childcare service to children from birth to age 6, and our

centre size can range from about 100 to 500 children.

Since 2015, My First Skool centres had intentionally

embarked on the journey to leverage technology for

teaching and learning through the adoption of tech-

enabled toys and focus on professional development.

Through these efforts, MFS strives to lay a firm

foundation for centres to integrate technology into the

curriculum.

2. BACKGROUND

The pervasiveness of mobile devices such as smartphones,

laptops and tablets has made “screens” a ubiquitous part

of our lives. Guidelines published in 1999 by the

American Academy of Pediatrics (AAP) and adopted by

Media Development Authority of Singapore to limit

“screen time” to two hours a day for children over 2 years

old are evolving. AAP recognised that “screen time” is

becoming simply “time” now. The “screen time” rhetoric

that used to accompany the television is no longer

relevant. Key messages surfaced from AAP’s conference

in 2015 evolved around parents’ awareness of the negative

effects of passive “screen time” and the strategies to

balance the use of “screens” so as to reap the benefits of

interactive media.

Against the backdrop where 98% of Singapore household

with school-going children have Internet access (IDA,

2014) and that Singapore is ranked highest globally for

smartphone penetration (Deloitte, 2015), young children’s

exposure to interactive media cannot be ignored.

A study by National University of Singapore called

Project iBaby (NUS, 2014) found that nine out of 10

children in the 18 to 24 months age group are exposed to

screen devices. Another study published by the Asian

Parent (Samsung, 2014) showed that across South East

Asia, Singapore has the highest number of children age 3

to 8 years old using a parent-owned device.

These studies pointed out an inevitable need for MFS to

move our conversation from an “if” we are going to

introduce technologies and interactive media that are

developmentally appropriate for young children into our

classrooms to “how” and “why” we are going to do it in

the most responsible and impactful way.

In an increasingly technology-rich environment, young

children are progressively exposed to various technology

devices for communication, leisure and learning. While

there is growing concern from educators and parents about

excessive screen time and the lack of kinesthetic and

social interactions, there is no denial that these tech-tools

provide much enriched information and experiences to the

children. Hence, there is a need to skillfully harness

technology to provide more positive learning.

3. VISION

The vision for the technology strategy mapping in MFS

centres is to empower educators with the skills and

knowledge to leverage on the affordances of technology to

create “a joyful and inspiring early learning experience

for all, which fulfils the promise of each child”.

4. APPROACHES

The introduction of technology into teaching and learning

is never about adding gadgets or tools into the classroom.

Educators are required to make informed choices about the

use of technology for young learners through the lens of

known child development theories and developmentally

appropriate practice. Making informed choices about the

use of technology and interactive media requires

knowledge, experience, and active exploration.

The following approaches are aimed to provide educators

the opportunities to acquire the necessary skills and

knowledge to review, assess, design, refine and reflect

how technologies could support, facilitate, or even play a

key role in day-to-day activities/lessons. The exposure to

different uses of technology and interactive media for

teaching and learning should build educators’ confidence

123

and ease to infuse them with an intentionality to grow and

develop our young children.

Approach 1: Integrating technology for curriculum and

pedagogy looks at the professional development of

teachers which enable them to be confident in using

technology and gain the skills and knowledge to apply the

appropriate practices for teaching and learning.

Technological, Pedagogical and Content Knowledge

(TPACK) is a framework developed by Dr. Koehler and

Dr. Mishra from the College of Education at Michigan

State University to understand and describe the kinds of

knowledge needed by an educator for effective

pedagogical practice in a technology enhanced learning

environment (Koehler, 2011)(Refer to the figure below).
We leverage in this framework to understand the possible

effects and practical applications of use of TPACK

construct on teachers’ levels of technology integration in

learning and teaching (Koehler & Mishra, 2009)

Used widely by educators around the world including the

Singapore Ministry of Education (e.g.
http://www.nie.edu.sg/project/oer-12-10-khl) , TPACK

will guide our training and workshops for educators to

make creative links between what is being learned

(content), how it is taught (pedagogy), and the appropriate

tools (technology).

Approach 2: Research, Innovate and Scale - seeks to

nurture a culture of innovation and reflective practice

across centres. To do this, it is important for our educators

to work with external partners (such as government

agencies, universities, etc.) and participate in

experimentation and innovation efforts. This approach

will allow educators to engage in professional discourse,

learn, explore, reflect, prototype tools/devices/approaches

that could deepen practice and improve their craft. The

initiatives introduced to educators should provide

opportunities for our educators participate in innovative

projects within Singapore and beyond.

Approach 3: Connected Learning Ecosystem - looks to

build educators’ confidence in using technology within

their learning environment to guide, facilitate or engage

young learners. A connected technological infrastructure

will provide flexibility and agility for policies on quality

teaching and learning with tools and devices to be

implemented quickly and cost effectively. The initiatives

introduced could shape the learning ecosystem and make

technology an integral part of the physical environment.

MFS Technology-Led Initiatives

Initiative 1:

The PlayMaker Programme in MFS - partnership with

Infocomm & Media Development Authority (IMDA) of

Singapore

The PlayMaker Programme is the piloting of the use of

tech-enabled toys for 5 to 6 years old to elicit creativity,

problem-solving skills and innovation mindset - typical

21st century competencies we want to teach our young.

Guided by "tinkering" through play-based learning and the

larger concept of "learning by doing", IMDA piloted the

PlayMaker Programme with all the 5 anchor opeators in

2016.

As one of the 5 anchor operators, 33 MFS centres were

selected to participate in the PlayMaker Programme over

2 phases between Jan – Dec 2016. Funded by IMDA, each

centre was supported with 4 sets of developmentally

appropriate tech-enabled toys worth $6,000.

Workshops were conducted to train educators how to use

these toys and to learn about the educational design behind

these toys. Sample lesson plans were shared to scaffold

and guide the learning activities at these workshops. To

ease the introduction of these tech-enabled toys into

classrooms, IMDA also provided the on-site consultancy

to the participating centres.

As participants of this programme, MFS centres were

required to develop lesson plans for these toys as part of

an inquiry project for our children. Educators would also

be invited to share their lesson plans and experience at the

PlayMaker Symposium after 6 months.

To support our educators and enable the culture of sharing,

a Professional Network Learning Community is formed

within MFS. The PlayMaker PNLC aimed to provide peer

reviews and support across the 33 centres in the planning,

designing and development of lesson plans and activities.

A Lead Team consisting of 2 Principals and 2 Senior

Teachers is formed to guide, monitor and co-ordinate the

learning and sharing across participating centres.

Through the PlayMaker Pilot programme, young children

in MFS were provided with the opportunity to learn

technology through tactile and kinesthetic educational

experiences through the introduction of this suite of child-

friendly, technology-enabled toys. Through touch and

feel, and learning how to play and how to use it, children

can build up their creative confidence while being

familiarise with technology from a young age.

Two Learning & Sharing Festivals were also organised in

2016 to offer a platform for all 33 centres to share their

PlayMaker Pilot progress and learning.

124

Figure I - the MFS Learning & Sharing Festivals

Initiative 2:

The PlayMaker Research Programme - partnership with

Dr. Marina Bers, Tuffs University sponsored by IMDA

(from Jan to June 2016)

Guided by the same principles as the PlayMaker Pilot

Programme, the Research Programme with Prof Marina

Bers studied the impact of introducing developmentally-

appropriate robotics in early childhood in the Singapore

context, aimed at drawing out the pedagogical practices

and benefits, as well as the support and structures needed

to bring about the desired child development and learning

outcomes.

One of our MFS centres, Westgate Centre (WGC) was

selected as one of the 5 centres working directly with Prof.

Marina Bers – creator of Kibo, for a 9-weeks research

study on the impact of tech-enabled toy in a pre-school

setting. WGC received both training for Kibo and 10 sets

of the Kibo tech-enabled toy.

As participants of this research programme, Westgate

centre worked closely with the research consultants,

adapted and delivered a set of lesson plans designed with

the intentionality to teach sequencing to children aged 5

and 6. Sequencing is a fundamental component of

computational thinking and sequencing skills are

predictors of academic success in math and literacy. Our

teachers conducted weekly 1-hr lessons with Kibo over a

course of 9 weeks and submitted their weekly reflection

logs and engagement checklists to Prof. Marina Bers.

WGC was exposed to innovative pedagogical approaches

from Prof. Marina Bers and participated frequently in

professional discourse with educators at both the national

and international levels.

IMDA has commissioned a research with Eliot-Pearson

Department of Child Study and Human Development, Dev

Tech Research Group at Tufts University, on “Dancing

robots: integrating art, music, and robotics in Singapore’s

early childhood centers" and Prof Marina Bers had also

highlighted the PlayMaker Programme at the White House

Symposium for Early STEM in 2016.

Initiative 3:

The Apple Lighthouse Project - partnership with Apple

Singapore

The Lighthouse approach aimed to introduce the use of

user-friendly, intuitive Apple technologies in centres that

would complement classroom activities and enhance

engagement with young learners. The Lighthouse

approach aimed at (i) encouraging and building teachers’

experience to use Apple technology for different activities

and; (ii) equipping centres with a seamless environment to

practice and use technology efficiently and effectively.

These classroom experiences and practices were shared

across participating centres in a Professional Learning

Network Community (PNLC) to encourage and inspire the

educators.

The critical success factors for this project is to get

teachers (i) comfortable with the technologies that were

introduce and; (ii) to be creative and leverage on the

affordances of these tools they have within their

classrooms to deliver impactful activities for their

children.

A total of 8 MFS centres were identified to champion this

effort and participate in this project with Apple Singapore.

Educators attended training workshops conducted by

Apple trainers, learnt about design principles for

technology infused lessons, features and tools available on

Apple devices that supports learning for young children or

classroom aides that facilitate learning.

Consultancy provided by the Apple trainers were further

customised for each centre, tailoring to individual centre’s

training needs. The trainer also supported the development

and implementation of technology-infused lessons plans.

An Apple Lighthouse PNLC was formed to allow

discussion, sharing and refinement of lesson plans and

activities developed by other centres.

As participants of the Apple Lighthouse project, 8 of these

centres championed the introduction of intuitive and user-

friendly Apple solutions for young learners. They were all

guided to explore the use of Apple technology as (i) a

replacement for some teaching tools; (ii) an amplification

to improve the efficiency and productivity; and (iii) a

transformation of teaching and learning that were

previously inconceivable.

Focusing on centre’s own niche areas (such as Green

Ecosystem, Literacy, Bilingualism, etc.), these 8 centres

developed technology-infused lessons plans and

documented their experience/reflections as case studies

which were shared with other Principals and at other

platforms (e.g. MFS’ Learning & Sharing Festivals,

educational conferences)

Initiative 4:

Proof of Concept (PoC) – Pepper the Humanoid Robot

In 2016, MFS Jurong Point Centre was one of the two PoC

centres in Singapore to pilot the use of robots to teach

kindergarten students social skills. Between March to

125

October in 2016, our children and teachers at Jurong Point

centre had a new family member – Pepper the Robot -

Pepper worked alongside the teachers and children in

class, encouraging interactions and creativity during

lessons.

Pepper is a human-like or humanoid robot that can read

emotions and learn from human interactions, helping it

respond naturally to people. The robot has been used

worldwide, from fronting retail stores to helping out in

food joints. Its interactive nature helped increase kids’

participation in class, especially among less confident

children. Children had been observed to be curious and

less intimated around the robot, initiating interactions with

them.

Pepper’s first class in MFS-Jurong Point taught our

children about emotions through the story-telling of the

story of the tortoise and the hare which was used to help

students to relate to different forms of emotion.

Teachers have found it easier to engage their kids in

classes, as Pepper responds to voice, touch and sight.

Through this PoC, our teachers had been working with

researchers and developers from the Nanyang

Technological University’s Robotics Research Centre and

the robots’ parent company, SoftBank Japan, to develop

lesson plans. A total of some 8 lesson plans and ensuing

lessons were developed and conducted over this PoC

period.

For this PoC, the TEPI (Toy Effects on Play Instrument)

and the RICA (Robot in Classroom Assessment)

instruments had been developed by the Nanyang

Technology University (Robotics Research Centre) and

used to assess the impact of toys on critical thinking and

problem solving, imagination and creative thinking and

sociability and independence.

5. CONCLUSION
As we believe that there is no one size fits all where

technology is concerned, in MFS, the approach to

undertaking technology to support children’s learning and

teachers’ development is an eclectic one and is one that

goes beyond individual programmes and projects. To best

support our network of 129 centres (to date) with their

technology effort, we are committed to providing all

children with access to quality ICT infrastructure, learning

resources, and ensuring that our principals and teachers

are well-developed, connected and supported by the larger

fraternity.

We believe that technology is a tool and not an end itself.

It is the Principals and the teachers who can make the

difference to our children’s learning with the wise

selection and planning of lessons supported by

technology. Intentional effort is given to ensure that

technology is a ‘means’ and leveraged upon only if it

creates education and that our children will not notice that

they are learning through a co-design process where they

are empowered while keeping their best interests as key

consideration.

6. REFERENCES
Deloitte. (2015). CIO Website. Retrieved from CIO

Website: http://www.cio-asia.com/tech/mobile-and-

wireless/singapore-ranks-highest-smartphone-

penetration-in-the-world-deloitte-survey/

IDA. (2014). IDA website. Retrieved from

https://www.ida.gov.sg/~/media/Files/Infocomm%2

0Landscape/Facts%20and%20Figures/SurveyReport

/2014/2014%20HH%20public%20report%20final.pd

f

Karuppiah, D. (2013). Straits Time. Retrieved from

http://www.straitstimes.com/singapore/kids-using-

gadgets-at-earlier-age-being-exposed-to-risks-study

Koehler, M. &. (2011). Teaching Teachers of Future.

Retrieved from http://www.ttf.edu.au/what-is-

tpack/what-is-tpack.html

NUS. (2014). Retrieved from ECDA:

https://www.ecda.gov.sg/growatbeanstalk/Document

s/ECDA%20ECC%202014%20Slides/ConcurrentSe

ssion_C/C4%20Is%20Our%20Generation%20of%2

0Babies%20Turning%20Into%20i-Babies.pdf

Samsung. (2014). theasianparent. Retrieved from

https://s3-ap-southeast-1.amazonaws.com/tap-sg-

media/theAsianparent+Insights+Device+Usage+A+

Southeast+Asia+Study+November+2014.pdf

The TPACK Framework, http://tpack.org/

Koehler, M. J., & Mishra, P. (2009). What is

technological

pedagogical content knowledge? Contemporary

Issues in Technology and Teacher Education, 9(1),

60-70

https://s3-ap-southeast-1.amazonaws.com/tap-sg-media/theAsianparent+Insights+Device+Usage+A+Southeast+Asia+Study+November+2014.pdf
https://s3-ap-southeast-1.amazonaws.com/tap-sg-media/theAsianparent+Insights+Device+Usage+A+Southeast+Asia+Study+November+2014.pdf
https://s3-ap-southeast-1.amazonaws.com/tap-sg-media/theAsianparent+Insights+Device+Usage+A+Southeast+Asia+Study+November+2014.pdf
http://tpack.org/

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

126

Computational Thinking

Development in Higher

Education

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

127

Integrating Computational Thinking into Discrete Mathematics

Kwong-cheong WONG

The Hong Kong Polytechnic University

Hong Kong Community College

wongkwongcheong@gmail.com

ABSTRACT
This paper argues that the various problems caused by the

traditional mathematical approach to teaching discrete

mathematics to computing students can be alleviated by

way of integrating computational thinking into discrete

mathematics. The paper proposes a combination of three

ideas to facilitate such integration: (a) aiming at

understanding the notion of computation, (b)

emphasizing both abstraction and automation, and (c)

incorporating a functional programming language. The

paper exemplifies a plausible approach to developing

computational thinking in higher education, namely,

through integrating it with an existing subject.

KEYWORDS
Computational thinking, discrete mathematics,

computation, abstraction and automation, functional

programming

1. INTRODUCTION
Discrete mathematics is “the study of mathematical

structures that are ‘discrete’ in contrast with ‘continuous’

ones” (Ouvrier-Buffet, 2014, p. 181). Here discrete

means finite or countably infinite in cardinality. Thus

discrete mathematics is the branch of mathematics in

which we deal with questions involving finite or

countably infinite sets, such as integers and fractions

(Biggs, 2002). Content-wise, discrete mathematics

comprises a diverse range of topics, including logic,

proofs, sets, functions, relations, Boolean algebra,

combinatorial circuits, recurrence relations and

generating functions, combinatorics, discrete probability,

coding theory, graph theory, trees and networks,

algebraic structures, number theory, algorithms and

complexity, finite automata and languages, and

cryptography (see the tables of contents of the popular

textbooks on the subject, e.g., Chartrand & Zhang, 2011;

Epp, 2011; Johnsonbaugh, 2014; Rosen, 2013). Discrete

mathematics plays a fundamentally important role in the

computing curriculum because it is a foundation for many

computing subjects such as data structures, formal

software engineering, database systems, compiler design,

operating systems, artificial intelligence, theory of

computation, computer security, just to name a few.

Despite its importance, discrete mathematics is generally

regarded as a difficult subject both to teach and to learn,

for a number of reasons. First, it contains many disparate

topics as listed above, without a unifying theme (except

for being discrete). Second, these topics are highly

theoretical and abstract in nature, full of symbols and

definitions. Third, the subject is usually taught in the first

year or at the beginning of the second year of the

computing curriculum, before which students usually

have studied only a few computing subjects. Fourth, the

subject is usually characterized as a mathematical subject

without providing a sufficient number of applications to

show its connections with, and its relevance to,

computing. Finally, the traditional approach to teaching

this subject is a mathematical one, using pen and paper

and following the sequence of definitions, theorems,

proofs and examples (e.g., Chartrand & Zhang, 2011;

Epp, 2011; Johnsonbaugh, 2014; Rosen, 2013; see also

Jaume & Laurent, 2014). As a consequence, computing

students usually cannot see the point of learning this

difficult subject and hence very easily lose interest in

studying it, even though they are constantly being

reminded of the importance of this subject to the

computing subjects they are going to study in the

curriculum.

Computational thinking has attracted a lot of attention

worldwide in recent years since the publication of

Jeannette M. Wing’s (2006) highly influential paper in

the Communications of the ACM, in which she argues that

the way computer scientists think about the world is

useful in other contexts. Wing writes:

Computational thinking involves solving

problems, designing systems, and understanding

human behavior, by drawing on the concepts

fundamental to computer science.

Computational thinking includes a range of

mental tools that reflect the breadth of the field

of computer science.

(Wing, 2006, p. 33)

Despite its popularity, there is yet no consensus on the

definition of computational thinking (e.g., Selby &

Woollard, 2014, Tedre & Denning, 2016). In 2010, Wing

offers a refined definition of computational thinking:

Computational thinking is the thought processes

involved in formulating problems and their

solutions so that the solutions are represented in

a form that can be effectively carried out by an

information-processing agent.

(Wing, 2010)

Later, Alfred V. Aho (2012) gives a similar definition of

computational thinking:

We consider computational thinking to be the

thought processes involved in formulating

128

problems so their solutions can be represented

as computational steps and algorithms.

 (Aho, 2012, p.

832)

Due to its exceptional clarity (Tedre & Denning, 2016),

we adopt, in this paper, Aho’s definition of computational

thinking, and argue that most, if not all, of the

aforementioned problems caused by the traditional

mathematical approach to teaching discrete mathematics

to computing students can be alleviated by adopting

instead a computational approach in which discrete

mathematics is integrated with computational thinking. In

the following, we propose a combination of three ideas to

facilitate such integration: (a) aiming at understanding the

notion of computation (Section 2), (b) emphasizing both

abstraction and automation (Section 3), and (c)

incorporating a functional programming language

(Section 4).

2. AIMING AT UNDERSTANDING THE

NOTION OF COMPUTATION
Discrete mathematics has been lacking a unifying theme

in organizing its contents, as evidenced by the

bewildering array of topics in those popular textbooks

(e.g., Chartrand & Zhang, 2011; Epp, 2011;

Johnsonbaugh, 2014; Rosen, 2013). As pointed out by

Alfred V. Aho (2012, p. 834), “mathematical abstractions

called models of computation are at the heart of

computation and computational thinking.” This entails

that to understand computational thinking, we need to

understand the notion of computation, and to understand

the notion of computation, we need to understand models

of computation. Consequently, this points to one way of

integrating discrete mathematics with computational

thinking, namely, to set “understanding the notion of

computation” as one of the course's objectives and to

teach (the rudiments of) models of computation like finite

automata and Turing machines. This course objective can

help serve as a unifying theme to organize the course’s

contents in the following way: since learning models of

computation (finite automata and Turing machines)

presupposes knowledge of logic and graph theory (see,

e.g., Kinber & Smith, 2001), we need to teach the latter

two (together with other prerequisite topics) first. The

following (see Table 1) is a model syllabus for a one-

semester discrete mathematics course with 13 lectures

designed for beginning year-2 college students who have

taken only two computing subjects: Applied Computing,

and Introduction to Computer Programming. Note that

this course is not intended to be a full-fledged course on

the theory of computation, which is usually a senior

undergraduate and postgraduate course based on

advanced textbooks (e.g., Arora & Barak, 2009; Sipser,

2013); rather, it is intended to be a genuinely introductory

course in discrete mathematics and is aimed at, towards

the end of the course (lectures 12 and 13), understanding

the notion of computation (and its limits) – this is

arguably the most fundamentally important concept in

computing (see, e.g., Appel, 2014; Bernhardt, 2016). The

last chapter (Chapter 13 Modeling Computation) of

Rosen (2013) contains suitable material for teaching this

part of the course. So do the last chapters of Jenkyns &

Stephenson (2013) and of Chakraborty & Sarkar (2011),

both of which are on finite automata and Turing machines.

In addition to these textbook chapters, JFLAP (Java

Formal Languages and Automata Package; see, e.g.,

Jarvis & Lucas, 2008; Rodger, 2006) and Visual Turing

(a Turing machine simulator at http://visual-

turing.software.informer.com/2.0/) are two free visualization

software that can help render this part of the course more

accessible and fun. In fact, there is evidence that shows

that models of computation can be successfully taught

even to high school students (Isayama et al., 2016).

