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Preface 

International Conference on Computational Thinking Education 2017 (CTE2017) is the first 

international conference organized by CoolThink@JC, created and funded by The Hong Kong Jockey 

Club Charities Trust, and co-created by The Education University of Hong Kong, Massachusetts 

Institute of Technology, and City University of Hong Kong. 

 

CoolThink@JC strives to inspire students to apply digital creativity in their daily lives and prepare 

them to tackle future challenges in any fields. Computational thinking (CT) is considered as an 

indispensable capability to empower students to move beyond mere technology consumption and into 

problem-solving, creation and innovation. This 4-year initiative educated over 16,500 upper primary 

students at 32 schools on computational thinking through coding education. Moreover, through 

intensive professional training, the Initiative develops the teaching capacity of 100 local teachers and 

helps them master the coding and computational thinking pedagogy.  Over time the project teams target 

to affect greater change by sharing insights and curricular materials with policymakers and educators 

in Hong Kong. 

 

 “Computational Thinking Education” is the main theme of CTE2017 which aims to keep abreast of 

the latest development of how to facilitate students’ CT abilities, and disseminate findings and 

outcomes on the implementation of CT development in school education. It comprises keynote and 

invited speeches by internationally renowned scholars, panel discussions, academic paper presentation, 

booth exhibition on STEM/Coding products and solutions, and student and teacher poster presentation 

and demonstration.  

 

CTE2017 gathers educators and researchers around the world to share implementation practices and 

disseminate research findings on the systematical teaching of computational thinking and coding 

across different educational settings. There are 15 sub-themes under CTE2017, namely: 

 

Computational Thinking 

Computational Thinking and Unplugged Activities in K-12 

Computational Thinking and Coding Education in K-12 

Computational Thinking and Subject Learning and Teaching in K-12 

Computational Thinking and IoT 

Computational Thinking Development in Higher Education 

Computational Thinking and STEM/STEAM Education 

Computational Thinking and Non-formal Learning 

Computational Thinking and Psychological Studies 

Computational Thinking and Special Education Needs 

Computational Thinking and Inclusive Society 

Computational Thinking and Early Childhood Development 

Computational Thinking in Educational Policy 

Computational Thinking and Teacher Development 

General Submission to Computational Thinking Education  



 

 

 

 

The conference received a total of 43 papers (25 long papers, 12 short papers and 6 poster papers)  by 

authors from 13 countries (see Table 1). 

 

Table 1: Distribution of paper submissions for CTE2017 

 

Each paper with author identification anonymous was reviewed by at least 3 International Program 

Committee (IPC) members. Related sub-theme chairs were responsible to conduct meta-reviews and 

make final decisions on the submitted papers based on IPC members’ recommendations. With the 

comprehensive review process, the conference accepted 17 long papers, 12 short papers and 8 poster 

papers (see Table 2). 

 

Table 2: Review results of submission acceptance for CTE2017 

 

Country/Region No. of 
submission 

Country/Region No. of 
submission 

The United States 15 United Kingdom 1 

Hong Kong 9 Canada 1 
Taiwan 3 Israel 1 
Singapore 3 Australia 1 
Malaysia 3 China 1 
Germany 2 Spain 1 
Korea 2   

Sub-theme Long paper Short paper Poster Total 

Computational Thinking 0 1 1 2 

Computational Thinking and Coding 

Education in K-12 
1 1 1 3 

Computational Thinking and Subject 

Learning and Teaching in K-12 
3 1 1 5 

Computational Thinking and IoT 0 1 0 1 

Computational Thinking 

Development in Higher Education 
1 0 0 1 

Computational Thinking and 

STEM/STEAM Education 
5 1 1 7 

Computational Thinking and Non-

formal Learning 
2 0 0 2 

Computational Thinking and 

Psychological Studies 
1 1 1 3 

Computational Thinking and 

Inclusive Society 
0 0 1 1 

Computational Thinking and Early 

Childhood Development 
2 1 0 3 

Computational Thinking and Teacher 

Development 
1 1 2 4 

General Submission to 

Computational Thinking Education 
1 3 1 5 

TOTAL 17 12 8 37 



 

 

 

 

CTE2017 has three conference days comprising five keynote speeches, two invited speeches, three 

panel discussions, five academic paper presentation sessions, booth exhibition on STEM/Coding 

products and solutions, and student and teacher poster presentation and demonstration. 

 

Keynote and Invited Speeches 

 

CTE2017 has invited five internationally renowned scholars as the conference keynote speakers: (1) 

Prof. Hal ABELSON from Department of Electrical Engineering and Computer Science, 

Massachusetts Institute of Technology, The United States (“Computational Thinking, Computational 

Values, Computational Actions”); (2) Ms. Marjorie YANG from Esquel Group, Hong Kong (“Why is 

Computational Thinking Education Important as the Foundation for Innovation?”); (3) Prof. Tom 

CRICK from Cardiff Metropolitan University, The United Kingdom (“‘It’s not the Coding 

Curriculum’: Embedding Computational Thinking into England’s New Computing Curriculum”); (4) 

Dr. Shuchi GROVER from SRI International, The United States (“Computational Thinking in K-12: 

Considerations for Pedagogy and Assessment”); and (5) Prof. Uri WILENSKY from Northwestern 

University, The United States (“Transforming Knowledge and Learning through Agent-Based 

Modeling”). 

 

The conference has also invited two internationally renowned scholars as the conference invited 

speakers: (1) Prof. Gautam BISWAS from Vanderbilt University, The United States (“CTSiM: A 

Computational Thinking Environment for Learning Science using Simulation and Modeling”); and (2) 

Ms. Eliane METNI from International Education Association, Lebanon (“Empowering Teachers to 

Nurture Computational Thinking and Innovation in K-12”); 

 

Panel Discussions 

 

CTE2017 has three panel discussions: (1) “Computational Thinking and Education Policy” (Facilitator: 

Prof. Siu-Cheung KONG from The Education University of Hong Kong, Hong Kong); (2) “Promotion 

of Computational Thinking Development in Local School Education” (Facilitator: Principal Tsz-wing 

CHU from Baptist Rainbow Primary School, Hong Kong); and (3) “STEM Education and 

Computational Thinking Development” (Facilitator: Dr. Daner SUN from The Education University 

of Hong Kong, Hong Kong). 

 

Poster Presentation and Booth Exhibition 

CTE2017’s Poster Presentation aims at showcasing worldwide researches on computational thinking 

education and CoolThink@JC achievement in the first year. There are four poster categories, namely 

international academic poster papers, posters presenting local teachers’ reflection prepared by The 

Association of I.T. Leaders in Education (AiTLE), posters displaying local students’ achievement 

presented by The Hong Kong Association for Computer Education (HKACE) and posters about 2017 

CoolThink@JC Competitions participating teams. 

 

The academic poster papers cover diversified international computational thinking research outcomes 

highlighting the importance and pathways of computational thinking development in aspects covering 

K-12 education, teacher development and STEM education. 

 

The posters prepared by AiTLE share with participants on how Hong Kong teachers design and 



 

 

 

implement lessons and post-lesson activities on computational thinking development, coding 

education and STEM / STEAM education. Teachers’ pedagogy approaches, teaching methods and 

schemes, and reflection are also illustrated with real classroom examples. 

 

For the posters presented by HKACE, students show their computational thinking learning experiences 

of different events such as Hong Kong Olympiad in Informatics (HKOI) and IT Challenge Award 

(ITCA). Also, they explain how these learning activities equip students with programming and 

problem solving skills. 

 

This year the CoolThink@JC Competition attracted more than 100 applications from 40 primary 

schools. In the first round of the competition, the participating teams produced a 3-min video to 

describe the problem they would encounter in their daily lives and then apply their knowledge and 

skills on Computational Thinking to produce a creative and innovative solution with coding technique. 

30 teams were shortlisted in June to enter the final of the competition which will be held in October 

2017. The videos of these 30 finalists are showcased here at the conference poster display session. 

 

Apart from poster display and presentation, there are 20 booth exhibitions, among which 4 are in-

charged by 12 CoolThink@JC Cohort One School teachers and students demonstrating students’ 

actual learning outcomes and how they benefit from computational thinking education. Students also 

share their experience with participants on designing Apps and programming robots. The other 16 

booths are conducted by local technological companies and organizations related to computational  

thinking education and development. They exhibit a wide range of STEM/coding solutions and 

products. 

 

On behalf of the Conference Organizing Committee, we would like to express our gratitude towards 

all members for their contribution to the success and smooth operation of CTE2017. 

 

We sincerely hope everyone would enjoy and get inspired from CTE2017. 

 
 

On Behalf of CoolThink@JC 

 

Siu-cheung KONG 

The Education University of Hong Kong, Hong Kong 

Conference Chair of CTE2017 

 

Tsz-wing CHU 

Baptist Rainbow Primary School, CoolThink@JC Resource School, Hong Kong 

Conference Chair of CTE2017 
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Evaluations of Programming Complexity in App Inventor 

 

Lisa L. RUAN, Evan W PATTON, Mike TISSENBAUM  

Massachusetts Institute of Technology 

llruan@mit.edu, ewpatton@csail.mit.edu, mtissen@mit.edu

 

ABSTRACT 

To understand computational thinking in App Inventor, it is 

important to be able to effectively evaluate computational 

complexity in block-based programming languages. In the 

past, there have been a handful of complexity measures 

proposed for text-based languages (Weyuker, 1988). In this 

paper, we will attempt to implement 2 such measures, 

Halstead’s Programming Effort and statement count, in App 

Inventor on a dataset of projects from 50 random users. The 

goal is to determine whether or not text programming 

standards for complexity can be generalized to block 

programming languages. This paper shows that the 2 

complexity measures we implemented are not adequate 

measures for complexity in App Inventor. This result 

indicates a need for different measures of complexity that 

more accurately portray block programming proficiency. 

We hope this study will be a gateway into a better 

understanding of the intricacies of App Inventor’s block 

programming language and its unique contributions to the 

development of computational thinking. 

KEYWORDS 
Data Analytics, Computational Thinking, Block-based 

Programming, Programming Complexity, App Inventor 

1. INTRODUCTION 
In an increasingly automated age, there is a growing 

recognition for individuals in all walks of life, not just 

programmers, to develop their computational thinking 

(Wing, 2006). Computational thinking is generally 

understood as the ability to recognize and solve problems 

using computational means (Brennen & Resnick, 2012) In 

this spirit, we aim to further understanding of how learners 

build computational thinking by analyzing the differences 

and similarities between block-based programming 

languages and text-based programming languages. 

In this paper, we apply a data-driven approach to apply text 

programming complexity standards to block-based 

programming and discuss the implications of the resulting 

complexity progression for each sampled user, as well as 

several App Inventor-specific takes on the meaning of 

complexity, and possible directions for future work. 

2. BACKGROUND 

2.1. App Inventor 

App Inventor is a block-based programming language 

(Glinert, 1986) that aims to increase access to programming 

capabilities and further the reach of programming education 

by simplifying programming concepts with visually 

intuitive blocks. The design of visual blocks in these 

environments make the flow of logic and programming 

easier to understand for young learners (Weintrop & 

Wilensky, 2015). App Inventor leverages this programming 

approach to allow users to create fully functional mobile 

applications for Android devices. 

App Inventor has nearly 3 million users from 195 different 

countries and has given rise to more than 7 million android 

apps (http://appinventor.mit.edu/explore/about-us.html). 

App Inventor's audience stems from a variety of 

backgrounds including educators, designers, researchers, 

government workers, and entrepreneurs; as such, the App 

Inventor dataset is rich in quantity and breadth. Also, since 

it occupies a niche between everyday logical thinking and 

traditional programming languages, it is an optimal to 

language to study for conclusions on the progression of 

computational thought. 

2.2. Software Complexity 

In his 1977 book, Elements of Software Science, Maurice 

Howard Halstead introduced a software metric intended to 

measure program complexity and give structure to the 

understanding of the software development process. This 

metric, aptly dubbed “Halstead’s programming effort” aims 

to compute the time (defined as “effort”) a user takes to 

create a program by analyzing the relationship between 

operators, operands and their appearances in a program. In 

this study we define operands as bodies of information and 

operators as functions that interact with those bodies of 

information. This measure focused on the relationship 

between the total number of operands/operators and the 

number of unique operands and operators. The calculation 

for programming effort (E) was performed in 2 parts: 

difficulty (D) and volume (V). The difficulty and volume 

were defined as follows: 

Given: n1 = # distinct operators; n2 = # distinct 

operands; N1 = total # operators; N2 = total # operands 

Effort = n1/2 * N2/n2 * (N1+N2)*log2(n1+n2) 

Thus, this difficulty measure rewards programs that use 

less distinct operands and instead reference previous 

operands. In other words, more consolidated programs will 

evaluate with higher complexity. For example, a program 

that utilizes one central function to execute similar 

procedures would be more complex than a program that 

defines each procedure individually. In the blocks given 

below, the first row represents a more complex program 

than the 2nd row. 

In 1988, this measure was evaluated by Elaine J. Weyuker, 

who concluded 2 main drawbacks. First, the effort to write 

one program P may be greater than the effort to write a 

composite program P;Q. Second, the effort measure makes 

no use of statement order. We combat the first drawback 
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by employing another complexity measure, statement 

count (also mentioned in the same paper), in addition to 

the effort measure. We assume the second drawback holds 

less importance in terms of programming effort in App 

Inventor since App Inventor is a block-based language and 

statement order is generated by compiler code.  

 
Figure 3. Complex vs not complex block programs 

3. METHODOLOGY 

3.1. Data Source, Sampling, File Types 

For this study we looked at users who had created at least 

20 projects, which we define as “experienced” users. This 

was so we would have sufficient data to analyze learning 

progression for each user. Attempting this type of analysis 

on users who have only created very few (such as 1 or 2) 

projects would be unreliable and would not give us a 

reasonable understanding of progression over time. It is 

important to note that we looked at users' entire 

programming history, not just their high complexity 

projects. Experienced users were at some point also 

beginners, and thus their project history also contains 

projects representative of beginner behavior. 

From this pool of experienced users, we randomly sampled 

50 and extracted their projects. Since the sample is 

completely random, we assume no knowledge of any 

demographical effects. We filtered out projects with more 

than one screen, since we believe multiple screens offer data 

transferring capabilities that should be further studied 

separately. Projects that used multiple screens accounted for 

less than 20% of all projects, so we still retained a large part 

of our dataset. A small number of corrupted or outdated 

projects without timestamps were omitted. 

3.2. Built-in Blocks vs. Component Blocks 

Within App Inventor, there are 2 broad classifications for 

blocks. First, built-in blocks are available for use in any 

program and are universal in application and are divided 

into 8 categories; control, logic, math, text, lists, colors, 

variables, and procedures.  

The other group contains component blocks, which are 

specific to the components, or parts of the app. Components 

are akin to features of an app. For example, an app might 

use a text box. The text box as a component has component-

specific blocks, such as a block that will change the font size 

of the text in the text box. Such blocks are very component-

specific, and can vary wildly depending on the components 

that are used in a program. There are more than a hundred 

components, and each can have more than 20 component-

specific blocks. As such, while built-in blocks can be 

tabulated and manually analyzed, component blocks are 

treated a little differently and grouped according to 

behavior. We will highlight the differences in analysis in 

section 3.4. 

3.3. Implementing Measure Complexity 

Our first approach to programming complexity was to use a 

statement count. The statement count represents the size of 

the program and acts as a naive measure of complexity. In 

App Inventor we define a statement as a block. To 

implement the statement count, we simply iterate through 

each xml file (which we convert to an element tree using the 

python element xml tree library) and count all the block 

declarations we have.  

3.4. Programming Effort 

Our second approach to programming complexity, 

Halstead’s programming effort, is much more complex and 

nuanced. In order to adequately implement this complexity 

measure, we went through several steps. 

3.4.1. Operator vs. Operand 

First, we needed a clear way to differentiate operators and 

operands. In this paper, we assume that every block is either 

an operator or an operand. This seems intuitive for 

component blocks as each component block interacts with 

the component in some way, so they must either retrieve 

information (which we will classify as an operand) or 

change the component somehow (which we will classify as 

an operator). The component blocks come in 4 different 

categories with the following classifications; methods, 

component blocks (reference blocks for the entire 

component), events, and set/get blocks (which modify or 

retrieve component variables, respectively). In the above 

order, we classified all blocks in the subcategories as 

operators, operands, operators, and operators for set blocks 

and operands for get blocks.  

We mentioned above that we assume all blocks are either 

operators or operands. The distinction is not as obvious for 

built-in blocks, so we manually classified each built-in 

block as an operand or operator. 

3.4.2. Determining Uniqueness and Final Calculations 

For component blocks, each component block has an 

internal mutation (properties of blocks that allow them to 

change shape or slightly alter function) regardless of 

whether or not it has an external mutation, and this internal 

mutation combined with the block definition uniquely 

determines the block identity.  For built-in blocks, we 

assumed each block tag is unique save for blocks that have 

dropdown menus that change the operation, definition 

blocks, and large grouped blocks defined by all parameters 

(such as "procedures_callnoreturn”), which we 

differentiated using additional block properties. 

We also found that, due to the nature of App Inventor, it is 

possible to create many functioning programs that only use 

operators and thus cannot be evaluated in the original 

effort formula. We propose 2 treatments of such cases. The 

first and naive treatment is to assume that the effort made 

by the user is 0. This is clearly not always true, as there are 

many perfectly functioning apps that use no operands 

(such as the App Inventor tutorial “Hello Purr”). The 

second approach is to assume that the ratio of operators to 

operands is 1. In this case we end up with the following 

formula: 

E = (N1)*log2(n1)*n1/2 
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3.5. Creating a picture of a user 

Once we have functions to calculate the complexity of each 

project, we combine the complexity and timestamps of each 

project to create a graph of the progress of complexity of 

each user. At this point we note the timestamps of the 

projects we previously filtered out (projects with multiple 

screens or malformed files) and include them in the graphs 

as breaks in the graph. This is to preserve accuracy when 

comparing users against each other. An example of how 

such a graph would appear is shown next. 

 
Figure 4. Statement count vs. project number 

Above, the 6th project is not included in the data set. 

4. RESULTS 
Figure 5 plots the statement count vs. project number for all 

fifty sampled users (i.e. 4 on the x axis indicates a user’s 

fourth project). Figure 6 represents the effort measure vs. 

project number. 

 

Figure 5. Statement count vs. project number 

 

Figure 6. Effort vs. project number 

Both sets of graphs are noisy, punctuated with peaks and 

appear as if there is no clear pattern of complexity 

progression as defined in both Halstead’s effort measure 

and the statement count. 

5. DISCUSSION 
Results show that Halstead’s programming effort and line 

count do not provide adequate insight into how users are 

becoming more proficient at block programming. As such, 

to understand complexity in block programming languages 

we cannot simply apply existing text programming 

language metrics. Given that metrics are invaluable for 

understanding important measures such as complexity, this 

paper is an important step towards developing measures that 

can help us better understand how people’s code evolves in 

block programming. This in turn, has important 

implications for understanding the different ways to build 

computational thinking. Knowing that text and block 

programming languages have some key differences 

highlights the need to adapt learners’ approaches to 

computation. Below we discuss the implications of these 

findings for blocks-based languages, with a particular focus 

on several key features of App Inventor. 

5.1. App Inventor Components 

A central difference between App Inventor and traditional 

text programming languages is its feature-based approach to 

programming. Let us first elaborate on the programming 

process in App Inventor. There are 2 main interfaces of App 

Inventor, the designer and the blocks editor. The Designer 

is used to modify the layout of elements (components) on 

the screen - text boxes, buttons, sound players, etc. while the 

blocks editor lets a user access actual programming blocks, 

such as if statements and booleans. To create a functional 

app, a user must first drag and drop components onto the 

screen in the Designer view, and then decide how the rest of 

the programming blocks are going to interact with the apps’ 

components. The bulk of the computational thinking needed 

to create a program involves this latter step of 

communicating with components through component 

blocks and using them in tandem with built-in blocks to 

create solutions. 

This way of programming embeds a mental distinction 

between components and other variables and makes it 

possible to make valid programs that don’t use any operand 

blocks at all. If we consider such programs, since the 

operators are communicating with information from the 

components, one approach could be to treat components as 

operands. However, this doesn’t make sense because 

components are clearly more complex operands than an 

average block. In this sense components might act not as 

variables but as information sinks and sources. This means 

users’ patterns of interaction with components and blocks 

are fundamentally different from text programming 

languages where everything is treated equally. 

5.2. Effects of Visual Intuition 

Another major aspect of block programming languages not 

available in text programming languages is the visual 

implications of the blocks themselves. Since the blocks can 

be placed in a 2-dimensional space, it is possible users may 

be clustering blocks according to their computational 

thought process. The 2D space adds an extra layer of 

consideration to the organization and subsequent 

understanding of blocks and how they relate to each other. 

5.3. Rigidity  

Users of App Inventor are restricted to the blocks that exist 

in App Inventor. This is very different from text 

programming, where there is a lot of freedom to define 

whatever functions or methods are needed. Computational 

thinking in this constrained environment could be different 

than in a more open text programming environment and thus 

affecting our results.  

5.4. A Problem-Solving Mentality 

It is likely many users are approaching App Inventor with 

the purpose of solving a specific problem, rather than to 

create increasingly complex projects. Thus, the complexity 
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of the project will likely depend on the complexity of the 

problem itself and may not represent a user’s proficiency in 

using the language. This kind of understanding may require 

finer grained analysis comparing the problem space and an 

individual user's solution in comparison to an "expert's" 

solution to the problem.   

5.5. Consequences in Educational Programs 

Studying the intricacies of computational thought behind 

block programming languages may enable us to better 

understand how to design curricula for a given purpose. For 

example, if the end goal of a program was to teach text-

based programming using App Inventor as an introduction, 

then it is imperative to understand the differences between 

the complexity of block-based programs and text programs 

so we could better design the transition from one to another 

(Parsons & Haden, 2007).  

5.6. Classification of Blocks 

In the process of implementing the complexity measures we 

also began classifying blocks in App Inventor as operands 

and operators. This is a shift from treating blocks as a means 

to achieve a product or desired function towards treating 

blocks as more traditional computational elements.  This 

allows us to analyze blocks in App Inventor as a different 

type of computational thinking. Instead of analyzing if a 

user can create a specific end product using given blocks, 

we can focus on how users might be perceiving each block 

if they are building intuition for text-based programming 

concepts.  

6. LIMITATIONS AND FUTURE WORK 
Due to additional questions about data transfer, we did not 

include any programs with multiple screens, which is 

another possible area for us to study. Nevertheless, we hope 

the findings of this work will pave the way for other 

investigations of programming complexity in block-based 

programming languages, as well as opportunities for further 

research on communication between different bodies of 

information and how they relate to complexity. 

6.1. New Measures of Complexity 

In section 5, we mentioned many properties of App Inventor 

are unique and different from most text programming 

languages. A logical next project would be to create a new 

measure that accurately captures these differences and 

allows us to more accurately evaluate the computational 

complexity of apps created in App Inventor. Possible 

directions could be to focus on component-block interaction 

or visual clustering of blocks.  Other approaches include 

row or column organization, or novel ways of using existing 

blocks to replicate text programming functions that do not 

exist in App Inventor.  Even more possible measures include 

the speed of adaptation of new App Inventor features, or the 

amount of data transfer between screens.   

7. CONCLUSION 
Text programming complexity standards, in particular 

Halstead’s Programming Effort and Statement count, are 

not very applicable in determining App Inventor fluency. 

This paper is a call to action for more studies on revealing 

the nuances of complexity in block-based languages and 

towards providing insight into factors such as the physical 

organization of code blocks within a program. 
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ABSTRACT 
This paper presents the results of a preliminary investigation 

into how the teaching of computational thinking -- 

particularly algorithmic thinking and programming -- to 

university undergraduate students varies depending on 

aptitude and perceived enjoyment of STEM subjects during 

their secondary-level (pre-university) education. We 

investigated a specific component of computational 

thinking, algorithmic thinking, comparing against a 

student's ability to develop knowledge and understanding of 

introductory programming. 

KEYWORDS 
Perceptions, Algorithmic thinking, Computational 

thinking, STEM 

1. INTRODUCTION 
Computational thinking [Papert 1996; Guzdial 2008; Wing, 

J. (2008)] is increasingly being integrated into various 

national curricula, being regarded as a key skills, with wide 

potential utility, for school-age children. It is recognised 

both for its important role in developing knowledge and 

understanding of foundational computer science concepts, 

but also for its potential in developing more general-purpose 

problem-solving skills across the curriculum. This paper 

investigates whether algorithmic thinking (an integral part 

of computational thinking) can be as easily taught to those 

with a natural interest in computational science and those 

who do not process such an interest, and whether this 

changes with aptitude to more technical subjects in school. 

Aptitude and interest are restricted as to what students 

preferred subjects subjects were at the time of secondary 

school graduation.  

There are many views of computational thinking, for 

instance a recent report of a workshop shows the range of 

definitions, and opinions on the subject (NRC 2010) Some 

researchers adopt the original notions of procedural 

thinking, as developed by (Papert 1981) to define what 

Computational Thinking is. This view sees it as a step-by-

step list of detailed and unambiguous instructions such that 

can be interpreted and executed by an automated agent. 

Others view it as an effort to expand the human capacity for 

problem solving, by providing abstract tools able to aid in 

the management of tackling complex tasks. A lot of 

researchers also dismiss the notions of linking 

computational to the processing of numbers, whereas some 

argue it is a way of enabling humans to solve problems by 

means of providing precise methods for doing so.  Whatever 

viewpoint adopted, most researchers seem to agree that 

computational thinking is an integral part of computer 

science [Tedre 2016]. The skill set learn by studying 

Computational Thinking is complementary to more 

established areas taught at HE computing degrees. This 

investigation looks at students’ aptitudes to STEM and 

Humanities in the final two years of school, in an attempt to 

see whether there are negative or positive correlations to 

leaning elements of Computational Thinking and of a core 

element of Computing degrees, programming. Focusing 

particularly on algorithmically thinking and on object-

oriented programming, we found that an aptitude in STEM 

favoured performance in learning object-oriented 

programming notions, but found no difference between 

aptitudes in humanities and in sciences when learning 

Algorithmically Thinking (Futschek 2006) with a 

methodology highlighted in later sections. 

2. Methodology 
2.1 The Research Question  

Our interest is on whether particular preferences in 

secondary school have a positive correlation with ability to 

learn algorithmically thinking in Higher Education. Using 

the methodology above we measured data gathered from 

students about attitudes and aptitudes of STEM-based and 

other subjects and how well they performed on the 

particular algorithm course. 

2.2 Pedagogical Investigation 

The investigation took part over two semesters in one 

academic year; one semester the students participated in an 

algorithm class, and the second semester different students 

participated in an object-oriented programming class. The 

choice for using different groups of students was due to the 

transfer of knowledge, performance in a latter module, for 

instance object-oriented programming could have been 

enhanced by attending an earlier, for instance, algorithmic 

thinking module. 

We designed a one semester course such focusing on 

teaching algorithmic thinking to first-year, first-semester 

students enrolled in three undergraduate degree 

programmes: Computer Science, Software Engineering and 

Business Information Systems. Students participated in a 

total of 11 weekly sessions, where each session consists of 

three components, distributed during the week.  

 

Algorithmic Thinking 

The sessions consisted of:  

 Part A consists of a one hour session (workshop) of a 

hands-on puzzle solving activity. 

 Part B consists of a formative learning session (a one 

hour lecture) 
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 Part C consists of a one hour session (workshop) of a 

puzzle that includes writing pseudocode. 

For the workshops (Parts A and B) students were required 

to work in groups. The fist session was purposely kept 

simple, and we now use it as an example of the 

methodology, it consisted of: 

 Part A (workshop): present students with physical 

copies of Tower of Hanoi puzzles with a large number 

of even and of odd disks. 

 Part B (lecture): lecture on recursion 

 Part C: (workshop) Tower of Hanoi puzzles handed out 

to students again, and asked them to write pseudocode 

to solve a Tower of Hanoi with either an even or an 

odd number of disks (students who do not immediately 

recognize recursion are given extra support until they 

are able to connect the concept from the lecture to the 

example from the workshop).  

For another illustrative example, we detail the second 

session.  The main aim behind this session was to develop 

understand of sorting algorithms. Students were given 

cardboard pieces with numbers written on it, ranging 1-100, 

and asked to find the maximum. Following the same pattern 

as all other sessions, students were placed in groups. 

Differently from other sessions, they were asked (in their 

groups) to first think about attempting to find the maximum 

value of the numbers (sorting the cards) if they could only 

work by themselves, then if they could only work within the 

group, and finally to think about how they would solve if 

the groups could talk to each other and divide the cards.  The 

idea behind this is to aid participants in teaching themselves 

what an algorithm is as well as to bring their awareness to 

the existence of parallelism as a means to efficiency. This 

session is based on ideas developed in (Adams 2005). 

For the formative learning portion of the session students 

were taught the concept of a sorting algorithm and presented 

with some standard examples of sorting algorithms, namely 

insertion sort, selection sort, merge sort, heapsort, quicksort, 

bubble sort and variants.   For the final workshop (Part B) 

of this particular session, students were given Rubik's cubes 

and given 3 sequences of moves, then asked to use these 

sequences to solve the cube, and write a pseudocode for 

their solution (an algorithm that would sort all sides to the 

desired configuration). 

 

Programming 

Teaching introductory programming within Higher 

Education can be particularly challenging due to the 

diversity of educational background of incoming 

undergraduate students, as a single annual intake of students 

is likely to include a broad range of prior learning 

experiences.  As a consequence of school-level computer 

science education reform (Brown et al, 2014), an increasing 

number of first year students are likely to have had some 

exposure to programming in schools or colleges.  Some 

students, perhaps through their own extracurricular efforts, 

may have developed considerable technical skills.  This 

variance in ability seemingly increases the risk of 

disengagement because the teaching material may either be 

viewed as too difficult (Mohd et al, 2013) or too simplistic. 

It could be argued, however, that software development and 

programming is an art as much as it is a science and that 

undergraduate students can best develop their programming 

skills through apprentice-style learning (Kolling and 

Barnes, 2008; Bennedsen and Caspersen, 2008). Recently, 

there has been more emphasis placed on the importance of 

“software carpentry” skills, so that student can develop a 

sense of “craftsmanship” towards the design and 

development of software solutions to real world problems. 

Seminars and tutorials can particularly lend themselves to 

this style of delivery, where experienced teaching staff are 

not only able to demonstrate the technical skills, but also 

explain the thinking behind the decisions that they make 

(Kolling and Barnes, 2008). 

Given that sound computational thinking skills aids in most 

stages of the software development process, there is an 

increasing and explicit emphasis on developing these skills 

in modern undergraduate computing curricula.  By focusing 

on key skills such as algorithmic thinking from early on in 

a programmer’s career, students can more readily 

contextualise programming as a tool to be used for 

expression of creativity and for problem solving. Students 

are able to analyse problems and formulate a solution 

computationally (Cesar et al, 2017).  An emphasis on 

computational thinking within the context of apprentice-

style learning, may reduce the risk of disengagement as 

more technically-able skills will have the opportunity to 

refine their skills under the guidance of a more experienced 

academic member of staff. 

 

Similarly to algorithmic thinking, the sessions were broken 

down into formative and practical learning, namely they 

consisted of: 

 Part A consists of a formative learning session (a one 

hour lecture) 

 Part B consists of a two hour practical session 

(coding the concepts learnt in the lecture). 

In particular, during the term each week (note that each 

week contained Part A together with Part B), was given by:  

 Week 1: Introduction to programming, including 

varying programming paradigms. 

 Week 2: Introduction to integrated development 

environments. 

 Week 3: Understanding how to perform operations, 

and their implications to varying paradigms. 

 Weeks 4 and 5:Understading statements and directing 

values. 

 Week 5: Manipulating Data. 

 Weeks 6, 7 and 8: Object Oriented concepts. 

 

3. Results 
We compared students’ aptitude to STEM subjects and 

humanities at both A-levels and GSCE with their ability to 

learn algorithmic thinking, with the methodology 

highlighted above. More specifically, we focused on 

students who had grade C and above at a combination of 

mathematics, computing and physics at A-level, and those 

who had a grade C and above at a combination of history, 

literature and drama. The performance of both groups was 

similar; the first group had an average grade of 62.4%, with 
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a standard deviation of 13.4, whereas the humanities group 

had an average grade of 61.3% with a standard deviation of 

9.4 (see Figure 1 for more details). Of the 92 students used 

for the first study (algorithmic thinking), 23 had taken the 

requirements of aptitude in the three stem subjects: 

mathematics, computing and a science subject, and 17 

satisfied the requirements of having taken the humanities 

English literature, history and drama. For the second study 

(programming) 21 had taken the requirements of aptitude in 

the three stem subjects: mathematics, computing and a 

science subject, and 18 satisfied the requirements of having 

taken the humanities English literature, history and drama. 

Although the difference between STEM and humanities for 

the algorithmic group was significantly small, the difference 

for a more traditional approach to teaching object-oriented 

programming was more significantly different, the average 

programming grade for students with a STEM aptitude was 

17.9%, with a standard deviation of 67.1, and those with an 

aptitude in humanities was 16.7% with a standard deviation 

of 47.5, more details can be found on Figure 1. This suggests 

that Computational Thinking approaches are more readily 

taught to varied skilled students, as compared to the core 

elements of Computer Science. This suggests that along side 

standard computer science subjects, HE students might 

benefit from having a dedicated module of "Computational 

Thinking" as that would "even the playfield" and thus allow 

educators to keep the levels of motivation similar to students 

regardless of their background. We also analysed their 

ability to write pseudocode. 

 
Figure 1. Distribution of grades for algorithmic thinking 

against humanities and STEM preferences at A-levels 

 
Figure 2. Distribution of grades for programming against 

humanities and STEM preferences at A-levels 

4. CONCLUSION 
We presented the beginnings of an on-going investigation 

into how susceptible students, of varying aptitudes and 

attitudes, are to learning computational thinking skills.  
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ABSTRACT 
Researchers have hypothesized strong connections 

between Computational Thinking (CT) practices and 

STEM learning. However, there is a lack of consensus on 

what constitutes an adequate set of CT knowledge and 

skills. In this paper, we present an initial framework for 

evaluating students’ CT learning. We introduce the 

primary CT concepts and practices that students can learn 

and apply in a learning by modeling environment. Our 

overall goal is to develop assessments that study the 

synergy between STEM and CT concepts in K-12 

curricula. Towards this end, we discuss the results from a 

teacher-led classroom study we conducted on STEM- and 

CT-learning in our CTSiM environment.  

KEYWORDS 
Computational thinking, learning by modeling, CT 

assessment, evidence-centered design, classroom study  

1. INTRODUCTION 
Computational thinking (CT) involves a collection of 

abilities and practices for solving problems analytically, 

thinking recursively, and using abstraction (Wing, 2006). 

CT could benefit communities beyond computer science 

practitioners, by drawing from fundamental skills and 

practices of various disciplines (Wing, 2006).  In addition, 

CT can benefit teaching and learning in other domains, 

using skills and practices that originate within CT (Wing, 

2011; Barr & Stephenson, 2011).  

A series of studies have shown that appropriate use of CT 

skills and corresponding tools can deepen the learning of 

science, technology, engineering, and mathematics 

(STEM) subjects (García-Peñalvo et al., 2016). CT shares 

a reciprocally enriching relationship with math and 

science, meanwhile, synergistic learning of science and 

CT skills has been demonstrated through a series of 

studies (e.g., Weintrop et al., 2016a; Basu, Biswas & 

Kinnebrew, 2017). The deep CT skills can transfer to and 

benefit other learning and problem-solving contexts 

(Grover, 2015), as CT requires fundamental 

understanding and development of solutions rather than 

rote learning (Wing, 2006). Therefore, CT is essential for 

preparing students for future learning (Bransford, Brown, 

& Cocking,  2000). 

These potential benefits of CT have led to the inclusion of 

CT into STEM classrooms. For example, the Next 

Generation Science Standards (NGSS) in the United 

States have included CT as a core scientific practice (The 

NGSS Lead States, 2013, Barr & Stephenson, 2011). 

However, although K-12 educators pushed for the 

advancement of computing curricula, many aspects of CT 

concepts remained underrepresented in corresponding 

assessments (Grover, Cooper, & Pea, 2014). Therefore, 

fine-grained assessments are required to evaluate the 

subtle aspects of students’ CT learning in STEM domains. 

Our lab has developed Computational Thinking using 

Simulation and Modeling (CTSiM), a computer-based 

learning environment that promotes learning of science 

and computational thinking (CT) concepts and skills 

using a learning by modeling approach (Wilensky, Brady, 

& Horn, 2014; Sengupta et al, 2013). In this paper, we 

present an initial CT assessment framework linked to 

CTSiM and evaluate its effectiveness. The assessment 

framework defines key CT skills and practices that 

students need when they are building models in CTSiM, 

as well as the methods for assessing them. Section 2 

reviews three aspects of relevant work from which we 

define the methodology used in this paper. Section 3 

introduces CTSiM and the focal CT-related knowledge, 

skills, and practices that students need to learn and 

develop to become proficient model builders and problem 

solvers. In Section 4, we present a classroom study that 

was administered by a middle school teacher with no 

intervention from the researchers. In Section 5, we report 

the main results of (1) incorporating key CT components 

in CTSiM, and (2) assessing these components in the form 

of a case study. Finally, we discuss the implications of our 

results and future work in Section 6. 

2. RELATED WORK 

2.1. CT Constructs  

Given the wide scope of CT, there has been little 

agreement among researchers on what constitutes CT 

(National Research Council, 2010; Brennan and Resnick, 

2012). In addition, the close relationship between CT, 

mathematics, algorithmic thinking, and problem-solving 

skills also veils core ideas in computation that it 

encompasses (García-Peñalvo et al., 2016; Weintrop et 

al., 2016a).  

To understand how programming supports the 

development of CT, Brennan and Resnick (2012) defined 

a framework for CT with three components: (1) 

computational concepts, (2) practices, and (3) 

perspectives. In this framework, computational concepts 

include the fundamental knowledge of a computing 

system, such as loops and conditionals; computational 

practices involve actions such as iterative building, 

testing, as well as debugging; and computational 

perspectives describe the learner’s CT world-view 

(Brennan & Resnick, 2012). In addition to focusing on 
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what students learn about CT, Weintrop et al. (2016a) 

proposed key CT practices that are commonly applied in 

STEM domains that include (1) data, (2) modeling and 

simulation, (3) problem-solving, and (4) systems 

thinking. These CT practices define how students learn 

CT and provide a theoretical foundation for integrating 

CT in STEM classrooms. 

2.2. Assessment of CT  

Assessments provide information on how well students 

understand and apply the content they are taught. Such 

information can help instructors infer the effectiveness of 

their teaching and learning (Mislevy, Almond, & Lukas, 

2003). 

CT assessments have been applied in various learning 

domains, for example, authoring environments that cater 

programming game design activities for novice learners 

(e.g., Repenning, Ioannidou, & Zola, 2000; Berland et al., 

2013; Moskal, Lurie, & Cooper, 2014; Weintrop et al., 

2016b). For example, Scratch (Brennan & Resnick 2012) 

uses multiple means of assessment that involve analysis 

of student-created programming portfolios, artifact-based 

interviews, and design scenarios; meanwhile, 

AgentSheets (Ioannidou et al., 2011) uses reoccurring 

patterns in game design and science simulation contexts 

to evaluate students’ understanding of CT. Despite the 

progress in advancing CT assessments, many 

fundamental aspects of CT have not received sufficient 

attention especially in the context of block-based 

programming environments (Grover et al., 2014). 

Therefore, more advanced test instruments need to be 

developed to enrich the CT assessment toolbox.  

2.3. Evidence-centered Design of assessment 

Evidence-centered design (ECD) is a methodology that 

emphasizes the use of evidentiary reasoning as the 

determining factor in designing assessments (Mislevy et 

al., 2003). Three components, i.e. the student model, the 

task model, and the evidence model, are essential while 

defining assessments under the ECD framework (Mislevy 

et al., 2003; Chrysafiadi & Virvou, 2013).  

The student model consists of the knowledge, skills, and 

abilities (KSAs) that can be used to infer students’ 

knowledge states. The task model describes a collection 

of tasks, their presentation material, and work products. 

The evidence model serves as the bridge between the 

student model and the task model that defines instructions 

on how a task response provides evidentiary information 

about the student’s knowledge state (Mislevy et al., 2003). 

Since there is a lack of consensus in describing what 

constitutes CT constructs, our methodology presented in 

this paper eclectically draws from a set of key CT aspects 

presented in the literature to form CTSiM-specific 

knowledge, skills, and abilities (KSAs) (Mislevy et al., 

2003). We give a detailed description of the student, task, 

and evidence models of CTSiM in Section 3. 

3. THE LEARNING ENVIRONMENT 

3.1. CTSiM 

Open-ended learning environments (OELEs)  have the 

potential to provide meaningful learning opportunities to 

students. While working with an OELE, students usually 

construct solutions to authentic problems. They may also 

generate and test hypotheses with artifacts (in the form of 

student-generated programs (Land 2000)).  

CTSiM is an OELE that promotes synergistic learning of 

science and computational thinking (CT) concepts and 

skills using a learning by modeling approach (Sengupta et 

al, 2013). In CTSiM, students use block-structured 

constructs to model scientific scenarios using an agent-

based framework (Wilensky, et al., 2014). Student models 

are converted into NetLogo simulations (Wilensky, 

1999). The learning and model-building tasks in CTSiM 

involve five primary activities: (1) reading and 

comprehending domain contents and CT-related concepts 

from two built-in resource libraries; (2) building a 

conceptual model of the science scenario using an agent-

based framework (defining the hierarchies of the agents’ 

and their environment’s  properties and behaviors); (3) 

constructing computational models that define the agents’ 

behaviors using a block-based visual programming 

language; (4) running their models as NetLogo 

simulations to analyze the behaviors generated; and (5) 

comparing their models’ behaviors to an expert model that 

executes synchronously with theirs (Basu, Biswas, & 

Kinnebrew, 2017).  

 

Figure 1. Computational model building interface. 

CTSiM has a learning progression that consists of two 

introductory training activities and a series of modeling 

activities (Basu, Biswas, & Kinnebrew, 2017). Students 

begin by constructing shape-drawing agents in the two 

training units and then proceed to the primary learning 

and modeling activities that cover five science topics: 

kinematics, dynamics, collisions, diffusion, and ecology. 

Figure 1 shows a screenshot of CTSiM’s user interface 

and the block-oriented domain-specific language for 

building the rollercoaster model (kinematics). The 
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learning activity on the foreground is constructing part of 

the computational model for the rollercoaster car agent.  

3.2. Student, Task, and Evidence Models in CTSiM 

We use the overlay model (Desmarais & Baker, 2012; 

Chrysafiadi & Virvou, 2013) to describe the states of 

students’ knowledge. Students’ mastery of CT aspects, as 

well as their ability to combine the CT constructs to solve 

complex problems in CTSiM, are inferred from their 

performance (i.e., whether or not they correctly answer a 

question). An overlay of students’ correct answers on the 

student model captures their CT knowledge state. The 

learning gains between the pre- and post-tests indicates 

whether a student has improved his or her understanding 

of a CT concept. Although the value of learning gains 

does not necessarily associate with a probabilistic model, 

comparing an individual learning gain with the 

aggregated results from a classroom can give a reasonable 

measurement of how much a student’s CT knowledge has 

progressed with respect to the average. Alternatively, one 

can also study students’ progress by looking at their 

knowledge states through a series of assessments. 

Summative paper-and-pencil pre- and post-tests on both 

the CT and the science domain topics constitutes 

CTSiM’s assessment task outside of the system. In this 

paper, we focus on these paper-and-pencil CT 

assessments. It is noteworthy that the task model under 

the ECD assessment framework is different from the 

learning task model that involves modeling scientific 

scenarios and running simulations as described in 

previous work by our research group (e.g., Basu & 

Biswas, 2016).  For the paper-and-pencil assessment, four 

types of question are administered: multiple choice, fill in 

the blank, short answer, and design. Each question will 

have a presentation format and an associated level of 

complexity. 

The evidence model of CTSiM defines the grading rubrics 

for the summative test questions that human raters use in 

processing a student’s responses on the tests. Each test 

question is associated with one or a combination of CT 

knowledge, skills, and abilities (e.g., determining which 

statement will be executed in a conditional structure). The 

evidence rules in the assessment can also update the 

question-KSA mapping in the student model when a 

student creates a work product (responding to a question).  

4. STUDY SETTING 
The data we analyze in this paper came from a classroom 

study with 37 eighth-grade students in the USA. The study 

lasted 9 days (one-hour per day) and was administered by 

a science teacher. Another purpose of conducting this 

study was to use the kinematics modeling activity of 

CTSiM to prepare for a hands-on activity of building 

paper rollercoasters in the teacher’s science class. Prior to 

the study, we offered copies of CTSiM to the teacher and 

assisted her to become proficient with the functionalities 

of the learning environment.  

On the first day (day 1) of the study, all participating 

students took paper-based pre-tests on CT skills and 

kinematics contents. On day 2 through day 4, the students 

worked together as a class on the introductory units to 

familiarize themselves with the system’s interface and 

basic concepts of agent-based modeling (e.g., agents and 

the environment, properties and behavior of agents). From 

day 5 to day 8, students worked individually on the 

rollercoaster modeling activity. Students modeled a 

rollercoaster car that moved on a track in 4 stages: (1) 

being pulled up by a motor at a constant speed, (2) 

accelerating along down slopes, (3) moving on a flat 

segment at a constant speed (ignoring friction), and (4) 

climbing up slopes and decelerating. As students built the 

computational representation of the motion of a 

rollercoaster car, they interacted with computational 

concepts, such as variables, if-conditionals, and loops. 

They also familiarized themselves with domain concepts 

such as acceleration, speed, distance, and their 

relationships. For example, that distance is a (linear) 

function of speed over time. On the last day, all students 

took the CT and science post-tests, which had the same 

questions as the pretest (the teacher and students never 

discussed the questions or solutions during the study).  

5. RESULTS 
We present a theoretical result and an analytical result in 

this paper. The theoretical result is a collection of key 

knowledge, skills, and abilities (KSAs) that we defined 

using ECD principles while drawing from the existing CT 

literature. We then analyze and discuss students’ 

performance on the KSAs (as the analytical result). 

Vanderbilt researchers were not present during the study, 

and we did not collect any demographic information from 

the class. As a result, students’ name, gender, and 

ethnicity are not known to us, so we cannot discuss issues, 

such as gender difference, in this paper. 

5.1. CT Knowledge, Skills, and Abilities 

With the methods described in Section 2, we define two 

categories of KSAs in CTSiM: (1) 4 key CT constructs 

and (2) 11 key CT skills and practices. The CT constructs 

in CTSiM are (1) sequential execution of statements, (2) 

loop structures, (3) conditionals, and (4) variables and 

assignments. The CT constructs consist of the most 

fundamental and domain-general computational block 

structures of CTSiM. 

In addition, the CT skills and practices are: (1) gathering 

information; (2) defining the agents’ properties as abstract 

conceptual models; (3) specifying in the conceptual 

model interface, environmental properties that affect 

agent behavior; (4) defining agent behaviors by building 

computational models; (5) Assessing student-constructed 

models by running simulations; (6) debugging models; (7) 

dividing problems into sub-problems; (8) modularizing 

and reusing computational solutions; (9) understanding 

relationships between variables in a system; (10) 

understanding systems at different levels of abstraction; 

and (11) solving inquiry problems using their models.   

This collection of CT skills and practices is defined by 

synthesizing well-known CT frameworks (e.g. Brennan & 

Resnick, 2011; Weintrop et al, 2016a) and emphasizing 

CT aspects that are specific to CTSiM. For example, 
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gathering information is comparable to the collecting data 

practice in Weintrop et al (2016a); understanding systems 

is related to the Systems Thinking practices; and our agent-

based-modeling-related CT skills and practices (No. 2, 3, 

4, and 5) correspond to the Modeling and Simulation 

practices. 

We believe the key CT constructs, as well as CT skills and 

practices, are necessary for the student to become 

successful in the learning activities in CTSiM. Some 

KSAs, although not directly linked to CT, also foster 

student’s learning. For example, while gathering 

information, students generate evidence as they read the 

two resource libraries in CTSiM. This information is 

necessary for understanding the domain content 

knowledge, building computational models, and 

reasoning about system behaviors. On the other hand, 

some KSAs involve metacognitive strategies and are 

difficult to assess in paper-and-pencil based assessments. 

For example, students divide problems into sub-problems 

in CTSiM as they work on the learning tasks and 

incrementally build computational models on a smaller 

scale. Yet this KSA cannot be directly assessed in our pre- 

and post-tests. Similarly, debugging and querying skills 

are not assessed as well.  

To illustrate the questions asked in the pre- and post-tests, 

we present and briefly discuss question 3 as an example.  

Q3 Consider the following program  

    If (quiz score is greater than 7) 

    Then: If (quiz score is equal to 10) 

        Then: Get the ‘You’re a pro’ sticker 

     Else: Get the ‘Good job’ sticker 

        Else: Get the ‘Try harder’ sticker 

Bill gets a score of 9 on the quiz while Janet scores 10 

points and Kim scores 5 points on the quiz. What stickers 

should each one receive? 

This question assesses students’ understanding of nested 

if-conditional structures that requires them to analyze a 

conjunction of logic statements. Only when both 

conditions (“quiz score is greater than 7” and “quiz score 

is equal to 10”) evaluate to true is the statement “Get the 

‘You are a pro’” executed. 

We show the links between KSAs and the questions in our 

pre- and post-tests in Table 1. Based on the distribution, 

CT constructs are assessed in the format of multiple 

choice and fill-in-blank questions (Q1 through Q4), and 

CT skills and practices are mostly assessed as short 

answer questions and design code snippets (Q5 through 

Q8). 

Table 1.  KSAs assessed in CTSiM questions. 

KSA Appearance 

Sequential execution 

(KSA1) 

All questions 

Loop structures (KSA2) Q1, Q6 

Conditionals (KSA3) All questions except 

Q1 

Gather information (KSA4) Q5, Q6, Q7, Q8 

Define agent properties 

(KSA5) 

          Q6, Q7 

Define agent behaviors 

(KSA6) 

   Q5, Q6, Q7, Q8 

Define environment 

(KSA7) 

Q6, Q7 

Simulate w/ model (KSA8) Q5, Q6 

Divide and conquer (KSA9) Q7, Q8 

Modularize and reuse (KSA10)         Q7, Q8 

Define relationships in systems 

(KSA11) 

Q6, Q8 

Define multi-agent systems 

(KSA12) 

       Q7 

5.2. Summative Assessment Results  

We then performed paired t-tests on the participating 

students’ pre-test and post-test scores. On an aggregated 

level, the students showed significant learning gains in CT 

(𝑝 = 0.000025). We also used Cohen’s 𝑑 to measure the 

effect size associated with the learning gains. Table 2 

summarizes the analysis of CT pre- post-test results. 

Table 2.  Means (and standard deviations) of pre- post 

assessment scores. 

Pre- 

test 

Post-

test 
t-stat p-value Cohen’s d 

14.05 

(2.36) 

21.59 

(2.47) 
4.61 < 0.001 0.91 

 We also divided the aggregated results according to 

individual KSAs. Table 3 summarizes the students’ 

learning gains in each KSA. We discuss the results and 

their implication in the next section. 

Table 3 .  Average pre- post assessment scores 

(standard deviations) and p-values per KSA. 

 Pre-test Post-test p-value 

KSA1 14.05 

(2.36) 

21.59 

(2.47) 
< 0.001 

KSA2 2.46 (2.13) 4.57 (2.10) < 0.0001 

KSA3 13.78 

(8.70) 

20.78 

(7.81) 

< 0.0001 

KSA4 8.89 (7.07) 15.81 

(7.76) 

< 0.0001 

KSA5 2.78 (3.08) 6.65 (3.63) < 0.0001 

KSA6 8.89 (7.07) 15.81 

(7.76) 

< 0.0001 

KSA7 2.78 (3.08) 6.65 (3.63) < 0.0001 

KSA8 4.22 (2.36) 6.30 (2.12) < 0.0001 

KSA9 4.68 (5.55) 9.51 (6.59) 0.0002 

KSA10 4.68 (5.55) 9.51 (6.59) 0.0004 

KSA11 5.84 (5.65) 10.38 

(5.65) 

0.0002 

KSA12 0.81 (2.26) 2.89 (2.76) 0.00012 
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6. DISCUSSION  

From the results of the classroom study, we found that 

students not only achieved significant learning gains at the 

aggregated level, but also in each of the KSA’s we defined 

using the ECD framework. As the existing work on CT 

education has stated, teaching CT content should not be 

carried out as a standalone subject that is isolated from the 

real world; instead, students should learn CT in the 

context of problem-solving and its application (Weintrop 

et al., 2016a). During the classroom study, the teacher 

documented a few anecdotes, which provided empirical 

evidence of benefits and rationales for continually 

integrating CTSiM into STEM classes.  

To begin with, the teacher reported that the participants 

enjoyed the system. A girl told the teacher that she did not 

realize that she could fall in love with programming 

(Teacher: “I think one girl may have even found her 

calling in life, as she is a real ‘natural’ with the coding part 

and has never done it before”). Additionally, students 

benefited from CTSiM when they built actual paper 

rollercoasters. The teacher reported that the participants 

showed improvements compared to students in previous 

years, who only sketched and built the paper rollercoaster. 

For example, none of the students designed a loop at the 

beginning of the track, which was not uncommon among 

previous cohorts. The teacher also felt that the CTSiM 

activities helped her better manage the class because 

students more easily realized their own difficulties while 

interacting with the system and asked relevant and 

specific questions, making it easier to for the teacher to 

adapt her scaffolding in a more effective manner. Finally, 

the teacher herself gained programming experience with 

the system. The study helped her become more 

comfortable with programming and agent-based 

modeling concepts.  

The classroom case study shows that CTSiM is effective 

in helping middle students learn and improve their 

understanding of CT concepts and skills. In addition, 

CTSiM fitted well into the science classroom and helped 

students learn their science content better (Basu et al., 

2016). To better define and assess CT with CTSiM, our 

future work will focus on (1) refining the CTSiM CT 

KSAs described in this paper to include concepts and 

practices from more studies; (2) increasing the CT 

assessment tools’ coverage on these KSAs with questions 

that address concepts with a finer granularity (e.g. adding 

CT skills and practices such as debugging and resolving 

inquiry with computational models that are not currently 

being assessed), (3) delving into the test reliability and 

validity (e.g., showing that students behave similarly on 

questions covering same KSAs), and (4) aligning 

students’ performance on the CT tests to characterizations 

of  learning behaviors in CTSiM (Zhang, Biswas, & 

Dong, in press). 

7. CONCLUSION 
In this paper, we presented a case study of students’ 

learning and using computational thinking with an open-

ended learning environment in a classroom setting. We 

defined our focal knowledge, skills, and abilities in CT 

that are synthesized from the literature of CT pedagogy 

and assessment. Results of this case study showed the 

potential of our assessment framework in understanding 

students’ learning of CT concepts and skills as the 

participants achieved significant learning gains in the CT 

KSAs defined in our assessment framework. This paper 

also demonstrated the benefits and feasibility of 

integrating CTSiM in everyday STEM learning contexts 

even for teachers with little experience with computer-

based learning environments. 
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ABSTRACT 
The importance of Computational Thinking (CT) as a goal 

of science education is increasingly acknowledged. This 

study investigates the effect of computationally-enriched 

science curriculum on students’ development of CT 

practices. Over the course of one school year, biology 

lessons featuring the exploration of NetLogo models were 

implemented in the classrooms of three 9th grade biology 

teachers at an urban public secondary school in the United 

States. One-hundred thirty-three biology students took 

both pre- and post-tests that were administered at the 

beginning and end of the school year. The students’ 

responses to relevant assessment items were coded and 

scored using rubrics designed to evaluate their mastery of 

two learning objectives relating to modeling and 

simulation practices. The first learning objective was to 

explore the relationship between a system’s parameters 

and its behavior. The second learning objective was to 

identify the simplifications made by a model. Each item’s 

pre- and post-test scores were compared using a Wilcoxon 

signed-rank test. Results indicate a statistically significant 

improvement with respect to the second of the two 

learning objectives, suggesting that the computationally-

enriched biology curriculum enhanced students’ ability to 

identify the simplifications made by a model. 

KEYWORDS 
Computational Thinking, STEM Education, Learning 

Objectives, Curriculum, Assessment.  

1. INTRODUCTION 
The importance of Computational Thinking (CT) as a goal 

of science education is increasingly acknowledged 

(Quinn, Schweingruber, Keller, 2012; Wilensky, Brady & 

Horn, 2014). Teaching CT in the context of science not 

only presents students with a more authentic image of 

science as it is practiced today, it also increases access to 

powerful modes of thinking and marketable skills for 

many careers (Levy & Murname, 2004). It is estimated 

that by 2020, one out of every two STEM jobs will be in 

computing (ACM Pathways Report 2013). However, 

students from groups that have been historically 

underrepresented in STEM fields (such as women and 

racial minorities) are less likely to enroll in computer 

science classes (Margolis, 2008; Margolis & Fisher, 2003) 

and thus are not traditionally exposed to CT practices. We 

believe we can improve access for all students, especially 

those underrepresented in CS, by embedding CT practices 

in subjects such as biology, chemistry, and physics, which 

all high school students are expected to take. While this 

does not ensure that these students will be personally 

motivated to engage in our CT curriculum, it ensures that 

they will at least be exposed to CT practices and given the 

opportunity to learn about them.  
 
 

For the reasons given above, we believe that developing 

CT practices in the context of science subjects is a 

productive endeavor. However, the character of CT 

practices in the science disciplines is not yet well 

understood, nor is how to create curriculum and 

assessments that develop and measure these practices 

(Grover & Pea, 2013). To address this gap, our group has 

worked to explicitly characterize core CT practices as 

specific learning objectives and used these to guide our 

development of science curriculum and assessment. We 

developed our learning objectives upon a theoretical 

taxonomy of CT in STEM that our group previously 

proposed (Weintrop et al., 2016). The taxonomy consists 

of four strands of CT practices: Data Practices, Modeling 

and Simulation Practices, Computational Problem 

Solving Practices, and Systems Thinking Practices. We 

translated elements from each strand of the taxonomy into 

learning objectives through a process involving interviews 

with computational scientists and feedback from high 

school science teachers.  
 

The general aim of our larger research agenda is to address 

the question: “Can engaging in computationally-enriched 

science curriculum help students develop CT practices?” 

In the present study, we address a more focused version of 

this question and investigate whether engaging in three 

computationally-enriched biology units over the course of 

the school year helped participant students develop CT 

practices, specifically two practices within the Modeling 

and Simulations strand of our taxonomy. Below, we 

describe our study design and analytical approach, then 

present results from a comparison of students’ scores for 

pre- and post-assessments. Our results provide support for 

our claim that computationally-enriched science 

curriculum can foster students’ development of particular 

CT practices. 

2. STUDY DESIGN 
We investigated our research question by analyzing data 

from the fourth iteration of a design-based research cycle 

(Collins, Joseph, Bielaczyc, 2004). The implementation 

spanned the 2015-2016 school year and was tested in three 

9th grade biology classrooms at our partner school. 

Students were given a CT practices pre-test at the 

beginning of the school year and a CT practices post-test 

at the end of the school year. Over the course of the school 

year they participated in three CT science units, each unit 

approximately four days long. We investigated the role of 

the CT science units in students’ development of particular 

CT practices by looking for statistically significant gains 

in scores for particular items from pre- to post-test. 
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2.1. Participants 

We partnered with a public secondary school (serving 

grades 7 – 12) in an economically depressed neighborhood 

in a large city in the Midwestern region of the United 

States. The school was selected on the basis of the 

willingness of its teachers and students to participate in 

our study. The size of the school was typical for an urban 

public secondary school, with approximately twelve 

hundred students enrolled. The majority of the students at 

the school are considered to be of racial minority within 

the United States (71.1% Black, 24.5% Hispanic, 1.6% 

Asian, .3% American Indian, .2% Pacific Islander, .9% Bi-

Racial, 1.4% White), with sixty-two percent from low 

income households. The school is characterized as 

selective-enrollment, meaning that the student population 

is academically advanced and highly motivated. We 

addressed our research questions by analyzing a selection 

of the pre- and post-test responses given by participating 

9th grade biology students. A total of 133 of these students, 

distributed across three biology teachers, took both tests. 

Due to time constraints, a number of these students did not 

complete the entire assessment. Ten students did not 

complete the assessment item measuring learning 

objective 1 and 24 did not complete the assessment item 

measuring learning objective 2; these students’ responses 

were therefore not included in the analyzed datasets.  

2.2. CT Science Lessons 

The biology students participated in three 

computationally-enriched biology units over the course of 

the school year. Each unit took approximately four school 

days and emphasized the exploration and manipulation of 

computational models of scientific phenomena or 

concepts. The first unit was on predator-prey dynamics 

and ecosystem stability. For this unit, students explored 

population dynamics in a simulation of an ecosystem 

consisting of three organisms (grass, sheep, and wolves) 

(Wilensky, 1997b). Students investigated the population-

level effects of parameters for individual organisms (such 

as initial population and reproduction rate) by running the 

simulation with different values for each organism. 

Through their exploration, the students learned about the 

complex population dynamics that emerge from the 

interactions between individual organisms.  The second 

unit was on AIDS. For this unit, students explored a model 

that simulated the diffusion of the infectious disease 

through a population (Wilensky, 1997c). Students 

investigated the effects of parameters for individual 

interactions (such as the probability of individuals to form 

a couple, and the probability of the disease transfer 

between partners) on the rate of spread of the disease. The 

third unit was on genetics. For this unit students explored 

a model that allowed them to change mating rules in a 

population of fish. Students investigated how changing 

parameters such as life span and mating choice could 

bring about changes in the overall allele frequencies in a 

population of fish. All units were meant to help students 

develop expertise regarding learning objectives for 

Modeling and Simulations Practices by engaging in 

science content through the exploration of NetLogo 

(Wilensky, 1999) simulations. NetLogo simulations were 

chosen because the agent-based modeling environments 

make complex systems phenomena (such as those featured 

in the biology lessons) more intuitively accessible 

(Wilensky, 2001). Additionally, the NetLogo user 

interface makes transparent the relationship between a 

model’s code and the phenomenon it simulates. This 

makes NetLogo a powerful tool for scaffolding students’ 

transition from consumers, to designers and builders of 

computational models. In order to help students develop a 

flexible set of CT practices, other CT-STEM units feature 

simulations built in modeling environments such as 

Molecular Workbench (Concord Consortium, 2010) and 

PhET (Perkins et al., 2006) and introduce students to a 

range of computational tools for data analysis and problem 

solving.  

2.3. CT Assessments 

The pre- and post-tests were designed to evaluate students’ 

mastery of CT practices. In this report, we present results 

concerned with two particular learning objectives within 

our Modeling and Simulations Practices strand. The first 

learning objective falls under the sub-strand element 

Using Computational Models and states that a student 

should be able to “explore a model by changing 

parameters in the interface or code.” This is a very basic 

skill but it plays an important role in students’ (and 

scientists’) abilities to learn about the relationship between 

particular parameters and system behavior at the macro-

level. The second learning objective falls under the sub-

strand element Assessing Computational Models and 

states that a student should be able to “identify the 

simplifications made by a model.” This learning objective 

is important to students’ epistemological development, as 

it relates to their understanding of a computational model 

as a tool that is both powerful and limited with regards to 

the construction of new knowledge. 

Both pre- and post-tests required students to interact with 

computational simulations. For the pre-test, students 

interacted with a simulation (shown in Figure 1, below) 

that modeled climate change and showed the relationship 

between temperature and amount of CO2 in the 

atmosphere (Tinker & Wilensky, 2007). For the post-test, 

students explored a simulation (shown in Figure 2, below) 

that modeled the relationship between the pressure of a gas 

and its volume and number of particles in a sealed 

environment (Wilensky, 1997a; 2005). 
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Figure 1. Screenshot of pre-test simulation modeling the 

relationship between temperature and atmospheric CO2 

levels. 

 

Figure 2. Screenshot of post-test simulation modeling the 

relationship between the pressure of a gas and its volume 

and number of particles. 

To assess students’ abilities to explore a model by 

changing parameters in the interface or code, we analyzed 

their responses to test items (quoted below) that asked 

them to attend to the relationships between adjustable 

parameters and system-level characteristics. In order to 

assess students’ abilities to identify simplifications made 

by a model, we analyzed their responses to test items that 

asked them for the ways in which the simulations differed 

from the real-world. These assessment items were selected 

to investigate students’ mastery of the same learning 

objectives across two very different computationally 

modeled phenomena. 

2.4. Data Analysis 

We used a combined top-down (learning objective driven) 

bottom-up (data driven) approach to create rubrics for 

evaluating students’ responses to pre- and post-test 

questions and characterizing their mastery of both learning 

objectives.  

2.4.1. Learning Objective 1 

For the pre-test, in the context of the greenhouse gas 

simulation, students were asked to explore the relationship 

between a system’s parameters and its behavior by 

changing a particular parameter and reporting on the 

resulting system-level behavior. In particular, they 

responded to the prompt: “Set cloud coverage to 0%. Take 

some time to experiment with different settings for the 

‘CO2-amount’ slider. What happens to the temperature if 

you increase the amount of the CO2 in the model?” For 

the post-test, in the context of the gas-law simulation, 

students were asked to explore the relationship between a 

system’s parameters and behavior by changing parameters 

to get a specific result. In particular, they responded to the 

question: “What values for container size and number of 

particles will result in the lowest pressure in the container? 

What steps did you take to come up with these values?”
i
  

We examined students’ pre- and post-test responses, 

sorting responses into categories based on similarities that 

were relevant to our focal learning objective. Four 

categories emerged that characterized response types 

across both pre- and post-test responses. These categories 

are Noticing Parameter-System Relationships, Including 

Explanatory Factors, Comparing Across Trials, and 

Correctness.  

These categories are outlined, described and illustrated 

with examples from the data in Table 1, below. We scored 

students’ responses by awarding one point for each 

category included in their response and taking the sum of 

these points. This resulted in scores ranging from 0-3. 

Table 1. Pre- and post-test rubric for analyzing students’ 

responses and characterizing their ability to explore a 

model by changing parameters in the interface or code. 

 Student Example  

Relationships 

Response describes relationship between system 

parameters and macro-level patterns.   

Pre-Test “The temperature increases.” 

Post-Test 

“I slid the wall-position to its maximum 

and the number of particles to its 

minimum.” 

Explanatory Factors 

Response provides some explanation for relationship 

between system parameters and macro-level patterns. 

Pre-Test 
“IR light does not get a chance to go into the 

sky because it is blocked by CO2.” 

Post-Test 
“A bigger area and less particles shouldn't 

produce a large amount of pressure since 

it’s a lot of space for the particles.” 

Comparison 

Response compares data across multiple simulation 

trials.  

Pre-Test 

“When I increase the CO2 amount there 

seem to be IR light flying all over the place. 

But when there are smaller amounts of CO2 

molecules the IR light have a better chance 

of going straight into the sky.” 

Post-Test 

“To come up with these values I first tried 

putting the number of particles and the 

container size at its max. After that, I tried 

the number of particles at its minimum and 

the container size at its maximum.” 

Correctness 

Response correctly addresses the assessment prompt.  

Pre-Test “The temperature increases.” 

Post-Test 
“Number of particles: 25 Wall 

position: 96” 
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2.4.2. Learning Objective 2 

As part of the pre-test, students were asked to identify the 

simplifications made by the greenhouse simulation. As 

part of the post-test, students were asked to identify the 

simplifications made by the gas-law simulation. For both 

tests, they responded to the question: “All computational 

simulations are only approximations of reality. What are 

some of the simplifications of this simulation that make it 

different from the real world?” 

We examined students’ pre- and post-test responses, 

sorting responses into categories based on similarities that 

were relevant to the learning objective we were analyzing. 

Six categories emerged that characterized response types 

across both pre- and post-test responses. These categories 

are General Issues, Representational Issues, 

Controllability, Completeness, Procedural Limitations, 

and Off-Task. They are arranged in order of increasing 

sophistication ii, described and illustrated with examples 

from the data in Table 2, below. We scored students’ 

responses by awarding them the point-value of the highest 

category included. “Off-Task” (of point-value zero) was 

given to responses that did not address the assessment 

item, or consisted of “I don’t know.” Scores ranged from 

0-3. 

Two researchers analyzed students’ responses to the two 

assessment items for both pre-and post-tests. They coded 

responses (identifying the categories presented in the 

rubrics) and then scored them. The researchers’ inter-rater 

reliability for the pre-test was at 97% for the item 

measuring the first learning objective and 90% for the item 

measuring the second learning objective. Inter-rater 

reliability for the post-test was at 95% and 80%, 

respectively. 

Table 2. Pre- and post-test rubric for analyzing students’ 

responses and characterizing their ability to identify 

simplifications made by a model. 

 Student Example  

General Issues – Score: 1 

Response refers to general, as opposed to specific, 

inaccuracies or missing factors.   

Pre-Test 
“In reality, other factors could come into 

play rather than just CO2 and clouds.” 

Post-Test 
“Inaccuracy in particles and wall position 

can make it different from the real world.” 

Representation Issues – Score: 1 

Response refers to representational limitations of the 

model. 

Pre-Test 
“Obviously, sunlight is not a bunch of little 

sticks raining down.” 

Post-Test “It’s not actually life size.” 

Controllability – Score: 2 

Response refers to the existence of control over factors in 

the model that one does not have control over in real life.  

Pre-Test 
“Because you can control how much CO2 

and cloud coverage there is.” 

Post-Test 

“In real life, you cannot add or subtract 

molecules nor can you adjust the wall 

positioning.” 

Completeness – Score: 2 

Response refers to specific elements or factors that are 

missing from, or extraneous to, the model.  

