

Proceedings of Fifth APSCE International Conference on
Computational Thinking and STEM Education 2021

2nd - 4th June 2021

Singapore

Organized by

Asia-Pacific Society for Computers in Education

Hosted by

National Institute of Education

Nanyang Technological University, Singapore

Copyright 2021

All rights reserved

Publication of Asia Pacific Society for Computers in Education

ISSN 2664-5661

Preface
The 5th APSCE International Conference on Computational Thinking and STEM Education
2021 (CTE-STEM 2021) is organized by the Asia-Pacific Society for Computers in Education
(APSCE). CTE-STEM 2021 is hosted by the National Institute of Education, Nanyang
Technological University (NIE/NTU). This conference continues from the success of the
previous four international Computational Thinking conferences organised by the Education
University of Hong Kong (EdUHK) and JC@Coolthink in Hong Kong. In addition to
Computational Thinking, we will be expanding the conference to invite STEM researchers and
practitioners to share their findings, processes and outcomes in the context of computing
education or computational thinking.

CTE-STEM 2021 is a forum for worldwide sharing of ideas as well as dissemination of findings
and outcomes on the implementation of computational thinking and STEM development. The
conference will comprise keynote speeches, invited speeches, panel discussions, workshops
and paper presentations. All accepted papers will be published in ISSN-coded proceedings.

The International Teachers Forum is organized for teaching practitioners to share their
practices in teaching Computational Thinking, Computing and STEM in the classroom. We
believe bringing all these would create enriching experiences for educators and researchers to
share, learn and innovate approaches to learning through Computational Thinking and STEM
education. This year, teachers can participate in Lightning Talks to share ideas about teaching
and learning CT.

The Students Forum (BuildingBloCS) is organized by students, for students. It is Singapore’s
annual Computing education outreach programme. Started back in 2017, it is not only a
national computing education outreach programme, but also a platform for leadership
development, innovation programme, EVIA (Education & Values In Action) and student-
friendly social network. We have been very encouraged by the strong support given by
Ministry of Education (Singapore) and many other community and industry partners.

On behalf of APSCE and the Conference Organizing Committee, we would like to express
our gratitude towards all speakers, panelists, as well as paper presenters for their contribution
to the success of CTE-STEM 2021.

We sincerely hope everyone enjoys and get inspired from CTE-STEM 2021.

With Best Wishes,

Professor LOOI, Chee-Kit

Conference Chair,
CTE-STEM 2021
National Institute of Education
Nanyang Technological
University, Singapore

A/P WADHWA, Bimlesh

Conference Co-Chair,
CTE-STEM 2021
National University of
Singapore, Singapore

Professor DAGIENÉ, Valentina

Conference Co-Chair,
CTE-STEM 2021
Vilnius University, Lithuania

Main Theme and Sub-themes

“Computational Thinking and STEM Education” is the main theme of CTE-STEM 2021
which aims to keep abreast of the latest development of how to facilitate students’
computational thinking abilities and STEM development, in the context of computing
education or computational thinking. The conference also aims to disseminate findings and
outcomes on the implementation of CT development in school and STEM education. There
are 19 sub-themes under CTE-STEM 2021, namely:

Computational Thinking and Coding Education in K-12

Computational Thinking and Unplugged Activities in K-12

Computational Thinking and Subject Learning and Teaching in K-12

Computational Thinking and Teacher Development

Computational Thinking and IoT

Computational Thinking and STEM/STEAM Education

Computational Thinking and Data Science

Computational Thinking and Artificial Intelligence Education

Computational Thinking Development in Higher Education

Computational Thinking and Special Education Needs

Computational Thinking and Evaluation

Computational Thinking and Non-formal Learning

Computational Thinking and Psychological Studies

Computational Thinking in Educational Policy

STEM Learning in the Classroom

STEM Activities in Informal Contexts

STEM Education Policies

STEM Pedagogies and Curriculum

STEM Teacher Education and Professional Development

Paper Submissions to CTE-STEM 2021

The conference received a total of 47 submissions (29 full papers, 14 short papers and 4 poster
papers) by 116 authors from 21 countries/regions (see Table 1)

Table 1: Distribution of Paper Submissions for CTE-STEM 2021

Country/ Region No. of Authors Country/Region No. of Authors
Canada 4 Lithuania 2
China 19 Malaysia 5
Cyprus 1 Mexico 4
Estonia 1 Netherlands 1
Finland 4 Peru 2
Greece 2 Singapore 11
Germany 2 Spain 1
Hong Kong 14 Sweden 5
India 4 Taiwan 9
Italy 4 United States 18
Japan 3 Total 116

The International Programme Committee (IPC) is formed by 74 members and 13 co-chairs
worldwide. Each paper with author identification anonymous was reviewed by at least three
IPC Members or co-chairs. Meta-reviewers then made recommendation on the acceptance of
papers based on IPC Members’ reviews. With the comprehensive review process, 35
accepted papers are presented (10 full papers, 15 short papers and 10 poster papers) (see
Table 2) at the conference.

Table 2: Paper Presented at CTE-STEM 2021

Sub-themes Full
Paper

Short
Paper

Poster
Paper

Total

Computational Thinking and Coding Education in
K-12

2 1 2 5

Computational Thinking and Unplugged Activities in K-
12

0 0 1 1

Computational Thinking and Subject Learning and
Teaching in K-12

3 2 0 5

Computational Thinking and Teacher Development 1 1 0 2
Computational Thinking and IoT 0 0 0 0
Computational Thinking and STEM/STEAM Education 0 0 1 1
Computational Thinking and Data Science 0 0 2 2
Computational Thinking and Artificial Intelligence
Education

0 0 0 0

Computational Thinking Development in Higher
Education

1 2 1 4

Computational Thinking and Special Education Needs 0 1 0 1
Computational Thinking and Evaluation 1 0 0 1
Computational Thinking and Non-formal Learning 2 0 0 2
Computational Thinking and Psychological Studies 0 1 0 1
Computational Thinking in Educational Policy 0 0 0 0

Sub-themes Full
Paper

Short
Paper

Poster
Paper

Total

STEM Learning in the Classroom 0 3 0 3
STEM Activities in Informal Contexts 0 1 0 1
STEM Education Policies 0 1 0 1
STEM Pedagogies and Curriculum 0 2 1 3
STEM Teacher Education and Professional Development 0 0 2 2

Total 10 15 10 35

Editors

Chee Kit LOOI

Nanyang Technological University

Bimlesh WADHWA
 National University of Singapore

Valentina DAGIENĖ
 Vilnius University

Peter SEOW

Nanyang Technological University

Ying Hwa KEE

Nanyang Technological University

Long Kai WU

Nanyang Technological University

Table of Contents

COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12
Full Paper
Exploring the Effectiveness of Pair Programming in Developing Students’ Computational Thinking Skills
through Scratch

Wee Meng Frankie LEOW, Wendy HUANG ... 2
Achievement and Effort in Acquiring Computational Thinking Concepts: A Log- based Analysis in a Game-
based Learning Environment

Shuhan ZHANG, Gary K.W. WONG, Peter C.F. CHAN ... 8
Short Paper
Cultivating Computational Thinking through Game-based Scratch Programming

Xiaoqian LI, Jing LI, Jiansheng LI .. 14
Poster Paper
Developing Girls' Computational Thinking by Playing Programming Games

Jing LI, Jiansheng LI ... 18
Programming Socio-scientific Games: A Computational Thinking Approach to Real-world Problems

Marianthi GRIZIOTI, Chronis KYNIGOS .. 20

COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12
Poster Paper
Research on the Design of Unplugged Computer Science Teaching Activities in Elementary School—Taking the
Fruit Delivery Game Course as an Example

Bingqing YANG .. 23

COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12
Full Paper
A Hybrid Approach to Teaching Computational Thinking at a K-1 and K-2 Level

Damien ROMPAPAS, Steven YOON, Jonothan CHAN .. 26
Using the Beginners Computational Thinking Test to Measure Development on Computational Concepts Among
Preschoolers

Maria ZAPATA-CÁCERES, Nardie FANCHAMPS ... 32
Storytelling through Programming in Scratch: Interdisciplinary Integration in the Elementary English Language
Arts Classroom

Emrah PEKTAŞ, Florence R. SULLIVAN ... 38
Short Paper
Students’ Learning of Computational Thinking in Schools with Different Curriculum Approaches Including
Individual Student Characteristics

Amelie LABUSCH, Birgit EICKELMANN ... 43
A Standard Decomposition Process to Inform the Development of Game-Based Learning Environments Focused
on Computational Thinking

Elizabeth L. ADAMS, Ching-Yu TSENG, Paul FOSTER, Vinson LUO, Leanne R. KETTERLIN-GELLER,
Eric C. LARSON, and Corey CLARK .. 47

COMPUTATIONAL THINKING AND TEACHER DEVELOPMENT
Full Paper
Different Paths, Same Direction: How Teachers Learn Computational Thinking in STEM Practices through
Professional Development

Sally WU, Amanda PEEL, Connor BAIN, Michael HORN, Uri WILENSKY .. 52
Short Paper
An Experience of Conducting Online Teacher Development for Computational Thinking Teaching in a Primary
School Context

Siu-Cheung KONG .. 58

COMPUTATIONAL THINKING AND STEM/STEAM EDUCATION
Poster Paper
ARTEC Logic Puzzle: The Role of Computational Thinking with Extension to Extended Logic

Chung-Oi KOK .. 63

COMPUTATIONAL THINKING AND DATA SCIENCE
Poster Paper
Infusing Computational Thinking into the Accounting Practice Course

Tao WU, Maiga CHANG .. 66
VizBlocks: A Data Visualization Literacy Education Tool

TRAVIS Jia Yea CHING, Bimlesh WADHWA ... 68

COMPUTATIONAL THINKING DEVELOPMENT IN HIGHER EDUCATION
Full Paper
Making the Thinking Results of Programming Visible and Traceable with a Multi-layer Board Game

YungYu ZHUANG, Andito SAPUTRO, Mahesh LIYANAWATTA, Jen-Hang WANG, Su-Hang YANG,
Gwo-Dong CHEN ... 71

Short Paper
A Framework for Integrating Computational and Design Thinking Processes

Riccardo CHIANELLA, Diego REITANO, Ettore MORDENTI, George BARITSCH 77
The Effects of an AR Programming Game on Students’ Different Prior Computational Thinking Skills
 Huai-Hsuan HUANG, Vandit SHARMA, Kaushal Kumar BHAGAT, Wen-Min HSIEH, Nian-Shing CHEN.. 81
Poster Paper
A Systematic Review of Distributed Pair Programming Based on the Team Effectiveness Model

Fan XU, Ana-Paula CORREIA .. 85

COMPUTATIONAL THINKING AND SPECIAL EDUCATION NEEDS
Short Paper
Proposal for the Production of Virtual Reality Environments in Elementary Education with a Constructivist
Approach

José E. GUZMÁN-MENDOZA, Héctor CARDONA-REYES, M. Lorena BARBA-GONZÁLEZ, Klinge O.
VILLALBA-CONDORI, Dennis ARIAS-CHAVEZ, M. Luisa Fernanda RÁBAGO-GONZÁLEZ 88

COMPUTATIONAL THINKING AND EVALUATION
Full Paper
A Preliminary, Systematic Review of Teaching and Learning Computational Thinking in Early Childhood
Education

Anika SAXENA, Gary WONG ... 93

COMPUTATIONAL THINKING AND NON-FORMAL LEARNING
Full Paper
Bringing Physical Computing to an Underserved Community in an Informal Learning Space

Chin-Lee KER, Bimlesh WADHWA, Peter Sen-Kee SEOW, Chee-Kit LOOI .. 101
Combining Maker Technologies to Promote Computational Thinking and Heart- ware skills through Project-
based Activities: Design Considerations and Empirical Outputs

Ali HAMIDI, Sepideh TAVAJOH, Marcelo MILRAD .. 107

COMPUTATIONAL THINKING AND PSYCHOLOGICAL STUDIES
Short Paper
Influential Factors of Hong Kong Secondary School Students’ Intrinsic Motivation to Coding Education during
the COVID-19 Epidemic: A Correlational Analysis

Xin ZHANG, Gary K.W. WONG, Qiaobing WU, Bill Y.P. TSANG ... 114

STEM LEARNING IN THE CLASSROOM
Short Paper
An Evolving Definition of Computational Thinking in Science and Mathematics Classrooms

Amanda PEEL, Sugat DABHOLKAR, Sally WU, Michael HORN, Uri WILENSKY 119
Action Research on Engineering Design-oriented and Project-based STEM Teaching Model

Hong YU, Lu ZOU .. 123
A Case Study of 7th Grade Students Learning Programming to Solve Mathematics Problems

Wendy HUANG, Chee-Kit LOOI, Mi Song KIM ... 127

STEM ACTIVITIES IN INFORMAL CONTEXTS
Short Paper
Developing STEM Makers with Mentoring and Authentic Problem-Solving Strategies

Xiaojing WENG, Thomas K.F. CHIU, Morris S.Y. JONG ... 132

STEM EDUCATION POLICIES
Short Paper
Euro-Asia Collaboration for Enhancing STEM Education

Anders BERGLUND, Valentina DAGIENE, Mats DANIELS, Vladimiras DOLOGOPOLOVAS, Siegfried
ROUVRAIS, Miriam TARDELL .. 136

STEM PEDAGOGIES AND CURRICULUM

Short Paper
Designing an Interdisciplinary Social-scientific STEM Curriculum on Students’ Empathy, Efficacy, and Interest

Biyun HUANG, Morris Siu-Yung JONG, Ching Sing CHAI, Yun DAI, Darwin LAU 141
A Co-design Approach for Developing Computational Thinking Skills in Connection to STEM Related
Curriculum in Swedish Schools

Rafael ZEREGA, Ali HAMIDI, Sepideh TAVAJOH, Marcelo MILRAD ... 144
Poster Paper
Analysis of the Development Direction of STEM Curriculum in China

Lihua PENG .. 148

STEM TEACHER EDUCATION AND PROFESSIONAL DEVELOPMENT
Poster Paper
Teacher Sensemaking on Computational Thinking in a Community of Math Teachers

Chung Yiu SIU, Mi Song KIM, Wendy HUANG, Chee-Kit LOOI .. 151
A Systematic Review of Teachers’ Preparedness towards Computational Thinking Integration in Mathematics

Shiau-Wei CHAN, Chee-Kit LOOI, Shivani MAHEDIRATA, Mi Song KIM .. 153

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

1

Computational Thinking
and Coding Education in

K-12

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

2

Exploring the Effectiveness of Pair Programming in Developing Students’
Computational Thinking Skills through Scratch

Wee Meng Frankie LEOW1, Wendy HUANG2
1Bedok Green Secondary School, Singapore

2National Institute of Education, Nanyang Technological University, Singapore
leow_wee_meng_frankie@moe.edu.sg, wendy.huang@nie.edu.sg

ABSTRACT
Pair programming (PP) is a useful strategy to promote
computational thinking (CT) among students. Studies have
shown that PP under appropriate conditions can enhance
student achievement and increase their motivation in
learning programming. Furthermore, studies have also
shown that Scratch, a graphical block-based programming
language, enables student learning in programming to
become more interesting, more challenging and more
creative. This study explored the effectiveness of PP in
developing students’ CT skills through Scratch in a
Singapore secondary school. The findings suggest that PP
is more effective than the solo programming, both
in supporting and enhancing students’ learning
and understanding of basic programming concepts and CT
skills, as well as on improving students’ motivation
toward programming. Limitations of this study and
implications for teaching are also discussed.

KEYWORDS
Pair Programming, Scratch, Computational Thinking,
Computer Applications, K-12

1. INTRODUCTION
To nurture students to be future-ready and contribute
effectively in an increasingly complex and interconnected
world shaped by computer technologies, the Singapore
Ministry of Education (MOE) has strengthened digital
literacy among students through the Smart Nation Initiative
(Smart Nation, 2014) and the National Digital Literacy
Programme (MOE, 2020). As developing computational
capabilities is one of the key enablers for these national
initiatives, secondary schools and junior colleges computer
education curriculum were also revised to introduce
computational thinking (CT) and its related concepts such as
abstraction, algorithmic thinking and decomposition to
students through programming in subjects such as Computer
Applications (CPA) and O-Level Computing (MOE, 2017,
2019). Secondary students who took CPA are introduced to
programming at secondary two through Scratch 2.0
(Scratch), a graphical block-based programming language,
using Scratch editor.

The secondary two CPA students in a typical public co-
educational school (it is called “School A” in this paper)
initially learned Scratch through solo programming. While
students worked independently to complete the Scratch
projects, the teachers observed that students struggled to
correctly apply the knowledge they have learned to create
the projects and got frustrated as a result when the codes did
not work as intended. Students may know the function of
each graphical block but they did not know how to combine
those blocks in order to produce valid and correct

programs. Students also faced difficulties in the use of
variables, operators blocks, event blocks and blocks
that encapsulate other blocks (e.g. loops). For example,
students commonly have misconceptions regarding
variable initialisation and loop conditions during the
creation of their scratch projects. Hence, despite the ease in
using Scratch to learn programming, many students tend to
find programming difficult to learn and get frustrated when
they are unable to get their programs to work as intended
(Choo et al., 2017; Rahmat et al., 2012).

To explore the effectiveness of PP in developing
students’ CT skills and in motivating students to learn
programming through Scratch, the secondary two CPA
students in School A attended three PP lessons. This
study explored the effectiveness of pair programming
(PP) in developing students’ CT skills, measured by their
learning achievement in PP. The study focused on
answering the following research questions:

1. What is the effectiveness of PP in developing students’
CT skills through Scratch?

2. How motivated are students to learn programming
through Scratch when using PP?

2. LITERATURE REVIEW
2.1. Pair Programming
PP involves two people working side by side each other at
one computer and collaborate closely to create a program.
One acts as the driver who is responsible for controlling the
shared resources (e.g., computer, mouse, keyboard) and
actively involved in the programming task such as using the
mouse to input the codes. The other acts as the navigator who
is responsible for observing the driver’s work and providing
support by pointing out errors in the codes and/or offering
suggestions on how to solve a problem (Williams & Kessler,
2002). During the program completion process, the driver
and navigator roles are switched after a period of time
(Williams & Kessler, 2002).

Studies have shown that students regularly perform better
with PP than with solo programming in CT (Lye & Koh,
2014; Werner & Denning, 2009). Paired students were more
likely to hand in solutions for their programming tasks that
were of higher quality than students who programmed
independently (McDowell et al., 2002). Furthermore,
various studies have also shown that PP can
(1) improve individual programming skills (Braught, Eby, &
Wahls, 2008; Cliburn, 2003) and (2) reduces frustration
experienced by novice programmers, increases their
satisfaction, enjoyment; and promote positive attitudes in
programming in them (Bishop-Clark, Courte, Evans, &
Howard, 2006; Preston, 2005).

mailto:leow_wee_meng_frankie@moe.edu.sg
mailto:wendy.huang@nie.edu.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

3

2.2. Computational Thinking
During programming, students are exposed to CT. Wing
(2017, p. 8) defines CT as the “thought processes involved
in formulating a problem and expressing the solution(s) in
ways that a computer—human or machine—can effectively
carry out.” The “computer” here refers to an information
processing agent that can be a human or a computer, or a
combination of both. Selby (2014) further elaborates that CT
as cognitive processes, involves thinking in abstractions,
algorithmically and in terms of decomposition,
generalization and evaluation. Binkley et al. (2012) and
Yadav et al. (2014) also posit that CT has the potential to
foster creativity and problem-solving skills among students.
Hence, CT is not just about problem formulation, but also
about problem solving where students are encouraged to
think in new ways to come up with solutions. Therefore, CT
equips and empowers the students with knowledge, skills
and programming competencies to move beyond being
consumers of technology to becoming creative thinkers and
problem-solvers in a tech-driven world.

3. METHODS
3.1. Participants
The participants were 40 secondary two CPA students in
School A. They were introduced to Scratch prior to the PP
lessons and had some basic knowledge and skills about
Scratch programming. 12 students were female and 28
students were male.

3.2. The Learning Platform: Scratch
Scratch is a graphical block-based programming language
suitable for students to learn programming because of its low
floor (easy for novice programmers to get started), high
ceiling (opportunities for expert programmers to create
complex projects) and wide walls (supporting different types
of projects that grow out of the programmers’ own interests
and learning profiles) (Resnick et al., 2009). Studies have
shown that using Scratch improves students’ motivation in
learning programming (Ouahbi et al., 2015) and
understanding of basic programming concepts (Saez-Lopez
et al., 2016).

Figure 1. Scratch user interface

Writing a program is done by dragging and dropping the
graphical Scratch blocks to connect them to each other
vertically. These blocks are color-coded and grouped into
different categories based on their functions (e.g., event
blocks, control blocks), thereby allowing programmers to
see the relationship between the different blocks easily.

Accordingly, students can create programs, which in Scratch
are called projects, such as stories, animations, games,
simulations, songs, etc. by connecting the blocks in the
correct sequence. Figure 1 shows the Scratch user interface
while Figure 2 shows an example of a program written using
Scratch blocks.

Figure 2. Example of a program written using Scratch

blocks

3.3. Procedure
Prior to the intervention, students completed a solo
programming project over one hour and 30 minutes.
Thereafter, they attended three PP lessons (four hours thirty
minutes in total). In each PP lesson, students shared one
computer to work through the scenario, design and develop
their Scratch project, with one driving (controlling the mouse
and keyboard) and the other navigating (checking for errors
and bugs, and providing support and feedback). The pairs
must switch their roles every 10 minutes during PP.

Pairs were assigned based on student choice. All students
chose a same-gender classmate to work with for all the three
PP lessons. There was a total of 6 pairs of girls and 14 pairs
of boys. However, for each subsequent lesson, every student
was required to choose a new partner.

After students reviewed earlier lessons on Scratch
programming, they were introduced to the Scratch project
that they need to complete and the rubrics for the project as
well as PP and the accompanying PP expectations. Table 1
further shows a summary of the activities for each PP lesson.

3.4. The Scratch Programming Projects
Over the three classes, students were given two
programming projects to assess their programming
knowledge and capability during PP. They consisted of
students’ choice of two semi-open projects with a defined
outcome and an undefined process (see Table 2) and were to
be completed by the paired students within lesson one (for
PP project 1) and within lessons two and three (for PP project
2).

3.5. Data collection
In this paper, data was collected during PP by observing
students’ behaviors and interactions (including the questions
asked by students when seeking help, frequency of seeking
help from teachers, and verbatim comments by students
during PP) as they designed, coded and implemented their
Scratch projects. We observed how students applied CT
skills such as evaluation when they encountered bugs and
algorithmic thinking when conceptualising and
implementing the projects. We also examined these projects
based on the rubrics and compared

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

4

their scores with the Scratch projects done earlier through
solo programming.

Table 1. Sample PP lesson

Table 2. Overview of the pair programming project

4. FINDINGS AND DISCUSSIONS
4.1. Comparison of students’ scores for solo

programming and PP
To evaluate the effectiveness of PP in developing students’
CT skills, measured by their learning achievement in PP,
paired samples t-tests were conducted to determine whether
the mean of students’ scores for PP project 1 (M=9.48,
SD=7.542) and PP project 2 (M=6.65, SD=7.150)
significantly differed from the mean of students’ scores for
solo programming task (M=5.18, SD=7.542).

A pair programming session is considered effective to
enhance students’ performance if their mean score for either
PP projects 1 or 2 is higher than their score for a similar solo
programming project and the improvement is statistically
significant. In general, students working in pairs performed
better compared to programming alone as both the mean
scores for the PP projects were higher than the mean score
for the solo programming project.

The results for the paired t-tests indicated that the difference
between PP project 1 and solo programming project was
significant, t(39)=-3.61, p<.001. Therefore, this could mean
that PP may positively affect the students’ learning
performance.

However, results for the paired t-tests showed that the
difference between PP project 2 and solo programming
project was not significant, t(39)=-1.30, p>0.001. It may be
caused by three possible reasons.

Firstly, it may be due to the increasing difficulty on PP
project 2, which was a Scratch game in contrast to a Scratch
animation in PP project 1. Studies have shown that task
complexity influences the effectiveness of PP and in turn,
student learning (Hannay et. al., 2010).

Secondly, it may be due to a change in partners in PP project
2. Factors that had been identified to influence the effects of
PP include partners’ personalities and temperaments
(Hannay et al., 2010; Katira et al., 2004); and social factors
such as gender, partnership and culture (Zhong, Wang, &
Chen, 2016). As students had to change partners, this meant
that they may be paired with a less desirable partner and
therefore, having compatibility of pairs issues and resulted
in lower motivation to persevere and complete the project. In
this case, as the pairs were of the same gender, the social
factor that is likely to contribute to the insignificant
difference between PP project 2 and solo programming
project is partnership between the pairs being affected by the
partners’ personalities and temperaments.

Thirdly, it may be due to the partner’s skills, knowledge and
experiences (Hannay et al., 2010; Lui & Chan, 2006). For
example, if a low progress student is paired with another low
progress student, the improvement in the learning
achievement for both students may not be as

Lesson Time/min Description of lesson activities

1 5 Revision of last Scratch lesson’s
concepts.

5 Students are introduced to PP
(includes the showing of PP video in
lesson 1. But the showing of PP video
will not be implemented in lessons 2
and 3) or reminded of PP expectations
in lessons 2 and 3.

5 Students get into pairs (each pair will
need to have a different partner for
each lesson) and are introduced to the
different scenarios for the Scratch
project that they need to complete
within the lesson (includes
implementation details and rubrics for
this project).

10 Each pair decides on their preferred task
scenario for the project. Thereafter,
the paired students will prepare the
script and storyboard for their Scratch
project.

60 The paired students carry out PP to
complete their project and will switch
roles after every 10 minutes.

5 Summary of the concepts learned in
the lesson.

Type Project

Solo Solo Project: Two sprites having a conversation at the
basketball court, with one sprite introducing
himself/herself to and having a conversation with
the other sprite to get to know him/her better.

PP PP Project 1: Choose 1 out of 3 scenarios

Animation 1: Two sprites having a conversation,
with one sprite sharing a riddle with his/her friend.

Animation 2: Two sprites having a conversation,
with one sprite sharing his/her favourite Korean
drama and why he/she likes this Korean drama to
his/her friend.

Animation 3: Two sprites having a conversation,
with one sprite sharing his/her favourite game that
he/she plays with his/her friend.

PP Project 2: Choose 1 out of 3 scenarios

Game 1: A cat appears and it is supposed to catch
doughnuts as they fall from the sky.

Game 2: A cat appears and it is supposed to jump

onto blocks to collect stars.

Game 3: A mouse appears at the start of the maze
and it is supposed to find the cheese. A cat will
forever chase after the mouse.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

5

greater as the learning achievement of a pair that consists of
a high progress student and a low progress student. In the
latter, the high progress student will gain more knowledge
and competencies in the CT skills since each time he/she
teaches, he/she re-learns the materials while the low progress
student will benefit from peer teaching. Therefore, PP can be
beneficial even when partners bring different levels of prior
programming experience, but the improvement in learning
achievement may not always be the same for both partners.
This suggests that when students work with a partner who
has relatively more experience, they can still learn.

It can be therefore stated that PP may positively affect the
students’ academic performance. Results of these analyses
are shown in Table 3.

Table 3. Results of paired t-tests for the different tasks

4.2. Teachers’ Observations of Students’ Behaviors
and Interactions during PP

We observed three categories of pair behaviors during the
completion of the projects: collaborative, exploratory and
off-task. Pairs engaged collaboratively when they interact
verbally and non-verbally to share their thoughts and ideas
during the creation of their projects, and willingly switches
roles after each 10 minutes interval. Exploratory behavior

Majority of the pairs did not engage in planning during the
10 minutes designated for the planning of the script and
drawing of the storyboard. Instead, they engaged directly
with Scratch Editor to plan and input the Scratch blocks for
their projects. To further explore what PP looks like, we
analysed the distribution of specific pair behaviors by gender
pairs that were happening most of the time during the
creation of the two PP projects. While collaborative behavior
was the most common across pairs; a few pairs spent their
time in off-task or exploratory behavior. The results are
shown in Table 5.

Table 5. Distribution of pair behaviors by gender pairs
most of the time while completing PP projects 1 and 2

goes beyond students engaging collaboratively. Pairs
constructively challenge each other’s thoughts, ideas and
programming decisions. On the other hand, off-task
behavior involves pairs or individual student within the pairs
being disengaged and holds up the programming process.
For example, pairs engage in verbal or non-verbal exchanges
not about their Scratch project or programming. Further
description and examples are shown in Table 4.

Table 4. Pair behaviors during game interaction We observed that during PP, students took the initiative to
ask the teachers questions on whether their suggested codes
are workable or whether their sequence of algorithmic
thinking or of decomposition is correct. This contrasted with
solo programming when more students either gave up or
asked the teachers what are the codes to input in order to
complete the solo project.

Furthermore, while most pairs spent most of their time in
collaborative behavior, we observed that most female pairs
spent proportionally more time on collaborative behavior
and a smaller proportion of their time in exploratory
behavior, while some male pairs spent a greater proportion
of their time in exploratory and off-task behaviors. This
suggests that gender can be an issue in PP context.
Although studies showed that males tend to be more

between
tasks

Solo project
vs PP project
1

Solo project
vs PP project
2

Mean
difference

df Sig

4.30 -3.61 39 0.0087

1.48 -1.30 39 0.1997

Category Description

Partner gives and
receives suggestions,
ask questions and
responds by carrying
out the suggestions.

Example

Driver adds certain
blocks of
Navigator
comments
identify

offers

Switches roles
willingly.

Exploratory Pair listens and
engages
constructively
around suggestions.
Verbalises reasons

Driver makes the
changes.

Navigator spots
errors and offers
suggestions; Driver
disagrees and
navigator explains

and reflect. his/her reasoning.
Driver becomes

Off-task Partner
decisions

the other partner’s
input, without any

convinced and
makes the changes,
then test the
game/animation.

One partner insists
the other change the
sequence of
codes and no

explanation. Or
driver is

reason was given.
The other ignores
partner.

programming while
Navigator is not
tracking what is
happening on
monitor (e.g., leave
the
station).

Category of pair
behavior

Gender pair

Collaborative

Exploratory

Off-task

4

Boy-boy

10

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

6

assertive in their views and focus on independence (Leaper
& Smith, 2004); and females try to avoid conflict and seek
support, consensus and suggestions (Sullivan et. al., 2015),
the issue of gender in PP in secondary school context needs
further exploration.

The findings showed that students behaviors and interactions
varied across pairs, and differences could be due to the level
of confidence (either individually or as a pair) in completing
the projects based on their knowledge and skills in Scratch
programming. Furthermore, the findings also showed that
majority of the students were more motivated to learn and
engage in programming through Scratch while doing PP.
Overall, the result of this paper is consistent with other
studies that PP could reduce frustration experienced,
enhance student enjoyment, and promote positive attitudes
in programming ((Bishop-Clark et al., 2006; McDowell et
al., 2002; Preston, 2005).

5. LIMITATIONS
The findings in this paper are limited in several ways. First,
we did not measure the quality of the relationship between
partners as a factor affecting the students’ behaviors and
interactions during PP. Studies have shown that one partner
can dominate the interactions (Deitrick, Shapiro, & Gravel,
2016). Second, we did not measure the class collaborative
culture and the extent to which collaboration supported PP.
Future work involving rich observational data could help
describe the classroom culture regarding collaboration.
Third, we did not have mixed gender pairing of students of
which may have yielded additional insight into pair
behaviors. Lastly, we did not investigate the time factor:
period of switching roles. The period of switching roles in
this study was a fixed time interval of 10 minutes. We did
not investigate whether if fixing a longer time interval of
15 to 20 minutes or having pairs switched their roles
according to their own needs as and when they chose, would
help in the learning of CT skills and achievement. This
would provide additional insights on the effect of period of
switching roles in PP on student learning.

6. CONCLUSION AND IMPLICATIONS
FOR TEACHING

Overall, our findings suggest that students who programmed
with a partner learned more than when they programmed
alone. PP also seemed to motivate students to acquire CT
skills. Hence, our finding supports prior studies that show
the benefits of PP for learning and provide some detail on
the factors that relate to those benefits.

The findings in this paper also have implications for
teaching. Firstly, the findings can help teachers understand
what PP looks like in a secondary school classroom and the
different variability in how pairs interact. Therefore,
teachers must plan to create effective pairs. When pairs
possess different levels of experience of programming
knowledge and skills, both students will benefit, but in
different ways. However, it is disadvantageous to pair
students possessing very different attitudes toward
collaboration together. For example, having a partner who
prefers to programme alone can undermine the more
collaborative student’s learning and lead to pair behaviors

that hold up the progress of their Scratch project completion.

Future research can examine the period of switching roles
between the driver and the navigator and how this impacts
the learning of CT skills and motivation in learning
programming through Scratch. Additional research is needed
in order to determine the extent to which the quality of the
relationship between partners affects the students’ behaviors
and interactions during PP, and in turn their learning
achievement in programming.

7. DECLARATION OF CONFLICTING
INTERESTS

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

8. REFERENCES
Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M.,

Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-
first century skills. In P. Griffin, B. McGaw, & E. Care
(Eds.), Assessment and teaching of 21st century skills (pp.
17-66). Dordrecht, Netherlands: Springer.

Bishop-Clark, C., Courte, J., & Howard, E. V. (2006).
Programming in pairs with Alice to improve confidence,
enjoyment, and achievement. Journal of Educational
Computing Research, 34(2), 213-228.

Braught, G., Eby, L. M., & Wahls, T. (2008). The Effects of
pair-programming on individual programming skill. ACM
SIGCSE Bulletin, 40(1), 200-204.

Choo, G. K., Leow, W. M. F., Kaur, S., Yee, W. L. C.
(2017, October 31). Nurturing independent learners
through teaching debugging [Seminar session].
Computing Teachers Seminar 2017, Singapore.

Cliburn, D. C. (2003). Experiences with pair programming
at a small college. Journal of Computing Sciences in
Colleges, 19(1), 20-29.

Deitrick, E., Shapiro, R. B., & Gravel, B. (2016). How do we
assess equity in programming pairs? Singapore:
International Society of the Learning Sciences.

Hannay, J. E., Arisholm, E., Engvik, H., & Sjøberg, D. I.
(2010). Effects of personality on pair programming. IEEE
Transactions on Software Engineering, 36(1), 61-80.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., &
Gehringer, E. (2004). On understanding compatibility of
student pair programmers. ACM SIGCSE Bulletin, 36(1),
7-11.

Leaper, C., & Smith, T. E. (2004). A meta-analytic review
of gender variations in children’s language use:
Talkativeness, affiliative speech, and assertive speech.
Developmental Psychology, 40(6), 993.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.

Lui, K. M., & Chan, K. C. (2006). Pair programming
productivity: Novice–novice vs. expert–expert.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

7

International Journal of Human-computer studies, 64(9),
915-925.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002).
The effects of pair programming on performance in an
introductory programming course. Proceedings of the
Thirty-Third Technical Symposium on Computer Science
Education, (pp. 38-42). ACM Press.

MOE. (2020, March 4). Learn for Life – Ready for the
Future: Refreshing Our Curriculum and Skillsfuture for
Educators [Press release].
https://www.moe.gov.sg/news/press-releases/learn-for-
life--ready-for-the-future--refreshing-our-curriculum-and-
skillsfuture-for-educators

MOE. (2017). O-Level Computing Syllabus. Retrieved
December 20, 2020, from
https://www.moe.gov.sg/docs/default-
source/document/education/syllabuses/sciences/files/o-
level-computing-teaching-and-learning-syllabus.pdf

MOE. (2019). N-Level Computer Applications Syllabus.
Retrieved December 20, 2020, from
https://www.moe.gov.sg/docs/default-
source/document/education/syllabuses/sciences/files/201
9-computer-applications-syllabus.pdf

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., &
Lahmine, S. (2015). Learning basic programming concepts
by creating games with scratch programming environment.
Procedia-Social and Behavioral Sciences, 191, 1479–
1482.

Preston, D. (2005). Pair programming as a model of
collaborative learning: A Review of the research. Journal
of Computing Sciences in colleges, 20(4), 39-45.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N. F. M., Zainal,
N. F. A., & Rahman, R. A. (2012). Major problems in basic
programming that influence student performance.
Procedia– Social and Behavioral Sciences, 59, 287-296.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11),
60-67.

Saez-Lopez, J. M., Román-González, M., & Vázquez- Cano,
E. (2016). Visual programming languages integrated
across the curriculum in elementary school: A two year
case study using scratch in five schools. Computers &
Education, 97, 129–141.

Selby, C. (2014). How can the Teaching of Programming be
Used to Enhance Computational Thinking Skills? The
United Kingdom: University of Southampton.

Smart Nation. (2014). Why Smart Nation. Retrieved
December 07, 2020, from
https://www.smartnation.sg/about-smart-nation

Sullivan, F. R., Kapur, M., Madden, S., & Shipe, S. (2015).
Exploring the role of gendered’discourse styles in online
science discussions. International Journal of Science
Education, 37(3), 484–504.

Werner, L., & Denning, J. (2009). Pair programming in
middle school: What does it look like? Journal of Research
on Technology in Education, 42(1), 29-49.

Williams, L. A., & Kessler, R. R. (2002). Pair programming
illuminated. Boston, MA: Addison-Wesley Longman
Publishing Company.