Table 1. A one-semester discrete mathematics syllabus

aimed at understanding the notion of computation.

I Logic and Mathematical Proof

1.

2.

3.

Propositional logic

Predicate logic

Mathematical proof

II Set Theory and Boolean Algebra

4.

5.

6.

7.

Sets

Relations

Functions

Boolean algebra

III Combinatorics and Graph Theory

8.

9.

10.

11.

Counting

Graphs (1)

Graphs (2)

Trees

IV Models of Computation

12.

13.

Finite automata

Turing machines

3. EMPHASIZING ABSTRACTION AND

AUTOMATION
Given that the mathematical background of our

computing students is usually rather weak and their

interests usually lie in computing and not in abstract

mathematics, we believe that, instead of the traditional

mathematical approach, a computational approach, in

which computational thinking is integrated, should be

adopted to teach discrete mathematics to our computing

students. As pointed out by Wing (2008), the two

essences of computational thinking are abstraction (i.e.,

model building) and automation (i.e., algorithms and

their implementation on the computer) – in the words of

Wing (2008), “the essence of computational thinking is

abstraction” (p. 3717) and “computing is the automation

of our abstractions (p. 3718). Consequently, this points to

yet another way of integrating discrete mathematics with

129

computational thinking, namely, to put a good emphasis

throughout the course on these two important concepts,

abstraction and automation, while teaching and learning

each and every topic of the course. The following (Table

2) are some examples of computational projects that are

designed for students to do. Each project emphasizes both

abstraction and automation in that students have to build

a model (representation, symbolization) first and then

devise an algorithm and finally implement it on the

computer. This computational approach can be seen as a

kind of the general teaching method called

contextualization coined by Guzdial (2016, p.18). The

benefit of this method is that “[i]f the learner perceives

the relevance of the course context, the course is more

concrete and less abstract. There is increased motivation

to succeed. That motivation increases success rates.”

Guzdial (2016, p. 64)

Table 2. Examples of computational projects

emphasizing both abstraction and automation.

Logic Write a program to accept a

propositional logic formula and print

out its truth table; write a program to

test whether two given propositional

logic formulas are logically

equivalent.

Sets Write a program to accept two sets and

output their union, intersection,

difference, and Cartesian product;

write a program to test whether two

given sets are the same or one set is a

subset of the other.

Relations Write a program to accept a relation

and test whether it is reflective,

symmetric, and transitive and hence

determine whether it is an equivalence

relation; write a program to accept a

relation and output its reflective

closure, symmetric closure and

transitive closure.

Boolean

Algebra

Let a given string of eight 0s and 1s be

interpreted as the rightmost column of

a truth table with Boolean variables x,

y and z. Write a program to accept such

a string and output the corresponding

Boolean expression in minterms.

Graphs Write a program to implement

Dijkstra’s shortest path algorithm.

Trees Write a program to implement Prim’s

algorithm and Kruskal’s algorithm for

finding minimum spanning trees.

Automata

Theory

Construct a non-deterministic

pushdown automaton which

recognizes the language {anbn | n 1}

for the JFLAP platform.

Turing

Machines

Design a single-tape Turing machine,

and then a 2-tape Turing machine, that

accepts the language {anbn | n 1} for

the JFLAP platform; implement a

universal Turing machine for the

JFLAP platform (see Jarvis & Lucas

(2008) for a solution).

4. INCORPORATING A FUNCTIONAL

PROGRAMMING LANGUAGE
Since the early days of computing, there have been

advocates for using programming languages to teach

mathematics in general (e.g., Papert, 1980; Harel &

Papert, 1990; Feurzeig et al., 2011; Schanzer et al., 2015).

In recent years, there have been advocates for using

programming languages to teach discrete mathematics in

particular (e.g., da Rosa, 2002; VanDrunen, 2011; Ureel

& Wallace, 2016). Their rationale, specifically for the

latter, is that “problem solving through the medium of the

machine is the essence of computer science” and “a

programming approach to discrete mathematics affords

active learning.” (Ureel & Wallace, 2016, p.1) Although

in principle to learn computational thinking does not

require any actual programming (Curzon & McOwan,

2017), in teaching and learning discrete mathematics

actual programming can help make the abstract contents

more concrete because the students can construct the very

objects they are learning (Cf. Constructionism, see, e.g.,

Papert (1980) and Harel & Papert (1991)) and thereby

rendering the subject more congenial and accessible to

our computing students. Consequently, this points to yet

another way of integrating discrete mathematics with

computational thinking, namely, to incorporate into the

subject a programming language. Further, we argue that

functional programming languages (e.g., Haskell, ML,

O’Caml) are particularly well-suited for this purpose, for

the following reasons:

• Functional programming is a method of program

construction that emphasizes [mathematical]

functions and their applications rather than

commands and their execution.

130

• Functional programming uses simple

mathematical notation that allows problems to

be described clearly and concisely.

• Functional programming has a simple

mathematical basis that supports equational

reasoning about the properties of programs.

 Bird (2015, p. 1) (emphasis

added)

Indeed, there is an added bonus for incorporating a

functional programming language: students can thereby

learn to program in one more programming paradigm –

the functional programming paradigm (where a computer

program is a collection of functions), besides the

imperative programming paradigm (where a computer

program is a series of commands) and the object-oriented

programming paradigm (where a computer program is a

collection of interacting objects).

Due to their strong similarity to mathematical language,

functional programming languages are a very suitable

medium to teach mathematics and are not difficult to

learn. In fact, there is evidence that shows that the

functional programming language Haskell can be

successfully taught to even high school students (Algre &

Moreno, 2015). To illustrate the succinctness and

declarative-ness of code written in functional

programming languages, the following are two Haskell

programs, one for insertion sort and the other for Prim’s

algorithm for finding minimum spanning trees; for

details, see Hutton (2016, pp. 62-63) and Rabhi &

Lapalme (1999, p. 149) respectively.

insert x [] = [x]

insert x (y : ys) | x <= y = x : y : ys

 | otherwise = y : insert x ys

isort [] = []

isort (x : xs) = insert x (isort xs)

Figure 1: Insertion sort (Hutton, 2016, pp. 62-63).

prim g = prim’ [n] ns []

 where (n : ns) = nodes g

 es = edgesU g

 prim’ t [] mst = mst

 prim’ t r mst

 = let e@(c, u’, v’) = minimum[(c, u, v) | (u, v,

 c) es, elem u t, elem v

r]

 in prim’ (v’: t) (delete v’ r) (e : mst)

Figure 2: Prim’s algorithm for finding minimum

spanning trees (Rabhi & Lapalme, 1999, p. 149).

For more on using functional programming languages to

teach discrete mathematics, see O’Donnell et al. (2007),

Doets (2012), and vanDrunen (2013).

5. CONCLUSION AND FUTURE WORK
For various reasons, discrete mathematics is a difficult

subject for most computing students. We have argued that

the problems caused by the traditional mathematical

approach to teaching discrete mathematics to computing

students can be alleviated by integrating computational

thinking into discrete mathematics. Concomitantly, we

proposed a combination of three ideas to facilitate such

integration, namely, aiming at understanding the notion

of computation, emphasizing both abstraction and

automation, and incorporating a functional programming

language into the subject. We thereby exemplified that

integrating an existing subject with computational

thinking is a plausible approach to developing

computational thinking in higher education (Czerkawski

& Lyman III, 2015). We expect that this integration

approach can help students learn both the subject and

computational thinking better. In our future work, we will

implement this proposal and see how it is received.

6. REFERENCES
Aho, A. V. (2012). Computation and computational

thinking. The Computer Journal, 55(7), 832-835.

Alegre, F., & Moreno, J. (2015). Haskell in middle and

high school mathematics. Submission to TFPIE.

Appel, A. W. (2014). Alan Turing's systems of logic:

The Princeton thesis. Princeton University Press.

Arora, S. & Barak, B. (2009). Computational

complexity: A modern approach. Cambridge; New

York: Cambridge University Press.

Bernhardt, C. (2016). Turing's vision: The birth of

computer science. The MIT Press.

Biggs, N. L. (2002). Discrete mathematics (2nd

Edition). Oxford University Press.

Bird, R. (2015). Thinking functionally with Haskell.

Cambridge, United Kingdom: Cambridge University

Press.

Chakraborty, S. & Sarkar, B. (2011). Discrete

mathematics. New Delhi: Oxford University Press.

Chartrand, G., & Zhang, P. (2011). Discrete

mathematics. Long Grove, Ill.: Waveland Press, Inc..

Curzon, P., & McOwan, P. W. (2017). The power of

computational thinking: Games, magic and puzzles to

131

help you become a computational thinker. World

Scientific Europe Ltd.

Czerkawski, B. C., & Lyman III, E. W. (2015).

Exploring issues about computational thinking in

higher education. TechTrends, 59(2), 57-65.

da Rosa, S. (2002). The role of discrete mathematics and

programming in education. In Proceedings of the

Workshop on Functional and Declarative

Programming in Education.

Doets, H. C. (2012). The Haskell road to logic, maths

and programming. Texts in Computing, 4.

Epp, S. (2011). Discrete mathematics with applications

(4th edition). [Pacific Grove, Calif.]: Brooks/Cole/

Cengage Learning.

Feurzeig, W., Papert, S. A., & Lawler, B. (2011).

Programming-languages as a conceptual framework

for teaching mathematics. Interactive Learning

Environments, 19(5), 487-501.

Guzdial, M. (2016). Learner-centered design of

computing education: research on computing for

everyone. San Rafael, California: Morgan & Claypool

Publishers.

Harel, I., & Papert, S. (1990). Software design as a

learning environment. Interactive learning

environments, 1(1), 1-32.

Harel, I. E., & Papert, S. E. (1991). Constructionism.

Ablex Publishing.

Hutton, G. (2016). Programming in Haskell (2nd

Edition). New York: Cambridge University Press.

Isayama, D., Ishiyama, M., Relator, R., & Yamazaki, K.

(2016). Computer Science Education for Primary and

Lower Secondary School Students: Teaching the

Concept of Automata. ACM Transactions on

Computing Education (TOCE), 17(1), 2.

Jarvis, J., & Lucas, J. M. (2008). Understanding the

Universal Turing Machine: An implementation in

JFLAP. Journal of Computing Sciences in Colleges,

23(5), 180-188.

Jaume, M., & Laurent, T. (2014). Teaching Formal

Methods and Discrete Mathematics. arXiv preprint

arXiv:1404.6604.

Jenkyns, T., & Stephenson, B. (2013). Fundamentals of

discrete math for computer Science: A problem-

solving primer. Springer.

Johnsonbaugh, R. (2014), Discrete mathematics (7th

edition). Harlow: Pearson.

Kinber, E., & Smith, C. (2001). Theory of computing: A

gentle introduction. Upper Saddle River, N.J.: Prentice

Hall.

O’Donnell, J., Hall, C., & Page, R. (2007). Discrete

mathematics using a computer. Springer Science &

Business Media.

Ouvrier-Buffet, C. (2014). Discrete mathematics

teaching and learning. In Encyclopedia of mathematics

education (pp. 181-186). Springer Netherlands.

Papert, S. (1980). Mindstorms: Children, computers,

and powerful ideas. Basic Books, Inc..

Rabhi, F., Lapalme, G. (1999). Algorithms: A functional

programming approach (2nd ed.) Harlow; Reading,

Mass.: Addison-Wesley.

Rodger, S. (2006). Learning automata and formal

languages interactively with JFLAP. ACM SIGCSE

Bulletin, 38(3), 360-360.

Rosen, K. (2013). Discrete mathematics and its

applications. Mc-Graw Hill.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen,

M. (2015). Transferring skills at solving word

problems from computing to algebra through

Bootstrap. In Proceedings of the 46th ACM Technical

symposium on computer science education (pp. 616-

621). ACM.

Selby, C., & Woollard, J. (2014). Refining an

understanding of computational thinking. Author's

original, 1-23.

Sipser, M. (2013). Introduction to the theory of

computation. Boston, Mass.: Cengage Learning.

Tedre, M., & Denning, P. J. (2016, November). The

long quest for computational thinking. In Proceedings

of the 16th Koli Calling Conference on Computing

Education Research (pp. 24-27).

Ureel, L. C., & Wallace, C. (2016). Discrete

mathematics for computing students: A programming

oriented approach with Alloy. In Frontiers in

Education Conference (FIE), 2016 IEEE (pp. 1-5).

IEEE.

VanDrunen, T. (2011). The case for teaching functional

programming in discrete math. In Proceedings of the

ACM international conference companion on Object

oriented programming systems languages and

applications companion (pp. 81-86). ACM.

VanDrunen, T. (2013). Discrete mathematics and

functional programming. Franklin, Beedle &

Associates.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM. Vol. 49, No. 3 (March).

Wing, J. M. (2008). Computational thinking and

thinking about computing. Philosophical transactions

of the royal society of London A: mathematical,

physical and engineering sciences, 366(1881), 3717-

3725.

Wing, J. M. (2010). Computational thinking--What and

why. The Link.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

132

Computational Thinking and

Non-formal Learning

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

133

Computational Thinking Affordances in Video Games

Sue-inn CH’NG*, Yunli LEE, Wai-chong CHIA, Lee-seng YEONG

Sunway University

(sueinnc, yunlil, waichongc, leesengy)@sunway.edu.my

ABSTRACT
The task of learning programming is a complex process

that requires students to simultaneously master the syntax

and programming tool while applying problem-solving

skills to the given situation. Failure to do so have led to

students dropping out of computer science programs and

students being disenchanted with programming to the

point that these graduates are reluctant to practice in the

field. To counter this issue, problem-solving training is

sometimes introduced before programming to introduce

them to primary concepts of program design and

programming without the complexity of syntax and tools

as a hindrance. However, problem-solving skills is not

something that can be developed over a short period of

time. For some, it takes time, practice and effort in which

semester long courses do not permit. Previous studies have

shown that games can be used as educational tools in the

classroom. However, video games are frequently

overlooked as an educational tool in favor of serious

games. In this paper, we analyze the game play of selected

game titles to determine if existing video games contain

activities that can be associated to each of the five core

skills that characterize computational thinking within the

Computer Science discipline.

KEYWORDS
Computational thinking, video games, games and learning

1. INTRODUCTION
Computer science educators have explored the use of

games to teach students programming concepts as a

solution to cultivate interest in programming among

youths. Games have been introduced into such classes as

game design assignments where students design and

create games to demonstrate the application of learnt

technical concepts (Basawapatna, Koh, & Repenning,

2010; Leutenegger & Edgington, 2007; Monroy-

Hernández & Resnick, 2008) or as an interactive learning

platform where students learn technical concepts through

game-play (Kazimoglu, Kiernan, Bacon, & MacKinnon,

2012; Liu, Cheng, & Huang, 2011; Muratet, Torguet,

Jessel, & Viallet, 2009). Game design assignments are

noted to be more effective in capturing students’ interest

compared to implementing mock enterprise software since

games are something that most students can relate to

(Becker, 2001). However, such assignments can also be

challenging for students especially for those without

considerable knowledge in computer graphics and

background in playing/designing games (Sung et al.,

2011). Although visual programming tools (such as

Scratch (MIT, 2016), Alice3d (Cooper, Dann, & Pausch,

2000), AgentSheets (Basawapatna et al., 2010)) can be

used in place of full-blown Integrated Development

Environment (IDEs) to minimize the learning curve for

such tasks, sufficient support still needs to be put in place

to provide students the necessary knowledge to go about

game design otherwise students might end up being

intimidated by the feat.

Alternatively, specially developed programming

environments (Chaffin, Doran, Hicks, & Barnes, 2009;

Kazimoglu et al., 2012; Liu et al., 2011; Muratet et al.,

2009) have been created to encourage students to learn

through gaming. Unlike traditional video games, these

serious games incorporates technical concepts into the

game play in the form of coding (to complete

tasks/missions) (Chaffin et al., 2009) (Liu et al., 2011;

Muratet et al., 2009) or manipulation of the graphical

interface as done by (Kazimoglu et al., 2012) for the

purpose of learning instead of leisure. The use of serious

games in classrooms do indicate an improvement in

student engagement and motivation towards the content in

most of these game-based learning implementations.

However, the creation of these games requires time, skills

and careful coordination between the game developer and

course facilitator to ensure that the curriculum is

integrated into the game and deployed in the classroom in

a cohesive manner. Since skills such as computational

thinking takes time to develop and requires practice,

students with increased frequency of gameplay should

exhibit better levels of computational thinking and

programming skills compared to those who rarely play the

game. But, most of these research do not study the

adoption rate of these games as leisure activities at the end

of the course or the effects of extended usage of the

proposed serious games on students’ problem-solving and

programming skills over time.

On the other hand, recent studies shows that playing video

games has cognitive, emotional and social benefits

(Granic, Lobel, & Engels, 2014). Adachi et al (Adachi &

Willoughby, 2013) work showed that the more

adolescents reported playing strategic video games, the

more improvements were evident in self-reported

problem-solving skills recorded the following year. The

same positive predictive association was not recorded for

fast-paced game genres such as racing and fighting games.

Ventura et al (Ventura, Shute, & Zhao, 2013)

hypothesized that there might be a relationship between

video game usage and persistence in the face of failure. To

investigate this, they used anagram riddle task to measure

the level of persistence among video-game players and

found that frequent game players are more likely to spend

longer times on unsolved problems compared to

infrequent video game players. Video games have also

been reported to bridge generation gaps in (Osmanovic &

Pecchioni, 2016) and to promote prosocial behavior in an

134

international study among school children (Gentile et al.,

2009).

Although video games are not originally designed to be an

education medium, they may possess many good learning

principles and educational affordances (Frazer, Argles, &

Wills, 2008) that is usually underutilized in education. The

question is: Can video games be used as an informal aid to

foster computational thinking skills in its players? As a

preliminary study, we evaluate the educational

affordances displayed in selected video games titles. The

games are then evaluated based on the core five skills

(Kazimoglu et al., 2012) that characterize Computational

Thinking (CT) within the Computer Science discipline to

identify aspects of gameplay within the game that affords

the cultivation of CT skills.

The paper is structured as follows: Section 2 presents an

introduction to Computational Thinking. Section 3

provides readers with a brief background of video game

research and classification. The details of the survey

conducted and how the video game titles are selected to be

evaluated during the study is presented in Section 4 while

the significance of our findings are discussed in Section 5.

The paper is concluded in Section 6.

2. COMPUTATIONAL THINKING
Computational Thinking (CT) is the thought processes

involved in formulating problems and their solutions so

that the solutions are represented in a form that can be

effectively carried out by an information-processing agent

(Wing, 2008). Since computing heavily affects everyone

lives, Wing (Wing, 2008) envision that CT will be a

fundamental skill in the 21st century that have the same

importance as numeracy and literacy. Since the

introduction of the term computational thinking, there

have been many definitions in literature defining the skills

and activities that encompass CT for different disciplines.

Barr and Stephenson (Barr & Stephenson, 2011) provided

examples on how the nine core
2

 CT concepts and

capabilities may be embedded in different discipline

activities. Lee et al. (Lee et al., 2011) examined CT in

practical youth programs and identified the terms

“abstraction”, automation” and “analysis” to describe how

young people use CT to solve novel problems.

In the field of computer science, the recent work by

(Kazimoglu et al., 2012) defined five core skills that

characterizes CT within the computing discipline as

problem-solving, building algorithms, simulation,

debugging and socializing. Table 1 associates the generic

activities within video games to each CT skill described in

(Kazimoglu et al., 2012) to show how video games in

general can support the cultivation of CT skills in its

players.

2 Definition proposed by the American Computer Science

Teacher Association (CSTA) and International Society for

Technology in Education (ISTE) for use in K-12 education.

Table 1. Game activities associated with each core CT skill

Core CTS Game Activities

Problem solving Identifying purpose of game (can be

main goal or mini-tasks) to complete

level or whole game.

Building algorithms Formulate steps to achieve goal or

complete mini-tasks encountered

during the game. Select appropriate

algorithmic technique to execute

chosen approach.

Simulation Manoeuvre game controls to move

game character(s) to execute steps

and analyse if actions brings player

closer to achieving the goal or

completing the game/level.

Debugging Modify existing plan to improve

performance (gain more points,

increase survivability, reduce time

taken)

Socializing Discuss game plan with other players

or analyse game play of other players

3. VIDEO GAMES
Video games are interactive games played using a

computing device for the purpose of leisure. Once

restricted to only the desktop computer, video games are

now played on a wide range of mobile devices and special

game players. Video games can be classified in a number

of different ways ranging from the device that it is

executed on, to the gameplay and interactivity of the

game. Due to the vast array of dimensions on which video

games can vary and lack of concretely defined

identification criteria that can be used by all parties; it is

difficult to create a comprehensive taxonomy of games

that is used and accepted by all (Clarke, Lee, & Clark,

2015). Thus, game titles are normally provided along with

the game genre to illustrate games that are categorize

under that particular genre. For example, the work by

(Granic et al., 2014) provided an overview of game genres

sorted along the dimensions of complexity and social

interaction and also uses game titles as stand-in language

for different types of gameplay encountered. In the work

by (Frazer et al., 2008), only four game genres are

explored in their research and example of game titles for

each genre is provided to guide the study done. For this

paper, the game titles selected for analysis is based on an

online survey conducted to study the gaming habits of

undergraduate students when they were young.

According to (Gee, 2005), video games that encourage

players to stop, thoroughly explore different possibilities

and consider new strategies and goals before moving on,

rather than simply progressing towards their goals as fast

as possible can promote problem solving skills in players.

135

These game features are mostly present in game genres

such as RPG, strategy, simulation and adventure games

 (Adachi & Willoughby, 2013) categorizes these games as

strategic games while games such as fighting, action and

racing games that have little downtime between

battles/races are categorized as fast-paced games. In his

study, he found that fast-paced games do not promote

problem-solving skills in the long run because it provides

little to no opportunity to gather information and strategize

before a battle or a race. Thus, the game genres are then

further sorted into two categories – strategic game

(strategy, platform, shooter, simulation, adventure/RPG)

and fast-paced to determine if strategic game titles contain

more affordances that promotes CT skills compared to

fast-paced game titles.