Pre-Test 
“There are humans on earth and humans 

also can add to the amount of heat.” 

Post-Test 

“The real world, does not have this many 

boundaries and an infinite number of 

particles.” 

Procedural Limitations – Score: 3 

Response refers to interactions, behaviors, or 

relationships within the model that differ from real life.  

Pre-Test 
CO2 might not speed up that much when it 

absorbs IR light. 

Post-Test 
Particles don’t travel in and out of room in 

this simulation, when in real life they do. 

 

To test whether the intervention played a role in their 

development of CT practices, students’ scores for each 

item on both pre- and post-tests were compared using a 

Wilcoxon signed-rank test. The findings of this analysis 

are reported below. 

3. Findings 

3.1. Learning Objective 1 

Students’ average score for the pre-test item measuring 

their ability to explore a model by changing parameters in 

the interface or code was 2.03. Their average post-test 

score was 2.19. The p-value obtained using the Wilcoxon 

signed-rank test was 0.23 (V = 1486). The difference in 

student scores is therefore not statistically significant and 

we cannot make the claim that engagement in our 

curriculum helped students improve their CT skills with 

regard to this learning objective.  

In addition to comparing students’ pre- and post-test 

scores for this learning objective, we compared the 

frequencies of categories of ideas that appeared in 

students’ pre- and post-test responses. Examination of the 

bar chart below reveals that during the pre-test, many 

students were concerned with macro-level effects of 

changing parameters, while at the time of the post-test, 

many more students referred to explanatory factors in their 

responses. This suggests they looked more closely at the 

model and tried to understand the interactions at the 

micro-level that explained the macro-level phenomenon. 

While the comparison of pre- and post-test scores 

indicates that students are not necessarily developing 

sophistication regarding their ability to explore a model, 

the changing frequency of categories gives us insight into 
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one specific way students may in fact be developing 

expertise. 

 

Figure 3. Frequencies of categories included in students’ 

responses to the pre- and post-test items assessing their 

mastery of learning objective 1. 

3.2. Learning Objective 2 

Students’ average score for the pre-test item measuring 

their ability to identify simplifications made by a model 

was 1.39. Their average post-test score was 1.63. The p-

value obtained using the Wilcoxon signed-rank test was 

0.02 (V = 647.5). The difference in student scores is 

therefore statistically significant (at the 5% significance 

level) and this supports our claim that engagement in our 

curriculum helped students improve their CT skills with 

regard to this learning objective.  

In addition to comparing students’ pre- and post-test 

scores for this learning objective, we compared the 

frequencies of categories of ideas that appeared in 

students’ pre- and post-test responses. For ease of coding, 

we combined categories of the same score. This is 

reflected in the categories shown in the bar chart below. 

Examination of this bar chart reveals that during the pre-

test, many students reported general or representational 

simplifications, whereas at the time of the post-test, this 

number decreased and the number of students reporting 

controllability or completeness as a limitation increased.iii 

The number of students reporting procedural 

simplifications also increased. While the comparison of 

pre- and post-test scores indicates that students are 

developing sophistication regarding their ability to 

identify simplifications within a model, the changing 

frequency of categories gives us insight into the specific 

ways in which students are becoming more sophisticated. 

 

Figure 4. Frequencies of categories included in students’ 

responses to the pre- and post-test items assessing their 

mastery of learning objective 2. 

4. Discussion 
This study extends our group’s previous work by 

translating our theoretical taxonomy into learning 

objectives that can be used to guide the design of 

curriculum and assessment. The study makes an empirical 

contribution by presenting evidence that engagement in 

our CT-STEM curriculum helped participating students 

develop their ability to identify simplifications made by 

computational models. Our data also gives us insight into 

how students might develop their ability to explore a 

computational model. Toward this, we will conduct 

qualitative analysis of particular students and examine 

individual developmental trajectories. Our next steps also 

include refining our pre- and post- assessment items so 

that they are more closely aligned with each other, and 

with our learning objectives. As well, we are refining our 

curriculum (across the science subjects) so that it is more 

closely aligned with our learning objectives and 

assessment items. This refinement includes creating more 

opportunities for students to explicitly reflect on and 

discuss their individual ways of exploring models, as well 

as the simplifications they notice in different models. 

5. References 
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design 

research: Theoretical and methodological 

issues. The Journal of the learning 

sciences, 13(1), 15-42. 

Concord Consortium. (2010). Molecular 

workbench. Java simulations and modeling 

tools), (2004–2013). 
 

Grover, S., & Pea, R. (2013). Computational Thinking in 

K-12: A Review of the State of the Field. 

Educational Researcher, 42(1), 38–43.   

Levy, F. & Murname, R. (2004). The new division of 

labor: How computers are creating the new job 

market. Princeton, NJ: Princeton University 

Press.   

Margolis J (2008) Stuck in the shallow end: education, 

race, and computing. The MIT Press, Cambridge  

Margolis J, Fisher A (2003) Unlocking the clubhouse: 

women in computing. The MIT Press, 

Cambridge  

Perkins, K., Adams, W., Dubson, M., Finkelstein, N., 

Reid, S., Wieman, C., & LeMaster, R. (2006). 

PhET: Interactive simulations for teaching and 

learning physics. The Physics Teacher, 44(1), 

18-23. 
 

Quinn, H., Schweingruber, H., & Keller, T. (Eds.). (2012). 

A framework for K-12 science education: 

Practices, crosscutting concepts, and core ideas. 

National Academies Press. 



  

22 

 

Tinker, R. & Wilensky, U. (2007). NetLogo Climate 

Change model. Center for Connected Learning 

and Computer-Based Modeling, Northwestern 

University, Evanston, IL.  

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., 

Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and 

science classrooms. Journal of Science 

Education and Technology, 25(1), 127-147. 

Wilensky, U. (1997a). NetLogo GasLab Gas in a Box 

model. Center for Connected Learning and 

Computer-Based Modeling, Northwestern 

University, Evanston, IL. 

http://ccl.northwestern.edu/netlogo/models/Gas

LabGasinaBox. 

Wilensky, U. (1997b). NetLogo Wolf Sheep Predation 

model. Center for Connected Learning and 

Computer-Based Modeling, Northwestern 

University, Evanston, IL. 

http://ccl.northwestern.edu/netlogo/models/Wolf

SheepPredation. 

i It is important to note that while both items are concerned 

with students’ abilities to learn about a parameter’s 

influence on a system’s behavior, they are inversely 

structured. While the pre-test item instructs students to 

change a parameter and report its effect on the system, the 

post-test item instructs students to change parameters until 

they achieve a specified system behavior. We argue that 

while they are different in this way, both items are 

concerned with the causal relationship between parameter 

values and system-level behavior and are therefore 

comparable assessments of students’ abilities to explore a 

model by changing parameters in the interface or code. 
ii General comments about accuracy and representational 

limitations seemed to be the easiest to make with attention 

to mere surface-features. These simplifications were 

therefore awarded the lowest score (one point). The 

Wilensky, U. (1997c). NetLogo AIDS model. 

http://ccl.northwestern.edu/netlogo/models/AID

S. Center for Connected Learning and Computer-

Based Modeling, Northwestern University, 

Evanston, IL.  

Wilensky, U. (1999). NetLogo. Evanston, IL. Center for 

Connected Learning and Computer-Based 

Modeling, Northwestern University. 

http://ccl.northwestern.edu/netlogo/. 

Wilensky, U. (2001). Modeling nature’s emergent patterns 

with multi-agent languages. In Proceedings of 

EuroLogo (pp. 1-6). 

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). 

Fostering computational literacy in science 

classrooms. Communications of the ACM, 57(8), 

24-28. 

Wilensky, U., Novak, M. & Levy S.T.  (2005). NetLogo 

Connected Chemistry 6 Volume and Pressure 

model. Center for Connected Learning and 

Computer-Based Modeling, Northwestern 

University, Evanston, IL.  

completeness of the model and control given to its various 

parameters seemed to require more careful consideration 

of the interface and comparison with the real-world. These 

simplifications were therefore awarded a slightly higher 

score (two points). Finally, comments about the 

procedural correctness of behavior and interactions within 

the model required students to run the model and track 

cause and effect relationships between elements at the 

micro-level and comparison of this with scientific laws or 

theories. These simplifications were therefore awarded the 

highest score (three points). 
iii This point is especially interesting given that the gas-

law simulation is just as unrealistic, regarding the visual 

representation of the system, as the greenhouse effect 

model. 

                                                 

http://ccl.northwestern.edu/netlogo/models/GasLabGasinaBox
http://ccl.northwestern.edu/netlogo/models/GasLabGasinaBox
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/AIDS
http://ccl.northwestern.edu/netlogo/models/AIDS
http://ccl.northwestern.edu/netlogo/


Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

23 

 

Constructing Models in Physics: What Computational Thinking Occurs? 

 

Sarah POLLACK1*, Bruria HABERMAN2, Orni MEERBAUM-SALANT3 

1,3 Davidson Institute of Science Education, Weizmann Institute of Science, Israel  

2 Holon Institute of Technology, Holon, Israel, and Davidson Inst. of Science Education, Israel, 

Sarah.Pollack@weizmann.ac.il, Bruria.Haberman@weizmann.ac.il, Orni.Meerbaum-salant@weizmann.ac.il

ABSTRACT 
Computational thinking (CT) practices, especially 

abstraction and evaluation, are central to developing 

expertise in scientific disciplines, and considerable 

synergies exist between CT and scientific expertise. We 

present a pedagogical model based on the Equation-

Based Model (EBM) for developing computerized 

simulations to describe physical phenomena. 

Specifically, EBM emphasizes the importance of 

mathematics as a central tool in science, and aims at 

fostering students’ abstraction and evaluation practices, 

as part of their modeling processes.    

We analyzed a final team-project of participants who 

decided to investigate a specific physical phenomenon in 

a course based on the EBM approach. Our analysis 

focused on characterizing the abstraction and evaluation 

practices, and the role they play in the scientific inquiry. 

The students applied multiple levels of abstraction, 

starting with the mathematic-system-level perspective of 

the conceptual model, and eventually constructed a 

computerized model of the conceptual model. They 

applied mathematical tools throughout the process, and 

verified and validated their models. The graphical 

simulation that the students built enabled them to 

investigate and enhance their comprehension of the 

problem explored.  We concluded that this pedagogic 

approach has the potential to promote meaningful 

learning and knowledge transfer of computational 

thinking that were acquired during the course.  

KEYWORDS 
Computational thinking, scientific inquiry, equation-

based model, abstraction, model evaluation.  

1. INTRODUCTION 
Computational thinking (CT) draws on concepts and 

practices that are fundamental to computer science and 

computing (Wing, 2006). Some of these practices are 

also central to developing expertise in scientific 

disciplines, and there are considerable synergies between 

CT and scientific expertise (Sengupta et al., 2013, 

Weintrop et al., 2016). Therefore, it is not surprising that 

recently, much effort has been invested in exploring the 

potential of CT to enhance model-based learning 

approaches using computing in STEM education. 

Indeed, using computing in model-based learning has 

been recently recognized as a suitable pedagogical 

means to engage students in scientific inquiry (National 

Research Council (U.S.), Pellegrino and Hilton, 2012).  

“Scientific models are tools for expressing scientific 

theories in a form that can be directly manipulated, 

allowing for description, prediction, and explanation.” 

(Rapp & Sengupta, 2013, p. 2320). Scientific modeling 

is an iterative process, consisting of building, testing, and 

revision. More specifically, this process involves: (a) 

embodying key aspects of theory and data of phenomena 

into a model, (b) evaluating the model using the criteria 

of accuracy and consistency, (c) investigating the 

characteristics of the model in order to illustrate 

theoretical arguments about the mechanism or internal 

structure, and (d) interpreting the model and obtaining 

insights about the investigated phenomenon (Schwarz 

and White, 2005; Hughes, 1977).  Furthermore, today 

computers serve as an important tool for creating and 

using scientific models. Thus, modeling requires 

students to develop, among others, the following 

interrelated key practices: abstraction and evaluation, on 

which this paper focuses.  

Abstraction enables the problem-solver to handle 

complex data and to think in terms of conceptual ideas 

rather than merely in terms of their details (Wing, 2006). 

Therefore, Wing (2006, 2008) claimed that abstraction is 

a key practice in computing and that the abstraction 

process concerns making decisions as to what to 

emphasize and what to hide. This process, when 

successful, brings about a representation of the 

phenomena studied, that is, a generalized idea or an 

abstract structure, from which one can learn about a wide 

range of more concrete items with shared characteristics. 

Additionally, there are multiple levels and ways of 

abstracting. Therefore, mastering this practice involves 

the ability to understand the relationships between the 

different levels, transform from one level to another, and 

choose the most suitable form to represent the model. 

Abstraction also plays an important role in scientific 

inquiry, since scientific inquiry requires one to 

generalize a range of phenomena into one coherent 

conceptual model. Sengupta et al. (2013) investigated the 

degree of correspondence between abstractions in 

computational thinking and scientific inquiry. Modeling 

in scientific inquiry using computing involves two types 

of models: a conceptual model and a computerized 

model whose output consists of a simulation that enables 

one to study the behavior of the investigated physical 

system (Oberkampf, Trucano and Hirsch , 2004). 

Specifically, in physics, a conceptual model consists of a 

mathematical description of the physical phenomenon, 

and a computerized model that consists of 

implementation of the conceptual model in terms of 

programing a computerized system.  

Because abstraction concerns constructing a conceptual 

presentation of the phenomenon, evaluation is necessary 

throughout every phase of the modeling process. 
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Therefore, the following question should be asked by the 

problem-solver: “How confidence in modeling and 

simulation should be critically assessed?” (Oberkampf, 

Trucano and Hirsch , 2004, p. 352).   Accordingly, 

evaluation consists of the following dimensions: (a) 

Verification refers to determining whether the 

computerized model is an accurate implementation of the 

conceptual model and (b) Validation involves 

determining whether the computerized model accurately 

represents the real-world experimental measurements. 

This is achieved by using the simulation obtained from 

the computerized model. Accordingly, when evaluating 

their modeling artifact, students should carefully 

examine the simulation’s obtained output; they should 

justify the output logically and avoid intuitively relying 

merely on the similarity to the results of other 

experiments. 

2. RATIONALE AND RESEARCH 

GOALS  
Scientific modeling, and in particular, abstraction and 

evaluation, are not trivial practices. In fact, there is much 

empirical evidence on students’ difficulties when they 

are asked to employ these practices. One prominent 

example is the report by Schwarz and White (2005), 

according to which students’ understanding as to how to 

evaluate and revise a model in light of new data and 

insights remained limited, after they participated in an 

inquiry-oriented physics curriculum and engaged in the 

process of building computerized models. 

Here we describe a pedagogical model aimed at fostering 

students’ abstraction and evaluation practices, as part of 

their modeling processes in physics; we also present the 

results of our investigation into students’ work. Our main 

objectives are as follows: (a) to identify and describe the 

abstraction and evaluation practices that were manifested 

in students' physics modeling processes, (b) to 

understand how (if at all) these practices can enhance 

deep scientific inquiry, and (c) whether and how the 

pedagogical model can enhance or hinder these practices.  

3. PEDAGOGICAL MODEL 
We describe a unique program in computational physics 

aimed at introducing students to content knowledge and 

practices involving analyzing and solving physics 

problems by building computer simulations. Using an 

integrative approach, the program introduces, concepts, 

tools, and practices from physics, computer science, and 

applied mathematics (Landau, Paez and  Bordeianu, 

2011). 

The program was implemented at The Davidson Institute 

of Science Education, the educational arm of the 

Weizmann Institute of Science, in Israel. Thirty high-

school students (11th grade), who major in physics at 

school, attend 4-hour weekly meetings during which they 

study topics in physics, math (differential equations), and 

MATLAB programming.  

The processes of scientific inquiry and the building of 

computerized models are demonstrated, with emphasis 

on evaluation practices. More specifically, in addition to 

physics content, the pedagogical approach exposes 

students to the inquiry approach and practices that 

physics experts consider and apply when modelling 

physics phenomena. Special emphasis is on teaching 

content knowledge in the physics domain when relating 

to the knowledge of how, why, and when to apply this 

knowledge to answer questions and to solve problems 

(National Research Council (U.S.), Pellegrino and 

Hilton, 2012). We believe that this pedagogic approach 

may promote meaningful learning and knowledge 

transfer.   

The course is based on the Equation-Based Model 

(EBM) in which modeling is first performed by 

describing the conceptual model of the system using a set 

of differential equations. EBM was chosen because it 

resembles a general systems-level approach to describe 

physical phenomena (Parunak et al., 1989). Uhden et al. 

(2012) referred to the role of mathematics in physics: 

“the role of mathematics in physics has multiple aspects: 

it serves as a tool (pragmatic perspective), it acts as a 

language (communicative function) and it provides a 

way of logical deductive reasoning (structural 

function).” (p. 486). Indeed, EBM emphasizes the 

importance of mathematics as a central tool in sciences 

and in physics, in particular. The participants in the 

course practice programming in MATLAB, which is a 

high-level language and is used in scientific and 

engineering computation, especially when dealing with 

differential equations, manipulating data and functions, 

and visual representation (Sen and Shaykhian, 2009). 

MATLAB was used for implementing the conceptual 

model as computer simulation.  

The course is based on a learning-by-doing approach. 

Initially, participants are given a scientific paper that 

presents a physics problem and its computerized solution 

using the EBM approach. The students are requested to 

reconstruct the experiment described in the paper, and 

use it to evaluate the model, the experimental data, and 

the results described in the paper. In addition, they are 

requested to raise a new question and to inquire about it 

by using the model that they developed. 

At the end of the course the students develop a final 

project. They choose and define a new problem and 

perform the whole process in pairs. While the process 

develops, they write a report in which they describe the 

conceptual and computerized models and the scientific 

inquiry processes that they encounter. They are asked to 

describe their considerations, assumptions, and to justify 

their actions. In the next section, we describe the analysis 

of one report out of 15 projects that students conducted 

at the end of the 2015 course. This particular work was 

chosen by the teacher of the course, who justified his 

choice,  since this work reflects in general his students' 

projects. 

4. FINDINGS 
We analyzed the final report of the team project of two 

students who decided to investigate the two-body 

problem in physics. In the analysis, we focused on 
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characterizing the abstraction and evaluation practices, 

as identified in the students’ report, and related to their 

explanations and justifications.  

4.1. Abstraction 

Development and representation of the conceptual 

model: To define a system-level perspective of the 

problem that needs to be solved, the students began their 

investigation by using Newton’s equation, which 

describes the magnitude of the gravity force that occurs 

between two objects in space.  

 

     Figure 1. Newton's gravitation laws 

Next, the students used vector representation to describe 

the gravity force by relating to its direction as well:  

 

      Figure 2. Vector representation 

In the next step, the students decided to use Newton's 

second law with the previous vector equations to find 

new equations that enable one to find the location and 

speed of an object at any time in space.  

Further steps led to new second-order differential 

equations, which, as the students explained, "connect 

between the position vector and the acceleration vector. 

This is possible because the gravitation force is the only 

force acting on the bodies."  

 

     Figure 3. Representation of differential equations    

Finally, in order to enable the system to be tested for 

specific cases, the students defined a set of initial 

conditions. They justified this decision as follows: "It 

must be remembered that the solution of these equations 

will actually provide a set of functions, rather than one 

specific function. Hence, to find a specific function we 

must define a set of initial conditions; different initial 

conditions will lead to different functions.” 

Multiple levels of representation: Beyond the system-

level perspective of the conceptual model in terms of 

Newton's laws, presented in the previous section (which 

we will refer to as “The First abstraction level”), the 

students described three additional levels of abstraction, 

needed to construct a computerized model of the 

conceptual model, and they explained the role of each 

level. 

The second abstraction level was to represent the system 

in terms of a set first-order differential equations. The 

students explained that they need to transform the second 

order differential equations to the first order differential 

equations because they use Ordinary Differential 

Equation (ODE) solvers in MATLAB (Sen &  

Shaykhian, 2009). 

The third abstraction level is implementing the system in 

terms of a MATLAB code. In this stage a computerized 

model of the conceptual model is obtained. 

The fourth abstraction level is graphically representing 

the objects’ movement, obtained through simulation, 

which is actually an output of the computerized model. 

The students explained that the information, illustrated 

by the simulation, was obtained by solving the position 

and velocity functions: "We construct the simulation and 

use the information to create different graphs, to draw the 

objects’ paths, and to present the dynamic occurrence 

and the objects’ movement through time." This level 

actually enabled the students to perform inquiry using 

different case studies and enhanced their comprehension 

of the physical problem investigated.  

4.2. Evaluation 

The students wrote a 30-page report; half of it (15 pages) 

was dedicated to a chapter entitled "evaluation of the 

model and discussion of the results". The students stated: 

"In this part we will try to examine the simulation we 

have built. We will also compare the simulation to other 

known experimental data and we will use different tools 

and try to understand if the description and the results of 

the simulation are correct, reliable, and realistic."  

Validating the model: Initially, the students used the 

computer simulation that they built to examine the 

conceptual model. To this end, they used the existing 

experimental data starting with Kepler's three laws of 

planetary motion. Owing to the limited scope of this 

paper, here we will describe only the evaluation of the 

results obtained from the simulation using Kepler's first 

law of planetary motion. Accordingly, the students tried 

to confirm that the simulation creates an elliptical path 

for all the planets, with the sun as one of ellipse’s focal 

points. To test this, they determined that "the initial data 

that will comply with Kepler's laws… the mass of the sun 

is 10,000 kg and the other planet's mass is 1 kg." They 

created the simulation accordingly and observed the 

visual display (Figure 4) to determine whether the 

objects’ paths indeed look like an ellipse.  

 

Figure 4. Simulation of Kepler’s first law 

Next, they set the goal of proving that what they see is 

indeed an ellipse using the mathematical definition of an 

ellipse.  After they had proved it, they checked the path 
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obtained with different initial values. Finally, they also 

mathematically proved the second part of Kepler's first 

law, according to which "the sun is one of the focal points 

of the ellipse." Similarly, they examined the second and 

third laws of Kepler.  

Verifying the model: When analyzing the simulation’s 

results over time, they noted an error expressed in several 

paths: "After the first round, it can be seen that the graph 

becomes much less regular … as time progresses." They 

explained the error as being a result of the numerical 

computation, claiming that "Most of the inaccuracy in 

the simulation is due to a lack of precision in solving this 

differential equation.  Therefore, as time progresses, the 

path changes and diverges from reality.”   

As a result, aiming to improve the computerized model, 

they decided to develop an alternative algorithm for 

computing the objects’ paths. They explained: "One way 

to check the correctness of the analytic algorithm [of the 

solution of differential equations] by using a computer is 

to compare it to a different algorithm." They chose a 

numerical algorithm to calculate a planet's path based on 

dividing it into fragments. 

Next, the students ran the models (based on the two 

alternative algorithms) multiple times and examined the 

graphs of the object’s movement, which were obtained. 

They concluded that "it shows that the orbits are very 

similar to each other, which means that the two 

algorithms are “close” and approximately describe the 

reality."   

However, they noted some time-dependent differences 

between the paths obtained from the analytical algorithm 

and the numerical algorithm: "the longer the time since 

the beginning of the simulation, the differences (between 

paths) become bigger and they drift apart; this also 

occurs as the velocity speeds up." 

Based on the simulation results, the students also noted 

that the deviations in the paths obtained by the numerical 

algorithm are smaller than those obtained by the analytic 

algorithm. Their analysis led them to the following 

conclusions: 

 (a) The first conclusion relates to the computing effect, 

in the context of proximity to reality: "the numerical 

solution remains closer to reality than does an analytical 

solution. This can be explained by the possible lack of 

precision of the computing. At lower speeds and less 

acceleration, the difference may be negligible and hardly 

noticeable; however, when dealing with high velocities, 

the velocity affects the position each time it becomes 

larger, and this might lead to different results." 

 (b) The second conclusion relates to cumulative errors 

resulting from the computing process: the students 

concluded that computing the analytic algorithm causes 

a cumulative error that significantly increases over time, 

compared with computing the numerical algorithm.  

5. DISCUSSION AND CONCLUDING 

REMARKS  
The analysis of students' reports revealed that the 

students used high-level abstraction and evaluation 

practices, which in turn, enhanced their scientific 

inquiry. The students created multiple abstraction levels, 

explained the assumptions they had made, and this 

helped them to deal with the system’s complexity. They 

described mathematically a computational abstraction of 

the physics system governing the two-body problem, 

transformed this representation to code in the MATLAB 

environment, and created a graphical simulation to 

describe the dynamics of the physical system they chose 

to investigate. They also performed various actions in 

order to evaluate the conceptual and computerized 

models.  They validated the conceptual model using 

experimental data (Kepler's laws of planetary motion) 

and verified the computerized model using different 

algorithms. Based on the above, we can infer that the 

students’ performance, actions, and decisions resemble 

experts' scientific inquiry. 

Moreover, we assume that the modeling used in the EBM 

approach will enable students to acquire CT practices 

and will promote understanding the synergy between CT 

and scientific thinking. In the EBM approach, the 

modeler first has to define the conceptual model of the 

system, usually using mathematics, as our study 

demonstrated. 

Mathematical thinking has been perceived by the 

researchers as a tool that helps one to reason precisely 

and analytically about formally defined abstract 

structures and it "helps to move from [an] informal and 

complicated real world to a simplified abstract model" 

(Kramer, 2007, p. 41).  Indeed, the students in our study 

used mathematical thinking to describe the physical 

phenomena, and transferred between multiple 

abstraction levels. We concluded that mathematical 

thinking was also important for students when they 

verified and validated the conceptual and computerized 

models and communicated their ideas. 

In today’s global and digital age, students need to master 

computational practices that will enable them to solve 

problems in different contexts and various domains. 

Thus, students should take advantage of deep learning 

opportunities and use transferable knowledge (Pellegrino 

and Hilton, 2013). Transferable knowledge involves the 

ability to use concepts and practices learned in one 

context, transfer them to another one, and apply their 

cognitive ability, which Salmon and Perkins (1989) 

termed as high-level transfer. More specifically, 

knowledge transfer can be defined as mindful action 

based on analytic analysis and reasoning about the 

connection between the two contexts, and then suitable 

ways can be found to use the knowledge in a new 

context. 

We can conclude that the course described here indeed 

exposes students to knowledge regarding the use of 

abstraction and evaluation in scientific modeling. More 

specifically, students were constantly exposed to the 
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tools, strategies, considerations, and assumptions that 

scientists used in the modeling process. They also were 

requested to describe the artifacts they had built as well 

as explain and justify their actions during the 

development process. We believe that this pedagogical 

approach will contribute to students acquiring the 

cognitive knowledge and practices that are needed to 

perform high-level transfer of CT. 

Finally, there are many studies that describe students' 

difficulties in using mathematical thinking in physics and 

science. However, educators should support and 

encourage excellent students, as we demonstrated in this 

study. More work is needed to examine the role of 

mathematics in enhancing high-level computational 

thinking, which may encourage students to engage in 

deep learning and transferrable knowledge. 
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ABSTRACT 
Computational Thinking involves core computer science 

concepts and practices that apply to multiple disciplines 

including science and mathematics. Currently, there is a 

strong drive toward integrating computer science into the 

K-12 STEM curricula. Several general-purpose 

programming environments have been developed to 

support the learning of CT and computing concepts and 

practices. Domain-specific modeling languages (DSMLs), 

on the other hand are designed for specific applications in 

engineering domains. As compared to general-purpose 

programming languages, DSMLs provide ease of use and 

more power to express domain-specific concepts, thus 

increasing productivity in specific application domains. In 

this paper, we present design guidelines and a design 

process for constructing DSMLs to facilitate STEM 

learning by computational modeling. To illustrate the 

process, we provide a case study of designing a DSML 

specifically for the kinematics domain. 

KEYWORDS 
Computational thinking, Domain specific modeling 

languages, Visual programming environments, STEM 

learning, Design guidelines  

1. INTRODUCTION 
Computational thinking involves crosscutting concepts 

and practices that apply to multiple disciplines including 

science and mathematics (National Research Council 

2008). Wing (2006) introduced the term “Computational 

Thinking (CT)” stressing “It represents a universally 

applicable attitude and skill set everyone, not just 

computer scientists, would be eager to learn and use.” But 

the idea of synergy between programming and science 

learning goes back decades, e.g., Papert’s (1980, 1991) 

pioneering work with Logo programming that showed 

procedural thinking development in children, and Perkins 

and Simmons (1988) research that showed the existence 

of similar patterns of novice misconceptions in math, 

science and programming. Other researchers have 

explored similar ideas to leverage the synergistic benefits 

of computational modeling and STEM learning 

(Sengupta, et al., 2013). 

Several programming environments have been developed 

to support the learning of CT and computing concepts and 

practices (e.g. Alice (Pausch, et al., 1995), AgentSheets 

(Repenning, 2000), Scratch (Resnick, et al. 2009)) and for 

synergistic learning of CT and science (e.g. CTSiM (Basu, 

et al. 2013), CTSTEM (Jona, et al., 2014)), DeltaTick 

(Wilkerson-Jerde, Wagh & Wilensky, 2015). These 

environments employ visual programming languages 

(VPLs) to facilitate program and model building, and 

graphical simulation output tightly integrated within the 

environment to demonstrate the results of executing the 

program and model structures. VPLs limit the chances of 

making syntactic errors allowing learners to focus more on 

the logic and execution flow of their programs, and to 

visualize the results of program execution.  

When building complex scientific and mathematical 

models using general purpose VPLs, students may require 

significant support (Wilkerson-Jerde, Wagh & Wilensky, 

2015). System designers may provide students with pre-

implemented modeling constructs, to scaffold modeling 

tasks that are beyond the scope of what they need to learn. 

Providing students with a framework of such constructs 

may help them focus on tasks that are matched to concepts 

and processes they are expected to learn while the 

complex, and sometimes, unnecessary details of the 

implementation are kept hidden.  

Such a framework can be systematically developed using 

domain specific modeling languages (DSMLs). DSMLs 

are frequently used in software design to systematize and 

facilitate the development of systems for specific 

application domains. The DSML concept is explained in 

Van Deursen, et al. (2000): “A domain-specific language 

(DSL) is a programming language or executable 

specification language that offers, through appropriate 

notations and abstractions, expressive power focused on, 

and usually restricted to, a particular problem domain.” 

Characteristics of this approach are that they define 

constructs based on domain terminology for building 

models and applications, and specific constraints imposed 

by the domain can be incorporated into these constructs to 

avoid violations of domain principles.   

In this paper, we describe a design process and design 

guidelines for constructing DSMLs in support of learning 

environments in science disciplines. To illustrate the 

process, we provide a case study of designing a DSML for 

the learning of Physics by building computational models, 

specifically in the domain of mechanics revolving around 

Newton’s laws of motion. 

2. BACKGROUND 
Visual environments for programming typically provide a 

set of block constructs to build computational artifacts. 

For example, Scratch (Resnick, et al. 2009), a widely used 

visual programming environment adopts a Lego-like 

framework for joining blocks to construct programs 
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(artifacts). Under the hood, these blocks are converted into 

textual code, which is executed, much like a traditional 

interpreted programming language. Snap! (Harvey & 

Mönig, 2010) expands Scratch's features. Though students 

have used these environments to build models that support 

STEM learning, their primary focus has been on learning 

programming and computing concepts, and by extension, 

the learning of CT concepts and practices (Maloney, et al. 

2008, Brennan, et al. 2012, Werner, et al. 2012, Koh, et al. 

2010).  

AgentSheets (Repenning, 2000) is mainly targeted to learn 

CT by making games and science simulations. Alice 

(Alice (Pausch, et al., 1995), is another rich programming 

environment where students can build 3D virtual worlds. 

RoboBuilder (Weintrop, et al. 2012), FormulaT racing 

(Holbert et.al. 2010) and IPRO (Martin et al., 2013) are 

examples of game-based visual programming 

environments where students program agents or game-

parts using DSMLs. 

In contrast, systems like CTSiM (Basu, et al., 2013), 

DeltaTick (Wilkerson-Jerde, Wagh & Wilensky, 2015) 

and CTSTEM (Jona, et al., 2014), are visual 

computational modeling environments that are designed 

specifically to support synergistic learning of STEM and 

CT concepts. They differ from systems like Scratch and 

Snap! in that their building blocks are derived from 

DSMLs specifically designed for the target science 

domain that is the focus of student learning. 

3. MOTIVATION 
Although general-purpose programming environments 

provide the power and functionality to build models in 

STEM domains, basing the model building language on 

DSML constructs may help students to: 

 Express solutions in the terminologies and at 

the level of abstraction of the target domain 

 Build programs that are concise and self-

documenting  

 Enhance productivity 

 Make it easier to reuse knowledge and 

procedures  

 Make it easier to verify and validate models 

and results generated from the models 

 Relate the constructed model with the actual 

phenomenon 

4. DSML DESIGN GUIDELINES 
In our work, we have adopted the following design 

guidelines/principles for DSML design for science 

learning environments. These guidelines are inspired by 

Van Deursen, et al., 2000 and Karsai, et al., 2014 among 

others. 

Simplicity: The language constructs should be intuitive. 

Well-established notations from the domain should be 

used rather than inventing new ones. The constructs 

should be descriptive and distinguishable, yet compact. 

Conciseness: Only relevant concepts in the domain 

should be targeted. Duplicate constructs that serve the 

same purpose should be avoided.  

Separation of Concerns: If the target concepts can be 

separated into multiple non-overlapping sets, separate 

DSMLs may be designed for each which will enable each 

to grow independently and be more adaptable for future 

changes. 

Consistency: All the constructs of the DSML should 

contribute to the purpose of the language.  

5. THE DSML DESIGN PROCESS 
In this paper, we target only task independent DSML 

constructs that can be used across tasks and possibly 

across different units in a specific domain (e.g., 

mechanics, electricity, fish tank ecology). In some 

situations, it may be desirable to scaffold students with 

task specific high level modeling constructs, but our focus 

in this paper is on the more generic modeling constructs 

(e.g., variables, laws) that support model building in a 

domain. Furthermore, assessment characteristics may also 

impact the design decisions of DSML, but in this paper, 

we consider the task independent DSML to be agnostic of 

the assessments we may develop in the learning 

environment. This does not preclude assessments being 

designed around specific DSML constructs. DSML design 

to support a science learning environment is likely to be 

iterative since it involves close interactions between the 

instructional design expert, the language developer, and 

domain experts. To simplify the language definition task, 

one may go through three step process for designing a 

particular DSML.  

5.1. Define the learning and instructional goals in the 

domain 

The target of this phase is to identify the learning and 

instructional goals, jointly by the domain, instructional, 

and system designers (one person may play multiple roles 

in this task). This will generally involve specifying 

domain concepts at the right levels of abstraction, and 

practices that the instructional tasks will be based on. The 

learning goals will also include CT concepts and practices, 

which will further influence how domain concepts are 

represented. A formal process, such as Evidence Centered 

Design (ECD) may provide a systematic approach for 

developing goals, tasks, practices, and constructs (Harris, 

et al. 2016).  

5.2. Identify the scope of the computational modeling 

tasks 

The learning goals and instructional tasks identified need 

to be translated into the scope of the modeling and 

problem solving tasks that the students will work on in the 

domain. In doing so, the types of tasks students will 

perform are to be identified. Therefore, it is essential to 

identify at the conceptual level, how students will perform 

each type of task, what computational constructs that they 

may use, what domain constructs they may be provided 

with and what kinds of relationships they would need to 

define among these constructs. The scope of the tasks will 

also identify features that need to be included in 
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programming and modeling environments. Sometimes the 

target environment may be pre-decided, and this impacts 

how students will perform the required tasks. 

5.3. Link the designed DSML structures to their 

implementation in a specific environment. 

Finally, design decisions are to be made on how the 

conceptual form of the domain constructs defined in the 

previous step are to be mapped to the implementational 

details. These decisions will be specific to the target 

modelling environment, but the designer must consider 

how each construct will be implemented in the modeling 

environment. For example, model building may employ a 

simple drag and drop interface, but to simulate the model, 

it will have to be converted into a form that runs in a 

separate programming environment (e.g., Netlogo, 

Simulink). Another example is to have the modeling 

constructs integrated into the target programming 

environment.  

At this point, the design must consider the student’s 

perspective (e.g. complexity of modeling, ease of use, 

system performance, etc.) and then refine accordingly. 

Often the need for new constraints or the need to modify 

the current constructs to meet specified learning goals may 

become apparent. These findings may result in 

backtracking to the first step of instructional design. 

Some of the domain constructs may be mapped to library 

modules instead of language constructs. Providing 

libraries is an elegant approach to scaffolding, and making 

the learning process manageable. 

6. Case Study: Developing a DSML in 

Kinematics 
We will use Snap! (Harvey & Mönig, 2010) as our target 

modeling environment to develop and illustrate our case 

study of developing a DSML in kinematics. Snap! is an 

agent based visual programming environment, where each 

agent is represented by a Sprite. Snap supports creating 

and destroying sprites programmatically as well as 

manually. Each sprite can have its own set of variables 

(properties), functions and a script defining its behavior. 

There are options to create global variables and functions 

which may be shared between the sprites. Using Snap! as 

our implementation environment, we now describe the 

design of a DSML for 1- and 2-dimensional study of 

motion in Kinematics. 

6.1. Define the learning goals and instructional tasks 

in the domain 

As the first step, we identify the scope of the domain and 

then define the concepts and practices that matches the 

scope. Lastly, we will identify the instructional tasks. 

6.1.1. Define the scope of the target domain 

For this case study, we choose two-dimensional motion as 

our domain, and limits its scope to the kinematics concepts 

of position, velocity, acceleration, and time. We exclude 

circular motion from the scope of learning domain. The 

concept of gravity is simplified and represented as 

acceleration in a specific, i.e., negative y direction. We 

further assume that all motion is relative to a fixed frame 

of reference. In the modeling environment, this is 

represented by an x-axis parallel to the bottom edge of the 

computer display with positive values corresponding to 

moves to the right. Similarly, the y-axis is orthogonal to 

the x-axis with a positive y implying moves upward  on the 

y-axis. 

6.1.2. Define the concepts & practices within the scope 

The target concepts we want to cover in this case study 

are: (1) position, which is specified as a vector with two 

components x and y specified relative to the origin; (2) 

displacement, which is the difference between current 

position and a pre-specified origin; (3) distance, which is 

a scalar quantity implying how far away an object is from 

the origin; (4) velocity as the vector rate of change of 

position; (5) speed, which is the magnitude of the rate of 

change of position (velocity has two components: a speed 

(magnitude) and a direction which is defined with respect 

to the x and y axes; and (5) acceleration, which is the 

vector change in velocity. 

There are many practices that may be targeted when 

designing a complete curriculum, but here we target the 

following: develop a model representing the acceleration, 

speed, and position of a point object that is derived from 

the laws of kinematics, and use the model to solve 

problems or generate data to support explanations, predict 

phenomena, analyze systems, and/or solve problems.  

As part of the modeling tasks, we want students to use 

various computational constructs, such as variables, 

functions, control flow, conditional statements, and 

Boolean operators to model kinematics phenomena. We 

also want them to learn CT practices categorized as data 

practices, modeling & simulation practices, computational 

problem solving practices and systems thinking practices 

in Weintrop, et al., 2016. 

6.1.3. Define the instructional tasks 

For this case study, we assume that the students will work 

with a single physical object which starts at a specified 

position. We want them to go through the following tasks: 

 If the object has a constant velocity, incrementally 

record the distance traveled over a period of time.  

 If the object has a constant velocity, calculate the 

time required to travel a certain distance or to go to 

a certain position.  

 If the object has a constant acceleration, calculate 

the velocity and position of the object over a 

specified time interval. 

 Calculate the acceleration needed to reach a 

velocity in a specified period of time. 

 Calculate the acceleration needed to travel given 

distance in a specified period of time. 

 Calculate the acceleration needed to bring an 

object to zero velocity in a certain time or at a 

certain distance or position. 
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To accomplish these tasks, the students may use plotting 

functions provided by the system. This helps them learn 

and explain the targeted domain and CT practices. 

6.2. Identify the scope of the computational modeling 

tasks 

As part of this phase, we discuss how the various 

instructional tasks are to be mapped to computational 

modeling tasks. For this case study, the basic flow for all 

the modeling tasks would be as following: 

 Students will be provided with a scenario with one 

or more objects. The objects may or may not be 

assigned an initial position and initial speed. 

 Students have to specify what variables to 

associate with each of the objects, these variables 

are linked to physical quantities defined in the 

DSML. 

 Students will build and execute computational 

models that described the motion of those objects. 

In other words, they will need to model the 

relationships between different physical properties 

such as how velocity impacts the position, 

acceleration impacts the velocity using Newton’s 

laws as interpreted in kinematics. Their models 

have to be consistent in the way they specify 

scalars and vectors and their relations. 

 Students will verify the correctness of their models 

by comparing the behaviors generated by their 

model against those produced by an expert 

simulation model. They will not have access to the 

expert model. The comparison of behaviors will be 

done by studying animations of the scenario 

modeled and plots of variable values across time. 

In some cases, students may not be provided with 

the results of an expert simulation. They may have 

to study the plots to determine the correctness of 

their models. 

 Students may change parameters in their models 

and simulate them again to solve additional 

problems and answer questions. They can use the 

plots to justify their answers. 

To accomplish such modeling tasks, students will also 

have access to general-purpose computational concepts 

such as constructs for updating variables, using 

conditional statements, Boolean operators, specifying 

functions, and imposing a control flow.  

6.3. Link the designed DSML structures to their 

implementation in a specific environment 

We will provide two versions of the DSML to illustrate 

the ease with which DSMLs may be scaled to include 

other tasks and constructs. For this case study, the DSMLs 

will be used to program the behaviors of Snap! Sprites. 

The first version of the possible DSML appears in Tables 

1-3. Table 1 lists the variables, Table 2 the behaviors, and 

Table 3 lists the functional constructs.  

The simulation of the physical objects (Sprites) in Snap!, 

can be thought of as a continuous representation process 

in which at every simulation step (multiple times in a 

second) it inquires the state of the model and graphically 

represents the state. To scaffold the simulation model 

building task for the students, the DSML provides a 

template behavior, where the students model how the state 

of the physical object should be updated for one 

simulation time step, and this repeats for a period of time 

that may be specified in the problem definition or by a 

variable set by the students. That template behavior is 

listed in Table 2 as “UpdateModel”. 

Table 1 lists all the variables. Basically, the variables 

students manipulate are a subset of variables defined in the 

DSML. Most variables represent physical quantities 

associated with objects, a restriction that the DSML 

imposes on the modeling environment to avoid physically 

meaningless models. The names of the variables are self-

explanatory other than “DeltaTime”. The variable 

“DeltaTime” records the period of elapsed time from the 

last simulation step to the current, which may be used to 

calculate for example, how much the physical object 

moves from a current position to the next position based 

on the current velocity and acceleration. 

Table 3 lists all the functional constructs. The term 

setPosition(X, Y) sets the variable PositionX and 

PositionY to the values passed in as parameter X and 

parameter Y respectively. The construct 

setDisplacement(X, Y), setDistance(distance), 

setVelocity(Vx, Vy) and setAcceleration(aX, aY) acts 

accordingly. ChangePosition, ChangeVelocity and 

ChangeAcceleration updates their corresponding physical 

properties with respect to their current values and the 

values provided. 

The rest of the functions support plotting capabilities. The 

term plot(name, x, y) can be used generally to plot a point 

on the graph. Assuming the target environment supports 

plotting on multiple graphs, each of the plotting functions 

takes in as parameter, the name of the graph to plot on. 

Rest of the plotting functions take in “Axis” as a 

parameter. The value of the parameter “Axis” can be “X” 

or “Y”. Each of these functional term plots the value of the 

corresponding physical property on the axis provided and 

on the other axis automatically tracks the time elapsed 

from the start of the simulation. If no axis is provided it 

will use “Y” as the default value of the parameter “axis”. 

Table 1. DSML version 1 – Variables. 

DeltaTime 

PositionX 

PositionY 

DisplacementX 

DisplacementY 

Distance 

VelocityX  

VelocityY  

AccelerationX 

AccelerationY 

 

Table 2. DSML version 1 – Behaviors. 

UpdateModel()  
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Table 3. DSML version 1 – Functions. 

setPosition(X, Y) 

setDisplacement(X, Y) 

setDistance(distance) 

setVelocity(Vx, Vy) 

setAcceleration(aX, aY) 

changePosition(dX, dY) 

changeVelocity(dX, dY) 

changeAcceleration(dX, 

dY) 

plot(name, x, y) 

plotPositionX(name, axis) 

plotPositionY(name, axis) 

plotVelocityX(name, axis) 

plotVelocityY(name, axis) 

plotAccelerationX(name, 

axis) 

plotAccelerationY(name, 

axis) 

plotDistance(name, axis) 

setLabel(name, xLabel, 

yLabel) 

To simplify design, the plotting and kinematics constructs 

are kept separate as shown in Tables 4 and 5. The variables 

and behaviors are omitted as they are same in both 

versions. The advantage of separating the DSMLs is that 

they can evolve independently, when more features or 

behaviors are added to one or the other. Another advantage 

is that a very high level of abstraction can be used for one, 

without affecting the other. For example, the plotting 

DSML could be abstracted just saying Plot(varX,varY), 

where the points X and Y are plotted at every simulation 

step. This provides students a visualization of the dynamic 

behavior without having to learn plotting functions. In 

other cases, details of the plotting functions, such as 

choosing axes, setting scales, and then plotting variables 

may be adopted. 

Table 4. DSML version 2 – Kinematics. 

setPosition(X, Y) 

setDisplacement(X, Y) 

setDistance(d) 

setVelocity(Vx, Vy) 

setAcceleration(aX, aY) 

changePosition(dX, dY) 

changeVelocity(dX, dY) 

changeAcceleration(dX, 

dY) 

 

Table 5. DSML version 2 – Plotting. 

plot(name, xValue, yValue) 

setLabel(name, xLabel, yLabel) 

7. DISCUSSION 
Visual programming languages emphasize the control 

flow of a program and reduce the syntactic burdens of 

programming in a conventional language, making 

computational modeling and problem solving more 

accessible to the students. In addition, DSMLs make the 

primary focus on representing specific domain modeling 

constructs, and how these constructs may be put together 

to simulate behaviors of the system. Whereas 

computational constructs are not the primary focus, they 

create a nice synergy between domain focus and 

computation focus in creating environments that students 

may employ to study domain principles, use them to build 

simulation models, and then study and justify the 

behaviors described by these models. Therefore, DSMLs 

provide a nice synergy in supporting both domain 

modeling and computational practices.  

In additions, DSMLs can be specified at different levels of 

detail. The decision of ‘what abstraction level’ the DSML 

shall be designed at, is much depended upon the design of 

the curriculum. However, DSMLs also promote domain-

general computations. For example, a DSML designed for 

kinematics can be merged with a DSML for electricity, 

and used to model circuits, where charges move based on 

kinematics principles. A carefully designed DSML should 

be scalable and thus should support iterative evolution of 

the language. For example, here we did not provide any 

language construct for gravity. But, that can be added 

without any changes to any current construct and can be 

used with the existing functional constructs (e.g. 

changeAcceleration).  

8. CONCLUSION 
In this paper, our focus was on the design of DSMLs for 

learning Physics by computational modeling. In our 

related work, CTSiM (Basu, et al., 2017), we have adopted 

domain specific modeling constructs for students to model 

various science phenomenon e.g. mechanics with roller 

coaster, the fish tank ecosystem, for middle school 

students. In the future, we would like to run formal 

experiments to compare student’s performance of 

programming and model building with and without a 

DSML-based environment. Furthermore, we are currently 

exploring the domain of high school Physics to identify 

suitable set of DSMLs for high school students to develop 

systems that support synergistic learning of CT and 

STEM. 
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ABSTRACT 
Significant research has been done on gender disparities in 

STEM and computer science with the goal of broadening 

participation in these male-dominated fields. At the same 

time, the role of computational thinking (CT) as a tool to 

improve computer science skills along with STEM 

learning is becoming increasingly significant.  This work 

seeks to add to this research through an analysis of the role 

confidence in computational thinking plays in developing 

STEM engagement and abilities. In the study reported in 

this paper, 40 high school students (21 girls and 19 boys) 

completed a Scratch project on modeling inelastic 

collisions in their Physics class. Pre- and post- surveys 

were conducted to analyze confidence levels in CT. 

Results showed a statistically significant difference in 

confidence levels in four CT dimensions: abstraction, flow 

of control, decomposition, and conditional logic. The 

results show that boys were more confident than girls in 

applying each of these dimensions. However, performance 

on the modeling assignment showed no statistical 

difference. We discuss the results and its applications to 

future work. 

KEYWORDS 
computational thinking, gender, STEM, motivation, 

curriculum  

1. INTRODUCTION 
Rapid advances in technology have created an 

environment in which computation is changing science 

and math research and practice. This has also had 

implications in pedagogy, where curricula are being 

reshaped to ensure students experience, understand, and 

learn to use computational tools in multiple disciplines.  

Combining computational modeling with STEM content 

has also been shown to synergistically deepen learning of 

the STEM topic and computing concepts (Sengupta et al., 

2013, Wilensky, Brady & Horn, 2014). Furthermore, 

Wing’s influential 2006 article, “Computational 

Thinking,” has resulted in a growing number of studies 

that have sought to describe and analyze the role 

computational thinking (CT) encompasses in “solving 

problems, designing systems, and understanding human 

behavior by drawing on concepts fundamental to 

computer science”(p.33). CT impacts a number of 

educational disciplines – from science (Weintrop et al., 

2016) to literature (Burke, Q., & Kafai, Y. B., 2012).  

At the same time, there is growing awareness of the gender 

disparities in STEM. This has led to a number of studies 

on building female interest in predominantly male 

disciplines, such as computer science (Wang et al., 2015). 

In environments where computation thinking (or CT) has 

been used as a tool for learning domains other than 

computer science, it is important to take into account 

disparities in attitudes on computer science and the 

specific STEM discipline as attitudes because differences 

in attitude can impact learning. While Van Braak (2004) 

concluded that girls felt less confident with computers 

than boys, to our knowledge, no work has looked into 

confidence levels in computational thinking and the 

influence the levels have on performance in a science or 

math activity.   

The purpose of this study is to analyze the effect 

confidence levels in CT dimensions have on cross-

disciplinary lessons that integrate computer science and 

physics. This study analyzed individual CT confidence 

ratings prior to the completion of an assignment utilizing 

Scratch to build a simulation model of a physics scenario. 

An analysis of students’ abilities in applying CT concepts 

to build their models showed that girls’ ability to finish 

their assignment correlated poorly with their overall 

confidence in applying CT concepts and practices. We 

discuss the results and their interpretation in subsequent 

sections.   

2. THEORETICAL PERSPECTIVE 
Studies have been conducted that show girls have low 

confidence in doing well in science topics (e.g., Kay, K. & 

Shipman, C., 2017). As previously mentioned, they also 

show low confidence in using computers (e.g., Van Braak, 

J.P., 2014). We briefly review CT concepts and practices, 

and then discuss prior work on girls’ confidence levels in 

Computer Science subjects. 

2.1. Computational Thinking 

Our definition of CT is framed within two theoretical 

constructs: 1.) The Royal Society’s definition of CT – 

“Computational thinking is the process of recognizing 

aspects of computation in the world that surrounds us and 

applying tools and techniques from Computer Science to 

understand and reason about both natural and artificial 

systems and processes” (Wing, 2006; p.29). and 2.) 

Grover and Pea (2013) list elements that comprise CT 

including abstractions, systematic processing of 

information, symbol systems and representations, flow of 

control, decomposition, iterative, recursive, and parallel 

thinking, conditional logic, efficiency and performance 

constraints, and debugging (pgs. 39-40).  
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2.2. Girls’ Confidence Levels in Computer Science 

Significant research has been done to study girls’ interests 

in computer science; most notably, the effect of computer 

science stereotypes on interest (Master, A., Cheryan, S., & 

Meltzoff, A., 2015). The authors described three 

predominant stereotypes that have been studied: (1) “male, 

technologically oriented, and socially awkward,” (2) “a 

perception that it requires ‘brilliance,’” and (3) computer 

science “is isolating and does not involve communal 

goals, such as helping or working with others” (2015). 

This study takes into account the stereotype that computer 

science requires a specific level of intelligence, and uses 

pre-post test questions as a means for assessing confidence 

levels. 

In terms of building girls’ interest in computer science, a 

study by Vekiri concluded that girls benefited from 

instructional practices that highlighted the relevance of 

information science to other disciplines (2013). This result 

seemingly supports further integration of CT related 

assignments into other STEM disciplines as it may 

positively influence girls’ interest in the field of computer 

science.  

3. Method 

3.1. The Classroom 

This study was implemented in a high school physics 

classroom in Nashville, Tennessee. The classroom, 

consisting of 40 students (21 girls and 19 boys), previously 

completed three physics assignments using Scratch:  

forces, one-dimensional motion, and projectile motion. 

Prior to the first assignment, the teacher introduced the 

students to the Scratch environment.  

3.2. Pre-Survey 

For the purpose of analyzing confidence levels in CT, we 

focused on four core dimensions of the CT framework: 

abstraction, flow of control, decomposition, and 

conditional logic. Students were given descriptions of 

each dimension, as shown in Table 1. 

pre-test were exported to a Google Sheet for analysis. 

Table 1. Computational Thinking Dimensions 

Dimension Description 

Abstraction Hiding all but relevant data about an 

object in order to reduce complexity and 

increase efficiency 

Flow of 

Control 

When designing an algorithm to solve a 

problem, computer scientists have the 

option of using control structures such as 

sequential structures, selection, or 

repetition 

Decomposition Breaking down a complex problem or 

program into parts that are easier to 

create, understand, design, and maintain 

Conditional 

Logic 

If an action or condition is true or false, it 

will result in a specific action 

 

The pre-survey consisted of a Google Form in which all 

students were required to rate their confidence level in 

applying each CT dimension to solve real-world problems. 

Confidence levels were determined using a five-point 

Likert scale. Students had access to the definition of the 

four CT terms while working on the survey. Answers to 

the  

3.3. The Assignment 

The learning objective of the collision project was to 

construct an inelastic collision simulation model using 

Scratch. Students set initial locations, direction and 

velocities for their chosen sprites (representing rigid 

objects) and then wrote code to model and visualize the 

collision between two sprites. Students chose sprites, such 

as spaceships, cars, or other relevant objects to visualize 

their collisions. Students were also asked to depict the 

mass of each sprite in the visual representation.  

As previously mentioned, this physics class had 

previously completed three Scratch assignments. In each 

assignment, students were initially introduced to the 

physics topic in class through lectures, readings, or non-

programming assignments. Then the students were given 

the relevant Scratch assignment. A primary component of 

each assignment involved each student’s ability to 

translate concepts and laws in physics often represented 

by equations that they had learned in class into a 

computational model.  

Final grades were determined by three factors: the 

student’s ability to (1) include all variables specified in the 

assignment instructions, (2) build the simulation model 

using the block programming language (multiple flow of 

control structures were allowed and utilized) from the 

equations learned in class, and (3) provide an accurate 

visualization of the collision process. In other words, their 

task was to help others gain an intuitive understanding of 

inelastic collision processes from the visualizations they 

created. 

The CT concepts and practices analyzed in this study were 

chosen based on their relevance to the completion of the 

assignment: abstraction (variable use), flow of control 

(process chosen for demonstration), decomposition 

(understanding relevance of each variable or in-class 

discussion topic on ability to accurately model), and 

conditional logic (what happens when the two sprites 

collide).  

3.4. Post-Survey 

Following the completion of the assignment, students 

were 

asked to complete a CT post survey using Google Forms. 

This form included all CT definitions previously given and 

students were asked to provide an example of how they 

utilized each CT dimension in their collision assignment 

(if they thought it was applicable).  Students were not 

graded on their ability to define the CT concepts and 

practices they used in their program on the post-survey. 

Rather, the examples on each CT dimension provided 

were used to relate their confidence levels to their 

understanding of the respective CT dimension. 
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4. Results 

4.1. CT Confidence Levels 

As shown in Figures 1 and 2, there were considerable 

differences between the initial confidence levels of the 

boys and girls on each of the CT dimensions.  Table 2 

summarizes the quantitative results, and clearly indicates 

that the confidence levels for the boys were significantly 

higher (𝑝 < 0.05) than the girls on three CT dimensions 

(Flow of Control, Decomposition, and use of Conditional 

Logic). For the fourth dimension, 𝑝 < 0.1,  indicating a 

trend. 

 

Figure 1. The Girls: Initial Confidence Levels in CT  

 

Figure 2. The Boys: Initial Confidence Levels in CT 

Table 2. t-test Results on Confidence Levels. 

CT Dimension Girls Boys t-test Level of 

Significance Mean 

(SD) 

Mean 

(SD) 

Abstraction 1.92 

(1.12) 

2.62 

(1.45) 

0.0921 

Flow of 

Control 

1.538 

(0.877) 

2.5 

(1.508) 

0.0306 

Decomposition 1.61 

5(1.121) 

2.538 

(1.450) 

0.0409 

Conditional 

Logic 

1.769 

(1.166) 

3 

(1.581) 

0.0166 

 

4.2. Assignment Grading 

Students were required to use the Scratch snipping tool to 

paste an image of their code to a Google Doc that was 

submitted to their teacher. In addition, students were 

required to submit a link to their projects in order for the 

teacher to evaluate the visual performance of the model. 

Assignments were graded by the physics teacher based on 

the three project factors described in Section 3.1. Table 3 

shows the average grade in the class for girls and boys as 

well as the average grade on the collision assignment.  

Table 3. Class and Assignment Averages. 

 Class Assignment 

Girls 89.9 92.4 

Boys 88.2 88.4 

 

Upon further analysis, the difference between 

performances of girls and boys in terms of the class 

average and the individual assignment is insignificant.  

While confidence levels indicate that girls experience 

lower confidence in CT applications, there is no difference 

in abilities in both the model building task and in the class 

average.  

4.3. Post-Survey: Qualitative Review 

Students were not required to complete the post-survey 

due to time constraints; however, 18 students did complete 

the survey. Table 4 showcases responses from two girl 

students and two boy students along with their respective 

confidence level in the CT dimension.  

Table 4. Post-Survey Responses. 

 CT* CL* Post- 

G1 A 4 I only made new variables for 

things that I would use, rather than 

creating this based off of what I 

originally thought I might need.  

 FC 4 When making the scratch 

(program) I used the sequential 

structure for putting together the 

commands.  

 D 5 I broke it down by writing out the 

momentum formula in terms which 

I was then able to enter in.  

 CL 5 This happened because of when 

one of the sprites hit the other, they 

would then move off the screen 

together. This was the end game.  

G2 A 2 I originally started with a big 

equation to solve for final velocity, 

but that didn't work. I then decided 

to use only specific variables to 

solve for Vf, using a different 

approach and fewer total variables. 

 FC 1 Repetition--I didn't think one of my 

sprite's masses would work, but I 

just put something in and it 

happened to work, so I continued 

my project that way while it was 

working. I decided that as long as 

the mass was working, I would 

keep going. 

 D 1 Instead of using one big equation as 

I'd planned, I made several small 

equations to solve for one thing. 

 CL 2 I decided that if the mass for one 

sprite worked, I could make the 
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other work based on the mass of 

the one before. 

B1 A 4 Writing out all necessary variables 

before figuring out what I needed 

to do with them. 

 FC 3  

 D 3 Setting up loops. 

 CL 4 Making if/then situations. 

B2 A 1 No unnecessary variables 

 FC 1 The placement of the change in the 

variable by which the sprite moved 

and the command for movement 

was purposeful, the command lines 

for the two sprites were identical 

barring individual variables, the use 

of a forever loop and an if/else 

clause 

 D 1 Not much decomposition used as 

the design was very simplistic 

 CL 2 If/else loop with the Boolean of 

contact used 

*CT (Computational Thinking Dimension), CL 

(Confidence Level from Pre-Survey) 

In the table above, it is important to note that both the girl 

and boy that submitted lower initial confidence levels in 

the CT dimensions were able to produce quality examples 

for each CT dimension used in their code for the post-test 

survey.  Also of note is the length of responses by the girls 

versus the boys. We should also note that on the average, 

girls tended to submit longer examples of each CT 

dimension, with girls average 14.82 words per response 

and boys average 9.65 words per response. 

5. DISCUSSION 
The role of confidence has been shown to play a 

significant role in likelihood to pursue STEM careers (e.g., 

Moakler, M. & Kim, M., 2014) and the preliminary 

findings of this study correlate to the lower computer 

confidence levels experienced by female computer science 

majors compared to their male counterparts (e.g., Beyer, 

S. et al, 2003). These two studies were conducted with first 

year college students, but based on the findings of this 

study – confidence issues need to be addressed at an earlier 

age.  

As previously noted, the goal of this study was to 

understand the effect of confidence levels on cross-

discipline abilities. With this work, it can be seen that 

initial confidence levels are not a good indicator of content 

understanding (Physics and CT) and ability to apply the 

content to solving problems; however, the significant 

difference between initial confidence levels in CT needs 

to be addressed – particularly based on previous findings 

relating confidence levels to career choices. For instance, 

though no post-interviews were conducted to determine 

girls’ confidence, it may be helpful to point out to them 

how well they perform with respect to the rest of the class, 

and they should be encouraged to become more engaged 

in STEM disciplines. 

A unique component of this study is that confidence levels 

regarding computational thinking were assessed prior to 

undertaking the physics activity. Previous studies have 

ranged from research on opinions following an 

educational activity (Atmatzidou, S., & Demetriadis, S., 

2015) to an understanding of computer science 

perceptions in terms of motivation to take computer 

science courses (Vekiri, 2013). This study highlights the 

initial lack of confidence experienced by girls, and 

suggests further studies that delve into improving initial 

assignment scaffolding that can better address the initial 

confidence disparities.   

Lastly, although there is no significant variation in 

performance in this classroom (the majority are high 

performers), the takeaway message may be that a weaker 

student, irrespective of gender, may need more scaffolding 

to aid them in their model building tasks.  

5.1. Project Limitations and Future Implications 

Concept assessment results indicate that the girls may 

benefit from the use of programming tools to simulate a 

physics concept.  While this study conducted a confidence 

level survey prior to the completion of the assignment, an 

analysis of post-assignment confidence levels (via a Likert 

scale or similar) may provide additional insight into the 

effect the completion of a programming assignment has on 

not only confidence, but also interest in CT and computer 

science in general. We conjecture that building scenario 

models provide a better understanding of how STEM 

concepts may relate to real-world scenarios, and that may 

provide additional motivation for both girls and boys to 

pursue STEM disciplines. Indirectly, this may also help 

overcome the low confidence levels experienced by girls, 

thus increasing their engagement with STEM disciplines 

early in their education. 

This study included a small cohort of students. Based on 

confidence level and performance results, future studies 

should be implemented that analyze the effect of CT 

confidence levels in a programming in physics application 

of a larger cohort to determine whether this trend holds. In 

addition, this study specifically assessed the role of CT 

confidence levels in a physics application. In order to 

determine if a broader STEM impact exists, studies should 

take into account multiple STEM disciplines to analyze if 

the effect remains the same on a broader scale.  

However, keeping in mind the importance of introducing 

the relevancy of computer science in other disciplines, 

described in the Theoretical Perspective, initial instruction 

related to the computational tools needed to better 

understand a scientific concept can be seen as a beneficial 

approach to building confidence and interest in both 

STEM and computer science. Content performance of the 

girls indicated a significant ability to complete a STEM 

assignment using a computer science tool. Future work 

with this framework may contribute to an understanding 

of the synergy between STEM and computer science – a 

synergy that can impact future career directions.  

Future applications of this approach would involve 

multiple components. As a means of improving the 

analysis of CT understanding in this physics assignment, 

CT content assessments could be developed to analyze 

each student’s understanding of a relevant programming 
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tool separate from its usage in the physics model. 

Furthermore, research should be done on the translation of 

programming and CT knowledge developed using block-

based programming languages into text-based 

programming abilities. For example, in this physics 

classroom students completed four Scratch assignments. 

A unit could be developed with the four completed 

assignments, as an increasing amount of CT and 

programming ability is needed for each new assignment. 

Following the completion of the unit, students could be 

introduced to an object oriented programming language 

and tested on their ability to program collision using the 

new language with a focus on whether students were able 

to capture CT dimensions, such as conditional logic, 

abstraction, etc., using the new language.  

The results from this study indicated that while girls have 

a significantly lower confidence in CT applications, there 

is no difference in their ability to perform CT tasks when 

compared to their male counterparts. There are many 

initiatives currently working to bring computer science 

education to high school classrooms (Office of the Press 

Secretary, 2014). This study further supported the concept 

that the introduction of computer science and CT related 

content to already existing STEM curriculum can provide 

a resource for building girls’ interest and confidence in 

computer science. As we move towards a broader 

availability of computer science education at the 

secondary school level, it is important to take into account 

CT confidence levels as a means of more effectively 

impacting a greater number of potential female computer 

scientist. 
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ABSTRACT 
How is computational thinking education in Germany? 

This paper aims to investigate computational thinking 

education in K12 German secondary schools. The 

methodology is based on analyzing the competence-based 

curricula frameworks for Computer Science in four 

highest populated federal states in Germany. In addition to 

Computer Science education, we also consider other 

subjects, e.g., Physics, because computational thinking 

may also exist in other subjects. Finally, we compare 

computational thinking education in Germany with 

international level by taking the ACM recommendation 

for Computer Science curriculum into account. 

KEYWORDS 
Computational thinking education, K12, Germany, ACM 

Computer Science curriculum. 

1. INTRODUCTION 
What is Computational Thinking? No clear definition for 

this concept has been developed yet. Yadav and 

colleagues (Yadav et al., 2017,) and Denning (2009) 

suggested that the notion of computational thinking had 

the root in Computer Science when Polya (1945) 

discussed about “algorithmic thinking” approaches in the 

paper “How to Solve It”. Recently, this notion of 

computational thinking is embedded in the work of Papert 

(1980, 1991), which focuses on the LOGO programming 

language and which aims at supporting student’s 

algorithmic thinking and problem solving abilities. Yadav 

and colleagues have summarized different components for 

computational thinking based on Wing (2008) and Barr 

and Stephenson (2011). According to Wing (2008), 

computational thinking consists of the process of choosing 

the right abstractions and automation of those abstractions. 

Based on this idea, nine core computational thinking 

concepts have been proposed by Barr and Stephenson 

(2011): data collection (DC), data analysis (DA), data 

representation (DR), problem decomposition (PD), 

abstraction (AB), algorithms and procedures (AP), 

automation (AU), parallelization (PA), and simulation 

(SI). 

Based on these nine components of computational 

thinking, we aim at investigating the computational 

thinking education in German schools (5th grade to 12th 

grade).  

2. METHOD 
Germany has 16 federal states and each state defines a 

framework of output-oriented requirements in terms of 

expected competences for each grade. School teachers are 

required to specify curricula by themselves considering a 

state-specific curriculum framework. 

We will analyze documents of requirement curriculum 

framework for different federal states. Since the four 

federal states (North Rhine-Westphalia, Baden-

Württemberg, Bavaria, and Lower-Saxony) have the 

highest population and the population of these four states 

is higher than half of Germany’s population, we intend to 

analyze the curriculum frameworks in these states. Since 

these four states are based in the West Germany, we also 

take one state with highest population in East Germany 

(Saxony) into account. The analysis is based on the nine 

core components of computational thinking summarized 

by Yadav and colleagues (2017).  

Since most components of computational thinking are 

related to Computer Science, we will investigate the state-

specific curriculum frameworks for Computer Science. In 

addition, we also consider the curriculum framework in 

other subjects, e.g. Physics, in order to examine the 

coverage of computational thinking education.   

We analyze whether any vocabulary in the description of 

expected competences or learning objectives in the 

curriculum frameworks match the term (or synonyms of 

the terms) of a specific component of computational 

thinking. In this case, we can conclude that this component 

is covered in the curriculum framework being 

investigated. 

3. RESULTS 
North Rhine-Westphalia has the highest population in 

Germany (17.9 Mio., Statista, 2015). The curriculum 

framework of this state is based on five competence areas 

((1) argumentation, (2) modeling, (3) implementing, (4) 

representation and interpretation, (5) communication and 

cooperation) and five content fields ((1) data and 

structuring, (2) algorithms, (3) formal languages and 

automata, (4) computer systems, (5) computer science, 

human and society). Here, we use the curriculum 

framework for secondary education. The expected 

competences “student identify by analyzing problems 

objects, their attributes, their operations and their 

associations” (NW, 2014, pp. 28) and “students identify 

for a specific problem entities, attributes, and relationships 

and their cardinalities and represent them in an entity-

relationship diagram” match the component problem 

decomposition (PD). The competences „students model 

classes with attributes, methods and association 

relationships noted with cardinality“ and “students apply 

the concept of polymorphy to  appropriate problems” 

(NW, 2014, pp. 28) are specific to object-oriented 

programming paradigm. However, this competence may 
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be considered a part of the component abstraction (AB) 

of computational thinking. Similarly, the expected 

competences “students modify a database model” and 

„students model a relational database schema for an entity-

relationship diagram“ (NW, 2014, pp. 34) are related to 

database modeling, however, can be considered a part of 

abstraction (AB). In the content field “Algorithms”, the 

competences “students analyze, explain, and modify 

algorithms and programs”, “students develop iterative and 

recursive algorithms applying the strategies 

Modularization, Divide and Conquer, and Backtracking”, 

and “students evaluate the efficiency of algorithms with 

respect to memory usage and the number of operations” 

(NW, 2014, pp. 29, pp. 34) cover the component 

algorithms and procedures (AP) of computational 

thinking. In the content field “formal languages and 

automata”, the competences “students analyze and explain 

the attributes of finite automata/ push-down automata and 

their behavior for a specific input”, “students develop a 

formal language, which is accepted by a finite automaton 

or a push-down automaton”, and “students develop and 

modify finite automata or push-down automata for a 

problem” (NW, 2014, pp. 30, pp. 36) can be 

considered a part of the component automation (AU) of 

computational thinking. Also in the same content field 

“Algorithms”, “students explain the principle of 

concurrency” (NW, 2014, pp. 35) may partly match the 

component parallelization (PA) of computational 

thinking. 