Wing, J.M. (2017). Computational thinking’s influence on
research and education for all. Italian Journal of
Educational Technology, 25(2), 7-14.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,
J. T. (2014). Computational Thinking in Elementary and
Secondary Teacher Education. ACM Transactions on
Computing Education, 14(1), 1–16.

Zhong, B., Wang, Q., & Chen, J. (2016). The Impact of
social factors on pair programming in a primary school.
Computers in Human Behavior, 64, 423-431.

https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.smartnation.sg/about-smart-nation

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

8

Achievement and Effort in Acquiring Computational Thinking Concepts: A Log-
based Analysis in a Game-based Learning Environment

Shuhan ZHANG1*, Gary K. W. WONG2, Peter C. F. CHAN3
1,2 Faculty of Education, The University of Hong Kong, Hong Kong

3 NetDragon, Hong Kong
shuhan@connect.hku.hk, wongkwg@hku.hk, peterchan@edmodo.com

ABSTRACT
Numerous attempts have been made to apply coding games
in computational thinking (CT) education, and using log
data to explore CT learning is an emerging field. This paper
explored the acquirement of CT concepts (sequences, loops,
and conditionals) by primary and secondary school students
who used a digital coding game called Coding Galaxy. It
aims to investigate (1) whether secondary school students
outperform primary school students, and (2) whether
playing easy game missions is a scaffold for completing hard
missions. Participants (N=188) were sampled from local
schools in Hong Kong. Students were divided into three
groups (A, B, C). Primary school students constituted Group
A and B, while Group C consisted of secondary school
students. Group A was assigned with only hard missions
while easy missions were locked, whereas Group B and C
were given access to both easy and hard missions. Data were
extracted from students’ log files, and 6599 records were
analyzed using learning analytics techniques. Students’
performance was evaluated based on game achievements
and the effort they made to get the achievement. The results
indicate that (1) students performed best in sequences,
followed by loops and conditionals; (2) While secondary
students shared the same pattern with primary students
regarding the difficulty of acquiring CT concepts, secondary
students performed better; and (3) While Group A shared
similar game achievements with Group B, Group B made
less effort in getting the achievements, indicating that easy
missions can scaffold hard missions. The implications of the
findings to various educational stakeholders are discussed.

KEYWORDS
Computational thinking, K-12 education, game-based
learning, log data, learning analytics

1. INTRODUCTION
Computational thinking (CT) has become a heated topic
since 2006 when Jeanette Wing proposed the term as “an
approach to solving problems, designing systems, and
understanding human behavior, by drawing on the concepts
fundamental to computer science” (Wing, 2006, p. 33).
Later in 2014, Wing further gave a more descriptive
definition, stating that CT involves “formulating a problem
and expressing its solution(s) in such a way that a
computer-human or machine-can effectively carry out”
(Wing, 2014, p.1). Wing’s call for the importance of CT
has aroused great effort in incorporating CT into
educational practices (Martins-Pacheco et al., 2019), and
programming education has become the main context for
CT development (Grover & Pea, 2013).

Programming for young children was originated from the
term “Constructionism” (Papert, 1980) which argues that
students build knowledge more effectively when they
actively engage in creating their own projects. Papert
developed a constructionist programming environment, the
LOGO programming tool, to provide a place where
students can represent their abstract ideas through concrete
constructions (Papert 1980). With the popularity of CT
education, programming tools have become the vehicle for
numerous initiatives developed for supporting CT
education, among which visual programming tools,
represented by Scratch (Resnick et al., 2009), have widely
applied for its low complexities in programming syntax
(Zhao & Shute, 2019).

CT learning environment can be categorized regarding its
programming language and the nature of the task it
displays (Manske et al., 2019). Regrading programming
language, they can be classified into text-based
programming tools, block-based visual programming tools,
and arrow-based visual programming tools (Manske et al.,
2019; Moreno-León, 2018). While text-based tools support
users to create programs in textual programming languages,
block-based programming platforms share the features of
“low floor” (easy to begin with) and “high ceiling” (allow
complex projects) (Grover & Pea, 2013). Further, to
support younger children to engage in programming
activities, arrow-based programming environment,
represented by Scratch Jr (Bers & Resnick, 2015), was
created, where representations that are analogous to objects
(eg. arrows) are used (Moreno-León, 2018; Manske et al.,
2019). As for the nature of the task, CT learning
environments can be classified into open task environments
and goal-oriented environments (Manske et al., 2019). In
open task environments (eg. Scratch), users can author the
design of their projects, with the flexibility of creating their
own storyline, whereas goal-oriented platforms,
represented by digital games, impose constraints on
learning progression, providing explicit tasks for learners
to complete. (Manske et al., 2019).

For students, CT learning environments offer a playground
to practice CT skills (Lockwood & Mooney, 2017),
whereas for teachers, these tools provide a way to measure
students’ learning progression (Shute et al., 2017).
Students’ acquisition of CT concepts and skills can be
measured through evaluating their programming projects,
from which different levels of performance can be
indicated (Tang et al., 2020). Yet there are some main
concerns of this approach--the absence of an element does
not necessarily indicate that the students lack the
knowledge, while the presence of a code construct is not
always an accurate indicator of how much the students

mailto:shuhan@connect.hku.hk
mailto:wongkwg@hku.hk
mailto:peterchan@edmodo.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

9

grasp the concept (Kurland et al., 1985; Brennan &
Resnick, 2012). To tackle these challenges, digital games
can serve as an effective tool to assess concept acquisition.
As a goal-oriented learning tool, CT games are designed
with tasks that cover certain CT concepts, and learners’
knowledge can be assessed through evaluating their
performance in solving the task.

To ensure the CT games can effectively support learning,
appropriate instructional design is critical. Instructional
design of a game refers to how the game affords players’
learning and playing (Laporte & Zaman, 2018), of which
one important dimension is the organization of learning
tasks, represented by the sequencing of the tasks
(Merriënboer & Kirschner, 2017). Thus, for the design of
CT games, it is vital to consider the sequencing of
displaying tasks of different CT concepts and the
sequencing of implementing different knowledge points for
each concept. Although there have been numerous attempts
in exploring the content taught by CT games, limited is
known about how the concepts are delivered via game
tasks (Laporte & Zaman, 2018), and studies focusing on
the sequencing of CT concepts and knowledge points
within concepts are still scarce.

This paper will introduce a case study on K-12 students
using a coding game to learn CT concepts. It aims to
explore the sequencing of concept acquisition and
knowledge points within a concept. As this is the first
paper focusing on this particular coding tool, we start by
investigating the three fundamental CT concepts, which are
sequences, loops, and conditionals. The case study takes
place in a self-regulated learning context where students
were assigned game tasks to complete at home during the
COVID-19 pandemic, involving both primary and
secondary students. Students’ knowledge acquisition of CT
concepts was assessed based on game performance, and the
results of different cohorts were compared. The study aims
to answer the following research questions:

1. How does students’ game performance characterize the
difficulty of acquiring CT concepts (sequences, loops, and
conditionals)?
2. Do primary and secondary students share the same
order of difficulty of acquiring CT concepts?
3. Is completing easy missions a scaffold for completing
hard missions?

2. METHOD
2.1. Sample

Participants were selected from local schools in Hong
Kong. A total of 188 students consented to participate in
this study, with 101 from Grade 6 in primary school (age
10-12) and 87 from Grade 2 in secondary school (age 12-

programming language where arrows are used as
commands for players to manipulate directly. This context
is developmentally appropriate for novice learners, because
it could prevent syntax errors and have no requirement on
children’s reading skills (Bers, 2018). Each mission is a
puzzle in which the learner can control the character (an
astronaut) to solve the puzzle using simple visual
programming language. In doing so, the learner must
identify viable routes and use available commands to work
out the solution (See Figure 1). Additionally, the learners
are encouraged to use the fewest commands for the
solution in order to obtain the mission reward.

Figure 1. Coding Galaxy Puzzle Map.

The mission reward is presented as one, two, or three stars
upon finishing a mission. Three stars are awarded for the
optimal solution to the puzzle, involving correct
identification of patterns and accurate use of commands, to
achieve the destination with the fewest commands while
collecting all crystals. Two stars are awarded for partially
fulfilling these criteria. One star is awarded for those who
only solve the puzzle but fail to fulfill other criteria. Also,
there is no limit on time spent on each task, and multiple
attempts are allowed for each mission.

2.3 Research Design

Participants were divided into three groups (see Table 1).
Primary school students constituted Group A and B, while
Group C consisted of secondary school students. All the
students were assigned game chapters of sequences, loops,
and conditionals. Group A was assigned with only hard
missions while easy missions were locked on the platform,
whereas Group B and C were given access to both easy and
hard missions. All students were given two weeks to
complete the tasks. Table 2 illustrate the design of game
missions in terms of knowledge points and the mapping
with easy and hard missions respectively.

Table 1. Information of Each Group.

14). According to the school curriculum, these groups of
students have learned the basic CT concepts at school, so
they were expected to be able to play the coding game
under a self-regulated learning context.

2.2. Apparatus

The game adopted by this study, Coding Galaxy (CG
hereafter), is designed based on an arrow-based visual

 Grade Task
Group A (n=50) Primary school Hard missions
Group B (n=51) Primary school Easy missions,

hard missions
Group C (n=87) Secondary school Easy missions,

 hard missions

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

10

Table 2. Map of Game Missions and Knowledge Points

CT Concept Knowledge point Description Easy* Hard*
Sequences Simple sequence Sequence with fewer than 10 commands √

Loops

Conditionals

Relative position

Relative direction

Complex sequence
Apply preset loops

Loop preset commands

Loop one command
Loop multiple
commands
Nested loops
Add action under
condition
Create conditional
command

Basic spatial awareness, tracking positions to move √ √
with commands
Basic spatial awareness, imagining relative directions √ √
from the view of the character
Sequence with more than 10 commands √
A loop has already been completed in the solution, √
need to put it in with other commands to complete the
whole solution.
Some commands are already in the incomplete √
solution. Complete the loop by setting the loop time
or inserting new commands.
Solution contains loop with 1 command √ √
Solution contains loop with more than 1 command √

Solution contains loop within loop √
The condition has been preset, only need to add action √
through inserting commands
Create conditional commands through selecting right √
conditions and inserting related commands

*easy: easy missions, assigned to Group B and C *hard: hard missions, assigned to all groups

2.4 Data Analysis

Two variables for assessing student knowledge acquisition
were defined and used for analysis, namely achievement,
and effort. Achievement refers to the average stars student
get in each game mission, and effort is reflected by the
number of attempts before achieving the highest number of
stars for each mission. As completion of each mission is
rewarded with three possibilities of number of stars, effort
is presented in three dimensions, namely, 1-, 2-, and 3- star
attempts. To be more specific, if the highest achievement a
player reached in a mission is two stars, which is the third
attempt for trying, then the value of effort for this mission
is “2-star attempts equal to 3”.

Log files of each participant were extracted from the game
backstage, after which the dataset was processed based on
the defined variables. While achievement was calculated
with math formulas, data for effort was extracted with a
Python script.

3. RESULT AND DISCUSSION
3.1 RQ1: How do students’ game performance
characterize the difficulty of acquiring CT concepts?

A total of 6599 records were extracted. Students’
performance of each concept was compared. As for
achievement, students got the highest stars in sequences,
followed by loops and conditionals (see Figure 2),
indicating a growing difficulty level of the three concepts.
Yet regarding effort, the trend was mixed for three
dimensions (see Figure 3). For 1-star attempts, the same
order of difficulty was found, whereas the results of 3-star
attempts showed that players used the most attempts to get
the best solution in loops missions.

Figure 2. Achievement of Each Concept.

Figure 3. Effort of Each Concept.

These findings indicated that achievement and effort
reflected different trends in terms of the order of difficulty
of the three concepts. This may be explained by the order
students follow when they play the game. Since the game
missions are displayed in chapters, with each chapter
focusing on one CT concept, most students played the
game following the order of chapters, which is sequences,
loops, and conditionals, according to the timestamp from
the log files. Thus, it is likely that playing sequences and

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

11

loops familiarized them with how to solve the puzzles,
which can be a scaffold for playing conditionals chapters
afterward.

Further, both achievement and effort indicated that
sequences is the easiest to learn while loops is
comparatively difficult. This result is in line with the
findings reported by Israel-Fishelson & Hershkovitz (2019)
who used another coding game on primary school students.
Based on indicators of the concept achievement and the
number of attempts, they demonstrated that sequences was
generally easiest for students while loops tended to be
challenging. This provides some implications for
educational practitioners who intend to teach programming
to novices. It is recommended to start with introducing the
concept of sequences, and more room for practice can be
provided when teaching loops and conditionals .

3.2 RQ2: Do primary and secondary students share the
same order of difficulty of acquiring CT concepts?

As Group B and C were assigned with the same game tasks,
the performance of the tasks generated from the groups
were compared regarding their achievement in the game
(see Figure 4). Results showed that primary students
(Group B) shared the same order of difficulty of concept
acquisition with secondary students (Group C), with
sequences as the easiest concept, followed by loops and
conditionals. Moreover, secondary students outperformed
primary students in all three concepts, with secondary
students getting more than two stars on average for each
concept, implying that the design of the arrow-based
programming language may be too easy for students
belong to this age bracket. Thus, for designers of CT
learning environments, it is suggested to consider the age
of potential users and their acceptance of different
programming languages.

Figure 4. Achievement of Primary and Secondary students.

3.3 RQ3: Is completing easy missions a scaffold for
completing hard missions?

Students’ performance between Group A and B was
compared. Figure 5 displayed the results of game
achievement. It is indicated that the two groups performed
similarly regarding the average number of stars. Yet the
results for effort yielded different results (see Figure 6).
For each concept, Group A had a lower value in 3-star
attempts, implying that in cases where players were able to
solve the puzzles with the optimal solutions, fewer

attempts were made by those who played easy missions
beforehand. This indicates that playing easy missions could
possibly scaffold students to solve harder problems.

Figure 5. Achievement of Group A and Group B.

Figure 6. Effort of Group A and Group B.

These results can provide rich implications for the design
of programming games and CT learning environments.
Referring to Table 2, suggestions of the design of
programming tasks for novices are as follows.

 For sequences, initial tasks can be designed with
solutions less than ten commands, accompanied with
come basic spacial awareness (relative position,
relative direction), after which more complex
sequence tasks can be introduced.

 For loops (see Figure 7), learners can be exposed to
applying preset loops in the tasks first where they can
test how loops work. Also, loop preset commands can
be used to support novices. This can be reached by
giving the access to modifying a preset loop in terms
of either setting loop times or inserting new
commands inside a loop. This would help learners get
a deeper understanding of how loops can be applied
through trials and errors. After these warming-up
tasks, students can be given the opportunity to try
creating loop commands from single loops to nested
loops. These designs click with the model of “use-
modify-create” proposed by Lee et al. (2011) for
supporting the design of CT practical activities. The
model suggests a learning progression to lead students
to go from user to modifier to creator of programming
projects (Grover & Pea, 2013), and it has been
successfully applied in many CT learning platforms
(eg. Zhao & Shute, 2019).

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

12

Figure 7. Designs for Loops Tasks for Novices.

 As for conditionals (see Figure 8), designers can start
with offering a conditional command with a preset
condition where players can add actions by inserting
commands. This can reduce the cognitive load caused
by choosing the right condition. In addition, to expose
students to learning how to implement the right
condition, some choices of conditions can be offered
first. After these practices, learners can be introduced
to tasks that require creating conditional commands
from scratch.

Figure 8. Designs for Conditional Tasks for Novices.

4. CONCLUSION
This paper presented a case study on how students
performed in a programming game in a self-regulated
learning context during the COVID-19 pandemic. Results
indicated that sequences was the easiest concept to acquire,
while loops and conditionals were comparatively
challenging, suggesting that instructors can provide more
support when teaching these two concepts to novices.
While primary and secondary students displayed the same
order of difficulty in acquiring the three concepts
secondary students outperformed primary counterparts,
with an average of more than two stars throughout the
game, which indicates that arrow-based programming
language may be too easy for secondary students. Plus,
those who played both easy missions and hard missions
used less effort to achieve the same performance compared
to those who only had access to hard missions, implying
that some scaffolding task designs (eg. apply preset loops)
may lay a foundation for more challenging tasks (eg.
nested loops). Suggestions for CT game design for the
concept of sequences, loops, and conditionals were given,
which were elaborated with examples.

Limitations of the study are as follows. First, since playing
the game was not a compulsory assignment for these
students, it is likely that students’ motivation to complete
these tasks was driven by their interest in programming.
Thus, the results of performance may be more positive than
the reality, as those who were capable of completing the
tasks were probably more motivated to do so. For future
research, it is suggested that external forces (eg. rewards)

can be imposed to encourage more students to get involved.
Second, the background information we collected from
secondary students may not be enough to explain their
higher performance than primary students. As the
information was collected from their current secondary
schools, how much they have learned before entering their
current schools was unknown. Therefore, age may not be
the only factor that resulted in the difference in
performance. It would be more comprehensive if the
difference can also be explained from their previous
 programming experience. For future research about CT
knowledge acquisition, it is recommended to collect
information about students’ prior programming knowledge
and extracurricular programming experience.

5. REFERENCES
Bers, M. U. (2018). Coding, playgrounds and literacy in

early childhood education: The development of KIBO
robotics and ScratchJr. Paper presented at the 2018 IEEE
Global Engineering Education Conference (EDUCON).

Bers, M. U., & Resnick, M. (2015). The official ScratchJr

book: Help your kids learn to code: No Starch Press.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Paper presented at the Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada.

Grover, S., & Pea, R. (2013). Computational thinking in

K–12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence

in a Game-Based Learning Environment: The Case of
Elementary School Students Learning Computational
Thinking. Journal of Educational Computing Research,
58(5), 718-918. doi:10.1177/0735633119887187

Kurland, D. M., & Pea, R. D. (1985). Children's mental

models of recursive LOGO programs. Journal of
Educational Computing Research, 1(2), 235-243.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., . . . Werner, L. (2011). Computational
thinking for youth in practice. Acm Inroads, 2(1), 32-37.

Manske, S., Werneburg, S., & Hoppe, H. U. (2019).

Learner Modeling and Learning Analytics in
Computational Thinking Games for Education. In Data
Analytics Approaches in Educational Games and
Gamification Systems (pp. 187-212): Springer.

Martins-Pacheco, L. H., von Wangenheim, C. A. G., & da

Cruz Alves, N. (2019). Assessment of Computational
Thinking in K-12 Context: Educational Practices, Limits
and Possibilities-A Systematic Mapping Study. Paper
presented at the Proceedings of the 11th International
Conference on Computer Supported Education (CSEDU
2019).

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

13

Moreno-León, J. (2018). On the development of
computational thinking skills in schools through
computer programming with Scratch. Doctoral
dissertation

Laporte, L., & Zaman, B. (2018). A comparative analysis
of programming games, looking through the lens of an
instructional design model and a game attributes
taxonomy. Entertainment Computing, 25, 48-61.

Lockwood, J., & Mooney, A. (2017). Computational
Thinking in Education: Where does it fit? A systematic
literary review. arXiv preprint arXiv:1703.07659.

Papert, S. (1980). Children, computers and powerful ideas.
In: New York: Basic Books.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., . . . Silverman, B. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020).
Assessing computational thinking: A systematic review
of empirical studies. Computers & Education, 103798.

Van Merriënboer, J. J., & Kirschner, P. A. (2017). Ten
steps to complex learning: A systematic approach to
four-component instructional design: Routledge.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2014). Computational thinking benefits
society. 40th Anniversary Blog of Social Issues in
Computing, 2014, 26.

Zhao, W., & Shute, V. J. (2019). Can playing a video game
foster computational thinking skills? Computers &
Education, 141, 103633.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

14

Cultivating Computational Thinking through Game-based Scratch Programming

ABSTRACT

Xiaoqian LI1, Jing LI2, Jiansheng LI3*
1,2,3 Nanjing Normal University, China

2543404638@qq.com, 2587361612@qq.com, 2869753244@qq.com

Computational thinking has become a necessary skill for
students in the 21st century. Programming teaching is an
effective way to cultivate computational thinking. However,
programming is difficult and boring for some students. In
this paper, it is explored whether game-based Scratch
programming improves students’ computational thinking
and programming self-efficacy. In addition, the paper also
explores whether individual differences of students affect
computational thinking. The results showed that game-
based Scratch programming could effectively improve the
computational thinking skills, especially logical thinking.
Secondly, playing Scratch games could improve students'
programming self-efficacy. Finally, it was found that
students' preference for games and computer operation
skills would not affect the effect of programming games to
cultivate computational thinking.

KEYWORDS
computational thinking, game-based programming,
Scratch, self-efficacy, secondary vocational students

1. INTRODUCTION
Under the wave of artificial intelligence, computational
thinking, as a key ability of individuals in the artificial
intelligence society, has been paid attention to and has
become a necessary skill for students in the 21st century. In
recent years, the cultivation of computational thinking has
been incorporated into the instructional framework of
information technology and other courses. For example, the
UK has implemented a complete set of computational
thinking courses in all disciplines, including computer
science, information technology and digital literacy
(Brown, Sentance, Crick, & Humphreys,2014). Besides,
computational thinking has been set up in the primary and
secondary school courses as one of its national instructional
courses in Australia (Falkner, Vivian, & Falkner,2014).

Computer programming education was introduced into the
basic education more and more. The research found that the
computer teaching content of secondary vocational school
is single and traditional. Most of them stay in the teaching
of basic computer operation and common office software,
even though the computer major has been added Python or
other programming language. Due to the difficulty and
dullness of programming itself and the lack of basic
computer knowledge of secondary vocational students,
many students have a fear of programming. Therefore, the
training effect of computational thinking is not satisfactory.

Prensky (2003) pointed out that the mode of integrating
entertainment and teaching was really suitable for
teenagers. Game-based programming teaching can make
abstract problems vivid and let students master the use of

basic sentences of programming language in the process of
accomplishing practical tasks. In this process, students can
improve their programming ability and computational
thinking ability. In addition, it combines game elements and
game scenes, so it can help students be more interested and
motivated to complete programming tasks. As a graphical
programming software, Scratch programming has become a
powerful tool for game-based learning due to its
modularity, interactivity, entertainment. Therefore, this
paper attempts to apply Scratch programming game to
secondary vocational students to improve their
computational thinking ability and programming self-
efficacy. Combined with students' personality
characteristics, such as students' preference for the games
and computer operation skills, this study puts forward the
following research questions:

(1) Can game-based Scratch programming significantly
improve computational thinking? If so, which sub
dimensions would be improved?

(2) Can game-based Scratch programming significantly
improve programming self-efficacy?

(3) Will individual differences such as students' preference
for games and computer operation skills affect the effect of
cultivating computational thinking?

2. CONCEPTS AND DIMENSIONS OF
COMPUTATIONAL THINKING
In 2006, Professor Wing first proposed the concept of
computational thinking (referred to as "CT"). She explained
that computational thinking is a series of thinking activities
covering the breadth of computer science, such as problem
solving, system design, and human behavior understanding,
using the basic concepts of computer science (Wing,2006).
There are many definitions about the dimensions of
computational thinking. International Society for
Technology in Education and Computer Science Teachers
Association defined computational thinking as abstraction,
algorithm design, automation, data representation, data
collection and data analysis (ISTE & CSTA ,2011); Shute,
Sun, & Asbell- Clarke (2017) defined computational
thinking as parallelism, algorithm thinking, problem
decomposition, debugging, iteration and generalization.
There is also a widely used way of classification. Romero,
Lepage, & Lille (2017) divided computational thinking into
five aspects: algorithmic thinking, abstraction,
decomposition, evaluation and generalization. In addition,
Brennan & Resnick (2012) defined computational thinking
as consisting of computational concepts, practices, and
perspectives from the perspective of practical activities,
which is also a highly operational definition in the
cultivation of computational thinking. Among them,
concepts refer to the concepts used in programming,
including: sequences, loops, events, parallelism,

mailto:2543404638@qq.com
mailto:2587361612@qq.com
mailto:2869753244@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

15

conditions, operators and data. Practices refer to the
behaviors carried out when creating a programming project,
including: increment and iteration, testing and debugging,
reuse and mixing, abstraction and modularity. Perspectives
refer to the understanding of oneself, the relationship with
others and the surrounding technological world, including
expression, connection and query.

3. COMPUTATIONAL THINKING AND
GAME-BASED PROGRAMMING
The earliest game programming language is logo language,
followed by Scratch, Hopscotch, Code Combat, APP
Inventor, Switch Playgrounds and so on. Based on the
unique advantages of game programming, it is often used in
the basic teaching of computational thinking. For example,
the Greek researcher used the educational game Run Marco
to teach basic programming concepts in primary school. The
results showed that the use of educational games can help
students understand basic programming concepts, and
students also showed strong enthusiasm in using this game
(Giannakoulas & Xinogalos,2018). P. Rose, Habgood, &
Jay (2020) developed a game based on Scratch
programming called "Pirate Pluser". It was found that
playing games can enhance the understanding of program
abstraction for children aged 10-11 effectively.
Furthermore, integrating Scratch into classroom activities
has been shown to improve students' attitudes towards
coding and computer programming (Korkmaz,2016). In
addition to video games, plug-in games are also a good
choice. For example, the board game code monkey is
developed for 8-year-old and above players. Players move
the monkey pattern on the board to the destination by
applying the computing concept. The game aims at helping
players learn computational concepts, such as conditional,
loops, boolean operators, logical operators, etc. In fact, in
order to make the game successful, players need to
decompose the problem to get the solution plan. Then via
testing various plans in the system, players find the most
effective strategy to overcome the challenge of the game.
Therefore, the game needs a series of skills, such as problem
decomposition, system testing and debugging, which are
also important parts of CT. In addition, Jiang & Huang
(2019) constructed a framework of children's programming
game based on the cultivation of computational thinking in
their research, which corresponded the steps of using
computer to solve problems with the game elements.
Combined with the dimensions of computational thinking,
the relationship among the dimensions of computational
thinking and game elements can correspond as shown in
Table 1.

Table 1. Correspondence between CT and programming
 game elements

CT programming game
 elements

It can be found that game-based programming has an impact
on students' problem decomposition ability, programming
concepts, logic and abstraction, operation and debugging.
Because the participants are beginners, the researchers
divided the game into seven levels in this study. The process
of problem decomposition was weakened. Therefore,
combined with the definition of computational thinking and
the specific content of Scratch programming game, this
paper mainly reflects the development of students' cognitive
and non cognitive level of Computational Thinking from the
three elements of algorithm, logical thinking and debugging,
in which the algorithm contains the basic algorithm
concepts, namely sequences, conditions and loops.

4. METHODS
4.1 Participants
The participants of this study were 36 nursing students from
a secondary vocational college in Nanjing, Jiangsu
Province, China. The participants were all girls, and they
were all programming beginners. Before the experiment, the
operation of office software was still taught on the
information technology course.

4.2 Instructional Design
The researcher conducted a three-week tutorial on the
Scratch programming game. In the teaching process, the
teacher's explanation is the auxiliary, and the student's
operation is the main. After explaining the basic game
interface, the teacher gives the students the task to break
through. The teacher assigned a total of 1-7 levels to pass.
With the progress of the course, the difficulty of
breakthrough is constantly upgrading.Figure 1 shows the
interface of the fifth level breakthrough interface.

Figure 1. Level 5 of Scratch game.

4.3 Measures and Tools
Combined with the definition of Computational Thinking
and the key dimensions of computational thinking, the
Computational Thinking test compiled by Korkmaz (2016)
is used in this paper. This set of test questions is based on
the basic concept of calculation and logic, grammar of
programming language. It consists of 28 single topics and is
suitable for students from Grade 5 to Grade 10. We have a
pretest and a post test before and after the teaching.

The computer programming self-efficacy scale was

Problem decomposition and
representation

Algorithm construction

Core mechanism

Rule challenge

adapted from Kukul & Karatas (2019) to evaluate the
programming self-efficacy of the experimental subjects.
The reliability coefficient for this questionnaire was 0.957.
The question "Do you like to play games" was used to

 Debugging Game objectives divide students into three types: "like", "general" and "not
like". What’s more the computer basic ability test scores

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

16

were used to divide the students' computer operation skills
level. According to the average scores, the students were
divided into low level group and high level group.

5. RESULTS
After the experiment, 36 valid questionnaires were
collected, and the collected data were imported into
SPSS.19.0 for data analysis. According to the research
problems of this study, the analysis results are as follows:

5.1 After playing the game, the results of Computational
Thinking Test improved significantly
First of all, in order to verify the impact of playing Scratch
programming game on computational thinking
performance, a paired sample T-test was conducted on the
pretest and post test scores. The results showed that the
average score of computational thinking increased
significantly, and there was a significant difference between
pretest and post test (P<0.01), indicating that the overall
level of computational thinking improved after

playing Scratch game. Secondly, we continued to explore
how different elements of computational thinking were
improved. The algorithm dimension, logic dimension and
debugging dimension were tested by a paired sample T- test,
and the results were shown in Table 2. It can be seen that
students' algorithm performance, logic performance and
debugging performance have been significantly improved
after playing Scratch programming game(P<0.01).
According to the effect size (d), It was found that Scratch
programming game improved logical thinking most
obviously, followed by algorithm, and finally debugging.
This can be explained from the characteristics of Scratch
game. Beginners pay most attention to how to pass the game
when they play the game, so the training effect of
programming logic thinking is the most significant.
However, students can not master the programming
algorithm in a short time, and debugging errors need to be
completed on the basis of the algorithm

Table 2. Difference between pretest and post test of CT

Pretest Post test

Mean SD Mean SD T P d
CT 56.25 16.19 75.14 10.45 -6.77 0.000**

Algorithm
Logic

Debugging
* p < .05.
** p < .01.

18.75
21.81
10.42

11.11
8.96
5.65

18.72
39.03
16.39

8.43
6.19
5.43

-10.49
-10.85
-5.16

0.000**
0.000**
0.000**

2.12
2.27
1.08

5.2 Playing Scratch programming game can effectively
improve programming self-efficacy

In order to accurately explore whether playing programming
games can improve students' programming self-efficacy, the
reliability analysis (alpha=0.096>0.9) KMO and Bartlett's
test (KMO=0.84>0.7) of the self- efficacy questionnaire
used in this paper were conducted. The results show that the
questionnaire has high reliability. Then, a paired sample t-
test was carried out on the pretest and post test results of self-
efficacy questionnaire, and the

First of all, the degree of preference for game and
computational thinking post test results were tested. The
preference degree was divided into three levels, namely
"like", "not like" and "general". The results were shown in
Table 4. The relationship between the preference degree and
computational thinking performance was not significant.
One of the possible reasons is that the subjects are all girls,
and there is no great difference in their preference for games.

 Table 4. The correlation between game liking and CT

results were shown in Table 3. As described in the table,
there was a significant difference in the scores of students'

Preference
for game

Post test
results

programming self-efficacy between pretest and post test Pearson 1 .07
(P<0.01). Due to the difficulty of programming, students correlation
often have a fear of difficulties in programming, especially Preference Significance .71
for beginners. The results of this study show that Scratch for game (double tail)
programming games can help students improve their Number of 36 36
cognition of programming and increase their programming cases
confidence to a certain extent. Pearson .07 1

Table 3. Difference between pretest and post test of correlation
 programming self-efficacy Post test Significance .71

Mean N SD SE T P results (double tail)
Pretest 32.64 36 8.37 1.39 - Number of 36 36
Posttest 36.72 36 6.68 1.11 2.97 0.005** cases
* p < .05.
** p < .01.
5.3 The degree of game preference and computer
foundation will not affect the performance of
computational thinking

Secondly, the computer skill level was divided into high
level group and low level group according to the average
score. A paired sample T-test was used to test the results of
the two groups. The results showed that there were
significant differences between pretest and post test of

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

17

Computational Thinking Test of the two groups. In order to
further explore the influence of computer level on the post
test results of computational thinking, T-test was conducted
on the post test results of the two groups. Results were
shown in Table 5 and the level of computer had no
significant effect on the post test results of computational
thinking (P>0.05). This may be because Scratch
programming is a game based on block and does not need a
high level of computer operation.

 Table 5. The correlation between computer level and CT
 M SD T P

thinking. Paper presented at the Proceedings of the 2012
annual meeting of the American educational research
association, Vancouver, Canada.

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S.
(2014). Restart: The resurgence of computer science in
UK schools. ACM Transactions on Computing Education
(TOCE), 14(2), 1-22

Falkner, K., Vivian, R., & Falkner, N. (2014). The
Australian digital technologies curriculum: challenge
and opportunity. Paper presented at the Proceedings of
the Sixteenth Australasian Computing Education

high level
low level

76.50
73.44

10.40
10.60 0.09 0.39 Conference-Volume 148.

Giannakoulas, A., & Xinogalos, S. (2018). A pilot study on

6. CONCLUSION AND DISCUSSION
With the advent of the era of artificial intelligence,
computational thinking is not a unique way of thinking in
the field of computer science, but has become a way of
thinking in all social fields. This requires reseraches and
teachers to shoulder the important task of cultivating
computational thinking, and constantly explore the methods
and strategies of cultivating computational thinking.

The results show that the game-based programming is an
effective method to cultivate computational thinking.
Besides, the results also show that the improvement of logic
is the most significant, followed by algorithm and
debugging. A study showed that Scratch users often produce
code with' code smells' such as duplicate blocks and long
scripts which impact how they understand and debug
projects (P. Rose, Habgood, & Jay,2020). Additionally,
debugging is to identify and repair errors when the algorithm
can not provide the expected solution, so debugging needs a
good algorithm foundation. Therefore, educators should
balance the entertainment and education of programming
games, and pay attention to the learning of sequence, loops,
conditionals and other algorithms. This study also explores
whether playing Scratch programming game can effectively
improve the secondary vocational students' programming
self-efficacy, and the result is positive. Scratch's graphical,
building block programming method shields the grammar
rules, algorithm structure and other learning obstacles,
greatly reducing the cognitive difficulty of students.
Therefore, to a certain extent, game-based Scratch
programming can improve the confidence of programming.
Finally, the study found that students' preference for the
game and computer operation skills will not affect the effect
of game-based programming to cultivate computational
thinking.

However, the cultivation of human thinking is a continuous
process. Limited by the research sample and cycle, the
conclusion of this study inevitably has some limitations.
Therefore, how to design the instruction and research of
computational thinking, and how to combine the proper
learning strategies with the subject are the problems worthy
of further study in the future.
7. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

the effectiveness and acceptance of an educational game
for teaching programming concepts to primary school
students. Education and Information Technologies, 23(5),
2029-2052.

ISTE & CSTA. (2011). Operational Definition of
Computational Thinking for K-12 Education. Retrieved
January 1, 2021, from
http://www.iste.org/docs/pdfs/Operational-Definition-of-
Computational-Thinking.pdf

JIANG Xi-na, HUANG Xin-yuan (2019). The Design of
Programming Games for Kids Pointed to Cultivating
Computational Thinking Ability[J].Modern Educational
Technology,29(03):119-126.

Korkmaz, Z. (2016). The Effects of Scratch-Based Game
Activities on Students' Attitudes, Self-Efficacy and
Academic Achievement. International Journal of
Modern Education & Computer Science, 8(1), 16-23.

Kukul, V., & Karatas, S. (2019). Computational Thinking
Self-Efficacy Scale: Development, Validity and
Reliability. Informatics in Education, 18(1), 151-164

P. Rose, S., Habgood, M. P. J., & Jay, T. (2020). Designing
a Programming Game to Improve Children’s
Procedural Abstraction Skills in Scratch. Journal of
Educational Computing Research, 58(7), 1372-1411.

Prensky, M. (2003). Digital game-based learning.
Computers in Entertainment (CIE), 1(1), 21.

Román-González, M., Pérez-González, J., & Jiménez-
Fernández, C. (2017). Which cognitive abilities underlie
computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human
Behavior, 72, 678-691. doi: 10.1016/j.chb.2016.08.047.

Romero, M., Lepage, A., & Lille, B. (2017).
Computational thinking development through creative
programming in higher education. International Journal
of Educational Technology in Higher Education, 14(1),
42.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.

Wing, J. M. (2006). Computational thinking.
Communications of the Acm, 49(3), 33-35.

http://www.iste.org/docs/pdfs/Operational-Definition-of-

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

18

Developing Girls' Computational Thinking by Playing Programming Games

Jing LI1, Jiansheng LI2*
1,2 Nanjing Normal University, China

2587361612@qq.com, 2869753244@qq.com

ABSTRACT
The purpose of this study is to explore the specific impact
of playing programming games on each dimension of girls'
computational thinking through playing Cat Eat Fish, a
game designed based Scratch. The results showed that
playing programming games can promote girl beginners'
computational concepts and perspectives, but the role of
playing programming games in promoting the girls’
computational practices did not be found.

KEYWORDS
computational thinking, game-based learning, girls

1. INTRODUCTION
Computational thinking (CT), a basic skill in the 21st
century, has been incorporated into K12 education and
higher education in many countries. According to Wing
(2006), computational thinking covers a series of thinking
activities in the field of computer science, specifically, it
refers to the use of basic concepts of computer science for
problem solving and system design. The dimensions of
computational thinking in this study are based on Brennan
and Resnick's definition (Brennan & Resnick,2012), in
which the concepts of computation include sequences,
repetitions, cycles, conditionals, and selection, the
computational practice is to solve practical computational
problems, and computational perspective involves the
attitude and perspectives of computational thinking.