4. METHODOLOGY
Data was collected from 655 students (509 students from

the school of business and 146 students from the school of

computing) first year students undertaking an

“Introduction to Computers” course from Sunway

University in Malaysia during the January – March 2016

semester. The average age of the students is 20 years old.

In the survey, the students were asked to self-report their

gaming habits (now and when they were young) through

multiple choice questions (starting age and frequency of

play) and open-ended questions (name of favorite video

game). Based on the premise that gaming is a memorable

experience during the students’ childhood or adolescence,

students who truly played games and for those who have

spent a sizeable amount of their time doing this would at

the very least remember the name of the game that they

have played and/or be able to describe the game play of

that particular game. The age at which the students start

playing games is used as a reference point to check the

validity of the responses. For example, if the respondents

claim that they started playing Candy Crush at an age of

less than 6 years old, this response would be deemed

invalid because Candy Crush was only released in the year

2012. Responses that were incomplete or those who gave

non-existent/invalid games for either instances were

ignored in the study.

The game titles were then categorized into game genres

based on the genres provided by gaming website IGN(IGN

Entertainment Inc., 2016) and Gamespot(Gamespot,

2016). Table 2 shows the different types of genres

(Rollings & Adams, 2003) considered and example video

games provided by students that are classified under each

genre. The most frequently occurring game title for each

genre were then selected and the game activities within

each game were matched to each core CT skills presented

in Table 1. To extract the game activities within each

game, the games were re-played by the authors using

online game emulators (UtopiaWeb, 2009).

5. RESULTS & DISCUSSION

Figure 1 shows that the percentage of players who play

each game genre now (current) and then (youth). The most

frequently played game genre reported by students when

they were young was adventure type (32.2%) games. This

is followed by platform-based games and strategy type

game. It is noted that the type of game genre played

changes as the students age. There were more students

opting to play Strategy games now compared to platform-

based and Adventure/RPG type of games when they were

young. The authors in (Sung et al., 2011) built their serious

game based on strategy type of gameplay since their data

also supports the same observation – majority of players

reportedly played strategy game compared to other game

genres. However, this trend might be only true because

strategy games are popular now; as is the case with

platform games; once popular in the early 90’s (Boutros,

2006). Hence, explaining the high percentage of

respondents who played platform games when they were

young.

It was observed that, regardless of the game genre, all the

games have goals/missions and a reward mechanism that

entices players to continue playing. Players would then try

to find ways to maximize these rewards while minimizing

damage on their game characters during game play. This

feature in all games requires players to determine the

problem that they are currently encountering and to devise

new solutions based on whatever information that they

Table 2 Definition of different game genres and example videso games for each genre

Game Genre Definition Example Video Games

Action Emphasizes physical challenges such as hand-eye coordination and reaction time. Fruit Ninja, Pinball,O2Jam

Adventure Player assumes the role of protagonist in an interactive story driven by exploration

and puzzle solving.

Grand Theft Auto, Bully, Assassin's Creed

Fighting Player controls an on-screen character and uses this character to engage his

opponent in close combat.
Street Fighter, Naruto

Platformer Player controls a character to jump between suspended platforms, over obstacles,

or both to advance the game
Super Mario, Mushroom Men

Racing Players competes in a race using a vehicle. 3D Mario Kart, Need for Speed, Test Drive

Shooter Player controls the character from a first-person or third-person view to shoot

opponents to proceed through missions without the player character dying

Call of duty, Counterstrike, Halo

Simulation Game designed to closely simulate the aspects of the real-world inside the game

such as farming, managing sports team or merely living through the virtual

characters’ lives.

The Sims, Fifa, NBA, Harvest Moon

Strategy Games that require the player to strategize or formulate a plan in order to win. Warcraft, Civilization, Red Alert, Dota

136

have at hand. These are the exact features observed in

(Adachi & Willoughby, 2013) that promotes problem-

solving skills.

The type of information to be collected for each games are

different but players would need to analyze this

information to determine the next best course of action to

get them a step towards the main goal. Information in

strategic games can come in the form of combination of

in-game items, character abilities and environment. For

example, in the strategy game of Defense of the Ancient

(DOTA), players would have to come up with strategies

to conquer the opponents’ “throne” while defending their

own. During the battle to conquer/defend, they would have

to buy weapons and items to ensure that their game

character, termed heroes in the game, is able to defend or

defeat opponent characters. In the event that they

encounter enemy heroes, players would have to analyze

their own and the opponent hero’s statistics (item, level),

environment and position of their own team mates during

the game to determine whether to proceed and engage the

enemy or to retreat. On the other hand, in the football

management game of FIFA 2002, players are required to

select their players and determine the team’s formation for

each football game. During each game, players are given

control of each of the football players action to

score/defend football goals. They would then have to

observe opponents’ character actions to determine

whether to defend or attack (score a goal).

Figure 1. Game genre played by participants now (current)

and then (young)

Table 3 decomposes and associate the game activities of

the most popular game titles, provided by the students,

from each genre with the five core CT skill category.

Although fast-paced games focuses on reflex during the

game play, it was also observed during our analysis that it

also contains opportunities that allows players to collect

information on the effects of their actions. With this

information, players can reflect and modify their actions

for future games to increase their rewards, refer to

“Debugging” row in Table 3.

6. CONCLUSIONS
This paper discusses the possibility that video games

contain educational affordances that promote CT skills.

We analyzed the game play of eight popular game titles

played by students during their youth. Our analyses show

that the video games regardless of game genre contains

activities that support the cultivation of each CT skill

category. Since video games are equally enjoyed by both

male and female students during their formative years, this

translates to a wealth of gaming experience that can be

tapped by educators in the classroom. This can be used by

instructors to make the task of learning CT skills less

intimidating. Seen in this light, the challenge now is

perhaps not to develop serious games to instill CT skills

but to get students to apply the skills gained from one

domain (video games) to other domains (programming).

We acknowledge that the game titles selected for this

study only covers an extremely small subset of game titles

that is available in the market and that the analysis done is

based on the authors’ experiences in playing the games.

More concrete evidences on the relationship between

video games and computational thinking skills can be

collected in the future by observing the actual game play

of student players for each of the game.

7. REFERENCES
dachi, P. J. C., & Willoughby, T. (2013). More than just

fun and games: The longitudinal relationships between

strategic video games, self-reported problem solving

skills, and academic grades. Journal of Youth and

Adolescence, 42(7), 1041–1052.

Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: what is Involved and

what is the role of the computer science education

community? Acm Inroads, 2(1), 48–54.

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010).

Using scalable game design to teach computer science

from middle school to graduate school. In Proceedings

of the fifteenth annual conference on Innovation and

technology in computer science education (pp. 224–

228). ACM.

Becker, K. (2001). Teaching with games: the minesweeper

and asteroids experience. Journal of Computing

Sciences in Colleges, 17(2), 23–33.

Boutros, D. (2006). A detailed cross-examination of

yesterday and today’s best-selling platform games.

Gamasutra [Online].

Chaffin, A., Doran, K., Hicks, D., & Barnes, T. (2009).

Experimental evaluation of teaching recursion in a video

game. In Proceedings of the 2009 ACM SIGGRAPH

Symposium on Video Games (pp. 79–86). ACM.

Clarke, R. I., Lee, J. H., & Clark, N. (2015). Why Video

Game Genres Fail A Classificatory Analysis. Games and

Culture, 1555412015591900.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D

137

tool for introductory programming concepts. In Journal

of Computing Sciences in Colleges (Vol. 15, pp. 107–

116). Consortium for Computing Sciences in Colleges.

Frazer, A., Argles, D., & Wills, G. (2008). The same, but

different: The educational affordances of different

gaming genres. In Advanced Learning Technologies,

2008. ICALT’08. Eighth IEEE International Conference

on (pp. 891–893). IEEE.

Gamespot. (2016). Gamespot - Video Games Reviews &

News. Retrieved from http://www.gamespot.com/

Gee, J. P. (2005). Good video games and good learning.

In Phi Kappa Phi Forum (Vol. 85, p. 33). THE HONOR

SOCIETY OF PHI KAPPA PHI.

Gentile, D. A., Anderson, C. A., Yukawa, S., Ihori, N.,

Saleem, M., Ming, L. K., … Bushman, B. J. (2009). The

effects of prosocial video games on prosocial behaviors:

International evidence from correlational, longitudinal,

and experimental studies. Personality and Social

Psychology Bulletin.

Granic, I., Lobel, A., & Engels, R. C. M. E. (2014). The

benefits of playing video games. American Psychologist,

69(1), 66.

IGN Entertainment Inc. (2016). IGN South East Asia.

Retrieved from http://ap.ign.com/

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L.

(2012). Learning programming at the computational

thinking level via digital game-play. Procedia Computer

Science, 9, 522–531.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., … Werner, L. (2011). Computational

thinking for youth in practice. Acm Inroads, 2(1), 32–37.

Leutenegger, S., & Edgington, J. (2007). A games first

approach to teaching introductory programming. In

ACM SIGCSE Bulletin (Vol. 39, pp. 115–118). ACM.

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The

effect of simulation games on the learning of

computational problem solving. Computers &

Education, 57(3), 1907–1918.

MIT. (2016). Scratch - Imagine, Program, Share.

Retrieved from https://scratch.mit.edu/

Monroy-Hernández, A., & Resnick, M. (2008).

FEATURE empowering kids to create and share

programmable media. Interactions, 15(2), 50–53.

Muratet, M., Torguet, P., Jessel, J.-P., & Viallet, F. (2009).

Towards a serious game to help students learn computer

programming. International Journal of Computer

Games Technology, 2009, 3.

Osmanovic, S., & Pecchioni, L. (2016). Beyond

Entertainment Motivations and Outcomes of Video

Game Playing by Older Adults and Their Younger

Family Members. Games and Culture, 11(1-2), 130–

149.

Rollings, A., & Adams, E. (2003). Andrew Rollings and

Ernest Adams on game design. New Riders.

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W.,

Goldstein, D. S., & Nordlinger, J. (2011). Game-themed

programming assignment modules: a pathway for

gradual integration of gaming context into existing

introductory programming courses. IEEE Transactions

on Education, 54(3), 416–427.

UtopiaWeb. (2009). My Abandonware. Retrieved April

10, 2017, from http://www.myabandonware.com/

Ventura, M., Shute, V., & Zhao, W. (2013). The

relationship between video game use and a performance-

based measure of persistence. Computers & Education,

60(1), 52–58.

Wing, J. M. (2008). Computational thinking and thinking

about computing. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 366(1881), 3717–3725.

138

 Table 3. Example game activities associated to each Computational Thinking skill (CTS) category for each game genre.

Game Activity

Strategic Games Fast-paced Games

CTS

Category

Strategy (DOTA) Simulation

(Fifa 2002)

Shooter

(Counter Strike)

Adventure

(Grand Theft

Auto)

Platform

(Super Mario

Bros)

Fighting

(Street Fighter)

Racing

(Need for speed)

Action

(02Jam)

Problem

solving

Destroy

opponent's throne.

Manage soccer

team to win each

game to ultimately

win World Cup.

Defeat terrorist.

Mission to

rescue/escort/prote

ct depends on type

of map.

Become the

biggest criminal

(reaching target

points) by

performing

missions for local

crime syndicate.

Progress through

levels by defeating

enemies,

collecting items

and solving

puzzles.

Defeat opponent. Control vehicle to

win race.

Collect experience

points by

controlling

player’s character.

Building

algorithms

Farm gold by

neutral creeping,

laning or killing

opponent heroes.

Buy items to

increase

survivability

and/or attack

power. Player

determines hero

build.

Choose team. For

chosen team,

player needs to

select team

formation and

approach to defeat

computer

opponent.

Choose team -

terrorist/counter-

terrorist. Buy

items to defeat

opponent based on

character, battle

background (map)

and mission.

Choose criminal

missions, gather

equipments to

assist in mission

and avoid being

caught by police

while executing

mission.

Determine how to

complete level,

defeat different

types of enemies

and what items

can do.

Identify combos

for selected game

character.

Determine combo

that can deal most

damage to

opponent.

Choose racing

map. Choose car

type - manual or

automatic Choose

car model.

Play music by

pressing

corresponding

button. Mostly

hand-eye

coordination. Can

decrease/increase

speed of music to

change level of

difficulty.

Simulation Perform chosen

tactic.

Play match using

chosen team

formation and

players.

Play game using

chosen armament.

Play chosen

mission.

Play levels with

maneuvers to

evade enemy

attacks and gather

needed items to

advance.

Perform combo. Determine how to

control car over

race terrain.

Press

corresponding

keys with

accordance to

music.

Debugging If hero dies too

often or cannot

defeat opponent

hero, modify tactic

to improve

deficiency.

If opponent team

wins, modify team

formation and

approach to

improve defence

or offence.

Modify item build

to increase

survivability or

damage to

opponent.

Modify strategy to

execute mission if

player keeps

getting caught by

police or lose their

equipment while

doing mission.

If keep dying by

same type of

enemy at same

spot, change

approach to solve

problem.

If current combo

does not work,

modify combo to

increase damage.

If lose car control,

modify car

movements the

next round.

Practice to

increase accuracy

of pressing buttons

in accordance to

music.

Socializing Get item tips from

team members or

watch other

players play

similar heroes.

NA Killed players get

to watch current

game to view how

players use chosen

armaments to

defeat opponent.

NA Watch other

players play the

same level.

Discuss with other

players combo for

game character.

Multiplayer option

that allows players

to play with other

players but

difficult to share

strategy with other

players.

Compete with

other players.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

139

You Can Code – An innovative approach to transform the workforce

in the textile and apparel industry

 Bessie CHONG,

Director, Group Training and Talent Management

Esquel Group, Hong Kong

Chongbe@esquel.com

ABSTRACT
Textile and apparel industry has long been stereotyped as

“traditional” and “old-fashioned”. As a non-traditional

company in a traditional industry, Esquel encourages

employees to innovate and to challenge the status quo.

“You can code” campaign was initiated in 2015 to engage

and propel staff at all levels towards its vision of “Making

a Difference”. The campaign aims to drive a sustained

cultural transformation to turn the less technically minded

employees into confident users of technology with

computational thinking (CT) ability, through developing a

mobile apps. Many useful mobile apps have been

developed and some have been commercially adopted.

The campaign helps the Company to nurture a culture of

innovation, problem-solving and collaboration.

KEYWORDS
Coding, Computational Thinking, App Inventor, Mobile

Technology, Innovation.

1. INTRODUCTION
Esquel believes that coding will soon become a basic job

skill for everyone. It is vital for the employees to have

some understanding of programming regardless of what

professional they are in. Failing that, the career mobility

of an individual may be hindered, and so as organizational

growth. This is especially important for the

manufacturing sector, as Industry 4.0 is fast approaching.

The new age employees need to equip with a new set of

skills.

Founded in 1978, Esquel started as a shirt maker and have

over the years developed the capacity to weave innovative

technologies into its people-centric culture. With key

production bases established in strategic locations in

China, Malaysia, Vietnam, Mauritius and Sri Lanka, and

a network of branches in the US, Europe and Asia, it

exports over 120 million shirts per year and offer total shirt

solutions to global apparel and textile markets, from

concept to rack.

Esquel employs 57,000 diversified workforce united

under the corporate 5E culture – Ethics, Environment,

Exploration, Excellence and Education, and the motto

“Fun People Serving Happy Customers”. It operates with

an aspiration of “making a difference” by weaving

positive impact to the employees, societies and

environment.

1.1. Our Business Challenges and Opportunities

Esquel is in the industry of textile and apparel

manufacturing, where all players face structural

challenges, including rising labor and material costs,

reduced profit margin and shortage of skilled labors. On

the other hand, the rise of fast fashion further disrupts the

industry by demanding quicker production cycles, more

rapid prototyping and smaller order sizes. Therefore, the

traditional manufacturing model with long lead time and

mass production will no longer survive.

The textile and apparel manufacturing industry employs

over 75 million people worldwide (Stotz & Kane, 2015)

with an aggregate export amount over US$744 billion in

2015 (World Trade Organization, 2015). The industry is

still versatile, and has huge potential. The question is -

how do manufacturers stay competitive and enable

sustainable growth amidst the changing environment?

Many players in this industry believe that growth must be

tied with the overuse of labor and that competition must

be based on low wages. Therefore, it is typical for those

players to migrate the manufacturing base to chase for

cheap labor. But Esquel decided to stay in locations where

it has good operating conditions and to build local talent

pool. Esquel strives to improve labor productivity to offset

rising wages. It would rather improve the efficiency of the

people and pay them well by integrating them into the

technology, not by replacing them by using the

technology.

The coming fourth industrial revolution, known as

Industry 4.0, will provide Esquel with an opportunity to

sustain its leadership position in apparel operations. The

advent of the fourth industrial revolution is associated with

the development of global industrial networks, to which

all production processes of a wide variety of enterprises

will be connected. As a result, computer interaction

environment is developed around the modern human

(Yastreb, 2015). That means employees would work with

cyber-physical systems in a smart factory environment.

They will make use of the mobile technology and data to

enhance real-time communication, improve alignment,

and make timely decisions. Eventually, it will increase

productivity and efficiency.

1.2. People Challenges

Nowadays, working environments are changing at

unprecedented speed. The rise of robotics and artificial

intelligence calls for new skills and competencies. In the

workforce of Esquel, only 3.4% have any technical

qualifications, only 12% have a diploma or above, and

140

38% were born before the personal computer became

popular. There is a serious shortage of technically minded

and savvy employees. So how can it turn those less

technically minded employees into confident technology

users? How can it empower people to come up continuous

improvement ideas and solve their own work problems

systematically and independently?

It needs to have a campaign to drive this transformation. It

needs to inspire the employees to participate in the

revolution. It will be a huge challenge as the target group

is highly diversified, and spreads over 9 countries, 20

operations.

2. “YOU CAN CODE” CAMPAIGN

Coding is a skill that helps people learn how to think,

systematically. By developing computational thinking,

people can deconstruct problems step by step, and identify

different recommendations. However, computational

thinking may seem too abstract and coding may seem too

technical. To engage everyone who does not have

technical knowledge, a fun and practical approach is

needed. The ‘App Inventor’ application developed by the

Massachusetts Institute of Technology (MIT) was

identified as the driver of this campaign.

The simple graphical interface of App Inventor allows an

inexperienced user to create basic, fully functional mobile

apps within an hour or less. It transforms the complex

language of text-based coding into visual, drag-and-drop

building blocks. It can change employees’ perception of

technology through this campaign. It would develop their

logical reasoning skills, programming capabilities, and

more importantly, computational thinking ability.

Computational thinking is a fundamental skill for

everyone, and it is a way humans solve problems (Wing,

2006). It includes problem decomposition, algorithmic

thinking, abstraction, and automation (Yadav et al., 2017).
By equipping computational thinking ability, employees

will ultimately become innovators, problem-solvers,

collaborators as well as process owners. They equip

themselves for life. Yadav et al. further stressed given the

irreplaceable role of computing in the working life of

today, the competence to solve problems in technology-

rich environments is of paramount importance.

“Therefore, there is a need to pay attention to CT as part

of the broader concept of digital literacy in vocational

education and training, as otherwise adults with only

professional qualification may not be well prepared for the

working life in the twenty-first century”. (Yadav et al.,

2017, p.1065).

To Esquel, no matter whether they are workers, staff,

managers or executives, they need to have the attitude and

ability to solve problems and realize ideas which will

improve productivity.

2.1. Champaign Design and Implementation

This campaign is designed around how to change

Attitudes, upgrade Skills and build Knowledge.

Table 1. ASK model.

To

change

Attitude by developing those ideas

gradually from accepting, to

understanding, to embracing, to

exploring

 by showcasing employees that

everyone can code

To

upgrad

e

Skills by conducting workshops,

activities, events and

competitions

 by encouraging employees to

innovate or to solve specific

problems using the technology

To

build

Knowledge by developing an independent

learning mindest

 by creating a rich learning

resource environment.

It is impractical if only IT colleagues are involved in

providing some classroom training and expect that

employees will change the attitude towards technology.

In order to engage all employees, the role of IT throughout

the campaign is purposely downplayed. An “all-in”

approach was adopted and the campaign was launched out

in 5 development phases.

Table 2. Five development phases and achievements

Phase What have been achieved

P
io

n
ee

ri
n

g
 Workshops for senior management team and board

members were conducted to collect their feedback

and get their buy-in. About 90% of them attended

the training. Some of them also became Esquel’s

pioneers.

 M
o

d
el

li
n

g

Some General Managers and Directors were

invited to be the trainers to conduct workshops for

other colleagues, from workers to managers.

Almost 300 employees were trained. They

reinforced the notion ‘If I can code, you can code

too.’

C
h

an
g

in
g
 43 super-users were identified and trained to be the

change agents or ambassadors. They joined a

customized master trainer course. Then they

delivered training at different operations.

C
u

lt
iv

at
in

g

The master trainers were sponsored to launch a

series of workshops and fun days, for the staff and

for their kids in order to cultivate the skills and

mindset. The ambassadors set up information and

promotional booths to educate the frontline

operators. A total of almost 800 people were

trained.

R
ea

li
zi

n
g

 The first “Esquel’s App Challenge” Competition

was organized in order to encourage the

applications of the new skills. Many interesting

and practical Apps were developed.

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwivydDMyKHMAhVDHpQKHUSLAPsQFggeMAA&url=http%3A%2F%2Fweb.mit.edu%2F&usg=AFQjCNFGEpEnwRBMPQvRT7ueDZqPQAU23g&sig2=5BDN0-uwf9eHP0BndV3W3A

141

Through 28 workshops, over 2,430 training hours were

provided for 1,200 participants, including 1,100

employees and 100 of their children from 10 different

locations in first 10 months. The strategy of teaching the

children and letting children teach their parents back also

worked well. Overall, the impact was encouraging. A lot

of positive feedbacks were received -

 “Something looks complicated but can be very user

friendly for us in building an App. Useful and valuable

of some information/tools can be shared from the

company!"- By a Sales Manager in Hong Kong.