The curriculum framework in Physics in North Rhine-

Westphalia seems to complement the curriculum 

framework in Computer Science with respect to 

computational thinking.  

The curriculum framework for Physics addresses the 

components data collection (DC) and data analysis (DA) 

of computational thinking that we do not find in the 

curriculum framework for Computer Science. The 

following expected competences are specified in the 

curriculum framework for Physics in North Rhine-

Westfalia address the component data collection (DC): 

“Students have the ability to search, to analyze, and to 

evaluate by comparison relevant information and data in 

different sources as well as in selected scientific 

publications for physical questions.” (NW-Ph, 2014, 

pp.28); “Student have the ability to observe and measure 

criterion-driven, and explain and use complex devices for 

observations and measurements appropriately.” (NW-Ph, 

2014, p.28). In addition to competences addressing data 

collection (DC), several other competences emphasize 

data analysis: “Students have the ability to analyze data 

qualitatively and quantitatively with regards to 

coherences, rules or mathematical axioms” (NW-Ph, 

2014, p.28); “Student have the ability to develop models, 

and explain and predict physical-technical processes using 

theoretical models, mathematical modeling techniques, 

thinking experiments and simulations.” (NW-Ph, 2014, 

p.62). 

 

 

Table 1. Coverage of computational thinking in 

German schools. 

 DC DA DR PD AB AP AU PA SI 

Computer Science 

North Rhine-

Westphalia 

   x x x x x  

Baden-

Württemberg 
   x x x    

Bavaria   x x x x x x  

Lower-Saxony      x x  x 

Saxony x x x x x x x  x 

ACM CS   x x x x   x 

Physics 

North Rhine-

Westphalia 

x x        

Baden-

Württemberg 
x x        

Bavaria x x        

Lower-Saxony x x        

Saxony x x        

 

Baden-Württemberg starts Computer Science education 

from the 11th grade to 12th grade. From the 6th grade to 

the10th grade, school students in Baden-Württemberg are 

offered the so-called “information-technical basic 

education” courses, which serve as the basis for Computer 

Science education. The framework of requirements 

comprise five areas: (1) Information and data, (2) 

algorithms and data, (3) problem solving and modeling, 

(4) work principles of computer systems, and (5) 

informatics and society. Since in the 2nd area, the 

framework specifies three competences: “Students have 

the ability to apply basic datatypes and data structures”, 

“students have the ability to develop algorithms and 

implement them in programs”, and “students have the 

ability to apply modularization techniques” (translated 

from German, BW, 2004, pp. 439). These requirements of 

expected competences cover the following components of 

computational thinking: data representation (DR), 

problem decomposition (PD), abstraction (AB), 

algorithms and procedures (AP). In the area of problem 

solving and modeling, two competences cover the 

components problem decomposition (PD), abstraction 

(AB), and algorithms and procedures (AP) of 

computational thinking: “Students know basic principles 

of problem solving”, “Students can decompose the 

problem solving process”, “Students have the ability to 

map real problems into objects and classes” (BW, 2004, 

pp. 440). 

Similar to the curriculum framework for Physics in North 

Rhine-Westphalia, Physic education in Baden-

Württemberg addresses the two components data 

collection (DC) and data analysis (DA) that complement 

to Computer Science education with respect to 

computational thinking education: “Students have the 

ability to observe and describe phenomena and 
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experiments goal-oriented.”; “students have the ability to 

collect measurement data digitally and assess them.”; 

“students have the ability to conduct experiments, collect 

and assess data” (BW-Ph, 2016, pp. 10); “Students have 

the ability to evaluate results of experiments” (BW-Ph, 

2016, pp. 12).  

The present curriculum framework for Computer Science 

in Bavaria is not based on output-oriented competences 

yet, rather it is based on learning contents that need to 

input into school curricula in Bavaria. The competence-

based requirement framework for schools in Bavaria has 

been developed and is planned to be applied from the 

school year 2017/2018
1

. Since the competence-based 

requirement framework is available on the website of 

Bavaria’s State Institute for School Quality and Education 

Research (BA, 2017). According to this framework, 

Computer Science education starts from the 9th grade. 

After the 9th grade, the following competence is expected 

from the student: “Students analyze and decompose data 

of simple real authentic examples (e.g., inventory or client 

administration) and represent the developed data model 

graphically” 

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/9/informatik). This competence covers the 

components data representation (DR), problem 

decomposition (PD), abstraction (AB) of computational 

thinking. After the 10th grade, the following is expected: 

“Students represent algorithms in pseudocode or 

graphically for a given process-oriented problem using 

control structures.” 

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/10/informatik). This competence requires learning in 

algorithms and procedures (AP).  

After the 12th grade, “students have the ability to design 

finite automata using formal languages.” 

(http://www.lehrplanplus.bayern.de/fachlehrplan/gymnas

ium/12/informatik). This competence is in accordance 

with automation (AU). The competence “Students model 

typical concurrent scenarios using Petrinets.” may be 

achieved by the component parallelization (PA) of 

computational thinking education. 

Complementary to the curriculum framework for 

Computer Science, the curriculum framework for Physics 

in Bavaria address the components data collection (DC) 

and data analysis (DA): “Students are in a position to 

infer physical knowledge from course texts, to search 

information and to work up results in documentation and 

presentation appropriately.” (BA-Ph,2017) and “students 

reflect impacts of physical insights in historical and 

societal relations and are aware of chances and limits of 

physical solutions.” (BA-Ph, 2017). 

The curriculum framework of Lower-Saxony is 

competence-based. This document distinguishes between 

process-oriented and content-oriented competences. 

Lower-Saxony offers Computer Science education from 

the 5th grade. At this moment, only the curriculum 

framework in Computer Science for 5th grade to 10th grade 

                                                 
1  http://www.isb.bayern.de/schulartuebergreifendes/paedagogik-

didaktik-methodik/kompetenzorientierung 

is available on the Internet (NI, 2014). The specified 

competences are summarized in four learning areas: (1) 

data and their traces, (2) computer competence, (3) 

algorithmic problem solving, and (4) automated processes. 

In the learning field “algorithmic problem solving”, the 

competences “students describe a given algorithm in their 

own words”, “students represent an algorithm 

graphically”, “students execute a given algorithm”, and 

“students develop an algorithm using elementary control 

structures” (NI, 2014, pp. 20-21) cover the component 

algorithms and procedures (AP). In the learning area 

“automated processes”, the competences “students 

describe automata as a composition of their states and 

transitions” and “students develop and implement an 

automaton model in form of a state graph” (NI, 2014, pp. 

20-22) match the component automation (AU) of 

computational thinking. The competence “students model 

and simulate a given automaton using an appropriate 

simulation software” may be considered a part of the 

component simulation (SI) of computational thinking. 

The curriculum framework for 5th-10th grade schools in 

Lower-Saxony supports few components (AP, AU, and 

SI) of computational thinking. We hope that the 

curriculum framework for secondary schools in Lower-

Saxony support more other components of computational 

thinking. 

Considering the curriculum framework for Physics in 

Lower-Saxony, the expected competences specified in this 

framework address the components data collection (DC) 

and data analysis (DA) of computational thinking: 

“Students plan simple experiments, carry out them and 

document experiments’ results.”, “Students evaluate data 

using appropriate diagrams and identify functional 

relations” (NI-Ph, 2009, p.14), “Students add missing 

information by themselves.” (NI-Ph, 2009, p.22), 

“Students use for documentation and evaluation of 

measurement data GTR/CAS or table calculation” (NI-Ph, 

2009, p. 23), “students evaluate and justify a result of an 

observation of measurement’s uncertainty.” (NI-Ph, 2009, 

p. 27). These competences indicate a complementary part 

to Computer Science curriculum in Lower-Saxony with 

respect to computational thinking education. 

Saxony has the highest population (4.0 Mio., Statista, 

2015) among the five federal states in East Germany. Page 

2 of the curriculum framework 

(https://www.schule.sachsen.de/lpdb/web/downloads/lp_

gy_informatik_2011.pdf?v2) summarizes the goals of 

Computer Science education. This summary of goals 

includes the components data collection (DC), data 

analysis (DA), data representation (DR), problem 

decomposition (PD), abstraction (AB), algorithms and 

procedures (AP). On the contrary to the four states in 

West Germany, where DC and DA are not addressed in 

Computer Science education, the federal state Saxony 

does. The specification of the learning area “Theoretical 

Informatics” addresses automation (AU) (SA, 2011, pp. 

15). The learning area “Applied Informatics” covers the 

http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/9/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/9/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/12/informatik
http://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/12/informatik
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2
https://www.schule.sachsen.de/lpdb/web/downloads/lp_gy_informatik_2011.pdf?v2
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component simulation (SI) (SA, 2011, pp. 17). Saxony’s 

curriculum framework addresses almost all components of 

computational thinking except parallelization (PA).  

In the subject Physics, the curriculum framework in 

Saxony addresses electric parallel circuits (SA-Ph, 2011, 

pp. 15), which are not in the context of parallelization 

(PA) (Barr & Stephenson, 2011). Similar to other Physics 

curriculum frameworks, in the state Saxony, the 

components data collection (DC), data analysis (DA) are 

supported: “Students learn to acquire, to categorize, and to 

use information in order to extend, to structure, and to 

apply their knowledge. Acquisition, usage, evaluation and 

presentation of information is important.” (SA-Ph, 2011, 

pp. VIII). 

4. ACM CURRICULUM FOR K–12 CSE  
The ACM model curriculum divides Computer Science 

education (CSE) into four levels: Level 1 - Foundations of 

Computer Science, Level 2: Computer Science in the 

Modern World, Level 3 - Computer Science as Analysis 

and Design, and Level 4 - Topics in Computer Science. 

On level 1 (recommended for grade K-8), students are 

expected to “apply strategies for identifying and solving 

routine hardware and software problems that occur during 

everyday use.” (ACM, 2003, pp. 13), “understand the 

graph as a tool for representing problem states and 

solutions to complex problems” (ACM, 2003, pp. 14), and 

“understand the fundamental ideas of logic and its 

usefulness for solving real-world problems” (ACM, 2003, 

pp. 14). These competences meet the components 

problem decomposition (PD), and algorithms and 

procedures (AP) of computational thinking. In addition, 

the competence “Use content-specific tools, software, and 

simulations (e.g., environmental probes, graphing 

calculators, exploratory environments, Web tools) to 

support learning and research” (ACM, 2003, pp. 13) 

addresses the component simulation (SI) of 

computational thinking. On level 2 (recommended for 

grade 9 or 10), students should have conceptual 

understanding of “the basic steps in algorithmic problem-

solving (problem statement and exploration, examination 

of sample instances, design, program coding, testing and 

verification)”, which meets again the components 

problem decomposition (PD), and algorithms and 

procedures (AP) of computational thinking. On level 3 

(recommended for grade 10 or 11), students should gain 

understanding of “fundamental ideas about the process of 

program design and problem solving, including style, 

abstraction, and initial discussions of correctness and 

efficiency as part of the software design process.” (ACM, 

2003, pp. 14) and “simple data structures and their uses” 

(ACM, 2003, pp. 14) address the components data 

representation (DR) and abstraction (AB) (in addition 

to other components mentioned above). On level 4 

(recommended for grade 11 or 12), students attend the 

courses that deepen gained knowledge, abilities and skills 

in Computer Science. Students have the choice between 

an Advanced Placement (AP) Computer Science course 

that “emphasizes problem solving and algorithm 

development, and introduces elementary data structures” 

(ACM, 2003, pp. 18) or a project-based course, or a 

vendor-supplied course. Especially, in addition to gaining 

knowledge, abilities and skills in Computer Science, ACM 

model curriculum promotes “the connection between 

elements of mathematics and computer science, including 

binary numbers, logic, sets, and functions.” (level 2, 

ACM, 2003, pp. 15) and “topics in discrete mathematics: 

logic, functions, sets, and their relation to computer 

science”. (level 3, ACM, 2003, pp. 14). These topics are 

considered required important in Computer Science 

education and for problem solving. 

5. CONCLUSIONS 
Table 1 shows that the federal states in Germany, that have 

in total more than half population of Germany, cover 

several components of computational thinking. The 

coverage of computational thinking components is 

heterogeneous among different federal states in Germany.  

It is worth to note that data collection (DC), data analysis 

(DA) are not considered in the four investigated 

curriculum frameworks for Computer Science in West 

Germany. However, these components are addressed in 

the state Saxony in East Germany. Considering the four 

states in West Germany, taking the curriculum 

frameworks for Physics into account, we can notice that 

both curriculum frameworks in Computer Science and 

Physics are complementary with respect to computational 

thinking education, since they cover most components of 

computational thinking (except the component simulation 

SI).  

Surprisingly, the state Saxony in East Germany addresses 

almost all components of computational thinking except 

parallelization (PA).  

Comparing the Computer Science education in Germany 

and ACM model curriculum for K-12 Computer Science 

with respect to computational thinking education, no 

difference can be noted: the components problem 

decomposition (PD), abstraction (AB), algorithms and 

procedures (AP) are recommended in curriculum 

frameworks for Computer Science in Germany and in 

ACM model curriculum. 

Based on the analysis results in this paper, we would 

recommend educators to pay more attention to the 

components parallelization (PA) and simulation (SI), 

which are not considered in Computer Science curriculum 

frameworks in three of five federal states in Germany. In 

addition, since big data is increasingly a problem in 

computation, we would also recommend to embed 

methods of data collection (DC) and data analysis (DA) 

in Computer Science curricula, because these components 

could only be found in Physics curriculum frameworks. 
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ABSTRACT 
This paper addresses two problems which usually occur in 

learning Mathematics: first, students who face difficulty 

understanding and are too shy to participate in discussions 

and subsequently do not manage to resolve their doubts, 

and second, dull e-learning websites. The many rules in 

Mathematics compounds the problem further. We thus aim 

to address these problems through a gamified e-commerce- 

oriented Mathematics learning practice system, Alzebra, 

for informal learning. Focusing on principles of 

Information Systems Analysis and Design, e-commerce-

oriented computational concepts are embedded in the game 

to motivate online practice. The system concept, design 

methodology and user testing outcomes are presented. 

Significance lies in deriving perception towards 

gamification and components which users liked or disliked 

and the efficacy of our hybrid approach in systems 

development.  

 

KEYWORDS 
Design; gamification; Mathematics practice; e-commerce;   

computational concepts.  

 

1. INTRODUCTION 
Blended learning is increasingly popular. However, 

educators may not be available face-to-face at all times to 

help students with their problems. Hence, two problems 

need to be addressed (Chen & Jones, 2007; Li, 2016). First, 

students who have difficulties grasping concepts in class 

and who are shy. They tend not to participate in the 

activities or interact with their peers in class even though 

they do not understand what they are learning in class. 

Instead, they would be forced to revise topics on their own. 

The second problem arises if the e-Learning platforms are 

dull and mostly text-based or unexciting. 

 

In the learning of Mathematics (MVid, 2016), the 

enormous number of rules that need to be followed often 

makes understanding complex Mathematics frustrating. 

These pose challenges to motivate students to access online 

materials to carry out self-study and to keep them engaged 

throughout their online learning process. Hence, we aim to 

develop a gamified computer-aided learning system, 

Alzebra, to carry out revision and reinforcement outside the 

classroom.  

 

Bearing in mind several learning strategies, our objectives 

are to: 

a) assess the improvements that can be made to existing 

related systems and choose the best features that can 

be adopted;  

b) explore the possibilities of gamified learning in online 

education.   

 

2. RELATED WORK 
 

2.1 Learning difficulties faced by students in 

Mathematics 

Other than the small number of students who have been 

identified as having dyscalculia (Mathematics learning 

disability), there are a few reasons why students face 

difficulties grasping concepts in Mathematics (Taylor & 

Galligan, 2006; MVid, 2016):  

a) students who experience this problem often possess 

characteristics such as lack of confidence due to 

constant failure, do not activate prior knowledge to 

solve problems, have trouble memorizing basic Math 

functions, have problems focusing when facing 

questions involving multiple steps, lack of cognitive 

thinking skills, and afraid of being wrong..  

b) there are also a few teacher-related variables, which 

cause students to have problems in understanding 

concepts in Mathematics.  

c) research has also suggested that curriculum-related 

variables such as spiralling curriculum causes students 

to experience significant problems learning and 

applying Mathematics concepts. This may be due to 

cognitive overload.  

 

2.2 Mathematics Learning Strategies 

Many Mathematics strategies have been around and are 

used by educational institutions. Some of the approaches 

available are classroom-based techniques such as 

metacognitive strategies, cognitive strategies, and social or 

affective strategies while others are software-based 

approaches where educational technology, is used as one of 

the teaching strategies (Taylor & Galligan, 2006; Yang,  

Chang, Cheng, & Chan, 2016; Centre for Advanced 

Research on Language Acquisition, 2016; MVid, 2016). 

Due to the fact that both means of instructional delivery 

methods are diverse, the outcomes from both approaches in 

relation to students’ performance may however, also differ.  
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2.3 Gamification in Educational Websites 

Gamified learning is a term used to describe the integration 

of game mechanics in learning the process to make 

instructions more engaging and fun. It has the potential to 

help the way students need to feel engaged when learning, 

that is, through growth and advancement, recognition and 

rewards, a higher goal to pursue, and a sense of teamwork   

 

Kapp’s (2012) study states that there are researchers who 

suggest that gamification can be used as a tool in education 

to spark interest in students to learn. Moreover, students 

who have used a gamified e-Learning platform produce 

higher practical test scores compared to those who use the 

non-gamified version.  

 

Furthermore, according to the Gamification Survey carried 

out by Talent LMS (2016), 79% of the participants have 

shown a positive attitude towards the integration of 

gamification in their university or institution. Out of 75%, 

the participants are already gamers themselves whereas 

50% of them play casually and 27% of them moderately to 

fairly often. In addition, over 60% of the participants would 

be motivated by leader boards and increased competition 

between students and 89% would be more engaged with an 

e-learning application if it had a point system.   

 

Based on this, it can be concluded that the strong interests 

of the participants in game may indicate that 

implementation of gamification in educational websites 

can be accomplished. An example of existing systems 

implementing gamification in education is the Khan 

Academy. 

 

3. SIGNIFICANCE 
There are several contributions from this study:  

a) This study contributes to how Information Systems 

Analysis and Design principles and computational 

components integrated with e-commerce and 

gamification can be used to design applications 

which have the potential to motivate online 

practice. The application of computational 

concepts to the real-world   corresponds with 

computational thinking (Wing, 2006).  

b) A deeper understanding of the perceptions of the 

student community needs to be first identified and 

designed for if gamification is to work well. This 

finding supports that of an earlier paper (Wong & 

Lee, 2016). 

c) Consistent with (TalentLMS, 2016), prior user 

gaming experience influences acceptance of 

gamified applications.  

d) Object-oriented design is cost-effective and 

sustainable.  

 

4. METHODOLOGY 

 
4.1 Sample 

The sample students are 10 students who are weak in 

Mathematics studying at the pre-university level. Learning 

Mathematics online is foreign to them though they know 

that these systems exist. The testing period is one week 

each (initial survey and user-testing).  

 

4.2 Procedure 

Adopting agile methodology, rapid prototyping and design 

thinking, two phases are carried out, involving two 

iterations in each phase. The first phase involves the initial 

survey and the second phase the beta testing. These are 

elaborated on below.  

 

First phase:  

An evaluation of existing e-learning websites (objective a 

above) based on Nielsen’s criteria: Website Content, 

Website Interface, and Website Functionality is carried out 

to determine improvements which can be made and 

opportunities for developing systems meeting our 

objectives.  

 

Subsequently, for design and development, the first 

iteration includes the basic content management features. 

The second iteration includes the add questions page, 

practice page, show hint and check answer section in 

practice page, quiz page, and view result page. Next, a 

survey is carried out to determine students’ attitude towards 

the use of technology in learning Mathematics online.  

 

Second phase: 

The first iteration involves the point-accumulating function 

in the prototype, user garden page, marketplace page, 

leaderboard section, and FAQ page. Within the user 

garden, e-commerce-oriented activities are introduced to 

motivate practice. The second iteration includes a comment 

section in all topic pages.  

 

5. SYSTEM CONCEPT  
This Website is developed to integrate the concept of 

gamified learning into an online educational website. On 

registering to become a member, users will get their very 

own garden which they can visit through the link located at 

the User Login Information dropdown list.  

 

The system works like a normal online educational website 

which enables students to learn on topics, do practices, 

attempt quizzes, and view their results. Other than those 

minimal requirements for an educational website, an extra 

enhancement is incorporated into the system, that is, a 

point-accumulating system.  

 

The main idea of this point accumulating system is to 

encourage students to revise topics by attempting practices 

and quizzes and keep them engaged when they are on the 

website. For every correctly-answered question, students 

get to earn points. Points will also be given when students 

have completed a quiz.  

 

On registering, each student will have their own page called 

“My Garden”, this is where they have plants they need to 

nurture in order to gain more points. The way they cultivate 

their plants is by buying materials from a page called 
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“Market Place”. There are four items that need to be used 

on each seed in order for it to be fully grown. Once the plant 

is fully grown, it can be sold to earn points. The names of 

students with the highest points accumulated will be shown 

on a leaderboard at the home page.   

The final system’s use case diagram (Figure 1) and user 

interfaces (Figures 2, 3, 4 and 5) are presented below.  

Gamified Web-Based Learning System

Login into system

Security Check

<<inclu
des>>

Student AdministratorChoose Topic

Do Practice

Manage Topics

Manage Question 

Bank

Comment on 

Topics

Maintain Personal 

Profile

Manage Garden

Security Check

View Garden

<<inclu
des>>

View “Market 

Place”

<<extends>>

Buy items from 

“Market Place”

<<extends>>

Logout of system

 
 

 

 

 

Figure 1.  Use Case Diagram 

 

 

 
 

Figure 2. Practice Page Screenshot 

 

 

Figure 3 shows the layout for the User Garden Page. 

Computational concepts are used here to design the game 

story for the topic trigonometry. There are altogether ten 

slots in the garden. Five of the slots are open, while the 

other five of them are locked. These open slots will be 

where the seeds received by users are planted. The locked 

slots needs be purchased for 150 points each to get more 

space for users to plant their seedlings. Upon registering, 

each user will be given a seed. Each seed has to be watered, 

weeded, fertilized, and cleared of pest once respectively to 

be completely grown. To grow the seeds, users have to visit 

the market place to buy the materials needed.   

 

Grown plants can be sold by users to earn more points. A 

mysterious seed will be given for free to users every time 

their accumulated points have reached 100 points. Each 

time users get a seed, it will be automatically be planted in 

one of the open slots in their garden. If users do not have 

any open slots left, the seed will be discarded. Users will 

be competing with other members on the system to get the 

highest ranking on the leaderboard based on the points they 

have accumulated. To earn points, users must do practices. 

With each question correctly answered, users will get five 

points. Besides that, users can also gain points by doing 

quizzes.  

 

     

LOGO Navigation Links
User Login 

Information

Open Slot

Locked Slot Locked Slot Locked SlotLocked SlotLocked Slot

Open Slot Open Slot Open Slot Open Slot

User’s Garden

                           
 

Figure 3. User’s Garden 

 

 

 
 

Figure 4.  User’s Garden Page Screenshot 
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Figure 5. Market Place Screenshot 

 

 

6. FINDINGS 
6.1 Findings from the initial survey 

Findings from the initial survey involving 30 users are as 

follow:  

 73% of the participants think that learning 

Mathematics will be useful for them in their future. 

20% of them do not think that learning Mathematics 

will be important to them. The rest have a neutral 

attitude towards learning Mathematics. 

 61% of the participants have a great experience 

learning.  

23% of them do not have a positive attitude towards 

classroom experience while 16% of them have a 

neutral attitude towards the classroom experience. 

Those who have a positive attitude towards the 

learning experience mostly understand what they 

have learned in class and have friends who can help 

them when they face problems understanding 

Mathematics. 

 73% of the participants think that they can do well in 

Mathematics. 13.5% of them think that they are not 

good in Mathematics and another 13.5% of the 

participants have a neutral attitude towards their self-

confidence in Mathematics. 

 47% of the participants find learning Mathematics 

through technology easier to understand. 23% of 

them find it uncomfortable learning Mathematics 

through technology while 30% of them have a 

neutral attitude towards the use of technology in 

learning Mathematics.  

Subsequently, based on the result of this survey, a basic 

gamified Web-based learning platform was developed.  

 

6.2 Findings from beta testing 

Beta testing involves 10 students. Findings based on the 

Technology Acceptance Model indicates that overall, 

Alzebra has received positive response from the ten 

participants. Furthermore, it is observed that:  

 All of the participants managed to use the website 

without any difficulties (ease of use). 80% of the 

students think that the design and layout of the 

system are acceptable. They can navigate through 

the site easily. 20% of the students find the layout of 

the website can be made more interesting.  

 70% of the participants have a positive attitude 

towards the concept of game in educational website. 

They are able to accept gamification in education 

while 30% of the students prefer the normal web-

based learning system with no gamified concept 

included.  

 Similarly, 60% of the students think that online 

competition such as leader board is challenging and 

fun while the rest think that it is annoying. 

 60% of the students will use the comment section 

provided to interact with other members online when 

they are facing problems understanding the concepts 

of the topic while 40% of them think it is 

unnecessary.  

 A majority agree that they can do better if the 

website is incorporated as part of the Mathematics 

subject.  

 Three of the suggestions made are to improve the 

gamification portion in the website. The point-

accumulating system can be motivating as the 

majority (6 out of 10) finds online competition 

stimulating while the rest of the participants think 

that the reward provided is gimmicky. 

 

7. CONCLUSION  
From these results, students appear to prefer attractive 

websites and prefer not having their performance or 

comments displayed publicly. The latter is typical of more 

conservative Asian culture and the influence of prior 

gaming experience towards acceptance of gamification in 

e-learning. Furthermore, there is improvement in 

acceptance towards such learning environments compared 

to the initial survey. This finding supports that of two other 

related projects, i.e., on teaching augmented reality to 

youths and e-crafting (Wong & Lee, 2016; Low & Lee, 

2016). Noting the comments and suggestions above, to 

meet the needs of a majority of the users who are not 

gamers, we need to improve on our design with game 

mechanics which matter to the users.  

 

This is a course assignment. The sample size is small and 

findings are not generalizable. Nevertheless, we hope that 

eventually, this e-Learning platform will provide a better 

user experience for students, hence keeping them enthused 

to carry on their self-studies outside of a classroom. 
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ABSTRACT  
The new K-12 computing curriculum draft for Taiwan 

secondary schools was designed to launch in 2018 but the 

draft only outlined themes and contents for students to 

learn, without further details on key concepts to be 

covered in the contents.  Therefore, in 2016, a Delphi 

study was conducted to survey the opinions about what 

“key learning concepts” should be included for 

implementation at the secondary level based on the draft. 

By adopting the Delphi method, different viewpoints from 

computer scientists and secondary school computing 

teachers were collected to build consensus of key concepts 

through a series of convergence. Based on the research 

results, we found the computer scientists and computing 

teachers had opposing opinions about whether the 

secondary school students should learn the advanced 

concepts. The purpose of this study was to understand the 

different views on learning concepts of the draft between 

two groups. The data analyzed in this study were based on 

the Delphi survey in 2016. This study found computer 

scientists tended to be more conservative about this issue, 

therefore they suggested that the advanced and theoretical 

concepts are not essential at the secondary level, e.g., 

recursion, searching, sorting, data compression, data 

conversion, and divide and conquer. This was because the 

computer scientists considered these concepts as what 

they had studied in college. Rather, computing teachers 

knew how to simplify these concepts for teaching at the 

secondary level. The research findings can serve as useful 

references for revising and implementing the computing 

curriculum in the future. 

KEYWORDS 
Computing curriculum, Delphi survey, Computational 

thinking, K-12 education 

  

1. INTRODUCTION 
International Society for Technology in Education [ISTE] 

(2014) and Computer Science Teachers Association 

[CSTA] believed CT (Computational Thinking) is 

essential for students, so collaborated on a project to 

prepare students to become computational thinkers who 

should understand how digital tools could help them solve 

problems. In fact, in 2011, CSTA has issued a revised K-

12 computer science curriculum standard (CSTA, 2011) 

that addresses the importance of computer science in 

concept, practice and the application of cross-discipline 

and outlines five strands of the curriculum standards (CT, 

collaboration, computing practice and programming, 

computers and communication devices, and community, 

global, and ethical impacts). In this curriculum standards, 

CT is regarded as an important concept to enable students 

to apply appropriate strategies and tools to solve complex 

problems effectively in the real world. Department for 

education of England [DOE] (2013) issued a national 

curriculum that renamed the subject name ICT into 

Computing. The statutory programmes of study clearly 

stated that “A high-quality computing education equips 

pupils to use computational thinking and creativity to 

understand and change the world.” Students in England 

are taught to become digitally literate– able to use, and 

express themselves, solve problems and develop ideas.  

Australian Curriculum, Assessment and Reporting 

Authority [ACARA] (2013) also published a new the 

Foundation to Year 12 Australian Curriculum. The 

Technologies learning area draws two subjects, which are 

“Design and Technology” and “Digital Technologies”. 

The goal of Digital Technologies is to enable students to 

define, design and implement digital solutions. The 

learning strands include: (1) knowledge and 

understanding: students learn digital systems and 

representation of data; (2) processes and production skills: 

students can collect, manage and analyze data, and create 

digital solutions by certain skills (investigating and 

defining; generating and designing; producing and 

implementing; evaluating; and collaborating and 

managing). Throughout the learning contents of the 

Foundation to Year 12 Australian Curriculum, one of vital 

aims is to develop understanding the skills in 

computational thinking in F-Y12.  

According to the development of ICT (Information and 

Communication Technology) curriculum standards, 

planned by the ISTE, CSTA, Australian and England, it’s 

obvious that computer science has become an important 

field in K-12 schools and the concept of CT 

(Computational Thinking) is the essence of the recent 

curriculum development. Meantime, ISTE, CSTA and 

related organizations in Australian and England outlined 

the learning contents of curriculum standards, built up a 

glossary to define the words and phrases of the curriculum 

standard and provided teaching guidelines, examples and 

the portfolio of students’ work. Those resources could 

equip teacher for their future instruction under the new 

curriculum standards. 

In 2014, the ministry of education [MOE] in Taiwan 

announced the Grades 1-12 Curriculum Guidelines. In the 

Grades 1-12 Curriculum Guidelines, a new learning area - 

Technology which includes Living Technology and 

Information Technology, is added and will be launched in 

2018 academic year. Computational thinking is the center 

theme of the new K-12 computing curriculum draft in 
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Taiwan. The purpose is to develop students’ ability of 

computational thinking and to enable them to formulate 

abilities of problem solving, team collaboration, 

creativity, and communicating and expressing. It is also 

meant to make students’ great attitude in information 

society and habits of utilizing information technologies. 

In elementary school, the instruction focuses on the 

practice and application to cultivate students’ ability of 

utilizing information technologies in daily life. In Grades 

7-9, the instruction emphasizes to utilize information 

technologies and computational thinking to solve 

problems. In Grades 10-12, by exploring computer 

science, the instruction enables students to realize the 

principle of computational thinking and it puts emphasis 

on the integration and application. 

A required course, named Information Technology, will 

require students to take one hour per week or equivalent 

time in Grade 7 through Grade 9 and two credits at Grades 

10 to 12. The learning performance of Information 

Technology includes (1) computational thinking and 

problem solving, (2) information and collaborative 

creation, (3) ICT and communication and expression, and 

(4) using attitude of ICT. The learning contents includes 

six categories, which are (1) programming, (2) algorithm 

design, (3) system platform, (4) data representation, 

processing and analysis, (5) application of ICT and (6) 

ICT and social, legal and ethical issue. In fact, the 

curriculum draft only outlines the key themes in each 

content category. (see Appendix A for details). 

Three selective courses are planned to implement at 

Grades 10-12, including Advanced Programing, Projects 

in ICT application, and Robotic Programming. Students 

could learn more professional knowledge and skills 

needed for future career and learning performances which 

include expression and sequence of operation, ICT 

creation and ICT attitude. 

To provide teachers with great flexibility, the K-12 

computing curriculum draft only outlines themes and 

topics for students to learn, without further details on key 

concepts to be covered. It will certainly be a challenge to 

the textbooks writers and the computing teachers to decide 

which concepts to teach and which to skip.  

We conducted a Delphi technique study to give 

suggestions for the “key learning concepts” to be included 

in the K-12 computing curriculum draft in 2016. The first 

draft of Delphi survey questionnaire consists of six themes 

(programming; algorithm design; system platform; data 

representation, processing and analysis; application of 

ICT; ICT and social, legal and ethical issue) and 117 

learning concepts developed from the computing 

curriculum. After three-rounds of survey, the expert panel 

derived 92 key learning concepts. Concepts which are not 

yet get consensus from the experts had been examined and 

provided recommendations for when included in learning. 

The results serve as useful references for computing 

teachers and textbook authors when implementing the new 

curriculum. At the same time, the study found the 

computer scientists and computing teachers had different 

points. Computer scientists put great attention on the 

depth, breadth and prior knowledge of learning contents, 

and meanwhile computing teachers expressed their views 

by teaching experiences. Therefore, we believed there 

were some different points on those learning concepts 

between these two groups and it is worth discussing.  

So, the purpose of this study was to understand the 

different views on learning concepts of the k-12 

computing curriculum draft between computer scientists 

and computing teachers. 

2. METHOD 
The data analyzed in this study were based on the Delphi 

survey which investigating the key concepts 

recommended for a proposed national K-12 computing 

curriculum in Taiwan. The Delphi survey was to derive 

consensus from a panel of twenty-one experts, including 

nine computer scientists and twelve secondary school 

computing teachers. Computer scientists were college 

professors from CS related fields, who had research or 

educational experiences in secondary school CS 

education; whereas, computing teachers were certified 

secondary Computing teachers who owned either a CS 

related master or PhD degree.  

This study was to analyze the results of the last survey. 

After three rounds of surveys, all of experts should know 

each other’s opinions, and the results of this phase present 

their thoughtful views. In the results and discussions 

section, we looked into the experts’ views from surveys 

and round-table discussion to express the different points 

in the two groups. 

3. RESULTS 
This section describes the results from the Delphi study 

following the six categories of learning contents: (1) 

programming; (2) algorithm design; (3) system platform; 

(4) data representation, processing and analysis; (5) 

application of ICT; (6) ICT and social, legal and ethical 

issue. Based upon the results, the different views on the 

secondary level learning concepts of computing 

curriculum draft between computer scientists and 

computing teachers had been depicted.  

3.1. Programming 

Experts from the two groups had different views about 

what “key learning concepts” in three learning contents.  

 (1) “1.1 Basic concepts of programming languages.” 

Computing teachers thought students should learn the 

types of programming languages to grasp the concepts 

about the categories of programming paradigms. 

However, in many of computer scientists’ opinions, the 

programming paradigm was too abstract for students to 

learn before they learn this programming language. 

Computer scientists also argued that such learning 

concepts would cause the students to learn in rote because 

they could not understand about the paradigm exactly.   

(2) “1.3 Implementation of arrays.” The main difference 

was on the concepts of time complexity. Computing 

teachers thought this was an essential concept that students 

should know; however, in computer scientists’ opinion it 

was too difficult for secondary school students to learn.  
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(3) “1.6 Implementation of fundamental algorithms-

recursion, searching, sorting, and divide and conquer.” 

The difference between the two groups was the learning 

of recursion. Lots of computer scientists thought recursion 

was too difficult, but in computing teachers’ opinion, the 

concept of recursion was related to mathematical 

induction taught in mathematics class, therefore it would 

not be too difficult for students to understand, in addition, 

this concept was important for realizing the computing 

power by programming. 

3.2. Algorithm design 

Experts from the two groups had different views about 

what “key learning concepts” in four learning contents.  

(1) “2.1 Basic concepts of algorithms-problem 

decomposition and flow control.” The key difference was 

in what grade should this content be taught. The content 

was planned to taught at grade 7. From some computer 

scientists’ perspective, teaching of this concept should 

focus on expressing the problem-solving process by 

flowcharts or pseudocodes rather than introducing the 

algorithm to the grade 7 students.  

(2) “2.4 concepts and application of fundamental data 

structures- tree and graph.” Both groups agree that it was 

important. However, due to the limited instruction time, 

experts from the two groups had different opinions about 

what concepts or skills about data structures should be 

included, e.g., concepts and application of tree traversal.  

(3) “2.5 concepts and application of fundamental 

algorithms—recursion and divide and conquer.” 

Computer scientists thought recursion was too difficult.  

(4) “2.6 performance analysis of algorithms.” Computer 

scientists suggested that at secondary level, the content of 

performance analysis of algorithms should be focused on 

observing the programming efficiency rather than deriving 

the time/space complexity, which was too theoretical. 

Students only need to learn simple tools and methods of 

performance analysis and its concepts of program 

optimization. 

3.3. System platform 

In this topic, experts from the two groups had different 

view about what “key learning concepts” in one learning 

contents.  

“3.1 The development and evolution of system platforms.” 

Both groups, especially the computer scientists, thought it 

was not essential to learn the evolution and personage of 

the computer science. They did not think those concepts 

are not required for understanding computing, and they 

were afraid that students would only memorize the 

knowledge. The other reason was that there are debates on 

representative personages. 

3.4. Data representation, processing and analysis 

Experts from the two groups had different views about 

what “key learning concepts” in the learning contents. 

“4.3 Concepts and methods of data processing-data 

consolidation, data compression, data conversion.” Since 

the computer scientists worried that the topic would be 

taught as the “data mining” class in college, they argued 

that this topic should only include fundamental concepts 

and methods, e.g. the principles and importance of data 

conversion, rather than theoretical parts of the data 

conversion algorithms. More practical examples and 

hands-on activities should also be included in instruction. 

But the computing teachers did not mention about this. 

3.5. Application of ICT  

Experts from the two groups had consensus in all of 

learning contents, “5.1 Data processing projects-data 

searching, data organization and representation, data 

computing and analysis”, “5.2 Information technology 

projects-multimedia applications, programming 

applications”, and “5.3 Concepts and tool use in 

collaborative digital creation”. Because the 5.1 and 5.2 

were planned at grades 7 to 9 in the computing curriculum 

draft, some computer scientists believed that only senior 

high school students had enough abilities to conduct 

projects. 

3.6. ICT and social, legal and ethical issues 

Experts from the two groups had different views about 

what “key learning concepts” in one learning contents. 

“6.3 Information security, ethics, and legislation.” 

Although the opinion was not obviously disagreed, some 

computing teachers pointed out that due to students have 

limited knowledge about advanced techniques in 

computer science, the learning concepts of information 

security should be emphasized on its importance but not 

the algorithms. 

4. DISSCISSIONS 
In summary, the major differences between the computer 

scientists’ and the computing teachers’ opinions on 

learning concepts are as the following:  

 (1) Projecting the curriculum from the learning contents 

of different learners 

Computer scientists in our study were college professors 

in CS related fields, and they tended to view the k-12 

computing curriculum draft on the basis of courses in 

universities, especially when the same terminologies were 

adopted in the curriculum draft. Besides, some learning 

contents outlined in the curriculum draft are either well-

known courses in college computing curriculum or 

matured fields in computing discipline, e.g., algorithm, 

machine learning, and big data. Based on the computer 

scientists’ past learning and teaching experiences in 

universities, computer scientists tended to disagree to 

teach secondary school students with similar concepts 

taught in the college, especially those theoretical or 

difficult concepts for college students. These differences 

could be found in learning concepts of programming, 

algorithm design and data representation, processing and 

analysis. Computer scientists were opposed to including 

theoretical or advanced concepts such as recursion, 

searching and sorting, data compression and data 

conversion. 
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Computing teachers, on the other hands, had practical 

experiences in teaching computing in secondary schools. 

They knew how to explain the core aspects of these 

concepts by demonstrating relevant examples and 

supporting students’ learning with appropriate tools (for 

example, visualization programming platforms), therefore 

were more inclined to include the theoretical contents.  

 (2) Philosophy on how CS should be taught in schools 

It is common in Taiwan that computing subject at 

secondary level is either application-oriented, in which 

application software (such as Microsoft Offices or 

Photoshop) are delivered and the students only learn low-

level skills to use computer software/hardware; or 

knowledge-oriented, which focuses more on theories and 

factual knowledge in computer science. It is a general 

impression that computing subjects in the schools are 

either too trivial or too theoretical.  

Computer scientists in this study, in general, hoped to 

inspire students’ interests in learning computing and foster 

their problem-solving ability by applying computing skills 

for everyday life or careers, rather than to learn factual 

knowledge. They thought secondary school students 

should learn by hands-on experiences and develop their 

interests in computing fields, especially in programming 

and algorithm design. They also suggested that the history 

of computer science is not required in learning computing, 

because they were afraid that would become rote learning. 

The points could be found from their disagreement with 

teaching the development and evolution of programming 

language and system platform. 

 (3) Different professional background in computing 

science 

Some learning contents in the k-12 computing curriculum 

draft are new ones which were not addressed in the 

previous K-12 computing curriculum (e.g., divide and 

conquer). Computing teachers were not familiar with 

those contents, therefore had a conservative attitude 

toward inclusion of these concepts. 

As mentioned above, computing teachers might associate 

some concepts listed in the k-12 computing curriculum 

draft with computer application software (e.g., excel and 

photoimpact) in present teaching experiences and as a 

result it could affect their opinions of learning concepts. 

This point could be found in the concepts of data 

compression and data cleaning included in ‘Data 

representation, Processing and analysis.’ Those are 

complex and professional fields in the computing 

discipline, and therefore computer scientists delivered 

different opinions. 

5. CONCLUSIONS 
The purpose of the study was to explore the differences of 

opinions about the learning concepts of the K-12 

computing curriculum draft between computer scientists 

and computing teachers, and discuss possible reasons. 

Based upon the results, it was revealed that computer 

scientists had more conservative attitude toward including 

advanced learning concepts. They suggested that some 

advanced and theoretical concepts should not be included 

at the secondary level, e.g., recursion, searching, sorting, 

data compression, data conversion, and divide and 

conquer. This might due to the lack of teaching 

experiences in secondary schools, or the past learning or 

academic experiences in these topics. Generally, computer 

scientists seemed not to believe that abstruse theories 

could be simplified and taught at secondary level by 

applying examples or learning tools.  

The experts in this study were selected with the 

consideration of their professional knowledge, teaching 

experiences, and familiarity of the K-12 computing 

curriculum draft. On the basis of the results the study 

suggests that, in the related researches, the selected experts 

could have all of the specific knowledge or be fully 

debriefed the rationale of the K-12 computing curriculum 

draft prior the research. As a result, they can consider 

computing learning concepts from both sides of theory and 

practice.   

Based on the research findings, the researchers in the 

future can develop the materials and tools or conduct 

experiments in secondary schools to test the different 

views which have found from the study (e.g., recursion, 

searching and sorting, data compression, data conversion 

and divide and conquer). Furthermore, the results can 

serve as useful references for revising the computing 

curriculum in the future. 
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Appendix A: The Learning Contents for the 

Draft Computing Curriculum  

 

1. Programming 

1.1 Basic concepts of programming languages (G7) 

1.2 Structured programming-conditional structures 

and loops (G7) 

1.3 Implementation of arrays (G8, G10-G12) 
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1.4 Concepts of modular programming (G8) 

1.5 Implementation of modular programming (G8) 

1.6 Implementation of fundamental algorithms-

recursion, searching, sorting, and divide and 

conquer (G10-G12) 

2. Algorithm Design 

2.1 Basic concepts of algorithms-problem 

decomposition, flow control (G7) 

2.2 Concepts and application of arrays (G8) 

2.3 Introduction to basic algorithms-searching and 

sorting (G8) 

2.4 Concepts and application of fundamental data 

structures- tree and graph (G10-G12) 

2.5 Concepts and application of fundamental 

algorithms—recursion and divide and conquer 

(G10-G12) 

2.6 Performance analysis of algorithms (G10-G12) 

3. System Platform 

3.1 The development and evolution of system 

platforms (G9) 

3.2 The architecture and operations of system 

platforms (G9) 

3.3 Concepts of networking techniques (G9) 

3.4 Concepts of network applications (G9) 

3.5 Task management and resources allocation, 

distributed system, routing (G10-G12) 

3.6 The future trends of system platforms (G10-

G12) 

4. Data Representation, Process, and Analysis 

4.1 Principles and methods of data digitalization 

(G9) 

4.2 Methods of digital data representation (G9) 

4.3 Concepts and methods of data processing-data 

consolidation, data compression, data 

conversion (G9) 

4.4 Basic concepts of big data (G10-G12) 

4.5 Basic concepts of data mining and machine 

learning (G10-G12) 

5. Application of ICT 

5.1 Data processing projects-data searching, data 

organization and representation, data computing 

and analysis (G7) 

5.2 Information technology projects-multimedia 

applications, programming applications (G9) 

5.3 Concepts and tool use in collaborative digital 

creation (G10-G12) 

6. ICT and social, legal and ethical issues  

6.1 Future study and career development of 

information technology related areas (G7, G9, 

G10-G12) 

6.2 Impacts of information technology on society 

and human life (G8, G9, G10-G12) 

6.3 Information security, ethics, and legislation (G7, 

G8, G10-G12) 

6.4 Fair-use doctrine for information technology 

(G7, G10-G12) 
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ABSTRACT 
Teaching computational thinking can be viewed as 

cultivating the capacity for logical thinking and problem-

solving skills applied to foundational subjects such as 

mathematics. We report a pilot study on how carefully-

designed mobile app games that gamify elementary 

algebra learning are used in an annual computer science 

tournament and also at an annual mathematics festival in 

Hong Kong. We define mathematics gamification as the 

process of embedding mathematical concepts and their 

logical manipulations in a puzzle game-like setting aided 

by computing technologies. We have evaluated the 

learning efficacy of our mobile app games to gain 

numeracy proficiency in an annual computer science 

tournament for middle school students in Hong Kong. 

KEYWORDS 
Mathematics education, mathematics gamification, 

mobile app games, pedagogy, K-12 mathematics. 

 

1. INTRODUCTION 
Marvin Minsky, in his 1970 Turing Award Lecture, 

asserted that, “The computer scientist thus has a 

responsibility to education…how to help the children to 

debug their own problem-solving processes.” [1]. Minsky 

pointed out that cultivating the capacity for logical 

thinking and problem-solving skills of students, while they 

are young, to learn foundational subjects such as 

mathematics is of the essence. The emphasis is on the tools 

and motivations for students to acquire problem-solving 

skills in lifelong learning of mathematics. Computer 

science and its software technologies might just offer an 

intriguing way for students to persist and persevere in 

learning mathematics. We describe a pilot pedagogical 

study on learning K-12 mathematics through mathematics 

gamification ideas and tested at a computer science 

tournament in Hong Kong.  

We define mathematics gamification as the process of 

embedding mathematical concepts into puzzle game-like 

instantiations that are aided by computing technologies. 

We focus on the software development for typical 

computing technologies run on a mobile device of the 

learner. Game playing is essentially the manipulative of 

mathematical objects or structures in a logical manner 

such to acquire useful mathematical insights that 

otherwise are not obvious or taught in traditional 

classrooms. Also, the engaging game-like nature can 

potentially motivate students and serve as instructional 

tools for regular practice to gain proficiency in 

mathematics and numeracy. 

2. ALGEBRA GAMIFICATION 
Elementary algebra—the first cornerstone of K-12 

mathematics—has been highlighted by the National 

Academy of Engineering in [3] as a critical area to 

improve in K-12 mathematics learning (in fact touted as 

an Algebra Challenge). How should the Algebra 

Challenge be addressed from teaching computational 

thinking skills with an aim to underpin the foundation of 

learning mathematics? Can this complement traditional 

classroom learning? It has been recently recognized 

(among them are mathematicians like Keith Devlin from 

Stanford University) that game-playing activities allow 

players to grasp mathematical concepts and foster a sense 

of motivation that leads to numeracy proficiency 

especially when the game is designed to embed abstracted 

mathematical subjects [4-8].  

Algebra gamification is a pedagogical approach to 

learning elementary algebra. This can be especially useful 

when used at an early stage of a K-12 education to give 

students a heads up with learning an advanced topic that 

might only be encountered later in classroom teaching. In 

this paper, we report on how this idea of mathematics 

gamification can be designed as mobile game apps that are 

suitable for middle school students when the mobile apps 

are deployed in mathematics-related game tournaments 

and then to analyze preliminary efficacy of learning 

behavior based on collected data. Put simply, this teaches 

students how to think (about learning mathematics) at 

multiple levels of abstraction – the goal of teaching 

computational thinking [2]. The particular instance of 

gamifying algebra in this paper is due to Terence Tao, a 

mathematician at the University of California, Los 

Angeles, who remarked in his online blog article [9] on 

“Gamifying Algebra” that: 

The set of problem-solving skills needed to solve algebra 

problems (and, to some extent, calculus problems also) is 

somewhat similar to the set of skills needed to solve puzzle 

type computer games, in which a certain limited set of 

moves must be applied in a certain order to achieve a 

desired result one could then try to teach the strategy 

component of algebraic problem-solving via such a game, 

which could automate mechanical tasks such as gathering 

terms and performing arithmetic in order to reduce some 

of the more frustrating aspects of algebra ... Here, the 

focus is not so much on being able to supply the correct 

answer, but on being able to select an effective problem-

solving strategy.  
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Tao’s insightful remarks aptly highlight two key facts, 

namely that (i) certain kinds of K-12 mathematics are 

amenable to game design that can motivate student to 

learn, and (ii) problem-solving skills can be cultivated 

through this gamifying process as a means to learning the 

mathematical subject. In other words, there are several 

ways to solve elementary algebra — strategizing moves in 

a mathematical puzzle game is one of them. With the aid 

of computing technologies, this introduces novel 

perspectives to learn elementary algebra for young 

students. Also, in [10], Tao developed a software mock-

up of the game as shown in Figure 1. 

 

 

Figure 1. Terence Tao’s software mock-up. 

The idea of Tao's algebra game is to reduce a given linear 

algebra equation to a form with only “x” and a numerical 

value on the lefthand and righthand side respectively 

through a selection of a finite number of given clues. Let's 

give an example using a screenshot of the game as shown 

in Figure 1. Initially, the puzzle state is the algebra 

equation “5x + 3 = x + 11” and the given clues are the three 

possibilities “Subtract 1”, “Divide by 2” and “Subtract x”. 

The player chooses one of the three possibilities by 

clicking on the avatar icon. Say, suppose the player 

chooses “Subtract 1”, the algebra equation 

(correspondingly, the puzzle state) then changes to “5x + 

2 = x + 10” (since both sides of the original equation “5x 

+ 3 = x + 11” get subtracted by one). 

One possible “solution” to the puzzle given in Figure 1 is 

the sequence of “Subtract 1” then “Subtract x” then 

“Divide by 2” then “Subtract 1” and then finally “Divide 

by 2” to yield “x = 2”. This requires a total of five moves 

to reach the desired state. It is important to note that what 

matters is not the final value of x, but it is rather the 

inquisitive problem-solving process while playing that is 

valuable. 

The benefit to computational thinking is obvious: students 

learn a foundational subject (e.g., mastering algebra) while 

playing. There are several intriguing questions: first, how 

to engineer the difficulty level of the game automatically? 

Second, how does a computer (not human player) solve a 

given puzzle efficiently, i.e., with the fewest number of 

moves? And, third, how to engage the human players in 

an entertaining manner so that they keep on playing it and, 

unknowingly, develop a better number sense or 

mathematical intuition and that such an improvement can 

be measured? These questions were explored in The 

Algebra Game Project founded by the first author [11], 

and detailed answers to these questions along with the 

software development will be published in other venues. 

3. MOBILE APP GAMES WITH 

MATHEMATICS  GAMIFICATION 

In this section, we briefly describe the mathematics 

gamification building on Tao’s algebra game in [9] and the 

software implementation in two mobile apps. One mobile 

app is Algebra Maze and the other is Algebra Game, and 

both mobile apps are freely-available for download at the 

Apple iOS Store or Google Play Store [11].  

In Algebra Maze, we combine maze solving and linear 

algebra equation solving together as shown in Figure 2, 

which is the game play screen shot of Algebra Maze. The 

goal is to move the purple avatar toward the treasure (i.e., 

equivalently solving the linear equation). Each movement 

of the avatar corresponds to a mathematical operation on 

the equation given below the maze. For example, the 

button “+1x” corresponds to the avatar moving upward 

one unit, and the button “+2” corresponds to the avatar 

moving leftward two units. Hence, the operation on x is an 

up-down movement and the operation on the constant is a 

left-right movement of the avatar. With the rules above, 

we can deduce that the position of the avatar also has 

algebraic meaning, i.e., each position in the maze 

represents a different equation with the same solution but 

with different coefficients or constants.  

In the initial levels, the treasure is visible, and in 

subsequent higher levels, the treasure is rendered 

invisible, i.e., hidden from the player as shown in the right 

hand side of Figure 2. Hence, the player needs to make use 

of the “information” in the given equation to deduce the 

location of the treasure. In some levels, the player has to 

first get a key, which is in a certain position of the maze, 

before opening a locked door located nearby to the 

treasure. This setting is equivalent to asking the player to 

reach to a certain equation first before they solve this 

equation. Finally, when the avatar locates the (potentially 

hidden) treasure, the algebra equation will be in the 

desired form “x=numerical_solution”, i.e., the puzzle is 

solved.  

In Algebra Game, we split the clues into two parts, one is 

the operator “+, -, *, ÷” and the other one is the operand 

such as the x-term or the number as in Figure 3. Hence, 

the combination of the clues is more general than the 

original design. The goal in Algebra Game is the same as 

Tao's algebra game: To reduce a given linear algebra 

equation to “x=numerical_solution” through a selection of 

a finite number of given clues. As shown in the right hand 

side of Figure 3, if the player “drag” the button “÷” and 

“drop” it on the button “2” then the equation will be 

divided by two on both side. Algebra Game is not only 

about solving a linear equation, it also contains other 

mathematical insights. For example, consider an equation 

“x-23=2” with the clues “+, -” and “2, 3”, then this is 

equivalent to ask if we are able to use 2 and 3 to construct 
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23. The players can develop their number sense through 

playing this game.  Let us use another example, consider 

an equation “24x=48” with the clues “*, ÷” and “2, 3”, 

then this is equivalent to asking the players to factorize 24 

by using 2 and 3 (prime numbers). Other than the 

factorization concept, there are many instances of 

mathematical manipulations that can be embedded in the 

Algebra Game such as the Frobenius’s problem (also 

known as the coin problem) in the form of making up a 

number from two given clues. In essence, given the 

available clues at each level, the player can only perform 

a limited number of operations, and this restriction helps 

to stimulate computational thinking in finding a sequence 

of moves to solve the problem. Coupled with the 

mathematical analysis underpinning the difficulty level 

design in the Algebra Game, players can further develop 

intuitions to develop mathematical insights and intuition 

while playing the Algebra Game. 

 

The mathematics gamification process also requires 

analyzing the scoring at each puzzle game level that can 

be evaluated according to different reasonable design 

criteria. For example, scoring can be evaluated in terms of 

the number of moves needed or the speed to solve each 

level in the case of the Algebra Game and the number of 

“redo” on hitting obstacles or the speed to locate the 

hidden treasures in the case of the Algebra Maze. 

Furthermore, concrete mathematics can be purposefully 

interleaved at certain levels of the games. For example, 

after a consecutive sequence of games involving 

factorization in the Algebra Game, the mathematical 

statement of The Fundamental Theorem of Arithmetic 

(stating that all natural numbers are uniquely composed of 

prime numbers) can be displayed to the player in order to 

highlight game features (e.g., the prime numbers as clues) 

with the mathematical rudiment. In this way, the players 

learn about fundamental mathematical knowledge (such as 

The Fundamental Theorem of Arithmetic in Euclid’s 

Elements that is not typically taught in classroom). In 

summary, we find that the Algebra Maze and the Algebra 

Game can provide players with new perspectives to 

gaining new mathematical insights while training their 

individual number sense and problem-solving skills that 

are critical to develop their capacity to view mathematics 

at multiple abstract levels. 

 

              
Figure 2. Algebra Maze mobile app game with maze-like 

gamification design and freely-available for download at 

iTunes App Store and Google Play Store. 

 

          
Figure 3. Algebra Game mobile app game with the 

selected choice displayed at the right-hand side and freely-

available for download at iTunes App Store and Google 

Play Store. 

4. CASE STUDY OF COMPUTER 

SCIENCE CHALLENGE TOURNAMENT 

IN HONG KONG 
The Computer Science Challenge (CS Challenge) was a 

tournament organized by the Department of Computer 

Science at City University of Hong Kong on 21 May 2016 

for both primary and secondary school students in Hong 

Kong [12]. A pair of students forms a team, and there were 

altogether 32 teams from 19 primary schools, and 53 

teams from 33 secondary schools, making a total of 170 

students. One of the tasks in the CS Challenge was called 

the Algebra Game Challenge, in which the Algebra Maze 

and Algebra Game are used for the primary school 

students (as shown in Figure 4) and the secondary school 

students (as shown in Figure 5) respectively. Each of these 

two tasks lasts for a fixed duration of twenty minutes. We 

experiment with a pedagogical initiative of teaching 

computational thinking to the participants as follows: a 

workshop for all participants was held a month before the 

CS Challenge, whereby participants were introduced to 

basic computer science knowledge and the mathematics 
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behind the games. On the day of the CS Challenge, 

however, participants used the mobile app software 

described in Section 3 that allow more diverse game-

playing dynamics and also enable the use of data 

collection and data analytics to capture the users’ game-

playing behavior. The mobile apps in [11] were not 

available to the participants as they were posted online 

after the CS Challenge was over.  

We describe in the following how the first task of Algebra 

Game and Algebra Maze based on data analytics of the 

data collected in the tournament. We analyze the 

performance evaluation of learning efficacy based on the 

time spent at each level, each move that a user has taken, 

and the number of “redo” times at each level. The 

difficulty at each level is calibrated based on our 

mathematical analysis of the game (from easy to hard), 

and we expect to have a reasonable difficulty curve so that 

players gain confidence instead of frustration at early 

levels. Let us evaluate Algebra Game first. In Figure 6, we 

see that the number of student drops sharply, about twenty 

percent, from Level 9 to Level 10 which can also be 

observed in Figure 7, the time spent in Level 10 almost 

doubled in Level 9. In fact, the number of moves needed 

in Level 10 is also almost double that needed in Level 9 as 

shown in Table 1. We conclude that the total number of 

moves needed at each level is a crucial factor in the 

difficulty-level calibration design of the game.  

Interestingly, the average number of moves needed at 

Level 12 is around 8.8, and yet the time spent in Level 12 

is the highest. This implies that the total number of moves 

needed is not the only factor that may affect the difficulty 

of the game for human players. Finally, the reason for the 

longer time spent in Level 1 is that students are initially 

warming up (as they get familiar with the game interface 

and rules).  If we omit the information in Level 1 and 

proceed to compute the correlation coefficient between the 

time spent and the average number of moves taken, then 

we have a correlation coefficient that is 0.807 which 

reveals that they are highly correlated for the twelve levels 

being analyzed.  

Table 1. Table of average moves taken by players in each 

level of the Algebra Game.  

Level 1 2 3 4 5 6 

Average 

Moves 

3 2.65 3.84 3 5 5 

Level 7 8 9 10 11 12 

Average 

Moves 

4 5 4.77 10.1 20.1 8.8 

 

 
Figure 4. Primary school student tournament of Algebra 

Maze at the Computer Science Challenge on May 2016. 

 

 
Figure 5. Secondary school student tournament of 

Algebra Game at the Computer Science Challenge on 

May 2016. 

 
Figure 6. Percentage of number of students vs. the total 

number of completed levels of Algebra Game during the 

twenty-minute duration. An unlimited number of levels 

were designed in the Algebra Game. 
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Figure 7. Average time a player spent at each level of the 

Algebra Game. 

 
Figure 8. Percentage of number of students vs. the total 

number of completed levels of Algebra Maze during the 

twenty-minute duration. A total of forty-five levels were 

designed in Algebra Maze. 

   

5. CONCLUSIONS 
We described a pilot study on teaching computational 

thinking by cultivating the capacity for logical thinking 

and problem-solving skills of students using carefully-

designed mobile app games based on the mathematics 

gamification of elementary algebra learning. Through the 

aid of mobile computing technologies, the logical 

manipulatives of the mathematical Algebra Game and 

Algebra Maze are embedded within puzzle game-like 

instantiations in a logical flow to catalyze the development 

of mathematical intuitions and insights. Through 

competitive game-playing in a Computer Science 

Challenge tournament, we studied the learning efficacy of 

the game software. We have also recently deployed the 

game software for non-competitive learning at the Julia 

Robinson Mathematics Festival in Hong Kong [13] with 

the aim to share the mathematics behind the Algebra 

Game and to evaluate the efficacy of these software tools 

to learning advanced mathematics, the topic of which will 

be reported elsewhere. 
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ABSTRACT 
This paper describes the findings from the Education 

Development Center’s (EDC) project on Computational 

Thinking (CT) called “Broadening Participation of 

Elementary School Teachers and Students in Computer 

Science through STEM Integration and Statewide 

Collaboration.”  It presents the process used to define the 

primary job functions and work tasks of a CT Integration 

Specialist in today’s education settings. Authors describe 

how the requisite knowledge, skills and practices of the 

CT integration specialist were assembled and vetted. The 

article presents ways this profile can be used to guide 

elementary school teachers in integrating CT into their 

classrooms and as a framework to guide the development 

of CT learning activities and assessments, then sets the 

directions for future work. 

KEYWORDS 
Computational thinking, elementary education, 

integration, skill standards, workforce development. 

1. INTRODUCTION 
There has been much recent debate about the definitions 

of CT and the relative merits of different definitions 

(Wing, 2006; Committee for the Workshops on 

Computational Thinking, 2010; Cuny, Snyder & Wing, 

2010; Barr & Stephenson, 2011; Lee et al., 2011; Grover 

& Pea, 2013; Engelmann, 2014; Voogt et al., 2015; 

Weintrop et al., 2016).  This debate has created confusion 

within education circles. EDC was funded by the 

National Science Foundation to develop curricular 

modules “iMods” that integrate CT into science and math 

lessons at the 1st -6th grade levels. To build a better 

understanding of CT integration within elementary 

schools, the project spearheaded an effort to research 

what Kindergarten-8th grade (K-8) teachers need to know 

and be able to do to successfully integrate CT into 

classroom lessons. The project team conducted a 

modified DACUM (Developing a Curriculum) process, 

a well-researched methodology used to develop 

curriculum designed to prepare people for career success, 

to create the profile. The resulting profile includes the 

universe of work tasks associated with a specific job and 

the skills, knowledge and behaviors needed to conduct 

those work tasks successfully.  

 

This paper describes the research process and findings 

resulting from the application of a modified DACUM 

process to describe the work activities of the classroom 

teacher who integrates CT into disciplines they teach 

and/or the specialist who assist them in CT integration. 

At the time this research was conducted, no such job as 

the “CT Integration Specialist” existed. 

2. BACKGROUND  
Building on a legacy of experience in developing 

national skill standards (Leff & Aring, 1995; Norton, 

1997; Dahms & Leff, 2002; Education Development 

Center, 2012; Ippolito, Latcovich, Malyn-Smith, 2008) 

EDC’s STEM+C project produced an occupational 

profile that defined, in concrete terms, the work of a 

“Computational Thinking Integration Specialist”; then 

identified and validated with expert CT educators the 

“computational thinking” skills and competencies that 

are used by CT integration specialists. An occupational 

profile of the type produced by EDC presents a detailed 

synopsis of what a particular professional does, as well 

as the skills, knowledge and behaviors that enable him/ 

her to succeed in the workplace.  These occupational 

profiles provide important information to educators who 

use them to guide the design of pre-service and in-service 

curriculum and training programs. The process 

employed was one that had been used successfully for 

decades to develop curriculum for technical occupations 

(Big Data) and national skill standards for emerging 

industries (Biosciences) and industries undergoing 

substantive changes in professional and technical job 

responsibilities (Human Services). This research is not 

intended to contribute to or address ongoing discussions 

related to transfer. It is meant to help describe what 

classroom teachers and/or CS support specialists need to 

know and be able to do when integrating CT into various 

disciplines.  

3. DEVELOPMENT PROCESS 
A modified DACUM process (Developing A 

CUrriculuM) (Norton, 1997) was used to produce the 

profile of the CT Integration Specialist.  DACUM is an 

internationally known methodology used by expert 

practitioners in an occupational field to identify the 

major areas of work and the constituent tasks that define 

successful job performance. The DACUM method has 

been used internationally for more than half a century to 

develop curricula based on identified core workforce 

competencies. This process rests upon three basic 

principles: 

● Expert workers can describe and define their jobs 

more accurately than anyone else. 

● An effective way to define a job is to precisely 

describe the tasks that expert workers perform. 

● All tasks, in order to be performed correctly, 

demand certain knowledge, skills, resources, and 

behaviors. 
 

Traditional DACUM analyses invite expert practitioners 

representing a single occupation. The “modified” 

mailto:ialee@mit.edu
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DACUM approach used successfully by EDC engages 

expert workers from a range of related occupations who 

share a common core of work tasks, knowledge, and 

skills. 
 

The work process involved three distinct steps: building 

a team, defining a learning occupation, developing a 

profile of the CT integration specialist.  

 

Building a team: EDC assembled a project team that 

included 3 highly qualified skill standards developers 

experienced in conducting occupational analyses. Their 

first and perhaps most important task was to recruit 

individuals recognized by their peers as experts in 

integrating CT into K-8 curricula to serve on a national 

panel to define the work of a CT Integration 

Specialist.   The DACUM process requires the following 

criteria be used to select panelists: 1) recognition by 

peers as experts in their field (integrating CT into 

disciplinary lessons), and 2) a minimum of 2 years 

experience in performing the work described in the 

profile.  In addition every effort was made to include 

gender, geographic, and cultural diversity among the 

panelists. The 11 panelists represented a range of subject 

areas, occupational levels, and work settings (elementary 

and middle school educators, technology specialists and 

computer science educators). For the purposes of this 

research we dubbed these individuals “CT Integration 

Specialists” and framed the profile around their 

definition of that role. The panel was convened by the 

National Science Foundation funded STEM+C project 

entitled “Broadening Participation in Elementary School 

Teachers and Students in Computer Science through 

STEM Integration and Statewide Collaboration.” The 

panel’s work sessions were held at Education 

Development Center’s world headquarters in Waltham, 

MA in August 2016.   

 

Defining a learning occupation: The panel’s first task 

was to come to agreement on the learning occupation 

defining the CT Integration Specialist.  A “learning 

occupation”, adapted from best practices in Germany and 

other countries (Leff & Aring, 1995) is an invented 

construct used to describe a set of cross cutting tasks, 

skills, knowledge and attributes required to perform a 

range of job functions conducted in a group of related 

real-life occupations.  In this regard the learning 

occupation of CT Integration Specialist was meant to 

help define the work of both teachers at various grade 

levels, and also technology and computer science 

specialists who support classroom teachers as they 

integrate CT into their curricula. For the purpose of 

developing curricula, the profile identifies the universe 

of work functions and tasks that a CT Integration 

Specialist might be called upon to perform. The Learning 

Occupation provides a framework for development of 

courses/professional development.  It is not meant to be 

a “job description” performed by a single individual. 

 

The first task undertaken by this panel of experts was to 

discuss and refine the proposed Learning Occupation so 

that it captured the essence and commonalities of their 

own work. Panelists came to consensus around the 

following definition that set the boundaries for the 

occupational profile.  “The CT Integration Specialist 

recognizing that CT is integral to learning, is a teacher 

who models and integrates CT across academic 

disciplines and/or /out-of-school activities by 

establishing an inclusive culture while using, modifying 

and creating CT activities and assessments of student 

learning.” 

 

Developing a profile of the CT Integration Specialist: 
Once the learning occupation was defined and agreed 

upon, the expert panel developed a profile of the CT 

integration. 

The profile development work session involved panel 

members in a guided dialogue that includes 

brainstorming, identifying and organizing work 

responsibilities, revisiting and refining those work 

responsibilities until consensus was reached. The 

ensuing guided dialogue provided descriptions of 

concrete, observable activities for which the panelists use 

CT and that met the definition of the Learning 

Occupation. The work session yielded the first draft of a 

profile of the CT Integration Specialist.  Subsequent to 

the two-day work session, the expert panel members 

reviewed and commented on the draft profile.  

 

The panel identified 6 large functional groupings or “job 

functions” described as follows: “A Computational 

Thinking Integration Specialist ….”: 
 

1. Establishes a CT learning 

environment in the classroom 

2. Creates lesson plans that integrate CT 

with all subjects 

3. Facilitates student learning 

4. Engages stakeholders in support of 

CT learning 

5. Teaches students to apply CT 

concepts and practices 

6. Engages in professional learning/ 

development in support of CT and content areas 
 

The panelists identified 68 activities/work tasks 

performed by CT Integration Specialists described in the 

learning occupation. Each of the 68 tasks was grouped 

under the job function (or duty) category to which it best 

corresponded. In addition, the panelists developed lists 

of the Skills, Knowledge and Behaviors of CT 

Integration Specialist as well as selected 

Equipment/Tools and Supplies used as they are engaged 

in those activities listed (see Table 1 below for the duties 

and tasks of a Computational Thinking Integration 

Specialist). 