It has been evidenced that the education of introductory
programming can be supported by playing games, but it
takes longer for girls to acquire the same computational
thinking skills as boys (Atmatzidou & Demetriadis,2016).
Playing games can promote students' understanding
computational concepts (Kazimoglu, Kiernan, Bacon, &
MacKinnon,2012). Some studies showed that playing
games can improve attitude toward computational thinking,
but others demonstrated that playing games had no effect on
computational perspectives (Zhao & Shute,2019).

There is an urgent need to explore whether playing games
can promote the computational thinking of beginners,
especially girls, and if the answer is yes, what aspects of
computational thinking can be advanced by playing

2. METHOD
2.1. Participants and design
The participants were 48 secondary school students from
Nanjing Health School in China. They were all girls who
had no programming experience and the average age of
them was 16. The whole experiment lasted for 3 weeks.

2.2. Materials

2.2.1. Testing questionnaires
The Computational Thinking test (CTt; Moreno-León, &
Robles,2018) were selected to measure students'
computational concepts. The testing questionnaire for
computing practice was selected from the International
Challenge on Informatics and Computational Thinking. The
Computational Thinking Scales (CTS; Korkmaz, Çakir, &
Özden,2017) was used to survey computational
perspectives.

2.2.2. The Cat Eat Fish game
The game used in this study was designed based on Scratch
called Cat Eat Fish, in which students were asked to
combine the code blocks scattered in the code editing area
to make the cat eat the fish. It contained seven levels and the
one who took the least time and can successfully passes the
game won.

3. RESULTS
3.1. Which Aspects of Computational Concepts Are More
Effective After Playing the Game?
The analysis results of the computational concepts scores,
presented in Table 1, revealed a significant difference
between pre-test scores and post-test scores. Cohen’s effect
size (d =1.39) suggested a large effect of playing the
programming game (Cohen,1988). Table 2 and Table 3
indicated that there were significant differences in the pre-
test and post-test results of sequences, cycles, repetitions,
conditions and selection, and the effect of cycles is the
largest.

Table 1. Results of paired t-test for girls’ computational

 concepts.
Mean N SD SE t p

programming games. Thus, the research questions of this
study are as follows:(1) Which aspects of computational
concepts are more effective in playing games? (2) Can

Pre-t 54.57 47 16.64 2.43 -
Post-t 74.04 47 11.31 1.65 8.44 .000

playing games promote girls’ computational practice? (3)
Can playing games improve girls’ computational
perspectives? If the answer is yes, what dimensions of
computational perspectives would be improved?

Table 2. Statistical description for each dimension of girls’
 computational concepts.

Pretest Posttest
 Mean SD Mean SD

sequences 15.74 4.30 18.72 2.20
cycles 18.51 5.61 21.49 4.65

mailto:2587361612@qq.com
mailto:2869753244@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

19

repetitions 7.66 4.65 14.04 4.38 critical thinking -2.09 0.043 0.29
conditions 4.47 3.79 9.04 3.99 algorithmic -1.78 0.082 0.23
selection 8.19 5.05 10.43 5.09

Table 3. Results of paired t-test and effects sizes for each
dimension of girls’ computational concepts.

t p d
sequences -4.95 0.000 0.92
cycles -3.33 0.002 1.72
repetitions -7.70 0.000 1.41
conditions -6.76 0.000 1.01
selection -2.33 0.024 0.44

3.2. Can Playing the Programming Game Promote Girls’
Computational Practices?
The results, shown in Table 4, presented that there was no
significant difference in the pre-test and post-test scores of
girls’ computational practices.

Table 4. Results of paired t-test for girls’ computational
practices.

Mean N SD SE t p Pre-

 thinking

t 20.32 47 9.17 1.34
Post-t 22.77 47 7.79 1.14 -1.84 0.073

3.3. Can Playing the Programming Game Improve Girls’
Computational Perspectives?
A paired sample t-test was used to test the results of girls’
computational perspectives. The results, shown in Table 5,
presented that there were significant differences between
pre-test and post-test surveys. Table 6 and Table 7 showed
statistically significant differences in the means of
creativity, problem solving and critical thinking. From the
size of the effect, creativity (d=0.50) and problem-solving
(d=0.42) had a larger effect.

Table 5. Results of paired t-test for girls’ computational
perspectives.

Mean N SD SE t p
Pre-t 80.30 47 13.05 1.90 -
Post-t 87.47 47 12.12 1.77 4.52 .000

Table 6. Statistical description for each dimension of girls’
computational perspectives.

Pretest Posttest
Mean SD Mean SD

creativity 25.34 7.13 28.32 4.73

4. DICUSSION AND CONCLUSION
The results of this study indicated that playing
programming games can improve girls' computational
concepts in a short period of time, and it improves
girls' mastery of computational concepts such as
sequences, circulations, repetitions, conditions and
selection. Furthermore, the Cat Eat Fish game in this
study cannot promote girls' computational practices.
Girls' computational perspectives were significantly
improved after playing the Cat Eat Fish programming
game, especially creativity, problem-solving ability and
critical thinking ability, while the algorithm thinking
dimension of computational attitude was not
significantly improved. In practice, teachers can
design some simple programming games like Cat Eat
Fish to promote girl beginners to foster computational
thinking skills. Due to the short duration of this
study, future researches can further explore
whether playing programming games for a long time
can improve the computational practices dimension
of girls’ computational thinking.

5. REFERENCES

Atmatzidou, S., & Demetriadis, S. (2016). Advancing
students’ computational thinking skills through
educational robotics: A study on age and gender relevant
differences. Robotics and Autonomous Systems, 75, 661-
670.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. Paper presented at the
Proceedings of the 2012 annual meeting of the American
educational research association, Vancouver, Canada.

Cohen, J. (1988). Statistical Power Analysis for the
Behavioral Sciences. Journal of the American Statistical
Association, 31(334), 499-500.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L.
(2012). Learning Programming at the Computational
Thinking Level via Digital Game-Play. Procedia
Computer Science, 9, 522-531.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A
validity and reliability study of the computational
thinking scales (CTS). Computers in Human Behavior,

problem
solving
critical
thinking
algorithmic

17.87 5.16 19.89 4.47

17.28 4.65 18.34 3.22

19.81 5.17 20.91 4.25

72, 558-569.
Román-González, M., Pérez-González, J., Moreno-León,

J., & Robles, G. (2018). Extending the nomological
network of computational thinking with non-cognitive
factors. Computers in Human Behavior, 80, 441-459.

thinking

Table 7. Results of paired t-test and effects sizes for each
dimension of girls’ computational perspectives.

t p d
creativity -2.88 0.006 0.50
problem solving -2.52 0.015 0.42

Wing, J. M. (2006). Computational thinking.
Communications of the Acm, 49(3), 33-35

Zhao, W., & Shute, V. J. (2019). Can playing a video
game foster computational thinking skills? Computers &
Education, 141, 103633.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

20

Programming Socio-scientific Games: A Computational Thinking Approach to
Real-world Problems

ABSTRACT

Marianthi GRIZIOTI1*, Chronis KYNIGOS2,3
1,2Educational Technology Lab, National and Kapodistrian University of Athens, Greece

3Linneus University, Sweden
mgriziot@eds.uoa.gr, kynigos@eds.uoa.gr

iteration, functions) from computer science for solving
different kinds of problems computationally (Wing,

This paper discusses how computational thinking could
be studied beyond computer science education, as a means
for dealing with real-world multidisciplinary problems. It
suggests the approach of students playing and modifying
simulation games, that represent socio- scientific issues,
with the use of integrated computational affordances,
including coding, data editing and map design. It further
presents the initial results of an empirical study,
concerning the computational practices developed by
junior-high school students while modified a simulation
game in an authoring tool called ChoiCo.

KEYWORDS
block-based programming, simulation games, game
modding, socio-scientific issues

1. INTRODUCTION
Central role to the 21st-century education has the
cultivation of globally sensitised citizens who can
recognise and deal with complex, ill-structured issues
affecting our world and societies (UN, 2018). These
involve the so-called Socio-Scientific Issues (SSI); open-
ended controversial problems and dilemmas with multiple
variables and factors are not easy to be described with
formal mathematical models (Sadler, 2002). Global
warming, sustainable lifestyles, urban development,
ethical science are some examples. However,
understanding and dealing with such issues requires
system-based multidisciplinary approaches that differ
significantly from the silo, linear problem-solving of
school activities. To address this challenge, we suggest
utilising computational thinking beyond the limits of
computer science as a tool for realising authentic
multidisciplinary problems. In this context, we studied
children computational strategies while playing and
modifying simulation games that dealt with SSI in an
online environment called ChoiCo (Choices with
Consequences) http://etl.ppp.uoa.gr/choico/.

2. THEORETICAL FRAMEWORK
2.1. Computational thinking and game modding for
Socio-Scientific Issues
Several studies have shown that new coding technologies,
such as programmable simulations and game design can
enable children to develop computational thinking skills
and understand concepts that were not accessible before
(Kynigos & Grzioti, 2018). Computational thinking refers
to the ability of efficiently applying practices, (e.g. pattern
recognition, abstraction, automation) and concepts, (e.g.
variables,

2009, Grover & Pea, 2018). However, so far, it has been
studied mainly through well-structured programming tasks
in computer science education. With the need to integrate
SSIs in education, it seems that it is a good time to study
computational thinking in other STEAM contexts, utlizing
it as a vehicle for understanding complex behaviors of real-
world phenomena. To achieve this integration, we suggest
the approach of modding digital simulation games with
coding and other high-level computational tools. The term
modding refers to the process of modifying elements of a
fully functional game to create a variation of it, usually
called "mod" (Kynigos & Yiannoutsou, 2018). Modding
differs from designing a game from scratch, in that the
"modder" makes focused modifications to game elements,
aiming to integrate his/her ideas into the gameplay
experience. In that sense, coding is used as a means of self-
expression on the game's structural ideas. However, most
educational game design environments, such as Scratch
and Alice, focus on procedural or object-oriented
programming without supporting the development of
complex system-based simulation games, especially from
inexperienced students. On the other hand, modelling
tools, such as NetLogo, even though they can produce very
accurate simulations of dynamic phenomena, they usually
require advanced technological and scientific knowledge
to intervene with the model or create one from scratch.
Therefore, to develop game modding activities on SSI
simulation games we used ChoiCo authoring tool
developed by the Educational Technology Lab (NKUA).

3. THE CHOICO AUTHORING TOOL
ChoiCo is an online authoring tool that allows the play and
design of "choice-driven simulation" games representing
socio-scientific issues through a system of choices and
consequences. The player revolves in map- like areas
making choices with positive or negative consequences to
a set of game fields that should not cross certain "red lines"
(Fig. 1). The user can modify all game elements with three
computational affordances: a) a map editor for editing the
game interface and choices, b) an interactive database for
the game choices, consequences and fields, and c) block-
based programming for game rules. With ChoiCo's
integrated affordances, children can progressively access
and modify the game expressing their personal views on
the gameplay values.

4. EMPIRICAL STUDY
To investigate the computational thinking strategies that
children develop and use when dealing with real-world

mailto:mgriziot@eds.uoa.gr
mailto:kynigos@ppp.uoa.gr
http://etl.ppp.uoa.gr/choico/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

21

issues through ChoiCo games, we organised a 15-hours
empirical study in a junior-high school with 8 students
who worked in 4 groups. The study was divided into 8
sessions. For the study, we created a ChoiCo game called
"CT Chef" that dealt with the sustainable development of
a restaurant. The player is a restaurant owner who has to
make choices (e.g. food dishes, supplies and other actions)
to keep his/her restaurant open by balancing food quality,
profit and regular customers (Fig. 1). The choices affect
five game fields: money, healthy food, customers per day,
animal product supplies, vegetable supplies.

Fig 1: The game CT Chef in ChoiCo environment

In the first two sessions, students played the game and
discussed possible improvements. In the next sessions,
they collaborated to create a game mod. We collected a set
of qualitative data including interviews, audio and screen
recordings of each group, student games and researcher
diaries. The data were analysed qualitatively, using the
"critical incident" as the analysis unit and a coding schema
that was enhanced with new codes during the analysis. We
aimed to identify patterns relevant to a) the development
of computational strategies by students to make sense of
the SSI b) uses of ChoiCo affordances significant to the
learning process.

5. INITIAL RESULTS
All teams created 2 variations of the original game,
resulting in 8 game mods. The analysis has revealed that
students developed and applied computational strategies to
and make decisions and deal with the simulated socio-
scientific issue. We briefly present three of the main
categories.

1. Searching for patterns into the simulated
phenomenon. Α computational strategy developed by all
teams was recognising choices patterns either in the
gameplay, the database or the code. We identified 3
different strategies of pattern recognition relevant to the
game SSI: a) search for patterns on the choices made as
players to achieve a higher game score, b) identify patterns
in the game data and classify the choices to categories
according to these patterns. c) create new patterns on the
choices’ data using the database and block-based
programming. For pattern recognition students combined
computational concepts with societal and scientific game
axioms, such as balanced diet and restaurant profit. For
instance, group2 created a data

pattern that for every 3 choices that increase Health a little
bit, there should be one choice that decreases it.

2. Controlling the system behaviour with automation.
A second strategy developed by all groups was the use of
automation to control and intervene in the game flow. This
strategy involved complex conditional structures, Boolean
calculations and command sequencing, practices that are
usually difficult for young children to understand.
Students realised these computational ideas by connecting
them with the game context.

3. Prediction and handling of events. Students during
modding aimed to create a balanced game in terms of
realism, fun and difficulty. To achieve that, they applied
computational practices that involved: a) the prediction of
fields values for hypothetical gameplay scenarios. This
allowed them to think of different approaches to the
represented issue and to get familiar with the concept of
variation and balance in a complex system. b) The creation
of internal rules for handling events that may emerge
during play. For instance, "If the player selects a particular
choice, change the background".

6. CONCLUSION
The presented study's initial results showed that with the
appropriate affordances, children may develop and apply
computational thinking strategies to make sense of
complex multidisciplinary problems and dilemmas such as
balanced diet, food habits, and business management. It
seems that game modding of open-ended simulation games
could provide a meaningful context for applying
programming and computational thinking in STEAM
fields and real-world problems. Further research and
analysis on this topic could contribute to the development
of an integrated computational thinking approach where it
is applied in multidisciplinary problems and even in social
studies and humanities.

7. REFERENCES
Grover S., & Pea. R. (2018). Computational Thinking: A

competency whose time has come. Computer science
education: Perspectives on teaching and learning in
school. 19.

Kynigos C., & Grizioti M. (2018). Programming
Approaches to Computational Thinking: Integrating
Turtle Geometry, Dynamic Manipulation and 3D Space.
Informatics in Education, 17 (2), 321-340.

Kynigos,C.,&Yiannoutsou,N.(2018). Children
challenging the design of half-baked games: Expressing
values through the process of game modding.
International Journal of Child-Computer Interaction,
17, 16–27.

Salder T. (2011). Socio-scientific issues-based education:
What we know about science education in the context of
SSI. Socio-scientific Issues in the Classroom. p. 355-
369. Springer, Dordrecht,

United Nations. (2018). Sustainable Development Goals.

Wing. J.M. (2006). Computational thinking.
Communications of the ACM 49 (3)

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

22

Computational Thinking
and Unplugged Activities in

K-12

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

23

Research on the Design of Unplugged Computer Science Teaching Activities in
Elementary School—Taking the Fruit Delivery Game Course as an Example

ABSTRACT

Bingqing YANG
Faculty of Education, Beijing Normal University, China

yangbq@mail.bnu.edu.cn

In 21st century, Computational Thinking is a fundamental
skill for every person, and CT skills will be added into the
international PISA test in 2021. There is an international
trend that many countries have begun to focus on
computational thinking education. In China, we regard
Computational Thinking as one of the core literacies of the
Information Technology Curriculum. The practice of
computational thinking education in elementary school is
important, but the knowledge in this filed so abstract that it’s
difficult for elementary students to understand. But
unplugged computer science activities could simplify
complex computer science concepts into operable teaching
activities. In the unplugged environment, students could
learn knowledge and develop their CT skills through
interesting games and activities. Therefore, this study used
LACID theory to design unplugged computer science ability
activity for elementary school students. We take the Fruit
Delivery Game Course as an example, and 30 students
participated in the course. The study found that 1) the
LACID theory could provide effective guidance for teacher
to design Unplugged Computer Science Activities at the
elementary level; 2) students generally had good learning
experiences, and they were highly satisfied with the
unplugged course. 3) "difficulty stratification of activity
design" and "summarizing knowledge points by subjects"
were two effective strategies.

KEYWORDS
computational thinking, Unplugged Computer Science
Activity, elementary school students

1. INTRODUCTION
Computational thinking is a fundamental skill for everyone,
not just computer scientists. The concept of Computational
Thinking was first proposed by Professor Jeannette M. Wing
in 2006, she thought that Computational Thinking involves
solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to
computer science (Wing, 2006). Researchers are
increasingly focusing on computational thinking, and
computational thinking is attracting the attention of all
disciplines including science and humanities (Bundy, 2007).
Recently, the OECD proposed that computer science and
computational thinking could cultivate students’ problem-
solving, creative and collaborative skills, and pointed out
that computational thinking would be added into The
Program for International Student Assessment (PISA) in
2021 (OECD, 2018).

Wing emphasized that if we want to ensure a universal and
solid foundation of understanding and prepare everyone for

CT skills, then this kind of learning was best done from the
early stages of childhood (Wing, 2008). With
the international trend of computational thinking
education, schools in China has paid attention to the
education of CT skills. But, in the K-12 stage of
computational thinking education research, we seemed to
pay more attentions to students in grades 6-8. As there
were only 20% studies focused on grades 3-5
students (Yu & Wang, 2020). Therefore, the challenge
we faced is to find a a suitable approach for the
teaching of computational thinking in elementary
schools, not just teach students to program.

2. LITERATURE REVIEW
The core idea of Unplugged Computer Science activities is
to pay attention to children, especially young children.
We expect that young students could have the
chance to experience the thinking path of scientists
through playing unplugged activities. Use hands-on
activities to cultivate their abstract thinking,
decomposition, algorithm, and problem-solving
abilities. For elementary school students, they would
accomplish learning tasks through collaboration and
interaction with their peers in unplugged learning. It
might be better to develop students' computational thinking
and problem-solving skills through unplugged teaching.

The concept of Unplugged Computer Science was
proposed by Professor Tim Bell from the University of
New Zealand with two teachers Ina H. Witten and Mike
Fellows. The concept of CS Unplugged was brought
forward based on their practical teaching experience.
According to them, CS Unplugged is a collection of
free teaching material that teaches computer science
through engaging games and puzzles that use cards,
string, crayons and lots of running around (Bell, T,1998;
Bell, Alexander, Freeman, & Grimley, 2009). With the
popularity of the CS Unplugged project worldwide,
teaching practice courses with cultural
characteristics have been continuously added.

Unplugged is a special type of CT education. Results
showed that the CT skills of the students who
participated in the unplugged class significantly
increased after unplugged teaching (Brackmann C P,
et.al, 2017). The main characteristic of the Unplugged
activities are: No computers, Games, Kinaesthetic,
Student directed, Easy implementation, Growing
body of ideas, Sense of story (Nishida T, et al, 2009).

Because it is feasible and can be promoted in
every elementary school, it’s very important to
bring CS Unplugged in primary education. Firstly, not all
schools are adequately equipped with computers in
China. Unplugged activities are extremely practical when
computer equipment is insufficient. Secondly, unplugged
form is very friendly to some elementary school
students who don't like programming, especially
girls. By participating in

mailto:yangbq@mail.bnu.edu.cn

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

24

unplugged activities, they might be more willing to learn
programming. Thirdly, although programming is a popular
way to training students' CT skills, but it might lead to
students’ misunderstandings of computer science. In
contrast, unplugged activities might prevent this happening.
Fourthly, it is more appropriate to use unplugged form in the
short-term teaching of elementary schools. Fifthly, with the
understanding the basic concepts of computer science, we
could make important decisions related to computer’s
security and reliability in daily life.

The purpose of this research is to provide Unplugged CS
teaching to the elementary school students in China. The
question is "how to design the CS Unplugged teaching
activities, and looking for effective strategies in teaching
implementation".

3. FRUIT TRANSFER GAME COURSE
DISIGH BASED ON THE LACID THEORY
The Learning-Activity-Centered Instructional Design
(LACID) theory provides an instructional design model.
LACID theory is learning activity-centered, and CS
unplugged is all about activity. According to the theory, the
main steps are: 1) trying to design the instructional plan,2)
knowledge modeling, 3) clarifying the idea of activities
segmentation, 4) redesigning the instructional plan (Yang,
K. C,2005).

The study takes the Fruit Transfer Game Course as an
example. The main concept is “network topology”, which is
an important concept in computer science.
There are many kinds of network topology, and each form
has its advantages and disadvantages. In real life, it is
necessary to use a certain network topology to establish the
connection between computers. By learning the concept,
students would understand the basic principle of computer
information transmission

After the 4 steps of design, the teaching process was
determined to be divided into 3 activities. Activity 1:
“introduction the different types of internet information
transmission”, Activity 2: “fruit transfer activity (including
Circular/Liner fruit delivery activity)”, and Activity 3:
“discussion and summary of the course knowledge”.

4. IMPLEMENTATION AND FINDINGS
There were 30 students participated in the course. We had
questionnaire and interview after class. In the questionnaire,
students were asked to rate the course and provide
suggestions from their perspectives. In interviews, they were
asked about their learning experience and future learning
tendencies.
Through the analysis of questionnaire and interview data, we
found that most students were very satisfied with the
unplugged course. As their learning experience, students
thought that they had a very pleasant learning experience. As
for their attitude towards future learning, unplugged learning
had positive influence on students’ learning preferences and
attitudes. Almost all students who were interviewed
indicated that they would be willing to

participate in this unplugged course in the future. They also
hoped there were similar elective courses in school. In
addition, we found two effective strategies discovered during
the implementation: "difficulty stratification of the activity
design"; "summarizing knowledge points by subjects".

5. RESEARCH SUMMARY
It makes sense for students to experience more than one form
of learning in computational thinking classroom. We found
that the LACID theory could provide effective guidance for
teacher to design Unplugged Computer Science Activities at
the elementary level. It is worth mentioned that unplugged
activities are no longer limited to informal instructional
situations, such as homes, science museums, and
extracurricular educational institutions. This study shows
that unplugged computer science activity could be carried
out as formal curriculum in schools in the future.

6. REFERENCES
Bell, T., Witten, I. H., & Fellows, M. (1998). Computer

Science Unplugged: Off-line activities and games for all
ages. New Zealand: Computer Science Unplugged.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009).
Computer science unplugged: School students doing real
computing without computers. The New Zealand Journal
of Applied Computing and Information Technology,
13(1), 20-29.

Bundy, A. (2007). Computational thinking is pervasive.
Journal of Scientific and Practical Computing, 1(2), 67-
69.

Brackmann C P, Román-González M, Robles G, et al.
Development of computational thinking skills through
unplugged activities in primary school[C]//Proceedings
of the 12th Workshop on Primary and Secondary
Computing Education. 2017: 65-72.

Nishida T, Kanemune S, Idosaka Y, et al. A CS unplugged
design pattern[J]. ACM SIGCSE Bulletin, 2009, 41(1):
231-235.

OECD. (2018). PISA 2021 ICT framework. Organization of
Economic Co-operation and Development. Retrieved
June 25, 2020, from
https://www.oecd.org/pisa/sitedocument/PISA-2021-ICT-
framework.pdf

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3725.

Yang, K. C. (2005) A practical guide for instructional
design centered on learning activities. Beijing:
Publishing House of Electronics Industry.

Yu, X. H., & Wang M. (2020) How Far is the Cultivation
of Computational Thinking in K-12: From the
Perspective of Computational Thinking Assessment.
Open Education Research, 26(01):60-71.

http://www.oecd.org/pisa/sitedocument/PISA-2021-ICT-
http://www.oecd.org/pisa/sitedocument/PISA-2021-ICT-

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

25

Computational Thinking
and Subject Learning and

Teaching in
K-12

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

26

A Hybrid Approach to Teaching Computational Thinking at a K-1 and K-2 Level
Damien Constantine ROMPAPAS1, Steven YOON2, Jonothan CHAN3

1Brewed Engagement Extended Reality Labs, South Australia, Australia
2,3 Jules Ventures, Singapore

hyperlethalvector92@gmail.com, kc@jules.sg, jon@jules.sg

ABSTRACT
Computational Thinking (CT) has been described as taking
an approach to solving problems, designing systems and
understanding human behavior that draws on concepts
fundamental to computing. It is the ability to integrate
human creativity and insight with concepts derived from
Computer Science. We argue that it is best to learn the
fundamentals of CT at a young age, when the mind is most
malleable, instead of much later when these concepts are
taught as part of Computer Science courses. However,
challenges arise not only when trying to teach these
complex concepts to young children, but also when
applying these teachings through kindergarten
environments. We present a definition of the basic
fundamental CT concepts and then describe a unique hybrid
approach of offline and online activities to teach these
fundamentals to students at the kindergarten (K1 and K2)
level (children aged 4-6 years old). Finally, we validate this
approach with a pilot class to determine its learning
effectiveness.

KEYWORDS
E-Learning, Child Education, Computational Thinking,
Blended Learning, Gamification
1. INTRODUCTION
The “4C’S” – critical thinking, creativity, collaboration and
communication have already been recognized as core 21st
Century skills to be embedded into school curricula. As
technology such as A.I., machine learning and robotics
advance rapidly; our children are faced with the prospect
that over 80% of future job needs will be disrupted. The
need to understand how to use computational tools and to
be able to problem-solve is becoming a fundamental
competency. “Computational Thinking” is the “5th C” of
21st century skills and is being embedded as part of core
curricula in education systems across the world.
Computational Thinking (CT) has first been described by
Papert Et. Al and Wing Et. Al as taking an approach to
solving problems, designing systems and understanding
human behavior that uses concepts fundamental to
computing. It is the ability to integrate human creativity and
insight with concepts derived from Computer Science. We
can list previously defined CT skills from outside sources,
such as (Barr Et Al 2011), into a general diagram to
highlight the four most fundamental of CT skills. These CT
skills are described as follows:

Algorithmic Thinking: Getting to a solution through the
clear definition of the instructions that need to be followed.
Decomposition: Also known as factoring, is to break down
a complex problem or system into parts that are easier to
conceive, understand, program and maintain.

Figure 1. Categorization of previously defined CT
elements. Although not comprehensive all listed topics lie
under one of the listed categories and are a core part of
kindergarten curriculum.

Abstraction: To generalize several complex solutions or
definitions based on similarities or common rules. Then
apply these generalizations to an alternative context.
Pattern Recognition: The process of classifying input data
into objects or classes based on key features, and infer new
solutions based on previously classified data.

We assert that these skills should be taught at an early age,
when the child is most malleable (Samuelson and Carlson
Et al 2008). There are two major challenges that must be
addressed when teaching to this audience. One of the most
difficult challenges is how to approach teaching these skills
to children given that at the K1 and K2 level, their language
and motor skills are still developing. The second challenge
lies in providing a digital teaching medium which can be
accepted. This is primarily due to resistance to the use of
teaching through a digital platform (Turbill Et. Al 2001)
even though it is an effective medium for teaching concepts
that are hard to understand (Lieberman Et al 2009). In this
paper we present a methodology for teaching these
fundamental CT skills using a hybrid of online and offline
activities through a tablet computer and physical practice /
worksheets. We discuss the design of the online animated
videos which teach the high-level concept of the basic CT
skills which is then augmented through teacher interactions.
We also discuss the design of digital games to facilitate
simulated practice of these CT skills, and their translation to
real-world offline activities within the class. We evaluate
the effectiveness of this methodology through a pilot study
in which a short implementation of this design is used.
Overall, the core contributions of this work are:

• The first formal derivation and definition of the
fundamental CT skills.

mailto:hyperlethalvector92@gmail.com
mailto:kc@jules.sg
mailto:jon@jules.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

27

• The design of a hybrid approach of online and
offline activities to teach the fundamental CT skills
applicable to K1 & K2 groups.

• An empirical method of evaluating the student CT
skills taught using this approach.

We believe that through this hybrid design, children can
learn the concepts of CT and apply these problem-solving
skills early on in their lives and continue developing these
skills to significantly improve their future academic
progress and daily life activities.
2. RELATED WORK
We assert it is imperative these fundamental CT skills are
taught at an early age. To devise a valid approach, a careful
analysis of previous frameworks for teaching CT, and
methods for engaging children must be conducted. In this
section we discuss three key avenues of related work;
(i) CT in education; (ii) engaging children using digital
media as a teaching platform; and (iii) the use of simulation
as a method to practice CT skills.
2.1 Computational Thinking in Education
The idea of teaching CT is not new. In the 1960’s, Alan
Perlis was one of the first who argued for the need for
college students of all disciplines to learn programming and
the "theory of computation" (Guzdal 2008, Perlis 1962).
Teaching CT shouldn’t be limited to college courses as
introducing these CT concepts can be applied as a tool to
im- prove the skills taught in K-12, and key problem-
solving skills used outside of school (Barr Et. Al, 2011).
Similarly, we also derive how the basic sub- jects of CT
supplement the basic components of the general K1 and K-
2 curriculum (Table 1). This is not the only instance of ap-
plying CT in an educational environment (Kazimogln Et al
2012). Here the authors approach learning CT through
digital game mediums. The benefit of this approach is that
it allows students to learn the application of CT in pre-
programmed simulation environment. Although this
approach has shown to be effective, the games and
interfaces used are aimed towards older audiences, likely
making them too complex for younger children to adopt and
use. This makes this it difficult to directly apply this
approach without making it more child friendly. Although
not implemented, (Falkner Et. Al 2015) discusses how and
when CT should be taught. However, their questionnaire
suggests that teachers at that level only consider CT as a
useful subject in Information Technology and Mathematics
subjects. Because classes are designed to teach children as
young as 6 years old (in K-2 grades) coding as a
supplemental enrichment class, we assert the fundamentals
of CT must be taught as an additional core subject instead
of an enrichment class to maximize the impact of the
benefits. To the best of our knowledge, our teaching method
is the first that can be applied to allow teaching fundamental
CT concepts to children at a K1-K2 level which can be
accepted by kindergartens.
2.2 Using Digital Media to Teach Children
Media as a platform for teaching is not a new concept, in
fact it was (Meir Et Al 1969) in the late 1960’s who
explored how educational media, would contribute to the

early years of childhood. Although this is only exploring
physical art media it supports later investigations by (Burns
Et. Al 2004), which highlighted that video can be used as an
interactive teaching medium, provided that it is carefully
designed and integrated with online in-class materials.
Additionally, (Lieberman et. Al 2009) investigates the
effectiveness of digital media as a teaching platform for
younger children (aged 3 to 6), showing that digitally
assisted media can greatly assist in explaining high level
concepts in a way that children can understand. These
studies sparked the creation and usage of video games and
media for entertainment and education (also known as
edutainment). Such mediums in teaching environments have
highlighted increased attention during use and retention of
information afterwards when engaging with edutainment
media at an educational capacity (Ritterfeld 2006).
Examples for such edutainment tools are: mathematics
(Elliot Et. Al, 1997), Creativity and Learning (Montemayor
Et. Al, 2004), and Reading and Literacy (Verdugo Et. Al,
2004) (Teaching English to children with English as a
second language). Our work extends this by utilizing
animated video which introduces and teaches difficult high-
level CT concepts to children in a way that can be
understood, engaging and interactive.
2.3 State of CT Teaching in K-12
In the UK, the “Barefoot Computing” approach using
traditional paper and pen has been adopted since 2014, with
trained teachers teaching CT in primary schools. In recent
years, CT are being taught using new tools (Sung Et. Al
2016) in hardware such as Arduino and educational robots
and coding software such as Scratch and Scratch Junior.
However, limitations of these tools are as follows
(i) high cost of hardware; (ii) unable to teach the full CT
concepts; and (iii) require significant investment in trained
teachers. All these factors limit how CT can be effectively
delivered and deployed at scale in kindergartens. The right
use of mobile devices can enhance the learning experience
of students as well as strengthen teacher- development
programs. Our work differs by applying specifically-
designed software content on a mobile platform (Grover Et.
Al 2013).
2.4 Use of Gamification and Simulation to Practice CT
Concepts
As the core of kindergarten education is learnt through play,
we strongly encourage the use of digital simulation
environments, which in turn are transformed into video
games, the process of gamification. Gamification allows for
stress free, engaging and entertaining online practice of CT
concepts. This in turn will relieve anxiety that can be
experienced when applying the high level concepts to real
world contexts. Examples of such simulation environments
are shown by (Kazimogln Et. Al 2012, Montemayor Et. Al
2004). However, these games are designed with older target
audiences in mind. Our work crucially differs from related
work in two ways. First: multiple games that simulate
separate CT concepts are used in our digital application;
Second, our user interface and experience is designed and
implemented with simplicity in mind, allowing younger
children to fully enjoy the experience whilst practicing the
fundamental CT concepts

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

28

Figure 2: (a) How each game weighs against the four CT skills. Each + denotes a stronger relationship, each - denotes a weaker
relationship. (b), (c), (d), (e), (f) each show in-game screenshots of Manta Match Mania, Tumble Trouble, Pearly Whirly, Crabby Patty
and Chomp Chomp respectively.

3. DESIGN OF A HYBRID APPROACH
FOR K1 & K2
This section describes the design of a unique approach for teaching
the complex CT fundamentals in a way that can be understood by
younger children. We also discuss how teachers facilitate the
additional activities and how they can evaluate and report the
students progression in the curriculum.

3.1 Design Requirements
From looking at current kindergarten curriculum as well as
general feedback from acting kindergarten principals and
teachers, we summarize that the curriculum design requires
the following:
• Children should learn through play and exploration
Children should be encouraged to learn even if the concept
is complex

• Children should be exposed to digital medium
whilst applying concepts to real world scenarios, limiting
their screen time

• Curriculum should be intuitive for teachers to
understand and teach, even if they are not proficient in the
subject being taught
• Curriculum should be designed so that teachers are
only required to supplement the lessons, and can be done
with little to no pre-requisite knowledge of the subject
• Teachers should be able to evaluate the progress of
the class and/or an individual student
3.2 Teaching Through Animations
As the starting sequence in scaffolding, children would
watch a pre-scripted video animation when they are first
introduced to a new complex CT concept. The animation
features “Doodle” as the primary teacher cum online
character who will engage the children; complementing the
“offline” kindergarten teacher whose role is to re- enforce
learning. This allows teachers with limited CT proficiency
to confidently teach these complex concepts. The
animations are done in the same spirit of educational
children TV shows, utilizing pauses between questions as
well as humorous gags to keep the attention of the children
and allow them to actively engage. The animations are
ordered to first introduce each CT skill, provide examples
on what this skill entails, then expand and show how the
skill is applied to real-world situations.

3.3 CT Practice Through Games
The online practice is provided via the digital application
which is run on an android tablet device. This application
features the child avatar known as the ’Buddy’ who builds a
relationship with the child and game story as the Buddy
helps them in small ways (Such as giving hints on how to
complete difficult levels). This further enhances the
engagement whilst relieving the anxiety of the educational
factor being displayed to the children. The application
contains six games which incorporate one or more CT
elements in the gameplay (See Table 4(a) for CT relations).
By transposing CT exercises via gamification, we are able
to allow kids a safe virtual environment to practice CT
skills. The 5 Games which are included in the School of Fish
application are:
Pearly Whirly: This game instructs kids to pre-program the
’Sally Submarine’ to navigate through a maze and collect
each of the pearls. The kids pre-program a series of either a
’left’ or ’right’ command. Upon execution the submarine
will continuously move forward whilst making either a left
or right turn at each junction based on the next command in
a sequence. The level is completed when Sally is able to
navigate the maze and collect all of the pearls in one
sequence of inputs.
Manta Match Mania: This game runs in the same spirit of
a tangram puzzle. Players utilize the ’junk’ puzzle pieces on
the right and arrange them so that they cover the requested
’junk part’ on the left. This needs to be done within a given
time frame otherwise the player loses one of 3 lives and
retries the puzzle. Each time a ’junk part’ is successfully
constructed the player earns some ’pig coins’ and continues
to the next puzzle. The game is completed when enough pig
coins are collected.
Crabby Patty: Players are presented with a 3x2 or 4x2
array of crabs who will pose to form a pattern, with one of
the crabs being hidden under a bucket. The aim is to select
one of four solutions which they think matches the hidden
crab. This is repeated until all the puzzles are solved, with
incorrect answers removing one ’life’. The game ends when
all puzzles are solved, or all lives are lost.
Tumble Trouble: Colored critters fill the screen, and the
player tries to clear the critters by drawing lines to match 4
or more in a row. This game adds two twists; first they must
clear a specific number of critters from a limited

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

29

supply, second a special ’clam’ critter requires surrounding
critters to be cleared several times before the clam is
cleared. The game is complete either when these two goals
are met, or there are no more possible moves.
Chomp Chomp: A supplemental game. Players are
presented with their buddy requesting a particular kind of
food, and a 5x5 grid of randomized food from 5 particular
types. The objective of the player is to ’feed’ the buddy by
filling his ’hunger gauge’. They do this by swapping food
around to match 3 of the same type of food which fills this
gauge. The game ends when the hunger bar is filled.
3.4 Integration of Offline Activities
The final sequence of the scaffolding journey where offline
activities is used to reinforce the skill acquisition process by
getting children to apply the CT skills learnt through the
online games to real-world teacher-led play activities. This
is implemented with the toys and equipment the
kindergartens already have in classrooms to perform
activities which practice CT and problem-solving as play
activities, so as not to discourage kids from interacting and
allows the kids to enjoy the learning experience. Teachers
help the kids follow the instructions given and are instructed
to allow the kids to figure out the solutions themselves.
Some examples of these activities include but are not
limited to:
• Making various animals with building blocks

• Recognizing patterns from the surrounding
environments

• Planning the steps of what the child will do during
the day

• Breaking a big jigsaw puzzle into smaller parts
then use abstraction to group them, making the puzzle easier
to solve

• Breaking a large math equation into smaller parts
3.5 Evaluating and Grading student Performance
Teachers require a means of grading and evaluating the
progress of a student through the curriculum. A method of
grading is provided via a dashboard application, which
allows teachers to mark attendance to modules and track the
child progress. This progress is empirically evaluated in two
ways, The CT competency index and the puzzle quiz
delivered at the start, mid and end of the curriculum. We
define the CT competency index as an empirical point
system and allocate points across three main topics;
• Curriculum modules: for which a child is awarded
points upon completion of the given module

• Animations: for which a child is awarded points
upon watching one of the Doodle animated lessons.
• Online Activities: Each of the core CT Games
described in Section 3.3 have 100 levels. Each of these
levels can be completed with a rating from 1 to 3 stars. 3
stars are given if the best approach/solution to the level was
used. The total of all earned stars for each game contribute
to points in the CT skill category which that game practices.