 “The introduction of the online programme 'App

Inventor' is useful for non-professionals to build up our

own app.” - By a Senior Sales Executive in Hong Kong

 “Easy to operate for dummies. All ordinary people can

participate in creating app without the support of IT”. – by

an Engineering Officer, in a Garment Factory

2.2. Value Created from the Champaign

The most important impact is the values created, including

attitude change towards technology, employee

engagement, employer branding, and process

improvement. Many more app ideas from the employees

were received. It shows after innovating once, employees

are likely to innovate again. Now, non-IT employees can

perform IT tasks, and even build prototypes by themselves.

This in turn will allow IT professionals to focus on

enterprise level app development.

Table 3. Some examples of the mobile apps developed in

this campaign.

Applications Functions

 Safety app for women.

A Sri-Lanka colleague developed

this app with a GPS-function for

women leaving work at night.

 Parking space and free bike

locator app

This app helps colleagues find a

parking lot or an available bicycle

near operation sites.

 Recruitment app

This app helps HR colleagues in

processing some manual work of the

recruitment, such as making test

paper and personnel data entry.

 New-born baby photo sharing app

This app allows a new parent to send

the 1st new born baby photo to their

friends with the baby information

and the logo of company’s hospital.

Those applications help to save time and improve

efficiency, while the broader benefits are incalculable.

Department heads and IT team are reviewing many more

bottom-up initiatives from employees. This campaign also

shows Esquel’s commitment to upgrading their workers to

become knowledgeable. It reinforces Esquel’s brand as a

caring and non-traditional company.

Besides, in the process of developing their own mobile

applications, the employees started to integrate

computational thinking into their everyday work. They

took attempt to analyze the problems by breaking them

down and identifying the root cause, instead of jumping to

quick fixes. The story of Yang Hua Mei illustrates how a

basic coding training can bring an impact on a sewing

worker.

2.3 Story of Yang Hua Mei - A Garment Factory Worker

‘You can code’ is just the beginning of a transformational

journey. Esquel is introducing a new world to its

employees who might never have had the chance to realize

their own ideas otherwise. Hua Mei’s story is one of many

at Esquel that inspires many others to learn the technique

of app coding.

Yang Hua Mei was a young woman from the southwest of

China with an immense interest in fashion design and a

desire to follow a career in apparel manufacturing. After

graduating from high school in 2014, she joined Esquel as

a sewing worker and brought many undeveloped fashion

ideas that were waiting to be realized.

One day, Hua Mei found that the company was running a

campaign. She believed that this campaign could teach her

the computational skills necessary to turn her undeveloped

fashion ideas to life; skills such as computational thinking,

logical reasoning and simple programming. Without any

hesitation, Hua Mei took the opportunity, like other 1000

employees. By the end of the campaign, Hua Mei and two

other colleagues had built an app allowing users to mix-

and-match their wardrobe.

142

Figure 1. Interface of the wardrobe application

developed by Yang Huamei’s team.

“Before joining ‘You can code’, I didn’t even know what

was meant by an ‘app’! I have learned so much in the

program, and now I appreciate the work of the technology

gurus – however simple an app might seem, building one

requires many steps and logical thinking!”, said Hua Mei.

She also realized that the basic coding technique equips

her with computational thinking ability, which in turn help

her become an independent thinker. As a sewing worker,

from time to time, she faced problems in operating her

sewing machine and managing the sewing quality. Before

she learnt coding, whenever she came across problems, she

simply asked the mechanic to fix it or change some

machine parts by herself. She would not bother to

understand the problems, identify the root causes, and

think about how to prevent them in future. But now, she

becomes proactive in learning technical skills and

integrating the computational thinking ability to solve her

everyday work problems. She also aspires to evolve from

a sewing worker to a technician one day.

3. KEY SUCCESSFUL FACTORS OF

THE CAMPAIGN

3.1 Align and strengthen Esquel’s Vision

Esquel’s Vision: Making a Difference

Esquel makes a difference by growing with its employees

not by squeezing from them. ‘You Can Code’ campaign

upskills the employees, open their minds to technology

and equip them for life. This aligns the company’s vision

of making a different and receives huge support from

different levels.

3.2 Use a creative way to inspire innovation, problem

solving, and collaboration

Esquel is the first commercial entity to adopt App Inventor

to train employees in computational thinking. Even though

computational thinking is conceptual and hard to develop

in a short period, the Company tries to change attitudes,

upgrade skills and build knowledge through the

development of mobile app.

3.3 Engage all levels and collaborate across teams

The campaign engaged all levels by enrolling board

members and senior managers as pioneers. Some

modelled the skills and trained their teams. Some

members of their teams became ambassadors and trainers.

They promoted the notion of ‘If I can code, you can code

too’, and they changed the perception that senior staff are

conservative and less tech-savvy. They encouraged,

trained and supported their peers at their sites.

A cross-functional organizing committee for the App

Challenge contest was established so that their expertise

can be leveraged. The committee members collaborated

on the planning and execution of the contest.

An ‘all-in’ approach encourages everyone to engage in the

campaign. Many employees, including board members

and sewing workers, joined the fun and easy ‘1-hour

coding’ workshops. The kids of employees were also

invited, who in turn, influenced and motivated their

parents to learn coding. The campaign engaged primary

students and PhDs, and people aged 6 to over 60. The ‘all-

in’ approach has formed a community to ensure the long-

term sustainable benefits.

3.4 Leverage the use of existing communication

platforms to promote the campaign

HR colleagues and ambassadors from different operation

sites used existing communication platforms to promote

the campaign, its workshops and events. Having used

these platforms during the campaign, those users are more

likely to use those platforms to communicate and

collaborate on matters which affect their business.

Platforms included Yammer, WeChat, Intranet, and

company’s TV broadcasting, as well as traditional

channels such as the notice boards and promotional booths

at factories.

4. IMPACT FROM THE CAMPAIGN
What the campaign has done is only a small step. But it

started the momentum. After the “You Can Code”

campaign, it is found the rise of mobile app culture in

Esquel. Employees are keen on thinking how to build

some applications to improve some work-related or living-

related issues. Recently, there is another interesting

application, named Esquel Carpool, developed by the

factory colleague using another software. The impact is

enormous.

4.1 Need for Carpool

According to the data provided by Chinese Environmental

Protection Bureau, 15 to 30% of the pollution comes from

the emission from the cars (Chinese Environmental

Protection Bureau, 2016). And with exponentially

increasing number of cars, now traffic is seen everywhere

in many cities in China.

Esquel’s largest operation is located in Gaoming, Foshan.

It has about 23,000 employees working in several factories

where are spread over the city of Gaoming. That means

about 40% of Esquel employees are working and living

here. Employees have to travel from home to these

working locations, in similar timing, and similar routines

every day.

Many of them have to take company bus or city bus, and

wait in a long line in sun, rain and wind. Commuting can

143

easily take up half an hour or even one full hour per trip.

For those 2,000 employees with their own private cars, the

situation is no better. Driving to work is not at all pleasant

when they have to be stuck in traffic and fight for the

meagre 200 parking spaces available around the factories.

A lot of times, they have to park far away and then take a

10-minute walk to the office.

How can Esquel make a difference for the colleagues, for

both group of people so that they can save time in waiting

for bus, fighting for the traffic and looking for parking

spaces? How can they save some gasoline bills meanwhile

reduce their carbon footprint?

Can something be done to change their lifestyle and

behaviour, reduce the environment impact, and inspire

others to contribute in building a green city?

4.2 Birth of Esquel Carpool Application

An employee in the factory initiated an idea to develop an

app to facilitate the carpool process in Esquel. This is how

the Esquel Carpool App was born.

Figure 2. Design map of Esquel carpool application.

Employees can use their staff ID to login, and they can

choose to be either passengers or drivers. Passengers can

publish their needs (e.g. where and when they want to go),

or select the remaining seats available from the drivers.

Drivers can publish their free seats in the App to the

passengers, or directly select the passengers. After that,

they can form a group to communicate. This App can also

share the real-time location of company bus, and show the

data report of the carpool usage.

4.3 Benefits of Using Esquel Carpool

Within the first six months, this App already recorded

8070 carpools, with the saving of more than 6,000 litres of

gasoline, saving 14,000 kilograms of carbon emission.

This app helps to realize the benefits of carpooling on

saving the environment. More important, it provides a

platform to make connection with colleagues from

different department and foster the caring culture.

4.4 What’s Next

The company committed to provide this software for free

to any companies and organizations, and already put this

software in the open source community GitHub. It hopes

millions of the programmers in the world would help to

improve this App.

5. CONCLUSION
This is just the beginning of Esquel using modern

technology beyond work to make the lives better. This is

a signal to the colleagues that they can come up with great

initiatives to make Esquel a better work environment. It

demonstrates how a simple app can address daily needs.

Different departments and non-IT colleagues have already

built their own apps or collaborated with IT. Esquel

committed to continuously advance the coding skills of its

colleagues and build its organizational capability. The

company plans to introduce more sophisticated

programming training gradually. More super-users and

change agents will be identified and invited to participate

into this people transformation journey. They will be the

voice, and the generation of leaders that make a difference.

6. REFERENCES
Chinese Environmental Protection Bureau. (2016). 我国雾霾成

因及对策 . 紫光阁 (3), pp. 82-83. Retrieved from

cnki.net:

http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=

CJFQ&dbname=CJFDLAST2016&filename=ZIGU2

01603061&uid=WEEvREcwSlJHSldRa1FhdkJkcGkz

Rm1aVDg1WXA3WG9XMmJobkw3NEM5UT0=$9

A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm

4gTkoUKaID8j8gFw!!&v=MjU1MTJySTlEWllSOG

VYMUx1eFlTN0Ro

Stotz, L., & Kane, G. (2015). Facts on The Global Garment

Industry. Retrieved February, 2015, from Clean

Clothes Organization:

https://cleanclothes.org/resources/publications/factshe

ets/general-factsheet-garment-industry-february-

2015.pdf

Wing, J. M. (2006). Computational Thinking. Communications

of the ACM, 49(3), 33-35.

World Trade Organization (2015). Retrieved 2015, from World

Trade Organization

http://stat.wto.org/StatisticalProgram/WSDBViewDat

a.aspx?Language=E

Yadav, A. et al. (2017). Computational Thinking as an Emerging

Competence. Retrieved January, 2017, from

ResearchGate:

https://www.researchgate.net/publication/307942866

Yastreb, N. (2015). The internet of things and the forth industrial

revolution: the problem of humanitarian expertise.

Journal of Scientific Research and Development 2(8),

24-28.

Esquel Carpool 溢起拼车

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

144

Computational Thinking and

IoT

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

145

Off the Screen, and Into the World of Everyday Objects: Computational

Thinking for Youth with the Internet of Things

Mike TISSENBAUM1, Josh SHELDON1, Evan PATTON1, Arjun GUPTA1, Elaine ZHANG1, Divya GOPINATH1

1Massachusetts Institute for Technology

mtissen@mit.edu, jsheldon@mit.edu, ewpatton@mit.edu, argupta@mit.edu, elainez@mit.edu, divyagop@mit.edu

ABSTRACT
This paper discusses the opportunities presented by the

growth of the Internet of Things (IoT) to provide youth

opportunities to develop their computational thinking

and digital empowerment. This paper argues that to

support youth in developing these literacies, we need to

develop platforms that reduce the barriers of entry while

still allowing them to explore and develop their

computational identities. To this end, this paper

introduces an extension to App Inventor by MIT that

enables students to quickly design, develop, and

implement IoT applications. We outline one IoT activity

for youth and future directions for both curricular and

technical development.

KEYWORDS
Computational Thinking, Digital Empowerment, App

Inventor, Internet of Things

1. INTRODUCTION
By 2018, it is expected that physical devices that make

up the Internet of Things (IoT) will surpass mobile

devices as the leading type of Internet-connected

devices. IoT devices are projected to comprise nearly 16

billion of the expected 28 billion connected devices by

2021 (Ericsson, 2016). The explosive growth of this

ubiquitous computing landscape, in which computers

will seamlessly integrate into our everyday lives and

objects (Weiser el al., 1999), will have profound effects

on how people relate to the world around them and to

each other. This is especially true for youth, who will

know no other world. If we want these youths to be active

creators and shapers of their digital futures, rather than

simply passive consumers of it, there is a growing need

to support them in developing the necessary

computational literacies (Vee, 2013; Wilensky, Brady &

Horn, 2014) for this rapidly growing IoT landscape.

While applications such as Scratch and App Inventor

have made traditional and mobile computing accessible

to youth (Meerbaum-Salant et al., 2010; Wolber et al.,

2011), currently, there are no similar platforms for

supporting computational literacy development in the

IoT space. In response, this paper outlines a research and

technology agenda with a focus on two critical elements

for supporting youth as they develop these computational

literacies: 1) The need for low barrier-of-entry tools with

which young learners can create, test, and refine IoT

designs that connect with their everyday lives; and 2) A

means for abstracting the many (often conflicting and

confusing- Banfa, 2016) standards for developing IoT

interventions.

2. COMPUTATIONAL LITERACIES,

COMPUTATIONAL IDENTITIES, AND

DIGITAL EMPOWERMENT
Since computational thinking (CT) entered the

mainstream over a decade ago, there has been a growing

recognition for the need for everyone, not just computer

scientists, to develop computational thinking (Wing,

2006; Voogt, et al., 2015). CT's origins draw Seymour

Papert’s work on the Logo programming language,

which focused mainly on procedural thinking and

programming (1980). Since Papert's groundbreaking

work, the idea of computational thinking has been

broadened to encompass a broader range of

computational concepts (Grover & Pea, 2013). While

there is no single agreed upon definition of

computational thinking, most definitions focus on the

ability to recognize the role that computation plays in our

world, and to formulate problems and solutions through

computational means (Wing, 2006; Brennan & Resnick,

2012).

As we seek to create environments and tools with which

students' can become computational thinkers, we argue

that there are two especially important computational

thinking aspects we must support. Based on Brennan and

Resnick’s computational thinking framework, we posit

that two additional computational thinking perspectives

(2012; Tissenbaum et al., 2017) impact young people’s

long-term success as computational thinkers. The first is

computational identity (CI); their identities as people

who can think computationally and as members of the

computational community more broadly. The second is

digital empowerment (DE); recognizing their personal

ability to affect the world around them through

computation (Tissenbaum et al., 2017). The latter is

especially important, and builds on Papert's ideas of

students as self-aware, empowered, intellectual agents

who feel capable of making their own learning decisions,

posing their own questions, and finding answers to those

questions (Papert, 1972; 1987). Digital empowerment

extends Papert's vision by instilling in children the

knowledge that they can, through computation, effect

real change in the world.

These perspectives, digital empowerment and

computational identity are closely intertwined. As Friere

(1993) argues, students need to understand their relation

to the world (identity) in order to transform it

(empowerment). Thus, in an increasingly digital world,

we advocate that by developing critical computational

identities and literacies, students will become

empowered to create computational solutions to

146

challenges in their local communities, as posited by Lee

and Soep (2017).

3. BLOCKS-BASED PROGRAMMING

LANGUAGES FOR COMPUTATIONAL

THINKING
Creating conditions in which young learners can develop

digital empowerment is a challenging endeavor often

complicated by the frequently complex tools required to

create digital artifacts. The need to understand the

sometimes arcane syntax and grammar of traditional

programming languages has long been a barrier for

engaging youth in computational practices (Maloney et

al., 2004). In response, many educational researchers

have developed blocks-based environments. In other

words, these environments leverage a primitives-as-

puzzle-pieces metaphor, in which users assemble

functioning programs by snapping together "blocks" of

code together (Weintrop & Willensky, 2015;

Tissenbaum et al, 2017). The blocks provide visual cues

that show users which pieces fit together and which do

not. These systems also give visual and (often) auditory

feedback when pieces may, or may not, connect together.

The use of blocks-based programming languages can

help scaffold novice programmers to more easily

develop relatively complex programs and have been used

to support young learners to develop games (Maloney et

al., 2004), 3D animations (Dann, Cooper, Pausch, 2011),

and computational models (Begel & Klopfer, 2007).

4. AIM: BRINGING

COMPUTATIONAL THINKING AND

DIGITAL EMPOWERMENT INTO

EVERYDAY LIVES
This abundance of low-barrier approaches to developing

computational artifacts has helped realize Papert's vision

of intellectually empowering youth; however, the

introduction of smartphones and truly mobile computing

radically changed the role that computing plays in our

everyday lives. Instead of having to go to the computer,

for many of us, the computer now comes with us

everywhere we go. This is a radical extension of Papert's

vision of bringing every learner into the computer lab

(Papert, 1993; Klopfer, 2008), and fundamentally

changes how we think of computing and how we think

computationally - taking computing off the computer and

into the lived world. It also offers the promise of moving

beyond youth who are intellectually empowered towards

youth who are empowered to change the world. In

response to this radical change in the relationship

between learners, computation, and the "real world" and

the need to provide low-barrier ways for learners to be

truly empowered, new programming environments

needed to be developed that harness this potential. App

Inventor by MIT (AIM) is an example of a platform that

responded to this need. AIM is a blocks-based

programming that allows youth to develop fully-

functional mobile applications for the Android operating

system. Currently, AIM has over 6 million registered

users (with over 300,000 unique monthly users) spread

across 195 countries, who have collectively worked on

more than 20 million mobile app projects

(http://appinventor.mit.edu/explore/). Given the breadth

and scope of AIM users, AIM is in a unique position to

have a direct impact on the computational thinking and

digital empowerment of children all over the world.

5. EXTENDING COMPUTATIONAL

THINKING AND DIGITAL

EMPOWERMENT INTO EVERYDAY

OBJECTS
Just as smartphones made computers truly personal, the

explosive growth of the Internet of Things (IoT) is

having a similar impact on how we relate to the world

around us and the objects within it (Ashton, 2009). Every

day, the world becomes more connected, with everyday

objects containing sensors, actuators, displays and other

input and output channels all woven together

computationally and over the Internet (Weiser, Gold &

Brown, 1999). The growing connectivity between

everyday objects and the computational power of the

Internet offers a potential for us to harness our creativity

to extend the capabilities of our lived environments

(Rogers, 2006). However, in order to realize this vision

of our youth as active empowered creators of their

digitally augmented lives, rather than passive consumers

of it, we need to develop tools that allow them to design,

build, and test IoT-based interventions. By creating

integrated environments that allow programming of both

mobile apps and IoT hardware with common metaphors,

we extend digital empowerment to all aspects of the lives

of young learners.

5.1. Subsections

While the promise of youth developing transformational

interventions using IoT is exciting, the technical

complexity required to actually develop these

interventions is a clear barrier. In response, we have

developed an extension to AIM that allows youth to

create mobile applications that can send and receive data

from Arduino, a popular and modular computing

platform for IoT. AIT leverages the Bluetooth low

energy (BLE) standard to enable AIM applications to

communicate with a wide range of peripheral devices. To

communicate with Arduino, for example, one would use

the Generic Attribute (GATT) Profile Specification.

Sensors and actuators attached to an Arduino device can

then be exposed as services and characteristics using

GATT and read/written by an AIT application.

Normally, developing these kinds of communications

protocols would be, for most young learners,

prohibitively complex; however, with AIM we have

created an abstraction layer that allows young learners to

focus more on creating and implementing their designs.

5.2. Instantiating AIT: Building an Interface for

Healthy Plants

In order to show how AIT can help young learners we

developed an exemplar activity students can follow to

build an application that connects directly with the

147

physical world. We wanted an application that provided

young learners a lens into the potential of IoT; exposed

them to the programming building blocks for basic IoT

functionality; while also offering opportunities for them

to extend and explore the design further

Figure 1. An Arduino with a Grove Kit, moisture sensor,

barometer (temperature sensor), light sensor, and LCD screen

The activity allows youth to build a plant monitoring app

and uses Arduino and the Grove Kit

(https://www.seeedstudio.com), a popular extension kit

for Arduino that lets users add various inputs (e.g.,

buttons, and touch, heat and light sensors) and outputs

(LCD displays, buzzers, LEDs). For this activity,

students use three Grove inputs - a temperature sensor, a

moisture sensor, a light sensor - and an LCD display for

output (Figure 1).

Once built, the app allows users to get notifications about

the state of the plant (how much light the plant is getting,

the temperature of the room, and its moisture levels -

Figure 2) on their phone via Bluetooth. The application

also allows for a "conversation" to take place between

the child and their plant. For instance, when the child

waters the plant, the "plant" (via the Arduino and

moisture sensor) sends the student the message "Did you

water me?" If the child replies "Yes" on their phone, it

sends a message back to the plant (via the BLE on the

Arduino) and the plant send a message back to the child

saying "Thanks for watering me!" In this way, the child

begins to understand the potential for receiving data

about, and communicating with, the everyday objects in

their lives.

As part of this activity, youth are encouraged to

extend the application to try out new ways of connecting

and communicating with the physical world. For

instance, youth are prompted to think about how they

might set up specified alerts to the phone based on the

plant's condition (e.g., it needs water, or it is too hot in

the room for the plant). By having kids expand and iterate

on the initial version of the healthy plant app, we provide

them with opportunities to develop their computational

identities and recognize their own growing digital

empowerment.

Figure 2. The AIM Healthy Plant mobile interface.

6. DISCUSSION AND FUTURE WORK
This paper outlines a theoretical imperative for moving

computational thinking and digital empowerment

beyond the computer lab and into the world. Equally

important, this paper argues the need to extend this

empowerment into the objects that occupy our daily

lives. By providing low-barrier opportunities for young

children to critically explore their potential for changing

their relationship with the world around them, we open

up new ways for youth to transcend Papert's vision of

intellectually empowered agents (1987), towards agents

empowered to change the world. While the work is still

preliminary, we see great potential for platforms such as

AIT realize this vision.

Moving forward, we plan to create a series of structured

inquiry activities that take advantage of the expanded

capabilities of AIM to allow young learners to explore

the world around them through computational means.

For example, the next stage in the Healthy Plants

activity, will connect it with a middle school curriculum

on ecology. Student groups will individually develop

approaches for monitoring and evaluating the health of

their plants. Using a knowledge community approach

(Brown & Campione, 1996; Scardamalia & Bereiter,

1994), students will work together to share technological

approaches and scientific findings. In this way, we can

https://www.seeedstudio.com/

148

connect computational thinking and broader science

practices.