4. NEXT STEPS: Although the profile identified 

the work tasks in which CT Integration Specialists 

engage, concrete examples that describe what this work 

“looks like in action” are needed to build a strong 

dialog between CT Integration Specialists and non-

computer science educators who are struggling to 
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understand CT and connect it to learning objectives in 

their classes. In summer and fall of 2017 EDC will host 

a CT Workshop for a small group of NSF ITEST and 

STEM+C grantees whose work focuses on integrating 

CT into various disciplines.  Workshop participants will 

develop a framework that describes what CT looks like 

“in action” at various grade levels and along learning 

progressions related to the concept/constructs that 

undergird their CT work. The profile of the CT 

Integration Specialist, along with other CT resources 

will inform the development of that framework. 
 

Profiles such as these have many uses. The profile can be 

used: 

● by teachers learning how to integrate 

computational thinking into their classes and as a 

professional development resource;  

● by faculty at the post-secondary and secondary 

levels to design or modify programs and/or 

courses;  

● by school superintendents and other employers 

creating job descriptions and interview questions 

for hiring; and  

● by job seekers developing their resumes and 

preparing for interviews. 
 

Authors hope that this work pushes the field forward in 

thinking about what it takes to integrate computational 

thinking into the disciplines; and helps to clarify the 

emerging skill sets needed for teachers seeking to 

become CT Integration Specialists. 

 

Table 1: Duties and tasks of the CT integration 

specialist (excerpted from EDC’s Profile of a 

Computational Thinking (CT) Integration Specialist, 

2016.) 
Duty 1:   ESTABLISHES A CT LEARNING ENVIRONMENT IN 

THE CLASSROOM 

Task 1A. Creates student-centered spaces that accommodate their needs. 

Task 1B. Obtains physical resources (e.g., technology). 

Task 1C. Establishes expectations and procedures. 
Task 1D. Establishes systems for management of resources (e.g., 

equipment).  
Task 1E. Creates an environment respectful of divergent ideas and 

abilities. 
Task 1F.  Promotes student dispositions conducive to CT (e.g., 

celebrates failure as a first attempt in learning, encourages 

persistence when setbacks occur, develops iterative 

refinement of initial ideas).  
Task 1G. Fosters collaboration. 
Task 1H. Promotes student leadership (e.g. engages mentors).   
Task 1I.  Promotes ethical use of resources. 
Task 1J.  Encourages multiple solutions to the same problem.  
Duty 2:   CREATES LESSON PLANS THAT INTEGRATE CT 

WITH ALL SUBJECTS 
Task 2A. Determines CT outcomes as manifested within the subject 

matter. 

Task 2B. Researches lesson plans that lend themselves to CT. 

Task 2C. Collaborates with peers to identify how to integrate CT (e.g., 
vertical alignment, cross curricular connections). 

Task 2D. Aligns lessons to standards (e.g., NGSS, Common Core, 

Mathematics, CSTA, State CS standards). 

Task 2E. Develops a course outline that indicates location and 

allocation of time for CT integration. 

Task 2F.  Identifies students’ prior knowledge and interests. 

Task 2G. Creates Kinesthetic computer based learning activities that 

infuse CT (e.g., algorithms, data, modeling/simulation, 
programming).  

Task 2H. Creates differentiated instruction to accommodate different 

learners (e.g., remediation & enrichment activities, IEP, 

ESL). 

Task 2I.  Provides modifications and accommodations for students with 

special needs. 

Task 2J.  Provides supports to address common misconceptions about 

CT and the discipline. 

Task 2K. Procures materials and resources. 

Task 2L. Creates contingency plan (e.g., technology failure). 

Task 2M. Creates an assessment rubric. 

Duty 3:   FACILITATES STUDENT LEARNING 

Task 3A. Builds CT vocabulary.  

Task 3B. Uses CT technical language (e.g., algorithm, abstraction, 

function, debugging)  in a consistent manner. 

Task 3C.  Uses models to simulate real world phenomena and 

processes. (e.g., makes connections between physical models 

of real world phenomena and computer models of the same 
phenomena). 

Task 3D.  Provides examples of CT ranging from concrete to abstract 

(e.g., links common practices from the classroom to how they 

pertain to computers using CT). 

Task 3E.  Provides open-ended guiding questions that promote 

CT (e.g., provides opportunities for open ended artifact 

construction that engage students in abstraction and 
automation). 

Task 3F.  Calls out CT throughout the day (e.g., through thinking 

aloud, identifying when algorithms are being used). 

Task 3G. Exposes students to artifacts that use CT to solve real world 
problems. 

Task 3H.  Empowers students to take ownership of learning through the 

Use, Modify and Create process. 

Task 3I.  Manages student groups to promote collaborative learning 
(e.g., pair programming, gender balance). 

Task 3J.  Provides opportunities to practice CT within subject matter 

content (e.g., identifies patterns in nature and man made 
phenomena, decomposes problems into sub-problems, 

develops algorithms). 

Task 3K. Provides opportunities to collect, use and represent authentic 

data for storage, manipulation, and analysis on a computer. 

Task 3L. Provides access to people who use CT in their professional 

work (e.g., via teleconferencing, field trips, speakers). 

Task 3M. Provides time for iteration design and development cycles. 

Task 3N. Provides opportunities for students to share their 
understanding of CT.  

Task 3O. Guides students through self- evaluation and reflection. 

Task 3P.  Provides opportunities to program at various levels of 

difficulty within subject matter content.   

Task 3Q. Organizes students into teams based upon interests/ 
programming platforms. 

Duty 4:   ENGAGES STAKEHOLDERS IN SUPPORT OF  CT 

LEARNING 

Task 4A. Hosts events that promote CT (e.g., model CT using 

technology, Hour of Code, robotics competitions). 

Task 4B. Communicates importance of CT and demonstrates activities 

related to CT to community. 

Task 4C. Advocates for CT integration at various venues (e.g., 

discipline specific conferences). 

Task 4D. Shares CT standards and CT information resources. 

Task 4E. Works with school system administration to support CT (e.g. 
attends board meetings, invites administrators to observe). 

Task 4F. Seeks support from professionals who use CT in their 

everyday work. 

Task 4G. Promotes CT through political avenues. 

Task 4H. Partners with businesses for CT support (e.g., funding, 
speakers, field trips). 

Duty 5:   TEACHES STUDENTS TO APPLY CT CONCEPTS 

AND PRACTICES 
Task 5A. Teaches how to compare and contrast human and computer 

intelligences (in terms of power of and limits of each). 

Task 5B. Teaches how to assess the difficulty of a problem from a 

human and a computer perspective. 

Task 5C. Teaches user interface of tool or environment for creating an 
artifact (e.g., program, model, animation, mobile app.). 
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Task 5D. Teaches Computer Science concepts (e.g., instructions, 
sequences, expressions and evaluation, booleans, variables, 

and control mechanisms such as loops, conditionals, 

randomness) and their applications. 

Task 5E. Teaches iterative development.  

Task 5F. Teaches debugging techniques. 

Task 5G. Engages students in CT practices. (e.g., collecting and 

analyzing data, using models, giving instructions, 

decomposition). 

Task 5H. Engages students in analyzing artifacts made by others using 

CT. 

Task 5I.  Teaches how to modify artifacts to address a new problem. 

Task 5J.  Teaches how to create their own artifacts using abstraction 

and automation. 

Task 5K. Teaches how to use an artifact to study or solve a real-world 
problem. 

Task 5L. Teaches how to determine whether the artifact has met its 

intended purpose. 

Task 5M. Assesses student learning of CT concepts (e.g., CSTA, ISTE, 
Common Core). 

Duty 6:   ENGAGES IN PROFESSIONAL LEARNING/ 

DEVELOPMENT IN SUPPORT OF CT AND 

CONTENT AREAS 
Task 6A. Stays current with emerging technologies, methods, tools, 

standards, curriculum, programming languages / theory. 

Task 6B. Maintains professional qualifications. 

Task 6C. Seeks out mentors. 

Task 6D. Mentors others. 

Task 6E. Attends relevant conferences. 

Task 6F. Engages in cross-discipline training. 

Task 6G. Participates in professional organizations. 

Task 6H. Develops ambassadors to promote CT. 

Task 6I. Participates in a personal learning network (e.g, Twitter, 

Google docs). 

Task 6J. Shares best practices and resources. 
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ABSTRACT 
To foster new generations becoming creators of 

technology, CoolThink@JC (“Computational Thinking 

Education,” n.d.), a four-year project sponsored by Jockey 

Club Charities Trust in Hong Kong, aims to advocating 

that “computational thinking is a fundamental skill for 

everyone” (Wing, 2006, p.33).  The project targets to 

upper primary school students, and in that parent 

education is one of the components.  Particularly, parent 

education focuses on parent-child relationship in learning 

computational thinking.  Thus, we propose several 

approaches involving coding hands-on workshop, 

instructional video learning and unplugged activities to 

enhance the parent-child mode of learning in a large-scale 

project involving 32 primary schools in Hong Kong.  

KEYWORDS 
Computational thinking, pedagogical challenges related to 

parent-child education, CoolThink@JC 

1. INTRODUCTION 

CoolThink@JC (“Computational Thinking Education,” 

n.d.) is a four-year project created and funded by the 

Jockey Club Charities Trust, with support from the 

Education University of Hong Kong (EdUHK), the 

Massachusetts Institute of Technology (MIT), and the City 

University of Hong Kong (CityU).  

Parent education is one of the highlights of the project. Its 

aim is to foster parents’ understanding of computational 

thinking through activity-based workshops which involve 

adult-youth partnership. 

Based on our observation and ongoing experience of 

organizing parent education workshop in primary schools, 

we put forward pedagogical challenges and propose ideas 

in the following sections, for enhancing the link between 

parents and children in learning computational thinking in 

Hong Kong. 

2. PEDAGOGICAL CHALLENGES 

Here we list down several pedagogical challenges: 

1) What are effective methodologies under which 

parent and child can learn basic computational 

thinking knowledge? 

2) Can parent-child pair learning complement 

traditional classroom learning?  

3) Parents come from diverse background and have 

different opinions on education. Can 

computational thinking education play a definite 

role to convert parents’ value in computational 

thinking?     

4) How to instill the role of game playing to enhance 

parent-child communications? For example, it 

has been recently recognized (among them are 

mathematicians like Keith Devlin from Stanford 

University) that game-playing activities allow 

players to grasp mathematical concepts and 

foster a sense of fun leading to proficiency in 

foundational subjects related to Science-

Technology-Engineering-Mathematics (STEM) 

(Mackay, 2013).  

5) Can we scale up the parent-child learning 

activities to accommodate a large number of 

learners? 

These challenges may call for the need to trade-off 

between learning efficacy at an early stage of a K-12 

STEM education and the implementation complexity of 

the learning tasks. The effectiveness of parent-child 

learning should then be evaluated based on a long-term 

study with rigorous statistical evaluation. 

3. PROPOSED APPROACHES 

Here we list down several approaches that will be carried 

out under Coolthink@JC (“Computational Thinking 

Education,” n.d.) and subject to pedagogical efficacy 

evaluation. 

1) Small Workshop: Coding experience workshops 

that involve hands-on activities for creative 

applications by both parents and children. It will 

be run once per school annually in a 2-hour 

workshop format, and the venue will be held at 

the school compound. For each of these 

workshops, we accommodate 20-30 parent-child 

pairs and the content in these workshops follow 

closely the progress of the computational 

thinking curriculum being taught in the specific 

school. These small workshops serve to inform 

parents of a common language in learning 

computational thinking.   

2) Large Workshop: These coding experience 

workshops typically involve around 100 parent-

child pairs. The materials in these workshops can 

resonate with world-wide STEM movements 

mailto:wong.jane@cityu.edu.hk
mailto:pam.wong@cityu.edu.hk
mailto:Robert.Li@cityu.edu.hk
mailto:cheewtan@cityu.edu.hk


 

65 

 

such as the MIT Scratch Day (“About Scratch 

Day,” n.d.) and the Hour of Code (“The Hour of 

Code,” n.d.). The workshop can be instrumented 

with a competitive nature to allow parents to 

work with their child to collaborate on building a 

working system and to self-assess on their 

learning of computational thinking and how it is 

relevant to the broader theme of STEM subjects 

in schools. This means that the contents for these 

workshops ought to be more experimental, even 

allowing for trial-and-error form of learning that 

encourages parent-child pair to put into practice 

what they have learnt in schools. For example, 

this might be using MIT Scratch or the MIT App 

Inventor software to control hardware or to 

configure a robot to navigate a maze. Trial-and-

error form of learning is the main focus. 

3) Instructional Video: To complement the above 

workshop, we will put online electronic 

instructional videos in the form of Massive Open 

Online Courses (MOOC) that are comprised of 

easy-to-follow short video clips and to deliver the 

content to parents. In this way, parents who are 

unavailable to attend the previously-mentioned 

workshops or who wish to refresh their memory 

after attending these workshops can benefit from 

these instructional digital materials. 

4) Unplugged Activities: This involves the design 

and delivery of activities that do not require a 

computer and focus on fundamental ideas behind 

computer science such as algorithm and its 

connections to mathematics (“Unplugged 

Activities in Code.org,” n.d.). The idea is to 

create several tables each having its own 

computer science-related theme and allow the 

parent-child pair to work through problem sets 

that are facilitated by personnel trained in 

computer science (“Unplugged Activities in 

Teaching London Computing,” n.d.). The 

problems are designed in such a way that it starts 

easy (potentially involving playing digital 

games) and progressively become more 

challenging in the latter part, whereupon the role 

of parents in guiding the child becomes more 

apparent. Note that the definition of digital games 

means any form of games that involve discrete 

mathematics. A collaborative form of learning is 

the main focus in these unplugged activities. 

In above approaches, due to the different number of 

parent-child pair and the environment under which the 

activities that are carried out, it is necessary to carefully 

study how the learning contents, platforms and 

technologies can be leveraged for effective delivery of 

computational thinking education. We will study some of 

these issues to address the learning efficacy and the 

effectiveness of technologies to address the challenges 

listed on Section 2 and report them in a longer paper. 

4. CONCLUSION 

This paper presents five pedagogical challenges in 

developing activities for parent education. A number of 

approaches, some have already been tried out in small 

class section in primary schools, some are under planning 

and to be launched in large class sections (100 parent-child 

pairs) to be offered in the coming summer. It is hoped that 

these activities can support the parent education in 

CoolThink@JC (“Computational Thinking Education,” 

n.d.). 
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ABSTRACT 
Understanding how teachers promote students’ 

computational thinking in computer science classes 

addresses a critical need. We report on how high school 

teachers implemented a 30-40 hour electronic textile unit 

in which students designed different wearables with the 

LilyPad Arduino as part of the Exploring Computer 

Science curriculum in two classrooms. Our analysis 

focused on how teachers brought out computational 

thinking through students’ interactions and projects in 

three key areas: strategic problem solving, iteration, and 

interfacing between abstract and tangible computation. In 

the discussion, we address what we learned about 

teachers’ pedagogical content knowledge to make 

computational thinking tangible to students. 

KEYWORDS 
Electronic textiles, computational thinking, computer 

science education, teacher practices. pedagogical content 

knowledge.  

1. INTRODUCTION 
The introduction of computational thinking into the K-12 

curriculum has become a global effort. Computational 

thinking (CT) was defined by Wing (2006) as a way of 

approaching and conceptualizing problems, which draws 

upon concepts fundamental to computer science such as 

abstraction, recursion, or algorithms. Early work in this 

area primarily focused on defining computational 

thinking, specifically its cognitive and educational 

implications as well as highlighting existing contexts for 

teaching computational thinking (e.g., NRC, 2011). While 

much subsequent work has focused on the development of 

different environments and tools for CT, as well as 

curricular initiatives in the K-12 environment, there is 

growing need for more empirical work situated in actual 

classroom environments (Grover & Pea, 2013).   

One glaring absence from these efforts is a lack of 

understanding of exactly how schoolteachers can 

incorporate CT into their existing classrooms (Barr & 

Stephenson, 2011). Thus far, most studies focused on CT 

tools and environments had researchers themselves 

implement projects or were situated in out-of-school 

contexts where youth voluntarily engaged on topics of 

their own choosing (e.g., Grover, Pea & Cooper, 2015; 

Denner, Werner & Ortiz, 2012). While these studies 

provided important insights about the feasibility of 

engaging students in CT, they could not address the 

critical issue of how computer science teachers, dealing 

with large class sizes and curricular restrictions, can 

integrate CT into their classroom activities—connecting 

technology, content and pedagogy (Mishra & Kohler, 

2006). 

In this paper, we focus on the implementation of a 6-8 

week (30-40 hour) electronic textiles unit within two high 

school classrooms situated within the Exploring Computer 

Science (ECS) curriculum (Goode, Margolis & Chapman, 

2014). Electronic textiles (e-textiles), or fabric-based 

computing, incorporate basic electronics such as 

microcontrollers, actuators and sensors with textiles, 

conductive thread and similar “soft” materials (see 

Buechley, Peppler, Eisenberg, & Kafai, 2013). Two 

experienced ECS teachers from two separate urban 

schools implemented the curriculum in their classrooms 

during the final two months of the school year. Two 

researchers observed the daily implementation of the 

curriculum, documenting classroom activities and 

interactions in extensive field notes, video recordings and 

photos of students’ work. The following research question 

guided our analysis “What kind of teaching strategies did 

the two teachers employ in supporting and situating 

computational thinking within the e-textile unit?” Our 

discussion focuses on the teachers’ contextualization and 

personalization strategies to make computational thinking 

accessible in students’ work. 

2. BACKGROUND 
While computational thinking is related to the creation of 

code, it is important to note how understanding 

programming is not the same thing as CT itself (Wing, 

2006). As Wing (2006) states, “Thinking like a computer 

scientist means more than being able to program a 

computer.” In other words, it involves particular kinds of 

approaches to problems that exist in the world (not just on 

the screen). In terms of teaching programming, 

considerable research has focused on content, drawing 

attention to the ways in which particular programming 

concepts and practices, such as loops and debugging, can 

be taught within classrooms (e.g., Soloway & Spohrer, 

1991). Here, research is driven by the need to recognize 

what concepts and practices are difficult to learn and how 

to scaffold students’ learning. More recent efforts have 

focused on context, highlighting different kinds of project 

spaces in which learning programming can occur, whether 

in game design, robotics, creating apps, or constructing 

wearables (e.g., Kafai & Burke, 2014). Here, efforts are 

driven by the recognition that teaching and learning 
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programming needs to be contextualized in ways that 

engage students’ existing interests.  

Because teaching computational thinking is newer, 

research has generally focused more broadly on 

conceptual or hypothetical contexts (Grover & Pea, 2013). 

One area of work defines the actual nature of 

computational thinking (e.g., NRC 2011) in terms of 

cognition and its relationship to existing disciplines (e.g., 

mathematics and engineering). Another area of work has 

focused on developing CT-focused curricula for K-12 

contexts (e.g., the AP Computer Science Principles 

course, Exploring Computer Science, Bootstrap). Finally, 

another significant area of work in this area relates back to 

questions of designing contexts. As with teaching 

programming, researchers have identified the importance 

of developing particular environments and tools for 

supporting CT, often overlapping with those that teach 

programming (e.g., graphical programming interfaces, 

digital and tangible computational construction kits). 

While all this work tends to focus on the potential or need 

to bring CT into education, what is missing are studies of 

how teachers actually implement these ideas in their 

classrooms and the particular ways in which technology 

content and pedagogy intersect that has been described as 

technological pedagogical content knowledge (Mishra & 

Kohler, 2006).  

The research on actual computer science teaching, in 

particular with a focus on CT, has focused for the most 

part on pre-service teachers and ways to integrate CT in 

classrooms (e.g., Yadav, Mayfield, Zhou, Hambrusch & 

Korb, 2014). Case studies have been developed to 

examine the strategies used by teachers to address CT in 

their classrooms (Griffin et al, 2016). The area that 

overlaps most with CT is focused on algorithmic thinking 

(Ragonis, 2012). Our work contributes to this emerging 

body of knowledge by examining how experienced 

computer science teachers teach CT using electronic 

textiles. Much early research using e-textiles has focused 

on broadening participation in areas of computing and 

engineering by reshaping students’ perspectives of and 

interests in those fields (e.g., Buchholz, Shively, Peppler 

& Wohlwend, 2014; Kafai, Fields, & Searle, 2014). One 

study (Kafai et al, 2014) identified several CT concepts, 

practices and perspectives that students learned while 

making an e-textiles human sensor project—a precursor to 

one of the projects in the curriculum discussed in this 

paper. 

Using e-textiles affords different opportunities to observe 

teaching strategies because they (1) integrate CT within 

engineering (i.e., circuit design) and coding (i.e., software 

design) and can illustrate how teachers make connections 

between them; (2) are hybrid nature in nature (i.e., as 

textual code on the screen and as physical circuits on the 

textile) and can make visible how teachers navigate 

between different modalities; and (3) allow for creative 

expression and aesthetics through personalized projects 

and can demonstrate how teachers respond to and are 

supportive of student interest. Focusing on two classrooms 

from the Exploring Computer Science (ECS) program 

(Goode, Margolis & Chapman, 2014), we examined what 

strategies these experienced ECS teachers used in their 

implementation of the new e-textiles curriculum unit.  

3. METHODS 
3.1 Context  
The Exploring Computer Science (ECS) initiative 

comprises a one-year introductory computer science 

curriculum with a two-year professional development 

sequence. The curriculum consists of six units: Human-

Computer Interaction, Problem-Solving, Web Design, 

Introduction to Programming (Scratch), Computing and 

Data Analysis, and Robotics (Lego Mindstorms) (Goode 

& Margolis, 2013). The instructional design of the 

curriculum adopts inquiry-based teaching practices so that 

all students are given opportunities to explore and design 

investigations, think critically and test solutions, and solve 

real problems. ECS has successfully increased diversity to 

representative rates in Los Angeles and has subsequently 

scaled nationwide to other large urban districts and 

regions, now with over 500 teachers nationwide. 

Within this successfully implemented, inquiry-based 

curriculum, we noted an opportunity to bring creative 

making in the form of e-textiles into computer science 

classrooms. The curriculum was co-developed by e-

textiles and ECS experts to combine best practices of 

teaching and crafting e-textiles based on a constructionist 

philosophy alongside ECS principles, style, and writing. 

The curriculum contains big ideas and recommended 

lesson plans, with much room for teachers to interpret and 

bring in their own style. The e-textiles unit consists of six 

projects, each increasing in difficulty and creative 

freedom, that introduced concepts and skills including 

conductive sewing and sensor design; simple, parallel, and 

computational circuits (independently programmable); 

programming sequences, loops, conditionals, and Boolean 

logic; and data from various inputs (switches and sensors). 

As an example, the fifth project of the curriculum is a 

“banner” project in which students worked in pairs to 

create a letter in a classroom banner. Each letter includes 

two switches used to generate four lighting pattern effects 

with 4-5 individually programmable LEDs. The final 

project consists of a personalized textile artifact that 

incorporates a handmade human sensor created from two 

aluminum foil conductive patches that when squeezed 

generate a range of data. In this study, students used this 

data to program different lighting effects so that the lights 

changed based on how hard a user squeezed their project. 

Student artifacts included stuffed animals, paper cranes, 

and wearable shirts or hoodies, all augmented with the 

sensors and actuators. 

3.2 Data Collection & Analysis 
In Spring 2016 two high school teachers, each with 8-12 

years of computer science classroom teaching experience, 

piloted the unit in their ECS classes with 24 and 35 

students in two urban schools in a major city in the western 

United States. During the implementation, two researchers 

visited the classroom four days a week, documenting 

teaching with detailed field notes and pictures of student 

work supplemented by pre- and post-interviews with the 

teachers, video recordings, and daily reflections by the 

teachers. 
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For this paper, we conducted analysis of field notes taken 

from the two classrooms. Out of a total of 25-27 days of 

data for each classroom, we selected a set of six field notes 

for each classroom. These focused on key lessons in the 

curriculum, including: learning to sew using a stitchcard 

(Project 2), working with a preprogrammed 

microcontroller (Project 3), collaboratively programming 

a microcontroller as part of a classroom banner (Project 

5); creating and programming an individual human sensor 

project (Project 6). Based on the existing framework for 

the AP Computer Science Principles course 

(CollegeBoard, 2016), we developed a preliminary coding 

scheme looking at how teachers incorporated key 

computational thinking principles into their classrooms. 

Two researchers (Authors 1 and 2) entered into an iterative 

cycle of coding the field notes, comparing their analysis, 

and refining the coding scheme. Throughout three cycles, 

we began to identify what was unique in e-textiles that 

related to the core content and practices identified in AP 

CS Principles.  

4. FINDINGS 
Within the e-textiles unit, we saw evidence of many ways 

in which teachers brought out computational thinking 

through students’ interactions and projects. Three of the 

most prominent aspects include: 1) strategic problem 

solving, 2) iteration, and 3) interfacing between abstract 

and tangible computation. In order to clarify how the 

teachers translated and implemented the curriculum within 

their classrooms, we highlight the intersections between 

how the curriculum promoted the particular CT element 

and then how teachers expanded upon these elements 

within their classrooms.  

4.1. Strategic Problem Solving 
One area of rich computational thinking was in strategic 

problem solving, the deconstruction of problems into a 

sequence of steps or “rules” with which to approach 

problems, sometimes referred to as algorithms (Ragonis, 

2014). We found that teachers developed means of 

strengthening strategic problem solving across the 

intersecting domains of code, circuitry, and craft in e-

textiles. In regard to coding, one of the teachers enabled 

students to develop multiple ways of structuring code to 

solve a problem. By not dictating to students a single way 

to approach a problem, students themselves came up with 

different approaches. For instance in the collaborative 

banner project that required students to use two switches 

as inputs to create four lighting patterns, student groups 

used either nested conditionals or “and” statements as a 

means for solving that challenge, the latter of which 

(“and” statements) the teacher had not planned on 

introducing. By subsequently highlighting the two main 

approaches used by students, the teacher supported their 

formalization as problem solving strategies that could be 

(and were) applied to other problems as well.  

In terms of circuitry, teachers helped students develop and 

apply rules for connecting components in a functional 

circuit, for instance considering polarity (“plus to plus, 

minus to minus”), using a common ground line to connect 

negative pins, and making circuitry efficient. Related to 

the latter, one student drew a parallel between the 

“traveling salesman” problem that he had encountered 

earlier in the ECS curriculum with designing efficient 

circuitry in e-textiles: “you have limited amount… of 

string [conductive thread] so you have to kind of connect 

all your lights, get it how you want in the cheapest way 

possible.” This approach to finding the simplest circuitry 

path without creating a short circuit was a type of strategic 

problem solving that shows computational thinking off the 

computer screen.  

Likewise, with crafting, students learned other sorts of 

algorithms for the physical construction of the project. For 

instance, one teacher developed a simple means of 

expressing a way to tackle the problem of sewing a two-

dimensional circuit on a three-dimensional space (i.e., a 

stuffed animal): “fileting” the animal. This involved 

sewing two identical cutouts of the stuffed animal (a front 

and a back) together on part of one side— a “filet”—in 

order to sew the circuitry before connecting the edges and 

stuffing the creation. While the approach was not new 

(outlined in Buechley, Qiu, & de Boer, 2013), the teacher 

named the approach (a “filet”) and presented it in such a 

way that students formalized it as a strategy for 

approaching the creation of light-up stuffed animals. In 

this type of situation, when the teacher models rules for 

problem solving and creates an environment where 

students can contribute their own problem solving 

approaches, it may be argued that students not only 

learned how to create algorithms, but also practiced how 

to approach problems algorithmically, or develop an 

“algorithmic stance” toward problem solving.   

4.2. Iteration 
Within the world of software design, iteration—or the 

process of continual repetition and revision—is essential 

for the completion and refinement of different algorithms 

and programs. Iterative design, or the cycle of prototyping, 

testing, and revision, is also key to engineering 

production. Within the e-textiles unit, students were 

engaged with iteration on both levels. Within the unit, the 

production of individualized projects drove the process of 

iterative design, that is, fixing and resolving mistakes 

throughout design, visible in changed circuit diagrams, 

several different versions of code, and constantly refined 

projects. 

Beyond the curriculum, teachers actively incorporated this 

ethos of iteration into the classroom through several 

strategies. While the curriculum outlined the basic 

guidelines for projects, students were encouraged by 

teachers to come up with original designs. As such, 

problems and issues that individual students faced often 

did not fit into an existing template of construction. Both 

teachers therefore actively addressed the process of 

dealing with mistakes and making revisions throughout 

the unit in several ways. First, they created supports for 

dealing with mistakes, for example, providing tools 

explicitly designed for iteration (seam rippers), and 

sharing concrete ‘tips and tricks’ of e-textiles construction 

(e.g., how they dealt with broken thread). Second, teachers 

explicitly valued the process of iteration, regularly sharing 

students’ unfinished projects, including their mistakes, to 

highlight something the creator had learned that was of 
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value to the class as a whole. In doing so, they stressed the 

importance iteration and refinement alongside the final 

product.  

Teachers also positioned themselves as collaborators 

(rather than authorities) within this environment of 

iteration. Not only did they share the e-textiles projects 

that they had personally made, but they also modeled the 

many mistakes and revisions that they faced within their 

own personal journeys of creation. Additionally, because 

of the variety of unique issues of construction on student 

projects, teachers worked alongside students to 

troubleshoot in the moment. One teacher required students 

to work in pairs to check each other’s circuitry diagrams 

and code before they could move on to later tasks. This 

supported peer troubleshooting and revision, allowing the 

teacher to come over only when both students were 

befuddled. From this perspective, iteration appeared both 

in direct project work and in the teachers’ pedagogical 

approach: through shared problem solving, modeling 

projects at various stages, and building a shared 

knowledge base about e-textiles by compiling tips and 

tricks learned through mistakes.  

4.3 Interfacing 
As opposed to many computer science classes where 

programming takes place mostly on the screen, one unique 

and prominent affordance of using e-textiles to teach CT 

is how it fosters a need for students to become more 

familiar with the intersections between abstract and 

tangible forms of computation Specifically, this results 

from the high level of interaction that inherently occurs 

when creating an e-textiles artifact: hand-crafting a 

functional circuit that can be controlled via purposeful 

planning and development of code. Through e-textiles, 

teachers were given a highly visible and potent context 

through which to teach important CT concepts including 

information abstraction and manipulating data. Teachers’ 

encouragement of this intersection is discussed below, 

followed by a discussion of how they used this to 

contextualize understanding of information abstraction 

and manipulating data.  

E-textiles is a unique educational computing context 

because it involves the creation of codable circuits and 

sensors, artifacts which are situated at the intersection of 

software and hardware. Teachers actively worked to make 

this connection clear for students, supporting students’ 

fluency in moving back and forth between the realms of 

designing, constructing, and troubleshooting tangible 

circuits, while also planning, writing and troubleshooting 

the code to control these circuits. One specific strategy 

was to create conditions where student experiences with 

programming and software were immediately (and 

always) correlated with some piece of hardware; that is, 

no one was ever expected to code purely for the screen 

without a physical LilyPad Arduino circuit output. For 

example, even during lessons primarily focused on 

coding, both teachers actively pointed out the relationship 

between the onscreen lines of code with physical 

components (e.g. pins on the LilyPad for inputs and 

outputs) and behaviors (e.g. this line of code makes that 

LED turn on). Teachers further strengthened this 

connection for students during the creation of their 

individual codeable circuit projects (specifically the 

collaborative banner and human sensor projects). Mostly, 

this occurred through individual design consultations; for 

instance one teacher worked with students to consider how 

the programmability of their project was influenced by the 

size of their sensor patches. As a result of this kind of 

activity, students not only became familiar with working 

on both hardware and software, but also started to develop 

a capacity of moving back and forth fluidly between these 

two domains.   

Information abstraction is universally acknowledged to be 

an important type of computational thinking, whether 

dealing with binary numbers or subroutines and 

procedures (Grover & Pea, 2013). In terms of e-textiles, 

this mostly involves taking the real world phenomenon 

related to an artifact (e.g., touch levels, placement of 

LEDs) and converting it to digital representations on the 

computer (e.g., variables, statements). Within the 

curriculum, students had numerous opportunities to 

practice formal information abstraction such as declaring 

variables and incorporating Boolean logic into their 

programs.  

However, teachers’ contributions toward students’ 

understanding for information abstraction resulted most 

strongly from their efforts to contextualize this concept 

within the process of e-textiles construction. In other 

words, because e-textiles creates a highly visible context 

for moving in between real world phenomena (e.g., 

physical touch, switches) and computational inputs (e.g., 

numbers, ranges, conditions), both teachers leveraged this 

as a natural context in which to instill an understanding of 

information abstraction. For example, one teacher worked 

to illustrate how variable declaration allowed the 

computer to make use of real world data, stating, “So 

depending on how hard you touch the foil, it [the variable 

we created] will store it there and we can use it for our If-

Else Statements”. Teachers furthered the back-and-forth 

nature of e-textiles construction through the process of 

troubleshooting students’ individual projects. Both 

teachers constantly went through a cycle of testing, where 

students would be asked to “read” their code both in the 

physical format (what it actually did) and in the abstract, 

onscreen format (the code). While e-textiles provided a 

format for this work, the teachers’ efforts made the move 

between the tangible and the abstract, the physical and the 

digital (e.g., onscreen) explicit for students, enabling them 

to develop more experience with information abstraction 

first hand. 

Teachers similarly helped students gain experience in 

reading and manipulating computational data—that is, 

learning how to make sense of information gathered 

through computational inputs or outputs and leveraging 

these for a computational purposes. This skill was 

cultivated most actively through the creation of the human 

sensor project. In this project, students created personal 

artifacts (e.g., a pink bear, a cosmically-themed top hat, a 

large origami crane) that contained handmade touch 

sensors (aluminum patches sewn onto their projects) that 

were programmed to read the conductivity levels of a 
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person touching both patches. Teachers worked to give 

students many visceral opportunities to deal with real 

world data within the context of their human sensor 

project. One teacher, for instance, described the process of 

testing the conductivity of himself and his wife, describing 

how they could each get different ranges based on their 

different sizes. Based on this, he then required students to 

test out the conductivity ranges of at least four different 

people within the class and use these as baselines to 

develop more universal ranges in developing their code. 

This brought personalization to interfacing between 

digitally written data and physical touch, especially as the 

teacher modeled how he tested the sensor with his wife 

and as students tested their sensors with each other. It is 

impossible to tell how directly this affected students 

overall, but at least one student described taking his 

project home so he could test out his dad’s conductivity 

range, even going so far as to use his hands while sleeping. 

Notably, reading data from a sensor and breaking it down 

into usable ranges that could be expressed mathematically 

(i.e., “sensorvalue < 1000 && sensorvalue >750”) was a 

particular challenge for students, evidenced in a related 

question on a post-test. In the next year we plan to bring 

more curricular scaffolding to this task while supporting 

the efforts of teachers to personalize this aspect of 

computational thinking for deeper learning.  

5. DISCUSSION 
Our paper contributes to the emerging body of research on 

teaching practices of computational thinking that are not 

just focused on coding but extend into other domains, such 

as physical crafting and electronics. In our analysis we 

focused on key aspects of computational thinking (CT)—

strategic problem solving, iteration, and interfacing 

between abstract and tangible aspects of computing—that 

teachers addressed within the new electronic textiles 

curriculum. In the following sections, we further discuss 

aspects of teachers’ pedagogy regarding computational 

thinking in their classroom activities. 

Across the analyses of the various teaching strategies in 

their classrooms, we noted the element of personalization 

as a critical aspect of teaching computational thinking in 

this context. First, based on earlier research on the 

importance of aesthetics in learning with e-textiles (Kafai 

et al, 2014), the curriculum intentionally forefronted the 

personal nature of each student project, resulting in 

different implementations by each student. This aspect of 

personalization is rarely discussed in contexts of 

pedagogical content knowledge but can pose challenges in 

teaching because of the vastly different problems that arise 

in individual student projects. Teachers need to be flexible 

in taking advantage of them to promote deeper learning. 

Second, in this study the teachers took personalization 

beyond individualized projects and worked it into their 

classroom practice. For instance, teachers modeled their 

own projects, mistakes, and design processes in ways that 

validated “process” alongside “product”, highlighting 

iteration as an important aspect of computational thinking. 

This also provided a backdrop that facilitated sharing 

mistakes and processes that could help the entire class 

learn. It is less risky to share the mistakes you have made 

when your teachers have already shared their own 

mistakes. Further, by sharing their projects and discussing 

multiple users of their projects (including one’s spouse) 

the teachers brought out the broader usability of projects: 

students’ projects (as their teachers’ projects) could have 

relevance outside the classroom. These features are 

important because personalization has been shown to 

support student interest in CS classrooms (Griffin et al., 

2016). Furthermore, these practices highlight strategies 

that can make teaching more culturally relevant, providing 

one means for equity to become a key part of classroom 

instruction with computational thinking (Goode, Margolis 

& Chapman, 2014). 

Further, we want to consider teaching strategies that focus 

not just on content or projects but on the larger classroom 

working environment, within which the electronic textile 

ECS unit was implemented. The two teachers we studied 

engaged with vastly larger numbers of students (24 and 

35) and within more restricted time constraints (the class 

period) and spaces (i.e., a classroom where material had to 

be put away everyday) than encountered in most other e-

textile implementations, especially in afterschool, summer 

camp, or weekend workshops. The teachers used 

strategies such as modeling (both their own and students’ 

in-progress projects), peer support (checking each other’s 

work), and tips and tricks to support students’ different 

creations. Other strategies which this paper does not have 

room to address deserve further attention such as the 

organization and management of materials and time, and 

validation of student work during class discussion.  

By themselves the strategies discussed above are nothing 

new in and of themselves, having been found in much 

exemplary science and mathematics teaching (see Ball, 

Thames & Phelps, 2008). However, it is the application of 

these teaching strategies to computational thinking that 

presents a unique and promising approaching to support 

students in this emerging field of pedagogy. These 

strategies are similar to what Mishra and Kohler (2006) 

described as technological pedagogical content 

knowledge (TPCK) or the unique knowledge that teachers 

need to develop in order to embed technology in their 

instructional practice to support student learning.  

However, the original description of technological 

pedagogical content knowledge focused on how to 

integrate different technologies such as video or games 

into the classroom, whereas in the ECS context, teachers 

focused on integrating computational thinking with 

content. To highlight this distinction, we should reframe 

TPCK as “computational pedagogical content knowledge” 

or (CPCK), acknowledging the specialized content 

knowledge (Ball, Thames & Phelps, 2008) that is 

emerging in relation to computational thinking in K12 

education. Much more research is needed in documenting 

CPCK teaching practice within other curricular efforts to 

develop best practices that can be shared and developed. 

In this paper we considered how experienced ECS 

classroom teachers connected computational thinking in 

the context of learning with e-textiles. While the unit was 

designed with certain goals in mind, largely related to 

programming, we sought to apply the AP CS Principles 

guidelines to identify where and how aspects of 
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computational thinking such as iteration, abstraction or 

problem solving were supported in teachers’ classroom 

practice. We found particular affordances for learning 

computational thinking that e-textiles may be uniquely 

situated to promote, especially in regard to tangibility and 

personalization. Because it was the first implementation of 

this new ECS curriculum unit and one of the first e-textiles 

projects where the teachers were the main leaders in the 

classroom, our data collection focused primarily on the 

teacher modeling, leading, and discussing with students. 

In future iterations we plan to look more closely at how 

teaching strategies intersect with student learning to 

understand more about the depth and breadth of learning 

across students in each classroom and to evaluate whether 

equity is being reached in terms of rigorous learning. 
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ABSTRACT 
This study put four steps, problem decomposition, pattern 

recognition, abstraction, and algorithm, into practice by 

integrating the blocky programming language, Scratch, 

into a mathematics course. The teacher guided the sixth-

graders to apply the four steps of computational thinking 

to writing a blocky program to solve daily-life equality 

axiom mathematics problems. The results showed that the 

method was beneficial for promoting the learning 

effectiveness of mathematics, and also found that there 

was a significantly positive correlation between the 

performance of blocky programming and the mathematics 

post-test. There was no significant correlation between 

creative tendency and self-efficacy after the experiment. 

Self-efficacy had a positive correlation to learning 

motivation both before and after the experiment.  

KEYWORDS 
Scratch, Computational Thinking, Mathematics, Self-

efficacy, Learning motivation 

1. INTRODUCTION 
Computational thinking has a broad definition which 

refers to the thoughts and plans or comprehension process 

when students are confronted with any uncertain factor or 

new issue. Computational thinking also has a narrower 

definition which means the basic concepts and processes 

used for solving problems in the computer science domain. 

The term was officially proposed in 2006 [12], and was 

later divided into four phases [13], described as follows. 

The first phase of the computational thinking process 

is to decompose the problem so that one problem can be 

analyzed and divided into several smaller questions. This 

is called the “problem decomposition” phase. Then, the 

second phase is to identify the patterns in the data 

representation or data structure. In other words, if the 

students observe any repeated presentation of data or 

method, they can identify their similarities, regularities, or 

commonalities. Therefore, the students do not need to 

spend time on the repeated work when they write the 

problem. The third phase is to generalize or abstract the 

principles or factors to become a formula or the 

corresponding programming language rules. The students 

have to try to model the patterns they found in the previous 

step. After testing, the students identify the key factor 

presenting the model in this step. Finally, they design the 

algorithm in the fourth phase, ensuring that they include 

all the steps for solving the problem systematically.  

Although computational thinking is not equal to 

programming, the blocky programming languages, such as 

Scratch, mBlock and so on, are good tools for developing 

the capabilities of students’ computational thinking. The 

current study not only employed Scratch to learn 

computational thinking, but also used it to implement a 

problem the students confronted in their Mathematics 

course. One main purpose of these programming 

languages is to solve computation problems. Scratch is a 

visual programming tool and is suitable to be used in 

different subjects such as games, science, music and so on 

[5, 6]. 

Scratch has been introduced to young students from 

eight to eighteen years old [4], and they have been found 

to be highly motivated to write programs. Another study 

found that fifth and sixth graders perceived usefulness, 

high motivation, and positive attitudes toward Scratch [4, 

5, 9]. Ke (2014) applied Scratch for secondary school 

students to design mathematics games, and found that the 

integration of the blocky programming and Mathematics 

game design could promote the potential of the students to 

learn Mathematics, and made the students have 

significantly more positive attitudes toward the 

development of Mathematics [2]. Furthermore, this 

method was beneficial for activating the students’ 

reflection on their daily-life mathematical experiences. 

The mathematics concepts and blocky programming were 

integrated when the students solved the problems or 

created the games. They not only took part in achieving 

the learning target of mathematics, but also carried out 

computational thinking, and transferred the reasoning 

process into an abstract program. It has been found that 

using Scratch in computer science can promote the 

cognitive level and self-efficacy of the students, but it does 

not result in high learning anxiety, and the students spend 

less time learning and creating a new program [1]. The 

blocky programming (e.g., Scratch, App Inventor) did 

retain the learning motivation and interests of the students 

[7]. The scholars employed another blocky programming 

environment, Code Club, into elementary schools, and 

found that it could motivate the creative digital design of 

the young students [10].  

Therefore, the current study also integrated the 

mathematics course with the blocky programming 

software, Scratch, and applied the four phases of 

computational thinking to solve mathematics problems. 

The purpose of the study was to explore the correlations 

between self-efficacy and learning motivation, and 

between self-efficacy and creative tendency. From the 

mailto:ckhsu@ntnu.edu.tw
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results, the critical factor correlated with self-efficacy 

could be identified when the students were involved in the 

proposed treatments. In addition, this study also aimed to 

confirm whether the students made significant progress in 

Mathematics and in problem solving by using the blocky 

programming. Therefore, the research problems are listed 

as follows: 

(1) After the treatment, was the students’ learning 

effectiveness of mathematics significantly promoted? 

(2) Was there a significant correlation between the 

performance of blocky programming with the 

learning effectiveness of mathematics? 

(3) Was there a significant correlation between self-

efficacy with creative tendency and learning 

motivation before and after the treatments? 

2. METHOD 

2.1. Participants 

The subjects included one class of sixth graders of an 

elementary school in Taiwan. A total of 20 students 

participated in the study. They were taught by the same 

instructor who had taught that mathematics course and 

Scratch for more than ten years. The average age of the 

students was 12. 

2.2. Measuring tools 

The research tools in this study included the pre-test and 

post-test of the mathematics learning achievements, the 

post-test of Scratch Programming implementation, and the 

questionnaire for measuring the students’ learning 

motivation, creative tendency, and self-efficacy.  

The test sheets of mathematics were developed by two 

experienced teachers. The pre-test consisted of 10 

calculation questions about the prior knowledge of 

learning the course unit "equality axiom," with a perfect 

score of 100. The post-test consisted of 10 calculation 

questions for assessing the students' knowledge in the 

equality axiom unit, with a perfect score of 100. The items 

in the pre-test are different from the items in the post-test, 

but they had the same difficulty degree. 

In terms of the post-test of programming performance, 

there were totally five situated problems for the students 

to solve using the blocky programming with the four 

phases of computational thinking. Each programming 

problem was scored as 20 points, including 5 points for 

assessing whether the students employed proper blocks, 5 

points for checking the usage of variances, 5 points for 

evaluating the formula transferred from the meaning of the 

problem by the students in the program, and 5 points for 

confirming if the output was correct or not. Consequently, 

five programming problems were worth a total of 100 

points.  

The questionnaire of learning motivation was modified 

from the measure published by Hwang, Yang, and Wang 

(2013) [3]. It consisted of seven items (e.g., "It is 

important for me to learn what is being taught in this 

class") with a 5-point rating scheme. The Cronbach's alpha 

value of the questionnaire was 0.823.  

The self-efficacy questionnaire originates from the 

questionnaire developed by Pintrich, Smith, Garcia and 

McKeachie (1991) [8]. It consists of 8 items with a 5-point 

Likert rating scheme. The Cronbach's alpha value was 

0.894. The Creativity Assessment Packet (CAP) was 

revised from Williams (1991) [11], including the scales of 

imagination, curiosity, and so on. 

2.3. Experimental procedure 

Before the experiment, the students were given time to get 

used to the blocky programming environment. Figure 1 

shows the flow chart of the experiment. Each period in the 

mathematics class is 40 minutes in elementary schools in 

Taiwan. At the beginning, the instructor spent eight weeks 

(i.e., once period a week, and totally 8 periods) teaching 

the students to become familiar with the blocky 

programming environment.  

Before the learning activity of applying the four phases of 

computational thinking systematically, the students 

completed the Creativity Assessment Packet measure, 

took the pre-test, and completed the learning motivation 

and self-efficacy questionnaires.  

 

Figure 1. Experimental procedure 

Thereafter, the study spent three weeks (i.e., once period a 

week, and totally three periods) on the enhancement of 

applying the four phases of computational thinking and 

integration of blocky programming in a sixth-grade 

Mathematics course. In other words, during the learning 

activity, the teacher guided the students in how to employ 

the four phases of computational thinking for analyzing 

the situated problems in the mathematics course, and 

finally how to write blocky programs for calculating the 

results of each problem. The teacher explained how to 

employ the four phases of computational thinking, step by 

step. From the first phase, the students tried to analyze and 

decompose the situated problem which the teacher 

designed for demonstration. Secondly, the students were 

guided to find out whether there was a pattern or similar 

situation based on the results of the analysis, that is, 

pattern recognition. Thirdly, they had to conclude or 

transfer the analysis to a formula or programming 

presentation. Finally, they found the limited problem 
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solving steps, or algorithm, so that the program could be 

written based on the steps.  

The students practiced this method six times, each time 

taking half of a period. Therefore, there were totally six 

situated examples implemented during the three periods of 

the mathematics course. At the same time, the students 

learned mathematics from solving the blocky 

programming problems through the four computational 

thinking phases.  

 

Figure 2. Example of an elementary school student’s 

solution 

After the learning activity, there were totally five 

programming problems for evaluating the blocky 

programming performance of the students, with the four 

computational thinking phases involved in both the blocky 

programming and the mathematics problems. The test 

took 1.5 periods.  

Finally, they also spent one period on the post-test of the 

pen-and-paper-based mathematics test for measuring their 

learning achievements. They also answered the motivation 

and self-efficacy questionnaires so as to identify whether 

any changes had occurred in their learning motivation and 

self-efficacy after the different learning method was 

employed for learning mathematics. There were totally 15 

periods spent on the experiment, which lasted for a total 

of around three-fourth semester (i.e., 15 weeks). The 

experimental treatment after pretest was five weeks. 

2.4. Data analysis 

The pre- and post-test were compared via a paired-sample 

t-test. Therefore, whether the students made progress or 

not was assessed. The same analysis method was also 

employed for comparing the students’ learning motivation 

and self-efficacy before and after the learning activities.  

Their blocky programming performance was also assessed 

by the teacher. Correlation analysis was performed to 

identify the relationship between the students’ blocky 

programming performance and their post-test results. 

Correlation analysis was utilized for checking the 

correlation among the students’ learning motivation, self-

efficacy and creative tendency when they were learning 

mathematics by means of conventional instruction.  

Moreover, the same method was used for checking the 

correlation among the learning motivation, self-efficacy 

and creative tendency after the students learned 

mathematics from the Application of the Four Phases of 

Computational Thinking to Integrate Blocky 

Programming into the Mathematics Course. 

3. Results 

3.1. The paired sample t-test on the pre-test and post-test 

in mathematics 

The research design hypothesized that the students would 

make progress in the learning objectives of the 

mathematics unit. Therefore, a paired-sample t-test was 

performed on the pre-test and post-test in the mathematics 

unit. 

The students did not use conventional instruction to learn 

mathematics; rather, the four phases of computational 

thinking were applied to integrate blocky programming 

into the mathematics course. Table 1 shows that this 

approach did indeed contribute to the learning 

effectiveness of the students. They made significant 

progress in the mathematics unit of equality axiom after 

the experimental treatment (t=2.72*; p<0.05).  

Table 1. paired sample t-test on the pre- and post-test  

 N Mean SD t 

Post-

test 

20 86.35 17.60 2.72* 

Pre-test 20 80.75 16.66  

*p<0.05 

3.2. The correlation between the performance of blocky 

programming and the mathematics post-test  

In this study, we attempted to verify the correlation 

between the performance of blocky programming and the 

mathematics post-test. The results showed that they did 

have a significantly positive correlation (Pearson=0.673**, 

p<0.01), as shown in Table 2. When the students had 

better performance on applying the four phases of 

computational thinking to write a blocky program which 

solved the situated problems of the equality axiom 

mathematics unit, they also had better learning outcomes 

on the post-test of the conventional pen-and-paper-based 

mathematics test. 

3.3. The correlation between students’ self-efficacy and 

their creative tendency and learning motivation 

The self-efficacy of the students applying the four phases 

of computational thinking to integrate blocky 

programming into the mathematics course was 

significantly correlated with their learning motivation 

(Spearman correlation value=0.623**; p<0.01), but was 

not noticeably related to their creative tendency 

(Spearman correlation value=0.232; p>0.05), shown as 

Table 2.  

Table 2. Correlation between self-efficacy and creative 

tendency and learning motivation (N=20) 

Spearman correlation 

coefficient 

Motivation Self-

efficacy 

Creative 

tendency 

Motivation 1 0.623** 0.189 

Self-efficacy 0.623** 1 0.232 

Creative tendency 0.189 0.232 1 
**p<0.01 
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4. DISCUSSION AND CONCLUSIONS 
This study not only put the four phases of computational 

thinking into practice, but also applied it to solve 

mathematics problems with Scratch, one of the blocky 

programming languages. The results indicate that the 

implementation of the programming was effective; in 

addition, the students’ learning effectiveness, and their 

results in the mathematics concepts post-test both 

improved remarkably in comparison with the pre-test of 

the same mathematics unit.  

The implementation of the programming had a 

significantly positive correlation with the learning 

effectiveness of mathematics, implying that the students 

who had better Scratch scores outperformed the other 

students in the mathematics concepts post-test. The 

students’ self-efficacy was correlated with their learning 

motivation, but not with their creative tendency. In other 

words, the students who had higher learning motivation 

possessed higher self-efficacy. In future studies, teachers 

could try to design mathematics games for students to 

design programs and learn mathematics at the same time, 

as the teachers in this study only designed daily-life 

situated mathematics problems related to the mathematics 

learning unit for the students to apply computational 

thinking to solve the problems. Future studies could also 

integrate different subjects to learn computational thinking, 

programming, and certain subject knowledge (e.g., 

physics, mathematics) at the same time. 

 

ACKNOWLEGEMENTS 
This study is supported in part by the Ministry of Science 

and Technology in Taiwan under contract number: MOST 

105-2628-S-003-002-MY3. This study was conducted in 

an elementary school, and the authors are grateful to the 

YiLan County Government Education Department.  

REFERENCES 
[1] Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. 

(2015). From scratch to “real” programming. ACM 

Transactions on Computing Education (TOCE), 14(4), 

25. 

[2] Ke, F. (2014). An implementation of design-based 

learning through creating educational computer games: 

A case study on mathematics learning during design 

and computing. Computers & Education, 73, 26-39. 

[3] Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A 

concept map-embedded educational computer game for 

improving students’ learning performance in natural 

science courses, Computers & Education, 69, 121-130. 

[4] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., 

& Rusk, N. (2008). Programming by choice: urban 

youth learning programming with scratch. ACM, 40(1), 

367-371. 

[5] Maloney, J., Resnick, M., Rusk, N., Silverman, B., 

& Eastmond, E. (2010). The scratch programming 

language and environment. ACM Transactions on 

Computing Education (TOCE), 10(4), 16. 

[6] Moreno-León, J., Robles, G., & Román-González, 

M. (2015). Dr. Scratch: automatic analysis of scratch 

projects to assess and foster computational 

thinking. RED. Revista de Educación a 

Distancia, 15(46). Retrieved 

http://www.um.es/ead/red/46/moreno_robles.pdf on 

December 12, 2016. 

[7] Nikou, S. A., & Economides, A. A. (2014, April). 

Transition in student motivation during a scratch and 

an app inventor course. In 2014 IEEE Global 

Engineering Education Conference (EDUCON) (pp. 

1042-1045). IEEE. 

[8] Pintrich, P.R., Smith, D.A.F., Garcia, T., & 

McKeachie, W.J. (1991). A manual for the use of the 

motivated strategies for learning questionnaire 

(MSLQ). MI: National Center for Research to Improve 

Postsecondary Teaching and Learning. (ERIC 

Document Reproduction Service No. ED 338122). 

[9] Sáez-López, J. M., Román-González, M., & 

Vázquez-Cano, E. (2016). Visual programming 

languages integrated across the curriculum in 

elementary school: A two year case study using 

“Scratch” in five schools. Computers & Education, 97, 

129-141. 

[10] Smith, N., Sutcliffe, C., & Sandvik, L. (2014). Code 

club: bringing programming to UK primary schools 

through scratch. In Proceedings of the 45th ACM. 

technical symposium on Computer science education 

(pp. 517-522). ACM. 

[11] Williams, F. E. (1991). Creativity assessment 

packet: Test manual. Austin, TX: Pro-Ed. 

[12] Wing, J. M. (2006). Computational thinking. 

Communications of the ACM, 49(3), 33-35. 

[13] Wing, J. M. (2008). Computational thinking and 

thinking about computing. Philosophical transactions 

of the royal society of London A: mathematical, 

physical and engineering sciences, 366(1881), 3717-

3725.

[14]  

http://www.um.es/ead/red/46/moreno_robles.pdf
http://eric.ed.gov/?id=ED338122
http://eric.ed.gov/?id=ED338122
http://eric.ed.gov/?id=ED338122


Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

77 

 

The Design and Evaluation of a Teacher Development Programme in 

Computational Thinking Education 

 

Siu-cheung KONG 1*, Ming LAI 1, Josh SHELDON 2, Mike TISSENBAUM 2 

1 The Education University of Hong Kong 

2 Massachusetts Institute of Technology 

sckong@eduhk.hk, mlai@eduhk.hk, jsheldon@mit.edu, mtissen@mit.edu

ABSTRACT 
This article documents the design and evaluation of a 

teacher development programme in computational 

thinking (CT) education. The results suggested that after 

taking a teacher development course (TDC), teachers 

enhanced their CT content knowledge; however, some 

teachers still did not have sufficient confidence in teaching 

CT in their classrooms. Subsequent modification to 

address this lack of confidence among this cohort of 

teachers is discussed. 
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1. INTRODUCTION 
In her influential article, Wing (2006) convincingly argued 

that computational thinking (CT) is “a fundamental skill 

for everyone, not just for computer scientists” (p.33). 

Every child should possess not only the abilities of 

reading, writing, and arithmetic, but also the analytical 

skills involved in CT. CT can be considered as the thought 

process involved in effectively formulating problems and 

their solutions through a computational or digital means 

(Cuny, Snyder, & Wing, 2010). After Wing’s (2006) 

article, CT has been incorporated into K-12 education 

around the world (Grover & Pea, 2013; Voogt et al., 

2015). Block-based programming environments such as 

Scratch (Resnick et al., 2009) and App Inventor (Wolber, 

Abelson, Spertus, & Looney, 2015) are one approach used 

in K-12 education for facilitating students’ CT 

development (Lye & Koh, 2014).  

While CT education is being emphasized in many 

different countries (Voogt et al., 2015), an important 

challenge in its implementation in K-12 education is the 

shortage of teachers capable in delivering CT education 

(Menekse, 2015). It was reported that a large number of 

teachers taking professional development programmes in 

CT or computer science are new to computer science 

(Century et al., 2013). Even teachers who majored in 

computer science in their undergraduate studies may not 

be familiar with block-based programming environments. 

Besides the subject content of CT or computer science, the 

implementation of CT education requires teachers to have 

the relevant pedagogical content knowledge as well (Saeli, 

Perrenet, Jochems, & Zwaneveld, 2012). This knowledge 

involves the understanding of the content of coding, and 

the pedagogy of delivering the content, which is not an 

easy task (Grover & Pea, 2013). Therefore, it is important 

to offer quality teacher development programmes (Yoon, 

Anderson, et al. 2016) for building the capacity and 

confidence of teachers in delivering CT education. This 

article reports on the design, implementation, and 

evaluation of a teacher development programme in CT 

education in the context of the CoolThink@JC initiative 

(CoolThink).  

1.1. Effective Teacher Development Programmes 

The literature on teacher professional development has 

identified several key elements for the capacity building 

of teachers. First of all, knowing the content knowledge of 

the subject is not enough for teaching the subject, as a 

teacher also need to know the most appropriate pedagogy 

for teaching the content to students, and this kind of 

knowledge is referred to as pedagogical content 

knowledge (PCK) (Shulman, 1986). Previous studies 

suggest that effective professional development for 

teachers usually involves a sustained period of time, with 

participants actively engaged, with opportunities to 

practice and reflect, and situated in a community of 

practice (CoP) (e.g., Borko, Jacobs, & Koeliner, 2010). 

CoP is not a stable and short term working session, but an 

interactive and recursive continuum with complex 

reactions among multiple factors (Clark & Hollingsworth, 

2002). In a CoP, knowledge is situated in the daily 

experience of community members, and learning is a 

social process which involves participation and interaction 

(Lave & Wenger, 1991). A CoP model of teacher 

development allows participants to discuss, peer assess, 

and self-reflect on their teaching and learning (Scribner, 

Cockrell, Cockrell, & Valentine, 1999). 

2. THE PROGRAMME 

2.1. CoolThink@JC Initiative 

The background of this study is a four-year initiative of 

CoolThink@JC (http://www.coolthink.hk/en/) aimed at 

promoting CT education among primary schools in Hong 

Kong beginning from 2016. A total of 32 primary schools 

have been recruited as the Network Schools in this 

initiative. Among these 32 schools, 12 are Cohort-1 

schools, which started their CT education programme in 

the academic year of 2016/17. The remaining 20 are 

Cohort-2 schools, will start their CT education programme 

on year later. Three teachers from each school are selected 

to participate in the teacher development programme and 

subsequently teach the CoolThink curriculum.  

A 3-level curriculum for Hong Kong grade primary 4 

(Level 1) to primary 6 (Level 3) was developed as a 
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collaboration between The Education University of Hong 

Kong (EdUHK) and the Massachusetts Institute of 

Technology (MIT). Another partner in the CoolThink 

initiative is City University of Hong Kong (CityU), which 

provides parent education on CT, and in-school co-

teaching support by recruiting and training undergraduate 

students from universities in Hong Kong as teaching 

assistants. The curriculum aims to foster students’ CT 

concepts, practices, and perspectives (Brennan & Resnick, 

2012). Each grade level has 10 units of activities and one 

or two final project(s) for students to develop CT through 

programming activities in the environments of Scratch and 

App Inventor. In addition to the formal curriculum, two 

sets of co-curricular activities, one on interacting with 

physical objects through coding, another on solving 

community problems using computational thinking, were 

developed by EdUHK for the participation of P5 and P6 

students respectively. EdUHK, with the expertise in 

teacher education, and MIT, with the expertise in the 

development of programming environments and 

experience in training teachers, are responsible for 

designing and implementing the teacher development 

programme. A total of two TDCs, of 39 hours each, are 

offered for each cohort of teachers. 

2.2. Teacher Development Course 1 

TDC 1, mainly designed and delivered by staff from MIT, 

aims to enrich the content knowledge of participants on 

CT and to allow them to have some initial thoughts on how 

to deliver CT education in senior primary schools. The 

major component of TDC 1 was a 5-day (6 hours per day) 

intensive training conducted by MIT staff over one week. 

In addition, a 3-hour pre-MIT session and two post-MIT 

sessions (each with 3 hours) for consolidation and project 

presentation respectively were conducted by EdUHK 

staff. The pre-MIT session aimed to lay a foundation for 

teachers to get ready for the training afterwards. Schools 

were paired up starting in this session so that they could 

provide support and feedback to one another throughout 

the programme. 

In the 5-day training, the teachers were guided through the 

Level 1 formal curriculum that had been developed by 

EdUHK and MIT, so that they could be more familiar with 

the content knowledge to be delivered, and have a basic 

idea of how to implement CT education in their primary 

classrooms. Besides coding tasks that had to be finished 

with the computers, unplugged activities (Bell, Alexander, 

Freeman, & Grimley, 2009) for deepening their 

conceptual understanding of CT were also included, which 

was similar to the design of the formal curriculum. The 

teachers also engaged in pair programming (Denner, 

Werner, Campe, & Ortiz, 2014) by working in pairs to 

finish a mini Scratch and a mini App Inventor project, 

which were also features of the Level 1 curriculum for 

primary students. 

Throughout the five days, teachers took part in group work 

both with other teachers from their own school, and with 

teachers from their partner school, to receive feedback in 

using MIT App Inventor to design and develop a mobile 

app to address a teaching or classroom need. To allow 

sufficient time to design and build the app, the 

presentation of the app was scheduled in the second post-

MIT session. 

The first post-MIT session aimed to review what the 

teachers had learned in the 5-day training and to prepare 

the teachers to finish and present their mobile app. In the 

second post-MIT session, each school’s group of three 

teachers presented their app as a group, and received 

feedback from classmates, instructors, and guests who 

were experienced teachers in CT education. TDC 1, from 

the first 3-hour pre-MIT session, through the intensive 

MIT-led week, to the two 3-hour post-MIT sessions, lasted 

for about one month. This article aims to report the 

evaluation of TDC 1, especially on the enhancement of 

knowledge and confidence of teachers in teaching CT, and 

how it affects the subsequent design in TDC2. 

2.3. Teacher Development Course 2 

While TDC 1 emphasized content knowledge of CT and 

basic ideas for CT pedagogy, TDC 2 had a greater focus 

on pedagogy. As effective teacher development requires a 

sustained period of time, within which the participants can 

be actively engaged and have the opportunity to practice 

and reflect (Borko et al., 2010), TDC 2 lasted for a total of 

13 weeks, with weekly 3-hour sessions. The teachers had 

the opportunities to teach the Level 1 curriculum in their 

schools, and shared their teaching experience with one 

another for feedback and reflection. The final project in 

TDC 2 required groups of 3 teachers from each school to 

design and present a complete unit for CT education, 

which enabled them to think more deeply about what they 

had learned in the programme and how to deliver CT 

education. 

TDC 2’s content included discussion of appropriate 

pedagogies for CT education; analysis of video clips taken 

in primary classes implementing CT; and examination of 

student created artifacts and discussion on how to use 

those artifacts to assess student learning. To enable 

teachers to capably conduct the co-curricular activities, 

there were sessions on interacting with physical objects 

through coding as well as solving community problems 

with CT. Guest instructors, including experienced teachers 

in CT, school principals, and practitioners in coding 

education with frontline experience in facilitating students 

to apply coding knowledge to solve community problems, 

were invited to share their experiences and deliver the 

lessons. 

A CoP approach was employed in TDC 2. Following the 

collaborative activities within and between schools in 

TDC 1, there were opportunities for teachers in the same 

school to work together to solve learning tasks and to 

discuss with teachers of the partner schools for feedback. 

To facilitate discussion among teachers, a WhatsApp 

group for the whole class, and small WhatsApp groups for 

each pair of partner schools were created for sharing 

reflections and ideas on coding knowledge and teaching 

methods. We anticipated that participants with less 

experience in coding and CT education could benefit from 

interaction with more experienced counterparts. Also, all 

teachers could learn from one another and elaborate their 

understandings of content knowledge and PCK of CT. 
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2.4. Participants 

Participants in this study were 36 primary school teachers 

from 12 Cohort-1 schools of CoolThink, and four staff 

members from CityU who are responsible for the training 

of teaching assistants. Among the 12 schools, 10 are with 

Chinese as the medium of instruction while 2 are with 

English as the medium of instruction. Among the 36 

teachers, 25 are male and 11 are female. Their average 

years of teaching experience are 12.5, and average years 

of experience teaching the subject of Computer or 

Information and Communication Technology are 7.9. 

2.5. Instrument 

To evaluate TDC 1, and see whether any refinement was 

needed for TDC 2, a survey based on the standard course 

evaluation instrument in the institution was implemented 

at the end of TDC 1. The survey has three main parts: 1) 

Likert-scale questions about the teaching; 2) Likert-scale 

questions about the course design; and 3) Open-ended 

questions on the most useful aspects of the course and how 

the course could be changed to help the participants learn. 

Each Likert-scale question is based on a 4-point scale. 

3. RESULTS 
The evaluation results related to the teaching of the course 

and the course itself are as presented in Tables 1 and 2 

respectively. It can be seen that in general, the participants 

were satisfied with the teaching of the course, as the scores 

were above 3 on a 4-point scale as indicated in Table 1. 

The participants particularly agreed that the instructors 

encouraged exchange of ideas among participants in their 

learning (mean=3.34). They also agreed that the overall 

teaching was of high quality (3.13).   

For the evaluation about the course (Table 2), while most 

participants regarded the course enhanced their knowledge 

and skills in developing block-based programs with 

Scratch (3.21) and App Inventor (3.16), some of them 

indicated that they did not have sufficient confidence in 

applying the knowledge in their teaching (2.87) and to 

equip their students with CT capabilities (2.79). 

Table 1. Evaluation on the teaching of the course. 

  Mean SD 

Q1 Delivering the course in an 

organized way. 

3.03 0.54 

Q2 Inspiring students to think and 

learn. 

3.08 0.49 

Q3 Providing appropriate feedback 

to enhance student learning. 

3.05 0.46 

Q4 Encouraging exchange of ideas 

among students in their 

learning. 

3.34 0.53 

Q5 Providing opportunities for 

students to learning from a 

variety of ways. 

3.11 0.51 

Q6 Guiding students to think from 

different perspectives. 

3.05 0.4 

Q7 Encouraging students to 

proactively engage in their own 

learning. 

3.18 0.56 

Q8 Being enthusiastic in teaching. 3.11 0.56 

Q9 The overall teaching was of high 

quality. 

3.13 0.53 

 

Table 2. Evaluation on the course. 

  Mean SD 

Q10 The learning activities of the 

course stimulated my interest in 

the subject. 

3.03 0.59 

Q11 The course enhanced my 

knowledge and skills in 

developing block-based 

programs with Scratch. 

3.21 0.7 

Q12 The course enhanced my 

knowledge and skills in 

developing block-based 

programs with App Inventor.  

3.16 0.75 

Q13 I have acquired sufficient 

knowledge and skills of 

computational thinking for my 

teaching.  

2.87 0.53 

Q14 I am confident in equipping 

students with computational 

thinking capabilities through 

what I have learnt from the 

course.  

2.79 0.62 

Q15 The course was valuable to my 

development.  

3.16 0.59 

3.1. Qualitative Feedback 

Overall, in terms of the qualitative feedback, the 

participants recognized that block-based programming 

environments were effective for encouraging beginners to 

step out of their comfort zone to learn coding, and the 

interface was user-friendly. However, they expressed that 

the linkage between acquisition of CT concepts and 

practices, and the learning of coding needed elaboration. 

In real classrooms, they would have to explicitly illustrate 

what CT concepts and practices students were learning 

when finishing a project. They also appreciated the 

arrangement of unplugged activities and design tasks 

which enabled them to better comprehend the CT concepts 

and aroused their interest in learning deeper. They also 

agreed that the mini projects were useful for them to 

explore and develop what they were interested in freely 

and creatively.  

4. DISCUSSION & CONCLUSION 
The results suggested that after TDC 1, the teachers agreed 

that their content knowledge of CT had been enhanced. 

However, some teachers were not highly confident in their 

ability to deliver CT education in their classrooms. This 

makes sense, as TDC 1 mainly focuses on content 

knowledge of CT, while TDC 2 on pedagogy. In 

particular, as we found that the teachers were not confident 
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enough in teaching their students to use App Inventor to 

build mobile apps, we have modified the design of TDC 2 

to include coding tasks in the first few lessons to further 

their understanding in the use of App Inventor for creating 

mobile apps and how to connect it with the development 

of CT. And as the qualitative results suggested that the 

linkage between programming activities and the 

acquisition of CT concepts and practices needs to be more 

explicit, we have articulated more on the linkage in TDC2. 