The curriculum modules only comprise 6 score for two rea-
sons; One is that the animations and online activities are
usually a subset of the curriculum, hence a big part of the
score is redistributed into the animated episodes (where the
concepts are taught) and the online game activities (where
they are practiced and reinforced). The second reason is that
the delivery of these classes cannot be monitored, making
the marking of these modules a subjective judgment from
the teacher (which they do by marking the student as
attended) and therefore cannot be empirically measured.
The final raw CT score is calculated as follows:

For each of the four games that contribute to the final raw
score. We do not directly show the raw scores to the teacher,
instead we show a graphical comparison of either a child’s
score compared to the rest of the class or a child’s score
against the rest of enlisted users via a percentage
comparison. This allows the teacher to highlight that a child
may be weaker in a particular skill and can suggest ways
that that child can improve to the parent when reporting
progress. We also use a variation of Raven’s progressive
matrices (Burke 1985) to test their ability to systematically
decompose patterns, selecting the correct missing piece.
This variation does not calculate IQ, but only the raw correct
answers as a grading metric. This test is taken before the
start, halfway during, and after the curriculum is complete.

4. PILOT STUDY: EVALUATING THE
TEACHING EFFECTIVENESS
This pilot study aims to validate how effectiveness of the
methodology and curriculum described in this paper in
teaching the fundamental CT skills. For this we developed
a 12-hour variation of our curriculum, containing the
introduction to each CT skill, some online interactive
practice in class via the tablet device, and some offline
activities. Additional worksheets are given out to be
completed outside of class hours either with teacher or
parental supervision. Before the classes begun, the
children were given the introduction to the course where
they learn how to use a tablet. They are then asked to
complete the puzzle test described in Section 3.5. This test
is given a second time after the completion of the course.
Our hypothesis stated that:
H1 Children improve the amount of correct answers given
in the puzzle test after taking the classes
H2 Any improvement is independent from whether the
children have previously used a tablet device before.

4.1 Participants
Two classes of mixed K1 and K2 students aged 4-6 years
old were selected from volunteer kindergartens. The first
class C1 has had no previous exposure to tablet devices
whilst C2 already uses some tablets as part of their
curriculum. Before forms were distributed by the teachers to
the child’s parents, only children whose parents have

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

30

completed and signed the form were allowed to participate.
C1 contained 15 students comprised of 6 female and 9
males, C2 comprised of 10 students 5 male, 4 female.
Making 25 students total. Later 2 males from C1 and 2
females and 1 male from C2 were removed from the
experiment results due to absence from some of the classes.
4.2 Task and Procedure
A 12-hour implementation of the designed described in
Section 3 is used in this experiment. In this shortened
version the modules which introduce each of the
fundamental CT concepts as well as one online and one
offline activity which practices the respective skill is used.
The children first learn how to use a tablet and conduct the
first puzzle test (described in Section 3.5) on the first day,
then the classes run on days 2 - 5, The second puzzle test is
then executed on day 6. These classes are taught by a
researcher whilst a kindergarten teacher is present at all
times to supervise and facilitate as needed. Please see the
additional materials for this 6-day curriculum.
4.3 Variables
Dependent Variables: Empirically we looked at the amount
of correct answers given in the test. Each answer is collected
as a binary outcome. Observations of how the students
partake in the classes and engage with the content are made
and general feedback from the supervising kindergarten
teachers and principals are collected through interviews.
Independent Variables:
Class { C1, C2 } between-subjects
We measured the scores between the two classes to see if
having previous experience with the tablet device causes
any effect on the effectiveness of the curriculum. C1 has had
no previous interaction with tablet devices while C2 has.
TestTakenAt { Pre, Post } within-subjects
We measured the scores of the puzzle test before and after
the 10-hour course was taken to see if there is an
improvement.
4.4 Results
The results of this pilot study are described in three ways;
The directly measured variables, the observations made
during class participation and the feedback given by the
supervising teachers & principals
Measured Results: As this was a between subjects study, for
each of the measured dependent variables described in
Section 4.3 we analyse each the measured Dependent
Variables using a two-way ANOVA test against the
Independent Variables. H1 stated that after the classes the
children will have more correct answers. Figure 3 shows at
what rate a child answered each question correctly before
and after the classes, from this we can say this improvement
is applied to questions which previously had a lower
percentage of being correct. The results from the two-way
repeated measures ANOVA test further support H1,
showing a significant interaction effect between the pre and
post-test scenario for both C1 & C2 on the amount of correct
answers in the puzzle test with confidence level p < 0.05
(~0.003). H2 states that any improvement in test

results is independent from whether the children have
previously used a tablet device before. Both two-way
ANOVA results highlighted in Figure 10 and 11 show that
there is no significant interaction (p > 0.05, ~0.379) between
the two classes on the amount of correct answers in the Pre
and Post-test environments, therefore H2 is accepted.

Observed Results: The children were actively engaging with
the classes; they answered the questions that were queried
by Doodle during the animated episodes. They would
answer questions asked by the experiment conductor

Figure 3. Results of the pilot study. We can see some
improvement of the amount of correct answers and that this
improvement is similar in both classrooms. The large
variance does suggest that the sample size might be too
small.

as well as the supervising teacher. The children at first had
difficulty engaging with the online activities but after a
small amount of practice were able to complete the given
activities. An interesting observation was made during the
execution of the puzzle tests. The students took longer and
were systematically solving the questions in the post test
environment.
Feedback Results: The teachers and principals were briefly
interviewed before and after the classes and posttest were
conducted. Overall principals were positive about the
unique style of how the classes were executed. At first they
rejected the idea of tablet computers being used in class but
after watching how the kids actively engaged during tablet
play they later retracted their rejection. They were
concerned that some training (although minimal) in the use
of the game and dashboard applications might be required
in order for such a curriculum to be effective
4.5 Discussion
Our measured results support both H1 and H2. We
recognize that the sample size is too small for a within
subjects experiment. This was unavoidable as kindergarten
classes typically only contain 5-15 students per supervising
teacher. Even with this small size the results were
significant. We observed that during the posttest the
children took a more systematic approach to solving the
puzzles. This raises the question as to whether a child
exposed to this teaching method will take a different
approach to solving problems due to a changed mindset and
can be investigated in future studies. We also observed that
the children engaged very well with the Doodle

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

31

character as he taught the concepts in the animated videos
and enjoyed the online activities in the tablet. The feedback
from the teachers additionally state that the children enjoyed
practicing these skills outside of the classroom as well as
through the interactive offline activities.

5. CONCLUSION & FUTURE WORK
This work represents a first step into a method of teaching
CT to a K1 & K2 audience, and opens several new venues
for future work. Although the experiment described in this
paper validated the hypothesis that our unique hybrid design
of offline and online activities is effective in teaching a
subject as complex as CT to a K1 & K2 audience, we
acknowledge that these results are only preliminary and are
an estimate due to a small sample size. Still, these results
are significant and suggest that future work involve the full
implementation of a curriculum which utilizes this hybrid
approach be completed. Furthermore, a repeated experiment
using this full implementation with a larger sample size will
lead to the same conclusions. The results also suggested
after the children were exposed to this new problem-solving
methodology, they took a new approach to solving the
puzzle test. This raises the question on whether we need new
test methods to further evaluate each of the fundamental CT
skills individually rather than as a whole. Additional future
psychological studies can possibly reveal on how a child’s
problem-solving mindset changes after being exposed to a
curriculum which teaches CT methodology.

6. ADDITIONAL MATERIALS
Additional materials can be found online here:
http://bit.ly/3s0UY84
These materials include the shortened curriculum used for
the study, a table summarizing each game’s contribution to
the overall CT score, and sample questions used as part of
the study’s evaluation. Sample Doodle episodes can be
found here: http://bit.ly/3vkdBGp

7. REFERENCES
Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K-12: what is Involved and
what is the role of the computer science education
community?. Acm Inroads, 2(1), 48-54.

Burke, H. R. (1985). Raven's Progressive Matrices (1938):
More on norms, reliability, and validity. Journal of
Clinical Psychology, 41(2), 231-235.

Burns*, C., & Myhill, D. (2004). Interactive or inactive? A
consideration of the nature of interaction in whole class
teaching. Cambridge journal of education, 34(1), 35-49.

Elliott, A., & Hall, N. (1997). The impact of self-
regulatory teaching strategies on" at-risk" preschoolers'
mathematical learning in a computer-mediated

environment. Journal of Computing in Childhood
Education, 8.

Falkner, K., Vivian, R., & Falkner, N. (2015, January).
Teaching computational thinking in k-6: The cser digital
technologies mooc. In Proceedings of the 17th
Australasian computing education conference (ace) (Vol.
30).

Grover, S., & Pea, R. (2013). Computational thinking in
K–12: A review of the state of the field. Educational
researcher, 42(1), 38-43.

Guzdial, M. (2008). Education Paving the way for
computational thinking. Communications of the ACM,
51(8), 25-27.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L.
(2012). Learning programming at the computational
thinking level via digital game-play. Procedia Computer
Science, 9, 522-531.

Lieberman, D. A., Bates, C. H., & So, J. (2009). Young
children's learning with digital media. Computers in the
Schools, 26(4), 271-283.

Meierhenry, W. C., & Stepp, R. E. (1969). Media and
early childhood education. The Phi Delta Kappan, 50(7),
409-411.

Montemayor, J., Druin, A., Chipman, G., Farber, A., &
Guha, M. L. (2004). Tools for children to create physical
interactive storyrooms. Computers in Entertainment
(CIE), 2(1), 12-12.

Papert, S. A. (2020). Mindstorms: Children, computers,
and powerful ideas. Basic books.

Perlis, A. (1962). The computer in the university.
Computers and the World of the Future, 180219.

Ramírez Verdugo, D., & Alonso Belmonte, I. (2007).
Using digital stories to improve listening comprehension
with Spanish young learners of English. Language
Learning & Technology, 11(1), 87-101.

Ritterfeld, U., & Weber, R. (2006). Video games for
entertainment and education. Playing video games:
Motives, responses, and consequences, 399-413.

Samuelsson, I. P., & Carlsson, M. A. (2008). The playing
learning child: Towards a pedagogy of early childhood.
Scandinavian journal of educational research, 52(6),
623-641.

Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects
of integrating mobile devices with teaching and learning
on students' learning performance: A meta-analysis and
research synthesis. Computers & Education, 94, 252-
275.

Turbill, J. (2001). A researcher goes to school: Using
technology in the kindergarten literacy curriculum.
Journal of Early Childhood Literacy, 1(3), 255-279.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

http://bit.ly/3s0UY84
http://bit.ly/3vkdBGp

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

32

Using the Beginners Computational Thinking Test to Measure Development on
Computational Concepts Among Preschoolers

María ZAPATA-CÁCERES1*, Nardie FANCHAMPS2,3
1Universidad Rey Juan Carlos, Spain

2Fontys University of Applied Science, Netherlands
3Zuyd University of Applied Science, Netherlands
maria.zapata@urjc.es, nardie.fanchamps@fontys.nl

information processes.” (Denning & Tedre, 2019). The CT

components that arise more often in literature are

abstraction, decomposition, algorithms, and debugging

(Shute, Sun, & Asbell-Clarke, 2017).

Constructivism in education (Vygotsky & Cole, 1978) and

the developmental theory (Piaget, 1972), establish dynamic

and collaborative learning where the learner actively creates

knowledge. Based on these leaning theories and in reaction

to technological innovations, various theoretical

frameworks have emerged. Papert addressed CT primarily

as the relationship between programming and thinking

skills, and its possible further application to multiple

disciplines (Papert, 1993). Furthermore, Collaborative

learning promotes critical thinking skills much more

effectively than do individualistic environments (Johnson &

Johnson, 2008).

The CT 3d framework (Brennan, Resnick, & MIT Media

Lab, 2012) divides CT into three facets: a) computational

concepts (the concepts applied in programming), b)

computational practices (the problem-solving practices

arising while programming), and c) computational

perspectives (the views that programmers hold about

themselves, their relationships to others, and the

technological world around them). The 3d Framework is

adopted in this article as is considered to provide a wide

coverage of CT for young students. It is expected from

learners to be able to understand CT concepts and develop

CT practices and perspectives with increasing maturity

depending on their age (Kong, 2016).

Based on these theories and since using computer

technology and programming at school is a way of learning

these skills from a very early age (Lye & Koh, 2014),

programmable robots are ideally suited for this purpose,

because these environments can make the output of a created

computer program concrete and tangible (Fanchamps,

Slangen, Hennissen, & Specht, 2019). Moreover,

collaborative peer-based environments enhance reflection

and improves CT learning experiences (Buitrago Flórez et

al., 2017). In our research project, we are therefore interested

in whether a development on CT, through a better

understanding of underlying programming concepts, using

collaborative robotics environments is also feasible for

preschoolers.

Previous research indicates that preschoolers are able to

program simple robotics projects in a playful and engaging

way, enhancing their computer thinking skills, while they

work collaboratively (Bers, Flannery, Kazakoff, & Sullivan,

2014), as they not only learn computer concepts but solve

problems by breaking them down into steps; they use

abstraction and algorithms to translate the problem into a

ABSTRACT
The implementation of programming in primary education

is in the forefront of attention in many countries. The

application of programmable robots offers many

opportunities to learn the basic concepts of programming.

Learning and understanding these underlying concepts is not

only reserved for students of five years and older but can

also be learned at a younger age. Until now, making a

development on Computational Thinking (CT) objectively

measurable among preschoolers was not possible since no

validated instrument was available for this purpose.

Furthermore, it is unclear which capabilities of CT are

achieved at each age and which are not reachable. To

establish which CT skills are of interest to students and

within the reach of each age group and therefore, teachable,

this study has been carried out. To assess CT, the Beginners

Computational Thinking test (BCTt) was used, along with

direct observation and interviews. Results show the

suitability of the BCTt among 5 years-old students and,

partially among 4 years-old students. When applying two

types of programmable robots a significant increase in the

development of CT was observed. A development of

specific complex programming concepts can also be

demonstrated. In addition to the skills shown, it also appears

that children are highly motivated to learn programming at a

very young age.

KEYWORDS
Computational Thinking, preschoolers, primary education,

programmable robots, assessment

1. INTRODUCTION
Currently, many countries have focused on learning

Computational Thinking (CT) increasingly at earlier stages

such as early childhood education (Bocconi et al., 2016).

However, there is still scarce knowledge available as to

whether very young children can learn CT-skills in an

understandable and applicable way (Hunsaker, 2018). Many

questions remain, such as: can preschoolers understand and

functionally apply underlying programming concepts,

which addressed computational concepts can young children

learn at all, and how can a development in CT among young

children be made measurable even when they are not able to

read?

Computational Thinking was redefined as the ability to solve

challenging problems using skills derived from the world of

computer science (Wing, 2006). Since then, several

definitions are found in the literature, nevertheless, they can

be summarized as “the mental skills and practices for: a)

designing computations that get computers to do jobs for us,

and b) explaining and interpreting the world as a complex of

mailto:maria.zapata@urjc.es
mailto:nardie.fanchamps@fontys.nl

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

33

codable language; and they apply debugging, as they must
modify their solution if it is not correct. To use Blue-bot
seems to be adequate to introduce robotics to preschoolers
(Alvarez, Bellegarde, Flahaut, & Lafouge, 2018); similarly,
there is evidence of the use of Cubetto at schools as a suitable
robotic environment for preschoolers for a first
programming experience (Sáez Fernández, Viera López, &
Pérez Marín, 2018).

With regard to the assessment of CT, several instruments
have been developed over the last two decades, but most of
them are aimed at middle or high school students and are
based on interviews or project analysis based on block
programming, such as Fairy assessment in Alice (Werner,
Denner, Campe, & Kawamoto, 2012). To make this
development for preschoolers measurable, we are using the
Beginners Computational Thinking test (BCTt) (Zapata-
Cáceres, Martín-Barroso, & Román-González, 2020), which
has been developed specifically for use among young
children and has proven to be reliable for the assessment of
CT focusing on 3d framework computational concepts, as
we demand in this research. However, it is recommended to
be used in parallel with other assessment tools as a system
of assessments (Grover, Pea, & Cooper, 2015), therefore,
qualitative data is also collected as part of our research to
address other 3d framework CT dimensions.

Considering the research that has already been carried out,
we are interested in the following main research question: Is
the BCTt usable among preschoolers and what interpretation
can be made regarding the measured results?

To answer this main research question, the following sub-
questions have been formulated: (1) To what extent can the
BCTt be used among preschoolers?, (2) Are preschoolers
capable of understanding underlying programming
concepts?, and (3) To which addressed computational
concept can a development among preschoolers be
measured?

The research has been carried out under the following
hypothesis: (1) Applying collaborative peer-based
programming environments that provide the opportunity to
understand programming concepts at an early age, motivates
young children to learn how to program, (2) preschoolers,
who learn to program making use of Blue-bot or Cubetto,
show a measurable understanding of programming concepts,
and (3) programming with Blue-bot or Cubetto contributes
to the development of CT-skills among preschoolers.

Our elaboration describes the method used, the participants
involved, the case study designed, and the results obtained
from the data analysis. Finally, conclusions, implications
and suggestions for further research are presented.

2. METHOD
To investigate our research questions, we used a pre-test and
post-test design. This includes a) pre-assessment of CT-
skills among preschoolers, b) a robotics-intervention using
two different types of programming environments, and c) a
post-test among preschoolers assessing CT-skills.

In addition to the data obtained by applying the BCTt, we
also collected qualitative data via direct observation and

interviews, asking preschoolers various questions about the
experience at the end of the programming sessions.

2.1. Participants
This study was conducted among preschoolers in the age
category 4 and 5 years old of a K-12 School in The
Netherlands. Preschoolers were divided randomly into pairs
and assigned to an experimental group to conduct
programming sessions with either Blue-bot (n=10) or
Cubetto (n=10). The control group (n=36) did not participate
in the programming sessions.

2.2. Materials
In the two treatment conditions we used Blue-bot and
Cubetto as programming environments. Two different types
of physical robots are to be programmed. The programming
itself is performed by applying physical command cards,
each containing a specific programming command (e.g.
forwards, backwards, left, right, etc.). To compose a program
these command cards must be sequenced in the correct order
in a command reader, which creates a programming string.
This created program can then be sent to either the Blue-bot
or Cubetto robot via a Bluetooth connection. In both
environments the following concepts were addressed:
“sequence”, “loop-simple”, “loop-nested” and “conditional
if-then”.

To measure an effect on preschoolers CT-skills, the
validated BCTt was used as a pre-test and post-test. The
BCTt consists of 25 questions in which preschoolers must
link programming sequences to different visual situations,
e.g. see Figure 1, so 3d framework computational concepts
and, partially, computational practices are assessed. The
specific concepts addressed in the BCTt are sequences, loop-
simple, loop-nested, conditional if-then, conditional if-then-
else, and conditional while.

Figure 1. BCTt question example (question number 4).

To determine the reliability of the BCTt for the specific
research sample, the overall Cronbach's alpha was calculated
(α = 0.911). The designers of the BCTt indicate a value of α
= 0.824 for Cronbach's alpha. From this we can conclude that
we amply meet the requirements for internal reliability. In
addition, qualitative data has been collected to address other
CT-skills: direct observation during the programming
sessions; and interviews at the end of the sessions in which
students were asked orally about their

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

34

feelings when interacting with the environments and with
their peers, and other questions related to what they were
supposed to learn and the characteristics of the
environments.

2.3. Procedure
To enable young students who have had no previous contact
with computer concepts and with low or no reading and
writing skills to take the test, the BCTt includes very few
texts just to support the symbols used for the statements, yet
the translation to Dutch language of these texts has been
calibrated by a research group of 8 education experts.

Prior to the programming sessions, the BCTt was
administered a pre-test to the whole sample (N=56). Because
preschoolers of this age category cannot yet read, in
accordance with the accompanying protocol, each question
is read out loud two times. At the same time, preschoolers
looked at the corresponding image and determined which
programming sequence they think is correct. Subsequently,
preschoolers were divided ad-randomly over the two
treatment conditions and the control group, obtaining
equally balanced groups.

For five weeks, one group then received five programming
sessions of 30 minutes each using Blue-bot. In the same
conditions, the other group received five programming
sessions using Cubetto. During the closing session,
preschoolers which used Blue-bot had to solve a
programming problem by applying the “repeat” loop;
similarly, preschoolers which used Cubetto had to solve a
programming problem by applying the “if-then” function.
After completion of the programming sessions, the BCTt
was again administered as a post-test in all groups in the
same conditions in order to be able to identify differences in
the CT development. In addition, qualitative data was
collected via direct observation while interacting with the
programming environment and with interviews conducted
after the programming experience.

3. RESULTS AND DATA-ANALYSIS
In order to be able to answer the main research question by means
of the formulated sub-questions and hypotheses to be investigated,
both qualitative (inventory) and quantitative data (SPSS) were
analyzed.

3.1. Qualitative data
As the BCTt assesses 3d framework computational concepts
and, partially, computational practices, but ignores
computational perspectives, qualitative data is collected,
through direct observation and with interviews at the end of
the programming experience, in order to broaden the CT
assessment.

Students were highly motivated and enthusiastic throughout
the entire programming experience, showing strong self-
regulation and deep attention over long periods of time. The
group using Cubetto were interested on using Blue-bot at a
later date and vice versa. Direct observation shows that
students understand the pictogram-based questions and are
able to make the link between the visual definition of the
problem and the solutions to be found represented by
combinations of directional arrows from which the correct

answer should be chosen. No differences were observed in
terms of gender, approach, motivation, or skills, but they
were between 4 and 5 years-old students, as there was a limit
on what 4 years-old students were able to understand.

With regard to CT components, students could think of a task
to be executed by the robot, make an abstraction dividing the
problem into smaller parts and translate it into an algorithm.
Similarly, their persistence in the search of the answer was
remarkable, since they were able to change their minds and
correct their code errors, using the debugging process.
Furthermore, the peer-based collaborative environment was
a strong support for reflection, as thinking aloud and finding
the solution together with a peer was key to solving the
problems.

Further observations show that both age categories
understand the underlying principles of sequencing in order
to be able to compile a program to be executed via the
concatenation of the directional arrows as commands. For 4-
year-old students the limit seems to be in questions that
include loops. Students 5 years-old can presumably
understand and answer the questions related to loops as well
as those related to conditionals. Considering the results of
the first research question on to what extent the BCTt can be
used among preschoolers, it becomes clear that this
instrument is applicable among 5 years-old students and 4
years old students to some extent. This was later confirmed
by the quantitative data results.

Regardless of the programming environment used, the oral
interviews conducted at the end of the programming
experience also show very high motivation in the students,
as the most common feelings they expressed when talking
about the experience were those of happiness and joy, and
that to solve problems make them feel smart. All the students
like to use either cards or the Tablet to program. 90% of
preschoolers who used Blue-bot thought they fully
understood the concept of 'repetition', compared to 70% of
those who used Cubetto. Although waiting their turn makes
65% of students feel "impatient" or "unhappy" and 20% find
it difficult to ask their peers for help, the collaborative
methodology was well rated by the 100%, who felt “happy”,
“glad” or “good” about working with a partner. All the
students felt that they have learned something new and
happened to know their right and left better.

3.2. Beginners Computational Thinking Test (BCTt)
To examine the hypotheses formulated in this research and
to determine whether, and if so, which of the two
programming environments used, both Blue-bot or Cubetto
lead to significant differences with respect to the control
group, and/or whether significant differences may occur in a
comparison between the two programming environments, a
variance analysis (Anova) with Levene's test was performed.
Subsequently, post-hoc tests were performed to demonstrate
possible significant effects and to confirm or reject
hypothesis. Eta squared (η2) was calculated to reveal the
magnitude of the effects. All statistical analyses assume a
significance level of 5% (p = ≤ 0.05). The results concerning
the second hypothesis whether preschoolers, who learn to
program using Blue-bot or Cubetto, show a measurable

understanding of underlying programming concepts are

shown by a development on the averages (Table 1).

Table 1. Differences by Computational Concept Addressed

Blue-Bot Pre-assessment Post-assessment

M SD M SD

Total (25) 0.27 .21 0.42 .27

Sequence 0.36 .23 0.72 .22

Loop simple 0.36 .28 0.54 .25

Loop nested 0.11 .16 0.23 .30

Conditional if-

then 0.15 .24 0.25 .35

Conditional if-

then-else 0.00 .00 0.25 .35

Conditional

while 0.60 .74 0.33 .19

Cubetto Pre-assessment Post-assessment

M SD M SD

Total (25) 0.30 .21 0.48 .27

Sequence 0.44 .19 0.87 .15

Loop simple 0.42 .33 0.64 .34

Loop nested 0.16 .23 0.21 .27

Conditional if-

then 0.10 .21 0.25 .35

Conditional if-

then-else 0.05 .16 0.30 .42

Conditional

while 0.50 .85 0.37 .48

Control group Pre-assessment Post-assessment

M SD M SD

Total (25) 0.32 .20 0.27 .19

Sequence 0.48 .18 0.55 .28

Loop simple 0.43 .33 0.33 .31

Loop nested 0.15 .23 0.13 .19

Conditional if-

then 0.11 .27 0.10 .20

Conditional if-

then-else 0.10 .23 0.10 .23

Conditional

while 0.50 .74 0.10 .19

Note. Total = number of questions correct BCTt questionnaire; M

= average; SD = standard deviation.

Students who have programmed making use of Blue-bot or

Cubetto show a development on programming concepts in a

direct comparison with the control group. Table 1 shows that

pupils who applied Blue-bot or Cubetto successfully solved

more computational thinking issues and developed more

understanding of the programming concepts “sequence”,

“loops” (simple, nested) and “conditionals” (if-then, if-then-

else). A development on “conditionals-while” could not be

demonstrated.

The answer to the third hypothesis, whether programming

making use of Blue-bot or Cubetto contributes to a

development of CT-skills among preschoolers, can be

deduced from the data presented in Table 2. The data show

that in both treatment conditions, in contrast to the control

group, a significant development can be measured for the

total number of computational thinking issues solved (Total)

and for the computational concepts addressed “sequence”,

“loop-simple”, and “conditional-while”. A further

examination of the data by applying post-hoc tests reveals

that 1) for the “total number of computational thinking

issues solved” both Blue-bot and Cubetto cause the

significant effect, 2) for “sequence” Cubetto causes the

significant difference, 3) for “loop-simple” Cubetto causes

the significant difference, and 4) for “conditional-while”

Cubetto causes the significant difference. Despite a strong

development on the averages, as shown in Table 1, no

significant increase can be demonstrated for the

computational concepts addressed “loop-nested”,

“conditional if-then” and “conditional if-then-else”.

Table 2. Analysis of Variance (Anova)

Quantity

SS df MS F p SD η2

Total (25)* .485 2,53 .243 .491 .011 .24 .156

Sequence* .858 2,53 .429 .653 .003 .28 .198

Loop-

simple* .934 2,53 .467 4.99 .010 .33 .158

Loop-

nested .097 2,53 .049 .923 .404 .23 .034

Conditional

if-then .300 2,53 .150 2.17 .124 .27 .076

Conditional

if-then-else .419 2,53 .209 2.40 .101 .30 .083

Conditional

while* .797 2,53 .399 4.09 .022 .33 .134

Note. Quantity = measured value; Total = number of questions

correct BCTt-questionnaire; Computational concept addressed =

sequence, loop simple, loop nested, conditional if-then, conditional

if-then-else, conditional while; SS = sum of squares; DF = degrees

of freedom; MS = mean square; F = f-value; p = significance level;

SD = standard deviation; η2 = Eta squared; *significant effect

measured.

To determine if preschoolers aged 4 and 5 years old are

capable of understanding the BCTt underlying programming

concepts, a comparison between both ages was performed.

Results on Table 3 show that the limit for 4-year-old

preschoolers is the understanding of the concepts

“sequence” and “loop-simple”. On the other concepts

(“loop-nested”, “conditional if-then”, “conditional if-then-

else”, “conditional while”) no further development is

measurable. This in contrast to the 5-year old preschoolers

who show a development on all concepts, except for the

“conditionals while” concept.

Table 3. Age Difference by Computational Concept

Age 4 years Pre-assessment Post-assessment

M SD M SD

Total (25) 0.17 .06 0.19 .10

Sequence 0.37 .16 0.53 .26

Loop simple 0.24 .18 0.28 .26

Loop nested 0.00 .00 0.00 .02

Conditional if-

then 0.00 .00 0.00 .00

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

35

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

36

Conditional if-
then-else 0.00 .00 0.00 .00
Conditional
while 0.00 .00 0.00 .00

Age 5 years Pre-assessment Post-assessment

M SD M SD

Total (25) 0.52 .14 0.56 .21
Sequence 0.59 .17 0.80 .24
Loop simple 0.69 .30 0.64 .31
Loop nested 0.38 .18 0.42 .17
Conditional if-
then 0.30 .33 0.39 .31
Conditional if-
then-else 0.18 .29 0.41 .37
Conditional
while 1.32 .65 0.48 .37

Note. Total = number of questions correct BCTt-questionnaire; M
= average; SD = standard deviation.

Furthermore, Table 4 presents a t-test analysis to assess
whether there are significant differences between
preschoolers aged 4 years and 5 years old concerning the
understanding of computational concepts addressed in the
BCTt. From these findings, it can be noted that 5-year old
preschoolers score significantly better than 4-year-old
preschoolers on all the concepts present in the BCTt.

Table 4. T-test analysis comparing 4 and 5 years old
Quantity

t df p CI d
Total (25)* -7.69 27.29 0.000 -0.47- -0.27 2.24
Sequence* -3.85 47.29 0.000 -0.40- -0.12 1.04
Loop-simple*

-4.44 38.62 0.000 -0.52- -0.19 1.24
Loop-nested*

-11.26 21.56 0.000 -0.49- -0.34 3.38
Conditional if-
then* -5.92 21.00 0.000 -0.52- -0.25 1.79
Conditional if-
then-else* -5.24 21.00 0.000 -0.57- -0.25 1.57
Conditional
while* -6.20 21.00 0.000 -0.65- -0.32 1.87
Note. Total = number of questions correct BCTt-questionnaire;
Computational concept addressed = sequence, loop simple, loop
nested, conditional if-then, conditional if-then-else, conditional
while; t = t-value; df = degrees of freedom; p = significance level;
CI = confidence interval; d = Cohen’s d effect size; *significant
effect measured

4. CONCLUSIONS
Preschoolers showed understanding of the underlying
programming concepts and a significant overall
improvement in regard to CT-skills with mayor size effects
compared to those of the control group. In addition,
preschoolers were highly motivated when working in pairs
when using robotic programming environments. Therefore,
it could be concluded that collaborative peer-based
environments are appropriate and enhance the learning of

programming concepts at an early age, thus, it is advisable
that CT-skills start to be taught at least at the age of 4.

Both Blue-bot and Cubetto were proved suitable for
preschoolers and caused a significant overall improvement
in CT-skills. Cubetto causes the most significant
improvements in specific computational concepts, our
hypothesis is that its layout allows children to abstract (one
of the computational practices of the 3D framework) more
easily from the proposed code, since a) command cards are
displayed as a path, and b) the command cards are in the
shape of the symbol used. On the contrary in Blue-bot a) the
sequences are displayed from top to bottom, and b) the
symbols are drawn inside de command cards. Although
Cubetto seems more suitable for preschooler, we suggest
using different programming environments with the same
sample of students, so that they can benefit from them in a
cross-curricular way, as both contribute to the development
of CT-skills among preschoolers.

However, the concepts that can be taught to each age group
are different. From our results we can deduce that 5 years-
old students are able to understand all computational
concepts addressed in the BCTt, and show a significant
improvement, after the programming sessions, in each of
them (except in the “conditional while”), including the
“conditional if-then-else”, even though this concept was not
practiced in any of the programming sessions. The
difference between the results of the two age groups is very
significant, as 4 years-old students show
understanding and improvement on only two of the six
concepts addressed in the BCTt ("sequence" and
"loop-simple"). Since the “conditional if-then” was
practiced in the programming sessions and no
understanding nor improvement was shown, it can be
concluded that “conditional if-then” and, therefore,
“conditional if-then-else” might not be reachable concepts
for 4 years-old students. However, although they did not
show understanding or improvement in the “conditional-
while”, since this concept was not addressed in the
programming environments, it cannot be stated with
certainty that it is not within the reach of 4-year-olds.

The BCTt shows a very high reliability as an instrument to
assess CT-skills for 4 (α = 0.802) and 5 years-old students
(α = 0.889) and, in combination with qualitative data,
provides an adequate CT assessment for these age groups.
Both 4- and 5-year-old students can complete the BCTt,
understand the pictograms and are able to interpret the
programming sequences posed as possible solutions.
However, four of the six computational concepts addressed
in the BCTt seem not reachable for 4 years-old students, as
they were not able to answer the questions related to
them nor show any improvement in the post-test in
regard to those concepts. For this reason, we suggest a new
version of the BCTt should be made targeted to 4 years-
old students and/or younger students. Furthermore, the
research should be replicated with larger samples, more
programming sessions (with a duration according to the
limited attention span of very young children) and in
other countries to confirm our findings.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

37

5. ACKNOWLEDGMENTS
The authors would like to thank primary school De Hovenier
Montfort, the Netherlands, for their cooperation.

6. COMPLIANCE WITH ETHICAL
STANDARDS
The Ethical research board (cETO) of the Open University
of the Netherlands has assessed the proposed research and
concluded that this research is in line with the rules and
regulations and the ethical codes for research in Human
Subjects (reference: U2019/01324/SVW)

7. REFERENCES
Alvarez, J., Bellegarde, K., Flahaut, J., & Lafouge, T.

(2018). Blue bot project experiment. HAL CCSD.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.

(2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum.
Computers and Education, 72, 145-157. doi:
10.1016/j.compedu.2013.10.020

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A.,
Engelhardt, K., Kampylis, P., et al. (2016). Developing
computational thinking in compulsory education.
European Commission, JRC Science for Policy Report,
68.

Brennan, K., Resnick, M., & MIT Media Lab. (2012). New
frameworks for studying and assessing the development
of computational thinking. American Educational
Research Association Meeting, Vancouver, BC, Canada.,

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes,
A., Restrepo, S., & Danies, G. (2017). Changing a
generation's way of thinking: Teaching computational
thinking through programming. Review of Educational
Research, 87(4), 834. doi:10.3102/0034654317710096

Denning, P. J., & Tedre, M. (2019). Computational
thinking. Cambridge, MA; London: The MIT Press.

Fanchamps, N., Slangen, L., Hennissen, P., & Specht, M.
(2019). The influence of SRA-programming on
algorithmic thinking and self-efficacy using Lego
robotics in two types of instruction. International Journal
of Technology and Design Education,
doi:10.1007/s10798-019-09559-9

Grover, S., Pea, R., & Cooper, S. (2015). (2015). Systems
of assessments for deeper learning of computational

thinking in K-12. Paper presented at the Proceedings of
the 2015 Annual Meeting of the American Educational
Research Association, pp. 15-20.

Hunsaker, E. (2018). Computational thinking. in A.
ottenbreit-leftwich & R. kimmons, The K-12 Educational
Technology Handbook. EdTech Books.

Johnson, R. T., & Johnson, D. W. (2008). Active learning:
Cooperation in the classroom. The Annual Report of
Educational Psychology in Japan, 47, 29-30.

Kong, S. (2016). A framework of curriculum design for
computational thinking development in K-12 education.
Journal of Computers in Education, 3(4), 377-394.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.
doi:10.1016/j.chb.2014.09.012

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas Basic Books, Inc.

Piaget, J. (1972). Psychology and epistemology: Towards a
theory of knowledge. University of California.