We are also working to extend the capabilities of AIT.

The next instantiation of AIT will connect to a virtual

machine (VM) targeting a range of IoT hardware,

including but not limited to the different flavors of

Arduino, Raspberry Pi, and BBC micro:bit. This will

leverage ongoing work to provide an abstraction over

many of the core BLE concepts so users of AIT can focus

on building and creating without the high barrier to entry

required to understand and use Bluetooth or other

wireless technologies. AIT will also provide a blocks

editor for programming IoT devices running the VM

platform, which can either be programmed directly from

the browser or via any application built with AIT. This

type of abstraction is similar to how AIM hides the

complexity of portability between different Android

implementation and hardware. We expect that this

abstraction applied to IoT will further empower youth to

build novel solutions to community problems and see

themselves as digitally empowered citizens.

7. REFERENCES
Ashton, K. (2009). That ‘internet of things’ thing. RFiD

Journal, 22(7), 97-114.

Banfa, A. (July, 2016). IoT Standardization and

Implementation Challenges. IEEE.org Newsletter.

Retrieved from http://iot.ieee.org/newsletter/july-

2016/iot-standardization-and-implementation-

challenges.html

Begel, A. and Klopfer, E. 2007. Starlogo TNG: An

introduction to game development. Journal of E-

Learning.

Dann, W. P., Cooper, S., & Pausch, R. (2011). Learning

to Program with Alice (w/CD ROM). Prentice Hall

Press.

Ericsson, A. B. (2015). Ericsson mobility report: On the

pulse of the Networked Society. Ericsson, Sweden,

Tech. Rep. EAB-14, 61078.

Freire, P. (1993). Pedagogy of the Oppressed.

1970. New York: Continuum, 125.
Grover, S., Pea, R., & Cooper, S. (2015). Designing for

deeper learning in a blended computer science course

for middle school students. Computer Science

Education, 25(2), 199-237.

Klopfer, E. (2008). Augmented learning: Research and

design of mobile educational games. MIT press.

Lee, C. H., & Soep, E. (2016). None But Ourselves Can

Free Our Minds: Critical Computational Literacy as a

Pedagogy of Resistance. Equity & Excellence in

Education, 49(4), 480-492.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B.,

& Resnick, M. (2004, January). Scratch: a sneak

preview [education]. In Creating, connecting and

collaborating through computing, 2004. Proceedings.

Second International Conference on (pp. 104-109).

IEEE.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M.M.

2010. Learning computer science concepts with

scratch. Proc. of the 6th Annual ICER Conference

(2010), 69–76.

Papert, S. (1972). Teaching children thinking∗.

Programmed Learning and Educational Technology,

9(5), 245-255.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc.

Papert, S. (1987). A critique of technocentrism in

thinking about the school of the future. Retrieved

February 12, 2017, from

http://www.papert.org/articles/ACritiqueof

Technocentrism.html

Papert, S. (1993). The children's machine.

TECHNOLOGY REVIEW-MANCHESTER NH-, 96,

28-28.

Rogers, Y. (2006, September). Moving on from weiser’s

vision of calm computing: Engaging ubicomp

experiences. In International conference on

Ubiquitous computing (pp. 404-421). Springer Berlin

Heidelberg.

Tissenbaum, M., Sheldon, J., Seop, L., Lee, C., (2017,

April). Critical Computational Empowerment:

Engaging Youth as Shapers of the Digital Future.

IEEE Global Engineering Education Conference,

Athens, Greece.

Vee, A. (2013). Understanding computer programming

as a literacy. Literacy in Composition Studies, 1(2), 42-

64.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory

education: Towards an agenda for research and

practice. Education and Information

Technologies, 20(4), 715-728.

Weintrop, D., & Wilensky, U. (2015). To block or not to

block, that is the question. Proceedings of the 14th

International Conference on Interaction Design and

Children - IDC '15.

Weiser, M., Gold, R., & Brown, J. S. (1999). The origins

of ubiquitous computing research at PARC in the late

1980s. IBM systems journal, 38(4), 693-696.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014).

Fostering computational literacy in science

classrooms. Communications of the ACM, 57(8), 24-

28.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor – Create Your Own Android

Apps. Sebastopol, CA: O'Reilly.

http://iot.ieee.org/newsletter/july-2016/iot-standardization-and-implementation-%20challenges.html
http://iot.ieee.org/newsletter/july-2016/iot-standardization-and-implementation-%20challenges.html
http://iot.ieee.org/newsletter/july-2016/iot-standardization-and-implementation-%20challenges.html

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

149

Computational Thinking and

Inclusive society

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

150

Developing interest to share and craft

based on the Technology Acceptance Model

Chien-sing LEE1, 2, Samuel Hong-shan LOW1

. 1Department of Computing and Information Systems,

Sunway University, Malaysia.
2Faculty of Creative Industries, Universiti Tunku Abdul Rahman, Malaysia.

 chiensingl@sunway.edu.my, samuelowbb@hotmail.com

ABSTRACT
The Malaysian Ministry of Education aims to increase

interest in learning Science, Technology, Engineering

and Mathematics, through Science2Action. Among these

initiatives in Science2Action, is the use of Art(s). By

combining the Internet, technology and crafts, e-crafting

is formed. This e-crafting project aims to increase

awareness about what interests the audience through

sharing of and development of craft, hopefully towards

possibilities of ideation and mixing crafts, extending

from the original craft such as origami. Designed based

on the Technology Acceptance Model, findings are

positive.

Keywords: e-crafting, audience interests, share,

STEAM, Technology Acceptance Model

1. INTRODUCTION
Commonly known as an art trade or occupation that

requires a special set of manual skills or an ability

majoring in handiwork, crafting is an art in the making

or doing. E-Crafting is making waves across the world.

It provides more fun, convenience and can improve

digital lifestyle. To craft, one needs to first ideate.

Ideation is key to Wing’s (2006) computational thinking.

Two capstone projects were undertaken under Sunway

University’s internal grant, to explore how images and

augmented reality (first project) and craft (second

project) can increase interest in Science, Technology,

Engineering and Mathematics (STEM), improve

ideation and improve digital lifestyles. These projects are

exploratory. The first project was reported in Wong and

Lee (2016). This paper reports on the second project, i.e.,

e-crafting. It continues from the work by Lee and Wong

(2015) on developing social innovations among youth

via design thinking and is inspired by Penn University’s

e-crafting.

1.1 Objectives
There are many types of crafts and e-crafts. Hence, the

main objective is to increase awareness, interest and

appreciation in crafts by enabling people to craft more by

making it a fun art. Fun art is by enabling playing and

editing around the craft, adding one’s own thoughts into

it.

Second, is by encouraging users to share interesting

crafts with people around the globe. An added incentive

is that currently, there is no platform without a fee.

Platforms such as in Table 1 require membership and a

certain fee (Table 1). For people in today’s era, things

that come free are always the best and there is no harm

trying as they will not lose out. Hopefully one day they

will make their own crafts and we hope to produce

successful young entrepreneurs for the future.

2. RELATED WORK
There are different types of e-crafting around the globe

today. Examples of e-crafting can be a photoshop tool,

self-made flying aero plane, and a useless box. Some

other examples are in Table 1 and e-crafting’s website.

Table 1. e-Crafting websites which require fees.

3. METHODOLOGY
To make it possible for people to share their work, an

online platform is needed. There are two parts to this

capstone project. One is a Facebook website and the

other an online portal.

Target age group are 18-29 years old as they bring in new

innovations and ideas. Most of them are youths in the

Boys Brigade in Selangor, Malaysia. Craft is one of the

skills learnt in Boys Brigade, similar to the Boy Scouts,

Girl Guides.

Systems design and development follows the Software

Development Lifecycle. Design and assessment are

based on the Technology Acceptance Model (Davis,

1989) as presented in Figure 1.

Figure 1. Technology Acceptance Model

151

Based on the Technology Acceptance Model (TAM)

above, a questionnaire is given to users to find out

whether the platform is a good idea, has its usefulness

and ease of use. The initial survey consists of four

students. At the end of the prototyping, another survey is

carried out, on 10 students.

The system requirement specifications for this project

are:

1. Database to store user account information.

1.1. Log in, create account (integrated to Facebook)

2. A website platform for people to:

2.1. Post and share their crafts

2.2. View others crafts and also able to give

opinions

2.3. Crafts can be enhanced by others

For this current platform, users who upload crafts to the

Facebook e-Crafting page will have their uploads at the

website as well. At the moment, the data integration is

done manually. In the future, it will be automated. An

example of uploads to the Facebook site is in Figure 2.

Figure 2. An Instagram page consisting of all the pictures

of the art and crafts uploaded into the Facebook page.

4. FINDINGS
Based on the final survey, all ten students think it is a

good idea to share crafts among users. Seven say that

sharing is caring while three say that they have gained

new knowledge and interest. All ten of them also think

that technology and craft can go well together and that

this website encourages them to share their crafts.

Nine of them said they learnt something useful from this

website and only one did not learn anything useful. This

may be due to different personal interests/preferences.

Next question, does this platform increase interest

towards craft? Eight of the users said yes and two said

no. This result also can be due to personal

interests/preferences.

Most of the users feel pride, happiness, amazement and

even creative when their craft is displayed and

appreciated by people around them. This feeling makes

them feel appreciated, making them share more of their

ideas and crafts.

Based on the technology acceptance model, ease of use

and intention to use have been considered. Eight of the

users said it is easy to use and two said it is okay to use

and not hard or easy. As for the intention to use the

platform again, all of them said they would use it again.

Facebook analytics for the week of Nov18 to Nov24 (the

last week of testing) indicates reached 69 users, 41 page

views, 282 post engagements and a total of 9 views for

the videos (Figure 3).

Figure 3. Facebook’s analysis for the week of Nov18 to

Nov24

5. CONCLUSION
This study shows that designing based on the

Technology Acceptance Model can reap fruitful benefits,

even to promote crafts and e-crafting. Possible extended

users are seniors and their caregivers/ families whereby

the website and portal can become a

resource/community-sharing center. Adaptations to

diverse users can be carried out through assessment of

the resource’s difficulty level and the contextual

dialogues that can be generated from the respective

resource.

ACKNOWLEDGEMENT
The authors would like to thank the reviewers for their

kind and constructive comments/suggestions. This

project is funded by Sunway University’s internal grant

(Feb-Dec 2016). The first author thanks Universiti

Tunku Abdul Rahman where she first saw wonders of

different types of crafts while she was a Faculty there,

Assoc. Prof. Dr. K. Daniel Wong for collaborations/prior

work on design thinking and Science-based research

which led to this work, Dr. Juan Carlos Aguilera for prior

discussions towards a broader system integrating the

internal grant project(s) with his evolutionary algorithms

to be funded under another grant with Dr. K. Daniel

Wong.

REFERENCES
Brown, T. & Wyatt, J. (2007). Design Thinking for

Social Innovation. In Stanford Social Innovation

Review, 31-35.

Davis, F. D. (1989). Perceived usefulness, perceived ease

of use and user acceptance of information technology,

MIS Quarterly, 13(3): 319-340.

E-crafting.com, 2016. [Online]. Available:

http://www.e-crafting.com/. [Accessed: 21- Apr-

2016].

E-crafting, 2016 [Online]. Available: http://www.e-

crafting.org.

http://www.e-crafting.org/
http://www.e-crafting.org/

152

Lee, C. S. & Wong, K. D. (2015). Developing a

disposition for social innovations: An affective-socio-

cognitive co-design model. International Conference

on Cognition and Exploratory Learning in the Digital

Age, 180-185.

Wing, J. (2006). Computational thinking.

Communications of the ACM. 49(3), 33-35.

Wong, C. K. & Lee, C. S. (2016). A better understanding

of how gamification can help improve digital lifestyles.

International Conference on Virtual Systems and

Multimedia, 1-8.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

153

General Submission to

Computational Thinking

Education

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

154

Complementary Tools for Computational Thinking Assessment

Marcos ROMÁ N-GONZÁ LEZ1*, Jesús MORENO-LEÓ N2, Gregorio ROBLES3

1 Universidad Nacional de Educación a Distancia, Spain

2 Programamos.es & Universidad Rey Juan Carlos, Spain

3 Universidad Rey Juan Carlos, Spain
*mroman@edu.uned.es, jesus.moreno@programamos.es, grex@gsyc.urjc.es

ABSTRACT
Computational thinking (CT) is emerging as a key set of

problem-solving skills that must be developed by the new

generations of digital learners. However, there is still a

lack of consensus on a formal CT definition, on how CT

should be integrated in educational settings, and specially

on how CT can be properly assessed. The latter is an

extremely relevant and urgent topic because without

reliable and valid assessment tools, CT might lose its

potential of making its way into educational curricula. In

response, this paper is aimed at presenting the convergent

validity of one of the major recent attempts to assess CT

from a summative-aptitudinal perspective: the

Computational Thinking Test (CTt). The convergent

validity of the CTt is studied in middle school Spanish

samples with respect to other two CT assessment tools,

which are coming from different perspectives: the Bebras

Tasks, built from a skill-transfer approach; and Dr.

Scratch, an automated tool designed from a formative-

iterative approach. Our results show statistically

significant, positive and moderately intense, correlations

between the CTt and a selected set of Bebras Tasks

(r=0.52); and between the CTt and Dr. Scratch (predictive

value r=0.44; concurrent value r=0.53). These results

support the statement that CTt is partially convergent with

Bebras Tasks and with Dr. Scratch. Finally, we discuss if

these three tools are complementary and may be combined

in middle school.

KEYWORDS
Computational thinking assessment, Computational

Thinking Test, Dr. Scratch, Bebras Tasks, middle school.

1. INTRODUCTION
Computational thinking (CT) is considered in many

countries as a key set of problem-solving skills that must

be acquired and developed by today’s generation of

learners (Bocconi et al., 2016). However, there is still a

lack of consensus on a formal CT definition (Kalelioglu,

Gülbahar, & Kukul, 2016), on how CT should be

integrated in educational settings (Lye & Koh, 2014), and

especially on how CT can be properly assessed (Grover,

2015; Grover & Pea, 2013). Regarding the latter, even

though computing is being included into K-12 schools all

around the world, the issue of assessing student’s CT

remains a thorny one (Grover, Cooper, & Pea, 2014).

Hence, CT assessment is an extremely relevant and urgent

topic to address, because “without attention to assessment,

CT can have little hope of making its way successfully into

any K-12 curriculum”, and consequently “measures that

would enable educators to assess what the child has

learned need to be validated” (Grover & Pea, 2013, p. 41).

Moreover, from a psychometric approach, CT is still a

poorly defined psychological construct as its nomological

network has not been completely established; that is, the

correlations between CT and other psychological

constructs have not been completely reported by the

scientific community yet (Román-González, Pérez-

González, & Jiménez-Fernández, 2016). Furthermore,

there is still a large gap of tests relating to CT that have

undergone a comprehensive psychometric validation

process (Mühling, Ruf, & Hubwieser, 2015). As Buffum

et al. (2015) say: “developing (standardized) assessments

of student learning is an urgent area of need for the

relatively young computer science education community”

(Buffum et al., 2015, p. 622)

In order to shed some light on this issue, one of the major

attempts to develop a solid psychometric tool for CT

assessment is the Computational Thinking Test (CTt)

(Román-González, 2015). This is a multiple-choice test

that has demonstrated to be valid and reliable (α=0.80;

rxx=0.70) in middle school subjects, and which has

contributed to the nomological network of CT in regard to

other cognitive (Román-González, Pérez-González, &

Jiménez-Fernández, 2016) and non-cognitive (Román-

González, Pérez-González, Moreno-León, & Robles,

2016) key psychological constructs. Continuing this

research line, now we investigate the convergent validity

of the CTt, that is, the correlations between this test and

other tools aimed at assessing CT. Thus, our general

research question is:

RQ (general): What is the convergent validity of the CTt?

1.1. Computational thinking assessment tools

Focusing on K-12 education, especially in middle school

and without being exhaustive, we find several CT

assessment tools developed from different perspectives:

CT Summative tools. We can differentiate between: a)

Aptitudinal tests such as the aforementioned

Computational Thinking Test (which is further described

in 2.1.), the Test for Measuring Basic Programming

Abilities (Mühling et al., 2015), or the Commutative

Assessment Test (Weintrop & Wilensky, 2015). And b)

Content-knowledge assessment tools such as the

summative tools of Meerbaum-Salant et al. (2013) in the

Scratch context, or those used for measuring the students’

understanding of computational concepts after introducing

a new computing curriculum (e.g., in Israel, Zur-Bargury,

Pârv, & Lanzberg, 2013).

155

CT Formative-iterative tools. They provide feedback,

usually in an automatic way, for learners to improve their

CT skills. These tools are specifically designed for a

particular programming environment. Thus, we find Dr.

Scratch (Moreno-León & Robles, 2015) or Ninja Code

Village (Ota, Morimoto, & Kato, 2016) for Scratch; the

ongoing work of Grover et al. (2016) for Blockly; or the

Computational Thinking Patterns CTP-Graph (Koh,

Basawapatna, Bennett, & Repenning, 2010) for

AgentSheets.

CT Skill-Transfer tools. They are aimed at assessing the

students’ transfer of their CT skills to different types of

problems: for example, the Bebras Tasks (Dagiene &

Futschek, 2008) are focused on measuring transfer to

‘real-life’ problems; or the CTP-Quiz (Basawapatna, Koh,

Repenning, Webb, & Marshall, 2011), which evaluates the

transfer of CT to the context of scientific simulations.

CT Perceptions-Attitudes scales, such as the

Computational Thinking Scales (CTS) (Korkmaz, Ç akir,

& Ö zden, 2017), which uses five-point Likert scales and

has been recently validated with Turkish students.

CT Vocabulary assessments. They are aimed at

measuring elements and dimensions of CT verbally

expressed by children (i.e., ‘computational thinking

language’; e.g., Grover, 2011).

Using only one type from the aforementioned assessment

tools can lead to misunderstand the development of CT

skills by students. In this sense, Brennan and Resnick

(2012) have stated that looking at student-created

programs alone could provide an inaccurate sense of

students’ computational competencies, and they

underscore the need for multiple means of assessment.

Therefore, as it has been pointed out by relevant

researchers (Grover, 2015; Grover et al., 2014), in order to

reach a total and comprehensive understanding of the CT

of our students, different types of complementary

assessments tools must be systematically combined (i.e.,

also called “systems of assessments”). Following this idea,

our paper is specifically aimed at studying the convergent

validity of the CTt with respect to other assessment tools,

which are coming from different perspectives. Thus, our

specific research questions are:

RQ (specific-1): What is the convergent validity between CTt

and Bebras Tasks? RQ (specific-2): What is the convergent

validity between CTt and Dr. Scratch?

Although the three instruments involved in our research

are aimed at assessing the same construct (i.e., CT), as

they approach the measurement from different

perspectives, a total convergence (r>0.7) is not expected

among them, but a partial one (0.4<r<0.7) (Carlson &

Herdman, 2012). Answering the aforementioned

questions may contribute to develop a comprehensive

“system of assessment” for CT in middle school settings.

1 Sample copy available at: https://goo.gl/GqD6Wt.

2. BACKGROUND

2.1. Computational Thinking Test (CTt)

The Computational Thinking Test3 (CTt) is a multiple-

choice instrument composed by 28 items, which are

administered on-line (via non-mobile or mobile electronic

devices) in a maximum time of 45 minutes. Each item of

the CTt is presented either in a ‘maze’ or in a ‘canvas’

interface; and is designed according to the following three

dimensions (Román-González, 2015; Román-González,

Pérez-González, & Jiménez-Fernández, 2016):

 Computational concept addressed: each item

addresses one or more of the following seven

computational concepts, ordered in increasing

difficulty: Basic directions and sequences;

Loops–repeat times; Loops–repeat until; If–

simple conditional; If/else–complex conditional;

While conditional; Simple functions. These

‘computational concepts’ are progressively

nested along the test, and are aligned with the

CSTA Computer Science Standards for the 7th

and 8th grade (Seehorn et al., 2011).

 Style of answers: in each item, responses are

presented in any of these two styles: ‘visual

arrows’ or ‘visual blocks’.

 Required task: depending on which cognitive

task is required for solving the item: ‘sequencing’

≈ stating in an orderly manner a set of commands,

‘completion’ of an incomplete set of commands,

or ‘debugging’ an incorrect set of commands.

We show an example of a CTt item translated into English

in Figure 1, with its specifications detailed below.

Figure 1. CTt, item nº 8 (‘maze’): loops-repeat times

(nested); visual blocks; sequencing.

2.2. Bebras Tasks

The Bebras Tasks are a set of activities designed within

the context of the Bebras International Contest 4 , a

competition born in Lithuania in 2003 which aims to

promote the interest and excellence of primary and

secondary students around the world in the field of

Computer Science from a CT perspective (Dagiene &

Futschek, 2008; Dagiene & Stupuriene, 2015). Each year,

the contest launches a set of Bebras Tasks, whose overall

approach is the resolution of ‘real-life’ and significant

2 http://www.bebras.org/

https://goo.gl/GqD6Wt
http://www.bebras.org/

156

problems, through the transfer and projection of the

students’ CT. These Bebras Tasks are independent from

any particular software or hardware, and can be

administered to individuals without any prior

programming experience. For all these features, the

Bebras Tasks have been pointed out to more than likely be

an embryo for a future PISA (Programme for International

Student Assessment) test in the field of Computer Science

(Hubwieser & Mühling, 2014). As an example, one of the

Bebras Tasks used in our research is shown in Figure 2.

Figure 2. Example of a Bebras Task (‘Water Supply’).

2.3. Dr. Scratch

Dr. Scratch5 (Moreno-León & Robles, 2015) is a free and

open source web application designed to analyze, in an

automated way, projects programmed with Scratch. In

addition, the tool provides feedback that middle school

students can use to improve their programming and CT

skills (Moreno-León, Robles, & Román-González, 2015).

Therefore, Dr. Scratch is an automated tool for the

formative assessment of Scratch projects.