The evaluation on TDC2 will be conducted to see whether 

teachers’ PCK and confidence in delivering CT education 

have been improved. 
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ABSTRACT 
This current study as part of multi-year design-based 

research reports our attempt to design and implement a 

course in teacher education in Korea. We have 
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of DT and recognize the connection between teaching 

computational thinking and DT. This paper reports the 

course design, its progression, reflections, and learning 

outcomes. 
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1. INTRODUCTION & LITERATURE 

REVIEW 
Drawing upon the power and limits of computing 

processes (Wing, 2006), the influence of computational 

thinking (CT) in the 21st century has become widely 

recognized in innovative educational theory and practice 

(Resnick & Siegel, 2015; Shodiev, 2014). It is often 

recognized that, however, little attention has been paid to 

develop teacher education or teacher professional 

development with regard to CT. This current study as part 

of multi-year design-based research reports our attempt to 

design and implement a course in teacher education in 

Korea. Specifically, we aimed to introduce design 

thinking (DT) into a CT course for primary school 

teachers who were interested in applying CT into their 

lesson design for primary school students. The study will 

uncover how primary school teachers perceive impacts of 

DT on integrating CT into their lesson design. This paper 

also reports our design which is a new graduate course 

titled “Creativity in the Technological Field using Design 

Thinking”.  

2. THE STUDY & METHODOLOGY 
Despite the fact that DT has been the topic for 

educational innovation over the last few years in many 

countries including Korea, there are no teacher education 

courses integrating DT with CT for teacher education. To 

respond to this challenge, as teacher educators, we decided 

to design and implement a graduate course in the field of 

computer education in Korea.  

Our design-based research (DBR) (Collins, Joseph, & 

Bielaczyc, 2004) adopted the design thinking process to 

empower in-service teachers who attempted to employ CT 

in their classrooms. The research questions are: (1) how 

are this course design experienced by in-service teachers?; 

and (2) what are the implications of this course design to 

improve teacher knowledge of computational thinking 

through the lens of design thinking? As Table 1 indicated, 

we designed the course including 12 modules, and each 

module takes 3 hours. The course was designed to 

introduce three in-service teachers the five stages of 

design thinking (DT) (IDEO, 2014) while making a 

connection with physical computing using Arduino, 

Lilypad, Makey Makey, and 3D printing.  

Table 1. Course Modules and Related Activities 
Module Themes & Activities 
1 Design Thinking Overview and Cases 
2 
 
3-5 
6-7 
 
 
8 
9 
10-11 
12 

Computational Thinking and Physical 
Computing  
Design Thinking for Educators 
Reflections on Design Thinking (while 
reading ‘Change by Design’ and ‘Design 
Thinking Lecture Note’ in Korean) 
eCrafting with Lilypads  
3D Printing and Physical Computing 
Designing an Authentic Plan  
Presentations and Feedback 

 

  We used both face-to-face interactions and on-line 

discussions using Padlet where in-service teachers were  

able to share reading materials, reading summaries, 

questions, feedback, reflection papers, and assignments 

throughout the course (see Figure 1). 

    
Figure 1. The Course Online Space 

3. FINDINGS 

3.1. In-Service Teachers’ Understanding of Design 

Thinking Processes 

Padlet was collaborative in nature and facilitated in-

service teachers’ design process experiences. Specifically, 
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it helped them collaboratively engage in design thinking 

processes such as the ‘define’ stage followed by the 

‘ideation’ stage with either virtual or real post-it notes in 

Modules 3-5 (see Figure 2).   

 

Figure 2. The ‘Define’(left) and ‘Ideation’(right) Stages 

 

For example, drawing upon her experiences in teaching 

courses in software education, one teacher identified the 

design challenge of software education for her primary 

school students: “How could I make software education 

space for my students?”. Like the other in-service 

teachers, she became more comfortable with the design 

thinking processes and developed a prototype-driven 

solution (see Figure 3). She also gained an appreciation for 

making and improving prototyping by collaborating with 

many stakeholders (e.g., teachers, colleagues, school 

staffs, financial administrators, students).  

 

Figure 3. Design Thinking in Computer Education 

3.2. Impact of a Design Thinking Course on Teacher 

knowledge of teaching Computational Thinking 

In Modules 10 and 11, as their final projects, teachers 

developed either authentic lesson plans in their own 

educational contexts or reflection papers regarding the 

design thinking processes to address their own educational 

problems. Two participants created lesson plans and one 

came up with a reflection paper. One of the lesson plans is 

‘a high-level lesson plan for 10 modules to integrate 

software education for computational thinking into design 

thinking’. The lesson plan has five stages (learn, ideate, 

design, make, share). In the ‘learn’ stage, students learn 

basic skills for block-based programming. In the ‘ideate’ 

stage, students design a project as a team. In the ‘design’ 

stage, students sketch their ideas visually, express the 

movements and complete a scenario. In the ‘make’ stage, 

students create programs by objects, implement various 

programs to produce outputs, record the development 

processes, and test. Finally, in the ‘share’ stage, students 

upload their projects online, present them in the class, and 

evaluate their own learning processes. Instead of a lesson 

plan, one teacher decided to write a reflection paper using 

PPTs and developed a solution by applying the design 

thinking processes. Their final projects reveal that the 

course helped in-service teachers reflect on a way to make 

a connection between design thinking and computational 

thinking through physical computing. One teacher 

mentioned that “I can incorporate physical computing in 

my lesson as a tool to make prototypes during design 

thinking process.” Another teacher also noted that “[t]hey 

have something in common. They involve promoting 

students’ creativity. Physical computing helps students 

implement tangible objects creatively while design 

thinking encourages them to search for the solutions 

requiring creativity.” In a similar vein, the other teacher 

concluded that “[t]hey are connected in terms of 

educational effects: emphasizing collaboration and 

learning through failures.” 

4. CONCLUSIONS & IMPLICATIONS  
This design-based research reports initial design and 

implementation of one graduate course to connect 

computational thinking and design thinking for primary 

school teachers in Korea. As our findings indicate, in-

service teachers appreciated the role of design thinking to 

reflect on and solve their problems collaboratively while 

integrating computational thinking into their lesson plans. 

This suggests the need to further explore teacher education 

by integrating design thinking processes and 

computational thinking. Our exploration of in-service 

teachers’ reflections and lesson designs also highlights 

several key features of physical computing such as 

promoting creative confidence, making, empathy, and 

collaboration.  
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ABSTRACT 
As digital technology is increasingly a part of all sectors 

of society, educational approaches must be developed in 

order to nurture students’ ability to see the world through 

a computational lens. One way to achieve this goal is to 

promote Computational Thinking (CT) for young 

learners. The CoolThink@JC project is a four-year 

curriculum pilot designed to integrate CT into Hong 

Kong upper-primary level schools. The CoolThink 

framework for curriculum development is structured 

around computational concepts, practices and 

perspectives adapted from the framework of Brennan 

and Resnick (2012). This adapted framework motivated 

the choice of learning activities for CoolThink.  This 

paper focuses on one aspect of that framework, namely 

computational practices. Here, we describe how 

activities in the CoolThink curriculum can promote the 

computational practices highlighted by the framework. 

 

KEYWORDS 
Computational thinking, Programming education, 

Curriculum activities, K-12 education 

1. INTRODUCTION 
Digital technologies are transforming virtually all 

aspects of modern living. The ability to productively 

engage with digital tools has become a requisite skill for 

empowered citizens. More and more, people need to 

confront and solve problems in computational terms in 

order to drive innovation and improve quality of life 

(Looi, Chan, Wu, & Chang, 2015; Yadav, Mayfield, 

Zhou, Hambrusch, & Korb, 2014). 

As we educate tomorrow’s leaders, there is a growing 

need to nurture young people’s computational thinking 

(CT) abilities in order to help prepare them to engage 

effectively in a digital world. CT is drawing worldwide 

attention from educational planners and policy makers. It 

is increasingly being singled out as a skill that students 

should acquire (Wing, 2006). Many advocates contend 

that more traditional subjects in K-12 education should 

be integrated with CT development through a curriculum 

where students engage in computer programming (Barr 

& Stephenson, 2011; Fluck et al., 2016; Grover & Pea, 

2013; Kaifai & Burke, 2013; Tucker, 2003). 

The CoolThink@JC Project (CoolThink) is a four-year 

curriculum pilot aimed at integrating CT into Hong Kong 

schools. The work focuses on senior primary school 

learners (grades 4 through 6) aged 9-12, in the belief that 

this is the appropriate age to spark student emerging 

interest in computing, whereas waiting until middle 

school or high school may be too late (Tai et al., 2006). 

The curriculum design of CoolThink follows the 

framework for CT set out by Brennan & Resnick (2012), 

which breaks CT into three parts: computational 

concepts (CT Concepts) that designers engage with in 

programing, computational practices (CT Practices) 

designers exercise while programming, and 

computational perspectives (CT Perspectives) that 

programmers develop about themselves and the world 

around them. 

This paper describes three programming activities that 

CoolThink is currently piloting at a dozen Hong Kong 

primary schools. We focus on activities designed to 

guide the development of computational practices within 

the CT curriculum. 

2. LEARNING OUTCOMES OF 

COMPUTATIONAL THINKING 

The term “computational thinking” in education was first 

used in relation to child education by Papert (1980) with 

reference to Logo, a computer language designed for 

children. As Papert wrote, “I believe that certain uses of 

very powerful computational technology and 

computational ideas can provide children with new 

possibilities for learning, thinking, and growing 

emotionally.”  In 1980, computers were neither powerful 

nor affordable enough for Papert’s vision to be widely 

realized, but that changed over next two decades. As 

computers became less expensive, more powerful, and 

more accessible to many, the term “computational 

thinking” became prominent in computer science 

education starting with a highly influential article by 

Jeanette Wing (2006). She defined computational 

thinking as “the thought processes involved in 

formulating problems and their solutions so that the 

solutions are represented in a form that can be effectively 

carried out by an information-processing agent” (Cuny, 

Snyder, & Wing, 2010). Today, it is widely recognized 

that CT is a broadly applicable set of skills that can help 

people in fields as diverse from astronomy to zoology, 

http://web.mit.edu/
mailto:sckong@eduhk.hk
mailto:hal@mit.edu
mailto:jsheldon@mit.edu
mailto:acclao@eduhk.hk
mailto:mlai@eduhk.hk
mailto:karlang@mit.edu
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and seemingly everything in between. While CT has long 

been regarded as a specialized skill that only computer 

scientists need to develop, it is increasingly being 

considered an essential cognitive ability for everyone in 

a digital-mediated world, due to its alignment with 

twenty-first century skills such as problem-solving and 

creativity (Binkley et al., 2012). 

Figure 1 shows CoolThink’s framework for learning 

outcomes (Kong, 2016). It is structured as the foundation 

of the curriculum by placing emphasis on the outcomes 

of CT development, following the three key dimensions 

of CT (i.e. computational concepts, practices and 

perspectives) developed by Brennan and Resnick (2012).  

 
Figure 1. CoolThink framework of learning outcomes 

of CT adapted from Brennan and Resnick (2012). 

In this paper, we focus on CT Practices. Following 

Brennan and Resnick, we call out the practices of reusing 

and remixing, being incremental and iterative, 

abstracting and modularizing, testing and debugging, and 

employing algorithmic thinking. Helping students 

develop these skills is a key part of a programming 

curriculum for computational thinking. As an example, 

we consider how to guide the development of CT 

Practices within the context of the CoolThink 

curriculum. 

3.  DESIGNING LEARNING 

ACTIVITIES TO SUPPORT CT 

PRACTICES  

3.1 Making CT Learning Environments for K-12 

Students 

This section illustrates, with concrete examples, how 

learning activities for upper-level primary school 

learners can be designed to support the CT Practices 

highlighted in the CoolThink framework. While 

programming is challenging to learn, there have been 

considerable efforts to make it more accessible to novice 

learners. One approach that has been proven successful 

in teaching novice programmers is the use of block-based 

programming environments (Meerbaum-Salant, Armoni 

& Ben-Ari, 2010). For example, Scratch (Maloney, 

Resnick, Rusk, Silverman, & Eastmond, 2010) and App 

Inventor (Wolber, Abelson, Spertus, & Looney, 2011) 

are two commonly used block-based programming 

environments for novice programmers (Price & Barnes, 

2015).  

First introduced in 1986 (Glinert, 1986) and again in 

LogoBlocks (Begel, 1996), block-based environments 

provide blocks that can be dragged and dropped into a 

scripting pane to build stacks of blocks. This allows 

learners to develop programs without programming 

syntax. The shape and the visual layout of the blocks 

allow learners to understand the logic flow, making 

programming more concrete and easier to use by young 

learners (Weintrop & Wilensky, 2015). Syntax errors are 

also reduced in block-based programming contexts as the 

blocks only “fit together” when the code makes sense. 

Therefore, the learning activities in the CoolThink 

curriculum are designed in the context of Scratch and 

App Inventor. 

The CoolThink curriculum has three levels. These are 

intended in our pilot for Hong Kong grades 4, 5, and 6, 

respectively (roughly ages 9-12).  The curriculum begins 

with a series of Scratch units in level 1, which comprise 

the first half of level 1. The Scratch units serve as an 

easily accessible introduction for learners new to 

programming. After the Scratch units equip learners with 

some programming concepts and practices, App Inventor 

is introduced as the environment for the rest of the 

curriculum, beginning with the second half of level 1 and 

continuing through levels 2 and 3. Taken altogether, the 

three levels will be completed over the course of three 

school years. Designed to progress as students grow in 

both experience and ability, the curriculum introduces 

more complex and authentic computational tasks as it 

progresses. 

3.2. Providing for CT Practices in Curriculum Design 

We suggest that development of CT practices through 

programming tasks should be a key goal of this 

curriculum in order to nurture and enhance learners’ 

problem-solving ability. In the learning outcomes for the 

CoolThink CT framework, five sets of the CT practices 

are targeted in the design of the programming activities. 

This section demonstrates how the activities in the 

CoolThink curriculum can help support the CoolThink 

framework’s CT practices. 

Creation involves combining existing and new ideas 

(Chan, Looi, & Chang, 2015). Therefore, to nurture 

leaners as creative problem solvers, it is important to 

support them in developing the CT practices of reusing 

and remixing. Reusing refers to recalling code student 

have used in previous projects and incorporating it again 

in new programming tasks. Remixing involves building 

on their work or the work of others to create new and 

more complex artifacts (Brennan & Resnick, 2012). For 

example, consider the activity “Making a Maze Game 

with Scratch” (Level 1, Unit 2). This activity uses 
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coordinates to control the movement of a sprite (the 

panda in Figure 2). The same code can be reused in the 

Scratch Mini Project (to be completed after the Scratch 

units that make up the first half of Level 1). For this 

project, students must create either a story or a game. 

One strategy learners may employ is to reuse maze game 

code by extracting it from their “Backpack” (a tool in the 

Scratch environment for storing and sharing code across 

programming projects) into a new programming project 

for their Scratch Mini Project. (see the green box in 

Figure 4). Students can remix the event and the “forever” 

loop to make the cat move continuously (see Figure 5). 

In order to enhance the practices of reusing and remixing, 

the learning activities of the curriculum should be inter-

related and increasingly complex. 

 
Figure 2. The maze game in 

unit 2 at level 1. 

Figure 3. The use of the 

coordinates in the maze 

game. 

 

 
Figure 4. Reuse the codes of the coordinates (red box), 

extracted from “Backpack” (green box) in Scratch Mini-

Project. 

 

 
Figure 5. Remix the event and forever loop to enable the 

cat to move continuously. 

3.3. Example:  The Addition Game Activity’s Support 

for Multiple CT Practices 

The CoolThink curriculum’s “Addition Game” (Level 1, 

Unit 6) supports multiple CT practices. In this App 

Inventor game, three numbered balls roll horizontally 

from left to right at a slow pace. Players must determine 

whether any two of the three numbers sum to 10 and 

press the “yes” or “no” button before the balls reach the 

screen edge. This Unit provides students with an 

opportunity to use the CT practice of developing 

incrementally and iteratively. 

In developing the game, learners must generate three 

numbers in each round. Early in the unit, learners are 

asked to build a program that generates three random 

numbers (see Figure 6 for one possible solution to this 

challenge). Learners quickly observe that two of the 

numbers rarely sum to 10. This is problematic if the goal 

of the game is to have two numbers sum to ten before the 

player adds the third number. Therefore, learners need to 

iterate on their design to increase the probability that the 

sum of two of the three numbers is ten. Learners, under 

their teachers’ guidance, will refine the design to 

guarantee that two of the numbers do sum to 10. One 

possible approach is to generate a second number from 

the difference between 10 and the first random number 

(Figure 7).  

 

Figure 6. Code with a very low probability of getting a sum of 

10 from two of the three random numbers. 

 

Figure 7. Modified code that always yields get a sum of 10 

from two of the three random numbers. 
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Figure 8. Another modification where there’s nearly a 

half chance of getting a sum of 10 from two of the three 

random numbers. 

However, this change makes the first two numbers 

always sum to 10 (making the game boring). In order to 

create a more engaging game, with teachers’ guidance, 

learners are encouraged to refine their code such that 

both situations (rarely having a sum of 10 versus always 

having sum of 10) occur with nearly equal chance. 

Learners may further iterate on their design by 

randomizing the two situations with the use of a “global 

dice”, as shown in Figure 8, in order to produce a roughly 

equal chance of having a sum of 10 and no sum of 10. By 

developing this solution, learners get the opportunity to 

experience and understand the iterative and incremental 

processes for constructing a computational artifact. 

As computer programs become more complicated, it is 

useful to organize the programs by abstracting and 

modularizing code. The addition game app provides an 

opportunity to expose learners to abstracting and 

modularizing their code. Abstraction is the CT practice 

of defining patterns, generalizing from instances, and 

parameterization, and is essential to deal with complexity 

and scale (Wing, 2011). Modularizing is the 

decomposition of complex problems, which helps 

structure large-grain programs (Parnas, 1972). In order 

to enhance young learners’ understanding of the CT 

practices, learners can be guided to modify their solution 

in Figure 8 into the one in Figure 9.  

As shown in the version of the code Figure 9, the main 

program helps develop learners’ abilities for high-level 

abstraction by calling with equal chance the module of 

rarely having a sum of 10 and the module always having 

a sum of 10 (i.e., when the program randomly generates 

either 1 or 2, using the “global dice”, the corresponding 

action is called). For example, when the “global dice” 

rolls 1, the program will generate three random numbers 

without guaranteeing that some pair of numbers sums to 

10.  

Figure 9 shows a version of the program where the two 

actions are coded as independent modules implemented 

as procedures in the program. This modification helps 

instill in learners the importance of abstracting and 

modularizing when programs become more complex, 

thus requiring the tasks to be decomposed and tackled 

one-by-one. 

 

 

 

Figure 9. The main program and two procedures in the 

Addition Game for reinfrocing the abstracting and 

modularizing skills of learners. 

The process described above of making small, frequent 

refinements is an example of another of the CT practices, 

namely being incremental and iterative. 

As well, the Addition Game activity reinforces the CT 

practices of testing and debugging. Students often 

encounter these practices through trial and error or 

through “support from knowledgeable others” (Brennan 

& Resnick, 2012). In a programming curriculum, all the 

learning tasks should involve the practice of testing and 

debugging designs as they evolve. One pedagogical 

technique for reinforcing testing and debugging is to 

provide learners with a program that involves errors in 

its logic. Figure 10 shows a version of the Addition 

Game code that contains a logical error (a self-

referencing variable). The blocks could be debugged by 

a teacher pointing out the error directly. However, if the 

teacher presents this code for the class to test and repair, 

it can be a valuable opportunity for the whole class to 

collectively develop their testing and debugging skills. 

The intent of the design shown in Figure 10 is to 

randomly generate three numbers such that two of the 

three numbers sum to 10. It is expected that some 

learners will be able to immediately spot the bug in the 

code, realizing that none of the numbers are coupled, that 

the Q1 statement only changes Q1. It is not dependent on 

either Q2 or Q3. Other learners may need to test the code 

to discover that the code doesn’t work as intended. 

Learners will then need to go through the process of 

revising the code, testing and debugging it until the 

program is bug-free (see Figure 11 for one possible 

solution). Through this process, learners will learn about 

iterative cycles of coding, testing, and debugging. 
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Figure 10. A logical error in the design of codes in 

always getting a sum of 10 from two of the three 

random numbers. 
 

 
Figure 11. The correct sequence of codes in always 

getting a sum of 10 from two of the three random 

numbers. 

3.3. Supporting Algorithmic Thinking 

The practice of algorithmic thinking is a key element in 

the development of CT (Angeli et al., 2016; Barr & 

Stephenson, 2011; Selby & Woollard, 2013; Wing, 

2006). It can equip learners with the ability to 

systematically process information, understand symbol 

systems and representations, flow of control, and 

conditional logic (Grover & Pea, 2013). The CoolThink 

curriculum’s “Voting App” (Level 3, Unit 1) is an 

example of support for algorithmic thinking. This App 

Inventor activity asks students to develop an app that 

presents various options to be voted on and records the 

votes from multiple voters in a cloud database. Votes are 

tallied and displayed for voters on their individual 

devices. Figure 12 shows a high-level approach to 

developing this kind of app, together with the associated 

data flow.  Asking learners to draw dataflow diagrams 

can reveal to what degree they understand the necessary 

data flow of the app and the logic they will code in order 

to achieve that data flow.  

 

 
 

Figure 12. The data flow diagram that helps elucidate 

showing the learner’s algorithmic thinking skills.  

Following the detailed design of data flows, learners can 

start building the Voting App. These two stages of high 

level abstraction and algorithmic design can help 

learners’ process information in a more systematic way 

and facilitate the development of their algorithmic 

thinking. 

 

Figure 13 shows the algorithmic design of adding the 

count of each “vote” by one. When an option is voted on 

by a user, the algorithm starts by requesting the current 

vote counts of the voter’s choice from the cloud database. 

When the current vote is returned, that value is 

incremented by one, and sent back to be stored as the new 

value for that choice in the cloud database. 

 
 

Figure 13. An algorithmic design showing the 

algorithmic thinking skills of learner with 

implementation details on the data flow. 

4. CONCLUSION AND FUTURE WORK 
To nurture young learners as creative problem solvers in 

this digital world, requires development of 

computational thinking early in K-12 education. This 

paper illustrates how the CoolThink framework 

incorporates learning activities aimed at developing CT 

Practices in a programming curriculum for upper-level 

primary school students. Future work will address the 

additional CoolThink framework elements of CT 

concepts and CT perspectives. Based on the example of 

algorithmic thinking in the CoolThink curriculum, it will 

be worthwhile to explore some other computational 

concepts such as synchronization and atomicity in 

multiple user databases since experience with young 

learners exploring these concepts in Scratch is the subject 

of a recent doctoral dissertation (Dasgupta, 2016). It will 

also be necessary to assess student learning outcomes for 

the CT elements and determine if the CoolThink design 

principles do indeed support the development of 

computational thinking in students in the target grades. 

This may be particularly challenging for CT practices, 

where learning manifests as activities learners perform 

and objects they build.  In order to more accurately 

understand student CT learning, it seems preferable to 

use a breadth of tools, including not only standardized 

tests, but also instruments based on students’ developed 

artifacts (e.g., design documents, written code, and final 

products), and even classroom observations and small 

group interviews.  
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ABSTRACT 
This study presents a sequential analysis of the 

relationship of emergent roles to student collaboration and 

computational thinking in the multi-dimensional problem 

space of educational robotics.  The interactions of six 

groups (n=17) of middle-school aged girls participating in 

a one-day introduction to robotics workshop were video 

and audio recorded. Here we analyze one group of three 

girls’ interactions and the emergence of distinct roles that 

correlate with periods of collaboration and periods of 

parallel solo work, which, in turn, impact student’s 

engagement in computational thinking including solution 

planning, algorithmic operations, and design of the robotic 

device.  Suggestions for future research are provided. 

 KEYWORDS 
Robotics, Collaborative Learning, Computational 

Thinking, K-12 Education, Roles 

1. INTRODUCTION 
Computational thinking is foundational to success in 

computer science (Wing, 2006). A current goal in the 

context of education in the USA, is to provide computer 

science instruction for all students in K-12 settings 

(National Science Foundation, 2016). Robotics is an 

activity that has the potential to stimulate students’ 

computational thinking (Sullivan & Heffernan, 2016). 

Yet, there is little research devoted to this relationship. 

Here, we focus on how collaborative arrangements in 

robotics learning environments influence group 

participation and engagement in computational thinking 

for girls, with an emphasis on the impact of group roles on 

collaboration.  

Group roles are an important element of computer 

supported collaborative learning (Hoadley, 2010).  They 

help to define the expected behavior of the members of the 

group (Jahnke, 2010). Scripted roles are those that are 

assigned by a teacher to facilitate the process of 

collaborative learning.  This is contrasted with emergent 

roles that “emerge spontaneously or are negotiated 

spontaneously by group members without interference by 

the teacher or researcher” (Stijbos & De Laat, 2010). 

Emergent roles are typical in open-ended robotics activity, 

such as in this study. 

In discussing group work, it is important to understand 

when groups are working collaboratively vs. 

cooperatively. In cooperative group work, the task is 

divided among the members, knowledge building occurs 

through individual actions, the results of which are later 

shared with the group (Dillenbourg, 1999). Successful 

collaborative group work requires ongoing, well 

coordinated group interactions (Barron, 2003), while 

cooperative group work only requires an initial division of 

the task. Arguably, collaborative learning results in greater 

learning outcomes for students. In our study, students were 

asked to collaborate, but were not assigned specific roles. 

Rather the students were urged to work together and take 

turns, hence, group roles emerged.  

Robotics learning environments are multi-dimensional 

problem spaces which afford multiple roles that may be 

taken up. These problem spaces consist of a computer 

(programmer), a robotic device (builder), and a space to 

test the robot (analyst). The multiple tools in this problem 

space can create a situation where students vye for control 

of the tools through adopting certain roles (Jones & 

Issroff, 2005).   

Computational thinking (CT) has been defined as 

formulating problems in ways that enable us to use a 

computer to solve them, and automating solutions through 

algorithmic thinking (Computer Science Teacher 

Association – CSTA, 2016).  Moreover, these skills are 

important because they create a tolerance for ambiguity, 

allow for persistence in working with difficult problems, 

and for practicing communication in working with others 

to achieve a common goal (CSTA).   In this study,  we 

focus on how emergent roles in the multi-dimensional 

problem space of robotics relates to collaboration and to 

different types of computational thinking. The aim of this 

research is to improve robotics curriculum and teaching 

for students.  

2.     SAMPLE 
This study took place at a one-day, all girls introduction to 

robotics event.  The participants in this study included 17 

girls ages 8-13 (M = 11.725). All of the participants were 

working with robotics for the first time. The students 

worked on solving robotics challenges drawn from the 

First Lego Leagues (2011) food factor challenge. The 

students were divided into six teams (five teams of 3 and 

one team of 2).  Due to size limitations, this paper focuses 

on three students that comprise one team. The data set that 

was analyzed for this study consists of 3 hours and 11 

minutes of problem solving video observations (11,516 

seconds).  Pseudonyms are used throughout. 

3.     METHODS 
This study utilized the iterative sequential mixed method 

design and consists of three phases (Teddie & Tashakkori, 

2009, p. 155).  In the first phase, emergent roles were 
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identified and quantitative means were used to establish 

the amount of time that each individual team member 

engaged in each role as well as the time that they were 

acting on their own, working cooperatively or 

collaboratively. In the second phase, the transcript of all 

utterances were coded using an a priori (Teddlie & 

Tashakkori, 2009, p. 252) coding structure of different 

categories of discourse, including computational thinking 

categories that were subsequently observed as being used 

by novice students in a robotics environment.  In the third 

phase, quantitative methods were used to describe the 

sequence of events as they unfold in time and the 

likelihood of the interrelation of the roles, collaboration, 

and computational thinking.   

3.1  Phase I – Quantitative 

The first quantitative phase of this study was to record 

onset and offset times of certain behaviors. All 3 hours and 

11 minutes of video were coded (for each student) and no 

overlapping of the codes occurs. The unit of analysis for 

this phase of coding was ‘change of focus.’ The codes for 

the roles were: Programmer (Active or Observer), Tester-

Debugger, Builder (Active or Observer), Analyst, Other.   

The codes for collaboration (Table 1) are based on Forman 

and Cazden's (1985) codes for participation in groups as 

markers of coordination.  

Table 1. Collaboration Codes 

Type Description 

Parallel Little to no focus on the group. 

Cooperative Working together, focused on own 

results. 

Collaborative Working together and sharing ideas 

External Focused on something outside the 

group. 

 

Inter-rater reliability was assessed by training a second 

coder and then having them view a portion of the data. 

Results for inter-rater reliability for the role were κ = .83 

which indicate that inter-rater reliability for this study was 

adequate.  Results for collaboration were κ = .92. 

3.2 Phase II – Qualitative 

The qualitative phase focused on the transcripts of the 

discourse related to the robotics activity. The transcripts 

were coded using a-priori codes based on the work of 

Wing (2006) and Barr and Stephenson (2011), including 

analysis, algorithmic thinking, designing, non-specific test 

outcome, points – competition and other.  These codes 

have been synthesized to be relevant for the activities and 

type of coding expected and observed for novice 

programmers in a robotics environment. Inter-rater 

reliability was calculated utilizing Krippendorff's alpha 

(Krippendorff, 2004). Results for inter-rater reliability for 

the discourse were α = .901 which indicate that inter-rater 

reliability for this study was high. The coded utterances 

were then assigned to a time sequence in the video 

corresponding to when they were spoken. 

 

3.3 Phase III Quantitative 

The first step in the phase III quantitative analysis was to 

calculate descriptive statistics to summarize the coded 

observations for each individual student.  The total time 

and relative duration were calculated for each observed 

timed event (role and collaboration).  The second step in 

the quantitative analysis was to describe the joint 

probabilities of certain pairs of coded behaviors for each 

individual student.  A joint probability is the probability 

that an event will occur given another event.  When the 

time that the event occurred is also coded, the joint 

probability includes the element of time and the 

probability is calculated such that it is the probability that 

an event will occur given another event in the same time 

frame.  This is also called Lag(0) (Bakerman & Quera, 

2011) analysis since the calculation describes the co-

occurrence of events in the same time frame given that the 

displacement in time is zero.  Joint probabilities, or Lag(0) 

analysis, were calculated to compare role to collaboration, 

role to computational thinking, and collaboration to 

computational thinking. 

4 Results 
Data were analyzed with GSEQ 5.0 (Bakerman & Quera, 

2011) to examine the students’ behavior.  GSEQ is a data 

analysis program designed to explore observational 

sequential data.  This program allows for the computation 

of both simple statistics, such as frequencies, and 

contingent statistics, such as relative frequency or 

conditional probabilities.   

4.1 Roles Exhibited by Students 

To begin exploring for patterns, the total duration and 

relative duration that each student assumed a role was 

calculated and presented in Figure 1.  For this analysis, 

duration was expressed in seconds. 

Figure 1. Relative Duration of Role 

The results indicate that Fiona's primary role was that of 

programmer.  Of the observed time, she spent 38% of her 

time in this role.  Izzy's primary role was builder.  This is 

evident by 42% of her time was spent in this role.  The 

data also shows that she was never engaged with the 

programming of the robot.  Kelly never had a primary role, 

and spent 33% of her time doing other tasks.  

4.2 Collaboration 

No episodes of cooperation, as defined by this study, were 

observed.  Students were either working together with one 

set of materials (collaboration) or working alone (parallel).  

Duration and relative duration were calculated for each of 
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the students and the relative duration results are presented 

in Figure 2. 

 

Figure 2. Relative Duration of Collaboration 

The data indicates that the students spent at least half of 

the time jointly attentive with at least one other student.  

Additional analysis was done to determine how much of 

the time that all three students were simultaneously 

involved in collaboration.  The data was recoded and 

showed that all of the students were simultaneously coded 

as being collaborative for only 34% (3,937 seconds) of the 

observed time. 

4.3 Computational Thinking 

As regards CT, Izzy appears to have taken the lead in the 

analysis (n =124, 43%) which is supported by the video 

data.  Izzy maintains control of the challenge instructions 

at the beginning of the work time and leads the discussion 

of how the team can win the challenge.  However, 

although she had a lot to say about the initial analysis, she 

said very little to say about how this was carried out.  This 

is apparent in her low percentage of algorithmic thinking 

(n = 21, 7%) and testing outcomes (n = 29, 10%).  The rest 

of Izzy’s discourse mostly revolved around the design of 

what she was building (n = 105, 36%). 

The data also indicates some conclusions that refer 

directly to the questions being asked in the study regarding 

computational thinking.  Twenty-two percent of Fiona’s 

discourse relates to the operations of the program (n = 58, 

22%).  However, when we look at the discourse around 

the variable, it is almost non-existent.  When it did occur, 

the majority of the discourse about a variable was from 

Fiona (n = 13, 5%).  This is not a surprise since she took 

on the primary role of programmer and rarely relinquished 

that role.  Another interesting fact that is apparent in the 

data is the high frequency of talk regarding the design.   In 

order to be successful with many of the challenges, 

additional design was required to create an implement to 

be added to the robot.  Izzy and Kelly both had a very high 

frequency (n = 105, n = 123 respectively) of discourse 

related to the design of the implement. 

4.4 Joint Probability – Role and Collaboration 

The next phase of the quantitative analysis was to begin to 

examine patterns between the role that the student 

assumed and the type of collaboration that was observed.  

One notable outcome from this analysis show that when a 

team member is involved in their primary role (e.g., 

programmer, builder), they perform that role in a non-

collaborative way. Two roles do stand out as having a 

higher probability of being collaborative.  One is the tester 

role which has a relatively high probability for all of the 

students.  This was especially true for Kelly with a 

probability of being collaborative when taking on the 

testing role of 95%.  Kelly participated in almost every test 

of the robot at the challenge arena with at least one other 

member from the team.  Fiona’s calculated probability of 

being collaborative when testing was also high at 82%. 

Izzy’s results are similar to Fiona’s at 83% probability of 

being collaborative and 17% probability of not being 

collaborative when testing. The other role that has a high 

probability of being collaborative is the analyst role.  For 

Fiona, the probability of being collaborative is 75% and 

for both Izzy and Kelly the probability is 89%.  Most of 

the analysis work was done at the beginning of the 

challenge when all of the students were initially working 

together.  

Joint Probability – Role and Discourse Type 

The last phase was to examine the patterns between the 

role and the type of discourse.  Joint probabilities were 

calculated and patterns emerged.  For all three students, a 

majority of their discourse about the analysis of the task 

was done when they assumed the analyst role.  The largest 

of these was Kelly, who exhibited a 93% probability of a 

joint occurrence of this discourse type and role.  For Fiona 

the probability was 89% and for Fiona the probability was 

78%. For Fiona, the discourse around computational 

thinking was associated with her main roles of active 

programmer and her secondary role of tester. Izzy’s 

discourse related to the operations of the robot occurred 

mostly when she was involved in the tester role (n = 10, 

50%).  Kelly was also more likely to discuss the operations 

of the robot while testing (n = 22, 65%).  Kelly had 5 

instances of discourse related to the variable.  Of these, 4 

occurred while taking on the programmer role and 1 

occurred while testing. 

5 DISCUSSION 
Our analysis indicates that roles play an important part in 

the level of collaboration that occurs within the group.  

The roles afforded by the environment: (a) were taken up 

and never relinquished, (b) influenced the type of 

discourse that was used to discuss the activity, and (c) 

affected the common understanding of the different 

systems in a robotics environment. The roles emerged 

early on in the process and where fairly stable throughout 

the activity. The roles may also have been partially 

structured by the group sharing a single technology 

resource (Jones & Issroff, 2005).  The laptop and the robot 

are sized to be utilized by a single individual. The low 

frequency of discourse for both of the programming roles 

leads credence to this interpretation.  The testing area was 

a four foot by eight-foot arena which facilitated the group 

coming together to discuss the outcomes of not only the 

programming of the robot, but also the building of the 

implement designed to help solve the challenge. 

The analysis of the discourse shows that the type of speech 

used when discussing the program, mostly when testing, 

was very similar in structure to the type of speech used 

during analysis.  Students continued to use words such as 

forward, backward, and turn but added non-specific 

modifiers such as: more, less, sharper.  Given the nature 

of the programming environment and the structure of the 
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programs, for computational thinking to be more evident, 

we would have expected to hear discourse about the 

different types of blocks used and the values of the 

variables.  We expect students to understand the factors 

that determine the robots speed, turning radius, or power 

rather than just expressing that the robots is going fast or 

slow (Barak & Zadok, 2009).   

This is in sharp contrast to the type of speech used when 

the students were engineering and building their robot. 

The discourse associated with building, at times, used very 

specific language to indicate the part needed.  The factors 

influencing this disparity in establishing intersubjectivity 

require further research. These roles were emergent roles 

and not structured, possibly affecting the way that the 

group collaborated.  If the roles had been rotated by some 

structured means or if there had been an opportunity to 

create intersubjectivity early on, there may have been 

some increase in the ability of the group to create a shared 

understanding of how the robot is programmed.  Likewise, 

if the materials were easier to share, for example if a large 

touchscreen computer was used to program, this too, may 

alter student interactions. Future research should 

investigate these possibilities. 
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ABSTRACT 
Computational Thinking (CT) has become popular in 

recent years and has been recognized as an essential skill 

for the digital generation. Students are exposed to 

computational thinking when they do programming, and 

MIT App Inventor is currently one of the most popular 

block based programming environments. Meanwhile, 

Design thinking is considered as a creative, human-

centred, participative, exploratory and problem-solving 

process that values different perspectives of a problem. 

In this study, we aim to bring the design thinking in a 

curriculum framework of K-12 to promote 

computational thinking by App Inventor. The future 

work is to implement and evaluate CT curriculum. 

KEYWORDS 
Computational Thinking, App Inventor, Design 

Thinking, Curriculum Design  

1. INTRODUCTION 
Over the past three decades, CT has gained extensive 

attention and become accepted as one of the skills 

required by those growing up in the digital era; especially 

after being defined by Wing in 2006. She presented that 

computational thinking as a way of “solving problems, 

designing systems and understanding human behavior by 

drawing on the concepts of computer science”, and she 

argued that CT ‘‘represents a universally applicable 

attitude and skill set everyone, not just computer 

scientists, would be eager to learn and use’’ (Wing, 

2006). After that, CT has gained a lot of attraction, and 

many countries and researchers have involved in this 

topic. Computer programming is an excellent way to 

develop computational thinking skills(Orr, 2009), 

because it involves the use of computer science concepts 

such as abstraction, debugging, remixing and iteration to 

solve problems(Brennan & Resnick, 2012; Ioannidou, 

2011; Wing, 2008). MIT App Inventor is currently one 

of the most popular blockbased programming 

environments. The main goal of App Inventor is to teach 

computing and programming to students with limited 

prior programming knowledge and to democratize app 

creation by providing an easy-to-learn environment. It 

has experienced broad adoption in diverse venues, and 

researchers have used it in summer camps and other 

outreach activities for K-12 students for several years 

now (Ericson & McKlin, 2012; Roy, 2012; 

Wagner, Gray, & Wolber, 2013). Conform to the 

situation of China, how to develop the solution program 

for the different level of K-12 information technology 

courses to foster computational thinking and innovation 

capacity is the most important thing we focus on. Our 

whole project aims to use the App Inventor combine with 

the information technology course to cultivate K-12 

students' computational thinking. In this study, we 

describe a framework of computational thinking 

Curriculum for K-12 with Design Thinking by App 

Inventor. 

2. THEORETICAL FRAMEWORK 
Design thinking is considered as a creative, human-

centred, participative, exploratory and problem-solving 

process that values different perspectives of a problem 

(Brown, 2008; Dunne & Martin, 2006; Melles, G. and 

Misic, V., 2011). In our research, we adopted the 

Standford d.school (D.school, n.d.) process of design 

thinking which including empathize, define, ideate, 

prototype, and test. The design action plan is an iterative 

process, and each action phase should achieve some 

deliverable outcomes. 

(1) Empathize (to understand our users) 

Activities: User interview, Observation, Immersion. 

Deliverables: Empathy map, list of user feedback, 

problems identified. 

(2) Define (to define clear project objectives) 

Activities:  Workshops, Stakeholder meetings. 

Deliverables: Design brief, stakeholder map, context 

map, customer map, opportunity map. 

(3) Ideate (to explore ideas and solutions) 

Activities: Ideation activities, brainstorming, mindmaps, 

sketching/drawing. Deliverables: Ideas/concepts, 

sketches, prioritisation map, affinity map, idea 

evaluation. 

(4) Prototype (to build and visualise ideas and solutions) 

Activities: Space prototyping, physical prototyping, 

paper construction, wireframe building, storyboards, 

role-plays. Deliverables: Physical prototypes, 

wireframes, storyboards. 

(5) Test (to review and decide) 

Deliverables: List of user feedback, observation, 

evaluation 

3. RESEARCH PLAN 

3.1. Setting and participants 

The case setting was seven schools in Beijing, Zibo and 

Huhehaote, which include 1 primary school, 3 junior 

schools and 3 high schools, and two classes in each 

school join the research. Students are grouped in 3-4 
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person, and are asked to develop a app through 

collaborative learning based on the design thinking 

process. 

3.2. Course structure and activities 

The Course consisted of three main modules, lasting 12 

weeks in one semester. Each week, we are expected to 

expend 2 hours of effort in class. Module 1 (6 Weeks): 

In the beginning, the teacher introduced App Inventor. 

Participants learned about basic components for building 

apps and built practice apps. Computational thinking 

concepts and associated techniques are instructed. 

Module 2 (2 Weeks): This module introduced 

participants to the five steps of the design action plan, 

and participants discuss the topic in groups. Module 3 (4 

Weeks): App design. Participants empathize, define and 

ideate the topic through the design action plan. They 

need to do some activities, complete deliverable 

outcome, and draw the sketches of their game. Then, 

Participants built one practice app, proposed an app of 

their own and built a working prototype or completed 

app. 

3.3. Data collection and analysis 
This study adopted a mixed-method approach to collect 

and analyze the following data: student digital artifacts, 

classroom observations, survey, test and individual 

student interviews. 

4. CONCLUSION AND FUTURE 

WORK 
The current research employed design thinking to 

develop a framework of the App Inventor curriculum for 

cultivating K-12 students' computational thinking. There 

are a number of future research tasks being considered in 

the agenda of this study. First, design and implement a 

K-12 programming curriculum constructed based on the 

framework. Second, design instruments to assess CT 

knowledge, skills, and perspectives of learners in the 

programming curriculum. Third, evaluate the design 

thinking framework is effective by evaluating the 

progression of learning outcomes of CT knowledge, 

skills, and perspectives which include computational 

identity and digital empowerment. 
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ABSTRACT 
Programming is one of the important literacies in the 

digital age. The acquisition of such knowledge and skills 

is of vital importance to the next generation. This study 

aimed to develop and validate an instrument to measure 

programming self-efficacy of senior primary school 

learners (Grade 4 - Grade 6) in a block-based environment. 

The proposed scale consisted of two subcomponents 

related to learners’ perceptions of their own competence 

in (1) programming knowledge and (2) programming 

skills. In order to assess the validity of the scale, online 

questionnaires were distributed to 106 primary school 

students who joined a course of a new programming 

curriculum. The objective of the curriculum is to nurture 

young learners to solve daily life problems. The reliability 

of the scale was good. The confirmatory factor analysis 

(CFA) supported the validity of the instrument. More 

specifically, results indicated that the hypothesized 

measurement model of the scale fit the data collected. It 

confirmed that the scale was valid and adequate for 

measuring programming self-efficacy of senior primary 

school learners. Theoretical and practical implications of 

this study were discussed at the end of the paper. 

KEYWORDS 
Programming, Programming self-efficacy, Scale 

development, Scale validation, Self-efficacy 

1. INTRODUCTION 
With the fast development of technology today, the 

younger generation is exposed to the digital world where 

they not only need to develop “the ability to chat, browse, 

and interact, but also the ability to design, create, and 

invent with new media” (Resnick, Maloney, et al., 2009, 

p. 62) so as to thrive for a better life. Computer scientists 

see programming as a new literacy that everyone has to 

acquire in this century, especially for the young 

(Hutchison, Nadolny, & Estapa, 2015; Vee, 2013). Papert 

(1980) also pointed out that procedural thinking of 

children can be fostered by learning programming. Thus, 

children are highly encouraged to develop programming 

skills to become creative problem-solvers in the 

digitalized world.  

Evaluating learners’ understanding of programming 

concepts and skills is a major challenge at this stage (e.g., 

Wang, Li, Feng, Jiang, & Liu, 2012; Yang et al., 2015). 

Evidence of a validated instrument regarding students’ 

perceptions on programming is even more scarce. It is 

indisputable that tests of programming knowledge and 

skills are fundamental in examining the learning 

performance (Yang et al., 2015), but it is also important to 

capture learners’ beliefs of their own competence in 

programming as their performances will be influenced by 

their self-perceptions. Pajares (1996, p. 543) stated that 

“the beliefs that individuals hold about their abilities and 

about the outcome of their efforts powerfully influence the 

ways they will behave”. In order to facilitate the 

implementation of programming education in senior 

primary schools, there is a pressing need for academics to 

design instruments to measure learners’ perceptions/ 

attitudes of programming after they are involved in some 

kind of learning. Based on self-efficacy theory (Bandura, 

1986), we developed a programming self-efficacy scale 

among senior primary school students. According to the 

theory, when learners have similar level of domain 

knowledge and skills, their actual performances will be 

affected by their perceptions of personal efficacy 

(Bandura, 1986; Zimmerman, 1995). In other words, a 

person may gain sufficient knowledge and skills for the 

task, but he/she may fail to achieve desired results due to 

lack of confidence and motivation. Thus, this scale could 

predict the performance of the learner (Askar & 

Davenport, 2009).  

2. BACKGROUND OF STUDY 

2.1. Programming Self-Efficacy 

A definition of programming self-efficacy might first 

begin with the explanation of self-efficacy. Bandura put 

forth the self-efficacy theory in the late 1970’s. He defined 

it as “people’s judgments of their capabilities to organize 

and execute courses of action required to attain designated 

types of performance” (Bandura, 1986, p. 391). Self-

efficacy of a person can be obtained from four aspects, 

including “personal performance accomplishments”, 

“vicarious experience” of observing others’ behaviors, 

“verbal persuasion”, and “state of physiological arousal” 

(Bandura, 1977). There is a strong relation between self-

appraisals of capability and performances (Bandura & 

Adams, 1977; Schunk, 1981). Studies pointed out that 

personal efficacy influences individual’s choice of 

activities, amount of effort invested, persistence in the face 

of obstacles, and performance (Bandura, 1977; Schunk, 

1989). People with higher self-efficacy are more willing 

to invest effort to cope with challenging tasks (Bandura, 

1994). Self-efficacy is not about the traits of a person, but 

it is a kind of self-evaluation specific to a particular 

domain of activities (Bandura, 2006). Therefore, a self-

efficacy scale about computer programming should be 

developed when researchers attempt to investigate 
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learners’ efficacy of computer programming. Based on the 

theory, programming self-efficacy reflects one’s 

perception and judgment of his/her ability in solving 

computational problems with programming knowledge 

and skills. Learners with high programming self-efficacy 

are more willingly to apply their knowledge and utilize 

skills to solve computational problems. 

Despite the fact that programming is a key ability and 

literacy that the next generation should acquire, there have 

been few attempts to create instruments to measure 

learners’ self-efficacy of programming. Ramalingam and 

Wiedenbeck (1998) pioneered a notable self-efficacy scale 

for undergraduates in the context of C++ programming 

language. Some previous studies also adapted this scale to 

explore learners’ self-efficacy of C+++ programming 

(Korkmaz & Altun, 2014; Ramalingam, LaBelle, & 

Wiedenbeck, 2004) and Java programming (Askar & 

Davenport, 2009). All these scale items are positive-

worded statements, which reflect learners’ confidence of 

their capability of handling programming related concepts 

and skills. These studies reflect that these are the main 

components of the scale in measuring learner’s efficacy of 

programming knowledge and skills. However, we need an 

instrument that focuses on senior primary school learners 

(i.e. Primary 4 to 6). Since the existing scales were 

designed for undergraduates, some of the programming 

concepts are too difficult for primary school learners. In 

addition, our instrument is designed for a programming 

curriculum aiming at developing Computational Thinking 

(CT) through programming where the programming 

languages used in this study are Scratch and App Inventor.  

2.2. Dimensional Structure of a Two-Factor Model 

In light of the past literature, the programming self-

efficacy scale consists of two components: (1) 

programming knowledge and (2) programming skills. As 

our evaluation targets are senior primary school learners, 

the knowledge and skills that they should acquire are 

supposed to be simpler than the undergraduates. Brennan 

and Resnick (2012) studied the programming activities of 

the kids in the Scratch online community and workshops 

over a few years to develop a three-dimensional CT 

framework. Therefore, we also borrowed key ideas from 

Brennan and Resnick (2012) to the programming self-

efficacy scale in the current study. In brief, Brennan and 

Resnick's framework covers CT concepts, practices, and 

perspectives. CT perspectives refers to learners’ 

understanding of themselves, their relationships to others 

and the technology world, which goes in line with our 

instrument that tries to measure the perception and 

understanding of programming. 

One dimension of programming self-efficacy is 

programming knowledge. It refers to the programming 

concepts and knowledge that learners apply in 

programming. Brennan and Resnick (2012) identified 

seven basic computational concepts that are commonly 

used among young novice programmers, including 

sequences, loops, parallelism, events, conditionals, 

operators, and data (i.e. variables and lists). In most block-

based language assessments, the ability of dealing with 

loops (e.g., Ericson & McKlin, 2012; Meerbaum-Salant, 

Armoni, & Ben-Ari, 2013; Zur-Bargury, Parv, & 

Lanzberg, 2013), conditionals (e.g., Ericson & McKlin, 

2012; Seiter & Foreman, 2013; Zur-Bargury et al., 2013), 

and variables (e.g., Ericson & McKlin, 2012; Meerbaum-

Salant et al., 2013; Seiter & Foreman, 2013) are 

considered as the fundamental programming knowledge 

for novice. Researches also emphasized the importance of 

handling concepts of sequences, and operators (e.g., Seiter 

& Foreman, 2013). The ability to apply procedure to finish 

programming tasks is also regarded as basic building 

blocks of a program. It can be used to avoid repetition of 

codes and duplicating commands so that novices are able 

to make the programs more modular and easier to test and 

debug (Marji, 2014). Thus, understanding of procedure is 

also suggested to be incorporated into the items of 

programming knowledge.  

The other dimension is CT practices. Programming 

concepts and CT skills are supposed to be developed in the 

problem-solving process by using features of a 

programming environment. In other words, learners not 

only need to apply programming concepts but also use a 

variety of skills to tackle computational problems (Olson, 

Sheppard, & Soloway, 1987). Brennan and Resnick 

(2012) proposed four sets of practices that are related to 

the process of solving problems using a programming 

language, namely being incremental and iterative, testing 

and debugging, reusing and remixing, and abstracting and 

modularizing. Debugging practice is always regarded as a 

crucial skill for novices (Hwang, Wang, Hwang, Huang, 

& Huang, 2008). Apart from these suggestions, other 

studies argued that planning and designing solutions 

before programming (e.g., Burke, 2012; Fessakis, Gouli, 

& Mavroudi, 2013), and algorithmic thinking (e.g., 

Denner, Werner, Campe, & Ortiz, 2014; Duncan & Bell, 

2015; Seiter & Foreman, 2013), which means to design a 

solution through a series of steps, are indispensable for 

creating a program. The above concepts and skills are 

developed and deployed during the process of solving 

computational problems, yet there must be a problem 

arisen before they plan and design a solution. It is more 

crucial to raise questions than to solve problems (Einstein 

& Infeld, 1938). Consequently, problem formulation 

should also be perceived as an important component 

among the skills in solving problems using a programming 

language. 

3. METHOD 

3.1. Item Development and Validation 

The programming self-efficacy scale was developed in 

accordance with a comprehensive literature review of 

programming self-efficacy, and the CT framework 

proposed by Brennan and Resnick in 2012. Detailed 

discussions were conducted with a leading research team 

including professors and researchers from the Education 

University of Hong Kong to ensure that the language used 

in each item is understandable to senior primary school 

learners. The scale consists of two components with 15 

items in total (programming knowledge: 7 items; 

programming skills: 8 items). Item example for CT 

knowledge is “I have basic knowledge to finish coding 

tasks”. Item example for CT skills is “I can build the code 
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in an incremental way with a number of iterations”. All the 

items are anchored with 5-point Likert scale, from 1 

“unable to master” to 5 “fully master”. This study 

followed Brislin’s (1970) suggestion for back-translation. 

English items were translated into Chinese, and 

discrepancies were discussed and carefully modified. 

Finally, we examined the face validity of the scale items 

for further adaptation into primary school settings. 

3.2. Participants and Procedures 

Participants of this study had some experience of 

programming before taking up this survey. The 

questionnaires were administered to learners in a primary 

school where the new programming curriculum has been 

implemented for a semester. The scale is targeted at 

primary 4, 5 and 6 learners. Online survey was adopted. 

All the participants filled in the questionnaire since they 

were asked to finish the survey and submit the answers 

during class time. In total, 42.5% of the participants were 

female, and 57.5% of them were male. Among all the 

participants, 25.5% of them were from Grade 4, 51% were 

from Grade 5, and 23.5% were from Grade 6. The 

demographics of the learners are shown in Table 1. 

Table 1. The demographics of the participants of the 

study. 

Grade Gender 

4 5 6 Female Male 

27 54 25 45 61 
25.5% 51.0% 23.5% 42.5% 57.5% 

 

4. RESULTS 
The measurement structure is confirmed with 

confirmatory factor analysis (CFA) using Amos 24. 

Maximum likelihood estimation was used in CFA. χ2(df), 

CFI, TLI, RMSEA were used as the fit indices for the 

measurement model of programming self-efficacy 

construct. According to Bentler (1990), CFI and TLI 

which is greater than .90 suggests a good fit, and greater 

than .95 suggests an excellent fit. For RMSEA, a cut-off 

value close to .06 (Hu & Bentler, 1999) or more recently 

the upper limit of .08 seems to be acceptable among most 

researchers. In the current study, χ2(87) = 184.78 

(p<.000), CFI = .92, TLI = .90, and RMSEA = .10. Both 

CFI and TLI indicate that the hypothesized measurement 

model is well fitted with the data collected for the scale 

development. Although RMSEA is not satisfying, it is 

probably because the sample size is small for such two-

factor model. In addition, all factor loadings are ranged 

from .59 to .87, further confirming convergent validity of 

programming self-efficacy. The CFA and reliability of 

programming self-efficacy scale are shown in Table 2. 

Figure 1 demonstrates the measurement model of 

programming self-efficacy.  

Table 2. Confirmatory factor analysis and reliability of 

programming self-efficacy. 

Factors and Items 

Factor 1: programming knowledge, α=.88 
1. I have basic knowledge to finish coding 

tasks. 
.76 

2. I can complete coding by identifying a 
series of steps in task and solve them 
subsequently (sequence). 

.79 

3. I can code with “If…then…else” 
(conditionals) sentence. 

.68 

4. I can complete coding tasks with the 
concept of loop, that is, repeating an 
action. 

.66 

5. I can apply variables to finish coding tasks, 
for example, to set “a” with a number 
(variable). 

.78 

6. I can apply operators to finish coding tasks, 
for example, to use operators such as > 
(larger than) or < (less than). 

.70 

7. I can apply procedures to finish coding 
tasks. 

.59 

Factor 2: programming skills, α=.93 
1. I can overcome the difficulties in coding 

tasks by dividing them into multiple 
subtasks and solve them one-by-one. 

.74 

2. I can test and debug a completed program. .76 
3. I can reuse and / or remix existing codes to 

build up my own program. 
.76 

4. I can make an abstraction on a coding task. .87 
5. I can build the code in an incremental way 

with a number of iterations. 
.85 

6. I can think of solutions to a computational 
problem with a series of steps. 

.80 

7. I can formulate a computational problem 
from daily life. 

.79 

8. I can plan and design a solution from a 
computational problem. 

.78 

 

Figure 1. 2-factor model of programming self-efficacy. 
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In addition, the study also tried to merge the two factors 

into one single factor by creating a common latent variable 

such that all 15 items could load on it. CFA results 

suggested that this alternative model is not as good as the 

previous two-factor model (χ2(88) = 192.50 (p<.000), CFI 

= .91, TLI = .89, and RMSEA = .11). Therefore, 

programming self-efficacy should be better modeled as a 

two-factor construct as proposed based on the theoretic 

stance. 

5. DISCUSSION 
The aim of this study was to develop and validate a 

programming self-efficacy measure among senior primary 

school learners. CFA results indicated that the 

measurement structure has achieved good fit according to 

the fit indices (χ2(87) = 184.78 (p<.000), CFI = .92, TLI 

= .90, and RMSEA = .10), though the RMSEA is not that 

good due to the sample size. The programming self-

efficacy as a two-factor model was confirmed. In addition, 

factor loadings are ranged from .59 to .87, demonstrating 

the two subcomponents are adequately measuring the 

latent factor of programming self-efficacy. 

5.1. Theoretical and Practical Contributions, and 

Future Research Directions 

The programming self-efficacy scale has theoretical 

implications for future research. As the next generation is 

required to acquire the ability to design and create with 

new media, programming is widely accepted as one of the 

indispensable literacies in the digital era. Young learners 

are highly recommended to acquire and master basic 

programming knowledge and skills so as to become 

computationally literate learners. Currently, educators 

examine learners’ capability of programming by means of 

tests and examinations. However, this practice overlooks 

the significance of learners’ perceptions of their abilities 

in programming. Self-efficacy theory implied that 

learners’ persistence in the face of obstacles and actual 

performances would be affected by their level of efficacy 

(Bandura, 1977; Schunk, 1989). Yet, there is no existing 

scale for investigating self-efficacy of programming 

among primary school learners. Therefore, programming 

self-efficacy scale is developed in this study, which would 

facilitate a deep understanding on primary school learners’ 

self-competence of programming before and after learning 

programming. The results of the scale might also be used 

as a tool to predict learners’ course performance. 

For practical implications, researchers found out that there 

was a strong correlation between learners’ self-efficacy 

and their actual performance (Bandura & Adams, 1977; 

Schunk, 1981). Therefore, our future research direction is 

to explore the relationship between learners’ programming 

self-efficacy and the test results of their programming 

knowledge and skills. Besides, self-efficacy theory stated 

that past experience of learning and practicing the skills 

would influence learners’ belief of their competence 

(Bandura, 1977). Thus, it is expected that learners’ self-

efficacy will rise because of frequent exposure to the 

programming course (Ramalingam et al., 2004). Pre- and 

post-tests can be further conducted to measure learners’ 

self-efficacy over the course. It is a reliable indicator for 

researchers to understand the improvements of learners 

and reflect the effectiveness of the curriculum so as to 

improve the pedagogy if necessary. 

5.2. Limitations 

It is also essential to identify the limitations of the current 

study. According to Bandura (1977), self-efficacy 

judgements consist of three dimensions, namely 

magnitude, strength, and generality. In the context of 

programming, Strength of self-efficacy refers to learners’ 

conviction and confidence of their abilities to complete the 

programming task. The survey design of this study merely 

focuses on measuring the strength of self-efficacy by the 

5-point Likert scale ranging from “unable to master” to 

“fully master”. In future research, effort have to be put on 

other dimensions. For instance, the magnitude of self-

efficacy can be measured by asking learners to judge their 

capabilities of completing programming tasks in various 

difficulty levels (Ramalingam & Wiedenbeck, 1998). 

Additionally, the generality of self-efficacy can be 

evaluated by adding items which are about learners’ self-

assurance of handling tasks in different situations like with 

or without others’ help (Ramalingam & Wiedenbeck, 

1998). In our study, in-depth interviews of participants 

after online surveys were conducted in order to have a 

more accurate understanding of their attitude and 

perceptions on programming. Future research studies are 

encouraged to cover a broader scope of research methods 

to test/ validate the programming self-efficacy scale.  

6. CONCLUSION 
Programming is regarded as a new literacy in the twenty-

first century. It helps equip young people with the ability 

of expressing themselves in the digital era (Hutchison et 

al., 2015). Hence, it is significant for young people to 

possess basic programming knowledge and skills in the 

digitalized world. In order to investigate learners’ 

perception of their own competence of programming, this 

study developed and validated a programming self-

efficacy scale for senior primary school learners. The scale 

is a two-factor model with 15 items in total. The 

subcomponents are related to learners’ belief about their 

abilities in utilizing different kinds of programming 

knowledge and skills to solve computational problems. 

Future research will be conducted to investigate the 

correlation between learners’ programming self-efficacy 

and the test results of their programming knowledge and 

skills. 
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ABSTRACT 
Computational thinking is well-known in computer 

science and is currently entering the field of education. 

Due to changes in the private and professional life by 

modern technologies all students are with increasing 

relevance expected to possess sufficient knowledge in 

computer-related problem-solving (e.g. Fraillon et al., 

2014). The acquisition of key competences related to this 

assumes an enhancement of knowledge in learning as well 

as computational thinking processes. Although many 

concepts for computational thinking education have been 

created (e.g. Barr & Stephenson, 2011; Krauss & 

Prottsman, 2017), in fact, an evidence-based competence 

model is not yet available, thereby it represents a 

significant desideratum. 

Considering these aspects, the contribution at hand aims 

to contribute to this and focuses on the construction and 

investigation of a model, taken theoretical aspects and the 

current state of research into account. The principle of this 

procedure is to break down the term and construct of 

‘computational thinking’ to core elements by working 

with a literacy approach and presuppose that 

computational thinking can only be implemented in 

lessons in a competence-oriented way referring to an 

evidence-based approach to computational thinking as a 

key competence of the 21st century. Starting from this, the 

research presented in this paper describes and explains 

preliminary work in the context of the preparation of IEA-

ICILS 2018 (International Computer and Information 

Literacy Study). In this context, the authors of this paper 

are involved as members of the national study center in 

Germany, which is among other countries taking part in 

this international study. 
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1. INTRODUCTION 

In the course of the second cycle of ICILS  in 2018, the 

IEA (International Association for the Evaluation of 

Educational Achievement) for the first time implements 

the additional option ‘computational thinking’, by 

applying computer-based tests for students in Grade 8 

(Fraillon et al., in press), wherefore research will be able 

to clearly examine the interplay between competencies in 

computational thinking, the students’ use of ICT in and 

outside school as well as individual students’ background 

characteristics (Fraillon et al., in press). In this respect, the 

structure of theoretical models of computational thinking 

can also be reviewed by using representative data sets of 

Grade 8 students in a number of countries around the 

world. Furthermore, the study will allow to describe the 

relationship between students’ information literacy and 

computational thinking and by this will contribute to the 

question which competencies refer to ICT-literacy 

(Ainley, Schulz & Fraillon, 2016). 

The research presented in this paper starts from the 

premise that understanding the core elements of 

computational thinking would enable teachers to integrate 

it in their teaching concepts. Moreover, understanding and 

integrating computational thinking in curricula would 

allow students (K-12) for developing ‘computational 

thinking’ as a key competence (see also Barr & 

Stephenson, 2011) and part of every type of reasoning: 

“The power of computational thinking is that it applies to 

every other type of reasoning. It enables all kinds of things 

to get done: quantum physics, advanced biology, human 

computer systems, development of useful computational 

tools” (Barr & Stephenson, 2011, p. 51). This takes into 

account that enabling students not only to consume but 

also to create technology is of increasing relevance. The 

emerging challenge is to make educational systems to 

react to these new challenges and to make use of the afore-

mentioned power in the most efficient way for all students. 

Therefore, the purpose of this contribution is twofold: 

Firstly, to review the current state of art of conceptualizing 

and research towards computational thinking (section 2), 

theoretical aspects (section 3) and explaining a process 

model to understand the underpinning concept (section 4). 

Secondly, the paper presents and discusses a more detailed 

research concept (section 5).  

2. CURRENT STATE OF RESEARCH 

Wing (2006) stated that computational thinking 

“represents a universally applicable attitude and skill set 

everyone, not just computer scientists, would be eager to 

learn” (p. 33). A first point to note is that this assumption 

is the reason of the great discussion about computational 

thinking of the last few years. Thus far, hardly any studies 

researching computational thinking education and 

measuring computational thinking competences are 

available. In contrast to this, literature reviews show that 

there are different concepts of the construct, mostly 

referring to the first concept, presented by Wing (2006). 

Barr and Stephenson (2011), for instance, have developed 

a concept of computational thinking, including several 

components, e.g. data collection, data analysis, algorithms 

and procedures etc. In accordance with this and also 

aiming for making computational thinking teachable in 
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schools, Krauss and Prottsman (2017) recently published 

a teacher’s getting-started guide. 

Since these and other concepts are not founded on a 

universal definition, a generally accepted definition of 

computational thinking has not been set and finding it “has 

proved difficult for the CS [computer science] education 

community” (Mannila et al., 2014, p. 2). However, most 

of the definitions include core elements or rather processes 

as part of computational thinking (e.g. Wing, 2008; Lee et 

al., 2011; Barr & Stephenson, 2011, Krauss & Prottsman, 

2017). Therefore, the aim is not to find a universal 

definition but to create an evidence-based competence 

model, which clarifies the key competence of 

computational thinking, while embedding the model into 

a comprehensive theory. From the perspective of 

empirical educational research, such a model can be 

developed by using appropriate tests and develop an 

evidence-based competence model. 

Last but not least, the primary use of Wing’s assumption 

in the context of this contribution is that computer-linked 

problem-solving can be reframed to psychological 

problem-solving processes. Thus, we can benefit from 

many studies in this area (e.g. Popper, 1994; Marshall, 

1995; Robertson, 2001). Román-González, Pérez-

González & Jiménez-Fernández (2016) describe “a 

worrying vacuum about how to measure and asses CT 

[computational thinking]” (p. 2), wherefore they also 

suggest a psychometric approach. Relating to this 

understanding, it can be stated that understanding the 

process of problem-solving also contributes to clarify 

computational thinking and to add to computer scientists’ 

research. 

3. THEORETICAL ASPECTS 

First, it should be noted that – in contrast to a state-of-the-

art computer – a human being is able to solve problems 

without regulations. This is also taken into consideration 

when trying to reason the need for conceptualizing 

computational thinking in the scope of ICILS 2018: 

“Computers themselves cannot think: they have to be 

programmed before they can function” (IEA, 2016, p. 2). 

From a psychological point of view, processes of 

computational thinking show many similarities with 

problem-solving processes, both of which arrive from 

Bandura’s theory of observational learning (Bandura, 

2001). Problem-solving in comparison to performing a 

task with clear rules is a rather complex process and one 

way of thinking among others, such as conceptualization 

and logical reasoning. 

In a problem-solving process, the point of departure is a 

problematic situation, which is followed by situation 

analysis (Edelmann, 2000). The way in which the brain 

works in a problem-solving process is much contested 

among scholars. As a result, and following very early 

theories, it can be stated that problem-solving is 

productive thinking (Duncker, 1926). In this context, the 

aim of problem-solving processes is to close the gap 

between a problematic situation and the required solution, 

using operators, which partly need to be invented by 

heuristics (Huitt, 1992). 

In this context, the use of an algorithm represents a 

particular form of problem-solving (Kant & Newell, 

1984). Compared with humans, a computer can follow 

orders more quickly but in so doing, it requires algorithms. 

On an abstract level, the human takes over the thinking 

process within problem-solving and delegates tasks to a 

computer in the form of algorithms by analyzing the 

problem which is needed beforehand and which “requires 

thinking at multiple levels of abstraction” (Wing, 2006, p. 

34).  

Pointing out one of the theoretical frameworks, core 

elements of computational thinking, which are mentioned 

in different definitions, can be portrayed. The emerging 

challenge is – as already mentioned – to create an 

evidence-based model that enables researchers to 

systemize and based on this, teachers to systematically 

teach computational thinking – with as well as without 

applying computer systems and ICT and exploring 

different ways of transferring and teaching these skills to 

different contexts. 

4. PROCESS MODEL 

In the following, figure 1 shows our analytic model of 

computational thinking processes. Within this model, four 

core elements and one undefined sub-process, 

representing unknown sub-processes, which may arise 

during the research process, are focused: 

 

Figure 1: Model of computational thinking processes. 

 
These determinants are assumed to have an impact on 

computational thinking in general. In the context of 

computer science, decomposition is the ability to 

subdivide a (complex) structure into fragments. In 

principle, this is analytic thinking during which a situation 

or problem is also split into fragments. Decomposition 

represents a latent variable, such as computational 

thinking. 

Pattern matching also represents an ability and a latent 

variable. It enables a person to find common features 



 

105 

 

among and differences between fragments that have been 

generated by the decomposition process. In this context, 

Krauss and Prottsman (2017) differentiate between “the 

practice of finding similarities” (p. 60) (pattern 

recognition) and “the realization that something matches” 

(p. 60 f.) (pattern matching).  

Abstraction refers to the ability to eliminate details, 

reasoning from the particular to the general, also known as 

induction (ibid.). 

Last but not least an algorithm provides a guideline for 

action, which is usually modeled and encoded (ibid.). 

Producing a guideline for action does not necessarily 

entail mastering a programming language; it can also be 

expressed in another way, e.g. in a construction manual or 

a recipe. 

The variable x in the model indicates all sub-processes 

which are not already mentioned within the model. These 

processes may include logical reasoning, object-oriented 

thinking and evaluation and possibly debugging of 

algorithmic solution. During the ensuing research, the 

variable x will be substantiated. 

The model does not only raise the question of unknown 

variables but also of correlations between the mentioned 

sub-processes and computational thinking in general. It 

has both a heuristic and a didactic function: It should pave 

the way for further research and facilitate the transfer of 

knowledge and competencies. In the following, the 

research concept will be explained. 