Sáez Fernández, C., Viera López, G., & Pérez Marín, D.
(2018). Propuesta metodológica de la enseñanza de la
programación en Educación Infantil con Cubetto. IE
Comunicaciones: Revista Iberoamericana de Informática
Educativa, (28), 1-8.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.
doi://doi.org/10.1016/j.edurev.2017.09.003

Vygotsky, L. S., & Cole, M. (1978). Mind in society.
Cambridge, Mass. [u.a.]: Harvard Univ. Press.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. The
fairy performance assessment. pp. 215-220.

Wing, J. M. (2006). Computational thinking test. CACM
Viewpoint, 33-35. Retrieved from
http://www.cs.cmu.edu/~wing/

Zapata-Cáceres, M., Martín-Barroso, E., & Román-
González, M. (2020). Computational thinking test for
beginners: Design and content validation. Paper
presented at the Proceedings of the 2020 IEEE Global
Engineering Education Conference (EDUCON), pp.
1905-1914.

http://www.cs.cmu.edu/%7Ewing/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

38

Storytelling through Programming in Scratch: Interdisciplinary Integration in the

Elementary English Language Arts Classroom

ABSTRACT

Emrah PEKTAŞ1*, Florence R. SULLIVAN2
1,2 College of Education

1,2 University of Massachusetts Amherst, USA
epektas@educ.umass.edu, fsullivan@educ.umass.edu

The focus of this paper is to investigate how elementary
students learned computer science concepts through
storytelling in Scratch. To serve this purpose, we conducted
artifact interviews with 4th graders who were engaged with
a computer science (CS) integrated module in their English
language arts (ELA) class. Students created stories in
Scratch with a focus on character traits. The constructionist
design of the Scratch tool supports student learning through
tinkering, the creation of meaningful artifacts, and through
the theatrical metaphor that underlies interface design. This
paper explores how two 4th graders demonstrated their
CS/CT and ELA knowledge through the design of a Scratch
artifact and how Scratch facilitated this interdisciplinary
learning. While there have been studies in middle school and
in after-school contexts that focus on digital storytelling and
writing, there are few papers that examine interdisciplinary
integration in the formal school context at the elementary
level.

KEYWORDS
Interdisciplinary Integration, Artifact Interview, Scratch

1. INTRODUCTION
The CS for All movement is very important for reaching all
children to learn CS/CT skills in the US. We report on one
such initiative in Western Massachusetts in a mid-size,
ethnically diverse city: Springfield. The CS for All
Springfield project focuses on supporting elementary school
teachers, across 33 schools, to introduce computer science
across grades K-5 through integrating Computer
Science/Computational Thinking (CS/CT) into subject
areas, as outlined by the state’s Digital Literacy and
Computer Science (DLCS) standards. This project involves
over 150 teachers and will serve over 11,000 students.

2. RELATED WORK
2.1. Computational Thinking
Wing (2006) defines computational thinking (CT) as
“solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to
computer science” (p. 33). Brennan and Resnick (2012)
define computational thinking with three dimensions:
computational concepts such as conditionals, computational
practices such as decomposing problems or remixing others’
or your own work, and computational perspectives such as
expressing, which is defined as using computation for self-
expression. In their study, Brennan and Resnick considered

the Scratch online community as inspiring for Scratchers to
reuse and remix. They state that the Scratch
online community supports Scratchers in reusing and
remixing, “by helping them find ideas and code to build
upon, enabling them to potentially create things much
more complex than they could have created on their
own” (p. 8). As well as the Scratch online community,
Scratch itself provides tools for users to remix such as
creatively remixing two existing characters through
costumes in Scratch.

2.2. Interdisciplinary Integration
Many elementary schools in the US are not able to offer CS
as a stand-alone topic due to the demands of the
curriculum. Therefore, if CS is going to be taught in the
US, it will be taught through interdisciplinary integration.
The CS for All community needs research that delves into
how to integrate CS/CT across the curriculum in
meaningful ways, such that students learn the content in
both areas. Our project takes such an interdisciplinary
approach. For the purposes of this paper, we are focusing
on integration of CS/CT ideas into the English Language
Arts (ELA) curriculum using the Scratch program.
Resnick et al. (2009) designed Scratch based on three
constructionist design principles: (1) to make it more
tinkerable, (2) more personally meaningful, and (3) more
social than other programming environments.

Scratch is an excellent tool for use in ELA due to
the theatrical metaphor that underlies the user interface of
the Scratch system and permits the development of
interactive stories (Resnick et al., 2009). Since Scratch
provides a “stage” upon which interactive animations and
stories can be displayed, ELA teachers are able to
approach important topics in reading and writing
fiction, for example, the narrative story arc, the
location of the story and character elements. Scratch
animations unfold temporally, which allows for the
narrative to evolve over time. Meanwhile, the background
feature in Scratch allows the location of the story to change
as the narrative evolves, and the sprite element
(including provided characters, costumes, and the
“say” blocks) allow students to create characters with
specific traits, and these traits can also change and/or
evolve with the narrative arc of the story. Elementary
teachers can take advantage of these elements to
integrate CS/CT into their ELA instruction. Moreover,
Maloney et al. (2008) argue: “...the design of the Scratch
blocks simplifies the mechanics of programming by
eliminating syntax errors, providing feedback about
placement of command blocks, and giving immediate
feedback for experiments (p. 371).” These combined
design elements - ease of use of the tool, the stage
metaphor, and the ability for students to tinker and
create meaningful programs - makes Scratch an ideal tool

mailto:epektas@educ.umass.edu
mailto:fsullivan@educ.umass.edu

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

39

for integrating CS content with ELA in the elementary
classroom.

2.3. Using Scratch for ELA integration
Others have conducted research on using Scratch in the ELA
classroom. Burke and Kafai (2010; 2012) have investigated
the use of Scratch in teaching writing at the middle school
level. Their results indicate that programming in Scratch can
assist children in developing their storytelling and creative
writing skills. They state that “writing to program can also
serve as programming to write, in which a child learns the
importance of sequence, structure, and clarity of
expression—three aspects characteristic of effective coding
and good storytelling alike.” (2010, p. 348)

Fields et al., (2014) examined students' collaborative
creation of interactive stories using Scratch, in which
students received feedback on their stories. Their findings
suggest that online collaborative creative storytelling and
constructive feedback have the potential to generate both
more complex story designs and code development. This co-
evolution of coding skills and writing skills is a key element
of integration. Meanwhile, Smith and Burrow (2016) present
two anecdotal case studies conducted with their own young
children as they observed them using Scratch, Jr. These
teacher educators recognized the utility of Scratch for
assisting in story development through their children’s
tinkering with design elements of the system. They then use
this knowledge to help construct Scratch integration lessons
for their pre-service teacher education students.

The work presented in this study extends the current research
and specifically focuses on a fourth-grade ELA assignment
that uses Scratch to teach students about both character traits
and algorithmic development. In this study, we examine the
following research question: How do 4th graders learn
CS/CT concepts integrated into ELA through Scratch and an
interdisciplinary integrated module?

3. METHODS
3.1. Context of the Study
This study took place in the context of CS for All
Springfield, a large, four-year study of the iterative design
and development of integrated CS/CT modules across the
elementary curriculum in the Springfield Public School
(SPS) district. Students in the Springfield Public Schools are
18.9% Black, 66.6%Latinx, 10.2% White, and 4.3% Asian,
Native American, non-Hispanic, and multi-race students.
Eighty-three percent of district students are considered high
needs, and 76.7% are economically disadvantaged. The
manifold goals of the larger study include an understanding
of teacher professional development needs regarding CS/CT
integration, barriers to such integration, and assessment of
student learning. The study reported here is one aspect of the
latter research goal.
3.2. Setting and Participants
Participants in this study were drawn from three different
classrooms involved in year two of the four-year long
study. All artifact interview participants were selected by
the teacher. The interviews were collected with a select

group of fourth grade students who completed
ELA/Scratch projects. A total of twelve children were
interviewed for this study. Seven children were interviewed
individually, and two groups of students were also
interviewed (one group of three and one group of two).
Each interview lasted 10 to 15 minutes. For the purposes of
this paper, we are focusing on two individual interviews
only. Those two interviews were collected from a
classroom where CS/CT was integrated into ELA. Other
interviews were collected from classrooms where CS/CT
was integrated into either math or social studies. The goal
of our analysis is to understand how Scratch can support
ELA learning in the upper elementary grades. Therefore, it
was important for us to focus on the two interviews in the
ELA classroom where students were successful with the
curriculum. These two interviews are representative of the
strength of the integrated approach for using Scratch to
teach ELA. In this way, these interviews are examples of
what is possible. Later work will be looking across all data.
These two interviews were conducted with two 10-year-old
boys (pseudonymously known as Martin and Kyle) who
worked together on their ELA/Scratch project, but were
interviewed separately. The size of the class where these
interviews were conducted was 18 students (11 boys and 7
girls). Nine students were Black while seven were Latinx
and two were White Americans. Martin was a mixed race
student (Latinx and Black), Kyle was a White (European-
American) student. As for their programming experience,
the classroom teacher reported that they did not have much
experience in coding prior to the CS for all lessons. She
added that some may have had a few classes last year in
code.org with the computer teacher but other than that this
was their first time ever using Scratch.

3.3. Curriculum Design/Tools
Two 4th grade teachers worked together to adopt a pre-
existing curriculum to integrate CS/CT components across
ELA. This dyad developed a six-lesson module to pilot in
their classroom. The unit was designed based on “character
traits” in 4th grade ELA. Character traits is an English
Language Arts (ELA) unit taught in the district based on
Massachusetts ELA standards (2017). In the module, 4th
graders were taught to identify character traits and what
behaviors a character trait is associated with, to describe their
own character traits, to develop a story and manage
sequencing the events, to use Scratch and to create a short
Scratch animation (story) based on a few character traits.

3.4. Data Collection
The data were collected using the artifact interview method.
By artifact we mean a completed or almost-completed work
in a programming tool such as Scratch that students created
while engaged in the integrated unit. The data consists of
both their statements during the interviews and the actual
Scratch program created. Ginsburg (1997) argues that
clinical interview is a powerful technique for gaining insight
into a child's way of thinking. Ginsburg writes that during a
clinical interview the interviewer asks open-ended questions
such as “how did you do it”? or “why” and does “an
immediate interpretation of the subject’s response” and “on-
the-spot hypothesis making and testing” (p. 34). The artifact

http://code.org/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

40

interview method evolved out of the clinical interview
method. That is, an artifact interview is about interviewing a
child’s conceptual understanding of a topic. In this approach,
the interviewer engages in conversation with the Scratcher
about their computational products and practices, using
work samples to guide the conversation. It is similar to and
newer than clinical interviewing, and focuses on an artifact
that a child has created. Students’ laptop screens and voices
were recorded during their artifact interviews. During artifact
interviews, students were asked open-ended questions such
as “Why did you use these particular blocks and sprites?”
and What steps did you follow to create your project? All the
interviews were conducted at the end of the module
implementations. The researchers acted as participant
observers in the classroom during module implementation.
They worked to build a good rapport with the students during
this time and the interviews were done in a conversational
mood so that students engaged in the interview.
Additionally, field notes and photographs of the module
implementation were gathered.

3.5. Data Analysis
After transcribing the artifact interviews, we analyzed not
only the participants’ statements on their Scratch artifacts
during interviews but also the Scratch programs themselves.
During the module implementation, the participants engaged
in both Massachusetts’ DLCS standards (2016) such as “3-
5.CT.b4: Individually and collaboratively create tests and
modify a program in a graphical environment (e.g., block-
based visual programming language)”, which is
coding/programming in Scratch in this case, and
Massachusetts’ ELA standards (2017) such as “W 4.3: Write
narratives to develop real or imagined experiences or events
using effective technique, descriptive details, and clear event
sequences”, which is writing a story based on a few character
traits in this case. In our data analysis, we focused on how
separate standards of the two disciplines intersect in the
participants’ Scratch stories.

4. RESULTS
The entire class worked in groups of three or four to write a
story based on the character traits they picked at the
beginning of the lessons and to create a short Scratch story
based on their written story. Martin and Kyle were two
members of a group of four. During the lessons, the group
came up with a story called Zombie Apocalypse with three
parts, beginning, middle, and end. The story was framed
around a few characters traits such as brave (Martin’s
choice), daring (Kyle’s choice), and fearless. Based on these
character traits, using a graphic organizer and a story map,
the group in the leadership of Kyle wrote a story around the
following idea: carrying Zombies in it, a meteor called the
Nebula hits the Earth, and then Zombies in the Nebula come
out, destroy the Earth, and zombify all human beings.
However, only three people and one goblin, students
themselves, remain alive and the three people fight against
zombies, kill them all, and save the world. Based on this
story, Martin and Kyle were responsible for creating the
beginning of the story in Scratch, so the projects of the two

students were similar in terms of graphical content, and each
of them separately designed the short Scratch story up to the
point where zombies spread all over the world, which
represented the beginning of the story.

4.1. Martin’s project
Briefly, the first scene of Martin’s Scratch project was that
the Earth and the Nebula appear in outer space, and the
Nebula slowly approaches (gliding) the Earth and crashes
into it. After that, the backdrop switches to another one
where there is fire all over the place in a city on the Earth
because of the crash. This second scene is to represent the
idea that the entire Earth was being destroyed by zombies.
After this scene, the backdrop switches to another
background in which there are three zombies that were
released from the Nebula after the crash. These scenes are
shown in order in Figure 1 below.

Figure 1 (Screenshots of scenes of Martin’s Scratch story)

4.1.1. Remixing for self-expression
Martin was a Scratcher who could effectively utilize the
tools that the Scratch environment provides such as remixing
different characters in costumes according to the purpose of
his project such as representing the character trait “brave” he
picked. Figure 2 below is a screenshot of Martin’s character
development on Scratch:

Figure 2 (Screenshots of evolution of Martin’s character)

As seen in Figure 2 above, Martin remixed the body of a
knight sprite and the head of a black person sprite in Scratch
library. When Martin was asked how he created it, he was
simultaneously telling and showing the interviewer on his
laptop screen how he made it:

When I go to Devin, I took off. Let's go to
people [in Scratch library]. Took off his [a black
person sprite's] face [head]. [...] go here and
then right then I choose the knight. [...] I got rid
of the head [of the knight]. [...] Delete that, then
get rid of the body [of the person sprite]. That,
delete. [...] Copied this [the person’s head], then
go here [knight body without head], paste [the
head on the knight body costume]. Then [..] got
rid of the neck [of the person sprite]. [...] And
put the head on the top of the- [knight body]”
(Interview 103019)

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

41

As a mixed-race person of Latinx and Black descent, and
choosing “brave” as his character trait for this project, Martin
not only represented himself as a Black person in the story
but also remixed it with a knight that represents bravery.
After Martin described and showed how he remixed two
characters on Scratch to create a new character, the
researchers asked “why did you create that sprite?” Martin
replied as follows:

[...] my character should be like just free with [a]
shirt on [be]cause the zombies can easily get
them. I want him to have protection. Then if the
zombie[s] start climbing on their back and
they're almost about to get him, he can take it off
and run away. (Interview 103019).

Martin thought that he cannot fight against zombies as a
normal person with his regular clothes, so he chose to be a
knight whose costumes protect against zombies and this part
of the narrative needed to be shown visually and created
computationally. Martin was able to make all this happen
with the tools that Scratch provides for its users such as
characters, backdrops, and blocks for action.

4.2. Kyle’s project
In his project, just like Martin’s, Kyle’s short Scratch story
starts with a scene in outer space, as seen in Figure 3, where
the Nebula approaches the Earth and hits it. And then, all
zombies in the Nebula spread across all corners of the world.
Right after this scene, the backdrop changes to another
backdrop in which a few zombies were placed on different
coordinates on the background and the buildings in that area
were ruined. This background was to reflect the idea of
zombies being released from the Nebula and of destroying
the Earth.

Figure 3 (Screenshots of scenes of Kyle’s Scratch story)

4.2.1. Programming for narrative coherence
Not knowing that the glide block existed on Scratch, Kyle
did create a script that functions as a glide block in Scratch
as shown in Figure 4 below.

Figure 4 (A screenshot of Kyle’s glide block)

When we asked Kyle how he created that script, he
responded:

All right, so this is the meteor. And, when I click
this [green flag], which means go, it'll move 25
steps. In this case it would be 25 steps closer to
the earth. [...] And it goes 25 steps toward the
earth, and then it waits three tenths of a second,
and then moves 10 steps and waits two tenths of
a second, and then goes another 10 steps, two
tenths a second, and then goes another 10 steps.
So, [it] looks like it's actually flying through, it's
called the galaxy, towards earth. (Interview
103019)

According to the story, Kyle needed to animate an action
where the meteor approaches the Earth before hitting it. Not
knowing that the glide block existed in Scratch, Kyle
programmed a script that functioned as a glide block in
Scratch. This accomplished his goal of narrative coherence,
such that viewers could see the meteor flying towards Earth.
In this case, Kyle’s programming activity was guided by the
narrative of the meteor moving from outer space to the earth.

5. DISCUSSION
Martin and Kyle’s individual work in Scratch demonstrates
the powerful way in which the Scratch program can be used
to support ELA lessons in the elementary classroom. The
students were given the opportunity to write a story in
Scratch that met the following State of Massachusetts (2017)
writing standard for fourth grade: “Write narratives to
develop real or imagined experiences or events using
effective technique, descriptive details, and clear event
sequences.” The sequencing of events maps very well to the
temporal nature of the Scratch interface as demonstrated by
the change in background. Both Martin and Kyle changed
the background in the “beginning” of the story to
demonstrate plot movement. Moreover, Scratch supported
student imagination as the group (following Kyle’s lead)
created a “Zombie” story - an aspect of popular culture as
demonstrated in Zombie video games such as: “Zombie
Apocalypse.” Both students were able to develop descriptive
details and support the presentation of the details by
engaging in computational practices and they did so by using

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

42

computational means. For example, Martin engaged in the
activity of remixing in order to create a character that could
successfully fight against the zombies. Interestingly, in this
case, Martin elected to modify the knight to have the head of
a Black boy. Arguably, Martin was placing himself in the
story. This is an important constructionist design element of
Scratch - Martin was able to create a more meaningful
narrative, by placing himself in the story. This type of
imagination is also important for success in writing and
interpreting narratives, as one is able to personally connect
to a story (Eagen, 1992).

Meanwhile, Kyle demonstrated a keen understanding of the
need for the story to unfold in a visually meaningful way,
and since he was not aware of the glide block in Scratch
(which would have allowed his zombie filled meteor to
visually move across the screen) he created his own glide
block. This is an especially important point regarding
interdisciplinarity and Scratch. The narrative is that the
meteor moved through space and collided with Earth. In
order for that narrative to be communicated, Kyle needed to
show the meteor moving smoothly across the screen over
time. To solve this problem, Kyle created the code with
imperceptibly short time variables (three-tenths of a second
for every 25 steps). In writing this code, Kyle both learned
how to program Scratch with some level of precision, and
also served the narrative by creating the visual effect of the
meteor streaking through space. Effectively, Kyle was able
to serve the narrative while learning to code.

6. CONCLUSION
In this study, we used an interdisciplinary integration
approach, with CS/CT concepts being integrated into ELA,
to examine how two 4th graders expanded their ELA
knowledge and their CS/CT knowledge through Scratch
while engaged in the lesson. Scratch is an environment that
allows for this integration because it was designed in a way
that supports the creation of a story. Scratchers can create
narrative elements through the tools that Scratch provides
such as rich, visual graphics like sprites / characters,
backdrops / setting, and action that can be created through
blocks / programming. These narrative elements can be
easily tinkered within Scratch to write a story as seen in our
study. Scratch is a powerful tool for interdisciplinary
integration, especially when children are provided with the
opportunity to collaboratively engage in narrative, fictional
writing assignments such as the one featured in this
classroom.

7. ACKNOWLEDGEMENTS: The work in this
paper has been funded by a grant from the National Science
Foundation, DRL - 1837086. Any opinions expressed in this
paper are those of the authors and do not necessarily
represent those of the National Science Foundation.

8. REFERENCES
Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American educational research
association, Vancouver, Canada (Vol. 1, p. 25).

Burke, Q., & Kafai, Y. B. (2010, June). Programming &
storytelling: opportunities for learning about coding &
composition. In Proceedings of the 9th international
conference on interaction design and children (pp. 348-
351).

Burke, Q., & Kafai, Y. B. (2012, February). The writers'
workshop for youth programmers: digital storytelling
with scratch in middle school classrooms. In Proceedings
of the 43rd ACM technical symposium on Computer
Science Education (pp. 433-438).

Eagen, K. (1992). Imagination in teaching and learning:
The middle school years. The University of Chicago
Press.

Fields, D. A., Kafai, Y. B., Strommer, A., Wolf, E., &
Seiner, B. (2014). Interactive storytelling for promoting
creative expression in media and coding in youth online
collaboratives in Scratch. Proceedings of
constructionism, 19-23.

Ginsburg, H. (1997). Entering the child's mind: The
clinical interview in psychological research and practice.
Cambridge University Press.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., &
Rusk, N. (2008, March). Programming by choice: urban
youth learning programming with scratch. In Proceedings
of the 39th SIGCSE technical symposium on Computer
science education (pp. 367-371).

Massachusetts Department of Elementary and Secondary
Education. (2017). English Language Arts and Literacy
Framework. Retrieved from
https://www.doe.mass.edu/frameworks/ela/2017-06.pdf

Massachusetts Department of Elementary and Secondary
Education. (2016.). Digital Literacy Computer Science
Framework. Retrieved from
https://www.doe.mass.edu/frameworks/current.html

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

Smith, S., & Burrow, L. E. (2016). Programming
multimedia stories in Scratch to integrate computational
thinking and writing with elementary students. Journal of
Mathematics Education, 9(2), 119-131.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

https://www.doe.mass.edu/frameworks/ela/2017-06.pdf
https://www.doe.mass.edu/frameworks/current.html

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

43

Students’ Learning of Computational Thinking in Schools with Different
Curriculum Approaches Including Individual Student Characteristics

Amelie LABUSCH1*, Birgit EICKELMANN2

1,2Paderborn University, Germany
amelie.labusch@upb.de, birgit.eickelmann@upb.de

ABSTRACT
Although computational thinking (CT) has emerged as an
important 21st century key competence (Voogt, Fisser,
Good, Mishra & Yadav, 2015; Wing, 2006), it becomes
apparent that there are great differences (Bocconi,
Chioccariello, Dettori, Ferrari & Engelhardt, 2016).
Selecting four countries (Denmark, Finland, Germany, and
the USA) with different approaches of curricular anchoring,
linear regression analyses with relevant variables were
conducted based on the data from the IEA International
Computer and Information Literacy Study 2018 (Fraillon,
Ainley, Schulz, Friedman & Daniel Duckworth, 2019).

The social background of the students, the extent to which
different computational thinking-related skills are learned at
school, studying computer science (CS) or a similar subject,
and the students’ gender were included in these analyses.
The results first indicated that in all countries there was a
close link between social background and students’
competences in computational thinking as well as between
the extent to which computational thinking-related skills
were learned at school and students’ competences in
computational thinking. Second, there were also differences
in competence with regard to studying computer science in
Germany, Denmark, and Finland and gender-specific
differences in favor of boys in Germany, Denmark, and the
USA. Third, it became apparent that the results offer
individual points of improvement for each educational
system – regardless of which approach of curricular
anchoring they follow.

KEYWORDS
Computational thinking competences, IEA-ICILS 2018,
School curriculum approaches, Individual characteristics

1. INTRODUCTION
In times of progressive digitalization, increasingly
sophisticated technologization based on algorithmic
structure, and the associated changes in all areas of life, the
question arises as to what competences children and young
people must acquire to successfully participate in society and
be prepared for an adequate working life. Since school holds
a key role in the acquisition of students’ competences and
addressing the issue of relevant competences in the field of
digitalization and information technology in education, the
key competence computational thinking (CT) emerges
(Labusch & Eickelmann, 2020). In a general overview of the
different approaches in various educational systems three
different approaches to the curricular anchoring of
computational thinking can be identified (Eickelmann,
2019): (1) computational thinking as a cross-

curricular competence, (2) computational thinking as part of
computer science, and (3) computational thinking as an
individual subject or learning area. For the later analyses,
four countries, participating in the international option
computational thinking in the International Computer and
Information Literacy Study 2018 (ICILS 2018), were
selected that could be classified under the different
approaches at the time of study’s data collection in 2018.

In Finland, 'algorithmic thinking' has been anchored in
mathematics since 2014. The revision of the core curriculum
around algorithmic thinking and programming has already
been completed in 2014, implementation started in 2016
with a two-year implementation phase. Finland has included
computational thinking in the national curriculum as a cross-
curricular competence (first approach) that is anchored
across disciplines (Bocconi, Chioccariello & Earp, 2018).

In Germany, where the development of school curricula is
guided at the federal state level, the integration of
computational thinking varies from state to state. However,
schools rely on the long tradition of computer science
teaching (second approach) as an optional subject (Bocconi,
Chioccariello, Dettori, Ferrari & Engelhardt, 2016).

Denmark has been piloting the integration of computational
thinking in model schools since the summer of 2018, both as
a separate subject (third approach) and as part of a subject
integration approach (first approach)
(Undervisningsministeriet, 2018). The cross-curricular topic
‘IT and Media’ in K0 to K9 is integrated in all subjects and
includes elements of computational thinking such as
problem-solving and logical thinking (Bocconi,
Chioccariello & Earp, 2018).

In the USA, school curricula and policies vary regionally (all
three approaches). Some companies are working with the US
government to develop new computer science standards, and
many states have issued new guidelines for curricula (Hsu,
Irie & Ching, 2019).

When considering the extent to which individual aspects of
the acquisition of a competence, school assessment studies
examining other areas of competence have shown the
importance of using individual characteristics as
explanations. Thus, for students’ computer and information
literacy, a close link between social background and
competences could be shown for all participating countries
in ICILS 2013 and 2018 (Eickelmann et al., 2019; Fraillon,
Ainley, Schulz, Friedman & Duckworth, 2019).

Moreover, it is relevant to what extent students have learned
computational thinking-related skills at school. In recent
years, many partial competences of computational

mailto:amelie.labusch@upb.de
mailto:birgit.eickelmann@upb.de

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

44

thinking have been discussed (e.g. Bauer, Butler & Popovic,
2015; Lye & Koh, 2014). What they all have in common –
roughly summarized – is the partial competence of
decomposition or analysis of data or problems. It is also
concerned with the conception or simulation of solutions and
the representation of processes.

Since computer science lessons were not offered nationwide
in 2018, it is necessary to look at whether students have
participated in computer science lessons in the respective
current school year. Another aspect is the gender of students,
where differences have been shown to be crucial for
computational thinking itself (e.g. Román- González, Pérez-
González & Jiménez-Fernandez, 2017). These
considerations result in the following research question:

To what extent can differences in students’ competences in
computational thinking be explained by their social
background, their school learning of computational
thinking-related skills, studying the subject computer
science, as well as their gender in four countries with
different curricular anchoring of computational thinking?

2. METHODS
2.1. Study and Data
The following analyses are based on data from the
International Computer and Information Literacy Study
2018 (ICILS 2018). The competences in computational
thinking (CT) are defined in the framework of ICILS 2018
as “an individual’s ability to recognize aspects of real- world
problems which are appropriate for computational
formulation and to evaluate and develop algorithmic
solutions to those problems so that the solutions could be
operationalized with a computer” (Fraillon, Ainley, Schulz,
Duckworth & Friedman, 2019, p. 27). The construct of these
competences formed the basis for the development of the
computer-based student tests. The students (international
average age of 14.4 years) worked on two computational
thinking test modules of 25 minutes each. In addition,
questionnaires for students, teachers, school principals, and
ICT coordinators were used to determine

family, analyses refer to the highest occupational status of
parents (HISEI). A low HISEI score (below 40 points) is
available, for example, for postmen and women, train
conductors and hairdressers. A medium HISEI value (40 to
59 points) is found, for example, for police officers, nurses,
social workers, and administrative staff. A high HISEI score
(60 or more points) is given, for example, to teachers,
journalists, and lawyers.

In the second model, three items were selected from a scale
for the extent of school-based learning of computational
thinking skills. The selection was based on theories and
research, a high affinity to the computational thinking tests,
and - determined with a preliminary analysis - the power of
variance explanation. The items 'to break a complex process
into smaller parts', 'to use simulations to help understand or
solve real world problems', and 'to make flow diagrams to
show the different parts of a process' were considered. A
distinction was made between 'at least to a moderate extent'
as a reference category and 'to a small extent or not at all'.

In the third model, the studying of the subject computer
science (CS) or a similar subject is used. In the main survey,
the students were asked whether they had studied computing,
computer science, information technology, informatics or
similar in the respective current school year.

In the fourth model, the gender of the students was used to
explain the variance (options 'female' and 'male').

3. RESULTS
The following four tables show the corresponding regression
models for students in Finland, Germany, Denmark, and the
USA.

Table 1. Regression Model I Explaining Differences in

Students’ CT Competences by Social Background.
Finland Germany Denmark USA

b (SE) b (SE) b (SE) b (SE)

cultural capitalA 27.6* (4.2) 48.6* (5.5) 25.5* (3.9) 44.4* (3.2)

medium HISEI value 20.0* (5.2) 30.2* (5.9) 18.8* (4.9) 22.5* (3.2)

high HISEI value 44.9* (5.4) 51.2* (8.0) 30.8* (5.7) 48.0* (3.9)

the framework conditions. (Eickelmann et al., 2019;
Fraillon, Ainley, Schulz, Friedman & Duckworth, 2019).

2.2. Analyses

constant

R²
b - regression weight (unstandardized).
dependent variable: students' computational thinking.
* significant coefficient (p < .05).

481.7 443.5 498.9 466.8
.07 .13 .05 .09

To analyze the data, addressing the research question,
linear regression analyses were carried out for the selected
countries (Finland, N=2,546 students; Denmark,
N=2,404 students; Germany, N=3,655 students; USA,
N=6,790 students). Four regression models were calculated
for each of the four countries.

In the first model, indicators of social background – cultural
capital (model I) and HISEI (model II) – were drawn upon.
Following this approach, the eighth graders in ICILS 2018
were asked how many books they had at home (without
magazines, newspapers, comics, and textbooks). The later
analysis refers to the distinction between a maximum of 100
books (low cultural capital) available and more than 100
books (high cultural capital) available at home. To describe
the socio-economic status of a student

A 0 - maximum of 100 books; 1 - more than 100 books.

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018

It turns out that the correlation between computational
thinking competences and cultural capital was significant in
all four countries. While it was 25.5 points in Denmark and
27.6 points in Finland, it was 44.4 points in the USA and 48.6
points in Germany. For the medium HISEI value in model
II, there were values between 18.8 points (Denmark) and 30.2
points (Germany), which were all significant. For the high
HISEI value, there were significant values between 30.8
points (Denmark) and 51.2 points (Germany). The
explanation of variance amounted to between 5 percent
(Denmark) and 13 percent (Germany). This also reveals that
for Germany, for example, 13 percent of the variance in the
competences in computational

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

45

thinking could be explained solely by the students’ social
background, without further examining other factors.

Table 2. Regression Model II Explaining Differences in
Students’ CT Competences by Social Background and

School Learning of CT-related Skills.

to break a complex process int
smaller partsB
to use simulations to help
understand or solve real world
problemsB
to make flow diagrams to show the
different parts of a processB
constant
R²
b - regression weight (unstandardized).

19.2* (4.5) -4.6 (5.7) 12.7* (4.4) 13.0* (4.0)

-23.5* (6.4) -37.9* (5.5) -33.4* (3.8) -20.4* (3.7)

-22.3* (6.0) -12.5* (5.9) -9.4 (5.1) -11.4* (3.5)

493.2 470.0 513.4 484.3

.11 .18 .11 .11

Model III included whether the students had
studied computer science or a similar subject in the
corresponding current school year (time of measurement
in 2018). While there was no correlation in the USA,
Finland (17.3 points), and Germany (20.6 points) showed
a positive correlation with the level of competence in
computational thinking. In Denmark, by contrast, there
was a negative correlation (- 26.2), which implies that
those students who studied computer science or
similar subjects scored on average 26.2 points less than
those who did not. In Germany, all coefficients of social
background increased from model III to model IV. The
explanation of variance remained at 11 percent in the
USA, rose to 12 percent in Denmark and Finland, and
to 19 percent in Germany.

Table 4. Regression Model IV Explaining Differences in
Students’ CT Competences by Social Background, School
Learning of CT-related Skills, Studying Computer Science,

and Gender.
dependent variable: students' computational thinking.
* significant coefficient (p < .05).
A 0 - maximum of 100 books; 1 - more than 100 books.
B 0 - to a small extent or not at all; 1 - at least to a moderate extent.

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018

The extent to which the ability to break a complex process
into smaller parts was learned in school was either not in
any (as in Germany) or in a positive with the competences
in computational thinking (see table 2). However, the
correlation between the extent of learning the ability to use
simulations to help understand or solve real world problems
and the competences in computational thinking was
negative in all four countries (USA: -20.4, Finland: -23.5,
Denmark: -33.4, Germany: -37.9).
Regarding the extent to which students learned to make
flow diagrams to show the different parts of a process in
school, either no correlation (Denmark) or a negative
correlation (USA: -11.4, Germany: -12.5, Finland: -22.3) to
the competences in computational thinking was evident in
these countries. From model II to model III, the
explanation of variance increased again – in Denmark,
Finland, and the USA to 11 percent each and in Germany
even to 18 percent.
Table 3. Regression Model III Explaining Differences in
Students’ CT Competences by Social Background, School
Learning of CT-related Skills, and Studying CS.

In Model IV, the students’ gender was considered. This
showed that even when social background, school-based
acquisition of computational thinking-related skills, and
studying computer science or a similar subject were included,
gender differences were found for Denmark (7.2 points),
Germany (16.2 points), and the USA (17.2 points). In all three
cases, the boys scored significantly higher than the girls. In
Denmark, Finland, and the USA, the explanation of variance
persisted and was in the overall model 11 percent in the USA
and 12 percent in Denmark and Finland. In Germany, it rose
to 20 percent. In Germany, Denmark, and the USA, a small
increase in the cultural capital coefficient was also observed,
while in the USA, the medium HISEI value increased
minimally.
4. DISCUSSION
The overall review reveals that especially students’ social
background can explain differences in computational
thinking competences. As it has already been the case for
other competence domains, a close link between the social

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

46

background and the educational success of the students
could be established for the competence area of
computational thinking. At this point, all countries should
consider the strategic and conceptual development of core
curricula to overcome the high socially caused educational
disparities that have been identified.

Moreover, the results proved that there are computational
thinking-related skills that are conducive to learning and
those that seem to be counterproductive. It should be noted
here that the study is limited to reveal whether and to what
extent the individual skills were learned at school, while it
didn’t examine how skills were learned. It would be useful
to carry out in-depth analyses, possibly with qualitative
design, to see exactly in what form, for instance, simulations
and flowcharts were used.

Overall, however, there is a tendency towards making
teaching more productive so that students can achieve higher
levels of competence in computational thinking.

The differences in competence between girls and boys are
also remarkable, especially when other variables are
controlled. Here, it is important to foster girls and get them
more enthusiastic about computational thinking, and if
necessary, to teach them in a gender-sensitive way. In
parallel, boys are to be further fostered to make the best
possible use of their potential.

In answer to the question as to what differences exist
between the countries with regard to the approach of
anchoring computational thinking in the curriculum, it
should be emphasized that the results should not be used as
a basis for concluding that one approach is better than the
other. In this context, it should be emphasized that the four
considered countries are all very highly developed and have
advanced educational systems. This is another reason why
in-depth analysis that include aspects of the education
system would be necessary.

5. REFERENCES
Bauer, A., Butler, E. & Popovic, Z. (2015). Approaches for

teaching computational thinking strategies in an
educational game: A position paper, In Blocks and beyond
workshop. IEEE, Atlanta, Georgia, USA, pp. 121–123.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. &
Engelhardt, K. (2016). Developing computational thinking
in compulsory education – Implications for policy and
practice. Publications Office of the European Union.

Bocconi, S., Chioccariello, A. & Earp, J. (2018). The Nordic
approach to introducing CT and programming in
compulsory education. Report prepared for the
Nordic@BETT2018 Steering Group.

Eickelmann, B. (2019). Measuring secondary school
students’ competence in computational thinking in ICILS
2018 – Challenges, concepts and potential implications for
school systems around the world. In S.C. Kong & H.
Abelson (Eds.), Computational Thinking Education (p.
53–64). Singapore: Springer.

Eickelmann, B., Bos, W., Gerick, J., Goldhammer, F.,
Schaumburg, H., Schwippert, K. et al. (Eds.) (2019). ICILS
2018 #Deutschland. Computer- und informations-
bezogene Kompetenzen von Schülerinnen und Schülern im
zweiten internationalen Vergleich und Kompetenzen im
Bereich Computational Thinking. [ICILS 2018 #Germany
– Students’ computer and information literacy in second
international comparison and competences in
computational thinking]. Münster, Germany: Waxmann.

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D. &
Friedman, T. (2019). IEA International Computer and
Information Literacy Study 2018: Assessment framework.
International Association for the Evaluation of Educational
Achievement (IEA).

Fraillon, J., Ainley, J., Schulz, W., Friedman, T. &
Duckworth, D. (2019). Preparing for life in a digital
world: IEA International Computer and Information
Literacy Study 2018 International Report. International
Association for the Evaluation of Educational
Achievement (IEA).