As summarized in Table 1, the CT score that Dr. Scratch

assigns to a project is based on the level of development

of seven dimensions of the CT competence. These

dimensions are statically evaluated by inspecting the

source code of the analyzed project and given a

punctuation from 0 to 3, resulting in a total evaluation

(‘mastery score’) that ranges from 0 to 21 when all seven

dimensions are aggregated.

Figure 3, which shows the source code of a Scratch

project, can be used to illustrate the assessment of the tool.

Dr. Scratch would assign 8 points of ‘mastery score’ to

this project: 2 points for logical thinking, since it includes

an ‘if-else’ statement; 2 points for user interactivity, as

players interact with the sprite by using the mouse; 2

points for data representation, because the project makes

use of a variable; 1 point for abstraction and problem

decomposition, since there are two scripts in the project;

and 1 point for flow control, because the programs are

formed by a sequence of instructions with no loops.

Parallelism and synchronization dimensions would be

measured with 0 points.

Table 1. Dr. Scratch’s score assignment.

CT dimension
Competence Level

Basic Medium Proficient

3 http://drscratch.org/

(1 point) (2 points) (3 points)

Abstraction and

problem

decomposition

More

than one

script

Use of custom

blocks

Use of ’clones’

(instances

of sprites)

Logical

thinking
If If else Logic operations

Synchronization Wait

Message

broadcast,
stop

all, stop

program

Wait until, when

backdrop

changes,
broadcast and

wait

Parallelism

Two
scripts on

green

flag

Two scripts
on key

pressed or

sprite clicked

Two scripts on

receive

message,

video/audio

input,

backdrop change

Flow control
Sequence
of blocks

Repeat,
forever

Repeat until

User

interactivity

Green

flag

Keyboard,

mouse, ask

and

wait

Webcam, input

sound

Data
representation

Modifiers

of object

properties

Variables Lists

Figure 3. Source code of ‘Catch me if you can 2’.

Available at https://scratch.mit.edu/projects/142454426/

Dr. Scratch is currently under validation process, although

its convergent validity with respect to other traditional

metrics of software complexity has been already reported

(Moreno-León, Robles, & Román-González, 2016).

3. METHODOLOGY AND RESULTS
The convergent validity of the CTt with respect to Bebras

Tasks and Dr. Scratch was investigated through two

different correlational studies, with two independent

samples.

3.1. First study: CTt * Bebras Tasks

Within the context of a broader pre-post evaluation of

Code.org courses, the CTt and a selection of three Bebras

Tasks were concurrently administered to a sample of

n=179 Spanish middle school students (Table 2). This

occurred only in pre-test condition, i.e., students without

prior formal experience in programming and before

starting with Code.org.

Table 2. Sample of the first study
 7th Grade 8th Grade Total

Boys 88 15 103

Girls 60 16 76

http://drscratch.org/
https://scratch.mit.edu/projects/142454426/

157

Total 148 31 179

The three Bebras Tasks
6
 were selected attending to the

following criteria: the activities were aimed to students in

the range of 11-14 y/o, and focused in different aspects of

CT. In Table 3, the correlations between the CTt score

(which ranges from 0 to 28), the score in each of the

Bebras Tasks (0 to 1), and the overall Bebras score for all

of them (0 to 3) are shown. As the normality of the

variables is not assured [p-value(Zk-s)>0.05], non-

parametric correlations are calculated (Spearman’s r).

Table 3. Correlations CTt * Bebras Tasks (n=179)

Task #1:

‘Water Supply’

Task #2:

‘Fast Laundry’

Task #3:

‘Abacus’

Whole Set

of Tasks

CTt .419** .042 .490** .519**
** p-value (r) < 0.01

As it can be seen, the CTt has a positive, moderate, and

statistically significant correlation (r=0.52) with the whole

set of Bebras Tasks (Figure 4); and with Tasks #1 (‘Water

Supply’, related to logic-binary structures) and #3

(‘Abacus’, related to abstraction, decomposition and

algorithmic thinking). No correlation is found between the

CTt and Task #2 (‘Fast Laundry’, related to parallelism),

which is consistent with the fact that CTt does not involve

parallelism.

3.2. Second study: CTt * Dr. Scratch

The context of this study is an 8-weeks coding course in

the Scratch platform, following the Creative Computing

(Brennan, Balch, & Chung, 2014) curriculum and

involving three Spanish middle schools, with a total

sample of n=71 students from the 8th Grade (33 boys and

38 girls).

Before starting with the course, the CTt was administered

to the students in pre-test conditions (i.e., students without

prior formal experience in programming). After the coding

course, students took a post-test with the CTt and teachers

selected the most advanced project of each student, which

was analyzed with Dr. Scratch. These three measures

offered us the possibility to analyze the convergent

validity of the CTt and Dr. Scratch in predictive terms

(CTtpre-test*Dr. Scratch) and in concurrent terms (CTtpost-

test*Dr. Scratch). As the normality of the variables is not

assured either [p-value(Zk-s)>0.05], non-parametric

correlations (Spearman’s r) are calculated again (Table 4).

Table 4. Correlations CTt * Dr. Scratch (n=71)
 CTt Pre-test CTt Post-test

Dr. Scratch (‘mastery score’) .444** .526**
** p-value (r) < 0.01

As it can be seen, the CTt has a positive, moderate, and

statistically significant correlation with Dr. Scratch, both

in predictive (r=0.44) and concurrent terms (r=0.53, see

Figure 5). As expected, the concurrent value is slightly

higher because no time is intermediating among the tools.

4 The Bebras Tasks used in our research, and their

specifications, can be reviewed with more detail in:

https://goo.gl/FXxgCz.

Figure 4. Scatterplot CTt * Set of Bebras Tasks.

Figure 5. Scatterplot CTt post-test*Dr. Scratch.

4. DISCUSSION AND CONCLUSIONS
Returning to our specific research questions, we have

found that the CTt is partially convergent with the Bebras

Tasks and with Dr. Scratch (0.4<r<0.7). As we expected,

the convergence is not total (r>0.7) because, although the

three tools are assessing the same psychological construct

(i.e., CT), they do it from different perspectives:

summative-aptitudinal (CTt), skill-transfer (Bebras

Tasks), and formative-iterative (Dr. Scratch). On the one

hand, these empirical findings imply that none of these

tools should be used instead of any of the others, as the

different scores are only moderately correlated (i.e., a

measure from one of the tools cannot substitute

completely the others); otherwise, the three tools might be

combined in middle school contexts. On the other hand,

from a theoretical point of view, the three tools seem to be

complementary, as the weaknesses of the ones are the

strengths of the others.

The CTt has some strengths such as: it can be collectively

administered in pure pre-test conditions, so it can be used

in massive screenings and early detection of students with

high abilities (or special needs) for programming tasks;

and it can be utilized for collecting quantitative data in pre-

https://goo.gl/FXxgCz

158

post evaluations of the efficacy of curricula aimed at

fostering CT. However, it also has some obvious

weakness: it provides a static and decontextualized

assessment, and it is strongly focused on computational

‘concepts’ (Brennan & Resnick, 2012), ignoring

‘practices’ and ‘perspectives’.

As a counterbalance of the previous weakness, the Bebras

Tasks provides a naturalistic and significant assessment,

which is contextualized in ‘real-life’ problems that can be

used not only for measuring but also for teaching and

learning CT. However, the psychometric properties of

these tasks are still far of being demonstrated, and some of

them are at risk of being too tangential to the core of CT.

Finally, Dr. Scratch complements the CTt as the former

includes ‘computational practices’ (Brennan & Resnick,

2012) that the others do not, such as iterating, testing,

remixing or modularizing. However, Dr. Scratch lacks the

possibility of being used in pure pre-test conditions, as it

is applied to Scratch projects after the student has learnt at

least some coding for a certain time.

All of the above leads us to affirm the complementarity of

the CTt, Bebras Tasks and Dr. Scratch in middle school

settings; and the possibility to build up a “system of

assessments” (Grover, 2015; Grover et al., 2014) with all

of them. Furthermore, we find evidence to consider an

analogous progression between the Bloom’s (revised)

taxonomy of cognitive processes (Krathwohl, 2002), and

the three assessment tools considered along this paper

(Figure 6).

5. LIMITATIONS AND FURTHER

RESEARCH
Regarding the convergent validity of the CTt, another

correlation value might have been found with Bebras

Tasks if the researchers had selected a different set of

them; also, another correlation value might have been

found with Dr. Scratch if the teachers had selected a

different set of projects. Further research should lead us to

explore the convergent validity of the CTt with other

assessment tools. For example, we are currently designing

an investigation to study the convergence between the CTt

and the Computational Thinking Scales (CTS) (Korkmaz

et al., 2017), and another one that will study the

convergence between Dr. Scratch and Ninja Code Village

(Ota et al., 2016). As a major result of these future series

of studies, it will be possible to depict a map with the

convergence values between the main CT assessment

tools all around the world, which ultimately would take

CT to be well and seriously considered as a psychological

construct.

Figure 6. Bloom’s taxonomy and CT assessment tools.

6. REFERENCES
Basawapatna, A., Koh, K. H., Repenning, A., Webb, D.

C., & Marshall, K. S. (2011). Recognizing

computational thinking patterns. In Proceedings of

the 42nd ACM technical symposium on Computer

science education (pp. 245–250).

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A.,

Engelhardt, K., & others. (2016). Developing

Computational Thinking in Compulsory Education-

Implications for policy and practice.

Brennan, K., Balch, C., & Chung, M. (2014). Creative

computing. Harvard Graduate School of Education.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of

computational thinking. In Proceedings of the 2012

annual meeting of the American Educational

Research Association, Vancouv., Canada (pp. 1–

25).

Buffum, P. S., Lobene, E. V, Frankosky, M. H., ... , &

Lester, J. C. (2015). A practical guide to developing

and validating computer science knowledge

assessments with application to middle school. In

Proceedings of the 46th ACM Technical Symposium

on Computer Science Education (pp. 622–627).

Carlson, K. D., & Herdman, A. O. (2012). Understanding

the impact of convergent validity on research

results. Organizational Research Methods, 15(1),

17–32.

Dagiene, V., & Futschek, G. (2008). Bebras international

contest on informatics and computer literacy:

Criteria for good tasks. In International Conference

on Informatics in Secondary Schools-Evolution and

Perspectives (pp. 19–30).

Dagiene, V., & Stupuriene, G. (2015). Informatics

education based on solving attractive tasks through

a contest. KEYCIT 2014: Key Competencies in

Informatics and ICT, 7, 97.

Grover, S. (2011). Robotics and engineering for middle

and high school students to develop computational

thinking. In annual meeting of the American

Educational Research Association, New Orleans,

LA.

159

Grover, S. (2015). “Systems of Assessments” for Deeper

Learning of Computational Thinking in K-12. In

Proceedings of the 2015 Annual Meeting of the

American Educational Research Association (pp.

15–20).

Grover, S., Bienkowski, M., Niekrasz, J., & Hauswirth, M.

(2016). Assessing Problem-Solving Process At

Scale. In Proceedings of the Third (2016) ACM

Conference on Learning@ Scale (pp. 245–248).

Grover, S., Cooper, S., & Pea, R. (2014). Assessing

computational learning in K-12. In Proceedings of

the 2014 conference on Innovation & technology in

computer science education (pp. 57–62).

Grover, S., & Pea, R. (2013). Computational Thinking in

K--12 A Review of the State of the Field.

Educational Researcher, 42(1), 38–43.

Hubwieser, P., & Mühling, A. (2014). Playing PISA with

bebras. In Proceedings of the 9th Workshop in

Primary and Secondary Computing Education (pp.

128–129).

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A

Framework for Computational Thinking Based on a

Systematic Research Review. Baltic Journal of

Modern Computing, 4(3), 583.

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning,

A. (2010). Towards the automatic recognition of

computational thinking for adaptive visual language

learning. In Visual Languages and Human-Centric

Computing, 2010 IEEE Symposium on (pp. 59–66).

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A

validity and reliability study of the Computational

Thinking Scales (CTS). Computers in Human

Behavior.

Krathwohl, D. R. (2002). A revision of Bloom’s

taxonomy: An overview. Theory into Practice,

41(4), 212–218.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching

and learning of computational thinking through

programming: What is next for K-12? Computers in

Human Behavior, 41, 51–61.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013).

Learning computer science concepts with scratch.

Computer Science Education, 23(3), 239–264.

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web

tool to automatically evaluate Scratch projects. In

Proceedings of the Workshop in Primary and

Secondary Computing Education (pp. 132–133).

Moreno-León, J., Robles, G., & Román-González, M.

(2015). Dr. Scratch: automatic analysis of scratch

projects to assess and foster computational thinking.

RED. Revista de Educación a Distancia, 15(46).

Moreno-León, J., Robles, G., & Román-González, M.

(2016). Comparing computational thinking

development assessment scores with software

complexity metrics. In Global Engineering

Education Conference, 2016 IEEE (pp. 1040–

1045).

Mühling, A., Ruf, A., & Hubwieser, P. (2015). Design and

first results of a psychometric test for measuring

basic programming abilities. In Proceedings of the

Workshop in Primary and Secondary Computing

Education (pp. 2–10).

Ota, G., Morimoto, Y., & Kato, H. (2016). Ninja code

village for scratch: Function samples/function

analyser and automatic assessment of computational

thinking concepts. In Visual Languages and

Human-Centric Computing (VL/HCC), 2016 IEEE

Symposium on (pp. 238–239).

Román-González, M. (2015). Computational Thinking

Test: Design Guidelines and Content Validation. In

Proceedings of the 7th Annual International

Conference on Education and New Learning

Technologies (EDULEARN 2015) (pp. 2436–2444).

Román-González, M., Pérez-González, J.-C., & Jiménez-

Fernández, C. (2016). Which cognitive abilities

underlie computational thinking? Criterion validity

of the Computational Thinking Test. Computers in

Human Behavior.

Román-González, M., Pérez-González, J.-C., Moreno-

León, J., & Robles, G. (2016). Does Computational

Thinking Correlate with Personality?: The Non-

cognitive Side of Computational Thinking. In

Proceedings of the Fourth International Conference

on Technological Ecosystems for Enhancing

Multiculturality (pp. 51–58).

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,

O’Grady-Cunniff, D., … Verno, A. (2011). CSTA

K--12 Computer Science Standards: Revised 2011.

Weintrop, D., & Wilensky, U. (2015). Using

Commutative Assessments to Compare Conceptual

Understanding in Blocks-based and Text-based

Programs. In ICER (Vol. 15, pp. 101–110).

Zur-Bargury, I., Pârv, B., & Lanzberg, D. (2013). A

nationwide exam as a tool for improving a new

curriculum. In Proceedings of the 18th ACM

conference on Innovation and technology in

computer science education (pp. 267–272).

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

160

App Inventor VR Editor for Computational Thinking

Jane IM 1, Paul MEDLOCK-WALTON2*, Mike TISSENBAUM2*

1 Korea University
2 Massachusetts Institute of Technology

jane605@korea.ac.kr, paulmw@mit.edu, mtissen@mit.edu

ABSTRACT

This paper introduces the concept of a virtual reality

(VR) programming environment that allows youth to

both develop immersive VR experiences while

enhancing computational thinking (CT). Specifically, we

extended a blocks-based programming platform, MIT

App Inventor, to allow youth to make VR Android apps

(AI/VR). We compare AI/VR's support for CT to other

existing VR editors using the CT concepts established by

Brennan and Resnick (2012). Comparisons showed that

AI/VR’s support for all CT concepts and its ease of use

for kids, makes it more preferable for teaching CT

compared to other editors.

KEYWORDS
computational thinking, virtual reality, constructionism,

immersive interface, MIT App Inventor

1. INTRODUCTION
In recent years, many educators have argued

computational thinking (CT) (Wing, 2006) is an

indispensable skill for everyone. In order to support

widespread uptake of computational thinking, blocks-

based approaches to programming have been developed,

in which users program by snapping blocks of code. For

example, Scratch allows students to build 2D multimedia

(Brennan & Resnick, 2012). Alice helps students learn

programming by building 3D media (Dann, Cooper, &

Pausch, 2006).

Compared to Scratch, Alice provided a more immersive

experience. Studies using Alice showed it is effective for

learning programming, in part to its immersive nature

(Sykes, 2007), indicating the potential for immersive

experiences to enhance students’ computational

thinking. However, there has been limited research on

how VR, an immersive environment, can support CT

learning. Given the nascent field of VR, in order to

understand the role of it in developing CT, there is a need

to examine current VR editors. If these do not support the

kinds of learning we wish to support, then it is critical to

develop appropriate tools. This work was framed around

two needs: 1) understand the state of current VR editors

and examine their suitability for supporting developing

computational thinking; and 2) develop a tool that

supports the learning needed, if current platforms were

found to be lacking.

Below, we examine current VR editors, discuss how they

support CT and their suitability for young learners. We

propose AI/VR that responds to their shortcomings.

2. BACKGROUND

2.1. Constructionism

Constructionism is the process of building understanding

through the active use of tools to develop tangible

artifacts (Kafai & Resnick, 2011). Building on

constructionism, is the concept of “learning as

designers”, which has shown to increase higher-order

thought process development and motivation (Cooper,

Dann, & Pausch 2003; Fortus, Dershimer, Krajcik, Marx,

& Mamlok-Naaman, 2004). Especially, programming

interactive media has been shown to support CT

(Brennan & Resnick, 2012). The development of

interactive and immersive media, with platforms such as

Alice, also embody constructionist characteristics, as

they allow learners to design interactive media freely in

the same context (Sykes, 2007).

2.2. Immersive Interface for Learning

Immersion is the subjective impression that one is

participating in a comprehensive, realistic experience

(Stanney, 2002; Lessiter, Freeman, Keogh, & Davidoff,

2001). Studies have shown that immersion in a digital

environment can enhance education in at least three

ways: allowing multiple perspectives, situating the

learning, and transfer to other contexts (Dede, 2009).

Below we describe two immersive learning

environments.

2.3. Alice

Alice is a 3D graphics programming environment that

allows users to create interactive 3D animations and

learn programming in an object-oriented approach (Dann

et al., 2006). Research on use of Alice to teach an entry

level undergraduate computer science course showed

that posttest performance among students who used

Alice was significantly higher than comparison groups.

Qualitative results showed that students using Alice

enjoyed the process and spent more time engaged in the

course (Sykes, 2007). There were diverse reasons for this

engagement, including

the active graphical interface. While Alice is not

completely immersive, it has a higher degree of

immersion compared to text-based languages. The

results suggest the potential for enhancing students’

computational thinking skills within a more immersive

environment.

2.4. Immersive Interface for Learning

Virtual Environment Interactions (VEnvI) is a platform

that uses a database of dance sequences, VR, and a drag-

and-drop interface to teach programming concepts

161

(Parmar et al., 2016). Although this study is limited

because students did little programming, and were

introduced to programming concepts in sessions, results

showed that students found the immersion of VEnvI

desirable and became more positive towards computer

science.

3. PREVIOUS EDITORS

3.1. Introduction of VR Editors

In order to understand how current platforms support CT,

we examined nine VR code editors: 360°& VR Editor

(“360°& VR Editor”, n.d), HoloBuilder (“HoloBuilder”,

n.d.), Smart2VR (“Smart2VR”, n.d.), CoSpaces

(“CoSpaces”, n.d.), Vizor (“Vizor”, n.d.), Unity (“VR

Overview”, n.d.), Unreal Engine VR Editor (“Unreal

Engine VR Editor”, n.d.), Arma 3’s virtual reality editor

(Arma 3 has a VR editor for creating games) (Zemánek,

2014), and Simmetri (“Simmetri”, n.d.).

3.2. Categorization and Analysis

We categorized the editors using Brennan and Resnick’s

computational concepts, which are sequences, loops,

parallelism, events, conditionals, operators, and data

(Brennan & Resnick, 2012). The editors are also

categorized based on their affordances into three groups,

which are photo/video focused editors, visual

programming editors, and text based editors (Table 1).

3.2.1. Photo or video focused editors

Photo or video focused editors are ones that: 1) focus on

making rich scenes using photos and videos; and 2) only

support acquiring the computational thinking concept

‘events’. The focus on scene creation is the goal of these

editors, which explains why they have limited utility for

CT. Users can place events inside scenes using drag-and-

drop (e.g., adding a button that is clickable). However,

such editors lack the means to use sequences, loops,

parallelism, events, operators, and data. 360°& VR

Editor, HoloBuilder, and Smart2VR fit in this category.

3.2.2. Visual programming editors

Visual programming editors support most, if not all, the

CT concepts through visual programming. Vizor and

CoSpaces fall in this category, with CoSpaces also

supporting text based programing.

In Vizor, students can apply all computational thinking

concepts through using a ‘patch’, which can be

connected to other patches (Figure 1). Users can

combine patches like state/structure patches to

understand sequence. There are prebuilt patches for

loops, conditionals, operators, variables, and data. Users

can learn parallelism, for example, by using two mouse

press patches. However, there are limitations including

the limited animation patches, which can make

animating objects difficult. Additionally, unlike MIT

App Inventor where blocks run from top to bottom, the

order of patches do not indicate sequence in Vizor,

requiring users to link extra patches.

In CoSpaces, users can use blocks to apply all seven CT

concepts. Users can connect blocks from top to bottom

to understand sequence, and use loop blocks to

understand loops. The execute in parallel and the on

activate of blocks enable parallelism and events in users'

projects, respectively. There are prebuilt blocks for

conditionals, operators, variables and data. However,

CoSpaces lacks blocks for dynamically creating objects,

and has limited types of events compared to Vizor and

AI/VR. These can limit the range of computational

practices (which focus on “how”, instead of “what” users

learn) (Brennan & Resnick, 2012).

Table 1. Categorization of VR Editors with colored boxes representing an attribute(column) that an editor(row) has.