5.  RESEARCH CONCEPT 

Taking the current state of art into account, the core 

elements of computational thinking mentioned above can 

be reframed to psychological processes and afterwards 

transferred to competencies in order to generalize these 

competencies and formulate items. Against this backdrop, 

we focus the following research question: 

1. How can computational thinking be reframed to 

psychological problem-solving processes and how 

does this contribute to the understanding of 

computational thinking as a key competence in the 

21st century including different parts of the construct? 

Thanks to the IEA, students’ computational thinking 

competencies will be operationalized within ICILS 2018. 

Based on that, the aim of the research for which a starting 

point is presented in the scope of this paper, we will add 

some national extensions to the study to examine the 

afore-mentioned research questions. Data will be gathered 

from a representative sample of ICILS 2018, testing 8th 

grade students (in ICILS 2013, N = almost 60,000 students 

worldwide) and the German subsample in 2018 will 

comprise 4,500 students. As already described above, our 

method provides working at multiple levels using the 

afore-mentioned model (figure 1). The advantage is, 

however, that the underlying study ICILS represents a 

theoretical and empirical basis for the study and helps to 

develop a meaningful understanding of the interface of 

existing computational thinking concepts and processes 

related to general problem-solving skills. Referring to this, 

this contribution aims to explain the research approach in 

a more detailed way and provide a basis for a broader 

discussion in the scientific community.  In this context, we 

will also provide information to discuss hypothesis about 

the relationship of computer and information literacy (as 

conceptualized in ICILS 2018, see for Fraillon et al., 2014) 

and computational thinking. Following Ainley’s and his 

colleagues’ approach (Ainley et al., 2016) the paper aims 

to discuss how computational thinking can be summarized 

under the broader understanding of ICT-literacy. 

Referring to the premise in the introduction, that 

understanding several core elements of computational 

thinking would enable schools and teachers to develop 

students’ competencies in ‘computational thinking’, this 

contribution raises attention to the need of developing an 

evidence-based competence model taking different 

understandings of computational thinking into account.  

To round off this picture, and to prepare for a national 

extension of ICILS 2018 data collection by taking more 

general concepts of problem-solving into account, we add 

a holistic theoretical model and present a research concept 

to investigate the underpinning theoretical structure.  
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ABSTRACT 
This study aimed to uncover the underlying mental 

processes that might facilitate creative thinking after 

listening to a 10-min music excerpt. A qualitative 

component was incorporated in a quantitative study 

regarding the effect of music listening on creative thinking. 

Among 192 participants, a total of 24 college students 

were interviewed immediately after they listened to the 

10-min music excerpts and completed some creativity 

tasks. The results suggested a possible facilitative role of 

music listening on creative thinking through optimizing 

individuals’ arousal level, and strengthening individuals’ 

associative abilities, holistic perception and abstraction. 

As these mental processes are also important attributes of 

computational thinking (CT), the findings may shed light 

on the favourable impact of music listening on CT.  

KEYWORDS 
Computational thinking, creative thinking, music listening, 

qualitative study, emotion 

1. INTRODUCTION 
The effect of music exposure on intellectual functioning 

has become an important research topic since the findings 

about the Mozart effect (He, Wong, & Hui, in press), 

which suggest that listening to music composed by Mozart 

leads to significant improvements in cognitive functioning 

(e.g., Rauscher, Shaw, & Ky, 1993). Commonly 

conceptualized as consisting of originality and 

appropriateness (Sternberg & Lubart, 1999), creativity has 

become one of the important foci in recent educational 

reforms (Hui & Lau, 2010). A better understanding on 

how music exposure correlates with creativity has 

important implications. Although there are many studies 

reporting a positive effect of music listening on creativity 

(e.g., Schellenberg, 2006), it remains unclear what 

underlying mental processes contribute to such a positive 

effect. The present study aimed to understand the impact 

of music exposure on creative thinking through a 

qualitative approach with the aims to obtain data to reveal 

the underlying mental processes that might contribute to 

the positive music-creativity relationship.  

 

In addition to creative thinking, Computational Thinking 

(CT) is also an essential skill in nearly all fields (Bundy, 

2007). The term CT originates from studies of computer 

sciences, referring to the mental processes consisting of 

constructing problems and solutions which can be carried 

out by human or machine (Wing, 2006). Although CT and 

creative thinking seem to relate to different disciplines, 

interestingly, the two terms has been suggested to contain 

similar constructs, (DeSchryver & Yadav, 2015). On the 

ground of the explorative nature of a qualitative approach, 

this study also aimed to explore the possible effect of 

music listening on CT. It may extend our understanding 

on the beneficial effect of music listening to a new avenue.  

2. METHOD 
The present study was a subcomponent of a larger research 

project on music listening and thinking skills. Among the 

192 college students being recruited to join the project 

from two universities in Hong Kong, twenty-four 

participants (22 females) agreed to accept a follow-up 

interview. All participants signed consent and took part on 

a voluntary basis. The age range of the interview sample 

was 1727 (Mean = 20.75; SD = 2.56). 

Semi-structured interviews were conducted with the 

participants after they listened to the 10-min music 

excerpts and completed two creative thinking tests, 

namely the The Test for Creative Thinking – Drawing 

Production (TCT–DP; Urban & Jellen, 1995/2010) and the 

Torrance Tests of Creative Thinking (TTCT; Torrance, 

1974). The music excerpts were extracted from ‘Butterfly 

Lovers Violin Concerto’`, which have been shown to be 

able to induce positive or negative emotions (Zhang & 

Chen, 2009). Each interview was tape-recorded with the 

permission of the participant and lasted approximately 15-

20 minutes. They were asked explicitly to explain the 

effects of music listening on their performance on the 

tasks. 

3. RESULTS AND DISCUSSION 
Transcriptions of the interviews were analyzed following 

the procedures of content-analysis suggested by 

Graneheim and Lundman (2004). The results showed that 

four themes were identified, namely a) optimal arousal 

level, b) associative abilities, c) abstraction and d) holistic 

perception.  

3.1. The Effect of Music Exposure on Creativity 

First, in terms of optimal arousal level, the interviewees 

reported that in an aroused state, they could “think 

flexibly,” or “have more inspirations.” This is in line with 

previous studies, which suggest that an optimal activation 

level is critical in promoting creative thinking 

(Schellenberg, Nakata, Hunter, & Tamoto, 2007). Second, 

the interviewees indicated that their associative flexibility 

and fluency were strengthened after the intervention. The 

findings on the associative abilities echo the long proposed 

assumption of associative process playing a vital role in 

creativity (Mednick, 1962). Third, the interviewees also 
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reported that music listening was conducive to a broader 

attention scope and a more holistic perception. This 

finding is consistent with past studies that suggest a 

positive relationship between creativity and the breath of 

attention (Kasof, 1997). Fourth, the interviewees 

described that their thinking became more abstract, so that 

it was easier for them to find commonalities between the 

given objects in the creativity task and those objects found 

in one’s daily life, giving evidence to the involvement of 

abstraction in creativity (Welling, 2007). The results 

suggested that music exposure might have a favourable 

impact on creative thinking through four important mental 

processes. 

3.2. The Possible Beneficiary Effects of Music on CT 

It has been suggested that creative thinking and CT 

comprise similar mental processes (DeSchryver & Yadav, 

2015). The findings of this study may shed light on the 

possible beneficial effect of musical listening on CT. The 

interview data obtained in this study suggest that music 

listening can facilitate creative thinking through optimal 

arousal, abstraction, attention scope, and holistic 

perception. Such mental processes might contribute to CT, 

which is characterized by symbol representation, parallel 

thinking, synthesis and abstraction (Barr, Harrison & 

Conery, 2011; Wing, 2006). According to Wing (2006), 

for instance, abstraction skills, an important component in 

CT, enables pattern observation, identifies core features 

and omits details of perceptions. On the ground of music 

facilitating the underlying mental processes of CT, music 

listening will probably be beneficiary to CT, implying the 

potential benefits of incorporating music into CT 

education.  

 

3.3 Limitations and Merits 

Some limitations should be noted. First, the exploration 

into the mental process subsequent to music listening is 

based on subjective knowledge of the participants. Second, 

the sample size of the interview was relatively small. 

Further studies should be conducted to explore if the 

findings can be generalized to a wider population.  

 

Despite the mentioned limitations, this study is the first 

qualitative study that addresses the research question on 

why and how music listening can enhance creative 

thinking. The explorative nature of the interviews depicts 

the important mental processes that may facilitate creative 

thinking. As these mental processes are important 

attributes of CT, the findings of the present study extend 

the discussion from creativity to the possible beneficial 

effect of musical listening on CT. The finding extends our 

understanding of the impact of music exposure on 

creativity to revealing the thought processes involved in 

engaging in a creative task, as well as CT. 

4. REFERENCES 
Barr, D., Harrison, J., & Conery, L. (2011). Computational 

thinking: A digital age skill for everyone. Learning & 

Leading with Technology, 38, 20-23. 

Bundy, A. (2007). Computational thinking is 

pervasive. Journal of Scientific and Practical 

Computing, 1, 67-69. 
DeSchryver, M. D., & Yadav, A. (2015). Creative and 

computational thinking in the context of new literacies: 

working with teachers to scaffold complex technology-

mediated approaches to teaching and learning. Journal 

of Technology and Teacher Education, 23, 411431. 

Graneheim, U. H., & Lundman, B. (2004). Qualitative 

content analysis in nursing research: concepts, 

procedures and measures to achieve 

trustworthiness. Nurse education today, 24, 105-112. 

Hui, A. N., & Lau, S. (2010). Formulation of policy and 

strategy in developing creativity education in four Asian 

Chinese societies: A policy analysis. The Journal of 

Creative Behavior, 44, 215-235. 

Kasof, J. (1997). Creativity and breadth of attention. 

Creativity Research Journal, 10, 303315. 

Mednick, S. A. (1962). The associative basis of the 

creative process. Psychological Review, 69, 220–232. 

doi:10.1037/h0048850  

Rauscher, F.H., Shaw, G.L., & Ky, K.N. (1993). Music 

and spatial task performance. Nature, 365, 611. 

Schellenberg, E. G. (2006). Long-term positive 

associations between music lessons and IQ. Journal of 

Educational Psychology, 98, 457. 

Schellenberg, E.G., Nakata, T., Hunter, P.G., & Tamoto, 

S. (2007). Exposure to music and cognitive performance: 

tests of children and adults. Psychology of Music, 35, 

519. 

Sternberg, R. J., & Lubart, T. I. (1999). The concept of 

creativity: Prospects and paradigms. Handbook of 

creativity, 1, 3-15. 
Torrance, E. P. (1974). The Torrance Tests of Creative 

Thinking-Norms-Technical Manual Research Edition- 

Verbal Tests, Forms A and B-Figural Tests, Forms A & 

B. Princeton, NJ: Personnel Press. 

Urban, K. K., & Jellen, H. G. (1995/2010). Test for 

Creative Thinking – Drawing Production (TCT–DP). 

Manual. Frankfurt am Main, Germany: Pearson 

Assessment & Information GmbH. 

Welling, H. (2007). Four mental operations in creative 

cognition: The importance of abstraction. Creativity 

Research Journal, 19, 163177. 

Wing, J. (2006). Computational thinking. 

Communications of the ACM, 49, 3335. 

Zhao, H., & Chen, A. C. (2009). Both happy and sad 

melodies modulate tonic human heat pain. The Journal 

of Pain, 10(9), 953-960.   

Acknowledgement: This study was partially supported by 

a grant from the Research Grants Council of the Hong 

Kong Special Administrative Region, China (Project No: 

28605615)

  



Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

109 

 

  

Computational Thinking and 

Early Childhood Development 



Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

110 

 

Imagining, Playing, and Coding with KIBO: 

Using Robotics to Foster Computational Thinking in Young Children   

 

Amanda A. SULLIVAN1*, Marina UMASCHI BERS2, Claudia MIHM3 

  
The DevTech Research Group1 2 3 

  Tufts University, United States1 2 3 

Amanda.Sullivan@tufts.edu, Marina.Bers@tufts.edu, Claudia.Mihm@tufts.edu

ABSTRACT 
The KIBO robotics kit offers a playful and tangible way 

for young children to learn computational thinking skills 

by building and programming a robot. KIBO is 

specifically designed for children ages 4-7 years old and 

was developed by the DevTech research group at Tufts 

University through nearly a decade of research funded by 

the National Science Foundation. KIBO allows young 

children to become engineers by constructing robots 

using motors, sensors, and craft materials. Children also 

become programmers by exploring sequences, loops, and 

variables. Through programming KIBO, children engage 

with computational thinking skills and ideas including 

algorithms, modularity, and control structures. Unlike 

other programming interfaces for children, the KIBO 

robot is programmed to move or to respond to sensor 

input by using tangible programming blocks—no 

computer, tablet, or screen-time required. This paper 

provides an overview of the design features of KIBO and 

a synthesis of the research that has been done throughout 

the development of this kit. It provides examples of 

curriculum for playfully engaging young children with 

computational thinking using KIBO.   

KEYWORDS 
Early childhood, engineering, robotics, programming, 

computational thinking 

1. INTRODUCTION  
Early childhood is an important time for young children 

to grow, play, and explore the world they live in. 

Developmentally, it is a life stage characterized by 

genuine curiosity and desire for learning. In order for 

young children to master new knowledge about the 

world, they need hands-on experiences to construct their 

learning (Piaget, 1936). New technologies such as 

robotics kits and coding applications offer children a 

hands-on way to learn about many of the things they 

encounter every day but do not understand, such as 

sensors, batteries, and lights (Papert, 1980). Robotics is 

an ideal tool for early childhood because it facilitates 

cognitive as well as fine motor and social development 

(Bers, 2008; Clements, 1999; Lee, Sullivan, & Bers, 

2013; Svensson, 2000). It engages children creatively, as 

an expressive medium, allowing young children to 

become engineers by playing with motors and sensors as 

well as storytellers by creating and sharing personally 

meaningful projects that react in response to their 

environment (Bers, 2017; Bers 2008).  

 

When learning to build and program robots, young 

children are also engaging in a type of problem solving 

and analysis called computational thinking. The term 

“computational thinking” can be defined as solving 

problems algorithmically and developing a sense of 

technological fluency (Bers, 2017; Bers, 2010; Papert, 

1980) Children as young as four years old can learn 

foundational computational thinking concepts (Bers, 

2017; Bers, 2008) and this kind of learning can support 

their literacy, mathematical, and socio-emotional 

development (Kazakoff & Bers, 2012; Kazakoff, 

Sullivan, & Bers, 2013).While computational thinking is 

rooted in computer science, many have argued that it is a 

universally applicable attitude and skillset that is 

fundamental for everyone to master, just like reading, 

writing, and arithmetic (Wing, 2006).    

 

KIBO (see Figure 1) was born out of research led by 

Marina Bers at the DevTech Research Group at Tufts 

University (Bers, 2017). The goal was to foster playful 

exploration of computational thinking during early 

childhood through tangible objects. Later on, KIBO 

became commercially available through KinderLab 

Robotics with funding from the National Science 

Foundation and a successful Kickstarter campaign (Bers, 

2017).  KIBO’s design  was based on years of child 

development research in collaboration with teachers and 

early childhood experts to meet the learning needs of 

young children in a developmentaly appropriate way 

(Sullivan, Elkin, & Bers, 2015; Sullivan & Bers, 2015; 

Kazakoff & Bers, 2014). This paper provides an 

introduction to the design of KIBO and presents an 

overview of the worldwide research conducted with 

KIBO for the last several years to promote computational 

thinking in young children.    

 Figure 1. KIBO robot with a sample block program, art 

platforms, and art supplies for decorating.  

2. DESIGN FEATURES OF KIBO 
KIBO is a robotics construction kit that involves both 

hardware (the robot itself) and software (tangible 
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programming blocks) used to make the robot move.  The 

kit contains easy to connect construction materials 

including: wheels, motors, light output, and sensors as 

well as a variety of art platforms (See Figure 1 on the 

previous page).    

KIBO is programmed using interlocking wooden 

programming blocks (see Figure 2). These wooden blocks 

contain no embedded electronics or digital components.   

Each wooden block has a colorful label with an icon, text 

and a bar code; as well as a hole on an end and a peg on 

the other.  The KIBO robot has an embedded scanner that 

allows users to scan the barcodes on the programming 

blocks and send a program to their robot instantaneously. 

No computer, tablet, or other form of “screen-time” is 

required to learn programming with KIBO. This is aligned 

with the American Academy of Pediatrics’ 

recommendation that young children have a limited 

amount of screen time per day per day (American 

Academy of Pediatrics, 2016).       

 

 

 

 

 

 

 

Figure 2. KIBO’s tangible programming language. Each 

block has a unique barcode that is scanned by the robot.  

This programming language was inspired by early ideas 

from tangible programming beginning with Radia 

Perlman’s work in the mid 1970’s (Perlman, 1976) and  

revived by the work of Suzuki & Kato (1995) nearly two 

decades later. In recent years, there have been several 

tangible languages have been created in a number of 

different research labs around the world (e.g. McNerney, 

2004; Smith, 2007; Horn & Jacob, 2007).  

In contrast to graphical programming, which relies on 

pictures and words on a computer screen, tangible 

programming uses physical objects to represent the same 

concepts (Manches & Price, 2011). Wooden programming 

blocks are naturally familiar and comfortable for children, 

in the tradition of learning manipulatives already used in 

early childhood classrooms to teach shapes, size, and 

colors (Froebel, 1826; Montessori & Gutek 2004). 

KIBO’s programming blocks are shared easily and 

manipulated by young users with limited fine motor 

capacity.   

KIBO’s programming language is composed of  over 18 

individual wooden programming blocks. Some of these 

blocks represent simple motions for the KIBO robot such 

as, move Forward, Backward, Spin, and Shake. Other 

blocks represent complex programming concepts such as 

Repeat Loops and Conditional “If” statements that involve 

sensor input (See Figure 3).  

 

Figure 3. This figure provides an example of a 

conditional statement with KIBO.   

3. EARLY COMPUTATIONAL 

THINKING 

3.1. What is Computational Thinking? 

In recent years, there has been a growing focus on 

improving children’s technological literacy and making 

computational thinking a priority in early childhood 

school settings in the United States (e.g. U.S. Department 

of Education, 2010). According to Wing (2006) 

computational thinking is defined as, “solving problems, 

designing systems, and understanding human behavior, by 

drawing on the concepts fundamental to computer 

science” (p.33). Computational thinking involves a set of 

skills that include problem-solving, design and 

expression, and systematic analysis (Bers, 2017; Bers, 

2010).   Computational thinking represents a type of 

analytical thinking that shares many similarities with 

mathematical thinking (e.g., problem solving), 

engineering thinking (designing and evaluating 

processes), and scientific thinking (systematic analysis) 

(Bers, 2017).  

Brennan & Resnick (2013) explain that  computational 

thinking involves the concepts designers engage with as 

they program, the practices designers develop as they 

engage with the concepts, and the perspectives designers 

form about the world around them and about themselves. 

Concepts may include very specific programming 

concepts (such as repeat loops or conditional statements), 

the practices may include methods of problem-solving or 

collaboration, and perspectives may include questioning 

things beyond the interface you are working with (such as 

questioning how other things in the world are automated, 

besides KIBO). Bers (2017) expands on the notion of 

computational thinking, describing it not only as a 

problem solving process, but as an expressive process; a 

skillset that allows for new ways to  communicate, to tell 

stories and convey ideas.  

It is important to note that there are many non-technical 

and even non-academic examples of instances that call for 

computational thinking skills (Wing, 2008; Yadav, 2011). 

These everyday activities draw on the same type of 

problem solving, but do not involve programming. Wing 

(2008) presents a series of examples including: sorting 

Legos (using the concept of “hashing” to sort by color, 

shape, and size), learning to cook a meal (using “parallel 

processing” to manage cooking at different temperatures 

for different amounts of time) and looking up your name 

in an alphabetical list (linear: starting at begininng of the 

list,  binary: starting at the middle of the list). Each of these 

examples are activities young children are beginning to 

encounter in their everyday lives.  



 

112 

 

3.2. Fostering Computational Thinking with KIBO 

KIBO is designed to promote a specific set of 

computational thinking skills. KIBO aims to foster seven 

“powerful ideas”  of computational thinking described by 

Bers (2017). These ideas include: 1) algorithms, 2) 

modularity, 3) control structures, 4) representation, 5) 

hardware/software, 6) the design process, and 7) 

debugging. Table 1 below describes these concepts and 

how children explore them with KIBO. In the following 

section we provide examples of curricular units that foster 

these computational thinking concepts in a hands-on and 

playful way. 

Table 1. Computational Thinking Concepts Explored 

with the KIBO Robotics Kit 
Concept Examples 

Algorithms Children use KIBO to explore logical 

organization and sequencing using the 

tangible programming blocks 

 

Modularity 

 

  

 

  

Control  

Structures 

Children learn how to break up a large 

job into smaller steps when 

programming KIBO to navigate mazes 

or complete challenges   

 

Children explore the ways KIBO can 

make decisions based on conditions 

using Repeat Loops and Conditional 

Statement blocks 

 

Representation 

 

 

  

Hardware & 

Software 

 

 

 

Design Process 

 

 

Debugging 

 

 

Children learn that the colors and 

symbols on the  blocks represent 

different types of actions  

 

Children learn that computing systems, 

like KIBO, need both hardware (robotic 

parts) and software (blocks) to operate 

 

Children move through an iterative 

process used to develop programs and 

tangible artifacts 

 

Children troubleshoot their code when 

KIBO does not behave as expected  

4. KIBO CURRICULUM 
While the act of coding often evokes a very serious image 

of someone quietly working through lines of code on a 

computer, KIBO offers a more playful approach that is 

aligned with the spirit of early childhood education. Play 

in early childhood is not just fun; research has shown that 

it enhances children’s capacity for cognitive flexibility 

and, ultimately, creativity (Russ, 2004; Singer & Singer, 

2005).   

The DevTech Research Group has developed over a dozen 

curriculum units that focus on playful learning with KIBO 

in order to teach the computational thinking skills listed in 

the previous section. These curricular units also focus on   

STEAM (Science, Technology, Engineering, Arts, and 

Mathematics) content integration. In this section, we 

provide three examples of STEAM curriculum designed 

for KIBO: Dances from Around the World, Robotic 

Animals, and Patterns All Around. These illustrate how 

KIBO can be used to explore computational thinking 

while teaching other STEAM content such as dance, social 

studies, and math. 

4.1. Dances from Around the World 

The Dances from Around the World (DevTech, 2015) unit 

is designed to combine music, culture, dance, and 

language with programming and engineering content. The 

end project involves children programming their KIBOs 

to perform their favorite dance from anywhere in the 

world.  It is completed over the course of approximately 

seven weeks. Each week, teachers introduce new robotics 

and programming concepts, from basic sequencing 

through conditional statements, to their students within the 

curriculum’s music and dance theme.  For the final 

project, students work in pairs or small groups to design, 

build, and program a  dance of their choosing. This 

involves not only robotics and programming knowledge, 

but also research into the music,  history and cultural 

relevance of the dance, and facts about the country or 

culture in which the dance originated. The unit culminates 

in a dance recital for both the children and the robots to 

perform in  together.    Children engaged with open-ended 

free-play time to listen to their chosen music and come up 

with a dance on their own.    

While this project engaged children with all of the seven 

powerful ideas of computational thinking described in 

Table 1, children had to devote particular focus on the idea 

of sequencing when choreographing and programming 

their robot dances. They had to carefully consider the 

timing of the music and any traditional dance steps that 

needed to be included (and if so, in what order). They 

needed to program their robot’s actions in a sequential 

order that matched the order of the dance they 

choreographed for them to perform. Most students also 

had to explore control structures, learning how to use 

KIBO’s Repeat Loop commands in order to ensure their 

robot dances repeated the appropriate number of times to 

match the music.  

4.2. Robotic Animals 

Integrating the natural sciences with robotics and 

engineering, in the Robotic Animals curriculum (DevTech, 

2015), children explore animals and their natural habitats. 

After choosing an animal and researching its behavioral 

and physical characteristics, students create a robotic 

representation of that animal and its habitat for their final 

projects (See Figure 4). 

 

 Figure 4. The 

image (left) shows 

final project 

examples from the 

Robotic Animals 

curriculum.  

 

When building and programming their robotic animals, 

children grappled with the concept of hardware and 

software. They learned that to create an effective robot 

that looks, moves, and reacts like a cat or wolf, they 
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needed to understand and use KIBO’s hardware elements 

such as motors, sensors, and wheels as well as the right 

software, or program, to make the robot move the way the 

animal does. Children moved through an iterative design 

process, building their physical robot structure and made 

improvements to its sturdiness and aesthetic features. 

They also moved through an iterative process developing 

their programs.       

4.3. Patterns All Around   

The Patterns All Around unit (DevTech, 2015) focuses on 

an explicit exploration of math through KIBO. This unit 

integrates mathematics with fundamental engineering and 

programming concepts. Throughout the curriculum, 

students learn about different types of patterns using 

mathematics. They also explore other foundational math 

skills such as counting, shape recognition, and more. As a 

final project, students then have the opportunity to create 

a class “quilt” using large pieces of posterboard. By 

attaching a pen or crayon to KIBO, they were able to 

complete hands-on programming challenges where they 

were prompted to program KIBO to draw specific shapes 

or create different types of patterns on paper.    This unit 

also offered many opportunities for free play and artistic 

exploration.  

In this unit, students explored the computational concept 

of modularity, or breaking down  a large task into a series 

of smaller steps. While programming complex patterns 

was often a daunting task for the kids, their teachers 

prompted them to focus on programming just one part at a 

time. After coming up with a series of short programs, 

children were able to put it all together and debug, or 

troubleshoot if it still did not look quite right.  

5. RESEARCH WITH KIBO 

5.1. Methods  

During the research and development of KIBO, we have 

collected quantitative and qualitative data and published 

findings from N=322 children and N=32 early childhood 

teachers over the course of dozens of studies looking at 

what children have learned about robotics, engineering, 

sequencing, and more using KIBO (See Table 2 on the 

following page). Our research has been conducted across 

the United States, in Denmark, and as part of a large-scale 

study in Singapore (Sullivan & Bers, 2017). In order to 

measure children’s mastery of computational concepts, 

the DevTech Research Group developed the “Solve-Its” 

assessment (Strawhacker, Sullivan, & Bers, 2013; 

Strawhacker & Bers, 2014). Solve-Its entail listening to  

different stories or songs being read or sang aloud by a 

researcher. After listening to the story or song,  the Solve-

Its prompt children to arrange paper blocks into a 

sequential program that matches what they heard (See 

Figure 6). Each task assesses a different computational 

concept such as control flow or sequencing.  

Figure 6. The image (above) shows an example of a 

child completed Solve-It task assessing their knowledge 

of repeats. 

Highlights from this work are summarized in the 

following section. For a full list of publications detailing 

our studies with KIBO and to find out about the materials 

we have developed including teacher surveys, interview 

protocols, observation protocols, behavioral checklists, 

and more please visit: 

http://ase.tufts.edu/devtech/publications.html      

 

Table 2. Summary of Topics Researched with 

KIBO 

5.2. What Do Children Learn? 

Our research has shown that learning to program with 

tangible robotics kits allows young children to practice 

sequencing, logical reasoning, and problem solving 

skills, along with positive behaviors such as collaboration 

and communication  (Kazakoff, Sullivan, & Bers, 2013; 

Bers, 2015; Sullivan & Bers, 2015). In addition, we have 

shown that children as young as 4 years old can master 

powerful ideas from computational thinking and early 

engineering (Bers, 2017).  

 

In a study with children in pre-kindergarten through 

second grade (N = 60)  using a prototype of the KIBO 

robotics kit,  results showed that beginning in pre-

kindergarten, children were already able to master basic 

robotics and programming skills (Sullivan & Bers, 2016). 

This same study also demonstrated that older children 

were able to master increasingly complex concepts using 

the same kit in the same amount of time (Sullivan & Bers, 

2016). Based on these findings, DevTech’s most recent 

  

Sample 

 

  Study Instruments 

Sequencing 

 

 

Computational 

Thinking 

 

Robotics & 

Programming 

Knowledge  

 

Gender 

 

 

Coding in 

Preschool  

  

Teachers 

 

 

Positive 

Technological 

Behaviors (PTD) 

 

Total  

N=27  
 

 

N=28 
 

 

N=60 
 

 

 
N=45 

 

 
N=64 

 

 
N=32 

 

 
N=98 

 

 
   

N=354 

  

Baron-Cohen et al.  picture 
sequencing cards     

 

Solve-Its  
Debugging Assessment 

  

Solve-Its 
Robot Parts Task 

 

 
Solve-Its 

Interviews 

 
 Solve-Its 

Observations 

  
Teacher surveys 

Interviews 

 
PTD Checklists 

http://ase.tufts.edu/devtech/publications.html
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study with KIBO focused explicitly on the pre-

kindergarten years and what these very young children are 

capable of building and creating (Elkin, Sullivan, & Bers, 

2016). In this study, with 64 children from seven 

preschool classrooms, findings indicated that although 

KIBO was originally designed for ages 4 and up, children 

as young as age 3 could create syntactically correct 

programs for  KIBO  (Elkin, Sullivan, & Bers, 2016).    

 These findings demonstrated that KIBO embodies the 

“high ceiling/low floor” approach to technology design. 

This means it is easy to get started with KIBO (i.e. “low 

floor”), in this case, even for children as young as 3 years 

old. But there is also a “high ceiling” (i.e. a lot of complex 

possibilities) for what you can do with KIBO as you get 

older and gain more mastery for the concepts.   Resnick, 

et  al. (2005) also describes the idea of “wide walls” saying 

that “tools should support and suggest a wide range of 

explorations.” In order to address this, the DevTech 

Research Group has created over a dozen curriculum 

units, such as the three described in the previous section, 

that explore the ways that robotics can be integrated across 

a variety of domains. Our research has demonstrated that 

it is not just children who need support and materials: 

teachers do too. We have seen that early childhood 

teachers need training, support, and resources in order to 

feel confident and compentent teaching robotics (Bers, 

Seddighin, & Sullivan, 2013). Therefore, we have now 

made training videos, curriculum units, and other 

resources feely available on the Early Childhood Robotics 

Network (www.tkroboticsnetwork.ning.com).  

5.3. Computational Thinking 

 A big piece of our research on computational thinking has 

focused on the impact of robotics and computer 

programming on young children’s sequencing skills.  

Sequencing, a key aspect of computational thinking 

outlined by Bers (2017), is also an important pre-math and 

pre-literacy skill for early childhood found in both 

curricular frameworks and learning assessments 

(Kazakoff, Sullivan, & Bers, 2013).   

Our research has demonstrated that beginning in pre-

kindergarten, learning to program a robot significantly 

improves children’s ability to logically sequence picture 

stories (Kazakoff, Sullivan, & Bers, 2013). This suggests 

that the sequencing skills gained through programming 

can be translated to sequencing things beyond code, such 

as stories.    

In a recent study by Pugnali, Sullivan, & Bers (under 

review) the authors have begun to explore the impact of 

user interface on children’s computational thinking skills, 

comparing the tangible KIBO programming language to a 

graphical tablet-based programming language. This study 

found that children in the tangible KIBO group scored 

significantly higher on two key aspects of computational 

thinking: sequencing and debugging. While further 

research is required, this may suggest that the tangible 

nature of KIBO’s  block language may make  it more 

accessible to young children than onscreen langauges.  

6. CONCLUSION 
The KIBO kit is being used by a growing number of 

children, parents, teachers, schools, camps, museums, and 

after school programs all around the world.  Since its 

launch in 2014, KIBO is now used in 48 states across the 

U.S. as well as 43 countries worldwide. Countries such as 

Singapore are now using KIBO on a widespread basis to 

address technological literacy in the early childhood years   

(Sullivan & Bers, 2017).  The research summarized here 

demonstrates the power of a tool like KIBO to effectively 

teach computational thinking beginning as early as pre-

school and kindergarten. It also highlights the many ways 

that robotics and computer programming can easily 

integrate into traditional early childhood domains such as 

math, science, and social studies. Moreover, the work 

done with KIBO over the past five years has shown the 

possibilities for teaching computational thinking without 

forgetting that young children are still young children. 

Learning to code should not come at the sacrifice of 

learning to play and socialize. The curriculum units 

developed for KIBO have demonstrated successful ways 

to teach coding while still engaging in physical movement, 

listening to music, dancing, and collaborating. All of these 

are key components of a well-rounded early childhood 

experience.  
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ABSTRACT 
ScratchJr is a free programming application for young 

children ages 5-7, available for most tablet devices. This 

programming environment, developed by the DevTech 

Research Group at Tufts University, the Lifelong 

Kindergarten Group at MIT, and the Playful Invention 

Company, was launched in July, 2014. During the first 

year after the app’s launch, no information was collected 

regarding usage other than informal communication with 

local educators and parents. Starting in January 2016, the 

ScratchJr team began to use the tool Google Analytics to 

gain a deeper insight into user behavior, and began to 

investigate the learning analytics data that could shed light 

on computational thinking in early childhood. This paper 

presents the first year of user data collection of ScratchJr.  

 

KEYWORDS 
Computational thinking, programming, early childhood, 

educational technology, analytics.  

 

1. INTRODUCTION 
ScratchJr is a free tablet app that provides an introductory 

programming environment for young children ages 5-7. It 

was developed as a collaboration between the DevTech 

Research Group at Tufts University, the MIT Lifelong 

Kindergarten Group, and the Playful Invention Company, 

with funding from the National Science Foundation 

(DRL-1118664). ScratchJr was first launched as a freely 

downloadable app on iPads in July, 2014, and has since 

been released for use on several other platforms including 

Android tablets, Amazon tablets, and Chromebooks. Used 

in classrooms and homes worldwide, ScratchJr enables 

children to create interactive stories and games by 

snapping together graphical programming blocks to make 

characters move, jump, dance, and sing. As shown in 

Figure 1, the ScratchJr interface allows children to use 

blocks that control motion, looks, sound, character 

communication, and more. Through these programming 

blocks, young children learn the basic concepts and 

powerful ideas of coding while creating personally 

meaningful projects (Bers, 2017).  The programming app 

has been widely available for over two years, and in that 

time, educators, parents, and children around the world 

have used it to expand the range of creative programming 

projects and to connect coding to traditional school 

subjects such as science, mathematics, literacy, history, 

and more (Bers & Resnick, 2015).  

 

Figure 1. ScratchJr programming app interface 

In January, 2016, the ScratchJr team was able to integrate 

Google Analytics to examine how people are using the 

programming app. This tool has allowed the team to better 

understand when and where ScratchJr is being used, which 

programming blocks are most popular, how many projects 

are being created, and how long users spend during 

sessions with ScratchJr. Data collected for a year provides 

insights into early coding and computational thinking. 

  

2. COMPUTATIONAL THINKING IN 

EARLY CHILDHOOD 
ScratchJr was developed to encourage all young children 

to engage in computational thinking while coding. Within 

the open-ended programming environment, children learn 

the basic powerful ideas of computer science, such as 

algorithms, debugging, and modularity by snapping 

together programming blocks. While programming in 

ScratchJr, children think creatively, logically, and 

sequentially (Bers, 2008, 2012, 2017). Computational 

thinking has the potential to benefit all individuals as it 

involves understanding sequencing and order, as well as 

logical thinking. This type of thinking is involved in many 

everyday tasks, such as learning the steps to ride a bike, 

following a recipe, or editing and rewriting a research 

paper (Bers, 2017; Wing, 2006).  

When computational thinking is supported at a young age 

by teaching children about coding, it has the potential to 

supplement and solidify many other social and behavioral 

skills, which will be valuable to society whether or not the 

child becomes an engineer or a computer scientist in the 

future (Wing, 2006). Therefore, we designed ScratchJr to 

be a developmentally appropriate programming language 

to engage children in computational thinking, and to 

provide a space for them to encounter powerful ideas from 

computer science (Bers, 2017). 
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3. ScratchJr PROGRAMMING APP 
ScratchJr can be described as a technological 

“playground” for young children (Bers, 2012). They are 

encouraged to learn by experimenting, to try out new 

programming blocks, to express themselves creatively and 

artistically, to tell stories, and to collaborate with peers 

while having fun. When the ScratchJr app is opened, users 

are prompted to create a new project, open an existing 

project, or explore various learning resources (Bers & 

Resnick, 2015). Once a user is on the project screen, there 

is no one right way to begin coding with the available 

programming blocks. Users have the opportunity to 

explore the block categories and interface features by 

testing them out and “tinkering” with different options 

(Flannery et al., 2013).  

Users can start by dragging programming blocks into the 

programming area, snapping them together using their 

puzzle piece-like features to create a program sequence 

(see Figure 1). There are six categories of programming 

blocks: Triggering Blocks, Motion Blocks, Looks Blocks, 

Sound Blocks, Control Blocks, and End Blocks (see 

Figure 2) (ScratchJr, 2017). 
 

Figure 2. ScratchJr programming blocks 

Users can add different characters and backgrounds to 

their project, or create their own using the Paint Editor 

Tool. This feature was intended to enhance the 

personalization of projects, as children can edit existing 

characters and backgrounds, or completely create their 

own from their imagination (Strawhacker, Lee, Caine, & 

Bers, 2015). When characters are added, users are free to 

explore different block options, and to create programs for 

their characters by snapping the blocks together in the 

programming area. Users can create code with just motion 

blocks, or move on to more complex concepts such as 

making their characters communicate with each other via 

message blocks. Users can also create interactions 

between characters using unique triggering blocks like 

“Start on Bump,” where one character will not start their 

program unless another character physically bumps into 

them. This open-ended, “low floor and high ceiling” 

programming environment design makes ScratchJr 

approachable for young children and novice programmers 

alike, as it is easy to start programming by trying out 

different features, yet there is still room to grow in 

program complexity (Flannery et al., 2013). 
 

4. METHODS 

4.1. Google Analytics Tool 

To better understand how and where children and adults 

use ScratchJr, and, how often they program with it, the 

ScratchJr team uses Google Analytics. Google Analytics 

is a free tool developed by Google Inc. in 2005 that gives 

small or medium-sized companies or teams insights on 

users’ behaviors to understand areas for improvement 

(Google Inc., 2016; Luo, Rocco, & Schaad, 2015). The 

program acquires information about how ScratchJr is 

being used by installing a “cookie” on devices that 

download ScratchJr from the respective app store. Cookies 

are small bits of information that are stored on devices, 

without personally identifiable information (Clark, 

Nicholas, & Jamali, 2014; Google Inc., 2016). 

As noted by other researchers using the Google Analytics 

tool to gain insight on users’ behavior, “Google 

Analytics…makes it easy to identify patterns and trends in 

user behavior by combining specific dimensions and 

metrics to be investigated and plotting the results in its pre-

formatted or customized reports,” (Luo et al., 2015, p. 

265).  

There are four main categories within Google Analytics 

that the ScratchJr team uses to investigate user activity:  

1. Real-Time: Displays user activity as it happens in 

real-time on the ScratchJr app. Allows the team to 

monitor the number of people using ScratchJr at a 

given time, their geographic locations, which pages 

they are on within the app, and which app version they 

are using. 

2. Audience: Provides information about how many 

individuals use ScratchJr, how many sessions have 

occurred, the average time a user spends in ScratchJr, 

which devices have downloaded ScratchJr, which 

languages these devices are set to, and where in the 

world ScratchJr is used.  

3. Acquisition: Gives insight into how many new users 

begin programming with ScratchJr. 

4. Behavior: Includes information about which screens 

are used most often, which programming blocks and 

characters are used in ScratchJr and how often, and 

screen-flow within the app. 

Google Analytics organizes the data received from unique 

devices’ cookies and IP addresses into data that can be 

visualized in line graphs, bar graphs, pie charts, flow 

charts, and map overlays (see samples of data 

visualization in Figure 3). This practice of data 

visualization allows quantitative figures about ScratchJr 

users to be better understood by the team. 
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Figure 3. Google Analytics visualization data for 

ScratchJr 

4.2. Using Analytics in Education 

Data analytics tools can be used for a myriad of reasons. 

Large companies and small businesses alike often turn to 

data collection tools to redefine marketing strategies, 

increase revenue, and utilize user behavior patterns to 

improve overall user experience (Luo et al., 2015; Martin 

et al., 2015).  

However, more recently in research, examples of studies 

around analytics data have emerged in the realm of 

education. In this context, the practice is known as 

learning analytics, and focuses on learners, the process of 

learning over time, and the context in which learning takes 

place (Baker & Inventado, 2014; Berland, Martin, Benton, 

Petrick Smith, & Davis, 2013; Luo et al., 2015). 

As more data about learners becomes available due to the 

increased amount of and access to online courses, 

educational traffic on the web, and educational software 

and technology, more opportunities to expand educational 

research have subsequently emerged (Greller & Drachsler, 

2012). Being able to transform the abstract progression of 

learning into tangible numbers and visual data gives 

researchers insight into learning patterns that could have 

major implications on the way educators teach core 

subjects in schools (Greller & Drachsler, 2012). 

There have been several recent studies that use learning 

analytics to track how individuals learn how to program 

(Baker & Inventado, 2014; Berland et al., 2013; Blikstein 

et al., 2014). A common method of gathering data is taking  

screenshots of students’ code generation over a period of 

time (Berland et al., 2013; Blikstein et al., 2014). 

Researchers can use computer algorithms to categorize 

these screenshots in terms of programming development 

by asking questions such as: how did the code change in 

complexity, length, and content over time? How did these 

changes impact the effectiveness of the programs overall? 

Did the later programs indicate growth in programming 

knowledge? (Berland et al., 2013; Blikstein et al., 2014). 

By using computer programs to quantify learning curves 

among students while they learn programming languages, 

researchers are uncovering learning patterns that could 

have major implications on how we teach computer 

science in educational institutions (Blikstein et al., 2014). 

Using data analytics in ScratchJr, we have gained insight 

into how the number of users, sessions, and locations has 

evolved over the course of one year. In this paper, we 

report these results. 

 

4.3. ScratchJr in Google Analytics 
Since January, 2016, the ScratchJr team has utilized the 

Google Analytics program to gain a better understanding 

of how ScratchJr is used across the globe. Although tools 

like Google Analytics are often used by businesses to track 

revenue and improve marketing strategy (Google 

Analytics Solutions, 2017; Luo et al., 2015), in the case of 

ScratchJr, our focus is on user behavior, location, patterns 

in new user acquisition, and the app features themselves. 

To protect the privacy of our young users, we do not 

collect personally identifying information, such as unique 

project content. Therefore, using Google Analytics alone, 

we cannot track the progression of project content and 

programming behaviors of individual users over time.  

Instead, we focused on data points presented and defined 

in Table 1:  

Table 1. Data points and definitions (Google Inc., 2016) 

Name of Data 

Point 
Definition of Data Point 

Session 
The period time a user is actively engaged 

with the website, app, etc. 

Users 

Users that have had at least one session 

within the selected date range. Includes 

both new and returning users. 

Returning 

Users 

A user with existing Google Analytics 

cookies from a previous visit. 

New Users 

The number of first-time users during the 

selected date range. A new user is one 

who did not have Google Analytics 

cookies when they first opened the app. If 

a user deletes their cookies and re-opens 

the app, they will be counted as a new 

user. 

Average 

Session 

Duration 

The average length of a session. 

Events 
The categories that were assigned to 

triggered events. 

Language 
The language settings in the users’ 

browsers. Analytics uses ISO codes. 

Location 
The location from which the session 

originated. 

Real-Time 

Data updates continuously and each 

pageview is reported seconds after it 

occurs. Shows the number of people on 

the app right now, their geographic 

locations, etc. 
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Through Google Analytics, the team collects data on 

where users click or tap within the app, which parts of the 

app users use, and geographic location of where the app is 

being used based on device IP addresses and network 

location. The “click data” helps the team determine ways 

to improve both the app interface and available learning 

and teaching resources. The geographic location data 

helps to understand where ScratchJr is and is not being 

used. ScratchJr does not share any specific user 

information it collects with Google, and Google does not 

collect any personally identifying information about users.  

Since January, 2016, the ScratchJr team has been gaining 

insight into how users, both adults and children alike, use 

the app. Google Analytics allows teams to see reports from 

any date range, and view data in terms of hours, days, 

weeks, and months. This allows the ScratchJr team to 

refine data regarding time in meaningful ways. For 

example, it is possible to determine which month, week, 

day, or hour is the most popular time to use ScratchJr, in 

terms of both how many users are active at those times, 

and how many sessions occur in those times. This has been 

especially useful to gauge the impact of computer science 

and programming education events that occur around the 

world in which ScratchJr is present. In observing the 

hourly and weekly data patterns of when ScratchJr is used, 

we can infer if the majority of children are programming 

with ScratchJr in classrooms with educators or in their 

homes with family.  

Throughout 2016, the ScratchJr team discovered several 

notable patterns in behavior of ScratchJr users, and has 

subsequently begun to make steps towards improving the 

app and its resources.  

5.  FINDINGS 

Overall, the average amount of sessions and number of 

users increased as the year progressed, yet other data 

points such as average session duration, percentage of new 

users per week, and users per week remained consistent. 

These are all telling data points regarding user loyalty to 

the programming app. The analytics highlights from 2016 

are described in the following subsections. 

5.1. Users & Sessions 

There were nearly 2 million total ScratchJr users in 2016. 

There were more than 104,000 average active users per 

week, and nearly 27,000 average users on Thursdays 

alone, the most popular day to use ScratchJr in 2016. Only 

slightly more sessions occurred on Thursdays in 2016 than 

on Fridays (see Figure 4). 

 

Figure 4. The most sessions occurred on Thursdays 

The number of sessions on each of those days of the week 

came to over 1.7 million.  The time of day that saw the 

most sessions in ScratchJr was 9:00 AM EST (7.83% of 

the total sessions occurred during this hour). Spikes and 

patterns in weekly and hourly users are shown in the 

graphs in Figures 5 and 6. Consistently, 20% of users each 

week were new to ScratchJr, and 80% were returning 

users.  

 

Figure 5. Google Analytics ScratchJr users daily view: 

peaks tend to be Thursdays and Fridays, low points tend 

to be Saturdays and Sundays. 

 

Figure 6. Google Analytics ScratchJr users hourly view: 

peaks tend to be at 9:00 AM EST and 2:00 PM EST; low 

points tend to be at 11:00 PM EST and 12:00 AM EST. 

 

There was an average of nearly 37,000 new users to 

ScratchJr each week in 2016. The week that recorded the 

most new users was December 4-10, 2016, with nearly 

97,000 (see spike on right side of graph in Figure 7). This 

week was “Computer Science Education Week” in the 

United States, in which government officials encouraged 

engagement in programming in classrooms, and websites 

like Code.org provided numerous resources for learning 

how to code, including ScratchJr lesson plans (Code.org, 

2016; Computer Science Education Week, 2016; The 

White House, 2016). Furthermore, the DevTech Research 

Group at Tufts University created ScratchJr videos 

teaching pillars of computational thinking, or “powerful 

ideas” (Bers, 2017; Papert, 1980), which were viewed 

hundreds of times, indicating a definite presence of the 

programming app in the United States throughout the 

week (DevTech Research Group, 2016).   

 

Figure 7.  New Users per week in 2016; spike on right 

side of graph indicates Computer Science Education 

week in the U.S., which brought many new users to 

ScratchJr. 

In 2016, there were nearly 9.8 million recorded sessions in 

ScratchJr. The average session duration was 13 minutes 

and 58 seconds. Users averaged viewing 5.6 screens per 

session. The most common flow of screens for both iOS 

and Android operating systems began with the Index 

screen that appears when users first open the app, followed 

by the Home Lobby screen, then the Editor to create 

programs, followed by the Home Lobby screen again, and 

then the Editor again. A smaller percentage of users went 

from the Index screen to the “Getting Started” screen to 

learn how to use ScratchJr.  
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5.2. Programming Projects Content 

The year 2016 saw over 7.5 million projects created in 

ScratchJr. Furthermore, there were over 9 million existing 

projects edited, showing that users tend to go back into 

projects to work on them. There were 254,000 ScratchJr 

projects shared via either email or Apple AirDrop in 2016. 

In 2016, there were nearly 148 million ScratchJr 

programming blocks added by users to the programming 

area in the app. The ten most popular programming blocks 

added were the Forward block (25 million added), Start on 

Green Flag, Move Up, Move Back,  Say (a speech bubble 

block that allows characters to converse), Record Block 

(allows users to record their own sounds and add them into 

their program), Move Down, Shrink, Turn Right, and 

Grow. The least popular blocks were Reset Size, Send 

Message, Start on Message, Start on Bump, and Stop 

(Figure 8). 

 

Figure 8. Most and least popular ScratchJr blocks in 

2016 

The most popular characters used by children in 2016 

were those self-created or edited by the children in the 

Paint Editor, the Child, the Teen, Tac, and the Dragon 

(Figure 9). Users entered the Paint Editor to customize 

their characters and backgrounds over 23 million times.  

 

Figure 9. Most popular characters in ScratchJr in 2016 

The ScratchJr app includes eight sample projects to 

provide examples of programs users can make. These 

sample projects were viewed 1.6 million times in 2016. 

 

5.3. Location & Language 

In 2016, ScratchJr was used in all 50 states in the United 

States of America, and in all but five countries worldwide. 

The top 10 countries using ScratchJr based on the number 

of sessions recorded are displayed in Table 2. 

The top language codes on devices using ScratchJr include 

English-US, English-Great Britain, English, English-

Australia, Spanish-Spain, English-Canada, Swedish-

Sweden, French-France, Korean-Korea, and Finnish-

Finland. 

 

Country % of Total Sessions 

United States 31.65% 

United Kingdom 17.35% 

Australia 10.32% 

Canada 4.33% 

Sweden 3.30% 

Spain 3.16% 

Finland 2.52% 

France 2.28% 

South Korea 2.24% 

China 2.10% 

Table 2. Top nations using ScratchJr 

6. CONCLUSION 
In using Google Analytics, the ScratchJr team is able to 

understand user behavior in a quantitative way. The team 

has been able to better comprehend the global reach of 

ScratchJr, using location and language statistics to 

determine the best methods for localization of ScratchJr. 

In learning that ScratchJr was used in 191 of 196 

registered countries worldwide in 2016, the importance of 

and demand for computer science education across the 

globe became clear.  

Furthermore, the tremendous growth in numbers during 

Computer Science Education Week in December, 2016 is 

an indication that ScratchJr was a popular vessel for 

learning about computer science and programming when 

classrooms reserved the time to teach the topics. This 

gives the team reason to continue making resources 

available for educators and parents, particularly during 

national and global initiatives to promote computer 

science.  

Data that the ScratchJr team has gathered about when 

ScratchJr is used also gives a unique insight into how to 

support users. Thursdays and Fridays were the two most 

popular days for ScratchJr in 2016, and the most popular 

time of day was around 9:00 AM EST. This suggests 

teachers are using ScratchJr on a weekly basis towards the 

end of the week and in the mornings. The ScratchJr team 

could use this information to promote educational 

resources, tips, and ideas for ScratchJr at these times.  

Although the ScratchJr team does not collect individual 

projects and thus cannot currently see the learning 

progression of users programming in ScratchJr, there are 

many insights we can still gain by having visual and 

numerical data. Based on the data we collected in 2016, it 

is clear that educators, parents, and children are finding 

ways to learn programming, and ScratchJr has the 

potential to be one of the leading platforms young children 

use to engage in computational thinking.  
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7. FUTURE WORK 
Moving forward, the ScratchJr team will continue to use 

Google Analytics to better understand user behavior. The 

team will use the data gathered to optimize localization 

efforts, and provide resources based on project content 

trends. Using data regarding the most popular days and 

times of day ScratchJr is used, the team will use social 

media outlets to support educators who may be teaching 

with the programming app at those times, and continue to 

build a ScratchJr community for users to share their ideas 

and experiences. Furthermore, the team will develop 

surveys to gather data that is not currently collected to be 

able to start inferring learning trajectories. 
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ABSTRACT 
This paper shares the background, vision, the eclectic 

approach and sharing of the technology-supported 

initiatives introduced for young children in the network of 

129 My First Skool (MFS) childcare centres in Singapore. 

Focus is given to the communication of a widespread 

initiative to bring multiple technologies to young children 

in a large network of schools and systemic provisions for 

teacher equipping to use these technologies. 
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1. INTRODUCTION 
This paper shares the overarching eclectic approaches for 

the adoption of technology for teaching and learning with 

an aim to introduce a sustainable and scalable technology-

infused teaching practice to the network of 126 My First 

Skool early-childhood centres.  Our centres provide 

childcare service to children from birth to age 6, and our 

centre size can range from about 100 to 500 children. 

Since 2015, My First Skool centres had intentionally 

embarked on the journey to leverage technology for 

teaching and learning through the adoption of tech-

enabled toys and focus on professional development. 

Through these efforts, MFS strives to lay a firm 

foundation for centres to integrate technology into the 

curriculum.  

2. BACKGROUND 

The pervasiveness of mobile devices such as smartphones, 

laptops and tablets has made “screens” a ubiquitous part 

of our lives. Guidelines published in 1999 by the 

American Academy of Pediatrics (AAP) and adopted by 

Media Development Authority of Singapore to limit 

“screen time” to two hours a day for children over 2 years 

old are evolving. AAP recognised that “screen time” is 

becoming simply “time” now. The “screen time” rhetoric 

that used to accompany the television is no longer 

relevant.  Key messages surfaced from AAP’s conference 

in 2015 evolved around parents’ awareness of the negative 

effects of passive “screen time” and the strategies to 

balance the use of “screens” so as to reap the benefits of 

interactive media. 

Against the backdrop where 98% of Singapore household 

with school-going children have Internet access (IDA, 

2014) and that Singapore is ranked highest globally for 

smartphone penetration (Deloitte, 2015), young children’s 

exposure to interactive media  cannot be ignored. 

A study by National University of Singapore called 

Project iBaby (NUS, 2014) found that nine out of 10 

children in the 18 to 24 months age group are exposed to 

screen devices. Another study published by the Asian 

Parent (Samsung, 2014) showed that across South East 

Asia, Singapore has the highest number of children age 3 

to 8 years old using a parent-owned device.  

These studies pointed out an inevitable need for MFS to 

move our conversation from an “if” we are going to 

introduce technologies and interactive media that are 

developmentally appropriate for young children into our 

classrooms to “how” and “why” we are going to do it in 

the most responsible and impactful way. 

In an increasingly technology-rich environment, young 

children are progressively exposed to various technology 

devices for communication, leisure and learning. While 

there is growing concern from educators and parents about 

excessive screen time and the lack of kinesthetic and 

social interactions, there is no denial that these tech-tools 

provide much enriched information and experiences to the 

children. Hence, there is a need to skillfully harness 

technology to provide more positive learning. 

3. VISION  

The vision for the technology strategy mapping in MFS 

centres is to empower educators with the skills and 

knowledge to leverage on the affordances of technology to 

create “a joyful and inspiring early learning experience 

for all, which fulfils the promise of each child”. 

4. APPROACHES  

The introduction of technology into teaching and learning 

is never about adding gadgets or tools into the classroom. 

Educators are required to make informed choices about the 

use of technology for young learners through the lens of 

known child development theories and developmentally 

appropriate practice. Making informed choices about the 

use of technology and interactive media requires 

knowledge, experience, and active exploration.  

The following approaches are aimed to provide educators 

the opportunities to acquire the necessary skills and 

knowledge to review, assess, design, refine and reflect 

how technologies could support, facilitate, or even play a 

key role in day-to-day activities/lessons. The exposure to 

different uses of technology and interactive media for 

teaching and learning should build educators’ confidence 
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and ease to infuse them with an intentionality to grow and 

develop our young children. 

Approach 1: Integrating technology for curriculum and 

pedagogy looks at the professional development of 

teachers which enable them to be confident in using 

technology and gain the skills and knowledge to apply the 

appropriate practices for teaching and learning.  

Technological, Pedagogical and Content Knowledge 

(TPACK) is a framework developed by Dr. Koehler and 

Dr. Mishra from the College of Education at Michigan 

State University to understand and describe the kinds of 

knowledge needed by an educator for effective 

pedagogical practice in a technology enhanced learning 

environment (Koehler, 2011)(Refer to the figure below). 
We leverage in this framework to understand the possible 

effects and practical applications of use of TPACK 

construct on teachers’ levels of technology integration in 

learning and teaching (Koehler & Mishra, 2009) 

 
Used widely by educators around the world including the 

Singapore Ministry of Education (e.g. 
http://www.nie.edu.sg/project/oer-12-10-khl) , TPACK 

will guide our training and workshops for educators to 

make creative links between what is being learned 

(content), how it is taught (pedagogy), and the appropriate 

tools (technology). 

Approach 2: Research, Innovate and Scale - seeks to 

nurture a culture of innovation and reflective practice 

across centres. To do this, it is important for our educators 

to work with external partners (such as government 

agencies, universities, etc.) and participate in 

experimentation and innovation efforts. This approach 

will allow educators to engage in professional discourse, 

learn, explore, reflect, prototype tools/devices/approaches 

that could deepen practice and improve their craft. The 

initiatives introduced to educators should provide 

opportunities for our educators participate in innovative 

projects within Singapore and beyond. 

Approach 3: Connected Learning Ecosystem - looks to 

build educators’ confidence in using technology within 

their learning environment to guide, facilitate or engage 

young learners. A connected technological infrastructure 

will provide flexibility and agility for policies on quality 

teaching and learning with tools and devices to be 

implemented quickly and cost effectively. The initiatives 

introduced could shape the learning ecosystem and make 

technology an integral part of the physical environment.  

MFS Technology-Led Initiatives 

Initiative 1:  

The PlayMaker Programme in MFS - partnership with 

Infocomm & Media Development Authority (IMDA) of 

Singapore  

The PlayMaker Programme is the piloting of the use of 

tech-enabled toys for 5 to 6 years old to elicit creativity, 

problem-solving skills and innovation mindset - typical 

21st century competencies we want to teach our young. 

Guided by "tinkering" through play-based learning and the 

larger concept of "learning by doing", IMDA piloted the 

PlayMaker Programme with all the 5 anchor opeators in 

2016. 

As one of the 5 anchor operators, 33 MFS centres were 

selected to participate in the PlayMaker Programme over 

2 phases between Jan – Dec 2016. Funded by IMDA, each 

centre was supported with 4 sets of developmentally 

appropriate tech-enabled toys worth $6,000.  

Workshops were conducted to train educators how to use 

these toys and to learn about the educational design behind 

these toys. Sample lesson plans were shared to scaffold 

and guide the learning activities at these workshops. To 

ease the introduction of these tech-enabled toys into 

classrooms, IMDA also provided the on-site consultancy 

to the participating centres. 

As participants of this programme, MFS centres were 

required to develop lesson plans for these toys as part of 

an inquiry project for our children.  Educators would also 

be invited to share their lesson plans and experience at the 

PlayMaker Symposium after 6 months.   

To support our educators and enable the culture of sharing, 

a Professional Network Learning Community is formed 

within MFS. The PlayMaker PNLC aimed to provide peer 

reviews and support across the 33 centres in the planning, 

designing and development of lesson plans and activities. 

A Lead Team consisting of 2 Principals and 2 Senior 

Teachers is formed to guide, monitor and co-ordinate the 

learning and sharing across participating centres. 

Through the PlayMaker Pilot programme, young children 

in MFS were provided with the opportunity to learn 

technology through tactile and kinesthetic educational 

experiences through the introduction of this suite of child-

friendly, technology-enabled toys. Through touch and 

feel, and learning how to play and how to use it, children 

can build up their creative confidence while being 

familiarise with technology from a young age. 

Two Learning & Sharing Festivals were also organised in 

2016 to offer a platform for all 33 centres to share their 

PlayMaker Pilot progress and learning.  



 

124 

 

 

Figure I - the MFS Learning & Sharing Festivals 

Initiative 2:  

The PlayMaker Research Programme - partnership with 

Dr. Marina Bers, Tuffs University sponsored by IMDA 

(from Jan to June 2016) 

Guided by the same principles as the PlayMaker Pilot 

Programme, the Research Programme with Prof Marina 

Bers studied the impact of introducing developmentally-

appropriate robotics in early childhood in the Singapore 

context, aimed at drawing out the pedagogical practices 

and benefits, as well as the support and structures needed 

to bring about the desired child development and learning 

outcomes.   

One of our MFS centres, Westgate Centre (WGC) was 

selected as one of the 5 centres working directly with Prof. 

Marina Bers – creator of Kibo, for a 9-weeks research 

study on the impact of tech-enabled toy in a pre-school 

setting. WGC received both training for Kibo and 10 sets 

of the Kibo tech-enabled toy.  

As participants of this research programme, Westgate 

centre worked closely with the research consultants, 

adapted and delivered a set of lesson plans designed with 

the intentionality to teach sequencing to children aged 5 

and 6. Sequencing is a fundamental component of 

computational thinking and sequencing skills are 

predictors of academic success in math and literacy.  Our 

teachers conducted weekly 1-hr lessons with Kibo over a 

course of 9 weeks and submitted their weekly reflection 

logs and engagement checklists to Prof. Marina Bers. 

WGC was exposed to innovative pedagogical approaches 

from Prof. Marina Bers and participated frequently in 

professional discourse with educators at both the national 

and international levels.   

IMDA has commissioned a research with Eliot-Pearson 

Department of Child Study and Human Development, Dev 

Tech Research Group at Tufts University, on “Dancing 

robots: integrating art, music, and robotics in Singapore’s 

early childhood centers" and Prof Marina Bers had also 

highlighted the PlayMaker Programme at the White House 

Symposium for Early STEM in 2016.   

Initiative 3:  

The Apple Lighthouse Project - partnership with Apple 

Singapore  

The Lighthouse approach aimed to introduce the use of 

user-friendly, intuitive Apple technologies in centres that 

would complement classroom activities and enhance 

engagement with young learners. The Lighthouse 

approach aimed at (i) encouraging and building teachers’ 

experience to use Apple technology for different activities 

and; (ii) equipping centres with a seamless environment to 

practice and use technology efficiently and effectively. 

These classroom experiences and practices were shared 

across participating centres in a Professional Learning 

Network Community (PNLC) to encourage and inspire the 

educators.  

The critical success factors for this project is to get 

teachers (i) comfortable with the technologies that were 

introduce and; (ii) to be creative and leverage on the 

affordances of these tools they have within their 

classrooms to deliver impactful activities for their 

children. 

A total of 8 MFS centres were identified to champion this 

effort and participate in this project with Apple Singapore. 

Educators attended training workshops conducted by 

Apple trainers, learnt about design principles for 

technology infused lessons, features and tools available on 

Apple devices that supports learning for young children or 

classroom aides that facilitate learning.  

Consultancy provided by the Apple trainers were further 

customised for each centre, tailoring to individual centre’s 

training needs. The trainer also supported the development 

and implementation of technology-infused lessons plans. 

An Apple Lighthouse PNLC was formed to allow 

discussion, sharing and refinement of lesson plans and 

activities developed by other centres.  

As participants of the Apple Lighthouse project, 8 of these 

centres championed the introduction of intuitive and user-

friendly Apple solutions for young learners.  They were all 

guided to explore the use of Apple technology as (i) a 

replacement for some teaching tools; (ii) an amplification 

to improve the efficiency and productivity; and (iii) a 

transformation of teaching and learning that were 

previously inconceivable. 

Focusing on centre’s own niche areas (such as Green 

Ecosystem, Literacy, Bilingualism, etc.), these 8 centres 

developed technology-infused lessons plans and 

documented their experience/reflections as case studies 

which were shared with other Principals and at other 

platforms (e.g. MFS’ Learning & Sharing Festivals, 

educational conferences)  

Initiative 4: 

Proof of Concept (PoC) – Pepper the Humanoid Robot  

In 2016, MFS Jurong Point Centre was one of the two PoC 

centres in Singapore to pilot the use of robots to teach 

kindergarten students social skills. Between March to 
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October in 2016, our children and teachers at Jurong Point 

centre had a new family member – Pepper the Robot - 

Pepper worked alongside the teachers and children in 

class, encouraging interactions and creativity during 

lessons. 

Pepper is a human-like or humanoid robot that can read 

emotions and learn from human interactions, helping it 

respond naturally to people. The robot has been used 

worldwide, from fronting retail stores to helping out in 

food joints. Its interactive nature helped increase kids’ 

participation in class, especially among less confident 

children. Children had been observed to be curious and 

less intimated around the robot, initiating interactions with 

them. 

Pepper’s first class in MFS-Jurong Point taught our 

children about emotions through the story-telling of the 

story of the tortoise and the hare which was used to help 

students to relate to different forms of emotion.  

Teachers have found it easier to engage their kids in 

classes, as Pepper responds to voice, touch and sight. 

Through this PoC, our teachers had been working with 

researchers and developers from the Nanyang 

Technological University’s Robotics Research Centre and 

the robots’ parent company, SoftBank Japan, to develop 

lesson plans. A total of some 8 lesson plans and ensuing 

lessons were developed and conducted over this PoC 

period.  

For this PoC, the TEPI (Toy Effects on Play Instrument) 

and the RICA (Robot in Classroom Assessment) 

instruments had been developed by the Nanyang 

Technology University (Robotics Research Centre) and 

used to assess the impact of toys on critical thinking and 

problem solving, imagination and creative thinking and 

sociability and independence.  

5. CONCLUSION 
As we believe that there is no one size fits all where 

technology is concerned, in MFS, the approach to 

undertaking technology to support children’s learning and 

teachers’ development is an eclectic one and is one that 

goes beyond individual programmes and projects. To best 

support our network of 129 centres (to date) with their 

technology effort, we are committed to providing all 

children with access to quality ICT infrastructure, learning 

resources, and ensuring that our principals and teachers 

are well-developed, connected and supported by the larger 

fraternity. 

We believe that technology is a tool and not an end itself. 

It is the Principals and the teachers who can make the 

difference to our children’s learning with the wise 

selection and planning of lessons supported by 

technology. Intentional effort is given to ensure that 

technology is a ‘means’ and leveraged upon only if it 

creates education and that our children will not notice that 

they are learning through a co-design process where  they 

are empowered while keeping their best interests as key 

consideration.   
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ABSTRACT 
This paper argues that the various problems caused by the 

traditional mathematical approach to teaching discrete 

mathematics to computing students can be alleviated by 

way of integrating computational thinking into discrete 

mathematics. The paper proposes a combination of three 

ideas to facilitate such integration: (a) aiming at 

understanding the notion of computation, (b) 

emphasizing both abstraction and automation, and (c) 

incorporating a functional programming language. The 

paper exemplifies a plausible approach to developing 

computational thinking in higher education, namely, 

through integrating it with an existing subject.  

KEYWORDS 
Computational thinking, discrete mathematics, 

computation, abstraction and automation, functional 

programming  

1. INTRODUCTION 
Discrete mathematics is “the study of mathematical 

structures that are ‘discrete’ in contrast with ‘continuous’ 

ones” (Ouvrier-Buffet, 2014, p. 181).  Here discrete 

means finite or countably infinite in cardinality. Thus 

discrete mathematics is the branch of mathematics in 

which we deal with questions involving finite or 

countably infinite sets, such as integers and fractions 

(Biggs, 2002). Content-wise, discrete mathematics 

comprises a diverse range of topics, including logic, 

proofs, sets, functions, relations, Boolean algebra, 

combinatorial circuits, recurrence relations and 

generating functions, combinatorics, discrete probability, 

coding theory, graph theory, trees and networks, 

algebraic structures, number theory, algorithms and 

complexity, finite automata and languages, and 

cryptography (see the tables of contents of the popular 

textbooks on the subject, e.g., Chartrand & Zhang, 2011; 

Epp, 2011; Johnsonbaugh, 2014; Rosen, 2013). Discrete 

mathematics plays a fundamentally important role in the 

computing curriculum because it is a foundation for many 

computing subjects such as data structures, formal 

software engineering, database systems, compiler design, 

operating systems, artificial intelligence, theory of 

computation, computer security, just to name a few. 

Despite its importance, discrete mathematics is generally 

regarded as a difficult subject both to teach and to learn, 

for a number of reasons. First, it contains many disparate 

topics as listed above, without a unifying theme (except 

for being discrete). Second, these topics are highly 

theoretical and abstract in nature, full of symbols and 

definitions. Third, the subject is usually taught in the first 

year or at the beginning of the second year of the 

computing curriculum, before which students usually 

have studied only a few computing subjects. Fourth, the 

subject is usually characterized as a mathematical subject 

without providing a sufficient number of applications to 

show its connections with, and its relevance to, 

computing. Finally, the traditional approach to teaching 

this subject is a mathematical one, using pen and paper 

and following the sequence of definitions, theorems, 

proofs and examples (e.g., Chartrand & Zhang, 2011; 

Epp, 2011; Johnsonbaugh, 2014; Rosen, 2013; see also 

Jaume & Laurent, 2014). As a consequence, computing 

students usually cannot see the point of learning this 

difficult subject and hence very easily lose interest in 

studying it, even though they are constantly being 

reminded of the importance of this subject to the 

computing subjects they are going to study in the 

curriculum.  

Computational thinking has attracted a lot of attention 

worldwide in recent years since the publication of 

Jeannette M. Wing’s (2006) highly influential paper in 

the Communications of the ACM, in which she argues that 

the way computer scientists think about the world is 

useful in other contexts. Wing writes:  

Computational thinking involves solving 

problems, designing systems, and understanding 

human behavior, by drawing on the concepts 

fundamental to computer science. 

Computational thinking includes a range of 

mental tools that reflect the breadth of the field 

of computer science.            

(Wing, 2006, p. 33) 

Despite its popularity, there is yet no consensus on the 

definition of computational thinking (e.g., Selby & 

Woollard, 2014, Tedre & Denning, 2016). In 2010, Wing 

offers a refined definition of computational thinking: 

Computational thinking is the thought processes 

involved in formulating problems and their 

solutions so that the solutions are represented in 

a form that can be effectively carried out by an 

information-processing agent.                                    

 

(Wing, 2010) 

Later, Alfred V. Aho (2012) gives a similar definition of 

computational thinking:  

We consider computational thinking to be the 

thought processes involved in formulating 



 

128 

 

problems so their solutions can be represented 

as computational steps and algorithms. 