Hsu, Y.-C., Irie, N. R. & Ching, Y.-H. (2019).
Computational Thinking Educational Policy Initiatives
(CTEPI) across the globe. TechTrends, 63(3), 260–270.

Labusch, A. & Eickelmann, B. (2020). Computational
Thinking Competences in Countries from Three Different
Continents in the Mirror of Students' Characteristics and
School Learning. In S.C. Kong, H.U. Hoppe, T.C. Hsu,
R.H. Huang, B.C. Kuo, K.Y. Li et al. (Eds.), Proceedings
of International Conference on Computational Thinking
Education 2020 (pp. 2–7). Hong Kong: The Education
University of Hong Kong.

Lye, S. Y. & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through programming:
What is next for K-12? Computers in Human Behavior, 41,
51–61.

Román-González, M., Pérez-González, J.-C. & Jiménez-
Fernandez, C. (2017). Which cognitive abilities underlie
computational thinking? Criterion validity of the
computational thinking test. Computers in Human
Behavior, 72, 678–691.

Undervisningsministeriet (2018). Computationel tankegang
[Computational thinking]. Retrieved:
https://www.emu.dk/grundskole/teknologiforstaelse

Voogt, J., Fisser, P., Good, J., Mishra, P. & Yadav, A (2015).
Computational thinking in compulsory education:
Towards an agenda for research and practice. Education
and Information Technologies, 20(4), 715–728.

Wing, J. M., (2006). Computational thinking.
Communications of the ACM, 49(3), 33–35.

http://www.emu.dk/grundskole/teknologiforstaelse
http://www.emu.dk/grundskole/teknologiforstaelse

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

47

A Standard Decomposition Process to Inform the Development of Game-Based
Learning Environments Focused on Computational Thinking

Elizabeth L. ADAMS1*, Ching-Yu TSENG2*, Paul FOSTER3*, Vinson LUO4*,
Leanne R. KETTERLIN-GELLER5*, Eric C. LARSON6*, and Corey CLARK7*

1,2,3,4,5,6,7 Southern Methodist University, Dallas, TX
eladams@smu.edu, etseng@smu.edu, pdfoster@smu.edu, vluo@smu.edu, lkgeller@smu.edu, eclarson@smu.edu,

coreyc@smu.edu

ABSTRACT
This study describes a standard decomposition process,
which is designed to decompose content standards into
observable components that might illustrate computational
thinking skills. These components will be integrated into an
online game-based learning environment as evidence of
learning (EoL) and mastery (EoM). Focusing on three
computer science standards, we describe how the standard
decomposition process was used to generate standard
decomposition tables. We show samples of the content of
these decomposition tables and describe how these tables
evolved based on educator feedback.

KEYWORDS
Computational thinking, Design-based implementation
research, Game-based learning, Middle grades

1. INTRODUCTION
The definition of computational thinking (CT) has evolved
over the last several decades. In early work, Papert (1972)
generated the term CT to describe children’s learning during
programming experiences. More recently, Wing (2006)
broadened the definition of CT to include students’ thought
processes. Jansen et al. (2018) concluded that CT provides
people with a method to restructure complex real- world
problems into systematic and well-structured problems and
supports people in designing solutions that can be
manipulated by machines or humans. Grover and Pea (2013)
further built on this perspective, stating “CT’s essence is
thinking like a computer scientist when confronted with a
problem” (p. 39). Similarly, Aho (2012) considered that CT
assists people in representing the solutions for solving
complex problems as computational steps and algorithms. In
this study, we adopt the CT definition as: a thought process
(including a set of thinking skills) that occurs when students
are confronted with a problem that can be formulated into
steps and the solution can be executed by humans or
machines.

Most CT research focuses on programming-based
environments. For example, Kazimoglu et al. (2012) had
students design a program to control a robot. Brennan &
Resnick (2012) used Scratch (a visual programming
language) to develop CT skills, and Basawapatna et al.
(2011) designed CT games. Many tools are available for
educators to teach students how to code and write
programming languages. In our study, we extend this work
by defining CT skills more broadly and encouraging students
to practice and make connections between CT skills.

We use an online game-based learning environment to
provide middle grades students with unique learning
opportunities focused on CT. Game-based learning offers
unique affordances for “stealth” learning (Sharp, 2012). For
example, when playing games, students experience a state of
flow (Csikszentmihalyi et al., 2014), which contributes to
immersive learning experiences while playing. CT education
researchers are working to extract and quantify these
learning experiences to understand if and what students are
learning during immersive gameplay (e.g., Grover et al.,
2015; Grover et al., 2017).

Immersive game-based learning environments are
innovative, covert ways to assess students’ learning. The
assessment information gathered within game-based
learning environments could support teachers in tailoring
student learning experiences based on students’ needs. In
this study, we use the terms Evidence of Learning (EoL)
and Evidence of Mastery (EoM) to describe observable
behaviors to show students are progressing toward mastery
(i.e., EoL) or show evidence of mastery (i.e., EoM). In our
study, game developers will use this information to design
learning experiences and integrate them into an existing
commercial game. The most salient evidence of students’
learning will be extracted and communicated to teachers to
inform differentiated instruction focused on CT skills.

2. CURRENT PROJECT PURPOSE
This study is part of a larger interdisciplinary project
designed to develop a game-based learning environment
within the existing Minecraft mod “Lumber Jack Tycoon.”
The learning environment will be developed for middle
grades students, designed around focus CSTA computer
science standards with an emphasis on CT. Teachers will
receive information about their students’ progress toward
mastering learning standards through integration between
the game, a data collection cloud infrastructure, and a
learning management system called Canvas.

We use design-based implementation research (DBIR) to
guide the development of the game-based learning
environment (Confrey, 2019; Fishman, et al., 2007; Penuel
et al., 2011). As such, we rely heavily on co-development
with educators who work directly with students who the
game will ultimately serve. We formed an Educator
Advisory Panel (EAP), which included middle grades
educators with an interest in computer science and CT. The
five EAP educators represented six middle schools across
four public school districts in the southern United States.
Three educators identified as teachers, one identified as an
instructional coach, and one identified as an instructional
technology specialist.

mailto:eladams@smu.edu
mailto:etseng@smu.edu
mailto:pdfoster@smu.edu
mailto:vluo@smu.edu
mailto:lkgeller@smu.edu
mailto:eclarson@smu.edu
mailto:coreyc@smu.edu

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

48

Working with five EAP members, we identified middle
grades CSTA computer science standards to focus on within
the game (subsequently referred to as the focus standards).
These standards were: (a) high priority for teachers’
instruction, (b) tended to be difficult to teach, (c) may be
taught efficiently in Minecraft, and (d) were relevant to CT
(Tseng et al., 2020). The selected standards were grouped
thematically into four groups including: (a) data and
analysis, (b) problem decomposition, (c) teamwork and
organization, and (d) equity and impact. For the purpose of
this paper, we target the focus standards for data and
analysis. We selected this group of standards given the
strong connections to STEM disciplines and CT.

As part of the larger project, we developed a process for
decomposing the game and standards separately and then
integrating those decompositions to create the game-based
learning environment. For the purpose of this study, we
describe the standard decomposition process that was
developed to unpack or decompose content standards into
components that illustrate CT skills. We refer to this process
as the standard decomposition process throughout this paper.
Our research question is: Using the standard decomposition
process and incorporating educator feedback, what are the
evidences of learning and mastery for three middle grades
CSTA focus standards relating to the data and analysis
thematic group (2-DA-07, 2-DA-08, and 2-DA-09)?

3. METHOD
Guided by DBIR, we partnered with educators to decompose
the three focus standards. A primary goal of this work was
to create standard decomposition tables that could be used to
inform assessment development within the game-based
learning environment. The standard decomposition process
included seven phases, which began in August 2020 and are
ongoing. In this section, we describe the seven phases (3.1 -
3.7) that comprise the standard decomposition process.

3.1 Identify Existing Curricula Related to the Focus
Standards.

We developed a repository of curricular resources related to
middle grades computer science and CT. These curricular
resources were identified through a web search, as well in
consultation with our EAP and other researchers engaged in
this work. These resources included well- developed data
and analysis units with learning activities that were focused
on conceptual understanding, rather than programming or
coding.

3.2 Review Curricular Resources.
Two researchers separately reviewed the curricular
resources to decompose each standard into:

1. Steps related to each standard, suggesting an order for
the cognitive processes that students might engage in
related to the overall standard

2. The importance or objectives (OI) for each step within
the standard decomposition

3. The pre-knowledge, skills, and abilities (pre-KSAs)
that students would need to develop as evidence of

learning or evidence that they are progressing toward
mastery within each step of the standard decomposition
(e.g., necessary pre-requisite knowledge related to each
standard)

4. The knowledge, skills, and abilities (KSAs) that
students would need to develop as evidence of mastery
within each step of the standard decomposition

3.3 Reconcile Differences.
Researchers met to collaboratively discuss standard
decomposition tables and combine their separate tables into
one standard decomposition table including steps related to
each standard, each with corresponding OIs, pre-KSAs, and
KSAs.

3.4 Gather Educator Feedback on the Steps, OIs, Pre-
KSAs, and KSAs.

We met virtually with five EAP members to discuss the
focus standards and the extent to which the steps, OIs, pre-
KSAs, and KSAs reflected their expectation of what their
students should know and be able to perform related to the
focus standard. For 2-DA-08, we drafted example evidence
of learning (EoL) corresponding to the pre-KSAs and
evidences of mastery (EoM) corresponding to the KSAs,
which reflected observable behaviors that students
demonstrate in the classroom related to each standard.
During the meeting we also encouraged the five educators to
provide EoL and EoM related to 2-DA-07 and 2-DA-09.
Following the meeting, we solicited additional feedback on
the standard decomposition tables using Google Documents.
Two of five educators participated in the additional
opportunity to provide feedback.

3.5 Integrate Feedback from Educators and Generate EoL
and EoM based on Existing Curricula and Educator
Feedback.

Following the virtual meeting with educators, we
systematically reviewed the meeting transcript and
researcher notes to refine the content of the standard
decomposition tables based on educator feedback. In
addition, we generated EoL and EoM for 2-DA-07 and 2-
DA-09 based on educator feedback and the review of
curricular resources.

3.6 Confer with Educators and Gather Educator
Feedback on the EoL and EoM.

We invited educators to provide feedback asynchronously on
the complete standard decomposition tables using an online
platform called Google Jamboard. One of the purposes of
this review was to ensure that we accurately captured
educator feedback in our revisions. A second purpose was
for educators to provide feedback on the EoL and EoM for
2-DA-07 and 2-DA-09. Two of five educators participated
in this opportunity.

3.7 Integrate Feedback from Educators.
We systematically reviewed the educator comments related
to the updated standard decomposition tables and refined the
language in the standard decomposition tables based on
educators’ feedback.

4. RESULTS
In this section, we summarize the EoLs and EoMs for the

focus standards and summarize changes that we made

based on educators’ feedback. These tables directly relate

to this study’s research question, which focuses on

identifying EoL and EoM. Tables 1 through 3 include

sample EoL and EoM statements from the full standard

decomposition tables. The contents of these tables identify

a sample of behaviors that students demonstrate to show

EoL or EoM with an emphasis on CT related to the focus

standards, informed by a review of existing curricula and

feedback from five educators.

Table 1 includes a sample of EoL and EoM for 2-DA-07:

Represent Data using Multiple Encoding Schemes. We

identified three steps within this standard including

(1) access data, (2) clean data, and (3) create and apply

encoding rules.

Table 2 includes a sample of the EoL and EoM for 2-DA-

08: Collect Data using Computational Tools and Transform

the Data to Make it More Useful and Reliable. We

identified four steps within this standard including

(1) collect data, (2) clean data, (3) organize data, and (4)

explain data.

Table 3 includes a sample of EoL and EoM for 2-DA-09:

Refine Computational Models based on the Data [Students]

have Generated. We identified two steps within this

standard including (1) review model output, and (2) refine

the model.

Table 1. Sample of Standard Decomposition Table for “2-

DA-07: Represent Data using Multiple Encoding Schemes”.

Steps EoL EoM

Access Data

Manipulate data

using

computing

devices to aid

human

processing

Identify the

type of data

(e.g., numeric,

categorical)

Explain why

different types

of data are

valuable

Clean Data

Filter variables

to identify

which data are

necessary

Recognize

patterns within

a column or

row of data

Create and

Apply

Encoding

Rules

List possible

encoding

methods

Describe the

necessary

features of an

encoding

system

Choose the best

way to encode

information

based on how it

will be used

Evaluate

different

encoding

methods used

Compare

encoding

methods with

other students’

work

Resolve

conflicts when

using encoding

rules

Table 2. Sample of Standard Decomposition for “2-DA-08:

Collect Data using Computational Tools and Transform

the Data to Make it More Useful and Reliable”.

Steps EoL EoM

Collect Data

Identify

examples of

data and non-

data

Identify and

record relevant

data

Clean Data

Make decisions

about how to

handle missing

data

Compare

cleaning

strategies with

other students

Organize Data

Identify

different

systems for

representing

data

Employ an

effective data

organization

system with

team members

Explain Data

Evaluate

different

organizational

systems

Explain how

data were

identified,

collected, and

stored in a way

that connects to

solving a

problem

Table 3. Sample of Standard Decomposition Table for

“2-DA-09: Refine Computational Models based on the

Data [Students] have Generated”.

Steps EoL EoM

Review

Model Output

Extend

encoding

schemes to

rules of models

Describe how

data generated

by the model

help solve a

problem

Refine the

Model

Identify

opportunities to

improve the

model

Create an

improved

model (i.e.,

more accurate,

efficient,

simpler, and/or

intuitive)

The sample content from Tables 1 through 3 reflects the

types of behaviors that students would be expected to

display in the classroom related to each of the focus

standards, with an emphasis on CT skills.

Because this study’s research question specifies the

incorporation of five educators’ feedback across iterations

of the EoL and EoM, we share general findings related to

how the standard decomposition tables evolved based on

educator feedback. In the initial synchronous feedback

session, the educators registered concern about students’

lack of familiarity with computers. Further, the educators

emphasized the need for scaffolding. Based on educator

comments on specific statements, we made a number of

revisions and additions. Following the first feedback

session, the number of statements for 2-DA-08 increased

two-fold and many of the previous statements were

clarified based on educator feedback. Time constraints

meant only eight suggestions were received on 2-DA-07

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

49

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

50

and none on 2-DA-09. During the follow up asynchronous
feedback opportunity, two educators identified having
students do things multiple ways, the use of peers for sharing
and review, and the use of manipulatives as positives.
Although there was a similar number of changes suggested
on specific items in the second round of feedback, most of
the comments were on clarifying the language of the
standards and making the verbs as observable as possible.

5. DISCUSSION
This paper describes a standard decomposition process
designed to inform the development of an online game-
based learning environment in Minecraft. The process
described in this paper explicates student behaviors that
build from progressing toward mastery (i.e., EoL) to mastery
(i.e., EoM). As such, the types of behaviors or cognitive
processes that students are expected to do are articulated.
The standard decomposition process defined student
behaviors connected to the standards that emphasize CT
skills. This information subsequently informs what students
will actually be expected to do within the gaming
experience.

The standard decomposition tables are a contribution to the
field of education focused on computer science and CT
because they build on existing assessment work in CT
(Grover et al., 2015; Grover et al., 2017). The standard
decomposition tables were co-developed with five educators
within a DBIR framework. The phases described in the
methods of this paper outline a process for gathering and
integrating educator feedback systematically. Due to space
limitations, this paper includes a sample of the standard
decomposition tables.

Minecraft allows us to build a community-based gaming
environment that facilitates an understanding of CT. Our
next step is to integrate the learning standard decompositions
with the game element decompositions. This integrative step
will result in the development of learning experiences within
Minecraft. This game development process is highly
scalable for others interested in doing similar game
development work.

6. REFERENCES
Aho, A. V. (2012). Computation and computational

thinking. The Computer Journal, 55(7), 832-835.
Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C.,

& Marshall, K. S. (2011). Recognizing computational
thinking patterns. Paper presented at SIGCSE, Dallas, TX.

Breanna, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Paper presented at the American Educational
Research Association, Vancouver, Canada.

Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J.
(2014). Flow and the foundations of positive psychology.
Springer.

Jansen, M., Kohen-vacs, D., Otero, N., & Milrad, M. (2018,
June). A complementary view for better understanding
the term computational thinking. Proceedings of the
International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University
of Hong Kong.

Confrey, J. (2019). Leading a design-based research team
using agile methodologies to build learner-centered
software. In K. R. Leatham (Ed.) Designing, Conducting
and Publishing Quality Research in Mathematics
Education (pp. 123-142). Springer.

Fishman, B. J., Penuel, W. R., Allen, A., Cheng, B. H., &
Sabelli, N. (2007). Design-based implementation
research: An emerging model for transforming the
relationship of research and practice. National Society for
the Study of Education, 112(2), 136-156.

Grover, S., & Pea, R. (2013). Computational thinking in
K—12: A review of the state the field. Educational
Researcher, 42(1), 38–43.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for
deeper learning in a blended computer science course for
middle school students. Computer Science Education,
25(2), 199-237.

Grover S., Basu, S., Bienkowksi, M., Eagle, M., Diana, N.,
and Stamper, J. (2017). A framework for using
hypothesis-driven approaches to support data-driven
learning analytics in measuring computational thinking in
block-based programming environments. ACM
Transactions on Computing Education, 17(3) 457-468.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L.
(2012). A serious game for developing computational
thinking and learning introductory computer
programming. Social and Behavioral Sciences, 47, 1991-
1999.

Papert, S. (1972). Teaching children thinking.
Programming Learning and Educational Technology,
9(5), 245-255.

Penuel, W. R., Fishman, B. J., Cheng, B. H., & Sabelli, N.
(2011). Organizing research and development at the
intersection of learning, implementation, and design.
Educational Researcher, 40(1), 331-337.

Tseng, C., Ketterlin-Geller, L. R., Clark, C. & Larson, E.
(2020). STEM+C educator advisory panel summer 2020
(20-18). Dallas, TX: Research in Mathematics Education,
Southern Methodist University.

Sharp, L. A. (2012). Stealth learning: Unexpected learning
opportunities through games. Journal of Instructional
Technology, 1, 41-48.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

51

Computational Thinking
and Teacher Development

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

52

Different Paths, Same Direction: How Teachers Learn Computational Thinking in

STEM Practices through Professional Development

Sally WU1, Amanda PEEL2*, Connor BAIN3, Michael HORN4, Uri WILENSKY5
1, 2, 3, 4, 5Northwestern University, USA

sally.wu@northwestern.edu, amanda.peel@northwestern.edu, connorbain2015@u.northwestern.edu, michael-
horn@northwestern.edu, uri@northwestern.edu

ABSTRACT
One approach to expanding computational thinking (CT) in
K-12 education is for mathematics and science teachers to
integrate CT into their curriculum. However, teachers must
first engage with computational practices themselves and
gain confidence in their ability to teach CT to their students.
To this end, we developed a four-week professional
development for 11 science and mathematics high school
teachers. We engaged teachers in four CT- STEM practices
focused on data, modeling, algorithms, and programming.
Then, each teacher co-designed a computationally enhanced
curriculum for their classroom in collaboration with a
member of our research team. Data from pre-post surveys
showed an overall increase in teachers’ reported confidence
in teaching CT-STEM practices after the professional
development. However, teachers’ change in confidence
varied across the four practices and across individual
teachers. The variance aligns with the variance in teachers’
responses on what they learned. Different teachers reported
learning a variety of knowledge and skills, whether about CT
itself, specific CT tools, or how to integrate CT into a
particular curricular topic. These findings suggest that
engaging teachers in co- design of computational-enhanced
STEM curriculum may cultivate multiple pathways that help
teachers integrate CT into K-12 classrooms.

KEYWORDS
computational thinking, STEM education, CT integration,
teacher professional development, curriculum design

1. INTRODUCTION
Computational thinking (CT) has been recently emphasized
in K-12 education, particularly in mathematics and science
learning (Barr & Stephenson, 2011; Grover & Pea, 2013).
However, the adoption of CT has been hindered by the
difficulties teachers often face when trying to integrate CT
into their curriculum. CT is relatively new and many
teachers are not equipped with the skills and tools to
integrate it effectively into their curriculum (Aljowaed, &
Alebaikan, 2018; Yadav, Gretter, Hambrusch, & Sands,
2016). Further, teachers are unfamiliar with how to teach CT
practices, particularly where they intersect with their content
areas (Ketelhut, Mills, Hestness, Cabrera, Plane, &
McGinnis, 2020; Wu, Looi, Liu, & How, 2018).

Researchers have identified key CT-STEM practices that
reflect authentic STEM practices used in modern science
(Weintrop et al., 2016). These CT-STEM practices aim to
help students develop science and mathematics content
understanding by engaging students in computational

inquiry. The CT practices in mathematics and science
classrooms are organized into four strands: data practices,
modeling and simulation practices, computational problem-
solving practices, and systems thinking practices. Our team
has expanded these practice categories to include algorithms
and programming since these are key CT practices identified
by others (e.g., Brennan & Resnick, 2012; Grover, 2017;
Peel, Dabholkar, Wu, Horn & Wilensky, in press; Selby &
Woollard, 2013; Tang, Yin, Lin, Hada, & Zhai, 2020). In this
paper, we focus on modeling and simulation (using,
modifying, and creating computational models) and data
practices (collecting, visualizing, and analyzing data), as
well as algorithms and programming.

While the CT-STEM practices are present throughout
mathematics and science content, they can vary in their use
across subject areas. As such, teachers and curriculum
designers typically choose to focus on one or two central CT-
STEM practices in a unit. For example, a physics teacher
may design a unit that focuses on computational modeling
by having students use a model to understand a phenomenon,
collect and analyze data from the model, and explore the
model’s algorithm and how that program runs the model.
Designing curricula with such practices requires software
and knowledge of that software that allows teachers to build
a complex model, collect data, and allow students to code.

The integration of CT into science and math classes requires
both curriculum designers and teachers to reimagine
classroom practices and to learn how to incorporate
computational methods and tools (Ball & Forzani, 2009;
Windschitl et al., 2012). Teachers require professional
development, resources, and support to learn about CT, how
to use the computational tools, and how to teach CT-STEM
practices. While recent approaches to supporting teachers
with CT integration have begun to emerge, this area of
professional development and research is in early stages
(Ketelhut et al., 2020; Yadav, Mayfield, Zhou, Hambrusch,
& Korb, 2014; Yadav, Zhou, Mayfield, Hambrusch, & Korb,
2011).

We have begun to address this gap through professional
development that focuses on developing computationally
enriched STEM units with teachers. We position teachers as
active co-designers in modifying their existing STEM
curricula to include computational tools and practices. Co-
designing with teachers foregrounds their views on
curriculum alignment with teaching practices and
expectations for student learning (Allen & Penuel, 2015;
Coburn, 2005; Penuel, Riel, Krause, & Frank, 2009). Co-

mailto:sally.wu@northwestern.edu
mailto:amanda.peel@northwestern.edu
mailto:connorbain2015@u.northwestern.edu
mailto:horn@northwestern.edu
mailto:uri@northwestern.edu

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

53

design, as we have defined it, engages teachers in
constructionist learning in that teachers learn through the
construction of new CT-integrated units (Kelter et al.,
2020a). When teachers actively design and create lessons
and computational tools, they learn about CT and its
integration in the classrooms (Peel et al., 2020b). However,
it is unclear how teacher knowledge develops regarding
specific CT-STEM practices. Prior work has shown
variation in teacher outcomes from co-design and
professional development experiences, given their different
goals and prior experiences with CT (Kelter et al., 2020a;
Naimipour, Guzdial, & Shreiner, 2020; Svihla, Reeve, Sagy,
& Kali 2015). We expand this work by exploring how
individual teachers differ in their learning of CT- STEM
practices. Specifically, we investigate: (1) Did teachers
develop confidence in teaching each CT-STEM practice
through a four-week professional development? and (2)
What did they learn about CT?

 Table 1. Teacher Pseudonyms and CT Background.
 Teacher Background / Experience with CT

Beth 3rd year freshman biology teacher, has PhD in

participated (See Table 1). Note that pseudonyms are given
to align with teachers’ subject area: biology, chemistry,
environmental sciences, mathematics, and physics. All
teachers received up to $4000 U.S. dollars for participation
and were asked to create a CT-STEM curriculum for their
classroom that would be implemented in the following
school year. The teachers, seven graduate students, and one
post-doctoral researcher were assigned to co-design teams
by subject area.

Due to the COVID-19 pandemic, CTSI was held online.
Table 2 shows an overview of activities held during the four-
week professional development. For discussions,
workshops, and co-design meetings, teachers and
researchers met on Zoom for synchronous discussion or
instructional activities. Otherwise, they communicated
asynchronously via emails and Slack and worked on
materials asynchronously.

Table 2. Overview of Professional Development Activities
 over four weeks, Organized by Day.
 Week Monday Tuesday Wednesday Thursday Friday

microbiology, uses some CT practices, e.g., “asked students
to write step by step procedures to design experiments and I
have asked about the rules something needs to follow to work
properly (like a ribosome incorporating new amino acids
from a set of instructions on mRNA)”

1 Introductions

Intro to CT
Lesson

CT-STEM
units

CT-STEM
Practices

Intro to
programming

Computational
tools, Part 1

Computational
tools, Part 2

Unit planning

Intro to co-
design teams

Reflection

Betsy 17th year inclusion biology and chemistry teacher, little CT
 experience, “used [CT] sparingly when teaching Chemistry”
Carrie 11th year honors chemistry teacher, participated in CTSI

2019 and two prior PDs with CT-STEM team, uses CT to
teach specific content, e.g., “Asking students to come up
with the ‘rules’ for gas particle movement prior to having

2-4 Co-design

Review
units

Co-design Co-design

CT-STEM
Workshop

Co-design

Cross-Team
Conference

Co-design

Reflection

Mini-Expo
(Week 3)
Expo

 them work through a NetTango on the same subject.”
Chelsea 9th year chemistry and physics teacher, implemented units

 developed by Carrie during CTSI 2019
Emma 11th year environmental science and biology teacher, participated

in CTSI 2019 and two prior CT-STEM PDs , engages students
in CT in various ways, e.g., “Use of computational models
(simulations, sage modeler), strong focus on data collection,
analysis, visualization. Discussions of how scientists look at
real world problems, using tools that have been developed to
look at phenomena or problems

 we are studying”
Evan 15th year AP environmental sciences teacher, little

experience with CT: “I have done small chunks of CT work
through the years, but never intentionally set out to instill a

 CT nature into my curriculum or science pedagogy.”
Matt 8th year AP Statistics and geometry teacher, participated in

CTSI 2019 and “use other simulation tools for my AP
 Statistics class on a regular basis.”

Martin 15th year mathematics, no prior experience with CT,
 implemented unit developed by Matt during CTSI 2019

Marshall 10th year mathematics, computer sciences, and social sciences
teacher, has experience teaching programming and

 algorithms
Paul 31st year AP physics teacher, some prior experience with

code, used CT to teach specific concepts, e.g., “Have
 students write code for laws, i.e., Snell's Law, etc.”

Parvez 23rd year freshman physics, some prior experience with
Java, implemented a short CT-STEM curriculum three years
ago, use computational models, specifically “controlled PhET
simulations a lot with worksheets with directions and

 critical thinking questions”

2. METHOD
CT-STEM Summer Institute (CTSI), a four-week
professional development workshop that positioned teachers
and researchers as co-designers of curricula. In 2020, 11
high school science or mathematics teachers from four U.S.
public schools with varying experience with CT

 (Week 4)

To introduce teachers to computational practices and tools,
the first week of CTSI (4.5 days) consisted of workshops
led by the researchers. Sessions introduced teachers to CT-
STEM practices through lessons designed for students.
Lessons demonstrated how computational tools can engage
students in CT-STEM practices while learning disciplinary
content. For example, the Intro to CT lesson (https://ct-
stem.northwestern.edu/curriculum/preview/495/page/0/)
first asked teachers to use, modify, and debug a series of
computational models that simulate how fire spreads
through a forest (Wilensky, 1997) using NetLogo, a multi-
agent programmable modeling environment (Wilensky,
1999). Next, teachers collected and analyzed ‘density vs.
percent burned’ data using CODAP (Common Online Data
Analysis Platform, 2020), a web-based data analysis
environment. Then, they posed research questions about
other variables that may affect the spread of fire and
discussed how scientists use such computational models.
On each student page, teachers identified what CT-STEM
practices students would engage in and how they would
support students in these activities. Their ideas were
discussed within a small breakout room and with the whole
group to ensure that everyone was on the same page,
similar to how a teacher may engage with students online.

In addition to NetLogo and CODAP, teachers engaged with
NetTango, a blocks-based programming interface for
exploring NetLogo Web models (Horn, Baker, & Wilensky,
2020) in a lesson focused on basic programming (https://ct-
stem.northwestern.edu/curriculum/preview/1505/page/0/)

https://ct-stem.northwestern.edu/curriculum/preview/495/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/495/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/1505/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/1505/page/0/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

54

and a lesson on ecology and predator-prey dynamics using
blocks to create wolf-moose interactions (https://ct-
stem.northwestern.edu/curriculum/preview/353/page/0/).
Teachers completed each lesson as students and discussed
CT pedagogy for using these tools. Additional CT tools such
as Python and SageModeler (2020) were introduced to
specific teachers interested in using them.

Because the goal of CTSI is for teachers to design a CT-
integrated curriculum for their classroom, the last three
weeks of CTSI provided co-design time for teams of teachers
and researchers to work on computational models and
curricular units. Each subject-area team included at least two
teachers, one researcher, and one undergraduate research
assistant. Teams varied in how they communicated and co-
designed curricula. Some teams met every day to check in
and work together on models, curricula, and/or student
activities via video conference. Others worked
asynchronously using online tools (primarily Slack and
Google Drive) and met when activities were ready or when
someone on the team needed help. Regardless, all teams
reviewed each other’s work and gave feedback on materials
at least once a week, typically on Monday or Tuesday.

To foster community across teams, all teachers and
researchers participated in weekly Wednesday workshops
on relevant topics (e.g., CT pedagogy) as well as Friday
reflection sessions. Teachers also received additional
feedback on their units in various formats. Every Thursday,
each teacher was paired with another teacher outside of their
team to discuss their units (Cross-Team Conferences).
Further, in Week 3, they discussed their unit with CT
professionals in their subject area (Mini-Expo). Finally, at
the end of CTSI, the teachers showcased their co-designed
CT-STEM curriculum to CT professionals, colleagues,
friends, and family in an Expo open to the community, using
videos about their units and discussions with those who
attended: https://padlet.com/sally_wu/CTSIExpo.

2.1. Data Sources
To assess changes in teacher confidence after CTSI (RQ1),
we conducted 36-item pre/post surveys that asked teachers
to rate on a 5-point Likert Scale (1 = Strongly Disagree, 5 =
Strongly Agree) their confidence in teaching each of four
CT-STEM practices: data, simulation and modeling,
algorithm, programming. For example, data practices items
include “I am confident in my ability to identify
computational data practices in an educational STEM
activity.” and “I am confident in my ability to answer student
questions regarding computational data activities.” Teachers
also responded to an open-ended question that asked: “What
did you learn from CTSI?”

3. RESULTS
We use survey responses to assess whether teachers
developed confidence in each of the four CT practices (RQ1)
and what teachers learned about CT (RQ2) after the four-
week professional development.

3.1. Overall change in teachers’ reported confidence
As shown in Figure 1, our teachers, on average, felt some
confidence with all four CT-STEM practices prior to our

summer institute. After the summer institute, they, on
average, reported even higher confidence in their ability to
teach all four CT-STEM practices, particularly in modeling
and algorithms. We ran an asymptotic Wilcoxon-Pratt
Signed-Rank test to analyze the pre-post changes in teacher
confidence across each of the four practices. Two of the
practices, modeling and algorithms, were statistically
significant at the 10% level with p-values of 0.026 and
0.081 respectively. The changes in data practices and
programming practices were not significant at generally
accepted significance levels with p-values of 0.130 and
0.197. We did not expect statistical significance because of
our relatively small sample size and with some participants
who showed zero differences (partially due to a ceiling
effect).

Figure 1. Average Reported Confidence in Four CT-STEM
Practices.

To better understand the overall change, we examined each
teachers’ pre and post confidence rating for each of the four
practices (Table 3). Some teachers rated their confidence as
extremely high (max = 5) at both the pre and post surveys,
such as Emma on data and modeling practices and Marshall
on algorithms and programming practices, resulting in no
pre-post differences. The pre-survey ratings show some
variation in teachers’ prior confidence in data, modeling, and
algorithm practices (range = 2.0 to 5.0), as well as large
variation in teachers’ prior confidence in programming
(range = 0.0 to 5.0). At the post-survey, teachers reported
generally high confidence in all practices (range = 3.3-5.0).
Table 3. Teachers’ Reported Confidence Rating in Each of

 the Four CT-STEM Practices.
Data Modeling Algorithm Programming

 Teacher Pre Post Pre Post Pre Post Pre Post
Beth 3.0 5.0 2.6 4.9 2.6 5.0 0.0 5.0
Betsy 2.8 3.9 3.7 3.8 2.9 4.8 2.8 3.8
Carrie 4.3 4.0 4.4 4.9 4.4 4.2 3.4 3.3
Chelsea 4.0 3.9 4.0 3.6 4.0 4.0 3.8 4.0
Emma 5.0 5.0 5.0 5.0 4.9 4.7 4.7 4.3
Evan 3.0 4.8 2.0 5.0 2.0 5.0 1.0 5.0
Matt 4.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0
Martin 3.4 4.1 2.6 3.8 3.7 4.6 3.7 3.4
Marshall 4.7 5.0 3.1 5.0 5.0 5.0 5.0 5.0
Paul 4.2 4.0 4.4 4.3 4.3 4.1 4.0 3.9

 Parvez 4.2 3.8 3.9 4.3 3.3 4.2 4.1 4.2

https://ct-stem.northwestern.edu/curriculum/preview/353/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/353/page/0/
https://padlet.com/sally_wu/CTSIExpo

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

55

Several teachers reported greater confidence in all practices
after CTSI, particularly Beth, Evan, and Matt. Some teachers
reported greater confidence in some specific practices but
not others. For example, Betsy reported only a slight
difference in confidence in regard to modeling and overall
increased confidence in all other practices. Martin Marshall,
and Parvez, who teach math or physics, also fall into this
category, reporting similar pre-post difference in data and
programming practices and general increases in modeling
and algorithm practices. Finally, a set of teachers reported
similar confidence in all four practices before and after
CTSI, specifically Carrie, Chelsea, Emma, and Paul.

3.2. What teachers learned
We explore what teachers learned (RQ2) by analyzing their
responses to “What did you learn from CTSI?” We use the
qualitative responses to understand the variance in
individual teachers’ reported change in confidence across
teachers who reported greater confidence in all practices
after CTSI (Beth, Evan, Matt), greater confidence in some
specific practices but not others (Betsy, Martin, Marshall,
Parvez), and similar confidence before and after CTSI
(Carrie, Chelsea, Emma, Paul).

Teachers who generally showed a general increase in
confidence across all four practices (Beth, Matt, Evan)
mentioned learning about a variety of related topics that
helped them co-design their curriculum, including CT,
specific tools (e.g., NetLogo), their subject-area content,
collaboration, and pedagogy:

I learned how to use NetLogo, NetTango, and CODAP, how
to integrate such models into a content-heavy, nuanced unit,
and a lot about collaboration. (Beth)

OMG- I have learned to embrace co-design, learned to work
at odd hours, Slack the heck out of my co-design mates and
learn the basics of coding and manipulating code. I have
also learned to value the feedback my mates have given me,
their patience and to learn to take feedback positively for a
growth-mindset. I have also learned that my science
pedagogy is in need of a redshift, or rather a new lens to look
at science through- that of CT. I am grateful to be energized
by all the possibilities and potential accomplishments this
will translate into for my students. (Evan)

Increased my understanding of computational thinking,
computational modeling, incorporating CT practices in a
mathematics classroom, and my ability to develop and adapt
NetLogo & CODAP models to fit my needs in a statistics
classroom. (Matt)

All three teachers discussed how learning about CT and
specific tools helped them address their teaching goals. Beth
and Matt mentioned learning about computational models
and integrating them into their classroom. Further, Evan
described how he grew as a designer and teacher, including
learning to value his team’s feedback and gaining “a new
lens to look at science” through CT.

The teachers who showed increased confidence in some of
the practices Betsy, Martin, Marshall, Parvez) also reported
gaining specific skills and CT knowledge that support
students in their classrooms:

I learned a lot about programming. I learned that I can still
learn. I learned what computational thinking is and how to
apply it in the classroom. (Betsy)

I learned what the heck CT means, I learned how to
incorporate CT into my lessons, I learned a little bit of
programming in NetLogo and how to use CODAP, I brushed
up slightly on my Python skills, and I deepened my
understanding of my own content (specifically sampling
distributions). (Martin)

I got a lot of technical skills in Python, CODAP, and
NetLogo. I can build (but better modify!) agent-based
simulations! I can make quick data visualizations with
CODAP! I can make MUCH BETTER data visualizations
with Python! I also learned some nuanced ideas about how
to better incorporate CT into a scaffolded unit, and I think
the segue into the more advanced concepts is done much
more smoothly than I initially planned.” (Marshall)

Learned to code in NetLogo and make custom designed
lessons. Also learned to use NetTango block modeling for
students. (Parvez)

These teachers all mention learning to code/program. Most
of them have some prior experience and thus were able to
gain specific tools and skills to build activities for their
students. This may explain why they did not necessarily gain
confidence in teaching particular CT-STEM practices, but
instead, they came away with new ideas for how to use tools
with their students, such as “MUCH BETTER data
visualizations with Python” and “nuanced ideas about how
to better incorporate CT into a scaffolded unit” (Marshall).