Numbers 1,2,3,4,5,6,7 of CT concept each refer to sequences, loops, parallelism, events, conditionals, operators, and

data.
 CT Concepts

Platform Editor Type 1 2 3 4 5 6 7

Does not require

programming

background

Intended

audience

360°& VR Editor

Photo/Video

 Novices

HoloBuilder Novices, especially construction company

Smart2VR Novices

Vizor Visual Novices

CoSpaces Visual/Text based Novices

Unity

Text based

 Professional, Experienced gamers

Unreal Engine VR

Editor

 Professional, Experienced gamers

Arma 3’s editor Professional, Experienced gamers

Simmetri Artists

AI/VR Visual Novices

162

Figure 1. Usage of patches in Vizor.

3.3. Text-based editors

Text based editors are editors that require at least partial

text based programming to exhibit the seven CT

concepts. Unity, Unreal Engine VR Editor, Arma 3’s

virtual reality editor, and Simmetri fit in this category,

with differing audiences (Table 1). Since these editors

allow users to build complicated VR environments

technically, they support all CT concepts, and users can

employ complex CT with them. However, these text-

based editors require a steep learning curve and are not

suitable for beginners.

Building off of the various shortcomings of the tools

described above, we identified a gap in the VR authoring

landscape for a tool that allows novices to develop VR

applications while developing CT concept

understandings. Below we describe the tool and its use.

4. APP INVENTOR VR EDITOR
4.1. Blocks in AI/VR

There are four kinds of blocks in AI/VR: 1) event, 2)

method, 3) property setter and getter, and 4) object

creation blocks. Event includes checkButton, which

checks if the user clicks the Cardboard button. Method

blocks trigger interactions with objects and the player,

including moveUser, which changes the location of the

player. Property setters and getters change object’s

attributes, such as size. Object creation blocks, such as

createCube, allow the user to dynamically add objects.

4.2. Sample AI/VR program

To demonstrate how the editor supports CT, we included

a sample AI/VR program (Figure 2 & Figure 3). If the

user gazes at one of the four cubes (that are made by

shaking the phone), she will earn points (shown in a

label). The cube also moves to a random position and

changes color.

This example shows how all seven computational

concepts are supported in AI/VR. First, users can

understand sequences by checking that blocks are

executed in order when the user gazes at a cube. The cube

changing color, and the score increasing and updating

shows sequentially (① of Figure 3). Loops are used to

iterate over cubes in ②. Events are used through blocks

like checkGazeShort (the block that returns 1 if the user

gazed at the object - ③). For parallelism, two "if" blocks

are used to check whether a cube was gazed at and the

color and position of the cube are changed concurrently

(④). For conditionals, the user can connect event blocks

and attribute or animation related blocks with an "if"

block (⑤). For operators, users can practice addition by

adding 1 to the current score when a cube is gazed at (⑥-

1) and checking that the increased score is updated in the

scene (⑥-2). Lastly, users can understand data by

keeping track of cubes using a list block (⑦).

Figure 2. Scene of demo

Figure 3. Code for a sample VR program in AI/VR.

4.3. Categorization and Analysis

AI/VR is in the category of visual programming editors

and supports all CT concepts. AI/VR also targets ease of

use by kids, employing the same drag-and-drop interface

as the original MIT App Inventor (Wolber, Abelson,

Spertus, & Looney, 2011). Considering these aspects,

AI/VR balances usability for kids and features for

supporting CT, overcoming the limitations of other

editors. It also has animation blocks such as moveObject,

overcoming the limitation of Vizor. Using the top down

approach, sequences are also easier in AI/VR. Compared

to CoSpaces, AI/VR supports creating new objects with

blocks like createCube, and allows diverse triggering

events with blocks like checkButton, which triggers an

event when a user presses the Cardboard headset button.

However, AI/VR lacks a diversity of objects and media

related blocks like video. In context of CT, this could be

163

a limitation because it could reduce the diversity of

computational practices.

5. CONCLUSION
Considering the role constructionism plays in

computational thinking and the possibility of immersive

virtual reality to support this learning, we introduce

AI/VR - a blocks-based tool to support kids to more

easily create virtual reality apps. We have shown

AI/VR’s fit as a visual programming editor that supports

all seven of Brennan and Resnik's CT concepts, while

also being usable by young kids. Although AI/VR has

limited diversity in objects and media related blocks, it

overcomes the limitations of Vizor, such as animating

objects and sequence, and those of CoSpaces such as the

lack of blocks for dynamically creating objects and the

limited types of triggers for events.

6. ACKNOWLEDGEMENT
We would like to thank Hal Abelson, Professor of EECS

at MIT, whose insight was great help to this research.

7. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks

for studying and assessing the development of

computational thinking. Proceedings of the 2012

Annual Meeting of the American Educational

Research Association (AERA 2012).

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching

objects-first in introductory computer

science. Proceedings of the 34th SIGCSE technical

symposium on Computer science education - SIGCSE

'03.

CoSpaces. (n.d.). Retrieved from

https://cospaces.io/create.html

Dann, W., Cooper, S., & Pausch, R. (2006). Learning to

program with Alice. Upper Saddle River, NJ: Pearson

Prentice Hall.

Dede, C. (2009). Immersive interfaces for engagement

and learning. Science, 323(5910), 66-69.

Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W.,

& Mamlok-Naaman, R. (2004). Design-based science

and student learning. Journal of Research in Science

Teaching, 41(10), 1081-1110.

HoloBuilder (n.d.). Retrieved from

http://landing.holobuilder.com/construction

Kafai, Y. B., & Resnick, M. (2011). Constructionism in

practice: Designing, thinking, and learning in a

digital world. New York, NY: Routledge.

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J.

(2001). A cross-media presence questionnaire: The

ITC-Sense of Presence Inventory. Presence:

Teleoperators and Virtual Environments, 10(3), 282-

297.

Parmar, D., Isaac, J., Babu, S. V., D'souza, N., Leonard,

A. E., Jorg, S., . . . Daily, S. B. (2016). Programming

moves: Design and evaluation of applying embodied

interaction in virtual environments to enhance

computational thinking in middle school students.

2016 IEEE Virtual Reality (VR), 131-140.

Simmetri. (n.d.). Retrieved from http://simmetri.com/

Smart2VR. (n.d.). Retrieved from

https://www.smart2vr.com/#how-it-works

Stanney, K. M. (2002). Handbook of virtual

environments: design, implementation, and

applications. Mahwah, NJ: Lawrence Erlbaum

Associates.

Sykes, E. (2007). Determining the effectiveness of the

3D Alice programming environment at the computer

science I level. Journal of Educational Computing

Research, 36(2), 223-244.

360°& VR Editor. (n.d.). Retrieved from

http://demo.thinglink.com/vr-editor

Unreal Engine VR Editor. (n.d.). Retrieved from

https://docs.unrealengine.com/latest/INT/Engine/Edit

or/VR/

Vizor. (n.d.). Retrieved from http://vizor.io/about

VR Overview. (n.d.). Retrieved from

https://unity3d.com/kr/learn/tutorials/topics/virtual-

reality/vr-overview

Wang, T., Mei, W., Lin, S., Chiu, S., & Lin, J. M.

(2009). Teaching programming concepts to high

school students with Alice. 2009 39th IEEE Frontiers

in Education Conference, 1-6.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor – Create Your Own Android

Apps. Sebastopol, CA: O'Reilly.

Zemánek, J. (2014, July 15). Arma3: Virtual Reality

Custom Courses. Retrieved January 10, 2017, from

https://community.bistudio.com/wiki/Arma3:_Virtual

_Reality_Custom_Courses

https://cospaces.io/create.html
http://landing.holobuilder.com/construction
http://simmetri.com/
https://www.smart2vr.com/#how-it-works
http://demo.thinglink.com/vr-editor
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

164

Computational Thinking and Coding Initiatives in Singapore

Peter SEOW1, Chee-kit LOOI1, Bimlesh WADHWA2, Longkai WU1, Liu LIU1

1 National Institute of Education, Nanyang Technological University, Singapore

2 National University of Singapore, Singapore

peter.seow@nie.edu.sg, cheekit.looi@nie.edu.sg, bimlesh@nus.edu.sg, longkai.wu@nie.edu.sg, liu.liu@nie.edu.sg

ABSTRACT
Many countries that recognize the importance of

Computational Thinking skills are implementing

curriculum changes to integrate the development of these

skills and to introduce coding into formal school

education. Singapore has introduced new programmes

from Pre-school to Secondary children to develop

Computational Thinking skills and introduce

programming. A major change in the secondary school

syllabus is the introduction of a new Computing subject

taken at “O” levels. The new subject emphasizes on the

development of Computational Thinking skills and coding

in Python. Students are expected to apply technology for

creating solutions to solve problems. In this paper, we

describe the various initiatives in Singapore for Pre-

school, Primary and Secondary schools. From initiatives

in these three school going groups, we review Singapore’s

approach to implementation of learning Computational

Thinking. Unlike several countries that has decided to

implement computing as compulsory education,

Singapore has taken a route of creating interest amongst

children in Computing in age-appropriate ways.

Singapore’s pragmatic approach is characterized by opt-in

by schools, nurturing students’ interest in computing,

upskilling teachers in computing, and a multi-agency

approach.

KEYWORDS
Computational Thinking, Computing, Programming, and

Coding

7. INTRODUCTION
Since Wing’s (2006) argument on how computational

concepts, methods and tools can develop thinking skills to

transform how we work or solve problems, and with the

emergence of computation-related fields such as Data

Science and Artificial Intelligence in recent years, there

has been great interest from academia, industry and

government in Computational Thinking (CT) and coding.

Sites such as code.org, which is sponsored by industry

giants like Google, provide free resources on learning

coding to anyone who is interested. National governments

in addressing the manpower needs arising in the shift from

a knowledge/information economy to an economy driven

by computation, are introducing educational policies that

would prepare its citizens to be future ready. Computer

Science and computing education once were only

available as courses at the University level. Wing (2017)

reflecting 10 years after her publication on CT, never

dreamt that Computer Science education would be taught

in K-12 on a large scale. Today, it has become reality as

governments or educational authorities, and schools are

introducing Computer Science education in the different

levels of education. This paper describes Singapore’s

effort in the introducing the CT and coding in the

education from Pre-school to Secondary schools.

8. COMPUTING PROGRAMMES in K-10
In 2014, Singapore launched the Smart Nation Programme

which is a nationwide effort to harness technology in the

business, government and home sectors for improving

urban living, building stronger communities, growing the

economy and creating opportunities for all residents to

address the everchanging global challenges (Smart

Nation, 2017). One of the key enablers for the Smart

Nation initiative is to develop computational capabilities.

Programmes are implemented to introduce and develop

CT skills and coding capabilities from pre-school children

to adults. We survey the landscape of K-10 CT and coding

related programmes in Singapore which are implemented

by various government organizations. We present these

programmes and have organised them according the

groups: Pre-school, Primary and Secondary.

8.1. Pre-school

In Singapore, children aged from 3 to 6 years old attend

pre-schools which are mostly privately run. The

Infocomm Media Development Authority (IMDA)

launched the Playmaker initiative with the aim of

introducing Computational Thinking in the Kindergarten

and Pre-schools in Singapore (IMDA, 2017). There are

over 3000 pre-schools in Singapore and initial phase was

to pilot the program in 160 pre-schools. IMDA’s approach

to introducing CT was to identify toys that would engage

young children in play while developing CT skills such as

algorithmic thinking. IMDA would provide a set of the

toys to pilot centres for use in the classroom by the

teachers.

The toys that IMDA selected that would provide playful

exploration of technology are: 1) Beebot; 2) Circuit

Stickers; and 3) Kibo. The Beebot is a toy with simple

programmable steps to control the movement. Children

can program the toy to move in a path by logically

sequencing the number of steps to move and direction.

Playing Beebot can help young children to develop

problem solving skills and logical thinking as they plan

and program the movement of the toy. With the Kibo

which was developed by researchers in Tuft University,

children can create a sequence of instructions by arranging

Kibo wooden blocks. The blocks can be scanned in the

sequence with the instructions passed to the robot to

execute the steps. Circuit sticker is a toolkit comprising of

peel-and-stick electronic components such as LEDs and

conductive copper tapes. With the toolkit, young children

can create interactive art and craft projects embedded with

165

LED stickers and sensors that respond to the environment

or external stimuli (See Figure 1). Children can be creative

in hands-on activities while learning and applying basic

electricity concepts.

Figure 1. Circuit Stickers

Pre-school teachers in Singapore do not use much

technology or handle technology in the classroom as the

emphasis is more on literacy development and play. As a

result, they may have apprehensions or concerns in using

technology in their lessons. To address teachers’ lack of

experience and concerns, IMDA organised teacher

seminars and workshops for teachers to experience the use

of the Beebot, Kibo and Circuit Stickers. The hands-on-

sessions were facilitated by the instructors to introduce

teachers to the tech toys and work on simple projects. The

workshops are for the teachers to understand the potential

learning opportunities by learning the technology for

themselves. Hands-on sessions also help to alleviate any

potential fear of handling technology as they experience

the use of the technology with the support from

instructors.

In preparing to pilot the Playmaker program and address

the concerns of Pre-school teachers, IMDA worked with a

local Polytechnic which offers pre-school training for

teachers. At the Preschool Learning Academy, pre-school

lecturers and trainers, with technologists worked to trial

the use of the various tech toys in the pre-school

classroom. Their learning experiences were shared with

the teachers. Collaborating with the pre-school training

academy provides implementers to understand how the

tools can be used in the classroom and build capacity

among the trainers to work with the teachers how these

tools can be used to develop. The academy can provide

on-going professional development to the current and new

teachers.

8.2. Primary Schools

To expose and enthuse Primary school students in

computational thinking, IMDA introduced its Code for

Fun enrichment programme which was piloted in 2014.

Since 2015, the programme has been implemented in 110

schools with about 34,000 students participating. The

goals of the programme is to expose a large base of

students to CT concepts and coding, and build a generation

of workforce equipped with basic coding and CT skills. To

scale the enrichment programme, IMDA invited

technology training partners to propose 10 hour programs

that would include coding activities using visual-based

programming language such as Scratch and combining it

with a robotic kit such as the MoWay or microcontrollers

such as the Arduino. The proposed programs should help

students appreciate coding and develop CT skills such as

solving problems and thinking logically. Schools that are

interested in the Code for Fun programme can select from

the list of vendors and apply for funding from IMDA to

run the programme in the school. At present, IMDA fund

70% for each student with the rest funded by the school on

the condition that a certain number of students will be

attending the programme. Teachers are also required to

attend a course conducted by the technology vendors on

the programme. IMDA envisions the program to be taught

by the teachers in the future. Currently, each 10-hour

session is conducted by the technology trainers in the

school lab. In each session, students are introduced

computing concepts such as the use of variables and

conditional students through the use of visual

programming tools such as Scratch. Students also use the

Robotic tools such as the Lego WeDo kits or MoWay

robot based on the proposal by the different training

partners. Schools can choose on the different tools offered

by the various trainers based on their students’ interest and

budget.

The Code for Fun enrichment and Playmaker programme

is part of the Code@SG movement initiated by the

government to teach CT and coding to students from an

early age. Driven by the IMDA, the initiative is important

to build Singapore’s national capability in a skilled

workforce by creating interest in the Computational skills

and promoting Infocomm as a career choice. A multi-

pronged approach of working with different partners

involves the development of enrichment programmes,

school infocomm clubs and coding competitions.

8.3. Secondary Schools

In 2017, the Ministry of Education introduced a new

Computing subject which will be offered to students as an

“O” Level subject replacing the existing Computer Studies

subject (MOE, 2017). Students taking the subject will be

learning to code in Python which is taught only at “A”

Level Computing. In the new syllabus design, students

will develop CT and coding skills to create solutions with

technology to solve problems. In the old Computer Studies

syllabus, students were learning to be users of technology

such as using software applications and understanding

aspects of technology. This marks a distinct shift from a

learning to be user of the technology to creator of solutions

with technology.

The new Computing syllabus is built on the framework

shown in Figure. 2: 1) Computer as a Science; 2)

Computer as a Tool; and 3) Computer in Society.

166

Figure 2. Computing Education Framework

The dimension of Computer as a Science comprises of the

core components of Computational and Systems

Thinking. Students will develop and apply CT skills such

as abstraction and algorithmic thinking to solve problems

and develop solutions through coding. Using both CT

skills and systems thinking, students are required to work

on a project of their own interest. This is to encourage

students to take more ownership by identifying a problem

that they are interested and developing ideas to solve the

problem using programming tools. In the dimension of

Computer as a Tool, students are exposed to the use of

hardware, technology, and devices that are used in the

everyday aspects of life at work and play. They learn about

computer applications that are used for productivity,

communications and creative tools for completing specific

tasks such as video editing or creating websites. In

Computer in Society, students learn about issues in using

computers such as intellectual property, data privacy,

internet security and the computer addiction. This

dimension includes a component on 21st Century

Competencies to prepare students to be Future-ready

workers in the use of technology for self-directed learning,

working in collaboration with others and fostering

creativity.

A current challenge in implementing a Computing

curriculum is equipping teachers to teach the subject as

there are only few teachers who have Computing or

Computer Science background. Teachers who are

interested in teaching Computing and programming attend

a year-long conversion course taught by Computer

Science faculty from a University. The goal of the course

is to prepare and equip teachers with the content and

technical knowledge to teach computing. In addition to

preparing teachers for the new Computing curriculum,

Ministry of Education’s Curriculum Planning and

Development Division (CPDD) organised workshops for

teachers to understand the aspects of the syllabus.

Teachers are introduced to different pedagogies for

teaching computing such as unplugged approaches and

paired programming. In the workshop, teachers

experienced the use of the tools for teaching such as the

Raspberry Pi. The workshop was a platform for teachers

to raise their concerns about teaching the subject such as

the project work for students.

9. Singapore’s Approach in Computing
Singapore’ approach is to provide opportunities for

students to develop their interests in coding and computing

skills through touchpoint activities at various ages as

shown in Figure 3. Computing and CT skills are

introduced to the children that are age-appropriate and

engage them in learning. Children progressively develop

interest and skills leading them to offer Computing as a

subject in the “O” levels.

Figure 3. Learning Computing in Singapore

The following sections describe the characteristics of the

approach.

9.1. Opt-in by Schools

Singapore uses an opt-in model recognizing the agency of

each school in choosing programs to meet the needs of

their students and readiness of the teachers. School-based

programmes are planned by the school and teachers that

would build students’ interest and skills in identified areas

like Computing. As teachers play in pivotal in the role in

implementing the programmes, there must be buy-in from

the teachers to see the importance of the programmes for

the students. For the schools to opt-in to adopt computing,

there must be teachers within the school to be ready to

learn, experiment and implement

9.2. Nurturing Interest in Computing

Singapore’s approach is to nurture interest at early age.

Pre-school children are developing problem solving and

logical thinking skills through play. Toys like the Beebot

and Circuit Stickers are age-appropriate for the children to

be engaged in play in their lessons while developing the

computational thinking skills. In primary and secondary

schools, students are introduced to visual programming

tools like Scratch and tangible computing tools like the

MoWay robots and Lego WeDo. Lessons are designed for

children to have fun learning programming and

167

developing logical thinking skills. Leading to the O

Levels, students can offer Computing as a subject based

on their interest and choice. Starting from Pre-school, a

pipeline is created for students to develop interest and

computational thinking skills for them to choose

Computing rather than making it compulsory learning.

9.3. Upskilling Teachers in Computing

To prepare teachers to develop logical thinking,

algorithmic thinking, problem solving and coding skills in

the lessons, professional development and support must be

given. The professional development should be

appropriate to the learning needs of the teachers to prepare

them to teach their students. For the pre-school, a form of

learning was for them to experience play with the toys and

understand how their own children would learn from

playing. Support from IMDA is given to the teachers to

help them design and implement the lessons in the

classrooms. In secondary school, Computing teachers

undergo an intensive computing course equipping them

with computer science concepts and coding skills for

teaching students. Most of these teachers are non-

Computer Science graduates but volunteered for the

conversion course out of their own interest. The teachers

have regular meet-ups to continue improving their

knowledge in teaching computing.

9.4. Multiple-Agency Approach

The task of building CT and Computing skills takes the

combined effort of multiple agencies to work together.

These agencies include the government agencies like

IMDA, Ministry of Education and the Ministry of Social

and Family Development, Education centers like the

Singapore Science Centre, Universities and educational

providers. These agencies work together or singly to

organize opportunities for children to learn computational

thinking skills providing them with varied experiences.

The agencies can pool resources such as funding and

support for initiating, implementing and sustaining the

programmes.

10. SUMMARY
Singapore has taken a pragmatic approach in the

implementation of the learning and development of CT

skills and coding. Taking such an approach provides

children with opportunities to generate interest in learning

computing. Starting at an early age, children are exposed

to developing CT skills through age-appropriate ways of

playing. In primary school, children learn through fun and

given opportunities to extend their interest in

programming through clubs and coding competition. At

the secondary school level, children can choose to pursue

Computing as a subject. Schools can opt-in to offer

programmes based on the students’ needs, schools’ niche

programmes and readiness of the teachers to teach

computing. Teachers who are keen can choose to extend

their capacity to teach computing. Singapore as a Nation

can harness various agencies to work together in providing

a variety of learning experiences for children to be

engaged in learning computing.

11. REFERENCES
IMDA. (2017). PlayMaker Changing the Game.

Retrieved Feb 13, 2017, from

https://www.imda.gov.sg/infocomm-and-media-

news/buzz-central/2015/10/playmaker-changing-the-

game

[27] MOE. (2017). O Level Computing Teaching

and Learning Syllabus. Retrieved Feb 13, 2017, from

https://www.moe.gov.sg/docs/default-

source/document/education/syllabuses/sciences/files/o-

level-computing-teaching-and-learning-syllabus.pdf

[28] Smart Nation. (2017). Why Smart Nation.

Retrieved Feb 13, 2017, from

https://www.smartnation.sg/about-smart-nation

Wing, J. M. (2006). Computational Thinking.

Communications of the ACM, 49(3), 33-35

Wing, J. M. (2017). Computational Thinking, 10 years.

Retrieved Feb 13, 2017, from

https://www.microsoft.com/en-

us/research/blog/computational-thinking-10-years-later

Acknowledgements
The work reported in this paper is funded by EFRP grant

OER 04/16 LCK.