                                      (Aho, 2012, p. 

832)                 

Due to its exceptional clarity (Tedre & Denning, 2016), 

we adopt, in this paper, Aho’s definition of computational 

thinking, and argue that most, if not all, of the 

aforementioned problems caused by the traditional 

mathematical approach to teaching discrete mathematics 

to computing students can be alleviated by adopting 

instead a computational approach in which discrete 

mathematics is integrated with computational thinking. In 

the following, we propose a combination of three ideas to 

facilitate such integration: (a) aiming at understanding the 

notion of computation (Section 2), (b) emphasizing both 

abstraction and automation (Section 3), and (c) 

incorporating a functional programming language 

(Section 4).  

2. AIMING AT UNDERSTANDING THE 

NOTION OF COMPUTATION 
Discrete mathematics has been lacking a unifying theme 

in organizing its contents, as evidenced by the 

bewildering array of topics in those popular textbooks 

(e.g., Chartrand & Zhang, 2011; Epp, 2011; 

Johnsonbaugh, 2014; Rosen, 2013). As pointed out by 

Alfred V. Aho (2012, p. 834), “mathematical abstractions 

called models of computation are at the heart of 

computation and computational thinking.” This entails 

that to understand computational thinking, we need to 

understand the notion of computation, and to understand 

the notion of computation, we need to understand models 

of computation. Consequently, this points to one way of 

integrating discrete mathematics with computational 

thinking, namely, to set “understanding the notion of 

computation” as one of the course's objectives and to 

teach (the rudiments of) models of computation like finite 

automata and Turing machines. This course objective can 

help serve as a unifying theme to organize the course’s 

contents in the following way: since learning models of 

computation (finite automata and Turing machines) 

presupposes knowledge of logic and graph theory (see, 

e.g., Kinber & Smith, 2001), we need to teach the latter 

two (together with other prerequisite topics) first. The 

following (see Table 1) is a model syllabus for a one-

semester discrete mathematics course with 13 lectures 

designed for beginning year-2 college students who have 

taken only two computing subjects: Applied Computing, 

and Introduction to Computer Programming. Note that 

this course is not intended to be a full-fledged course on 

the theory of computation, which is usually a senior 

undergraduate and postgraduate course based on 

advanced textbooks (e.g., Arora & Barak, 2009; Sipser, 

2013); rather, it is intended to be a genuinely introductory 

course in discrete mathematics and is aimed at, towards 

the end of the course (lectures 12 and 13), understanding 

the notion of computation (and its limits) – this is 

arguably the most fundamentally important concept in 

computing (see, e.g., Appel, 2014; Bernhardt, 2016). The 

last chapter (Chapter 13 Modeling Computation) of 

Rosen (2013) contains suitable material for teaching this 

part of the course. So do the last chapters of Jenkyns & 

Stephenson (2013) and of Chakraborty & Sarkar (2011), 

both of which are on finite automata and Turing machines. 

In addition to these textbook chapters, JFLAP (Java 

Formal Languages and Automata Package; see, e.g., 

Jarvis & Lucas, 2008; Rodger, 2006) and Visual Turing 

(a Turing machine simulator at http://visual-

turing.software.informer.com/2.0/) are two free visualization 

software that can help render this part of the course more 

accessible and fun. In fact, there is evidence that shows 

that models of computation can be successfully taught 

even to high school students (Isayama et al., 2016). 

Table 1. A one-semester discrete mathematics syllabus 

aimed at understanding the notion of computation. 

I Logic and Mathematical Proof 

1. 

2. 

3. 

Propositional logic  

Predicate logic 

Mathematical proof 

II Set Theory and Boolean Algebra 

4. 

5. 

6. 

7. 

Sets 

Relations 

Functions 

Boolean algebra 

III Combinatorics and Graph Theory 

8. 

9. 

10. 

11. 

Counting  

Graphs (1) 

Graphs (2) 

Trees 

IV Models of Computation 

12. 

13. 

Finite automata 

Turing machines 

3. EMPHASIZING ABSTRACTION AND 

AUTOMATION 
Given that the mathematical background of our 

computing students is usually rather weak and their 

interests usually lie in computing and not in abstract 

mathematics, we believe that, instead of the traditional 

mathematical approach, a computational approach, in 

which computational thinking is integrated, should be 

adopted to teach discrete mathematics to our computing 

students. As pointed out by Wing (2008), the two 

essences of computational thinking are abstraction (i.e., 

model building) and automation (i.e., algorithms and 

their implementation on the computer) – in the words of 

Wing (2008), “the essence of computational thinking is 

abstraction” (p. 3717) and “computing is the automation 

of our abstractions (p. 3718). Consequently, this points to 

yet another way of integrating discrete mathematics with 
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computational thinking, namely, to put a good emphasis 

throughout the course on these two important concepts, 

abstraction and automation, while teaching and learning 

each and every topic of the course. The following (Table 

2) are some examples of computational projects that are 

designed for students to do. Each project emphasizes both 

abstraction and automation in that students have to build 

a model (representation, symbolization) first and then 

devise an algorithm and finally implement it on the 

computer. This computational approach can be seen as a 

kind of the general teaching method called 

contextualization coined by Guzdial (2016, p.18). The 

benefit of this method is that “[i]f the learner perceives 

the relevance of the course context, the course is more 

concrete and less abstract. There is increased motivation 

to succeed. That motivation increases success rates.” 

Guzdial (2016, p. 64) 

 

Table 2. Examples of computational projects           

emphasizing both abstraction and automation. 

Logic Write a program to accept a 

propositional logic formula and print 

out its truth table; write a program to 

test whether two given propositional 

logic formulas are logically 

equivalent.  

Sets Write a program to accept two sets and 

output their union, intersection, 

difference, and Cartesian product; 

write a program to test whether two 

given sets are the same or one set is a 

subset of the other.  

Relations Write a program to accept a relation 

and test whether it is reflective, 

symmetric, and transitive and hence 

determine whether it is an equivalence 

relation; write a program to accept a 

relation and output its reflective 

closure, symmetric closure and 

transitive closure.  

Boolean 

Algebra 

Let a given string of eight 0s and 1s be 

interpreted as the rightmost column of 

a truth table with Boolean variables x, 

y and z. Write a program to accept such 

a string and output the corresponding 

Boolean expression in minterms.  

Graphs Write a program to implement 

Dijkstra’s shortest path algorithm. 

Trees Write a program to implement Prim’s 

algorithm and Kruskal’s algorithm for 

finding minimum spanning trees. 

Automata 

Theory 

Construct a non-deterministic 

pushdown automaton which 

recognizes the language {anbn | n  1} 

for the JFLAP platform. 

Turing 

Machines 

Design a single-tape Turing machine, 

and then a 2-tape Turing machine, that 

accepts the language {anbn | n  1} for 

the JFLAP platform; implement a 

universal Turing machine for the 

JFLAP platform (see Jarvis & Lucas 

(2008) for a solution). 

4. INCORPORATING A FUNCTIONAL 

PROGRAMMING LANGUAGE 
Since the early days of computing, there have been 

advocates for using programming languages to teach 

mathematics in general (e.g., Papert, 1980; Harel & 

Papert, 1990; Feurzeig et al., 2011; Schanzer et al., 2015). 

In recent years, there have been advocates for using 

programming languages to teach discrete mathematics in 

particular (e.g., da Rosa, 2002; VanDrunen, 2011; Ureel 

& Wallace, 2016). Their rationale, specifically for the 

latter, is that “problem solving through the medium of the 

machine is the essence of computer science” and “a 

programming approach to discrete mathematics affords 

active learning.” (Ureel & Wallace, 2016, p.1) Although 

in principle to learn computational thinking does not 

require any actual programming (Curzon & McOwan, 

2017), in teaching and learning discrete mathematics 

actual programming can help make the abstract contents 

more concrete because the students can construct the very 

objects they are learning (Cf. Constructionism, see, e.g., 

Papert (1980) and Harel & Papert (1991)) and thereby 

rendering the subject more congenial and accessible to 

our computing students. Consequently, this points to yet 

another way of integrating discrete mathematics with 

computational thinking, namely, to incorporate into the 

subject a programming language. Further, we argue that 

functional programming languages (e.g., Haskell, ML, 

O’Caml) are particularly well-suited for this purpose, for 

the following reasons: 

• Functional programming is a method of program 

construction that emphasizes [mathematical] 

functions and their applications rather than 

commands and their execution.  
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• Functional programming uses simple 

mathematical notation that allows problems to 

be described clearly and concisely. 

• Functional programming has a simple 

mathematical basis that supports equational 

reasoning about the properties of programs.                               

                                       Bird (2015, p. 1) (emphasis 

added) 

Indeed, there is an added bonus for incorporating a 

functional programming language: students can thereby 

learn to program in one more programming paradigm – 

the functional programming paradigm (where a computer 

program is a collection of functions), besides the 

imperative programming paradigm (where a computer 

program is a series of commands) and the object-oriented 

programming paradigm (where a computer program is a 

collection of interacting objects).   

Due to their strong similarity to mathematical language, 

functional programming languages are a very suitable 

medium to teach mathematics and are not difficult to 

learn. In fact, there is evidence that shows that the 

functional programming language Haskell can be 

successfully taught to even high school students (Algre & 

Moreno, 2015). To illustrate the succinctness and 

declarative-ness of code written in functional 

programming languages, the following are two Haskell 

programs, one for insertion sort and the other for Prim’s 

algorithm for finding minimum spanning trees; for 

details, see Hutton (2016, pp. 62-63) and Rabhi & 

Lapalme (1999, p. 149) respectively.   

 

 

insert x []   = [x]  

insert x (y : ys)  | x <= y   =  x : y : ys 

                           | otherwise  =  y : insert x ys 

isort [] = [] 

isort (x : xs) = insert x (isort xs)  

 

Figure 1: Insertion sort (Hutton, 2016, pp. 62-63). 

 

 

prim g  =  prim’ [n] ns [] 

   where (n : ns)  =  nodes g  

      es  =  edgesU g 

     prim’ t []  mst  =  mst  

       prim’ t r mst  

        = let e@(c, u’, v’) = minimum[(c, u, v) | (u, v,    

                                             c) es, elem u t, elem v 

r] 

            in prim’ (v’: t) (delete v’ r) (e : mst) 

 

 

Figure 2: Prim’s algorithm for finding minimum 

spanning trees (Rabhi & Lapalme, 1999, p. 149). 

For more on using functional programming languages to 

teach discrete mathematics, see O’Donnell et al. (2007), 

Doets (2012), and vanDrunen (2013).  

5. CONCLUSION AND FUTURE WORK 
For various reasons, discrete mathematics is a difficult 

subject for most computing students. We have argued that 

the problems caused by the traditional mathematical 

approach to teaching discrete mathematics to computing 

students can be alleviated by integrating computational 

thinking into discrete mathematics. Concomitantly, we 

proposed a combination of three ideas to facilitate such 

integration, namely, aiming at understanding the notion 

of computation, emphasizing both abstraction and 

automation, and incorporating a functional programming 

language into the subject. We thereby exemplified that 

integrating an existing subject with computational 

thinking is a plausible approach to developing 

computational thinking in higher education (Czerkawski 

& Lyman III, 2015). We expect that this integration 

approach can help students learn both the subject and 

computational thinking better. In our future work, we will 

implement this proposal and see how it is received. 
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ABSTRACT 
The task of learning programming is a complex process 

that requires students to simultaneously master the syntax 

and programming tool while applying problem-solving 

skills to the given situation. Failure to do so have led to 

students dropping out of computer science programs and 

students being disenchanted with programming to the 

point that these graduates are reluctant to practice in the 

field. To counter this issue, problem-solving training is 

sometimes introduced before programming to introduce 

them to primary concepts of program design and 

programming without the complexity of syntax and tools 

as a hindrance. However, problem-solving skills is not 

something that can be developed over a short period of 

time. For some, it takes time, practice and effort in which 

semester long courses do not permit. Previous studies have 

shown that games can be used as educational tools in the 

classroom. However, video games are frequently 

overlooked as an educational tool in favor of serious 

games. In this paper, we analyze the game play of selected 

game titles to determine if existing video games contain 

activities that can be associated to each of the five core 

skills that characterize computational thinking within the 

Computer Science discipline. 

KEYWORDS 
Computational thinking, video games, games and learning 

1. INTRODUCTION 
Computer science educators have explored the use of 

games to teach students programming concepts as a 

solution to cultivate interest in programming among 

youths. Games have been introduced into such classes as 

game design assignments where students design and 

create games to demonstrate the application of learnt 

technical concepts (Basawapatna, Koh, & Repenning, 

2010; Leutenegger & Edgington, 2007; Monroy-

Hernández & Resnick, 2008) or as an interactive learning 

platform where students learn technical concepts through 

game-play (Kazimoglu, Kiernan, Bacon, & MacKinnon, 

2012; Liu, Cheng, & Huang, 2011; Muratet, Torguet, 

Jessel, & Viallet, 2009).  Game design assignments are 

noted to be more effective in capturing students’ interest 

compared to implementing mock enterprise software since 

games are something that most students can relate to 

(Becker, 2001). However, such assignments can also be 

challenging for students especially for those without 

considerable knowledge in computer graphics and 

background in playing/designing games (Sung et al., 

2011). Although visual programming tools (such as 

Scratch (MIT, 2016), Alice3d (Cooper, Dann, & Pausch, 

2000), AgentSheets (Basawapatna et al., 2010)) can be 

used in place of full-blown Integrated Development 

Environment (IDEs) to minimize the learning curve for 

such tasks, sufficient support still needs to be put in place 

to provide students the necessary knowledge to go about 

game design otherwise students might end up being 

intimidated by the feat.  

Alternatively, specially developed programming 

environments  (Chaffin, Doran, Hicks, & Barnes, 2009; 

Kazimoglu et al., 2012; Liu et al., 2011; Muratet et al., 

2009) have been created to encourage students to learn 

through gaming. Unlike traditional video games, these 

serious games incorporates technical concepts into the 

game play in the form of coding (to complete 

tasks/missions) (Chaffin et al., 2009) (Liu et al., 2011; 

Muratet et al., 2009) or manipulation of the graphical 

interface as done by (Kazimoglu et al., 2012) for the 

purpose of learning instead of leisure. The use of serious 

games in classrooms do indicate an improvement in 

student engagement and motivation towards the content in 

most of these game-based learning implementations. 

However, the creation of these games requires time, skills 

and careful coordination between the game developer and 

course facilitator to ensure that the curriculum is 

integrated into the game and deployed in the classroom in 

a cohesive manner. Since skills such as computational 

thinking takes time to develop and requires practice, 

students with increased frequency of gameplay should 

exhibit better levels of computational thinking and 

programming skills compared to those who rarely play the 

game. But, most of these research do not study the 

adoption rate of these games as leisure activities at the end 

of the course or the effects of extended usage of the 

proposed serious games on students’ problem-solving and 

programming skills over time.  

On the other hand, recent studies shows that playing video 

games has cognitive, emotional and social benefits 

(Granic, Lobel, & Engels, 2014). Adachi et al (Adachi & 

Willoughby, 2013) work showed that the more 

adolescents reported playing strategic video games, the 

more improvements were evident in self-reported 

problem-solving skills recorded the following year. The 

same positive predictive association was not recorded for 

fast-paced game genres such as racing and fighting games. 

Ventura et al (Ventura, Shute, & Zhao, 2013) 

hypothesized that there might be a relationship between 

video game usage and persistence in the face of failure. To 

investigate this, they used anagram riddle task to measure 

the level of persistence among video-game players and 

found that frequent game players are more likely to spend 

longer times on unsolved problems compared to 

infrequent video game players. Video games have also 

been reported to bridge generation gaps in (Osmanovic & 

Pecchioni, 2016) and to promote prosocial behavior in an 
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international study among school children (Gentile et al., 

2009). 

Although video games are not originally designed to be an 

education medium, they may possess many good learning 

principles and educational affordances (Frazer, Argles, & 

Wills, 2008) that is usually underutilized in education. The 

question is: Can video games be used as an informal aid to 

foster computational thinking skills in its players? As a 

preliminary study, we evaluate the educational 

affordances displayed in selected video games titles. The 

games are then evaluated based on the core five skills 

(Kazimoglu et al., 2012) that characterize Computational 

Thinking (CT) within the Computer Science discipline to 

identify aspects of gameplay within the game that affords 

the cultivation of CT skills.  

The paper is structured as follows: Section 2 presents an 

introduction to Computational Thinking. Section 3 

provides readers with a brief background of video game 

research and classification. The details of the survey 

conducted and how the video game titles are selected to be 

evaluated during the study is presented in Section 4 while 

the significance of our findings are discussed in Section 5. 

The paper is concluded in Section 6. 

2. COMPUTATIONAL THINKING  
Computational Thinking (CT) is the thought processes 

involved in formulating problems and their solutions so 

that the solutions are represented in a form that can be 

effectively carried out by an information-processing agent 

(Wing, 2008). Since computing heavily affects everyone 

lives, Wing (Wing, 2008) envision that CT will be a 

fundamental skill in the 21st century that have the same 

importance as numeracy and literacy.  Since the 

introduction of the term computational thinking, there 

have been many definitions in literature defining the skills 

and activities that encompass CT for different disciplines. 

Barr and Stephenson (Barr & Stephenson, 2011) provided 

examples on how the nine core
2

 CT concepts and 

capabilities may be embedded in different discipline 

activities. Lee et al. (Lee et al., 2011) examined CT in 

practical youth programs and identified the terms 

“abstraction”, automation” and “analysis” to describe how 

young people use CT to solve novel problems.  

In the field of computer science, the recent work by 

(Kazimoglu et al., 2012) defined five core skills that 

characterizes CT within the computing discipline as 

problem-solving, building algorithms, simulation, 

debugging and socializing. Table 1 associates the generic 

activities within video games to each CT skill described in 

(Kazimoglu et al., 2012) to show how video games in 

general can support the cultivation of CT skills in its 

players. 

 

                                                 
2  Definition proposed by the American Computer Science 

Teacher Association (CSTA) and International Society for 

Technology in Education (ISTE) for use in K-12 education. 

Table 1. Game activities associated with each core CT skill 

Core CTS Game Activities 

Problem solving Identifying purpose of game (can be 

main goal or mini-tasks) to complete 

level or whole game. 

Building algorithms Formulate steps to achieve goal or 

complete mini-tasks encountered 

during the game. Select appropriate 

algorithmic technique to execute 

chosen approach. 

Simulation Manoeuvre game controls to move 

game character(s) to execute steps 

and analyse if actions brings player 

closer to achieving the goal or 

completing the game/level. 

Debugging Modify existing plan to improve 

performance (gain more points, 

increase survivability, reduce time 

taken) 

Socializing Discuss game plan with other players 

or analyse game play of other players 

3. VIDEO GAMES 
Video games are interactive games played using a 

computing device for the purpose of leisure. Once 

restricted to only the desktop computer, video games are 

now played on a wide range of mobile devices and special 

game players. Video games can be classified in a number 

of different ways ranging from the device that it is 

executed on, to the gameplay and interactivity of the 

game. Due to the vast array of dimensions on which video 

games can vary and lack of concretely defined 

identification criteria that can be used by all parties; it is 

difficult to create a comprehensive taxonomy of games 

that is used and accepted by all (Clarke, Lee, & Clark, 

2015). Thus, game titles are normally provided along with 

the game genre to illustrate games that are categorize 

under that particular genre. For example, the work by 

(Granic et al., 2014) provided an overview of game genres 

sorted along the dimensions of complexity and social 

interaction and also uses game titles as stand-in language 

for different types of gameplay encountered. In the work 

by (Frazer et al., 2008), only four game genres are 

explored in their research and example of game titles for 

each genre is provided to guide the study done. For this 

paper, the game titles selected for analysis is based on an 

online survey conducted to study the gaming habits of 

undergraduate students when they were young. 

According to (Gee, 2005), video games that encourage 

players to stop, thoroughly explore different possibilities 

and consider new strategies and goals before moving on, 

rather than simply progressing towards their goals as fast 

as possible can promote problem solving skills in players. 
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These game features are mostly present in game genres 

such as RPG, strategy, simulation and adventure games  

 (Adachi & Willoughby, 2013) categorizes these games as 

strategic games while games such as fighting, action and 

racing games that have little downtime between 

battles/races are categorized as fast-paced games. In his 

study, he found that fast-paced games do not promote 

problem-solving skills in the long run because it provides 

little to no opportunity to gather information and strategize 

before a battle or a race. Thus, the game genres are then 

further sorted into two categories – strategic game 

(strategy, platform, shooter, simulation, adventure/RPG) 

and fast-paced to determine if strategic game titles contain 

more affordances that promotes CT skills compared to 

fast-paced game titles. 

4. METHODOLOGY 
Data was collected from 655 students (509 students from 

the school of business and 146 students from the school of 

computing) first year students undertaking an 

“Introduction to Computers” course from Sunway 

University in Malaysia during the January – March 2016 

semester. The average age of the students is 20 years old. 

In the survey, the students were asked to self-report their 

gaming habits (now and when they were young) through 

multiple choice questions (starting age and frequency of 

play) and open-ended questions (name of favorite video 

game). Based on the premise that gaming is a memorable 

experience during the students’ childhood or adolescence, 

students who truly played games and for those who have 

spent a sizeable amount of their time doing this would at 

the very least remember the name of the game that they 

have played and/or be able to describe the game play of 

that particular game. The age at which the students start 

playing games is used as a reference point to check the 

validity of the responses. For example, if the respondents 

claim that they started playing Candy Crush at an age of 

less than 6 years old, this response would be deemed 

invalid because Candy Crush was only released in the year 

2012. Responses that were incomplete or those who gave 

non-existent/invalid games for either instances were 

ignored in the study.  

The game titles were then categorized into game genres 

based on the genres provided by gaming website IGN(IGN 

Entertainment Inc., 2016) and Gamespot(Gamespot, 

2016). Table 2 shows the different types of genres 

(Rollings & Adams, 2003) considered and example video 

games provided by students that are classified under each 

genre. The most frequently occurring game title for each 

genre were then selected and the game activities within 

each game were matched to each core CT skills presented 

in Table 1. To extract the game activities within each 

game, the games were re-played by the authors using 

online game emulators (UtopiaWeb, 2009).  

 

5. RESULTS & DISCUSSION 

Figure 1 shows that the percentage of players who play 

each game genre now (current) and then (youth). The most 

frequently played game genre reported by students when 

they were young was adventure type (32.2%) games. This 

is followed by platform-based games and strategy type 

game. It is noted that the type of game genre played 

changes as the students age. There were more students 

opting to play Strategy games now compared to platform-

based and Adventure/RPG type of games when they were 

young. The authors in (Sung et al., 2011) built their serious 

game based on strategy type of gameplay since their data 

also supports the same observation – majority of players 

reportedly played strategy game compared to other game 

genres. However, this trend might be only true because 

strategy games are popular now; as is the case with 

platform games; once popular in the early 90’s (Boutros, 

2006). Hence, explaining the high percentage of 

respondents who played platform games when they were 

young.   

It was observed that, regardless of the game genre, all the 

games have goals/missions and a reward mechanism that 

entices players to continue playing. Players would then try 

to find ways to maximize these rewards while minimizing 

damage on their game characters during game play. This 

feature in all games requires players to determine the 

problem that they are currently encountering and to devise 

new solutions based on whatever information that they 

Table 2 Definition of different game genres and example videso games for each genre 

Game Genre Definition Example Video Games 

Action Emphasizes physical challenges such as hand-eye coordination and reaction time. Fruit Ninja, Pinball,O2Jam 

Adventure Player assumes the role of protagonist in an interactive story driven by exploration 

and puzzle solving. 

Grand Theft Auto, Bully, Assassin's Creed 

Fighting  Player controls an on-screen character and uses this character to engage his 

opponent in close combat. 
Street Fighter, Naruto 

Platformer Player controls a character to jump between suspended platforms, over obstacles, 

or both to advance the game 
Super Mario, Mushroom Men 

Racing Players competes in a race using a vehicle. 3D Mario Kart, Need for Speed, Test Drive 

Shooter Player controls the character from a first-person or third-person view to shoot 

opponents to proceed through missions without the player character dying 

Call of duty, Counterstrike, Halo 

Simulation Game designed to closely simulate the aspects of the real-world inside the game 

such as farming, managing sports team or merely living through the virtual 

characters’ lives. 

The Sims, Fifa, NBA, Harvest Moon 

Strategy Games that require the player to strategize or formulate a plan in order to win. Warcraft, Civilization, Red Alert, Dota 
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have at hand. These are the exact features observed in 

(Adachi & Willoughby, 2013) that promotes problem-

solving skills.  

The type of information to be collected for each games are 

different but players would need to analyze this 

information to determine the next best course of action to 

get them a step towards the main goal. Information in 

strategic games can come in the form of combination of 

in-game items, character abilities and environment. For 

example, in the strategy game of Defense of the Ancient 

(DOTA), players would have to come up with strategies 

to conquer the opponents’ “throne” while defending their 

own. During the battle to conquer/defend, they would have 

to buy weapons and items to ensure that their game 

character, termed heroes in the game, is able to defend or 

defeat opponent characters. In the event that they 

encounter enemy heroes, players would have to analyze 

their own and the opponent hero’s statistics (item, level), 

environment and position of their own team mates during 

the game to determine whether to proceed and engage the 

enemy or to retreat. On the other hand, in the football 

management game of FIFA 2002, players are required to 

select their players and determine the team’s formation for 

each football game. During each game, players are given 

control of each of the football players action to 

score/defend football goals. They would then have to 

observe opponents’ character actions to determine 

whether to defend or attack (score a goal).   

 

 
Figure 1. Game genre played by participants now (current) 

and then (young) 

Table 3 decomposes and associate the game activities of 

the most popular game titles, provided by the students, 

from each genre with the five core CT skill category. 

Although fast-paced games focuses on reflex during the 

game play, it was also observed during our analysis that it 

also contains opportunities that allows players to collect 

information on the effects of their actions. With this 

information, players can reflect and modify their actions 

for future games to increase their rewards, refer to 

“Debugging” row in Table 3.  

6. CONCLUSIONS 
This paper discusses the possibility that video games 

contain educational affordances that promote CT skills. 

We analyzed the game play of eight popular game titles 

played by students during their youth. Our analyses show 

that the video games regardless of game genre contains 

activities that support the cultivation of each CT skill 

category. Since video games are equally enjoyed by both 

male and female students during their formative years, this 

translates to a wealth of gaming experience that can be 

tapped by educators in the classroom. This can be used by 

instructors to make the task of learning CT skills less 

intimidating. Seen in this light, the challenge now is 

perhaps not to develop serious games to instill CT skills 

but to get students to apply the skills gained from one 

domain (video games) to other domains (programming).  

We acknowledge that the game titles selected for this 

study only covers an extremely small subset of game titles 

that is available in the market and that the analysis done is 

based on the authors’ experiences in playing the games. 

More concrete evidences on the relationship between 

video games and computational thinking skills can be 

collected in the future by observing the actual game play 

of student players for each of the game. 
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 Table 3. Example game activities associated to each Computational Thinking skill (CTS) category for each game genre. 
 

Game Activity 

 
Strategic Games Fast-paced Games 

CTS 

Category 

Strategy (DOTA) Simulation   

(Fifa 2002) 

Shooter  

(Counter Strike) 

Adventure 

(Grand Theft 

Auto) 

Platform  

(Super Mario 

Bros) 

Fighting  

(Street Fighter) 

Racing  

(Need for speed) 

Action  

(02Jam) 

Problem 

solving 

Destroy 

opponent's throne. 

Manage soccer 

team to win each 

game to ultimately 

win World Cup. 

Defeat terrorist. 

Mission to 

rescue/escort/prote

ct depends on type 

of map. 

Become the 

biggest criminal 

(reaching target 

points) by 

performing 

missions for local 

crime syndicate. 

Progress through 

levels by defeating 

enemies, 

collecting items 

and solving 

puzzles. 

Defeat opponent. Control vehicle to 

win race. 

Collect experience 

points by 

controlling 

player’s character. 

Building 

algorithms 

Farm gold by 

neutral creeping, 

laning or killing 

opponent heroes. 

Buy items to 

increase 

survivability 

and/or attack 

power. Player 

determines hero 

build. 

Choose team. For 

chosen team, 

player needs to 

select team 

formation and 

approach to defeat 

computer 

opponent. 

Choose team - 

terrorist/counter-

terrorist. Buy 

items to defeat 

opponent based on 

character, battle 

background (map) 

and mission. 

Choose criminal 

missions, gather 

equipments to 

assist in mission 

and avoid being 

caught by police 

while executing 

mission. 

Determine how to 

complete level, 

defeat different 

types of enemies 

and what items 

can do. 

Identify combos 

for selected game 

character. 

Determine combo 

that can deal most 

damage to 

opponent. 

Choose racing 

map. Choose car 

type - manual or 

automatic Choose 

car model. 

Play music by 

pressing 

corresponding 

button. Mostly 

hand-eye 

coordination.  Can 

decrease/increase 

speed of music to 

change level of 

difficulty. 

Simulation Perform chosen 

tactic. 

Play match using 

chosen team 

formation and 

players. 

Play game using 

chosen armament. 

Play chosen 

mission. 

Play levels with 

maneuvers to 

evade enemy 

attacks and gather 

needed items to 

advance. 

Perform combo. Determine how to 

control car over 

race terrain. 

Press 

corresponding 

keys with 

accordance to 

music. 

Debugging If hero dies too 

often or cannot 

defeat opponent 

hero, modify tactic 

to improve 

deficiency. 

If opponent team 

wins, modify team 

formation and 

approach to 

improve defence 

or offence. 

Modify item build 

to increase 

survivability or 

damage to 

opponent. 

Modify strategy to 

execute mission if 

player keeps 

getting caught by 

police or lose their 

equipment while 

doing mission. 

If keep dying by 

same type of 

enemy at same 

spot, change 

approach to solve 

problem. 

If current combo 

does not work, 

modify combo to 

increase damage. 

If lose car control, 

modify car 

movements the 

next round. 

Practice to 

increase accuracy 

of pressing buttons 

in accordance to 

music. 

Socializing Get item tips from 

team members or 

watch other 

players play 

similar heroes. 

NA Killed players get 

to watch current 

game to view how 

players use chosen 

armaments to 

defeat opponent. 

NA Watch other 

players play the 

same level. 

Discuss with other 

players combo for 

game character. 

Multiplayer option 

that allows players 

to play with other 

players but 

difficult to share 

strategy with other 

players. 

Compete with 

other players. 
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ABSTRACT 
Textile and apparel industry has long been stereotyped as 

“traditional” and “old-fashioned”.  As a non-traditional 

company in a traditional industry, Esquel encourages 

employees to innovate and to challenge the status quo.  

“You can code” campaign was initiated in 2015 to engage 

and propel staff at all levels towards its vision of “Making 

a Difference”.  The campaign aims to drive a sustained 

cultural transformation to turn the less technically minded 

employees into confident users of technology with 

computational thinking (CT) ability, through developing a 

mobile apps.  Many useful mobile apps have been 

developed and some have been commercially adopted.  

The campaign helps the Company to nurture a culture of 

innovation, problem-solving and collaboration.  

KEYWORDS 
Coding, Computational Thinking, App Inventor, Mobile 

Technology, Innovation.  

1. INTRODUCTION 
Esquel believes that coding will soon become a basic job 

skill for everyone.  It is vital for the employees to have 

some understanding of programming regardless of what 

professional they are in.  Failing that, the career mobility 

of an individual may be hindered, and so as organizational 

growth.  This is especially important for the 

manufacturing sector, as Industry 4.0 is fast approaching.  

The new age employees need to equip with a new set of 

skills.  

Founded in 1978, Esquel started as a shirt maker and have 

over the years developed the capacity to weave innovative 

technologies into its people-centric culture.  With key 

production bases established in strategic locations in 

China, Malaysia, Vietnam, Mauritius and Sri Lanka, and 

a network of branches in the US, Europe and Asia, it 

exports over 120 million shirts per year and offer total shirt 

solutions to global apparel and textile markets, from 

concept to rack.       

Esquel employs 57,000 diversified workforce united 

under the corporate 5E culture – Ethics, Environment, 

Exploration, Excellence and Education, and the motto 

“Fun People Serving Happy Customers”.  It operates with 

an aspiration of “making a difference” by weaving 

positive impact to the employees, societies and 

environment.   

1.1. Our Business Challenges and Opportunities  

Esquel is in the industry of textile and apparel 

manufacturing, where all players face structural 

challenges, including rising labor and material costs, 

reduced profit margin and shortage of skilled labors.  On 

the other hand, the rise of fast fashion further disrupts the 

industry by demanding quicker production cycles, more 

rapid prototyping and smaller order sizes. Therefore, the 

traditional manufacturing model with long lead time and 

mass production will no longer survive.  

The textile and apparel manufacturing industry employs 

over 75 million people worldwide (Stotz & Kane, 2015) 

with an aggregate export amount over US$744 billion in 

2015 (World Trade Organization, 2015). The industry is 

still versatile, and has huge potential.  The question is - 

how do manufacturers stay competitive and enable 

sustainable growth amidst the changing environment?  

Many players in this industry believe that growth must be 

tied with the overuse of labor and that competition must 

be based on low wages.  Therefore, it is typical for those 

players to migrate the manufacturing base to chase for 

cheap labor. But Esquel decided to stay in locations where 

it has good operating conditions and to build local talent 

pool. Esquel strives to improve labor productivity to offset 

rising wages.  It would rather improve the efficiency of the 

people and pay them well by integrating them into the 

technology, not by replacing them by using the 

technology.   

The coming fourth industrial revolution, known as 

Industry 4.0, will provide Esquel with an opportunity to 

sustain its leadership position in apparel operations. The 

advent of the fourth industrial revolution is associated with 

the development of global industrial networks, to which 

all production processes of a wide variety of enterprises 

will be connected. As a result, computer interaction 

environment is developed around the modern human 

(Yastreb, 2015). That means employees would work with 

cyber-physical systems in a smart factory environment. 

They will make use of the mobile technology and data to 

enhance real-time communication, improve alignment, 

and make timely decisions.  Eventually, it will increase 

productivity and efficiency.   

1.2. People Challenges 

Nowadays, working environments are changing at 

unprecedented speed.  The rise of robotics and artificial 

intelligence calls for new skills and competencies.  In the 

workforce of Esquel, only 3.4% have any technical 

qualifications, only 12% have a diploma or above, and 
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38% were born before the personal computer became 

popular.  There is a serious shortage of technically minded 

and savvy employees. So how can it turn those less 

technically minded employees into confident technology 

users? How can it empower people to come up continuous 

improvement ideas and solve their own work problems 

systematically and independently?    

It needs to have a campaign to drive this transformation. It 

needs to inspire the employees to participate in the 

revolution. It will be a huge challenge as the target group 

is highly diversified, and spreads over 9 countries, 20 

operations.   

2. “YOU CAN CODE” CAMPAIGN 

Coding is a skill that helps people learn how to think, 

systematically. By developing computational thinking, 

people can deconstruct problems step by step, and identify 

different recommendations. However, computational 

thinking may seem too abstract and coding may seem too 

technical.  To engage everyone who does not have 

technical knowledge, a fun and practical approach is 

needed. The ‘App Inventor’ application developed by the 

Massachusetts Institute of Technology (MIT) was 

identified as the driver of this campaign. 

The simple graphical interface of App Inventor allows an 

inexperienced user to create basic, fully functional mobile 

apps within an hour or less. It transforms the complex 

language of text-based coding into visual, drag-and-drop 

building blocks.  It can change employees’ perception of 

technology through this campaign.  It would develop their 

logical reasoning skills, programming capabilities, and 

more importantly, computational thinking ability.  

Computational thinking is a fundamental skill for 

everyone, and it is a way humans solve problems (Wing, 

2006). It includes problem decomposition, algorithmic 

thinking, abstraction, and automation (Yadav et al., 2017). 
By equipping computational thinking ability, employees 

will ultimately become innovators, problem-solvers, 

collaborators as well as process owners. They equip 

themselves for life.  Yadav et al. further stressed given the 

irreplaceable role of computing in the working life of 

today, the competence to solve problems in technology-

rich environments is of paramount importance.  

“Therefore, there is a need to pay attention to CT as part 

of the broader concept of digital literacy in vocational 

education and training, as otherwise adults with only 

professional qualification may not be well prepared for the 

working life in the twenty-first century”. (Yadav et al., 

2017, p.1065).    

To Esquel, no matter whether they are workers, staff, 

managers or executives, they need to have the attitude and 

ability to solve problems and realize ideas which will 

improve productivity.   

2.1. Champaign Design and Implementation 

This campaign is designed around how to change 

Attitudes, upgrade Skills and build Knowledge. 

Table 1. ASK model. 

To 

change 

Attitude  by developing those ideas 

gradually from accepting, to 

understanding, to embracing, to 

exploring 

 by showcasing employees that 

everyone can code 

To 

upgrad

e 

Skills  by conducting workshops, 

activities, events and 

competitions 

 by encouraging employees to 

innovate or to solve specific 

problems using the technology 

To 

build 

Knowledge  by developing an independent 

learning mindest  

 by creating a rich learning 

resource environment. 

 

It is impractical if only IT colleagues are involved in 

providing some classroom training and expect that 

employees will change the attitude towards technology.  

In order to engage all employees, the role of IT throughout 

the campaign is purposely downplayed.  An “all-in” 

approach was adopted and the campaign was launched out 

in 5 development phases.  

Table 2. Five development phases and achievements 

Phase  What have been achieved 

P
io

n
ee

ri
n

g
 Workshops for senior management team and board 

members were conducted to collect their feedback 

and get their buy-in.  About 90% of them attended 

the training.  Some of them also became Esquel’s 

pioneers. 

 M
o

d
el

li
n

g
 

Some General Managers and Directors were 

invited to be the trainers to conduct workshops for 

other colleagues, from workers to managers. 

Almost 300 employees were trained.  They 

reinforced the notion ‘If I can code, you can code 

too.’ 

C
h

an
g

in
g
 43 super-users were identified and trained to be the 

change agents or ambassadors. They joined a 

customized master trainer course. Then they 

delivered training at different operations. 

C
u

lt
iv

at
in

g
 

The master trainers were sponsored to launch a 

series of workshops and fun days, for the staff and 

for their kids in order to cultivate the skills and 

mindset.   The ambassadors set up information and 

promotional booths to educate the frontline 

operators. A total of almost 800 people were 

trained. 

R
ea

li
zi

n
g

 The first “Esquel’s App Challenge” Competition 

was organized in order to encourage the 

applications of the new skills.  Many interesting 

and practical Apps were developed. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwivydDMyKHMAhVDHpQKHUSLAPsQFggeMAA&url=http%3A%2F%2Fweb.mit.edu%2F&usg=AFQjCNFGEpEnwRBMPQvRT7ueDZqPQAU23g&sig2=5BDN0-uwf9eHP0BndV3W3A
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Through 28 workshops, over 2,430 training hours were 

provided for 1,200 participants, including 1,100 

employees and 100 of their children from 10 different 

locations in first 10 months.  The strategy of teaching the 

children and letting children teach their parents back also 

worked well. Overall, the impact was encouraging.  A lot 

of positive feedbacks were received -  

 “Something looks complicated but can be very user 

friendly for us in building an App. Useful and valuable 

of some information/tools can be shared from the 

company!"- By a Sales Manager in Hong Kong. 

 

 “The introduction of the online programme 'App 

Inventor' is useful for non-professionals to build up our 

own app.”  - By a Senior Sales Executive in Hong Kong 
 

 “Easy to operate for dummies.  All ordinary people can 

participate in creating app without the support of IT”. – by 

an Engineering Officer, in a Garment Factory 

2.2. Value Created from the Champaign 

The most important impact is the values created, including 

attitude change towards technology, employee 

engagement, employer branding, and process 

improvement. Many more app ideas from the employees 

were received. It shows after innovating once, employees 

are likely to innovate again.  Now, non-IT employees can 

perform IT tasks, and even build prototypes by themselves. 

This in turn will allow IT professionals to focus on 

enterprise level app development.  

 

Table 3. Some examples of the mobile apps developed in 

this campaign. 

Applications  Functions 

 Safety app for women. 

A Sri-Lanka colleague developed 

this app with a GPS-function for 

women leaving work at night. 

 

 

 Parking space and free bike 

locator app 

This app helps colleagues find a 

parking lot or an available bicycle 

near operation sites. 

 

 Recruitment app 

This app helps HR colleagues in 

processing some manual work of the 

recruitment, such as making test 

paper and personnel data entry. 

 

 

 New-born baby photo sharing app 

This app allows a new parent to send 

the 1st new born baby photo to their 

friends with the baby information 

and the logo of company’s hospital. 

 

Those applications help to save time and improve 

efficiency, while the broader benefits are incalculable.  

Department heads and IT team are reviewing many more 

bottom-up initiatives from employees. This campaign also 

shows Esquel’s commitment to upgrading their workers to 

become knowledgeable. It reinforces Esquel’s brand as a 

caring and non-traditional company.  

Besides, in the process of developing their own mobile 

applications, the employees started to integrate 

computational thinking into their everyday work.  They 

took attempt to analyze the problems by breaking them 

down and identifying the root cause, instead of jumping to 

quick fixes. The story of Yang Hua Mei illustrates how a 

basic coding training can bring an impact on a sewing 

worker. 

2.3 Story of Yang Hua Mei - A Garment Factory Worker 

‘You can code’ is just the beginning of a transformational 

journey. Esquel is introducing a new world to its 

employees who might never have had the chance to realize 

their own ideas otherwise. Hua Mei’s story is one of many 

at Esquel that inspires many others to learn the technique 

of app coding. 

Yang Hua Mei was a young woman from the southwest of 

China with an immense interest in fashion design and a 

desire to follow a career in apparel manufacturing. After 

graduating from high school in 2014, she joined Esquel as 

a sewing worker and brought many undeveloped fashion 

ideas that were waiting to be realized. 

One day, Hua Mei found that the company was running a 

campaign. She believed that this campaign could teach her 

the computational skills necessary to turn her undeveloped 

fashion ideas to life; skills such as computational thinking, 

logical reasoning and simple programming.  Without any 

hesitation, Hua Mei took the opportunity, like other 1000 

employees.  By the end of the campaign, Hua Mei and two 

other colleagues had built an app allowing users to mix-

and-match their wardrobe. 
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Figure 1. Interface of the wardrobe application 

developed by Yang Huamei’s team. 

“Before joining ‘You can code’, I didn’t even know what 

was meant by an ‘app’! I have learned so much in the 

program, and now I appreciate the work of the technology 

gurus – however simple an app might seem, building one 

requires many steps and logical thinking!”, said Hua Mei.  

She also realized that the basic coding technique equips 

her with computational thinking ability, which in turn help 

her become an independent thinker.  As a sewing worker, 

from time to time, she faced problems in operating her 

sewing machine and managing the sewing quality.  Before 

she learnt coding, whenever she came across problems, she 

simply asked the mechanic to fix it or change some 

machine parts by herself.  She would not bother to 

understand the problems, identify the root causes, and 

think about how to prevent them in future. But now, she 

becomes proactive in learning technical skills and 

integrating the computational thinking ability to solve her 

everyday work problems. She also aspires to evolve from 

a sewing worker to a technician one day.   

3. KEY SUCCESSFUL FACTORS OF 

THE CAMPAIGN 

3.1 Align and strengthen Esquel’s Vision 

Esquel’s Vision: Making a Difference  

Esquel makes a difference by growing with its employees 

not by squeezing from them.  ‘You Can Code’ campaign 

upskills the employees, open their minds to technology 

and equip them for life. This aligns the company’s vision 

of making a different and receives huge support from 

different levels.   

3.2 Use a creative way to inspire innovation, problem 

solving, and collaboration  

Esquel is the first commercial entity to adopt App Inventor 

to train employees in computational thinking. Even though 

computational thinking is conceptual and hard to develop 

in a short period, the Company tries to change attitudes, 

upgrade skills and build knowledge through the 

development of mobile app.  

3.3 Engage all levels and collaborate across teams  

The campaign engaged all levels by enrolling board 

members and senior managers as pioneers. Some 

modelled the skills and trained their teams. Some 

members of their teams became ambassadors and trainers. 

They promoted the notion of ‘If I can code, you can code 

too’, and they changed the perception that senior staff are 

conservative and less tech-savvy. They encouraged, 

trained and supported their peers at their sites.  

A cross-functional organizing committee for the App 

Challenge contest was established so that their expertise 

can be leveraged. The committee members collaborated 

on the planning and execution of the contest.   

An ‘all-in’ approach encourages everyone to engage in the 

campaign. Many employees, including board members 

and sewing workers, joined the fun and easy ‘1-hour 

coding’ workshops.  The kids of employees were also 

invited, who in turn, influenced and motivated their 

parents to learn coding.  The campaign engaged primary 

students and PhDs, and people aged 6 to over 60. The ‘all-

in’ approach has formed a community to ensure the long-

term sustainable benefits. 

3.4 Leverage the use of existing communication 

platforms to promote the campaign 

HR colleagues and ambassadors from different operation 

sites used existing communication platforms to promote 

the campaign, its workshops and events. Having used 

these platforms during the campaign, those users are more 

likely to use those platforms to communicate and 

collaborate on matters which affect their business. 

Platforms included Yammer, WeChat, Intranet, and 

company’s TV broadcasting, as well as traditional 

channels such as the notice boards and promotional booths 

at factories.  

4. IMPACT FROM THE CAMPAIGN 
What the campaign has done is only a small step.  But it 

started the momentum. After the “You Can Code” 

campaign, it is found the rise of mobile app culture in 

Esquel. Employees are keen on thinking how to build 

some applications to improve some work-related or living-

related issues.   Recently, there is another interesting 

application, named Esquel Carpool, developed by the 

factory colleague using another software. The impact is 

enormous. 

4.1 Need for Carpool   

According to the data provided by Chinese Environmental 

Protection Bureau, 15 to 30% of the pollution comes from 

the emission from the cars (Chinese Environmental 

Protection Bureau, 2016).  And with exponentially 

increasing number of cars, now traffic is seen everywhere 

in many cities in China. 

Esquel’s largest operation is located in Gaoming, Foshan. 

It has about 23,000 employees working in several factories 

where are spread over the city of Gaoming. That means 

about 40% of Esquel employees are working and living 

here.  Employees have to travel from home to these 

working locations, in similar timing, and similar routines 

every day.  

Many of them have to take company bus or city bus, and 

wait in a long line in sun, rain and wind. Commuting can 
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easily take up half an hour or even one full hour per trip.  

For those 2,000 employees with their own private cars, the 

situation is no better.  Driving to work is not at all pleasant 

when they have to be stuck in traffic and fight for the 

meagre 200 parking spaces available around the factories. 

A lot of times, they have to park far away and then take a 

10-minute walk to the office. 

How can Esquel make a difference for the colleagues, for 

both group of people so that they can save time in waiting 

for bus, fighting for the traffic and looking for parking 

spaces? How can they save some gasoline bills meanwhile 

reduce their carbon footprint? 

Can something be done to change their lifestyle and 

behaviour, reduce the environment impact, and inspire 

others to contribute in building a green city? 

4.2 Birth of Esquel Carpool Application   

An employee in the factory initiated an idea to develop an 

app to facilitate the carpool process in Esquel. This is how 

the Esquel Carpool App was born.  

 

 

 

Figure 2. Design map of Esquel carpool application.  

 

Employees can use their staff ID to login, and they can 

choose to be either passengers or drivers.  Passengers can 

publish their needs (e.g. where and when they want to go), 

or select the remaining seats available from the drivers.  

Drivers can publish their free seats in the App to the 

passengers, or directly select the passengers.  After that, 

they can form a group to communicate.  This App can also 

share the real-time location of company bus, and show the 

data report of the carpool usage. 

4.3 Benefits of Using Esquel Carpool  

Within the first six months, this App already recorded 

8070 carpools, with the saving of more than 6,000 litres of 

gasoline, saving 14,000 kilograms of carbon emission. 

This app helps to realize the benefits of carpooling on 

saving the environment. More important, it provides a 

platform to make connection with colleagues from 

different department and foster the caring culture. 

4.4 What’s Next  

The company committed to provide this software for free 

to any companies and organizations, and already put this 

software in the open source community GitHub. It hopes 

millions of the programmers in the world would help to 

improve this App.  

5. CONCLUSION 
This is just the beginning of Esquel using modern 

technology beyond work to make the lives better.  This is 

a signal to the colleagues that they can come up with great 

initiatives to make Esquel a better work environment. It 

demonstrates how a simple app can address daily needs.  

Different departments and non-IT colleagues have already 

built their own apps or collaborated with IT.   Esquel 

committed to continuously advance the coding skills of its 

colleagues and build its organizational capability.  The 

company plans to introduce more sophisticated 

programming training gradually. More super-users and 

change agents will be identified and invited to participate 

into this people transformation journey. They will be the 

voice, and the generation of leaders that make a difference. 
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ABSTRACT 
This paper discusses the opportunities presented by the 

growth of the Internet of Things (IoT) to provide youth 

opportunities to develop their computational thinking 

and digital empowerment. This paper argues that to 

support youth in developing these literacies, we need to 

develop platforms that reduce the barriers of entry while 

still allowing them to explore and develop their 

computational identities. To this end, this paper 

introduces an extension to App Inventor by MIT that 

enables students to quickly design, develop, and 

implement IoT applications. We outline one IoT activity 

for youth and future directions for both curricular and 

technical development. 

KEYWORDS 
Computational Thinking, Digital Empowerment, App 

Inventor, Internet of Things 

1. INTRODUCTION 
By 2018, it is expected that physical devices that make 

up the Internet of Things (IoT) will surpass mobile 

devices as the leading type of Internet-connected 

devices. IoT devices are projected to comprise nearly 16 

billion of the expected 28 billion connected devices by 

2021 (Ericsson, 2016). The explosive growth of this 

ubiquitous computing landscape, in which computers 

will seamlessly integrate into our everyday lives and 

objects (Weiser el al., 1999), will have profound effects 

on how people relate to the world around them and to 

each other. This is especially true for youth, who will 

know no other world. If we want these youths to be active 

creators and shapers of their digital futures, rather than 

simply passive consumers of it, there is a growing need 

to support them in developing the necessary 

computational literacies (Vee, 2013; Wilensky, Brady & 

Horn, 2014) for this rapidly growing IoT landscape. 

While applications such as Scratch and App Inventor 

have made traditional and mobile computing accessible 

to youth (Meerbaum-Salant et al., 2010; Wolber et al., 

2011), currently, there are no similar platforms for 

supporting computational literacy development in the 

IoT space. In response, this paper outlines a research and 

technology agenda with a focus on two critical elements 

for supporting youth as they develop these computational 

literacies: 1) The need for low barrier-of-entry tools with 

which young learners can create, test, and refine IoT 

designs that connect with their everyday lives; and 2) A 

means for abstracting the many (often conflicting and 

confusing- Banfa, 2016) standards for developing IoT 

interventions. 

2. COMPUTATIONAL LITERACIES, 

COMPUTATIONAL IDENTITIES, AND 

DIGITAL EMPOWERMENT 
Since computational thinking (CT) entered the 

mainstream over a decade ago, there has been a growing 

recognition for the need for everyone, not just computer 

scientists, to develop computational thinking (Wing, 

2006; Voogt, et al., 2015). CT's origins draw Seymour 

Papert’s work on the Logo programming language, 

which focused mainly on procedural thinking and 

programming (1980). Since Papert's groundbreaking 

work, the idea of computational thinking has been 

broadened to encompass a broader range of 

computational concepts (Grover & Pea, 2013). While 

there is no single agreed upon definition of 

computational thinking, most definitions focus on the 

ability to recognize the role that computation plays in our 

world, and to formulate problems and solutions through 

computational means (Wing, 2006; Brennan & Resnick, 

2012).  

As we seek to create environments and tools with which 

students' can become computational thinkers, we argue 

that there are two especially important computational 

thinking aspects we must support. Based on Brennan and 

Resnick’s computational thinking framework, we posit 

that two additional computational thinking perspectives 

(2012; Tissenbaum et al., 2017) impact young people’s 

long-term success as computational thinkers. The first is 

computational identity (CI); their identities as people 

who can think computationally and as members of the 

computational community more broadly. The second is 

digital empowerment (DE); recognizing their personal 

ability to affect the world around them through 

computation (Tissenbaum et al., 2017). The latter is 

especially important, and builds on Papert's ideas of 

students as self-aware, empowered, intellectual agents 

who feel capable of making their own learning decisions, 

posing their own questions, and finding answers to those 

questions (Papert, 1972; 1987). Digital empowerment 

extends Papert's vision by instilling in children the 

knowledge that they can, through computation, effect 

real change in the world. 

These perspectives, digital empowerment and 

computational identity are closely intertwined. As Friere 

(1993) argues, students need to understand their relation 

to the world (identity) in order to transform it 

(empowerment). Thus, in an increasingly digital world, 

we advocate that by developing critical computational 

identities and literacies, students will become 

empowered to create computational solutions to 
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challenges in their local communities, as posited by Lee 

and Soep (2017). 

3. BLOCKS-BASED PROGRAMMING 

LANGUAGES FOR COMPUTATIONAL 

THINKING 
Creating conditions in which young learners can develop 

digital empowerment is a challenging endeavor often 

complicated by the frequently complex tools required to 

create digital artifacts. The need to understand the 

sometimes arcane syntax and grammar of traditional 

programming languages has long been a barrier for 

engaging youth in computational practices (Maloney et 

al., 2004). In response, many educational researchers 

have developed blocks-based environments. In other 

words, these environments leverage a primitives-as-

puzzle-pieces metaphor, in which users assemble 

functioning programs by snapping together "blocks" of 

code together (Weintrop & Willensky, 2015; 

Tissenbaum et al, 2017). The blocks provide visual cues 

that show users which pieces fit together and which do 

not. These systems also give visual and (often) auditory 

feedback when pieces may, or may not, connect together. 

The use of blocks-based programming languages can 

help scaffold novice programmers to more easily 

develop relatively complex programs and have been used 

to support young learners to develop games (Maloney et 

al., 2004), 3D animations (Dann, Cooper, Pausch, 2011), 

and computational models (Begel & Klopfer, 2007). 

4. AIM: BRINGING 

COMPUTATIONAL THINKING AND 

DIGITAL EMPOWERMENT INTO 

EVERYDAY LIVES 
This abundance of low-barrier approaches to developing 

computational artifacts has helped realize Papert's vision 

of intellectually empowering youth; however, the 

introduction of smartphones and truly mobile computing 

radically changed the role that computing plays in our 

everyday lives. Instead of having to go to the computer, 

for many of us, the computer now comes with us 

everywhere we go. This is a radical extension of Papert's 

vision of bringing every learner into the computer lab 

(Papert, 1993; Klopfer, 2008), and fundamentally 

changes how we think of computing and how we think 

computationally - taking computing off the computer and 

into the lived world. It also offers the promise of moving 

beyond youth who are intellectually empowered towards 

youth who are empowered to change the world. In 

response to this radical change in the relationship 

between learners, computation, and the "real world" and 

the need to provide low-barrier ways for learners to be 

truly empowered, new programming environments 

needed to be developed that harness this potential. App 

Inventor by MIT (AIM) is an example of a platform that 

responded to this need. AIM is a blocks-based 

programming that allows youth to develop fully-

functional mobile applications for the Android operating 

system. Currently, AIM has over 6 million registered 

users (with over 300,000 unique monthly users) spread 

across 195 countries, who have collectively worked on 

more than 20 million mobile app projects 

(http://appinventor.mit.edu/explore/). Given the breadth 

and scope of AIM users, AIM is in a unique position to 

have a direct impact on the computational thinking and 

digital empowerment of children all over the world. 

5. EXTENDING COMPUTATIONAL 

THINKING AND DIGITAL 

EMPOWERMENT INTO EVERYDAY 

OBJECTS 
Just as smartphones made computers truly personal, the 

explosive growth of the Internet of Things (IoT) is 

having a similar impact on how we relate to the world 

around us and the objects within it (Ashton, 2009). Every 

day, the world becomes more connected, with everyday 

objects containing sensors, actuators, displays and other 

input and output channels all woven together 

computationally and over the Internet (Weiser, Gold & 

Brown, 1999). The growing connectivity between 

everyday objects and the computational power of the 

Internet offers a potential for us to harness our creativity 

to extend the capabilities of our lived environments 

(Rogers, 2006). However, in order to realize this vision 

of our youth as active empowered creators of their 

digitally augmented lives, rather than passive consumers 

of it, we need to develop tools that allow them to design, 

build, and test IoT-based interventions. By creating 

integrated environments that allow programming of both 

mobile apps and IoT hardware with common metaphors, 

we extend digital empowerment to all aspects of the lives 

of young learners. 

5.1. Subsections 

While the promise of youth developing transformational 

interventions using IoT is exciting, the technical 

complexity required to actually develop these 

interventions is a clear barrier. In response, we have 

developed an extension to AIM that allows youth to 

create mobile applications that can send and receive data 

from Arduino, a popular and modular computing 

platform for IoT. AIT leverages the Bluetooth low 

energy (BLE) standard to enable AIM applications to 

communicate with a wide range of peripheral devices. To 

communicate with Arduino, for example, one would use 

the Generic Attribute (GATT) Profile Specification. 

Sensors and actuators attached to an Arduino device can 

then be exposed as services and characteristics using 

GATT and read/written by an AIT application. 

Normally, developing these kinds of communications 

protocols would be, for most young learners, 

prohibitively complex; however, with AIM we have 

created an abstraction layer that allows young learners to 

focus more on creating and implementing their designs. 

5.2. Instantiating AIT: Building an Interface for 

Healthy Plants 

In order to show how AIT can help young learners we 

developed an exemplar activity students can follow to 

build an application that connects directly with the 
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physical world. We wanted an application that provided 

young learners a lens into the potential of IoT; exposed 

them to the programming building blocks for basic IoT 

functionality; while also offering opportunities for them 

to extend and explore the design further 

 
Figure 1. An Arduino with a Grove Kit, moisture sensor, 

barometer (temperature sensor), light sensor, and LCD screen 

The activity allows youth to build a plant monitoring app 

and uses Arduino and the Grove Kit 

(https://www.seeedstudio.com), a popular extension kit 

for Arduino that lets users add various inputs (e.g., 

buttons, and touch, heat and light sensors) and outputs 

(LCD displays, buzzers, LEDs). For this activity, 

students use three Grove inputs - a temperature sensor, a 

moisture sensor, a light sensor - and an LCD display for 

output (Figure 1). 

Once built, the app allows users to get notifications about 

the state of the plant (how much light the plant is getting, 

the temperature of the room, and its moisture levels - 

Figure 2) on their phone via Bluetooth. The application 

also allows for a "conversation" to take place between 

the child and their plant. For instance, when the child 

waters the plant, the "plant" (via the Arduino and 

moisture sensor) sends the student the message "Did you 

water me?" If the child replies "Yes" on their phone, it 

sends a message back to the plant (via the BLE on the 

Arduino) and the plant send a message back to the child 

saying "Thanks for watering me!" In this way, the child 

begins to understand the potential for receiving data 

about, and communicating with, the everyday objects in 

their lives. 

As part of this activity, youth are encouraged to 

extend the application to try out new ways of connecting 

and communicating with the physical world. For 

instance, youth are prompted to think about how they 

might set up specified alerts to the phone based on the 

plant's condition (e.g., it needs water, or it is too hot in 

the room for the plant). By having kids expand and iterate 

on the initial version of the healthy plant app, we provide 

them with opportunities to develop their computational 

identities and recognize their own growing digital 

empowerment. 

 
 

Figure 2. The AIM Healthy Plant mobile interface. 

6. DISCUSSION AND FUTURE WORK 
This paper outlines a theoretical imperative for moving 

computational thinking and digital empowerment 

beyond the computer lab and into the world. Equally 

important, this paper argues the need to extend this 

empowerment into the objects that occupy our daily 

lives. By providing low-barrier opportunities for young 

children to critically explore their potential for changing 

their relationship with the world around them, we open 

up new ways for youth to transcend Papert's vision of 

intellectually empowered agents (1987), towards agents 

empowered to change the world. While the work is still 

preliminary, we see great potential for platforms such as 

AIT realize this vision. 

Moving forward, we plan to create a series of structured 

inquiry activities that take advantage of the expanded 

capabilities of AIM to allow young learners to explore 

the world around them through computational means. 

For example, the next stage in the Healthy Plants 

activity, will connect it with a middle school curriculum 

on ecology. Student groups will individually develop 

approaches for monitoring and evaluating the health of 

their plants. Using a knowledge community approach 

(Brown & Campione, 1996; Scardamalia & Bereiter, 

1994), students will work together to share technological 

approaches and scientific findings. In this way, we can 

https://www.seeedstudio.com/
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connect computational thinking and broader science 

practices. 

We are also working to extend the capabilities of AIT. 

The next instantiation of AIT will connect to a virtual 

machine (VM) targeting a range of IoT hardware, 

including but not limited to the different flavors of 

Arduino, Raspberry Pi, and BBC micro:bit. This will 

leverage ongoing work to provide an abstraction over 

many of the core BLE concepts so users of AIT can focus 

on building and creating without the high barrier to entry 

required to understand and use Bluetooth or other 

wireless technologies. AIT will also provide a blocks 

editor for programming IoT devices running the VM 

platform, which can either be programmed directly from 

the browser or via any application built with AIT. This 

type of abstraction is similar to how AIM hides the 

complexity of portability between different Android 

implementation and hardware. We expect that this 

abstraction applied to IoT will further empower youth to 

build novel solutions to community problems and see 

themselves as digitally empowered citizens. 
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ABSTRACT 
The Malaysian Ministry of Education aims to increase 

interest in learning Science, Technology, Engineering 

and Mathematics, through Science2Action. Among these 

initiatives in Science2Action, is the use of Art(s). By 

combining the Internet, technology and crafts, e-crafting 

is formed. This e-crafting project aims to increase 

awareness about what interests the audience through 

sharing of and development of craft, hopefully towards 

possibilities of ideation and mixing crafts, extending 

from the original craft such as origami. Designed based 

on the Technology Acceptance Model, findings are 

positive. 

Keywords: e-crafting, audience interests, share, 

STEAM, Technology Acceptance Model 

 

1. INTRODUCTION 
Commonly known as an art trade or occupation that 

requires a special set of manual skills or an ability 

majoring in handiwork, crafting is an art in the making 

or doing. E-Crafting is making waves across the world. 

It provides more fun, convenience and can improve 

digital lifestyle. To craft, one needs to first ideate.  

Ideation is key to Wing’s (2006) computational thinking. 

Two capstone projects were undertaken under Sunway 

University’s internal grant, to explore how images and 

augmented reality (first project) and craft (second 

project) can increase interest in Science, Technology, 

Engineering and Mathematics (STEM), improve 

ideation and improve digital lifestyles. These projects are 

exploratory. The first project was reported in Wong and 

Lee (2016). This paper reports on the second project, i.e., 

e-crafting. It continues from the work by Lee and Wong 

(2015) on developing social innovations among youth 

via design thinking and is inspired by Penn University’s 

e-crafting.  

1.1 Objectives 
There are many types of crafts and e-crafts. Hence, the 

main objective is to increase awareness, interest and 

appreciation in crafts by enabling people to craft more by 

making it a fun art. Fun art is by enabling playing and 

editing around the craft, adding one’s own thoughts into 

it.  

Second, is by encouraging users to share interesting 

crafts with people around the globe. An added incentive 

is that currently, there is no platform without a fee. 

Platforms such as in Table 1 require membership and a 

certain fee (Table 1). For people in today’s era, things 

that come free are always the best and there is no harm 

trying as they will not lose out. Hopefully one day they 

will make their own crafts and we hope to produce 

successful young entrepreneurs for the future.  

2. RELATED WORK 
There are different types of e-crafting around the globe 

today. Examples of e-crafting can be a photoshop tool, 

self-made flying aero plane, and a useless box. Some 

other examples are in Table 1 and e-crafting’s website.  

 

Table 1. e-Crafting websites which require fees.  

 
3. METHODOLOGY 
To make it possible for people to share their work, an 

online platform is needed. There are two parts to this 

capstone project. One is a Facebook website and the 

other an online portal.  

Target age group are 18-29 years old as they bring in new 

innovations and ideas. Most of them are youths in the 

Boys Brigade in Selangor, Malaysia. Craft is one of the 

skills learnt in Boys Brigade, similar to the Boy Scouts, 

Girl Guides.  

Systems design and development follows the Software 

Development Lifecycle. Design and assessment are 

based on the Technology Acceptance Model (Davis, 

1989) as presented in Figure 1.  

 

Figure 1. Technology Acceptance Model 
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Based on the Technology Acceptance Model (TAM) 

above, a questionnaire is given to users to find out 

whether the platform is a good idea, has its usefulness 

and ease of use. The initial survey consists of four 

students. At the end of the prototyping, another survey is 

carried out, on 10 students.  

The system requirement specifications for this project 

are: 

1. Database to store user account information. 

1.1. Log in, create account (integrated to Facebook) 

2. A website platform for people to: 

2.1. Post and share their crafts 

2.2. View others crafts and also able to give 

opinions 

2.3. Crafts can be enhanced by others 

 

For this current platform, users who upload crafts to the 

Facebook e-Crafting page will have their uploads at the 

website as well. At the moment, the data integration is 

done manually. In the future, it will be automated. An 

example of uploads to the Facebook site is in Figure 2.  

 

 
 

Figure 2. An Instagram page consisting of all the pictures 

of the art and crafts uploaded into the Facebook page. 

 

4. FINDINGS  
Based on the final survey, all ten students think it is a 

good idea to share crafts among users. Seven say that 

sharing is caring while three say that they have gained 

new knowledge and interest.  All ten of them also think 

that technology and craft can go well together and that 

this website encourages them to share their crafts.   

Nine of them said they learnt something useful from this 

website and only one did not learn anything useful. This 

may be due to different personal interests/preferences.  

Next question, does this platform increase interest 

towards craft? Eight of the users said yes and two said 

no. This result also can be due to personal 

interests/preferences.  

Most of the users feel pride, happiness, amazement and 

even creative when their craft is displayed and 

appreciated by people around them. This feeling makes 

them feel appreciated, making them share more of their 

ideas and crafts. 

Based on the technology acceptance model, ease of use 

and intention to use have been considered. Eight of the 

users said it is easy to use and two said it is okay to use 

and not hard or easy. As for the intention to use the 

platform again, all of them said they would use it again. 

 

Facebook analytics for the week of Nov18 to Nov24 (the 

last week of testing) indicates reached 69 users, 41 page 

views, 282 post engagements and a total of 9 views for 

the videos (Figure 3). 

 
Figure 3. Facebook’s analysis for the week of Nov18 to 

Nov24 

 

5. CONCLUSION 
This study shows that designing based on the 

Technology Acceptance Model can reap fruitful benefits, 

even to promote crafts and e-crafting. Possible extended 

users are seniors and their caregivers/ families whereby 

the website and portal can become a 

resource/community-sharing center.  Adaptations to 

diverse users can be carried out through assessment of 

the resource’s difficulty level and the contextual 

dialogues that can be generated from the respective 

resource. 
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ABSTRACT 
Computational thinking (CT) is emerging as a key set of 

problem-solving skills that must be developed by the new 

generations of digital learners. However, there is still a 

lack of consensus on a formal CT definition, on how CT 

should be integrated in educational settings, and specially 

on how CT can be properly assessed. The latter is an 

extremely relevant and urgent topic because without 

reliable and valid assessment tools, CT might lose its 

potential of making its way into educational curricula. In 

response, this paper is aimed at presenting the convergent 

validity of one of the major recent attempts to assess CT 

from a summative-aptitudinal perspective: the 

Computational Thinking Test (CTt). The convergent 

validity of the CTt is studied in middle school Spanish 

samples with respect to other two CT assessment tools, 

which are coming from different perspectives: the Bebras 

Tasks, built from a skill-transfer approach; and Dr. 

Scratch, an automated tool designed from a formative-

iterative approach. Our results show statistically 

significant, positive and moderately intense, correlations 

between the CTt and a selected set of Bebras Tasks 

(r=0.52); and between the CTt and Dr. Scratch (predictive 

value r=0.44; concurrent value r=0.53). These results 

support the statement that CTt is partially convergent with 

Bebras Tasks and with Dr. Scratch. Finally, we discuss if 

these three tools are complementary and may be combined 

in middle school.  

KEYWORDS 
Computational thinking assessment, Computational 

Thinking Test, Dr. Scratch, Bebras Tasks, middle school. 

1. INTRODUCTION 
Computational thinking (CT) is considered in many 

countries as a key set of problem-solving skills that must 

be acquired and developed by today’s generation of 

learners (Bocconi et al., 2016). However, there is still a 

lack of consensus on a formal CT definition (Kalelioglu, 

Gülbahar, & Kukul, 2016), on how CT should be 

integrated in educational settings (Lye & Koh, 2014), and 

especially on how CT can be properly assessed (Grover, 

2015; Grover & Pea, 2013). Regarding the latter, even 

though computing is being included into K-12 schools all 

around the world, the issue of assessing student’s CT 

remains a thorny one (Grover, Cooper, & Pea, 2014). 

Hence, CT assessment is an extremely relevant and urgent 

topic to address, because “without attention to assessment, 

CT can have little hope of making its way successfully into 

any K-12 curriculum”, and consequently “measures that 

would enable educators to assess what the child has 

learned need to be validated” (Grover & Pea, 2013, p. 41). 