The set of teachers that showed little change in reported
confidence (Carrie, Chelsea, Emma, Paul) also mentioned
learning about CT, content, and curriculum design.
However, compared to other groups, they mention more
specific strategies for teaching their subject area and
curricular topic:

I was introduced to Sage Modeler, and I also learned
additional details about working with the [curriculum
editor] interface. (Carrie)

CTSI was helpful this year to separate various aspects of
computational thinking. (Chelsea)

I was able to develop a new unit around infectious diseases,
this led to a lot of content knowledge about particular
diseases, as well as CT knowledge of how to model and think
about these diseases. In working with my team I was able to
break down specific knowledge points for kids to figure out
and develop models to help them do that. (Emma)

I have learned a lot about coding. Also, the coding forced me
to think about physics- concepts and equations- such that I
could write correct codes to model phenomena. (Paul)

These teachers reported learning different things, from CT
itself (Chelsea), to specific tools (Carrie), and ways to think
about teaching their content through models (Emma), or
coding (Paul). Particularly for Emma and Paul, it may be that
designing CT-STEM activities helped them realize what
they did not yet know about their topic and “forced” them to
think deeper about the nature of their content from the CT
perspective.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

56

4. DISCUSSION
Given that CT integration is difficult for teachers, our work
begins to shed light on how and what teachers can learn
about CT through professional development focused on co-
design of CT-integrated curriculum. Our teachers, on
average, felt some confidence with all four CT-STEM
practices prior to our summer institute, which is not
surprising given that they showed interest in CT and wanted
to participate in CTSI over the summer. Yet, after the
professional development, our teachers, on average, reported
higher confidence in teaching CT-STEM practices,
particularly in modeling and algorithm practices. This gives
us encouragement that the professional development may be
a good approach to help teachers engage in and learn about
CT-STEM practices, even if they are already confident in
some of those practices.

Our findings also show that teachers' confidence did not
change in the same way across the four CT-STEM practices.
Some seemed to gain confidence in all practices, while other
teachers only gained confidence in a few practices, and still
others showed no change after our professional
development. These differences were expected, given that a
few teachers were already extremely confident in teaching
CT-STEM practices prior to the professional development,
and thus it did not affect their confidence with specific
practices. For them, the experience may have been an
opportunity to learn about specific software and tools that
they can use to design curricula or engage students in their
classroom, rather than an opportunity to learn about CT-
STEM practices. Teachers’ responses to what they learned
from the summer institute suggests that they learned many
related skills and ideas for designing and implementing CT-
STEM curriculum. Some learned how to program and code
using particular tools and strategies to address their teaching
goals. Others learned about CT itself, how it may be “a new
lens to look at science” (Evan), and how to integrate it into
existing content in their curriculum. Some teachers
described changes in how they view content and teaching,
which may affect their pedagogy, which will be analyzed in
a future paper on how teachers implemented their units.

Even though our study only involved 11 teachers, it revealed
much variation in what teachers gained through our
professional development, which researchers and educators
should take into account when designing and assessing such
programs. Our findings align with prior work that shows
variation in teacher outcomes from co- design experiences
and a need for multiple sources of data to capture teachers’
pathways (Kelter et al., 2020; Naimipour et al., 2020; Peel et
al., 2021; Svihla et al., 2015). Although quantitative
measures are important to ensure that teachers gain the
prerequisite skills and knowledge to develop quality
curricula and engage their students in CT, expanding
qualitative analyses or designing alternative measures to
capture teachers' learning and teaching of CT will help
illuminate the various ways in which they grow in their
pedagogy. Further, additional measures will help reveal
what aspects of co-design and professional development
experiences are essential to

ensure teachers’ growth builds on their divergent needs and
prior experiences with CT.

Given the variance in teachers’ goals and experience with
CT, we designed our professional development to be
adaptable so that teachers can gain the knowledge, skills, and
insights required to learn about and integrate CT into their
classroom. In our professional development, the co- design
sessions were particularly flexible for teachers so that it
supports constructionist design (Kelter et al., 2020). Each co-
design session foregrounds teachers’ goals and thus was
shaped by the different types of support and levels of
engagement with CT needed to help each teacher achieve
their goals. Teachers may be restructuring how they
introduce content, brainstorming what features to include in
an CT activity, writing student questions, or programming
computational models with the support of their co-designers.
The variation in the co-design process allows for
differentiated support based on teachers’ prior experiences
and teaching goals for their curriculum. Hence, regardless of
their approach, goals, and needs during the professional
development, all teachers moved towards the same
destination: They all reported learning about some aspect of
CT, produced a CT-STEM curriculum, and felt confident in
their ability to teach CT-STEM practices to their students
alongside content in mathematics and science classrooms.
This work shows promise for professional development
focused on constructionist design as a way to engage
teachers in CT education. We advocate for additional work
that empowers teachers as designers of CT curriculum and
identifies additional pathways for teachers who may or may
not have prior confidence and experience in CT. Such work
will help us build additional professional development
opportunities that effectively engage teachers in integrating
and teaching CT in STEM classrooms.

5. REFERENCES
Allen, C. D., & Penuel, W. R. (2015). Studying teachers’

sensemaking to investigate teachers’ responses to
professional development focused on new standards.
Journal of Teacher Education, 66(2), 136-149.

Aljowaed, M., & Alebaikan, R. A. (2018). Training Needs
for Computer Teachers to Use and Teach Computational
Thinking Skills. International Journal for Research in
Education, 42(3), 237-284.

Ball, D., & Forzani, F. (2009). The work of teaching and the
challenge for teacher education. Journal of teacher
education, 60(5), 497-511.

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community? Acm Inroads,
2(1), 48-54.

Coburn, C. E. (2005). Shaping teacher sensemaking: School
leaders and the enactment of reading policy. Educational
policy, 19(3), 476-509.

Common Online Data Analysis Platform [Computer
software]. (2020). Concord, MA: The Concord
Consortium.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

57

Grover, S. (2017). Assessing algorithmic and computational
thinking in K-12: Lessons from a middle school classroom.
In Emerging research, practice, and policy on
computational thinking (pp. 269-288): Springer.

Grover, S., & Pea, R. (2013). Computational Thinking in K–
12 A Review of the State of the Field. Educational
researcher, 42(1), 38-43.

Horn, M., Baker, J. & Wilensky, U. (2020). NetTango Web
[Computer Software]. Evanston, IL. Center for Connected
Learning and Computer Based Modeling, Northwestern
University. http://ccl.northwestern.edu/nettangoweb/.

Kelter, J. Z., Peel, A., Bain, C., Anton, G., Dabholkar, S.,
Aslan, Ü., Horn, M., & Wilensky, U. (2020). Seeds of
(r)Evolution: Constructionist Co-Design with High School
Science Teachers. In B. Tangney, J. R. Byrne, &
C. Girvan (Eds.), Proceedings of the 2020 Constructionism
Conference, Dublin, Ireland, May 26— May 29, 2020 (p.
497-505).

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane,
J., & McGinnis, J. R. (2020). Teacher change following a
professional development experience in integrating
computational thinking into elementary science. Journal of
Science Education and Technology, 29(1), 174-188.

Naimipour, B., Guzdial, M., & Shreiner, T. (2020, October).
Engaging Pre-Service Teachers in Front-End Design:
Developing Technology for a Social Studies Classroom. In
2020 IEEE Frontiers in Education Conference (FIE) (pp.
1-9). IEEE.

Peel, A., Dabholkar, S., Anton, G., Wu, S., Wilensky, U., &
Horn, M. (2020). A Case Study of Teacher Professional
Growth Through Co-design and Implementation of
Computationally Enriched Biology Units. In Gresalfi, M.
and Horn, I. S. (Eds.), The Interdisciplinarity of the
Learning Sciences, 14th International Conference of the
Learning Sciences (ICLS) 2020, Volume 4 (pp. 1950-
1957). Nashville, Tennessee: International Society of the
Learning Sciences.

Peel, A., Dabholkar, S., Wu, S., Horn, M.S., Wilensky, U.
(in press). An Evolving Definition of Computational
Thinking in Science and Mathematics Classrooms.
Proceeding of the 2021 International Conference of
Computational Thinking Education and STEM (CTE-
STEM).

Peel, A., Kelter, J., Wilensky, U., Horn, M. (2021).
Designing Professional Learning Experiences to Support
Teachers' Computational Thinking Learning and
Confidence. Presented at the Annual Meeting of the
National Association of Research in Science Teaching
(NARST) 2021.

Penuel, W. R., Riel, M., Krause, A., & Frank, K. A. (2009).
Analyzing teachers’ professional interactions in a school

as social capital: A social network approach. Teachers
college record, 111(1), 124-163.

SageModeler [Computer software]. (2020). Concord, MA:
The Concord Consortium and the CREATE for STEM
Institute at Michigan State University.

Selby, C., & Woollard, J. (2013). Computational thinking:
the developing definition. Retrieved from
https://eprints.soton.ac.uk/356481/

Svihla, V., Reeve, R., Sagy, O., & Kali, Y. (2015). A
fingerprint pattern of supports for teachers’ designing of
technology-enhanced learning. Instructional science,
43(2), 283-307.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020).
Assessing computational thinking: A systematic review of
empirical studies. Computers & Education, 148, 103798.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Wilensky, U. (1997). NetLogo Fire model. Retrieved
December 1, 2019, from
http://ccl.northwestern.edu/netlogo/models/Fire

Wilensky, U. (1999). NetLogo. Retrieved December 1, 2019,
from http://ccl.northwestern.edu/netlogo/

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D.
(2012). Proposing a Core Set of Instructional Practices and
Tools for Teachers of Science. Science Education, 96(5),
878-903.

Wu, L., Looi, C.-K., Liu, L., & How, M.-L. (2018).
Understanding and Developing In-Service Teachers’
Perceptions towards Teaching in Computational Thinking:
Two Studies. Proceedings of the 26th International
Conference on Computers in Education., Philippines: Asia-
Pacific Society for Computers in Education.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016).
Expanding computer science education in schools:
understanding teacher experiences and challenges.
Computer Science Education, 26(4), 235-254.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,
J. T. (2014). Computational thinking in elementary and
secondary teacher education. ACM Transactions on
Computing Education (TOCE), 14(1), 5.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,
J. T. (2011). Introducing computational thinking in
education courses. Presented at the Proceedings of the
42nd ACM technical symposium on Computer Science
Education.

http://ccl.northwestern.edu/nettangoweb/
http://ccl.northwestern.edu/2020/Seeds%F4%8F%B0%81%20of%20(%F4%8F%B0%82r)Evolution%20-%20published.pdf
http://ccl.northwestern.edu/2020/Seeds%F4%8F%B0%81%20of%20(%F4%8F%B0%82r)Evolution%20-%20published.pdf
http://ccl.northwestern.edu/2020/Seeds%F4%8F%B0%81%20of%20(%F4%8F%B0%82r)Evolution%20-%20published.pdf
http://ccl.northwestern.edu/2020/Seeds%F4%8F%B0%81%20of%20(%F4%8F%B0%82r)Evolution%20-%20published.pdf
https://eprints.soton.ac.uk/356481/
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

58

An Experience of Conducting Online Teacher Development for Computational
Thinking Teaching in a Primary School Context

Siu-Cheung KONG
Department of Mathematics and Information Technology

The Education University of Hong Kong, Hong Kong
sckong@eduhk.hk

ABSTRACT
During the COVID-19 pandemic, we conducted an online-
only teacher development course (TDC) on computational
thinking (CT) teaching in a primary school context. Twelve
in-service primary school teachers participated in the
course, which consisted of thirteen 3-hour lessons. Analysis
of the participants’ CT concepts test results showed that
they successfully developed a good understanding of CT.
They also significantly improved in all four content
knowledge-related dimensions of technological
pedagogical content knowledge (TPACK) of programming
for CT development. Participants’ evaluation of teaching
survey reflected that they agreed the course was of high
quality. These positive results implied that TDCs on CT
teaching can be conducted online successfully. This study
indicated the importance of providing a sustained TDCs for
teachers to gain sufficient CT knowledge and pedagogies of
CT teaching. For successful online teaching, it was essential
to maintain the teachers’ engagement in class by adjusting
the teaching pace to ensure all of them can follow the tasks
and assigning sufficient tutors to render timely assistance
when support was needed in completing the programming
tasks.

KEYWORDS
computational thinking, online learning and teaching,
primary school, programming, teacher development

1. INTRODUCTION
Wing (2006) argued that computational thinking (CT) is a
thinking process by which one formulates problems and
finds solutions by drawing on the fundamental concepts of
computer science. To help children become creative
problem solvers, the integration of CT into K-12 education
through programming is an important initiative (Hsu,
Chang, & Hung, 2018). However, there is a limited number
of teachers with CS background (Yadav, Gretter,
Hambrusch, & Sands, 2016) and a lack of specific
pedagogies for teaching CT through programming
(Menekse, 2015). Thus, it is critical to conduct professional
development for teachers to equip them with sufficient CT
knowledge and related pedagogies. Few empirical studies
were found on effective TDCs in CT in relation to
programming (Menekse, 2015; Kong, Lai, & Sun, 2020).
Also, the organization of online-only TDCs on CT teaching
was a new and emerging area that needed to be explored.
This study aimed to report an experience of conducting an
online TDC on CT teaching and the evaluation results of the
teachers’ learning progress in CT concepts, and
technological pedagogical content

knowledge (TPACK) of programming for CT development.

2. BACKGROUND
2.1. CT in Relation to Programming in a Primary School

Context
Programming is regarded as an effective method for
developing students’ CT (Kong & Abelson, 2019). Block-
based programming environments such as Scratch and App
Inventor provide a pleasant learning experience for young
students because their visual programming languages are
favorable for children to learn (Lye & Koh, 2014); as a
result, these environments can stimulate students’ interest in
programming (Weintrop & Wilensky, 2017). Brennan and
Resnick (2012) proposed a CT framework after observing
young students’ behavior while programming with Scratch.
This framework consisted of three components: CT
concepts, CT practices, and CT perspectives. CT concepts
refers to the concepts applied in programming. CT practices
refers to the problem-solving practices used in
programming. CT perspectives refers to how programmers
see themselves, their relationships with others, and the
digital world. This framework provided a concrete direction
for CT development in relation to programming among
young learners. The TDC in this study adopted these three
components to develop teachers’ competencies in delivering
CT lessons in primary school.

2.2. Importance of Teacher Development in CT
Two major challenges to incorporating CT education in
primary schools were found in this study, which may be
overcome by conducting effective TDCs. First, there were
only a small portion of teachers with a CS background
(Yadav et al., 2016). Some of them were not familiar with
block-based programming environments (Hubbard, 2018),
which would make it difficult for them to teach CT through
programming. Second, sustained professional development
was inadequate. Bower et al. (2017) found that most TDCs
are short in duration and put emphasis only on teaching how
to program rather than on incorporating related pedagogies
(Menekse, 2015). Consequently, teachers could only make
use of some general pedagogical strategies that were not
specific to CT development when teaching (Bower &
Falkner, 2015). Kong et al. (2020) suggested that primary
school teachers’ CT knowledge and their TPACK had
significantly improved after completing two 39-hour
courses. Therefore, it is critical to provide sustained TDCs
for teachers to equip them with ample knowledge and
pedagogies of teaching CT through programming.

mailto:sckong@eduhk.hk

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

59

2.3. Factors of Conducting Effective TDCs on CT
There are two main factors leading to an effective TDC on
CT development. First, the course design requires a
sustained period of learning instead of a one-off lesson
(Garet, Porter, Desimone, Birman, & Yoon, 2001). A
sustained course provides a better training opportunity for
teachers since they have adequate time to acquire the
content knowledge. For CT development, Kong et al. (2020)
suggested that teachers need to learn how to teach CT and
apply what they had learned by producing group projects.
In addition, teachers’ active engagement has proved to be a
critical factor of a successful development course (Darling-
Hammond, Hyler, & Gardner, 2017). Kong et al. (2020)
proposed a pedagogy (i.e., to play, to think, and to code) to
teach CT, which highly required the participants’
engagement in class. They got ample opportunities to play
the App at first. Then they had to think about how to
produce the App. Finally, they needed to compose the
programs by themselves. Teachers need active participation
and engagement rather than passively receiving the
knowledge (Darling-Hammond et al., 2017).

3. METHODOLOGY
3.1. Design and Structure of the Course
The design principle of this online TDC was to fulfil the
important factors for successful teacher development
including a sustained period of learning and teachers’ active
engagement. The TDC lasted for 5 weeks, and it provided
both theory-based CT content knowledge and hands-on
experiences of programming pedagogies. The course was
conducted entirely online on Zoom. It consisted of thirteen
3-hour lessons and was divided into three parts.

The first part consisted of seven lessons. Six sample CT
units were shown to demonstrate how to use App Inventor
and pedagogical content knowledge (i.e., to play, to think,
and to code) to teach CT. At the beginning of each lesson,
the teachers played the apps. Then, they were guided to
think about the components and logical flow of the apps.
The teachers tried to deconstruct programming tasks into
smaller steps so that they could learn how to turn abstract
concepts into an algorithm to solve a problem. Finally, the
teachers followed the student guides to code and test the
app. If they were not able to finish coding the app in class,
they could use the student guides, which demonstrated how
to drag and drop the blocks step by step, to continue their
learning after class. After teaching each unit, we had
reflection on CT concepts, practices, and perspectives
development with the teachers.

In the second part, the teachers had a lesson in which they
observed an online CT lesson conducted by a local primary
school. This lesson aimed to enhance their pedagogical
understanding of how to deliver CT in relation to
programming in a primary school context. During the
observation, teachers could learn by reflecting on the
successful and those less successful experience and
incorporating the remarkable part into his/her own teaching.
We consolidated this learning by holding a reflection
section in the next lesson for the teachers to share their
observation.

The third part of the course consisted of five lessons. The
teachers worked in groups to produce a portfolio of artifacts,
including a mobile app made in App Inventor for teaching
primary school students, student worksheets, and a unit of
CT teaching scheme with pedagogical design, to be
presented in the last lesson of the course. They were given
sufficient time to discuss their CT content knowledge and
the pedagogical design of their teaching. This offered a
chance for them to put their CT and pedagogical content
knowledge into practice. Figure 1 shows the design and
structure of this TDC.

Figure 1. Design and Structure of the TDC

3.2. Participants and Procedures
The TDC was conducted in April and May 2020 with 39
lesson hours and 3 hours per lesson. This 5-week program
was conducted entirely online on Zoom due to the
pandemic. To ensure that the TDC maintain as high quality
as face-to-face meeting, we had to provide support to
teachers online when they encountered difficulties in
handling the programming hands-on activities to increase
their engagement. We slowed down the programming
process to make sure that all teachers went through these
tasks. We divided a programming task into several sub-
tasks. We needed to ensure that they finished the sub-task
before going to the next sub-task so that they could complete
activities with successful experience. Also, we asked them
to work in small groups with tutor supports when they were
conducting the programming tasks and when testing and
debugging the programs. The teachers needed to corporate
in completing the programming tasks when working in
groups. The tutors would give immediate help to the
teachers when all group members got stuck in the
programming activities. In face-to-face meetings, we have
one to two tutors in a classroom, but we assigned additional
tutors for each group in this online course to provide support
to the participants.
A total of 12 in-service primary school teachers attended the
TDC. Eight (66%) were male and four (33%) were female.
Most of the participants taught IT (66%) at their schools,
whereas the others taught subjects such as mathematics,
Chinese, and visual arts. Their average teaching experience
was 15.8 years. To evaluate their learning progress, we
asked them to complete (1) a CT concepts test and (2) a
TPACK questionnaire concerning programming for CT
development at the beginning of the course. They also
completed two post-tests in the second last lesson. At the
end of the course, participants were asked to completed the
evaluation of teaching survey. All teachers participated in
the tests and surveys online.

3.3. Measures

3.3.1. CT Concepts Test
A multiple-choice CT concepts test was adopted to evaluate
participants’ learning progress (Kong et al., 2020). The pre-
and post-tests were conducted in the first and

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

60

second last lessons. The test consisted of 25 items, which
required teachers to analyze the outcome of executing the
scripts in block-based programming environments. The test
assessed progress in four categories of CT concepts,
including repetition (3 items), conditionals (8 items), data
(8 items), and procedures (6 items). Figure 2 shows a
sample question about procedure.

Figure 2. A Sample Item for Assessing CT Concepts

3.3.2. TPACK of Programming for CT Development

Questionnaire
Seven dimensions of TPACK were delineated by Mishra
and Koehler (2006). Since the foundation of CT
development was the content knowledge (CK) of
programming for CT development, this study focused on
evaluating the teachers’ TPACK development in four CK-
related dimensions (i.e. content knowledge [CK],
technological content knowledge [TCK], pedagogical
content knowledge [PCK], and technological pedagogical
content knowledge [TPACK]). In the CT context, CK
refers to the CK of CT concepts, practices, and
perspectives in a programming context; TCK refers to
knowledge of the use of programming features in a block-
based programming environment to teach CT; PCK refers
to the knowledge of teaching CT (e.g. unplugged activities)
without using technologies; and TPACK refers to the
knowledge of using technologies and pedagogies for
teaching CT in relation to programming in a context of an
explementary use (Kong et al., 2020).
The questionnaire contained 29 items, which was modified
from a TPACK instrument developed by Kong et al. (2020).
The sample item of CK was “I have sufficient knowledge
about programming.” The sample item of PCK was
“Without using technology, I can help my students to
understand the content knowledge of programming through
various ways.” The sample item of TCK was “I can choose
appropriate tools in App Inventor to teach students how to
program.” The sample item of TPACK was “I can teach
lessons that appropriately combine the content of
programming, technologies, and teaching approaches.”
Each item of this instrument was anchored from 1 (strongly
disagree) to 5 (strongly agree).

4. RESULTS AND DISCUSSION
4.1. Results of the CT Concepts Test
Significant improvement was found in the results of the CT
concepts test as a whole (t(11)=3.36, p<.01) after the
completion of the course, as shown in Table 1. Among the
individual concepts, the teachers showed the greatest
improvement in their understanding of the concept of
procedures by the end of the course (t(11)=4.71, p<.01).

Table 1. Pre- and Post-test Results of CT Concepts Test.

Note.** p<.01

4.2. Results of the TPACK of Programming
Questionnaire

Significant improvements were found across all CK- related
dimensions in TPACK after the completion of the course, as
shown in Table 2. Of these, teachers’ TCK showed the
greatest improvement, which indicated that they had gained
much more confidence in using the tools in the App Inventor
block-based programming environments to prospectively
develop their students’ CT.

Table 2. Pre- and Post-test Results of the TPACK of
Programming Questionnaire.

Note.*** p<.001, ** p<.01. a1 = Strongly Disagree; 2 = Disagree;
3 = Neutral; 4 = Agree; 5 = Strongly Agree.

4.3. Results of the Participants’ Evaluation of Teaching
Survey

At the end of the course, all 12 participants responded to the
evaluation of teaching survey. Table 3 shows that all
teachers agreed that they experienced the thinking process
during the lessons and they considered that the teaching was
of high quality.

Table 3. Participants’ Evaluation of Teaching Survey
Results

Note. 1 = Strongly Disagree; 2 = Disagree; 3 = Agree; 4 =
Strongly Agree.

Table 4 shows that the most useful aspect of this course was
understanding the importance of “to think” rather than
rushing to code in CT learning. Tutor support was also
essential in online learning. Two teachers appreciated that
the teaching team installed all the apps to the tablet and
allowed them to borrow and bring home before the course.
They suggested that it was a good practice to upload the
learning materials to the online platform so that they could

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

61

prepare prior to the lesson. They appreciated using these
apps to play around and think along with the teacher and
learning with their peers before starting to code in class.

Table 4. Participants’ Reponses of the Evaluation of
Teaching Survey

5. IMPLICATIONS AND CONCLUSION
This study reports a successful experience of conducting an
online TDC on CT teaching. The results showed that
teachers’ CT concepts, and TPACK of programming for CT
development improved considerably after the course. The
teachers’ positive experience and responses provided two
practical implications for conducting TDCs on CT in the
future.
First, the design of the course required a sustained period of
learning with the provision of theory-based CT CK and
hands-on practice of programming pedagogies. It was
important to offer sufficient examples to illustrate the
teaching of CT with a focus on CT concepts, practices, and
perspectives, as teachers needed to nurture their students’
CT in these three dimensions. Second, we need to enhance
the teachers’ engagement in online course by adjusting the
teaching pace and assigning sufficient tutors to provide
support (Bao, 2020). In online teaching, we suggest
adjusting the teaching pace to facilitate teachers’ successful
programming experience rather than rushing to complete all
tasks designed in the unit. Since more lesson time is used to
finish the programming tasks, sometimes we need to give
up the more difficult part of the tasks. We also suggest
breaking down the programming tasks into sufficient sub-
tasks to make sure all participants can follow and complete
the sub-tasks one by one. Apart from adjusting the teaching
pace and content, allocating sufficient tutors to render
timely support to the online class is essential to enhance the
participants’ engagement. While the instructors may not
remotely view each participant’s progress during the online
lesson, the tutors can provide immediate suggestion to
participants in small groups during the programming
activities, in particular testing and debugging. The greatest
limitation of this study was its small sample size. We shall
conduct similar evaluations in scenarios with more teachers
to investigate the effectiveness of TDCs in online teaching
mode.

6. REFERENCES
Bao, W. (2020). COVID‐19 and online teaching in higher

education: A case study of Peking University. Human
Behavior and Emerging Technologies, 2(2), 113-115.

Bower, M., & Falkner, K. (2015). Computational thinking,
the notional machine, pre-service teachers, and research
opportunities. In Proceedings of the 17th Australasian
Computing Education Conference (pp. 37-46). Sydney:
Australian Computer Society.

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., Lister,
R., Mason, R. …Veal, J. (2017). Improving the
computational thinking pedagogical capabilities of
school teachers. Australian Journal of Teacher
Education, 42(3), 53-72.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. In Proceedings of the 2012
Annual Meeting of the American Educational Research
Association (pp.1-25). Vancouver, Canada.

Darling-Hammond, L., Hyler, M. E., & Gardner, M.
(2017). Effective teacher professional development. Palo
Alto, CA: Learning Policy Institute.

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., &
Yoon, K. S. (2001). What makes professional
development effective? Results from a national sample
of teachers. American Educational Research Journal,
38(4), 915-945.

Hsu, T., Chang, S., & Hung, Y. (2018). How to learn and
how to teach computational thinking: Suggestions based
on a review of the literature. Computers & Education,
126, 296-310.

Hubbard, A. (2018). Pedagogical content knowledge in
computing education: A review of the research literature.
Computer Science Education 28(2), 117-135

Kong, S. C., & Abelson, H. (Eds.) (2019). Computational
Thinking Education. Singapore: SpringerOpen.

Kong, S. C., Lai, M., & Sun, D. (2020). Teacher
development in computational thinking: Design and
learning outcomes of programming concepts, practices
and pedagogy. Computers & Education, 151, 103872.

Lye, S., & Koh, J. H. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.

Menekse, M. (2015). Computer science teacher
professional development in the United States: A review
of studies published between 2004 and 2014. Computer
Science Education, 25(4), 325-350.

Mishra, P., & Koehler, M. J. (2006). Technological
pedagogical content knowledge: A framework for
teacher knowledge. Teachers College Record, 108(6),
1017-1054.

Weintrop, D., & Wilensky, U. (2017). Comparing block-
based and text-based programming in high school
computer science classrooms. ACM Transactions on
Computing Education, 18(1), 1-25.

Wing, J. M. (2006). Computational thinking.
Communication of the ACM, 49(3), 33-35.

Yadav, A., Gretter, S., Hambrusch, S. & Sands, P. (2016).
Expanding computer science education in schools:
Understanding teacher experiences and challenges.
Computer Science Education, 26(4), 235-254.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

62

Computational Thinking
and STEM/STEAM Education

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

63

ARTEC Logic Puzzle: The Role of Computational Thinking with Extension to
Extended Logic

Chung-Oi KOK
WOW Educational International, Singapore

cokuan@googlemail.com

ABSTRACT
STEM education requires learners to utilise computational
thinking process to solve complex problems. One such
STEM activity is Logic Puzzle that was developed by Artec,
a Japanese Research and Development education Company
that established STEM education products such as robotics
and logic puzzles for preschool children in Japan. Logic
Puzzles are learning tools for children to strengthen
numeracy skills as children learn to solve puzzle problems
that relate to spatial relations of direction, position and
distance, processes of ordering and patterning, matching,
sorting, and comparing, counting, and applying simple
measurements. These processes employ computational
thinking which associates with four thinking steps, namely,
decomposition, pattern recognition, abstraction, and
algorithm. However, while applying computational thinking
processes to solve problems in logic puzzle activity,
extended logic a thinking process that enables the mind to
have multiple interpretations is also applied. This paper
discusses how STEM: logic puzzle activity enables learners
to apply computational thinking with the four thinking steps
along with extended logic to solve problems in logic puzzle.

KEYWORDS
Artec logic puzzle, computational thinking, extended logic

1. INTRODUCTION
Logic Puzzle is related to STEM. Logic Puzzle consists of
12 different themes across 48 lessons. The author shall draw
on her own classroom experience of using the theme on
balance game to elaborate how children learned to solve
logic puzzle problems that relate to STEM. Children learn
about law of physics concerning distribution of weight to
balance 2 numbers of 3-dimensional (D) blocks. Children are
required to count the numbers of blocks to assemble 3- D
blocks based on 2-D pictures in the logic puzzle workbook.
Children apply engineering skillsets to balance the blocks on
top of each other without falling off. Consequently,
technology is included as science and mathematics are
involved to balance the 3-D blocks. The process of solving
logic puzzle problems enables children to apply
computational thinking in 4 thinking steps, decomposition,
pattern recognition, abstraction, and algorithm (Wing, 2008,
2011), (Selby, Cynthia & Woollard, John, 2013), (German,
2019), (Charoula et al. 2016). The following sections discuss
how learners apply the 4 thinking steps along with extended
logic to solve logic puzzle 25 on balance game.

2. COMPUTATIONAL THINKING,
EXTENDED LOGIC AND LOGIC
PUZZLE 25

Figure 1. Logic Puzzle Box

Figure 2. Logic Puzzle Workbook, Balance Game, Challenge 1.2

The logic Puzzle box contains different types of Artec blocks
and parts for learners to solve logic puzzle problems in the
logic puzzle workbook.

2.1 Algorithm
Algorithm is primarily a guide or manual or set of
instructions to work on a particular piece of work.
(https://techterms.com/definition/algorithm). Learners have
to follow the balance game instructions by building 1 set of
green and yellow 3-D blocks from the given 2-D pictures in
the workbook of challenge 1.2. Next, they have to position
the green 3-D block on the given green rectangle and balance
the 3-D yellow block on the latter without falling off. This
also applies to the 3-D yellow block on the yellow rectangle.
2.2 Abstraction
The 3 phases of abstraction are singling out object from a situation,
symbolising singled out object as a concept and arranging the
singled-out object to connect to a system (Winter, 2014). The first
phase is for learners to single out the relevant coloured Artec
blocks to build 1 set of green and yellow 3-D blocks from
the puzzle box. The second phase is to learn from the
instructor concerning the purpose of putting 2 numbers of 3-
D blocks on top of one another to symbolise the concept of
balancing. The third phase is for learners to arrange 2
numbers of 3-D blocks to be put on top of one another to
fulfill the concept of balance based on the rule or instructions
of logic puzzle 25.

mailto:cokuan@googlemail.com
https://techterms.com/definition/algorithm

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

64

2.3 Decomposition
The process of first phase of abstraction relates to
decomposition in breaking down the matter (Donze &
Wong, 2018) and segregation (Yamaguchi, 2017). Learners
are required to break down the 2-D pictures from the
workbook to single out the quantity and types of Artec
blocks by segregating the required ones from the puzzle box
to build the 3-D blocks.
2.4 Pattern Recognition
The third phase of abstraction relates to pattern recognition
as learners have to find and recognise a pattern or sequence
from 2 unassociated items (Ripley & Taylor, 1987), (Baron,
2006). Learners have to find a sequence to put two different
3-D blocks on top of one another without falling off to fulfil
the concept of balancing, which relates to the 3rd phase of
abstract as discussed in 2.2.
2.5 Extended Logic
Recognising the pattern of balancing both 3-D blocks in a
vertical position, learners also apply extended logic thinking
process that enables them to interpret in multiple
perspectives (Wiseman, 2004) and (Kok, 2011). Learners
also realised that there were more than 1 solutions to solve
puzzle 25. Learners are motivated to think beyond one
solution to solve the problem. In other words, the puzzle
activity enables learners to extend beyond 1 solution to
another, thus offering learners to be flexible in thinking too.
The entire process to solve Logic Puzzle in Balancing Game
fosters computational thinking development.

Figure 3.

3. CONCLUSION
The discussion shows that logic puzzle enables learners to
apply 4 thinking domains of algorithm, abstraction,
decomposition, pattern recognition and extended logic. Each
thinking domain is applied interconnectedly to solve puzzle
problem. For example, in the first phase of abstraction,
learners have to break down the 2-D pictures to single out
the relevant Artec blocks and parts to form 3-D blocks, thus
relating to decomposition. The third phase of abstraction
relates to the process of finding a pattern or sequence to put
both 3-D blocks on top of one another to fulfil the concept
of balancing. Learners also realise that there is more than 1
solution to solve the puzzle problem because they are able to
“stretch” or “extend” the answer into multiple interpretations
that relates to application of extended logic. Therefore, logic
puzzle designed by Artec company, a STEM activity enables
learners to apply

computational thinking skills along with extended logic to
solve problems.

4. REFERENCE
Baron, R. (2006). Opportunity Recognition as Pattern

Recognition: How Entrepreneurs "Connect the Dots" to
Identify New Business Opportunities. Retrieved
December 17, 2020, from
http://www.jstor.org/stable/4166221

C, O. Kok. (2011). The Rationale for Visual Arts Education
in Singapore: Analysis of Policies and Opinions, Durham
University, UK. Retrieved December 17, 2020, from
http://etheses.dur.ac.uk/845/

Donze, J., & Wong, S. (2018). Where did the leaves go?
Investigating decomposition through an inquiry-based
project. Science Scope. Retrieved November 15, 2020,
from http://doi:10.2307/26611842

German, S. (2019). Computational thinking. Science
Scope, 42(9), 36-39. Retrieved March 3, 2021 from
http://doi:10.2307/26899029

Charoula, A., Joke, V., Andrew, F., Mary Webb, M, Cox,
Joyce, Smith, & Jason, Z. (2016). A K-6 Computational
Thinking Curriculum Framework: Implications for
Teacher Knowledge. Journal of Educational Technology
& Society, 19(3), 47-57. Retrieved March 8, 2021, from
http://www.jstor.org/stable/jeductechsoci.19.3.47

Ripley, B., & Taylor, C. (1987). Pattern Recognition.
Retrieved November 22, 2020, from
http://www.jstor.org/stable/43420690

Selby, Cynthia & Woollard, John (2013) Computational
thinking: the developing definition. University of
Southampton (E-prints) 6pp. Retrieved March 3, 2021
https://eprints.soton.ac.uk/356481/

Winter, R. (2014). James and Dewey on Abstraction. The
Pluralist. Retrieved November 22, 2020
https://doi:10.5406/pluralist.9.2.0001

Wing, J. (2008). Computational thinking and Thinking
about computing. Philosophical transactions:
Mathematical, physical and Engineering sciences,
366(1881), 3717-3725. Retrieved November 13, 2020,
from http://www.jstor.org/stable/25197357

Wing, J. (2011). Research notebook: Computational
Thinking--What and Why? Retrieved March 3, 2021,
from https://www.cs.cmu.edu/link/research-notebook-
computational-thinking-what-and-why

Wiseman, B. (2008). Qualia thinking the senses. Retrieved
September 21, 2010, from
https://www.swetswise.com.ezphost.dur.ac.uk/eAccess/v
iewToc.do?titleID=425276&yevoID=2348073

Yamaguchi, K. (2017). Decomposition Analysis of
Segregation. Retrieved November 22, 2020, from
http://www.jstor.org/stable/26429068

http://www.jstor.org/stable/4166221
http://etheses.dur.ac.uk/845/
http://www.jstor.org/stable/jeductechsoci.19.3.47
http://www.jstor.org/stable/43420690
https://eprints.soton.ac.uk/356481/
http://www.jstor.org/stable/25197357
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.swetswise.com.ezphost.dur.ac.uk/eAccess/viewToc.do?titleID=425276&yevoID=2348073
https://www.swetswise.com.ezphost.dur.ac.uk/eAccess/viewToc.do?titleID=425276&yevoID=2348073
http://www.jstor.org/stable/26429068

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

65

Computational Thinking
and Data Science

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

66

Infusing Computational Thinking into the Accounting Practice Course

Tao WU1*, Maiga CHANG2
1 Zhujiang college of South China Agricultural University, Guangzhou, China

2 School of Computing and Information Systems, Athabasca University, Alberta, Canada
scauzjcwutao@gmail.com, maiga.chang@gmail.com

ABSTRACT
In the digital age, the demand for digital talents in our
commercial society has greatly increased. Digital talents
mainly refer to the general names of professionals in various
industries who can perform data analysis and forecast trends
on the basis of the building data models. Taking Accounting
Practice course as an example, this paper expounds the
teaching model of integrating computational thinking into
non-stem subjects. The main strategy adopted in this paper
is to design different practical tasks according to three
teaching difficulties. Based on the concept of
constructivism, students can use different tools at different
stages and find an efficient problem-solving model

KEYWORDS
Computational Thinking (CT), Constructivism,
Accounting, curriculum design, framework

1. INTRODUCTION
In the era of data, enterprises are eager to make decisions,
arrange inventory, advertise and deliver related consumer
products by collecting and using data. Therefore, the
demand for undergraduates with data analysis skills is
increasing rapidly. To meet the needs of the business
community, the Association of Advanced Business Schools
(AACSB) takes data analysis as an essential skill into
accounting practice and theory courses, and they have
developed the A7 certification standard with independent
AACSB certification. Accounting is a major that uses data
analysis most in business disciplines, and undergraduates
need to obtain more training in data analysis skills.
However, it is not easy to liberate students from the
complicated regulations and become masters of digital
resources.