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

168

Enabling Multi-User Computational Thinking with Collaborative Blocks

Programming in MIT App Inventor

Xinyue DENG1, Evan W. PATTON1*

1 Massachusetts Institute of Technology, Cambridge, MA, USA

{dxy0420, ewpatton}@mit.edu

ABSTRACT

Collaboration becomes increasingly important in

programming as projects become more complex. With

traditional text-based programming languages,

programmers typically use a source code management

system to manage the code, merge code from multiple

editors, and optionally lock files for conflict-free editing.

There is a limited corpus of work around collaborative

editing of code in visual programming languages such as

block-based programming. We propose an extension to

MIT App Inventor, a web-based visual platform for

building Android applications with blocks, which will

enable many programmers to collaborate in real-time on

MIT App Inventor projects. We take the position that

real-time collaboration within MIT App Inventor will

encourage students in a group environment to interact

with one another in ways that help them improve each

other’s understanding and practice of computational

thinking practices that may not be achieved in the

traditional one user-one project paradigm that is currently

provided.

KEYWORDS

Real-time collaboration, App Inventor, visual

programming, computational thinking

1. INTRODUCTION
Cloud-based collaborative technologies such as Google

Docs have become a central part of how teams work

together to collaborate in real time on all manner of

content. While real-time collaboration for programming

has been explored in research settings, a typical editing

pattern in software development involves developers

working separately and then merging their changes

through a source code management system, such as

Subversion or Git. These solutions work well for textual

programming languages. However, little work has been

done exploring real-time collaborative techniques for

visual programming languages, including blocks-based

languages including Scratch (Maloney, Resnick, Rusk,

Silerman, & Eastmond, 2010) and MIT App Inventor

(Wolber, Abelson, Spertus, & Looney, 2011). The

remainder of this paper will focus on the challenges and

possible benefits of real-time collaboration as they relate

specifically to the MIT App Inventor software.

MIT App Inventor is a web-based platform for building

mobile phone applications targeting Android. It provides

two editors for building an application: a designer where

users drag and drop components, such as buttons, to lay

out the user interface of an application, and the blocks

editor where program logic is provided using a puzzle

block-like language based on Google’s Blockly. MIT App

Inventor users require a Google account to identify

themselves to the service and projects are tied to these

accounts. While it is possible to perform group

collaboration in MIT App Inventor given its current

implementation, this is usually accomplished by student

groups creating a shared Google account and trading off

control over who is editing using the single account.

We propose a collaborative programming environment

within the MIT App Inventor software that will enable

multiple users to engage in computational thinking in a

real-time collaborative manner. Section 2 describes the

related work in computational thinking and collaborative

programming. Section 3 illustrates our design and

implementation of the collaborative environment. Section

4 presents a discussion that how this system can help users

engage in computational thinking.

2. RELATED WORK
Brennan & Resnick (2012) gauge computational thinking

with respect to three categories: computational concepts,

computational practices, and computational perspectives.

They defined “Connecting” as one of the computational

perspectives, which involves programming with others

and programming for others. By collaboration,

programmers are able to accomplish more than what they

could have on their own.

With text-based programming languages, programmers

usually collaborate with a version control system, such as

Git. Guzzi, Bacchelli, Riche, and Van Deursen(2015)

presented an improved IDE with support of version

control system to help programmers to resolve conflicts

and detect problems introduced by others’ code. Other

than version control system, Goldman, Little, & Miller

(2011) demonstrated a real-time collaborative web-based

editor for the Java programming language.

Collaboration in blocks-based programming languages

has typically been done via remixing, such as in the

Scratch language (Maloney et al., 2010) and MIT App

Inventor (Wolber et al., 2011). In remixing, a developer

publishes an application publicly and others use it as a

starting point for a new application. This remixing

behavior makes iterate development between two

developers more difficult because the project, rather than

some subset, is the basis for remixing.

Greenberg & Gutwin (2016) highlight key challenges in

enabling awareness in collaborative environments. We

169

leverage their findings by codifying awareness

information via the locking mechanisms proposed in

Section 3. These locking mechanisms allow users to direct

awareness of their peers by synchronizing access to the

environment on a pe user basis. Gross (2013) provides a

more in-depth review of awareness research.

3. DESIGN AND IMPLEMENTATION
Our collaboration system is mainly designed for group

course projects of 2-4 students in middle school, high

school, or college. The system will satisfy the following

features:

1. Users are identified by their email address and share

projects with others by email address. The user who

creates the project can change others’ access level of

the project. The access level includes read, in which

users can only view the project, and write, in which

users can both view and edit the project.

2. Users can know who is currently working on the

project, and the components or blocks that each

individual is currently working on.

3. User can see others’ changes simultaneously. There

are several cases in MIT App Inventor:

a. When users work on different screens, their

changes will not be shown until switching

screens.

b. When users work on the same screen, and they

work on the same editor, they can see the others’

change immediately on the editor.

c. When two users work on the same screen, and

one works on the designer editor, and the other

works on the blocks editor, the one on the

blocks editor can see new blocks when the one

on the designer editor adds a new component.

When the one on the designer editor removes a

component, the other will see blocks related to

that component disappear.

Figure 1. Share project by entering user’s email address

3.1. User Interface Design

A user can share a project with others by providing their

email address. Figure 1 shows the user interface of sharing

a project. Once the project is shared successfully, the other

user can find the project in her project explorer. Users can

know who has opened the project by the colored square in

the project title bar. When user hovers on the square, it will

show the user’s email address. The color of the square

indicates the user’s color. It is used to identify which part

of the program a user is editing.

Figure 2. An example of collaborative block-based

programming in MIT App Inventor. This project is shared

within four users. The user can see the other three users,

A, B and C, on the project title bar. The block that each

user is editing is highlighted with the user’s color.

3.2. Collaboration Server

In order to show others’ changes immediately, we use

publish-subscribe pattern to send updates from one user to

others. Publish-subscribe pattern is a messaging pattern,

where senders can send messages to a channel, and

receivers who subscribe to that channel can receive the

messages. We decided to build a NodeJS server for web

clients to communicate about collaboration, which runs

separately from the MIT App Inventor server, so it is easy

to be managed. MIT App Inventor clients connect the

collaboration server with sockets. We use Redis, an open

source library for in-memory data structure store and

publish-subscribe pattern, to publish and subscribe

updates (Redis Contributors 2017), and all messages will

be in JSON format. The client will translate changes into

JSON documents and send them to the collaboration

server over a specified channel. The server will apply

operational transformations on JSON documents to make

sure changes are published consistently to all subscribed

clients. Then, clients translate JSON document into events

that update the code and run the events on their individual

systems. Therefore, the copies of the code of all clients

will eventually be identical.

3.3. Channels

Each MIT App Inventor client is both publisher and

subscriber in the system. Clients will subscribe to three

kinds of channels:

1. User channel: The user channel is specified

by the user email address. Each client

170

subscribes to only one user channel. When

users share a project, they publish the

project and user information to others’ user

channel. Therefore, other users will be

notified that a user shares a project with

them, and that project will appear in their

project list.

2. Project channel: Project channel is specified

by project id. (Each MIT App Inventor

project has an id that is unique to the MIT

App Inventor server.) When a collaborator

opens a project, he will subscribe to that

project channel. This channel is used for

project-level messages, such as when other

collaborators open or close the project, or

when components are added, modified or

removed. When a collaborator publishes

changes to the project channel, all active

collaborators on that project will be

notified.

3. Screen channel: The screen channel is

specified as combination of the project id

and the screen name. This channel is used

to publish changes about blocks. Each

screen has its set of blocks. Users subscribe

to this channel when they open the block

editor of a screen. After subscribing this

channel, all changes related to blocks in this

screen will be published to the channel.

4. DISCUSSION

The collaborative programming environment within MIT

App Inventor provides users a new approach to teach and

learn. For example, it enables “teacher-student” or

“mentor-mentee” roles inside MIT App Inventor.

Teachers can share the projects with students in read-only

mode to demonstrate ideas and demos. Students can work

on group projects after school, because they can

collaborate remotely. As MIT App Inventor is built for

students and novice programmers, the collaborative

programming environment gives them an opportunity to

develop their teamwork skill at an early stage. Also,

while developing applications collaboratively, users can

learn how to resolve conflicts. In addition to the

commonly used pair programming method, our

collaborative programming environment introduced a

new mode of cooperation between students. Instead of

sitting shoulder-to-shoulder and working on the same

machine, students can work on the different machines in

distributed locations and review others’ changes

simultaneously.

This new collaboration mechanism for MIT App Inventor

touches on all four of the key computational thinking

practices of Brennan and Resnick (2012). Multiple users

can incrementally and iteratively build small units either

in isolation or together depending on the complexity of the

tasks and expertise of the individuals. Users can explore

different debugging techniques to assist one another in

addressing problems in the code. Reuse and remix of code

can happen on a much finer time granularity on the order

of seconds or minutes. Lastly, users can work together to

help one another understand and exploit abstraction and

modularization techniques within a program.

One challenge for collaborating with visual programming

language is that it is hard to understand others’ thought

process. With the text-based programming language,

programmers can know others’ plan via comments.

However, it is hard to place comments in visual

programming environment without disrupting actual

programming logic. One way we can handle it is to add a

screen for comments, so users can toggle the comments

screen as they need. Another way to help users to

understand others is adding a communication channel, so

that users can exchange their ideas while they are

programming.

Our technical approach is not restricted to MIT App

Inventor, as it builds on Google’s Blockly. It can therefore

be applied to other visual programming languages, such as

Scratch. It is easy to integrate socket and publish-subscribe

pattern into the system.

5. CONCLUSIONS
We presented a collaborative programming environment

within the MIT App Inventor software and provided

technical details of an implementation of real-time

collaboration. In future work, we will evaluate the

effectiveness of the collaboration with novice and expert

users of MIT App Inventor to better understand how

students use the system to collaborate.

6. REFERENCES
Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the

development of computational thinking. In

Proceedings of the 2012 annual meeting of the

American Educational Research Association,

Vancouver, Canada (pp. 1-25).

Goldman, M., Little, G., & Miller, R. C. (2011, October).

Real-time collaborative coding in a web IDE. In

Proceedings of the 24th annual ACM symposium on

User interface software and technology (pp. 155-164).

ACM.

Greenberg, S., & Gutwin, C. (2016). Implications of we-

awareness to the design of distributed groupware

tools. Computer Supported Cooperative Work

(CSCW), 25(4-5), 279-293.

171

Gross, T. (2013). Supporting effortless coordination: 25

years of awareness research. Computer Supported

Cooperative Work (CSCW), 22(4-6), 425-474.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The scratch programming

language and environment. ACM Transactions on

Computing Education (TOCE), 10(4), 16.

Redis Contributors (2017). Redis Publish-Subscribe

message pattern. Retrieved February 4, 2017 from

https://redis.io/topics/pubsub.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor. O'Reilly Media, Inc.

Guzzi, A., Bacchelli, A., Riche, Y., and Van Deursen, A.

(2015). Supporting Developers' Coordination in the

IDE. Proceedings of the 18th ACM Conference on

Computer Supported Cooperative Work & Social

Computing - CSCW '15

https://redis.io/topics/pubsub

Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

172

Evidences of Self-Development of TAs in CT Education

Ray CHEUNG1, Ron Chi-wai KWOK*, Matthew LEE, Robert LI, Chee-wei TAN

City University of Hong Kong, Hong Kong
1 r.cheung@cityu.edu.hk, isron@cityu.edu.hk, ismatlee@um.cityu.edu.hk,

Robert.Li@cityu.edu.hk, cheewtan@cityu.edu.hk

ABSTRACT
In the context of integrating Computational Thinking

(CT) in Primary School Education, we examine the self-

development of undergraduate students during their

engagement as Teaching Assistants (TAs) in CT

Education. More specifically, we propose to adopt the

stress-adaptation-growth process of the Intercultural

Transformation Theory (ITT) as a framework to provide

evidences of the self-development of TAs in the

CoolThink@JC project of Hong Kong. The collected

data confirms the evidences of the stress-adaptation-

growth process of TAs engagement, which helps

transforming undergraduate students into co-teachers

with commitment to future civic involvement.

KEYWORDS
Computational Thinking, Teaching Assistant, Co-

Teaching, Stress-Adaptation-Growth, Service Learning

1. SUMMARY OF CITYU

INVOLVEMENT IN CT EDUCATION
Coding and computing-related skills are vital in the

information age both for personal and social

development. In this project, the City University of Hong

Kong (CityU) team aims to provide professional

education support to enhance coding literacy among

Hong Kong citizens through a series of elaborative

teaching and learning activities, in particular targeting

the primary school student group in our population.

Coding is now a global initiative in multiple countries,

such as the “Hour of Code” campaign is first initialized

by Code.org in the US in 2013, providing free

educational resources for all ages. Now, over 100 million

students worldwide have already tried an “Hour of Code”.

In the UK and in Australia, Coding has been put into the

primary education curriculum. In Hong Kong, CityU

Apps Lab (CAL) (http://appslab.hk) is a leading

University organization offering free workshops to

public to learn to code, kicking off their first hour of

coding. Over 2,000 hours of coding have been achieved

in the previous “Hour of Code HK” workshops, and we,

at CityU of Hong Kong, have offered over 10,000 hours

of coding lessons to the beneficiaries by running “We

Can Code” and “Go Code 2015” with the Sino Group.

In the world’s major economies, students from

elementary school to postgraduate level are increasingly

getting involved in understanding the fundamentals of

computer programs and coding skills. In the UK, a new

version of the relevant curriculum has been established a

year earlier on 8 July 2013 by GOV.UK, putting a

significant emphasis on computing skills. The new

curriculum replaces basic word processing skills with

more demanding tasks such as coding and understanding

algorithms. Primary school children are proposed to be

taught how to write simple programs using computer

languages.

In Singapore – Hong Kong’s Asian competitor of diverse

areas - a plan is being fermented by its INFOCOMM

Development Authority (IDA), which prescribes the

progressive introduction of software programming

classes into public schools. This would provide students

with a unique opportunity to write code in classroom

settings employing the teaching and educational

resources which are available to other fundamental

curriculums. A talk is now being initiated by the nation’s

Ministry of Education regarding the necessity of

incorporating programming into its national curriculum.

Estonia is beyond all doubt taking the lead in

programming skill education by launching a nationwide

scheme to teach school kids from the age of seven to

nineteen the methodology of writing computer code. It is

one of the first countries to have a government that was

fully e-enabled. The ProgeTiger initiative was started in

January of 2012 by the Estonian government, aiming at

bringing programming into classrooms to help raise

Estonia's technical competency. This small country with

a population of 1.3 million is the home of Skype and has

been attracting sponsoring activities from well-known

organizations such as the Mozilla Foundation.

It is of great significance that Hong Kong citizens could

grasp the basic principles of mechanisms of the digital

devices that play such a large role in modern life and be

aware of the fundamentals of coding. It is also important

to know that when running the “Hour of Code HK”

Campaign, we observe that youth group can achieve the

coding tasks in a much shorter time when compared with

University students or adults. In this connection, it is

identified that there is still a lack of momentum in Hong

Kong in the present day to catch up with the world’s best.

We believe that students at their early age are able to

understand and acquire computational thinking skill at a

faster pace, therefore, in this project we provide them a

three-year training from junior, to intermediate, and then

to advanced in-class support. Each one of them will

consist of 8 to 14 lessons, and each lesson is around 35-

45 minutes long. On top of the in-class training, we will

also provide them with mentoring support from our

University students on a group basis (e.g. one 40-student

class will be taken care of by 2 tutors). The University

students involved will participate through our established

campus internship and other co-curricular experiential

learning schemes.

173

We propose this project on a 3-year basis in order to

create a sustainable learning environment for the primary

students to keep up their learning attitude. The main role

for the CityU team is to provide in-class manpower

support and also parent involvement support, and to

facilitate effective learning in target schools. CityU Apps

Lab, an education community at CityU consisting of

more than 600 University students, is able to provide this

manpower support throughout this project. It is expected

that in 3 years’ time, this community can grow up to

1,000 members on campus involving the CityU Alumni

network. Students from HK major universities, who are

passionate about coding education, will be recruited to

join this project.

In order to provide interactions with primary school

students, we will provide support to the whole project to

create a structured curriculum with the partnering

organizations on this project that eventually integrates

learning existing subjects such as mathematics and

sciences with the computational thinking skills that the

students have picked up. This has the potential to

galvanize knowledge sharing and learning among the

students.

2. ROLES AND RESPONSIBILITIES

OF TAS IN CT EDUCATION
In the CoolThink@JC project

(http://www.coolthink.hk/), 97 teaching assistants (TA)

are recruited by the CityU team from over 10 tertiary

institutions of Hong Kong in the academic year of

2016/17. The 97 TAs have been trained and assessed

based on their performances on a series of tests and

teaching practices. They have passed the assessment

criteria, and been assigned to serve the 12 pilot primary

schools participating in the CoolThink@JC project of

Hong Kong.

In general, the main roles of TAs are to assist teachers in

answering students’ enquiries in class, and the class

matters related to CT teaching in the pilot primary

schools. Also, they have to support the teacher in creating

a joyful and innovative learning environment, and act as

a role model in the classroom (e.g. passionate,

responsive).

On the other hand, the major responsibilities of TAs are

to provide a professional support to teachers in relation

to teaching and learning. They have to praise students

who have successfully completed the class exercises

with creative ideas and behave well, and are able to assist

other classmates. Also, they have to inspire students to

generate creative ideas by encouraging students to finish

their tasks by themselves with appropriate guidance.

They have to report any concerns regarding student

matters to their supervisors.

3. EVIDENCES OF SELF-

DEVELOPMENT OF TAS IN CT

EDUCATION
Data are being collected and presented in forms of

reflective summary submitted by TAs. The extracted

content of the reflective summary are also mapped with

corresponding factors of the stress-adaptation-growth

process of the Intercultural Transformation Theory (ITT)

(Kim and Ruben (1988)). One TA case is presented in

this paper (See Appendix). More elaboration of other

cases will be presented in the conference.

4. REFERENCES
Kim, Y.Y., & Ruben, B.D. (1988). Intercultural

transformation: A systems theory. In Y.Y. Kim., W.B.

Gudykunst (Eds.) Theories in intercultural

communication, Newbury Park, CA: Sage, 299-321.

5. APPENDIX

TA Case

ITT

Factors

Extracted Reflective Summary

Stress Expectation before the co-teaching is

simple and direct. To be part of a

remarkable project that will enrich my

life. Frankly, the work I am doing right

now is more or less the same as I

expected.

The classroom experience is

overwhelming. Witnessing our future

generation build an astonishing program

from scratch is definitely something

beyond joy.

Adaptation The young fellas have many questions

regarding the lesson, sometimes I heard

funny questions and sometimes, some

of their questions even inspire me.

Of all the awesome experience I had,

one that stand out is a child asked me

whether she can write her program in

Japanese. I was not sure whether my

answer should be yes or no at that time

and still not sure at this moment. But I

told her as long as she finished her

classwork, she can program it in

Japanese. Surprisingly, she finished her

work within 15 minutes and start

writing her Japanese program.

Growth This experience made me realized the

power of curiosity and sometimes it

might be the best teacher a child can

have.

Author Index

Hal ABELSON 84

Gabriella ANTON 17

Connor BAIN 17

Gautam BISWAS 11, 28, 34

Ana C. CALDERON 6

Mei-ki CHAN 107

Peng CHEN 94

Yanru CHENG 55

Ray CHEUNG 172

Wai-chong CHIA 133

Belinda CHNG 122

Sue-inn CH’NG 133

Hyungshin CHOI 81

Bessie CHONG 139

Tom CRICK 6

Xinyue DENG 168

Peh-yenc EE 45

Birgit EICKELMANN 103

Deborah A. FIELDS 67

Chung-kit FUNG 55

Divya GOPINATH 145

Arjun GUPTA 145

Bruria HABERMAN 23

Asif HASAN 28

Wu-jing HE 107

Michael HORN 17

Ting-chia HSU 73

Chiu-fan HU 50

Hsin-chung HU 73

Ronghuai HUANG 94

Nicole M HUTCHINS 34

Jane IM 160

Joseph IPPOLITO 60

Yasmin B. KAFAI 67

P. Kevin KEITH 90

Mi-song KIM 81

Siu-cheung KONG 77, 84, 97

Ron Chi-wai KWOK 172

Amelie LABUSCH 103

Chun-kiu LAI 55

Ming LAI 77, 84

Karen LANG 84

Andrew LAO 84

Natalie LAO 84

Nguyen-thinh LE 39

Chien-sing LEE 45, 150

Irene A. LEE 60

Matthew LEE 172

Yunli LEE 133

Kaitlyn D. LEIDL 116

Robert Kwok-yiu LI 64, 172

Ling LIN 55

Yu-tzu LIN 50

Liu LIU 164

Meei-yen LONG 122

Chee-kit LOOI 164

Samuel Hong-shan LOW 150

Debora LUI 67

Joyce MALYN-SMITH 60

Paul MEDLOCK-WALTON 160

Orni MEERBAUM-SALANT 23

Claudia MIHM 110, 116

Jesús MORENO-LEÓ N 154

Evan W PATTON 2, 145, 168

Niels PINKWART 39

Sarah POLLACK 23

Gregorio ROBLES 154

Marcos ROMÁ N-GONZÁ LEZ 154

Lisa L RUAN 2

Peter SEOW 164

Josh SHELDON 77, 84, 145

Amanda A. SULLIVAN 110

Florence R. SULLIVAN 90

Hillary SWANSON 17

Chee-wei TAN 55, 64,172

Ai-ling THIAN 122

Mike TISSENBAUM 2, 77, 84, 145, 160

Catherine TRYFONA 6

Marina UMASCHI BERS 110, 116

Bimlesh WADHWA 164

An-tsu WANG 50

Uri WILENSKY 17

Jane Yat-ching WONG 64

Jing-wen WONG 45

Kwong-cheong WONG 127

Pam Hau-yung WONG 64

Wan-chi WONG 107

Cheng-chih WU 50

Longkai WU 164

Lee-seng YEONG 133

Pei-duo YU 55

Elaine ZHANG 145

Ningyu ZHANG 11, 34