Moreover, from a psychometric approach, CT is still a 

poorly defined psychological construct as its nomological 

network has not been completely established; that is, the 

correlations between CT and other psychological 

constructs have not been completely reported by the 

scientific community yet (Román-González, Pérez-

González, & Jiménez-Fernández, 2016). Furthermore, 

there is still a large gap of tests relating to CT that have 

undergone a comprehensive psychometric validation 

process (Mühling, Ruf, & Hubwieser, 2015). As Buffum 

et al. (2015) say: “developing (standardized) assessments 

of student learning is an urgent area of need for the 

relatively young computer science education community” 

(Buffum et al., 2015, p. 622) 

In order to shed some light on this issue, one of the major 

attempts to develop a solid psychometric tool for CT 

assessment is the Computational Thinking Test (CTt) 

(Román-González, 2015). This is a multiple-choice test 

that has demonstrated to be valid and reliable (α=0.80; 

rxx=0.70) in middle school subjects, and which has 

contributed to the nomological network of CT in regard to 

other cognitive (Román-González, Pérez-González, & 

Jiménez-Fernández, 2016) and non-cognitive (Román-

González, Pérez-González, Moreno-León, & Robles, 

2016) key psychological constructs. Continuing this 

research line, now we investigate the convergent validity 

of the CTt, that is, the correlations between this test and 

other tools aimed at assessing CT. Thus, our general 

research question is: 

RQ (general): What is the convergent validity of the CTt? 

1.1. Computational thinking assessment tools 

Focusing on K-12 education, especially in middle school 

and without being exhaustive, we find several CT 

assessment tools developed from different perspectives: 

CT Summative tools. We can differentiate between: a) 

Aptitudinal tests such as the aforementioned 

Computational Thinking Test (which is further described 

in 2.1.), the Test for Measuring Basic Programming 

Abilities (Mühling et al., 2015), or the Commutative 

Assessment Test (Weintrop & Wilensky, 2015). And b) 

Content-knowledge assessment tools such as the 

summative tools of Meerbaum-Salant et al. (2013) in the 

Scratch context, or those used for measuring the students’ 

understanding of computational concepts after introducing 

a new computing curriculum (e.g., in Israel, Zur-Bargury, 

Pârv, & Lanzberg, 2013). 
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CT Formative-iterative tools. They provide feedback, 

usually in an automatic way, for learners to improve their 

CT skills. These tools are specifically designed for a 

particular programming environment. Thus, we find Dr. 

Scratch (Moreno-León & Robles, 2015) or Ninja Code 

Village (Ota, Morimoto, & Kato, 2016) for Scratch; the 

ongoing work of Grover et al. (2016) for Blockly; or the 

Computational Thinking Patterns CTP-Graph (Koh, 

Basawapatna, Bennett, & Repenning, 2010) for 

AgentSheets. 

CT Skill-Transfer tools. They are aimed at assessing the 

students’ transfer of their CT skills to different types of 

problems: for example, the Bebras Tasks (Dagiene & 

Futschek, 2008) are focused on measuring transfer to 

‘real-life’ problems; or the CTP-Quiz (Basawapatna, Koh, 

Repenning, Webb, & Marshall, 2011), which evaluates the 

transfer of CT to the context of scientific simulations. 

CT Perceptions-Attitudes scales, such as the 

Computational Thinking Scales (CTS) (Korkmaz, Ç akir, 

& Ö zden, 2017), which uses five-point Likert scales and 

has been recently validated with Turkish students. 

CT Vocabulary assessments. They are aimed at 

measuring elements and dimensions of CT verbally 

expressed by children (i.e., ‘computational thinking 

language’; e.g., Grover, 2011). 

Using only one type from the aforementioned assessment 

tools can lead to misunderstand the development of CT 

skills by students. In this sense, Brennan and Resnick 

(2012) have stated that looking at student-created 

programs alone could provide an inaccurate sense of 

students’ computational competencies, and they 

underscore the need for multiple means of assessment. 

Therefore, as it has been pointed out by relevant 

researchers (Grover, 2015; Grover et al., 2014), in order to 

reach a total and comprehensive understanding of the CT 

of our students, different types of complementary 

assessments tools must be systematically combined (i.e., 

also called “systems of assessments”). Following this idea, 

our paper is specifically aimed at studying the convergent 

validity of the CTt with respect to other assessment tools, 

which are coming from different perspectives. Thus, our 

specific research questions are: 

RQ (specific-1): What is the convergent validity between CTt 

and Bebras Tasks? RQ (specific-2): What is the convergent 

validity between CTt and Dr. Scratch? 

Although the three instruments involved in our research 

are aimed at assessing the same construct (i.e., CT), as 

they approach the measurement from different 

perspectives, a total convergence (r>0.7) is not expected 

among them, but a partial one (0.4<r<0.7) (Carlson & 

Herdman, 2012). Answering the aforementioned 

questions may contribute to develop a comprehensive 

“system of assessment” for CT in middle school settings. 

                                                 
1 Sample copy available at: https://goo.gl/GqD6Wt.  

2. BACKGROUND 

2.1. Computational Thinking Test (CTt) 

The Computational Thinking Test3 (CTt) is a multiple-

choice instrument composed by 28 items, which are 

administered on-line (via non-mobile or mobile electronic 

devices) in a maximum time of 45 minutes. Each item of 

the CTt is presented either in a ‘maze’ or in a ‘canvas’ 

interface; and is designed according to the following three 

dimensions (Román-González, 2015; Román-González, 

Pérez-González, & Jiménez-Fernández, 2016): 

 Computational concept addressed: each item 

addresses one or more of the following seven 

computational concepts, ordered in increasing 

difficulty: Basic directions and sequences; 

Loops–repeat times; Loops–repeat until; If–

simple conditional; If/else–complex conditional; 

While conditional; Simple functions. These 

‘computational concepts’ are progressively 

nested along the test, and are aligned with the 

CSTA Computer Science Standards for the 7th 

and 8th grade (Seehorn et al., 2011). 

 Style of answers: in each item, responses are 

presented in any of these two styles: ‘visual 

arrows’ or ‘visual blocks’. 

 Required task: depending on which cognitive 

task is required for solving the item: ‘sequencing’ 

≈ stating in an orderly manner a set of commands, 

‘completion’ of an incomplete set of commands, 

or ‘debugging’ an incorrect set of commands. 

We show an example of a CTt item translated into English 

in Figure 1, with its specifications detailed below. 

 
Figure 1. CTt, item nº 8 (‘maze’): loops-repeat times 

(nested); visual blocks; sequencing. 

2.2. Bebras Tasks 

The Bebras Tasks are a set of activities designed within 

the context of the Bebras International Contest 4 , a 

competition born in Lithuania in 2003 which aims to 

promote the interest and excellence of primary and 

secondary students around the world in the field of 

Computer Science from a CT perspective (Dagiene & 

Futschek, 2008; Dagiene & Stupuriene, 2015). Each year, 

the contest launches a set of Bebras Tasks, whose overall 

approach is the resolution of ‘real-life’ and significant 

2 http://www.bebras.org/  

https://goo.gl/GqD6Wt
http://www.bebras.org/
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problems, through the transfer and projection of the 

students’ CT. These Bebras Tasks are independent from 

any particular software or hardware, and can be 

administered to individuals without any prior 

programming experience. For all these features, the 

Bebras Tasks have been pointed out to more than likely be 

an embryo for a future PISA (Programme for International 

Student Assessment) test in the field of Computer Science 

(Hubwieser & Mühling, 2014). As an example, one of the 

Bebras Tasks used in our research is shown in Figure 2. 

 
Figure 2. Example of a Bebras Task (‘Water Supply’). 

2.3. Dr. Scratch 

Dr. Scratch5 (Moreno-León & Robles, 2015) is a free and 

open source web application designed to analyze, in an 

automated way, projects programmed with Scratch. In 

addition, the tool provides feedback that middle school 

students can use to improve their programming and CT 

skills (Moreno-León, Robles, & Román-González, 2015). 

Therefore, Dr. Scratch is an automated tool for the 

formative assessment of Scratch projects. 

As summarized in Table 1, the CT score that Dr. Scratch 

assigns to a project is based on the level of development 

of seven dimensions of the CT competence. These 

dimensions are statically evaluated by inspecting the 

source code of the analyzed project and given a 

punctuation from 0 to 3, resulting in a total evaluation 

(‘mastery score’) that ranges from 0 to 21 when all seven 

dimensions are aggregated. 

Figure 3, which shows the source code of a Scratch 

project, can be used to illustrate the assessment of the tool. 

Dr. Scratch would assign 8 points of ‘mastery score’ to 

this project: 2 points for logical thinking, since it includes 

an ‘if-else’ statement; 2 points for user interactivity, as 

players interact with the sprite by using the mouse; 2 

points for data representation, because the project makes 

use of a variable; 1 point for abstraction and problem 

decomposition, since there are two scripts in the project; 

and 1 point for flow control, because the programs are 

formed by a sequence of instructions with no loops. 

Parallelism and synchronization dimensions would be 

measured with 0 points. 

Table 1. Dr. Scratch’s score assignment. 

CT dimension 
Competence Level 

Basic Medium Proficient 

                                                 
3 http://drscratch.org/  

(1 point) (2 points) (3 points) 

Abstraction and 

problem 

decomposition 

More 

than one 

script 

Use of custom 

blocks 

Use of ’clones’ 

(instances 

of sprites) 

Logical 

thinking 
If If else Logic operations 

Synchronization Wait 

Message 

broadcast, 
stop 

all, stop 

program 

Wait until, when 

backdrop 

changes, 
broadcast and 

wait 

Parallelism 

Two 
scripts on 

green 

flag 

Two scripts 
on key 

pressed or 

sprite clicked 

Two scripts on 

receive 

message, 

video/audio 

input, 

backdrop change 

Flow control 
Sequence 
of blocks 

Repeat, 
forever 

Repeat until 

User 

interactivity 

Green 

flag 

Keyboard, 

mouse, ask 

and 

wait 

Webcam, input 

sound 

Data 
representation 

Modifiers 

of object 

properties 

Variables Lists 

 
Figure 3. Source code of ‘Catch me if you can 2’. 

Available at https://scratch.mit.edu/projects/142454426/  

Dr. Scratch is currently under validation process, although 

its convergent validity with respect to other traditional 

metrics of software complexity has been already reported 

(Moreno-León, Robles, & Román-González, 2016). 

3. METHODOLOGY AND RESULTS 
The convergent validity of the CTt with respect to Bebras 

Tasks and Dr. Scratch was investigated through two 

different correlational studies, with two independent 

samples. 

3.1. First study: CTt * Bebras Tasks 

Within the context of a broader pre-post evaluation of 

Code.org courses, the CTt and a selection of three Bebras 

Tasks were concurrently administered to a sample of 

n=179 Spanish middle school students (Table 2). This 

occurred only in pre-test condition, i.e., students without 

prior formal experience in programming and before 

starting with Code.org. 

Table 2. Sample of the first study 
 7th Grade 8th Grade Total 

Boys 88 15 103 

Girls 60 16 76 

http://drscratch.org/
https://scratch.mit.edu/projects/142454426/
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Total 148 31 179 

The three Bebras Tasks
6
 were selected attending to the 

following criteria: the activities were aimed to students in 

the range of 11-14 y/o, and focused in different aspects of 

CT. In Table 3, the correlations between the CTt score 

(which ranges from 0 to 28), the score in each of the 

Bebras Tasks (0 to 1), and the overall Bebras score for all 

of them (0 to 3) are shown. As the normality of the 

variables is not assured [p-value(Zk-s)>0.05], non-

parametric correlations are calculated (Spearman’s r). 

Table 3. Correlations CTt * Bebras Tasks (n=179) 

 
Task #1:  

‘Water Supply’  

Task #2:  

‘Fast Laundry’  

Task #3: 

‘Abacus’ 

Whole Set 

of Tasks 

CTt .419** .042 .490** .519** 
** p-value (r) < 0.01 

As it can be seen, the CTt has a positive, moderate, and 

statistically significant correlation (r=0.52) with the whole 

set of Bebras Tasks (Figure 4); and with Tasks #1 (‘Water 

Supply’, related to logic-binary structures) and #3 

(‘Abacus’, related to abstraction, decomposition and 

algorithmic thinking). No correlation is found between the 

CTt and Task #2 (‘Fast Laundry’, related to parallelism), 

which is consistent with the fact that CTt does not involve 

parallelism. 

3.2. Second study: CTt * Dr. Scratch 

The context of this study is an 8-weeks coding course in 

the Scratch platform, following the Creative Computing 

(Brennan, Balch, & Chung, 2014) curriculum and 

involving three Spanish middle schools, with a total 

sample of n=71 students from the 8th Grade (33 boys and 

38 girls). 

Before starting with the course, the CTt was administered 

to the students in pre-test conditions (i.e., students without 

prior formal experience in programming). After the coding 

course, students took a post-test with the CTt and teachers 

selected the most advanced project of each student, which 

was analyzed with Dr. Scratch. These three measures 

offered us the possibility to analyze the convergent 

validity of the CTt and Dr. Scratch in predictive terms 

(CTtpre-test*Dr. Scratch) and in concurrent terms (CTtpost-

test*Dr. Scratch). As the normality of the variables is not 

assured either [p-value(Zk-s)>0.05], non-parametric 

correlations (Spearman’s r) are calculated again (Table 4). 

Table 4. Correlations CTt * Dr. Scratch (n=71) 
 CTt Pre-test CTt Post-test 

Dr. Scratch (‘mastery score’) .444** .526** 
** p-value (r) < 0.01   

As it can be seen, the CTt has a positive, moderate, and 

statistically significant correlation with Dr. Scratch, both 

in predictive (r=0.44) and concurrent terms (r=0.53, see 

Figure 5). As expected, the concurrent value is slightly 

higher because no time is intermediating among the tools. 

                                                 
4 The Bebras Tasks used in our research, and their 

specifications, can be reviewed with more detail in: 

https://goo.gl/FXxgCz.  

 
Figure 4. Scatterplot CTt * Set of Bebras Tasks. 

 
Figure 5. Scatterplot CTt post-test*Dr. Scratch. 

4. DISCUSSION AND CONCLUSIONS 
Returning to our specific research questions, we have 

found that the CTt is partially convergent with the Bebras 

Tasks and with Dr. Scratch (0.4<r<0.7). As we expected, 

the convergence is not total (r>0.7) because, although the 

three tools are assessing the same psychological construct 

(i.e., CT), they do it from different perspectives: 

summative-aptitudinal (CTt), skill-transfer (Bebras 

Tasks), and formative-iterative (Dr. Scratch). On the one 

hand, these empirical findings imply that none of these 

tools should be used instead of any of the others, as the 

different scores are only moderately correlated (i.e., a 

measure from one of the tools cannot substitute 

completely the others); otherwise, the three tools might be 

combined in middle school contexts. On the other hand, 

from a theoretical point of view, the three tools seem to be 

complementary, as the weaknesses of the ones are the 

strengths of the others. 

The CTt has some strengths such as: it can be collectively 

administered in pure pre-test conditions, so it can be used 

in massive screenings and early detection of students with 

high abilities (or special needs) for programming tasks; 

and it can be utilized for collecting quantitative data in pre-

https://goo.gl/FXxgCz
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post evaluations of the efficacy of curricula aimed at 

fostering CT. However, it also has some obvious 

weakness: it provides a static and decontextualized 

assessment, and it is strongly focused on computational 

‘concepts’ (Brennan & Resnick, 2012), ignoring 

‘practices’ and ‘perspectives’.  

As a counterbalance of the previous weakness, the Bebras 

Tasks provides a naturalistic and significant assessment, 

which is contextualized in ‘real-life’ problems that can be 

used not only for measuring but also for teaching and 

learning CT. However, the psychometric properties of 

these tasks are still far of being demonstrated, and some of 

them are at risk of being too tangential to the core of CT. 

Finally, Dr. Scratch complements the CTt as the former 

includes ‘computational practices’ (Brennan & Resnick, 

2012) that the others do not, such as iterating, testing, 

remixing or modularizing. However, Dr. Scratch lacks the 

possibility of being used in pure pre-test conditions, as it 

is applied to Scratch projects after the student has learnt at 

least some coding for a certain time. 

All of the above leads us to affirm the complementarity of 

the CTt, Bebras Tasks and Dr. Scratch in middle school 

settings; and the possibility to build up a “system of 

assessments” (Grover, 2015; Grover et al., 2014) with all 

of them. Furthermore, we find evidence to consider an 

analogous progression between the Bloom’s (revised) 

taxonomy of cognitive processes (Krathwohl, 2002), and 

the three assessment tools considered along this paper 

(Figure 6). 

5. LIMITATIONS AND FURTHER 

RESEARCH 
Regarding the convergent validity of the CTt, another 

correlation value might have been found with Bebras 

Tasks if the researchers had selected a different set of 

them; also, another correlation value might have been 

found with Dr. Scratch if the teachers had selected a 

different set of projects. Further research should lead us to 

explore the convergent validity of the CTt with other 

assessment tools. For example, we are currently designing 

an investigation to study the convergence between the CTt 

and the Computational Thinking Scales (CTS) (Korkmaz 

et al., 2017), and another one that will study the 

convergence between Dr. Scratch and Ninja Code Village 

(Ota et al., 2016). As a major result of these future series 

of studies, it will be possible to depict a map with the 

convergence values between the main CT assessment 

tools all around the world, which ultimately would take 

CT to be well and seriously considered as a psychological 

construct. 

 
Figure 6. Bloom’s taxonomy and CT assessment tools. 
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ABSTRACT 

This paper introduces the concept of a virtual reality 

(VR) programming environment that allows youth to 

both develop immersive VR experiences while 

enhancing computational thinking (CT). Specifically, we 

extended a blocks-based programming platform, MIT 

App Inventor, to allow youth to make VR Android apps 

(AI/VR). We compare AI/VR's support for CT to other 

existing VR editors using the CT concepts established by 

Brennan and Resnick (2012). Comparisons showed that 

AI/VR’s support for all CT concepts and its ease of use 

for kids, makes it more preferable for teaching CT 

compared to other editors.  

KEYWORDS 
computational thinking, virtual reality, constructionism, 

immersive interface, MIT App Inventor 

1. INTRODUCTION 
In recent years, many educators have argued 

computational thinking (CT) (Wing, 2006) is an 

indispensable skill for everyone. In order to support 

widespread uptake of computational thinking, blocks-

based approaches to programming have been developed, 

in which users program by snapping blocks of code. For 

example, Scratch allows students to build 2D multimedia 

(Brennan & Resnick, 2012). Alice helps students learn 

programming by building 3D media (Dann, Cooper, & 

Pausch, 2006). 

Compared to Scratch, Alice provided a more immersive 

experience. Studies using Alice showed it is effective for 

learning programming, in part to its immersive nature 

(Sykes, 2007), indicating the potential for immersive 

experiences to enhance students’ computational 

thinking. However, there has been limited research on 

how VR, an immersive environment, can support CT 

learning. Given the nascent field of VR, in order to 

understand the role of it in developing CT, there is a need 

to examine current VR editors. If these do not support the 

kinds of learning we wish to support, then it is critical to 

develop appropriate tools. This work was framed around 

two needs: 1) understand the state of current VR editors 

and examine their suitability for supporting developing 

computational thinking; and 2) develop a tool that 

supports the learning needed, if current platforms were 

found to be lacking. 

Below, we examine current VR editors, discuss how they 

support CT and their suitability for young learners. We 

propose AI/VR that responds to their shortcomings. 

2. BACKGROUND 

2.1. Constructionism 

Constructionism is the process of building understanding 

through the active use of tools to develop tangible 

artifacts (Kafai & Resnick, 2011). Building on 

constructionism, is the concept of “learning as 

designers”, which has shown to increase higher-order 

thought process development and motivation (Cooper, 

Dann, & Pausch 2003; Fortus, Dershimer, Krajcik, Marx, 

& Mamlok-Naaman, 2004). Especially, programming 

interactive media has been shown to support CT 

(Brennan & Resnick, 2012). The development of 

interactive and immersive media, with platforms such as 

Alice, also embody constructionist characteristics, as 

they allow learners to design interactive media freely in 

the same context (Sykes, 2007). 

2.2. Immersive Interface for Learning 

Immersion is the subjective impression that one is 

participating in a comprehensive, realistic experience 

(Stanney, 2002; Lessiter, Freeman, Keogh, & Davidoff, 

2001). Studies have shown that immersion in a digital 

environment can enhance education in at least three 

ways: allowing multiple perspectives, situating the 

learning, and transfer to other contexts (Dede, 2009). 

Below we describe two immersive learning 

environments. 

2.3. Alice 

Alice is a 3D graphics programming environment that 

allows users to create interactive 3D animations and 

learn programming in an object-oriented approach (Dann 

et al., 2006). Research on use of Alice to teach an entry 

level undergraduate computer science course showed 

that posttest performance among students who used 

Alice was significantly higher than comparison groups. 

Qualitative results showed that students using Alice 

enjoyed the process and spent more time engaged in the 

course (Sykes, 2007). There were diverse reasons for this 

engagement, including  

the active graphical interface. While Alice is not 

completely immersive, it has a higher degree of 

immersion compared to text-based languages. The 

results suggest the potential for enhancing students’ 

computational thinking skills within a more immersive 

environment. 

2.4. Immersive Interface for Learning 

Virtual Environment Interactions (VEnvI) is a platform 

that uses a database of dance sequences, VR, and a drag-

and-drop interface to teach programming concepts 
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(Parmar et al., 2016). Although this study is limited 

because students did little programming, and were 

introduced to programming concepts in sessions, results 

showed that students found the immersion of VEnvI 

desirable and became more positive towards computer 

science. 

3. PREVIOUS EDITORS 

3.1. Introduction of VR Editors 

In order to understand how current platforms support CT, 

we examined nine VR code editors: 360°& VR Editor 

(“360°& VR Editor”, n.d), HoloBuilder (“HoloBuilder”, 

n.d.), Smart2VR (“Smart2VR”, n.d.), CoSpaces 

(“CoSpaces”, n.d.), Vizor (“Vizor”, n.d.), Unity (“VR 

Overview”, n.d.), Unreal Engine VR Editor (“Unreal 

Engine VR Editor”, n.d.), Arma 3’s virtual reality editor 

(Arma 3 has a VR editor for creating games) (Zemánek, 

2014), and Simmetri (“Simmetri”, n.d.).  

3.2. Categorization and Analysis 

We categorized the editors using Brennan and Resnick’s 

computational concepts, which are sequences, loops, 

parallelism, events, conditionals, operators, and data 

(Brennan & Resnick, 2012). The editors are also 

categorized based on their affordances into three groups, 

which are photo/video focused editors, visual 

programming editors, and text based editors (Table 1). 

3.2.1. Photo or video focused editors 

Photo or video focused editors are ones that: 1) focus on 

making rich scenes using photos and videos; and 2) only 

support acquiring the computational thinking concept 

‘events’. The focus on scene creation is the goal of these 

editors, which explains why they have limited utility for 

CT. Users can place events inside scenes using drag-and-

drop (e.g., adding a button that is clickable). However, 

such editors lack the means to use sequences, loops, 

parallelism, events, operators, and data. 360°& VR 

Editor, HoloBuilder, and Smart2VR fit in this category. 

3.2.2. Visual programming editors 

Visual programming editors support most, if not all, the 

CT concepts through visual programming. Vizor and 

CoSpaces fall in this category, with CoSpaces also 

supporting text based programing. 

In Vizor, students can apply all computational thinking 

concepts through using a ‘patch’, which can be 

connected to other patches (Figure 1). Users can 

combine patches like state/structure patches to 

understand sequence. There are prebuilt patches for 

loops, conditionals, operators, variables, and data. Users 

can learn parallelism, for example, by using two mouse 

press patches. However, there are limitations including 

the limited animation patches, which can make 

animating objects difficult. Additionally, unlike MIT 

App Inventor where blocks run from top to bottom, the 

order of patches do not indicate sequence in Vizor, 

requiring users to link extra patches.  

In CoSpaces, users can use blocks to apply all seven CT 

concepts. Users can connect blocks from top to bottom 

to understand sequence, and use loop blocks to 

understand loops. The execute in parallel and the on 

activate of blocks enable parallelism and events in users' 

projects, respectively. There are prebuilt blocks for 

conditionals, operators, variables and data. However, 

CoSpaces lacks blocks for dynamically creating objects, 

and has limited types of events compared to Vizor and 

AI/VR. These can limit the range of computational 

practices (which focus on “how”, instead of “what” users 

learn) (Brennan & Resnick, 2012).

Table 1. Categorization of VR Editors with colored boxes representing an attribute(column) that an editor(row) has. 

Numbers 1,2,3,4,5,6,7 of CT concept each refer to sequences, loops, parallelism, events, conditionals, operators, and 

data. 
  CT Concepts 

Platform Editor Type 1 2 3 4 5 6 7 

Does not require 

programming 

background 

Intended 

audience 

360°& VR Editor 

Photo/Video 

        Novices  

HoloBuilder         Novices, especially construction company 

Smart2VR         Novices  

Vizor Visual         Novices  

CoSpaces Visual/Text based         Novices 

Unity 

Text based 

        Professional, Experienced gamers 

Unreal Engine VR 

Editor 
       

 Professional, Experienced gamers 

Arma 3’s editor         Professional, Experienced gamers 

Simmetri         Artists 

AI/VR Visual         Novices 
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Figure 1. Usage of patches in Vizor. 

 

3.3. Text-based editors 

Text based editors are editors that require at least partial 

text based programming to exhibit the seven CT 

concepts. Unity, Unreal Engine VR Editor, Arma 3’s 

virtual reality editor, and Simmetri fit in this category, 

with differing audiences (Table 1). Since these editors 

allow users to build complicated VR environments 

technically, they support all CT concepts, and users can 

employ complex CT with them. However, these text-

based editors require a steep learning curve and are not 

suitable for beginners.  

Building off of the various shortcomings of the tools 

described above, we identified a gap in the VR authoring 

landscape for a tool that allows novices to develop VR 

applications while developing CT concept 

understandings. Below we describe the tool and its use. 

4. APP INVENTOR VR EDITOR 
4.1. Blocks in AI/VR 

There are four kinds of blocks in AI/VR: 1) event, 2) 

method, 3) property setter and getter, and 4) object 

creation blocks. Event includes checkButton, which 

checks if the user clicks the Cardboard button. Method 

blocks trigger interactions with objects and the player, 

including moveUser, which changes the location of the 

player. Property setters and getters change object’s 

attributes, such as size. Object creation blocks, such as 

createCube, allow the user to dynamically add objects. 

4.2. Sample AI/VR program 

To demonstrate how the editor supports CT, we included 

a sample AI/VR program (Figure 2 & Figure 3). If the 

user gazes at one of the four cubes (that are made by 

shaking the phone), she will earn points (shown in a 

label). The cube also moves to a random position and 

changes color. 

This example shows how all seven computational 

concepts are supported in AI/VR. First, users can 

understand sequences by checking that blocks are 

executed in order when the user gazes at a cube. The cube 

changing color, and the score increasing and updating 

shows sequentially (① of Figure 3). Loops are used to 

iterate over cubes in ②. Events are used through blocks 

like checkGazeShort (the block that returns 1 if the user 

gazed at the object - ③).  For parallelism, two "if" blocks 

are used to check whether a cube was gazed at and the 

color and position of the cube are changed concurrently 

(④). For conditionals, the user can connect event blocks 

and attribute or animation related blocks with an "if" 

block (⑤). For operators, users can practice addition by 

adding 1 to the current score when a cube is gazed at (⑥-

1) and checking that the increased score is updated in the 

scene (⑥-2). Lastly, users can understand data by 

keeping track of cubes using a list block (⑦). 

 
Figure 2. Scene of demo 

 

Figure 3. Code for a sample VR program in AI/VR. 

4.3. Categorization and Analysis 

AI/VR is in the category of visual programming editors 

and supports all CT concepts. AI/VR also targets ease of 

use by kids, employing the same drag-and-drop interface 

as the original MIT App Inventor (Wolber, Abelson, 

Spertus, & Looney, 2011). Considering these aspects, 

AI/VR balances usability for kids and features for 

supporting CT, overcoming the limitations of other 

editors. It also has animation blocks such as moveObject, 

overcoming the limitation of Vizor. Using the top down 

approach, sequences are also easier in AI/VR. Compared 

to CoSpaces, AI/VR supports creating new objects with 

blocks like createCube, and allows diverse triggering 

events with blocks like checkButton, which triggers an 

event when a user presses the Cardboard headset button. 

However, AI/VR lacks a diversity of objects and media 

related blocks like video. In context of CT, this could be 
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a limitation because it could reduce the diversity of 

computational practices.  

5. CONCLUSION 
Considering the role constructionism plays in 

computational thinking and the possibility of immersive 

virtual reality to support this learning, we introduce 

AI/VR - a blocks-based tool to support kids to more 

easily create virtual reality apps. We have shown 

AI/VR’s fit as a visual programming editor that supports 

all seven of Brennan and Resnik's CT concepts, while 

also being usable by young kids. Although AI/VR has 

limited diversity in objects and media related blocks, it 

overcomes the limitations of Vizor, such as animating 

objects and sequence, and those of CoSpaces such as the 

lack of blocks for dynamically creating objects and the 

limited types of triggers for events. 

6. ACKNOWLEDGEMENT 
We would like to thank Hal Abelson, Professor of EECS 

at MIT, whose insight was great help to this research. 

7. REFERENCES 
Brennan, K., & Resnick, M. (2012). New frameworks 

for studying and assessing the development of 

computational thinking. Proceedings of the 2012 

Annual Meeting of the American Educational 

Research Association (AERA 2012). 

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching 

objects-first in introductory computer 

science. Proceedings of the 34th SIGCSE technical 

symposium on Computer science education - SIGCSE 

'03.  

CoSpaces. (n.d.). Retrieved from 

https://cospaces.io/create.html 

Dann, W., Cooper, S., & Pausch, R. (2006). Learning to 

program with Alice. Upper Saddle River, NJ: Pearson 

Prentice Hall.  

Dede, C. (2009). Immersive interfaces for engagement 

and learning. Science, 323(5910), 66-69.  

Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., 

& Mamlok-Naaman, R. (2004). Design-based science 

and student learning. Journal of Research in Science 

Teaching, 41(10), 1081-1110. 

HoloBuilder (n.d.). Retrieved from 

http://landing.holobuilder.com/construction 

Kafai, Y. B., & Resnick, M. (2011). Constructionism in 

practice: Designing, thinking, and learning in a 

digital world. New York, NY: Routledge. 

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. 

(2001). A cross-media presence questionnaire: The 

ITC-Sense of Presence Inventory. Presence: 

Teleoperators and Virtual Environments, 10(3), 282-

297.  

Parmar, D., Isaac, J., Babu, S. V., D'souza, N., Leonard, 

A. E., Jorg, S., . . . Daily, S. B. (2016). Programming 

moves: Design and evaluation of applying embodied 

interaction in virtual environments to enhance 

computational thinking in middle school students. 

2016 IEEE Virtual Reality (VR), 131-140.  

Simmetri. (n.d.). Retrieved from http://simmetri.com/ 

Smart2VR. (n.d.). Retrieved from 

https://www.smart2vr.com/#how-it-works 

Stanney, K. M. (2002). Handbook of virtual 

environments: design, implementation, and 

applications. Mahwah, NJ: Lawrence Erlbaum 

Associates.  

Sykes, E. (2007). Determining the effectiveness of the 

3D Alice programming environment at the computer 

science I level. Journal of Educational Computing 

Research, 36(2), 223-244.  

360°& VR Editor. (n.d.). Retrieved from 

http://demo.thinglink.com/vr-editor 

Unreal Engine VR Editor. (n.d.). Retrieved from 

https://docs.unrealengine.com/latest/INT/Engine/Edit

or/VR/ 

Vizor. (n.d.). Retrieved from http://vizor.io/about 

VR Overview. (n.d.). Retrieved from 

https://unity3d.com/kr/learn/tutorials/topics/virtual-

reality/vr-overview 

Wang, T., Mei, W., Lin, S., Chiu, S., & Lin, J. M. 

(2009). Teaching programming concepts to high 

school students with Alice. 2009 39th IEEE Frontiers 

in Education Conference, 1-6.  

Wing, J. M. (2006). Computational thinking. 

Communications of the ACM, 49(3), 33-35.  

Wolber, D., Abelson, H., Spertus, E., & Looney, L. 

(2011). App Inventor – Create Your Own Android 

Apps. Sebastopol, CA: O'Reilly.  

Zemánek, J. (2014, July 15). Arma3: Virtual Reality 

Custom Courses. Retrieved January 10, 2017, from 

https://community.bistudio.com/wiki/Arma3:_Virtual

_Reality_Custom_Courses

 

https://cospaces.io/create.html
http://landing.holobuilder.com/construction
http://simmetri.com/
https://www.smart2vr.com/#how-it-works
http://demo.thinglink.com/vr-editor
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview


Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

164 

 

Computational Thinking and Coding Initiatives in Singapore 

 

Peter SEOW1, Chee-kit LOOI1, Bimlesh WADHWA2, Longkai WU1, Liu LIU1 

1 National Institute of Education, Nanyang Technological University, Singapore 

2 National University of Singapore, Singapore 

peter.seow@nie.edu.sg, cheekit.looi@nie.edu.sg, bimlesh@nus.edu.sg, longkai.wu@nie.edu.sg, liu.liu@nie.edu.sg

ABSTRACT 
Many countries that recognize the importance of 

Computational Thinking skills are implementing 

curriculum changes to integrate the development of these 

skills and to introduce coding into formal school 

education. Singapore has introduced new programmes 

from Pre-school to Secondary children to develop 

Computational Thinking skills and introduce 

programming. A major change in the secondary school 

syllabus is the introduction of a new Computing subject 

taken at “O” levels. The new subject emphasizes on the 

development of Computational Thinking skills and coding 

in Python. Students are expected to apply technology for 

creating solutions to solve problems. In this paper, we 

describe the various initiatives in Singapore for Pre-

school, Primary and Secondary schools. From initiatives 

in these three school going groups, we review Singapore’s 

approach to implementation of learning Computational 

Thinking. Unlike several countries that has decided to 

implement computing as compulsory education, 

Singapore has taken a route of creating interest amongst 

children in Computing in age-appropriate ways. 

Singapore’s pragmatic approach is characterized by opt-in 

by schools, nurturing students’ interest in computing, 

upskilling teachers in computing, and a multi-agency 

approach.  

KEYWORDS 
Computational Thinking, Computing, Programming, and 

Coding 

7. INTRODUCTION 
Since Wing’s (2006) argument on how computational 

concepts, methods and tools can develop thinking skills to 

transform how we work or solve problems, and with the 

emergence of computation-related fields such as Data 

Science and Artificial Intelligence in recent years, there 

has been great interest from academia, industry and 

government in Computational Thinking (CT) and coding. 

Sites such as code.org, which is sponsored by industry 

giants like Google, provide free resources on learning 

coding to anyone who is interested. National governments 

in addressing the manpower needs arising in the shift from 

a knowledge/information economy to an economy driven 

by computation, are introducing educational policies that 

would prepare its citizens to be future ready. Computer 

Science and computing education once were only 

available as courses at the University level. Wing (2017) 

reflecting 10 years after her publication on CT, never 

dreamt that Computer Science education would be taught 

in K-12 on a large scale. Today, it has become reality as 

governments or educational authorities, and schools are 

introducing Computer Science education in the different 

levels of education. This paper describes Singapore’s 

effort in the introducing the CT and coding in the 

education from Pre-school to Secondary schools. 

8. COMPUTING PROGRAMMES in K-10 
In 2014, Singapore launched the Smart Nation Programme 

which is a nationwide effort to harness technology in the 

business, government and home sectors for improving 

urban living, building stronger communities, growing the 

economy and creating opportunities for all residents to 

address the everchanging global challenges (Smart 

Nation, 2017). One of the key enablers for the Smart 

Nation initiative is to develop computational capabilities. 

Programmes are implemented to introduce and develop 

CT skills and coding capabilities from pre-school children 

to adults. We survey the landscape of K-10 CT and coding 

related programmes in Singapore which are implemented 

by various government organizations. We present these 

programmes and have organised them according the 

groups: Pre-school, Primary and Secondary. 

8.1. Pre-school 

In Singapore, children aged from 3 to 6 years old attend 

pre-schools which are mostly privately run. The 

Infocomm Media Development Authority (IMDA) 

launched the Playmaker initiative with the aim of 

introducing Computational Thinking in the Kindergarten 

and Pre-schools in Singapore (IMDA, 2017). There are 

over 3000 pre-schools in Singapore and initial phase was 

to pilot the program in 160 pre-schools. IMDA’s approach 

to introducing CT was to identify toys that would engage 

young children in play while developing CT skills such as 

algorithmic thinking. IMDA would provide a set of the 

toys to pilot centres for use in the classroom by the 

teachers.  

The toys that IMDA selected that would provide playful 

exploration of technology are: 1) Beebot; 2) Circuit 

Stickers; and 3) Kibo. The Beebot is a toy with simple 

programmable steps to control the movement. Children 

can program the toy to move in a path by logically 

sequencing the number of steps to move and direction. 

Playing Beebot can help young children to develop 

problem solving skills and logical thinking as they plan 

and program the movement of the toy.  With the Kibo 

which was developed by researchers in Tuft University, 

children can create a sequence of instructions by arranging 

Kibo wooden blocks. The blocks can be scanned in the 

sequence with the instructions passed to the robot to 

execute the steps. Circuit sticker is a toolkit comprising of 

peel-and-stick electronic components such as LEDs and 

conductive copper tapes. With the toolkit, young children 

can create interactive art and craft projects embedded with 
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LED stickers and sensors that respond to the environment 

or external stimuli (See Figure 1). Children can be creative 

in hands-on activities while learning and applying basic 

electricity concepts.  

 

Figure 1. Circuit Stickers 

 

Pre-school teachers in Singapore do not use much 

technology or handle technology in the classroom as the 

emphasis is more on literacy development and play.  As a 

result, they may have apprehensions or concerns in using 

technology in their lessons. To address teachers’ lack of 

experience and concerns, IMDA organised teacher 

seminars and workshops for teachers to experience the use 

of the Beebot, Kibo and Circuit Stickers. The hands-on-

sessions were facilitated by the instructors to introduce 

teachers to the tech toys and work on simple projects. The 

workshops are for the teachers to understand the potential 

learning opportunities by learning the technology for 

themselves. Hands-on sessions also help to alleviate any 

potential fear of handling technology as they experience 

the use of the technology with the support from 

instructors.  

In preparing to pilot the Playmaker program and address 

the concerns of Pre-school teachers, IMDA worked with a 

local Polytechnic which offers pre-school training for 

teachers. At the Preschool Learning Academy, pre-school 

lecturers and trainers, with technologists worked to trial 

the use of the various tech toys in the pre-school 

classroom. Their learning experiences were shared with 

the teachers. Collaborating with the pre-school training 

academy provides implementers to understand how the 

tools can be used in the classroom and build capacity 

among the trainers to work with the teachers how these 

tools can be used to develop. The academy can provide 

on-going professional development to the current and new 

teachers. 

8.2. Primary Schools 

To expose and enthuse Primary school students in 

computational thinking, IMDA introduced its Code for 

Fun enrichment programme which was piloted in 2014. 

Since 2015, the programme has been implemented in 110 

schools with about 34,000 students participating. The 

goals of the programme is to expose a large base of 

students to CT concepts and coding, and build a generation 

of workforce equipped with basic coding and CT skills. To 

scale the enrichment programme, IMDA invited 

technology training partners to propose 10 hour programs 

that would include coding activities using visual-based 

programming language such as Scratch and combining it 

with a robotic kit such as the MoWay or microcontrollers 

such as the Arduino. The proposed programs should help 

students appreciate coding and develop CT skills such as 

solving problems and thinking logically. Schools that are 

interested in the Code for Fun programme can select from 

the list of vendors and apply for funding from IMDA to 

run the programme in the school. At present, IMDA fund 

70% for each student with the rest funded by the school on 

the condition that a certain number of students will be 

attending the programme. Teachers are also required to 

attend a course conducted by the technology vendors on 

the programme. IMDA envisions the program to be taught 

by the teachers in the future. Currently, each 10-hour 

session is conducted by the technology trainers in the 

school lab. In each session, students are introduced 

computing concepts such as the use of variables and 

conditional students through the use of visual 

programming tools such as Scratch. Students also use the 

Robotic tools such as the Lego WeDo kits or MoWay 

robot based on the proposal by the different training 

partners. Schools can choose on the different tools offered 

by the various trainers based on their students’ interest and 

budget. 

The Code for Fun enrichment and Playmaker programme 

is part of the Code@SG movement initiated by the 

government to teach CT and coding to students from an 

early age. Driven by the IMDA, the initiative is important 

to build Singapore’s national capability in a skilled 

workforce by creating interest in the Computational skills 

and promoting Infocomm as a career choice. A multi-

pronged approach of working with different partners 

involves the development of enrichment programmes, 

school infocomm clubs and coding competitions.  

8.3. Secondary Schools 

In 2017, the Ministry of Education introduced a new 

Computing subject which will be offered to students as an 

“O” Level subject replacing the existing Computer Studies 

subject (MOE, 2017). Students taking the subject will be 

learning to code in Python which is taught only at “A” 

Level Computing. In the new syllabus design, students 

will develop CT and coding skills to create solutions with 

technology to solve problems. In the old Computer Studies 

syllabus, students were learning to be users of technology 

such as using software applications and understanding 

aspects of technology. This marks a distinct shift from a 

learning to be user of the technology to creator of solutions 

with technology. 

The new Computing syllabus is built on the framework 

shown in Figure. 2: 1) Computer as a Science; 2) 

Computer as a Tool; and 3) Computer in Society.  
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Figure 2. Computing Education Framework 

The dimension of Computer as a Science comprises of the 

core components of Computational and Systems 

Thinking. Students will develop and apply CT skills such 

as abstraction and algorithmic thinking to solve problems 

and develop solutions through coding. Using both CT 

skills and systems thinking, students are required to work 

on a project of their own interest. This is to encourage 

students to take more ownership by identifying a problem 

that they are interested and developing ideas to solve the 

problem using programming tools. In the dimension of 

Computer as a Tool, students are exposed to the use of 

hardware, technology, and devices that are used in the 

everyday aspects of life at work and play. They learn about 

computer applications that are used for productivity, 

communications and creative tools for completing specific 

tasks such as video editing or creating websites. In 

Computer in Society, students learn about issues in using 

computers such as intellectual property, data privacy, 

internet security and the computer addiction. This 

dimension includes a component on 21st Century 

Competencies to prepare students to be Future-ready 

workers in the use of technology for self-directed learning, 

working in collaboration with others and fostering 

creativity. 

A current challenge in implementing a Computing 

curriculum is equipping teachers to teach the subject as 

there are only few teachers who have Computing or 

Computer Science background. Teachers who are 

interested in teaching Computing and programming attend 

a year-long conversion course taught by Computer 

Science faculty from a University. The goal of the course 

is to prepare and equip teachers with the content and 

technical knowledge to teach computing. In addition to 

preparing teachers for the new Computing curriculum, 

Ministry of Education’s Curriculum Planning and 

Development Division (CPDD) organised workshops for 

teachers to understand the aspects of the syllabus. 

Teachers are introduced to different pedagogies for 

teaching computing such as unplugged approaches and 

paired programming. In the workshop, teachers 

experienced the use of the tools for teaching such as the 

Raspberry Pi. The workshop was a platform for teachers 

to raise their concerns about teaching the subject such as 

the project work for students. 

9. Singapore’s Approach in Computing 
Singapore’ approach is to provide opportunities for 

students to develop their interests in coding and computing 

skills through touchpoint activities at various ages as 

shown in Figure 3. Computing and CT skills are 

introduced to the children that are age-appropriate and 

engage them in learning. Children progressively develop 

interest and skills leading them to offer Computing as a 

subject in the “O” levels. 

 

Figure 3. Learning Computing in Singapore 

The following sections describe the characteristics of the 

approach.  

 

9.1. Opt-in by Schools 

Singapore uses an opt-in model recognizing the agency of 

each school in choosing programs to meet the needs of 

their students and readiness of the teachers. School-based 

programmes are planned by the school and teachers that 

would build students’ interest and skills in identified areas 

like Computing. As teachers play in pivotal in the role in 

implementing the programmes, there must be buy-in from 

the teachers to see the importance of the programmes for 

the students. For the schools to opt-in to adopt computing, 

there must be teachers within the school to be ready to 

learn, experiment and implement  

9.2. Nurturing Interest in Computing 

Singapore’s approach is to nurture interest at early age. 

Pre-school children are developing problem solving and 

logical thinking skills through play. Toys like the Beebot 

and Circuit Stickers are age-appropriate for the children to 

be engaged in play in their lessons while developing the 

computational thinking skills. In primary and secondary 

schools, students are introduced to visual programming 

tools like Scratch and tangible computing tools like the 

MoWay robots and Lego WeDo. Lessons are designed for 

children to have fun learning programming and 
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developing logical thinking skills. Leading to the O 

Levels, students can offer Computing as a subject based 

on their interest and choice. Starting from Pre-school, a 

pipeline is created for students to develop interest and 

computational thinking skills for them to choose 

Computing rather than making it compulsory learning. 

9.3. Upskilling Teachers in Computing 

To prepare teachers to develop logical thinking, 

algorithmic thinking, problem solving and coding skills in 

the lessons, professional development and support must be 

given. The professional development should be 

appropriate to the learning needs of the teachers to prepare 

them to teach their students. For the pre-school, a form of 

learning was for them to experience play with the toys and 

understand how their own children would learn from 

playing. Support from IMDA is given to the teachers to 

help them design and implement the lessons in the 

classrooms. In secondary school, Computing teachers 

undergo an intensive computing course equipping them 

with computer science concepts and coding skills for 

teaching students. Most of these teachers are non-

Computer Science graduates but volunteered for the 

conversion course out of their own interest. The teachers 

have regular meet-ups to continue improving their 

knowledge in teaching computing. 

9.4. Multiple-Agency Approach 

The task of building CT and Computing skills takes the 

combined effort of multiple agencies to work together. 

These agencies include the government agencies like 

IMDA, Ministry of Education and the Ministry of Social 

and Family Development, Education centers like the 

Singapore Science Centre, Universities and educational 

providers. These agencies work together or singly to 

organize opportunities for children to learn computational 

thinking skills providing them with varied experiences. 

The agencies can pool resources such as funding and 

support for initiating, implementing and sustaining the 

programmes. 

10. SUMMARY 
Singapore has taken a pragmatic approach in the 

implementation of the learning and development of CT 

skills and coding. Taking such an approach provides 

children with opportunities to generate interest in learning 

computing. Starting at an early age, children are exposed 

to developing CT skills through age-appropriate ways of 

playing. In primary school, children learn through fun and 

given opportunities to extend their interest in 

programming through clubs and coding competition. At 

the secondary school level, children can choose to pursue 

Computing as a subject. Schools can opt-in to offer 

programmes based on the students’ needs, schools’ niche 

programmes and readiness of the teachers to teach 

computing. Teachers who are keen can choose to extend 

their capacity to teach computing. Singapore as a Nation 

can harness various agencies to work together in providing 

a variety of learning experiences for children to be 

engaged in learning computing.  
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ABSTRACT 

Collaboration becomes increasingly important in 

programming as projects become more complex. With 

traditional text-based programming languages, 

programmers typically use a source code management 

system to manage the code, merge code from multiple 

editors, and optionally lock files for conflict-free editing. 

There is a limited corpus of work around collaborative 

editing of code in visual programming languages such as 

block-based programming. We propose an extension to 

MIT App Inventor, a web-based visual platform for 

building Android applications with blocks, which will 

enable many programmers to collaborate in real-time on 

MIT App Inventor projects. We take the position that 

real-time collaboration within MIT App Inventor will 

encourage students in a group environment to interact 

with one another in ways that help them improve each 

other’s understanding and practice of computational 

thinking practices that may not be achieved in the 

traditional one user-one project paradigm that is currently 

provided. 

KEYWORDS 

Real-time collaboration, App Inventor, visual 

programming, computational thinking 

1. INTRODUCTION 
Cloud-based collaborative technologies such as Google 

Docs have become a central part of how teams work 

together to collaborate in real time on all manner of 

content. While real-time collaboration for programming 

has been explored in research settings, a typical editing 

pattern in software development involves developers 

working separately and then merging their changes 

through a source code management system, such as 

Subversion or Git. These solutions work well for textual 

programming languages. However, little work has been 

done exploring real-time collaborative techniques for 

visual programming languages, including blocks-based 

languages including Scratch (Maloney, Resnick, Rusk, 

Silerman, & Eastmond, 2010) and MIT App Inventor 

(Wolber, Abelson, Spertus, & Looney, 2011). The 

remainder of this paper will focus on the challenges and 

possible benefits of real-time collaboration as they relate 

specifically to the MIT App Inventor software. 

MIT App Inventor is a web-based platform for building 

mobile phone applications targeting Android. It provides 

two editors for building an application: a designer where 

users drag and drop components, such as buttons, to lay 

out the user interface of an application, and the blocks 

editor where program logic is provided using a puzzle 

block-like language based on Google’s Blockly. MIT App 

Inventor users require a Google account to identify 

themselves to the service and projects are tied to these 

accounts. While it is possible to perform group 

collaboration in MIT App Inventor given its current 

implementation, this is usually accomplished by student 

groups creating a shared Google account and trading off 

control over who is editing using the single account. 

We propose a collaborative programming environment 

within the MIT App Inventor software that will enable 

multiple users to engage in computational thinking in a 

real-time collaborative manner. Section 2 describes the 

related work in computational thinking and collaborative 

programming. Section 3 illustrates our design and 

implementation of the collaborative environment. Section 

4 presents a discussion that how this system can help users 

engage in computational thinking.  

2. RELATED WORK 
Brennan & Resnick (2012) gauge computational thinking 

with respect to three categories: computational concepts, 

computational practices, and computational perspectives. 

They defined “Connecting” as one of the computational 

perspectives, which involves programming with others 

and programming for others. By collaboration, 

programmers are able to accomplish more than what they 

could have on their own.  

With text-based programming languages, programmers 

usually collaborate with a version control system, such as 

Git. Guzzi, Bacchelli, Riche, and Van Deursen(2015) 

presented an improved IDE with support of version  

control system to help programmers to resolve conflicts 

and detect problems introduced by others’ code. Other 

than version control system, Goldman, Little, & Miller 

(2011) demonstrated a real-time collaborative web-based 

editor for the Java programming language. 

Collaboration in blocks-based programming languages 

has typically been done via remixing, such as in the 

Scratch language (Maloney et al., 2010) and MIT App 

Inventor (Wolber et al., 2011). In remixing, a developer 

publishes an application publicly and others use it as a 

starting point for a new application. This remixing 

behavior makes iterate development between two 

developers more difficult because the project, rather than 

some subset, is the basis for remixing. 

Greenberg & Gutwin (2016) highlight key challenges in 

enabling awareness in collaborative environments. We 
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leverage their findings by codifying awareness 

information via the locking mechanisms proposed in 

Section 3. These locking mechanisms allow users to direct 

awareness of their peers by synchronizing access to the 

environment on a pe user basis. Gross (2013) provides a 

more in-depth review of awareness research. 

3. DESIGN AND IMPLEMENTATION 
Our collaboration system is mainly designed for group 

course projects of 2-4 students in middle school, high 

school, or college. The system will satisfy the following 

features: 

1. Users are identified by their email address and share 

projects with others by email address. The user who 

creates the project can change others’ access level of 

the project. The access level includes read, in which 

users can only view the project, and write, in which 

users can both view and edit the project. 

2. Users can know who is currently working on the 

project, and the components or blocks that each 

individual is currently working on. 

3. User can see others’ changes simultaneously. There 

are several cases in MIT App Inventor: 

a. When users work on different screens, their 

changes will not be shown until switching 

screens. 

b. When users work on the same screen, and they 

work on the same editor, they can see the others’ 

change immediately on the editor. 

c. When two users work on the same screen, and 

one works on the designer editor, and the other 

works on the blocks editor, the one on the 

blocks editor can see new blocks when the one 

on the designer editor adds a new component. 

When the one on the designer editor removes a 

component, the other will see blocks related to 

that component disappear.  

 

 

 

Figure 1. Share project by entering user’s email address 

3.1. User Interface Design 

A user can share a project with others by providing their 

email address. Figure 1 shows the user interface of sharing 

a project. Once the project is shared successfully, the other 

user can find the project in her project explorer. Users can 

know who has opened the project by the colored square in 

the project title bar. When user hovers on the square, it will 

show the user’s email address. The color of the square 

indicates the user’s color. It is used to identify which part 

of the program a user is editing.  

 

Figure 2. An example of collaborative block-based 

programming in MIT App Inventor. This project is shared 

within four users. The user can see the other three users, 

A, B and C, on the project title bar. The block that each 

user is editing is highlighted with the user’s color. 

3.2. Collaboration Server 

In order to show others’ changes immediately, we use 

publish-subscribe pattern to send updates from one user to 

others. Publish-subscribe pattern is a messaging pattern, 

where senders can send messages to a channel, and 

receivers who subscribe to that channel can receive the 

messages. We decided to build a NodeJS server for web 

clients to communicate about collaboration, which runs 

separately from the MIT App Inventor server, so it is easy 

to be managed. MIT App Inventor clients connect the 

collaboration server with sockets. We use Redis, an open 

source library for in-memory data structure store and 

publish-subscribe pattern, to publish and subscribe 

updates (Redis Contributors 2017), and all messages will 

be in JSON format. The client will translate changes into 

JSON documents and send them to the collaboration 

server over a specified channel. The server will apply 

operational transformations on JSON documents to make 

sure changes are published consistently to all subscribed 

clients. Then, clients translate JSON document into events 

that update the code and run the events on their individual 

systems. Therefore, the copies of the code of all clients 

will eventually be identical. 

3.3. Channels 

Each MIT App Inventor client is both publisher and 

subscriber in the system. Clients will subscribe to three 

kinds of channels: 

1. User channel: The user channel is specified 

by the user email address. Each client 
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subscribes to only one user channel. When 

users share a project, they publish the 

project and user information to others’ user 

channel. Therefore, other users will be 

notified that a user shares a project with 

them, and that project will appear in their 

project list. 

2. Project channel: Project channel is specified 

by project id. (Each MIT App Inventor 

project has an id that is unique to the MIT 

App Inventor server.) When a collaborator 

opens a project, he will subscribe to that 

project channel. This channel is used for 

project-level messages, such as when other 

collaborators open or close the project, or 

when components are added, modified or 

removed. When a collaborator publishes 

changes to the project channel, all active 

collaborators on that project will be 

notified. 

3. Screen channel: The screen channel is 

specified as combination of the project id 

and the screen name. This channel is used 

to publish changes about blocks. Each 

screen has its set of blocks. Users subscribe 

to this channel when they open the block 

editor of a screen. After subscribing this 

channel, all changes related to blocks in this 

screen will be published to the channel. 

4. DISCUSSION 

The collaborative programming environment within MIT 

App Inventor provides users a new approach to teach and 

learn. For example, it enables “teacher-student” or 

“mentor-mentee” roles inside MIT App Inventor. 

Teachers can share the projects with students in read-only 

mode to demonstrate ideas and demos. Students can work 

on group projects after school, because they can 

collaborate remotely. As MIT App Inventor is built for 

students and novice programmers, the collaborative 

programming environment gives them an opportunity to 

develop their teamwork skill at an early stage. Also, 

while developing applications collaboratively, users can 

learn how to resolve conflicts. In addition to the 

commonly used pair programming method, our 

collaborative programming environment introduced a 

new mode of cooperation between students. Instead of 

sitting shoulder-to-shoulder and working on the same 

machine, students can work on the different machines in 

distributed locations and review others’ changes 

simultaneously.  

This new collaboration mechanism for MIT App Inventor 

touches on all four of the key computational thinking 

practices of Brennan and Resnick (2012). Multiple users 

can incrementally and iteratively build small units either 

in isolation or together depending on the complexity of the 

tasks and expertise of the individuals. Users can explore 

different debugging techniques to assist one another in 

addressing problems in the code. Reuse and remix of code 

can happen on a much finer time granularity on the order 

of seconds or minutes. Lastly, users can work together to 

help one another understand and exploit abstraction and 

modularization techniques within a program. 

One challenge for collaborating with visual programming 

language is that it is hard to understand others’ thought 

process. With the text-based programming language, 

programmers can know others’ plan via comments. 

However, it is hard to place comments in visual 

programming environment without disrupting actual 

programming logic. One way we can handle it is to add a 

screen for comments, so users can toggle the comments 

screen as they need. Another way to help users to 

understand others is adding a communication channel, so 

that users can exchange their ideas while they are 

programming.  

Our technical approach is not restricted to MIT App 

Inventor, as it builds on Google’s Blockly. It can therefore 

be applied to other visual programming languages, such as 

Scratch. It is easy to integrate socket and publish-subscribe 

pattern into the system. 

5. CONCLUSIONS 
We presented a collaborative programming environment 

within the MIT App Inventor software and provided 

technical details of an implementation of real-time 

collaboration. In future work, we will evaluate the 

effectiveness of the collaboration with novice and expert 

users of MIT App Inventor to better understand how 

students use the system to collaborate.  

6. REFERENCES 
Brennan, K., & Resnick, M. (2012, April). New 

frameworks for studying and assessing the 

development of computational thinking. In 

Proceedings of the 2012 annual meeting of the 

American Educational Research Association, 

Vancouver, Canada (pp. 1-25). 

Goldman, M., Little, G., & Miller, R. C. (2011, October). 

Real-time collaborative coding in a web IDE. In 

Proceedings of the 24th annual ACM symposium on 

User interface software and technology (pp. 155-164). 

ACM. 

Greenberg, S., & Gutwin, C. (2016). Implications of we-

awareness to the design of distributed groupware 

tools. Computer Supported Cooperative Work 

(CSCW), 25(4-5), 279-293. 



 

171 

 

Gross, T. (2013). Supporting effortless coordination: 25 

years of awareness research. Computer Supported 

Cooperative Work (CSCW), 22(4-6), 425-474. 

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & 

Eastmond, E. (2010). The scratch programming 

language and environment. ACM Transactions on 

Computing Education (TOCE), 10(4), 16. 

Redis Contributors (2017). Redis Publish-Subscribe 

message pattern. Retrieved February 4, 2017 from 

https://redis.io/topics/pubsub. 

Wolber, D., Abelson, H., Spertus, E., & Looney, L. 

(2011). App Inventor. O'Reilly Media, Inc. 

Guzzi, A., Bacchelli, A., Riche, Y., and Van Deursen, A. 

(2015). Supporting Developers' Coordination in the 

IDE. Proceedings of the 18th ACM Conference on 

Computer Supported Cooperative Work & Social 

Computing - CSCW '15  

https://redis.io/topics/pubsub


Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on 

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong 

172 

 

Evidences of Self-Development of TAs in CT Education 

 

Ray CHEUNG1, Ron Chi-wai KWOK*, Matthew LEE, Robert LI, Chee-wei TAN 

City University of Hong Kong, Hong Kong 
1 r.cheung@cityu.edu.hk, isron@cityu.edu.hk, ismatlee@um.cityu.edu.hk,  

Robert.Li@cityu.edu.hk, cheewtan@cityu.edu.hk

ABSTRACT 
In the context of integrating Computational Thinking 

(CT) in Primary School Education, we examine the self-

development of undergraduate students during their 

engagement as Teaching Assistants (TAs) in CT 

Education. More specifically, we propose to adopt the 

stress-adaptation-growth process of the Intercultural 

Transformation Theory (ITT) as a framework to provide 

evidences of the self-development of TAs in the 

CoolThink@JC project of Hong Kong. The collected 

data confirms the evidences of the stress-adaptation-

growth process of TAs engagement, which helps 

transforming undergraduate students into co-teachers 

with commitment to future civic involvement. 

KEYWORDS 
Computational Thinking, Teaching Assistant, Co-

Teaching, Stress-Adaptation-Growth, Service Learning   

1. SUMMARY OF CITYU 

INVOLVEMENT IN CT EDUCATION 
Coding and computing-related skills are vital in the 

information age both for personal and social 

development. In this project, the City University of Hong 

Kong (CityU) team aims to provide professional 

education support to enhance coding literacy among 

Hong Kong citizens through a series of elaborative 

teaching and learning activities, in particular targeting 

the primary school student group in our population.  

Coding is now a global initiative in multiple countries, 

such as the “Hour of Code” campaign is first initialized 

by Code.org in the US in 2013, providing free 

educational resources for all ages. Now, over 100 million 

students worldwide have already tried an “Hour of Code”. 

In the UK and in Australia, Coding has been put into the 

primary education curriculum. In Hong Kong, CityU 

Apps Lab (CAL) (http://appslab.hk) is a leading 

University organization offering free workshops to 

public to learn to code, kicking off their first hour of 

coding. Over 2,000 hours of coding have been achieved 

in the previous “Hour of Code HK” workshops, and we, 

at CityU of Hong Kong, have offered over 10,000 hours 

of coding lessons to the beneficiaries by running “We 

Can Code” and “Go Code 2015” with the Sino Group.  

In the world’s major economies, students from 

elementary school to postgraduate level are increasingly 

getting involved in understanding the fundamentals of 

computer programs and coding skills. In the UK, a new 

version of the relevant curriculum has been established a 

year earlier on 8 July 2013 by GOV.UK, putting a 

significant emphasis on computing skills. The new 

curriculum replaces basic word processing skills with 

more demanding tasks such as coding and understanding 

algorithms. Primary school children are proposed to be 

taught how to write simple programs using computer 

languages. 

In Singapore – Hong Kong’s Asian competitor of diverse 

areas - a plan is being fermented by its INFOCOMM 

Development Authority (IDA), which prescribes the 

progressive introduction of software programming 

classes into public schools. This would provide students 

with a unique opportunity to write code in classroom 

settings employing the teaching and educational 

resources which are available to other fundamental 

curriculums. A talk is now being initiated by the nation’s 

Ministry of Education regarding the necessity of 

incorporating programming into its national curriculum. 

Estonia is beyond all doubt taking the lead in 

programming skill education by launching a nationwide 

scheme to teach school kids from the age of seven to 

nineteen the methodology of writing computer code. It is 

one of the first countries to have a government that was 

fully e-enabled. The ProgeTiger initiative was started in 

January of 2012 by the Estonian government, aiming at 

bringing programming into classrooms to help raise 

Estonia's technical competency. This small country with 

a population of 1.3 million is the home of Skype and has 

been attracting sponsoring activities from well-known 

organizations such as the Mozilla Foundation. 

It is of great significance that Hong Kong citizens could 

grasp the basic principles of mechanisms of the digital 

devices that play such a large role in modern life and be 

aware of the fundamentals of coding. It is also important 

to know that when running the “Hour of Code HK” 

Campaign, we observe that youth group can achieve the 

coding tasks in a much shorter time when compared with 

University students or adults. In this connection, it is 

identified that there is still a lack of momentum in Hong 

Kong in the present day to catch up with the world’s best. 

We believe that students at their early age are able to 

understand and acquire computational thinking skill at a 

faster pace, therefore, in this project we provide them a 

three-year training from junior, to intermediate, and then 

to advanced in-class support. Each one of them will 

consist of 8 to 14 lessons, and each lesson is around 35-

45 minutes long. On top of the in-class training, we will 

also provide them with mentoring support from our 

University students on a group basis (e.g. one 40-student 

class will be taken care of by 2 tutors). The University 

students involved will participate through our established 

campus internship and other co-curricular experiential 

learning schemes.  
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We propose this project on a 3-year basis in order to 

create a sustainable learning environment for the primary 

students to keep up their learning attitude. The main role 

for the CityU team is to provide in-class manpower 

support and also parent involvement support, and to 

facilitate effective learning in target schools. CityU Apps 

Lab, an education community at CityU consisting of 

more than 600 University students, is able to provide this 

manpower support throughout this project. It is expected 

that in 3 years’ time, this community can grow up to 

1,000 members on campus involving the CityU Alumni 

network. Students from HK major universities, who are 

passionate about coding education, will be recruited to 

join this project. 

In order to provide interactions with primary school 

students, we will provide support to the whole project to 

create a structured curriculum with the partnering 

organizations on this project that eventually integrates 

learning existing subjects such as mathematics and 

sciences with the computational thinking skills that the 

students have picked up. This has the potential to 

galvanize knowledge sharing and learning among the 

students. 

2. ROLES AND RESPONSIBILITIES 

OF TAS IN CT EDUCATION 
In the CoolThink@JC project 

(http://www.coolthink.hk/), 97 teaching assistants (TA) 

are recruited by the CityU team from over 10 tertiary 

institutions of Hong Kong in the academic year of 

2016/17. The 97 TAs have been trained and assessed 

based on their performances on a series of tests and 

teaching practices. They have passed the assessment 

criteria, and been assigned to serve the 12 pilot primary 

schools participating in the CoolThink@JC project of 

Hong Kong. 

In general, the main roles of TAs are to assist teachers in 

answering students’ enquiries in class, and the class 

matters related to CT teaching in the pilot primary 

schools. Also, they have to support the teacher in creating 

a joyful and innovative learning environment, and act as 

a role model in the classroom (e.g. passionate, 

responsive). 

On the other hand, the major responsibilities of TAs are 

to provide a professional support to teachers in relation 

to teaching and learning. They have to praise students 

who have successfully completed the class exercises 

with creative ideas and behave well, and are able to assist 

other classmates. Also, they have to inspire students to 

generate creative ideas by encouraging students to finish 

their tasks by themselves with appropriate guidance. 

They have to report any concerns regarding student 

matters to their supervisors. 

3. EVIDENCES OF SELF-

DEVELOPMENT OF TAS IN CT 

EDUCATION 
Data are being collected and presented in forms of 

reflective summary submitted by TAs. The extracted 

content of the reflective summary are also mapped with 

corresponding factors of the stress-adaptation-growth 

process of the Intercultural Transformation Theory (ITT) 

(Kim and Ruben (1988)). One TA case is presented in 

this paper (See Appendix). More elaboration of other 

cases will be presented in the conference. 
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5. APPENDIX 
 

TA Case 

ITT 

Factors 

Extracted Reflective Summary 

Stress Expectation before the co-teaching is 

simple and direct. To be part of a 

remarkable project that will enrich my 

life. Frankly, the work I am doing right 

now is more or less the same as I 

expected.  

The classroom experience is 

overwhelming. Witnessing our future 

generation build an astonishing program 

from scratch is definitely something 

beyond joy. 

Adaptation The young fellas have many questions 

regarding the lesson, sometimes I heard 

funny questions and sometimes, some 

of their questions even inspire me.  

Of all the awesome experience I had, 

one that stand out is a child asked me 

whether she can write her program in 

Japanese. I was not sure whether my 

answer should be yes or no at that time 

and still not sure at this moment. But I 

told her as long as she finished her 

classwork, she can program it in 

Japanese. Surprisingly, she finished her 

work within 15 minutes and start 

writing her Japanese program.  

Growth This experience made me realized the 

power of curiosity and sometimes it 

might be the best teacher a child can 

have.    



 

 

 

Author Index 

 

Hal ABELSON 84 

Gabriella ANTON 17 

Connor BAIN 17 

Gautam BISWAS 11, 28, 34 

Ana C. CALDERON 6 

Mei-ki CHAN 107 

Peng CHEN 94 

Yanru CHENG 55 

Ray CHEUNG 172 

Wai-chong CHIA 133 

Belinda CHNG 122 

Sue-inn CH’NG 133 

Hyungshin CHOI 81 

Bessie CHONG 139 

Tom CRICK 6 

Xinyue DENG 168 

Peh-yenc EE 45 

Birgit EICKELMANN 103 

Deborah A. FIELDS 67 

Chung-kit FUNG 55 

Divya GOPINATH 145 

Arjun GUPTA 145 

Bruria HABERMAN 23 

Asif HASAN 28 

Wu-jing HE 107 

Michael HORN 17 

Ting-chia HSU 73 

Chiu-fan HU 50 

Hsin-chung HU 73 

Ronghuai HUANG 94 

Nicole M HUTCHINS 34 

Jane IM 160 

Joseph IPPOLITO 60 

Yasmin B. KAFAI 67 

P. Kevin KEITH 90 

Mi-song KIM 81 

Siu-cheung KONG 77, 84, 97 

Ron Chi-wai KWOK 172 

Amelie LABUSCH 103 

Chun-kiu LAI 55 

Ming LAI 77, 84 

Karen LANG 84 

Andrew LAO 84 

Natalie LAO 84 

Nguyen-thinh LE 39 

Chien-sing LEE 45, 150 

Irene A. LEE 60 

Matthew LEE 172 

Yunli LEE 133 

Kaitlyn D. LEIDL 116 

Robert Kwok-yiu LI 64, 172 

Ling LIN 55 

Yu-tzu LIN 50 

Liu LIU 164 

Meei-yen LONG 122 

Chee-kit LOOI 164 

Samuel Hong-shan LOW 150 

Debora LUI 67 

Joyce MALYN-SMITH 60 

Paul MEDLOCK-WALTON 160 

Orni MEERBAUM-SALANT 23 

Claudia MIHM 110, 116 

Jesús MORENO-LEÓ N 154 

Evan W PATTON 2, 145, 168 

Niels PINKWART 39 

Sarah POLLACK 23 

Gregorio ROBLES 154 

Marcos ROMÁ N-GONZÁ LEZ 154 

Lisa L RUAN 2 

Peter SEOW 164 

Josh SHELDON 77, 84, 145 

Amanda A. SULLIVAN 110 

Florence R. SULLIVAN 90 

Hillary SWANSON 17 

Chee-wei TAN 55, 64,172 

Ai-ling THIAN 122 

Mike TISSENBAUM 2, 77, 84, 145, 160 

Catherine TRYFONA 6 

Marina UMASCHI BERS 110, 116 

Bimlesh WADHWA 164 

An-tsu WANG 50 

Uri WILENSKY 17 

Jane Yat-ching WONG 64 

Jing-wen WONG 45 

Kwong-cheong WONG 127 

Pam Hau-yung WONG 64 

Wan-chi WONG 107 

Cheng-chih WU 50 



 

 

 

Longkai WU 164 

Lee-seng YEONG 133 

Pei-duo YU 55 

Elaine ZHANG 145 

Ningyu ZHANG 11, 34 



 

 

 

 

 