Wing (2006, 2008) defined computational thinking as a
general thinking to solve problems, which was developed
by others (National Research Council 2010). The
accounting courses aim to develop students' skills and
enable them to understand how to use data to formulate and
solve business problems. The injection of computational
thinking provides accounting professionals with the
opportunity to use technology to analyze data and solve the
data-analysis problems.

2. COMPUTATIONAL THINKING
FRAMEWORK OF FINANCIAL
ACCOUNTING
In this paper, our goal is to provide the CT in a practical
framework and procedures for implementing computational
thinking in accounting majors.

Based on the characteristics of accounting and the two
dimensions of computational thinking, the research team
proposes a theoretical framework for integrating
computational thinking into accounting courses, as shown
in Figure 1.

Figure 1. CT framework for integrating computational
thinking with Accounting work

The proposed framework in accounting course has five
components: Identification, Abstraction, Decomposition,
Algorithm, as well as Evaluation (see Figure 1).

3. EXAMPLE OF CT IN ACCOUNTING
COURSE
In this section，we provide an example from our framework.
Here, we have carefully selected the professional course “financial
statement analysis”, which has the closest relationship with data
analysis skills in the accounting major as an example.

At first, instructor divides courses into three levels (see Table 1
below) according to the difficulty of using tools and course
contents.

Table 1. CT classify learning Content in three difficult
level

mailto:scauzjcwutao@gmail.com
mailto:maiga.chang@gmail.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

67

Identification

Thinking
process

Tool
(software)

Algorithm

Basic (Easy)

Identify
subject, data,
formula
expression

Single-step
reasoning

Bookkeeping
software

Basic formula

Mastery(Medi
um)
Identify
various
indicators and
can infer the
relationship
between each
other

Multi-step
reasoning

Mind-map;
Excel; Tableau

Weighted
index
processing

Advance(Diff
icult)
Identify the
correct data in
a fuzzy data
set

Critical
thinking and
multi-level
reasoning

Excel; Open-
source
software
Complex
Model

4. DISCUSSION AND CONCLUSION
Our aim is to integrate computational thinking into practical
courses of accounting major by providing a thinking framework.
Applying computational thinking to practical courses and course
evaluation through instructional design can encourage students to
master the ability of using technical tools to solve practical
problems, and enable students to have a thinking path to solve
problems. The essence of the problem can only be discovered in
the plight of nowhere to go. Through reasoning the characteristics
of the problems in the thinking process, students finally mastered
the technical tools and solved the problems. Several elements of
the framework require teachers to set the difficulty levels
according to task content and students' technical ability in
curriculum design.
On the other hand, adding the 3A element of computational
thinking to the grading index of students' homework will help to
cultivate students' skills and application of learning CT in these
three aspects. There are still many issues to be explored in CT
application teaching of non-STEM disciplines, such as different
students' preferences in the use of technology tools, and how to

We take the chapter "Application of DuPont Analysis" as an
example to briefly summarize the CT application project in
Zhujiang College of South China Agricultural University.

Chapter: Applications of DuPont Analysis

Objective: Based on the concept of constructivism, using the
model of computational thinking to solidify students' problem-
solving path, to understand and master related concepts.

Difficult level: Medium

Methods: Group cooperation/individual completion of case
analysis

Tools: Mind -manager; Excel （software）

Task: Provide complete financial data for five years and
incomplete data for the sixth year of an enterprise. After mastering
the index decomposition of DuPont analysis, students are required
to predict the ROE index of the sixth year with 5- year data.
Assessment: The instructor rates their answers based on the criteria
listed in Table 2.

Table 2. Evaluation Norms based on the elements of
computational thinking

reconcile the differences in learning time when different students
master the use of tools.

5. REFERENCES
Alles, M. G. (2015). Drivers of the use and facilitators and

obstacles of the evolution of big data by the audit
profession. Accounting Horizons, 29(2), 439-449

American Institute of Certified Public Accountants
(AICPA) (2018). AICPA pre-certification core
competency framework. Available:
https://www.aicpa.org/interestareas/accountingeducation
/resources/corecompetency.html

AACSB International (2013). Eligibility procedures and
accreditation standards for accounting accreditation.
Available:
http://www.aacsb.edu/accreditation/standards/2013-
accounting

National Research Council (2011). Report of a Workshop
of Pedagogical Aspects of Computational Thinking.
Washington, DC: The National Academies Press.
Available: https://doi.org/10.17226/13170.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal.

Norm A+
Accuracy Completely

correct

Abstract The
formula
expression
completely
corrects.

Algorithm Build
Model and
verify right

Completely
correct
The
formula
expression
completely
corrects.

No Model,
Calculate
right

B

Partially
correct
Can't
complete
all
formulas

C

Few correct

Can’t
understand
all formulas

Flaws in
the
calculation
process

Flaws
multi-step

in

calculations,
but simple
calculations
OK

https://www.aicpa.org/interestareas/accountingeducation/resources/corecompetency.html
https://www.aicpa.org/interestareas/accountingeducation/resources/corecompetency.html
http://www.aacsb.edu/accreditation/standards/2013-accounting
http://www.aacsb.edu/accreditation/standards/2013-accounting
https://doi.org/10.17226/13170
https://doi.org/10.1145/1118178.1118215

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

68

VizBlocks: A Data Visualization Literacy Education Tool
Travis Jia Yea CHING1*, Bimlesh WADHWA2*

1,2National University of Singapore, Singapore
travisching007@gmail.com, bimlesh@nus.edu.sg

graphical elements function like Lego blocks, allowing
users to write a multitude of programs or construct various
types of visualizations, simply by arranging them in a way
that “fits”. This bottom-up approach deconstructs
the thought process behind the concept being taught. It not
only greatly reduces the learning curve, but it also
reinforces knowledge on the individual parts that make up
a program or visualization in this case.

In addition, Scratch by MIT’s success in adopting the
visual programming paradigm reveals an approach to
educating data visualization literacy that addresses the
areas of improvement (AOI) found in existing tools:

Table 1. Advantages of visual programming paradigm

Advantages Existing Tool’s AOI
A more powerful form of
free-flow visualization
Efficient and accessible
collaborative learning
feature
Encourage critical
analysis of any variety of
visualizations

3. VIZBLOCKS
3.1. Objectives

Construct-A-Vis (Bishop
et al., 2019).
Construct-A-Vis,
C’est La Vis (Alper et al.,
2017).
C’est La Vis,
Diagram Safari (Gäbler et
al., 2019).

ABSTRACT

In the conversation of computational thinking as a vital
ingredient of STEM, the role of data literacy education has
been overlooked. Data literacy is fundamental to
computational thinking, yet research on tools for data
literacy is still in its infancy. This paper explores a way to
promote data literacy education through a new platform
called VizBlocks. It proposes that having an information
repository of data literacy resources complemented by a
visual programming tool, will enable K-12 children to
creatively learn data visualization.
KEYWORDS
Data Visualization Literacy, Visualization in Education,
Visualization with Children, Visual Programming Paradigm

1. INTRODUCTION
In recent years, the argument for adding
computational thinking (CT) to every child’s analytical
ability as a vital ingredient of STEM learning sparked by
Jeannette Wing has rallied educators, education
researchers, and policy makers. An examination of the
current state of discourse on computational thinking in
K–12 education shows that with broadly agreed on
definitions of CT in K-12 education, focus has been
shifted to investigating ways to promote and assess the
development of CT (Grover, & Pea, 2013). In the
U.S., the AI4K12 Initiative is a developing
guideline on artificial intelligence (AI) education
for K-12 students. In Touretzky and Gardner-
McCune’s recent work, they explore the key insights that
K-12 students can gain into the big ideas of AI, and how
the learning of AI may influence other aspects of
their educational experience (Touretzky & Gardner-
McCune, 2022).

Despite the conversation on promoting CT
education broadening into the sub-branches of
computer science, conversation on how data literacy
education plays an important role in promoting CT has
been overlooked. One of the core CT skills is
representing data through models. This however cannot
be achieved without a firm grasps of data literacy. An
examination gauging the ability to interpret data
visualizations indicates that the public has a low level of
data literacy (Börner et al., 2015). This reflects that most
people are unable to effectively comprehend
valuable information using data visualizations which
helps in learning, problem solving and making informed
decisions. Education pertaining to data literacy is thus
essential to be conducted in conjunction with CT
education.
2. VISUAL PROGRAMMING
PARADIGM
The visual programming paradigm which encodes
source code as graphical elements lends very well for
encoding key components (e.g., axis and labels) and
data points that construct a data visualization as graphical
elements. These

The core objectives of VizBlocks are:
1. Build a tool based on a visual block-based

paradigm to enable K-12 children to learn data
visualization literacy creatively

2. Build an information repository of data
visualization literacy resources

To allow children to learn data visualization literacy skills
creatively, they can use a visual programming extension of
Scratch called Vizblocks. By extending the successful
model of Scratch, the goal is to allow children to creatively
learn data visualization literacy skills whilst strongly
enforcing knowledge on the individual parts that make up a
data visualization.

The information repository would serve as a one-stop
platform for elementary school teachers and students to
access materials used for teaching and learning of data
visualization literacy, access the Vizblocks tool as well as
contribute to the resources. This in turn, builds a community
of shared learning.
3.2. Vizblocks Tool

Figure 1. Vizblocks extension blocks to draw histogram.

mailto:travisching007@gmail.com
mailto:bimlesh@nus.edu.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

69

Vizblocks currently supports the creation of 8 types of
visualizations:

1. Dot Plot 5. Histogram
2. Pictograph 6. Line Chart
3. Bar Chart 7. Scatter Plot
4. Pie Chart 8. Heatmap

The choice for these 8 types of data visualizations was made
by studying Pre-K-12 Guidelines for Assessment and
Instruction in Statistics Education II (Bargagliotti et al.,
2020).

Vizblocks is built with little assumption of children’s prior
knowledge of Scratch. Most data visualizations can be built
in a drag and drop manner without programming
knowledge. However, since Vizblocks is built on Scratch,
children can make use of existing Scratch blocks to read in
data programmatically instead of using multiple similar
blocks for the same purpose. An added benefit of learning
with Vizblocks is that children might be keen to explore
computational thinking to ease visualization creation.
3.3. Vizblocks Information Repository
The information repository alongside the VizBlocks
extension has been built and is currently deployed at
https://vizblocks.comp.nus.edu.sg.

Users can access the Vizblocks tool through the website. by
simply clicking the “new project” button or on existing
projects. They can create, read, update, and delete projects
on the cloud.

The Vizblocks website also supports a “Studio” feature.
From an educator’s point of view, a studio functions as a
classroom where folders can be organized as submission
boxes. It is also a place where teachers and students can
communicate; From a student’s point of view, a studio can
be a collection of similar projects, serving to organize
projects for ease of access. It can also be a place for like-
minded students to gather and learn from each other.

Figure 2. Studio on the VizBlocks website.

Figure 3. Users communication in Studio.

In addition, educators can download lesson plans with
detailed step-by-step guides on the website. There is also an
assessment test functionality to help educators gauge their
students’ performance.

Figure 4. Pie Chart Pre-Assessment Test on VizBlocks
4. CONCLUSION
For K-12 children and educators who need to receive or give
education on data visualization literacy, VizBlocks is both
an information repository and visual programming tool that
allows creative learning of data visualization literacy
through a visual block-based paradigm, easy access to
relevant materials and a community of shared learning.
Unlike existing tools such as C’est La Vis, Construct-A-Vis
and Diagram Safari, VizBlocks is a more powerful free-
form visualization tool. Its bottom-up approach not only has
a low barrier of entry but also reinforces knowledge on the
core concepts of visualizations thereby equipping children
with the skill to critically analyze any variety of
visualizations. Additionally, it has an extensive support for
collaborative learning that is not constrained by physical
proximity and additional hardware.

5. REFERENCES
Alper, B., Riche, N. H., Chevalier, F., Boy, J., & Sezgin,

M. (2017). Visualization Literacy at Elementary School.
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems.
doi:10.1145/3025453.3025877

Bishop, F., Zagermann, J., Pfeil, U., Sanderson, G.,
Reiterer, H., & Hinrichs, U. (2019). Construct-A-Vis:
Exploring the Free-Form Visualization Processes of
Children. IEEE Transactions on Visualization and
Computer Graphics, 1-1.
doi:10.1109/tvcg.2019.2934804

Börner, K., Maltese, A., Balliet, R. N., & Heimlich, J.
(2015). Investigating aspects of data visualization
literacy using 20 information visualizations and 273
science museum visitors. Information Visualization,
15(3), 198-213. doi:10.1177/1473871615594652

Gäbler, J., Winkler, C., Lengyel, N., Aigner, W., Stoiber,
C., Wallner, G., & Kriglstein, S. (2019). Diagram
Safari: A Visualization Literacy Game for Young
Children. Extended Abstracts of the Annual Symposium
on Computer-Human Interaction in Play Companion
Extended Abstracts - CHI PLAY '19 Extended Abstracts.
doi:10.1145/3341215.3356283

Grover, Shuchi & Pea, Roy. (2013). Computational
Thinking in K–12 A Review of the State of the Field.
Educational Researcher. 42. 38-43.
10.3102/0013189X12463051.

Touretzky, D. S., & Gardner-McCune, C. (2022). Chapter
IX: Artificial Intelligence Thinking in K-12.

https://vizblocks.comp.nus.edu.sg/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

70

Computational Thinking
Development in

Higher Education

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

71

Making the Thinking Results of Programming Visible and
Traceable with a Multi-layer Board Game

YungYu ZHUANG1*, Andito SAPUTRO2, Mahesh LIYANAWATTA3, Jen-Hang WANG4, Su-Hang YANG5,

Gwo-Dong CHEN6
1,2,3,4,6National Central University, Taiwan

5Chien Hsin University of Science and Technology, Taiwan
yungyu@ncu.edu.tw, saputroandito180314@gmail.com, mahesh.saitm@gmail.com, harry@cl.ncu.edu.tw,

yoko@uch.edu.tw, gwodong@gmail.com

ABSTRACT
Learning programming is never easy since not only the
knowledge but also the strategies to use the knowledge are
necessary for programming. Although board games have
been recognized as a promising approach to teaching
computational thinking and programming, they are usually
limited to turn-based design and lack the training of thinking
a plan. On the other hand, learning with mini- languages and
visual programming basically needs the use of computers
and thus requires the ability to operate computers. We
implemented the stored program concept and combined it
with the idea of making thinking visible in a multi-layer
board game to help to learn programming. Learners’
thinking results of programming can be reflected on this
new kind of board game and synchronized with problems
along with solutions. We conducted an experiment on the
learning performance improvement by comparing it with a
well-designed board game for learning computational
thinking, and the results showed the effectiveness of using
such a multi-layer board game.

KEYWORDS
programming, computational thinking, board games, make
thinking visible, teaching and learning strategies

1. INTRODUCTION
Programming skill might not be an ability that is directly
related to one’s professional, but it is generally agreed that
it is useful in everyone’s career. Over the past decades,
programming is moving into many of the domains
previously dominated by writing (Vee, 2013). Without
programming, as Soloway (1993) claimed, we will have cut
off half the power of computational medium. Programming
is further conceptualized as computational thinking (CT),
which refers to a universally applicable attitude and skill set
for everyone (Wing, 2006). The study conducted by Hsu et
al. (2018) showed that CT had gained the attention of
scholars and educators, and the subject of programming
constitutes the biggest proportion of CT research papers.

Programming is the ability to make digital technology do
whatever, and some call this skill human-machine
interaction (Prensky, 2008). A recent study conducted by
Siegmund et al. (2020) even showed an interesting result
that a clear left-lateral activation during program
comprehension. Programming empowerment was defined
as a person’s perceived autonomy and competence to use
CT effectively (Kong et al., 2018). Papert (1972) also

argued that providing children with access to computers
can give them the power to invent. Interacting with digital
media is the ability to read while being able to create our
own games, animations, or simulations is the ability to
write (Resnick et al., 2009). However, learning
programming is never easy since not only knowledge but
also the way knowledge is used or applied, i.e., strategies,
are necessary for programming (Davies, 1993). Robin et al.
(2003) recommended focusing on the combination and use
of new language features besides the learning of those
features, and the result of a survey conducted by Lahtinen
et al. (2005) also supports this argument. The variability in
program design shows the interaction with programmers’
knowledge (Rist, 1990); this makes programming hard to
learn and master. Détienne and Soloway (1990) identified
different strategies involved in program understanding.
Brooks (1983) noted at least three distinct sources of
differences in the ability of program comprehension:
programming knowledge, domain knowledge, and
comprehension strategies.

The approaches to teaching novices programming include
board games and educational programming environments.
When we reviewed these approaches, we made three
observations. First, invisible programming thinking makes it
difficult to learn. Programming is a process of thinking
abstraction and composition, and such thinking is invisible.
Second, directly learning with computers is difficult to
novices, even though many mini-languages and visual
environments are given. We argue that it is difficult to trace
the execution of programs and, to human brains, running
programs on computers is too fast! Novice programmers
need to slow down the execution and see the states. Third,
the lack of teaching how to think a whole plan in existing
programming board games. Programming is thinking a
whole plan to deal with all situations in advance rather than
making every decision individually. The devised plan
actually results in a stored program that can be loaded and
modified for executing again; it is the basics of computers.
These observations led us to develop a board game that can
visualize learners’ thinking results of programming on top
of problems.

2. RELATED WORK
2.1. Board games for CT and programming
Board games are cost-effective instructional materials that
can be integrated into a set of game-based learning strategies
(Santos, 2019), and the game was one of the main
pedagogies in CT research (Tang et al., 2020). Many

mailto:yungyu@ncu.edu.tw
mailto:saputroandito180314@gmail.com
mailto:mahesh.saitm@gmail.com
mailto:harry@cl.ncu.edu.tw
mailto:yoko@uch.edu.tw
mailto:gwodong@gmail.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

72

board games have been developed to improve students’ CT
and programming achievement with or without the help of
technology. Kuo and Hsu (2020) utilized a board game
named Robot City in their study and proved that the game
could deepen students’ higher-level thinking and motivate
students to learn. Wu et al. (2018) designed a CT board
game, namely Interstellar Explorer, to develop players’
logical thinking, problem-solving ability, imagination, and
creativity. Yen & Liao (2019) showed that the use of board
games as teaching material for programming courses could
significantly improve the learning outcomes of field-
independent learners. These research results show that
board games are a promising approach to cultivate learners’
knowledge of CT and programming. To teachers, the cost-
effective feature makes it easy and simple to adopt board
games in classrooms. To learners, board games are realistic
and tangible. If computer concepts can be properly
transformed into the rules and elements of board games,
learners may get the computing ideas without computers.

2.2. Mini-languages and visual programming
Mini-languages and visual programming are other
approaches to teaching CT and programming. For the
purpose of education, giving learners a small set of language
elements, natural-language-like syntax, or visual interface
for writing code can avoid the difficulty in learning a
practical programming language in the industry. LOGO and
the use of Turtle graphics is a famous example (Papert,
1980). With a small syntax and simple semantics, even a
very young one can have a grip on programming
(Brusilovsky et al., 1997). Programming is also regarded as
a direct approach to foster CT (Lye & Koh, 2014). There are
also many visual programming environments designed for
education, including Scratch, App Inventor, and Alice. This
approach greatly lowers the threshold of learning
programming. Chang (2014) demonstrated the effects of
using the two visual programming environments and
explored the relationships among learning engagement,
learning anxiety, and learning playfulness. However, this
approach directly relies on computers, and they might be the
next learning materials after learners got the idea through
board games.

2.3. Make thinking visible
Making thinking visible is to have a window into learners’
thinking by some sort of organizing structure such as
thinking routines (Perkins, 2003; Tishman & Palmer, 2005;
Ritchhart et al., 2011). It is developed by Project Zero, an
educational research group at Harvard University. Making
thinking visible is to know what students understand and
how they are understanding. One of the ways to make
thinking visible is to surface the many opportunities for
thinking during subject matter learning, and thinking
routines are helpful tools in the process. Each thinking
routine is made up of a series of steps helping learners to
think. By operating such a pattern, we can scaffold learners’
thinking and make that thinking visible.

Programming can be made visible if we properly design a
thinking module and thinking routines for it. Like other
thinking, programming thinking is also pretty much

invisible. Our observation is that invisible thinking is the
reason why programming is difficult for novices. The
thinking happens under the hood, within our mind-brain,
and this makes it difficult for experts to teach novices. It is
more difficult when we write and run programs on
computers since computers run so fast and learners can only
see the results and trace them on code. We based our
research on the idea of making thinking visible to concretely
design the system along with thinking routines.

2.4. Stored program and problem solving
The ability to store programs in computers makes it possible
to not only execute but also modify programs (Aspray,
1990). The stored program concept is based on the universal
Turing machine and included in the von Neumann
architecture, which is employed by almost every computer
in the past 70 years.

The process of programming can be regarded as thinking a
whole plan based on the stored program concept. The plan
is to deal with all situations in advance rather than making
every decision individually, and we need to revise programs
again and again. Shneiderman (1980) mentioned the
importance of planning in computer programming based on
the four stages in problem-solving given by Polya (1957):
understanding the problem, devising a plan, carrying out the
plan, and looking back. Bishop-Clark (1992) examined the
problem solving of a novice programmer writing a first draft
program and suggested instructors should consider
emphasizing the planning stage. Unfortunately, so far as we
know, existing board games for teaching CT and
programming encourage learners to think every small step
since these existing board games are basically turn-based.
Awareness of runtime is very important as well. Some
conditions cannot be determined until we really execute
programs. The usage of branches (if-else) is meaningful
only if we don’t know what the conditions exactly are.

3. OUR METHODOLOGY AND THE
MULTI-LAYER BOARD GAME DESIGN
In order to help novices learn programming, we developed
a thinking module to make the thinking results of
programming visible and traceable and designed a board
game with this thinking module.

Since programming is a process of thinking, it is quite
invisible. When a programming problem is given,
programmers need to think about how to use their
knowledge with strategies to write their solution. The
problem is naturally given in the form of words, i.e., a
description of the problem, while the solution is a piece of
code in terms of decomposition: sequences, branches, and
loops (Dahl et al., 1972). This means there is a gap between
programming problems and their solutions, and
programming itself is to cross the gap. Programming is
invisible and difficult so that learning programming takes
time and novices tend to drop at the beginning. In order to
increase learners’ development at the beginning to prevent
novices from dropping, we developed a thinking module to
bridge the gap between the words of problems and the code
of solutions, as shown in Figure 1. Thinking from

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

73

word-level to code-level is invisible, and making thinking
visible can make it much easier to learn (Perkins, 2003).

Figure 1. The thinking module bridges the gap between the
words of a given problem and the code of its solution.

3.1. The thinking module
The design of our thinking module is shown in Figure 2,
which is a multi-layered grid that visualizes the thinking of
programming. Our methodology is making problems,
solutions, and thinking results of programming visible by
the multi-layered grid along with thinking routines. In this
thinking module, problems can be visualized on top of the
grid with conditions and constraints, and the solution to a
problem is a route on the grid. The grid at the bottom is a
printed matter, which corresponds to the story map in many
board games. The problem layer represents obstacles on the
grid, i.e., rocks and lakes in other map-based strategy board
games. The transparent layer is a thin clear plastic sheet, like
the transparency (slide) used for projectors before, where
we can draw and erase. With the transparent layer, learners
can draw their thinking results on top of the problem, i.e.,
overlapping the thinking layer with the problem layer, as
shown in Figure 3. This makes learners’ thinking results
visible and traceable. Learners can repeatedly draw,
observe, and modify the route to visualize their thinking
results. Furthermore, learners can synchronize their
thinking results with the problem to find out the error or
even synchronize with a given solution. This multi-layered
grid can make problems, solutions, and learners’ thinking
results visible.

Figure 2. The design of our thinking module.

Figure 3. Learners can draw their thinking results of
programming on the transparent layer (the red dotted line).

3.2. The board game design
We designed a multi-layer board game based on this
thinking module. As shown in Figure 4, there are a grid
board, many obstacles, and a set of command cards in the
board game. The obstacles are placed on the grid to
represent the problem, and learners need to list command
cards in order to move from the Start at the left-bottom to
the Goal at the right-top. The rule is similar to many map-

based strategy board games---giving commands to control
the movement. The no-entry sign means the places that
cannot be crossed. The player can use command pieces like
Forward, Turn-left, Turn-right, If-then, and Do-while to
conduct the movement. For If-then and Do-while command
pieces, a flag is used as the timing to change or stop the
action. For example, using Do-while along with a flag and
Forward means going forward until encountering the
specified flag. Before putting these command pieces
together, learners can draw the route by pen and try to figure
out the commands to use. In fact, the used commands form
a program written in a mini-language, and the drawing on
the transparent layer is the program execution. This design
asks learners to think like a computer and visualize the
execution. The problem shown in Figure 4 is a little hard
since it needs the use of sequence, branch, and loop to solve.
Figure 5 shows another problem where If-then and Forward
are given along with many animal pieces and food pieces.
The player can only move on the places without a no-entry
sign and give specific foods to different animals according
to the rules, for example giving meat to lions. In Figure 5, a
learner is drawing the route by pen and listing the commands
to use.

Figure 4. A draft version of our multi-layer board game.

Figure 5. A learner is drawing the route and listing the
commands to use.

Unlike the design in existing board games, a whole plan
needs to be set up first for a given problem rather than
considering a solution for the current situation every time.
This design follows the stages in problem-solving analyzed
by Polya (1957). It helps learners to understand the problem
with visualized elements on the problem layer and
encourages learners to devise a plan. After the plan is
devised, carrying it out on the thinking layer step by step
and looking back to check the result. Our design helps
learners to think like what computers actually do. By
overlapping the thinking layer with the problem layer and
the solution layer, it is easier to figure out where the error is;
learners’ programs are visible and traceable. The thinking
layer can also be kept as a learning portfolio or compared
with others’ thinking results. Furthermore, the thinking
layer is a stored program, which can be overlapped with the
problem layer next time to execute

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

74

again. The design itself is analog and unplugged, but it
emulates computer behavior. For those who need guidance,
and additional transparency can be inserted as the
scaffolding layer between the thinking layer and the
problem layer to help learners write down parts of the
solution gradually.

Although we follow the way of traversing upon the grid in
existing CT board games, there are three main differences
from them, as shown in Figure 6. First, learners can directly
draw and erase on top of the problem to trace the movement.
By observing the drawn route, learners can understand
where the error is and how to fix it. Second, unlike other
turn-based board games, it requires learners to think and
draw a whole plan. The drawn route is a complete plan to be
carried out. Third, our design trains learners to simulate the
execution as computers. The route drawn on the transparent
layer represents the stored program concept, and learners
can simulate the execution slowly to understand what
computers do.

Figure 6. The transparent layer make programming thinking
visible and traceable.

3.3. The learning design
This design is based on cognitive constructivism. Instead of
teaching how to program directly, our board game lets
students improve their understanding through experiences.
The use of familiar and concrete models increases novices’
understanding of computers and programming (Mayer,
1981). Transforming programs to the routes on a grid is such
a concrete model. We followed the idea of making thinking
visible (Ritchhart et al., 2011) and concretely applied it to
our design. Thinking routines for programming are given:

“Which commands should we use and compose?” “What
is the result of executing this single command?” “How to
modify this command for fixing the error?”

Teachers can regularly use these thinking routines to
develop student thinking of programming. Our design
makes it possible to synchronize thinking results with the
problem and compare thinking results with the solution. To
students, programming is a process of decomposition. It is
decomposing a program into smaller parts in the form of
sequence, branch, and loop. The design of our thinking
module makes every decomposition visible and traceable.
On the grid, sequences are mapped to a block as in other
board games, i.e., every sequence makes a step forward, and
branches are transformed to matching different conditions,
and loops are represented with matching the sentinel. Note
that the flags in Figure 4 are sentinels in

loops and the question marks in Figure 5 denote runtime
conditions. Teachers ask students to put flags to specify
when the loop should be stopped and write branches in
advance to handle different possible conditions.

What we want to teach is to make a whole plan in advance
for a given problem and allowing to trace step by step
instead of thinking every small step. What learners thought
can be drawn and stored; is to teach the stored program
concept. We hide some conditions to ask learners to use
branches meaningfully; it is to teach being aware of runtime.

4. EXPERIMENT RESULTS AND DATA
ANALYSIS
To know the learning performance improvement on
programming using our multi-layer board game, we
conducted an experiment by recruiting 60 participants,
randomly divided into two groups to learn with different
board games, and compared the learning achievement of
programming between two groups. All subjects are the
students from two universities in Taiwan, and the learning
materials used in the control group and experiment group
are the Robot City board game and our multi-layer board
game, respectively. In the Robot City board game, players
can collect resource pieces for the given tasks and control
their avatars' movement (robots) by command cards. Note
that Robot City is a multiplayer board game, while the
current version of our board game is to encourage players to
discuss and think of the movement together. We chose
Robot City for comparison since it is a famous map-based
strategy board game in Taiwan, and the elements in our
board game are very close to it, except our board game has
a transparent layer and non-turn-based design.

4.1. Measuring tools and experimental procedure
To understand the learning performance improvement, we
designed eight questions for pre-test and post-test: 3 for
sequence logic, 3 for branch logic, and 2 for loop logic. In
the preparation of pre-test and post-test, Carnegie Mellon
University’s definition of CT and Oracle reference for
programming are used as references.

The experimental procedure is shown in Figure 7. In our
experiment, we exclude any subjects who already learned
programming. In the beginning, we gave a pre-test to know
how they understand CT and programming. Then we gave
an introduction to the learning material, i.e., how to play the
Robot City board game and our multi-layer board game for
the control group and the experiment group, respectively.
Then we gave subjects 60 minutes to play and conducted a
post-test after that; we assume it is enough to get a brief
understanding of the given board game. Due to the
limitations on the number of players in a board game, we
arranged 2~4 subjects in a game for both groups. Note that
for the case of the experiment group, we further divided the
game into three parts: sequence, branch, and loop. In other
words, subjects in the experiment group are asked to solve
the three kinds of problems in order during the 60 mins. On
the other hand, subjects in the control group followed the
rules in Robot City to freely play and learn the three kinds
of logic.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

75

Se
qu

en
ce

Figure 7. The experimental procedure.

Group

Experiment

Total Sequence Branch Loop

PreTest PostTest PreTest PostTest PreTest PostTest PreTest PostTest

Mean 24.7667 34.6000 12.9333 14.2000 7.9333 12.5333 3.9000 7.8667

N 30 30 30 30 30 30 30 30

Std. Deviation 4.03163 4.85372 1.99885 1.34933 2.25806 2.81294 1.64736 2.67470

4.2. Experiment results and discussion
After we collected and analyzed the data, we found that
the data are not normally distributed. In both pre-test and
post-test, the skewness and kurtosis values of the two
groups are mostly more than ±1. A possible cause might
be the background of the individual subject. Unlike the

Control
Mean 25.8148 29.3704 13.8519 14.2963 8.7778 10.1852 3.1852 4.8889

N 27 27 27 27 27 27 27 27

Std. Deviation 3.38591 4.12499 1.97497 1.70553 1.84669 2.20205 1.77671 1.78311

Table 3. Mann-Whitney U test of the two groups.
Group N Mean Rank U p

Experiment 30 27.77 833.00

students in a normal class who are usually selected based on
some rules or entrance exams, we simply recruited subjects
from several departments in the universities. Another
possible cause might be the design of the test sheet, which
might not make the variations in the value broadly meet the
normal distribution criteria. As shown in Table 1, the
Shapiro-Wilk significance values for each test

PreTest

PostTest

PreTest

Control 27 30.37 820.00

Experiment 30 37.17 1115.00

Control 27 19.93 538.00

Experiment 30 25.43 763.00

Control 27 32.96 890.00

368.000 .550

160.000 .000*

298.000 .064

are mostly smaller than .05, which means the data are not
normally distributed.

Table 1. Tests of normality.

Kolmogrov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

PreTest .177 57 .000 .944 57 .010

PostTest

PreTest

Experiment 30 27.90 837.00

Control 27 30.22 816.00

Experiment 30 27.22 816.50

Control 27 30.98 836.50

Experiment 30 35.58 1067.50

372.000 .484

351.500 .352

Total

Sequence

Branch

PostTest .121 57 .000 .946 57 .013

PreTest .299 57 .000 .763 57 .000

PostTest .445 57 .000 .561 57 .000

PreTest .274 57 .000 .877 57 .000

PostTest .263 57 .000 .827 57 .000

PreTest .279 57 .000 .800 57 .000

PostTest

PreTest

PostTest

Control 27 21.69 585.50

Experiment 30 32.23 967.00

Control 27 25.41 686.00

Experiment 30 36.75 1102.50

Control 27 20.39 550.50

207.500 .001*

308.000 .095

172.500 .000*

Loop
PostTest .186 57 .000 .881 57 .000

Table 2 shows the mean values of pre-test and post-test for
the two groups, where both Robot City and the multi-layer
board game improved the learning in all three kinds of logic.
However, we found the multi-layer board game has
succeeded in providing a significant increase in the aspects
of branch logic and loop logic. Table 3 shows the results of
the Mann-Whitney U test, which can be used to analyze the
data that we cannot assume normality in both groups. In
Table 3, there is a significant difference between the
experiment group and the control group in the post-test
result regarding the aspects of branch logic and loop logic.
According to the information in Table 2 and Table 3, we can
know that the subjects learned the concept of branch and
loop better with the multi-layer board game. The use of a
transparent layer might help the reflection of thinking
results, and carrying out a plan as executing a stored
program might give a better understanding of program
execution. For the branch logic, learners may also know
how to use if-else better since we hide several runtime
conditions and ask learners to think a whole plan in advance.
As to the loop logic, we use sentinels instead of counters to
help learners to understand how to construct loop logic.

*p < 0.05
Table 2. Mean values of test results of the two groups.

The experiment in this study also shown the effectiveness
of learning with CT board games such as Robot City.
Besides, most subjects also mentioned that they had more
fun in playing Robot City and the multi-layer board game
focuses more on learning. The current version of our board
game cannot attract children and needs learners to discuss
initiatively for controlling the same avatar.

5. CONCLUSIONS
We followed the idea of making thinking visible to develop
a thinking module for learning programming and designed
a multi-layer board game with a transparent layer. Such a
new kind of board game is based on the stored program
concept and asks learners to think of a whole plan. The
experiment results showed that such a multi-layer board
game could indeed make an effective contribution to the
learning performance improvement on programming. This
paper reports our first step toward a board game for learning
programming. We plan to fuse more computer concepts in
the multi-layer board game, and making the game more fun
is included in our future work as well.

Lo
op

B

ra
nc

h
To

ta
l

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

76

6. REFERENCES
Aspray, W. (1990). The stored program concept.

IEEE Spectrum, 27(9), 51.
Bishop-Clark, C. (1992). Protocol analysis of a novice
programmer. ACM SIGCSE Bulletin, 24(3), 14-18.

Brooks, R. (1983). Towards a theory of the comprehension
of computer programs. International journal of man-
machine studies, 18(6), 543-554.

Brusilovsky, P., Calabrese, E., Hvorecky, J.,
Kouchnirenko, A., & Miller, P. (1997). Mini-languages:
a way to learn programming principles. Education and
information technologies, 2(1), 65-83.

Chang, C. K. (2014). Effects of using Alice and Scratch in
an introductory programming course for corrective
instruction. Journal of Educational Computing Research,
51(2), 185-204.

Dahl, O. J., Dijkstra, E. W., & Hoare, C. A. R. (Eds.).
(1972). Structured programming. Academic Press Ltd..

Davies, S. P. (1993). Models and theories of programming
strategy. International Journal of Man-Machine Studies,
39(2), 237-267.

Détienne, F., & Soloway, E. (1990). An empirically-
derived control structure for the process of program
understanding. International Journal of Man-Machine
Studies, 33(3), 323-342.

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to
learn and how to teach computational thinking:
Suggestions based on a review of the literature.
Computers & Education, 126, 296-310.

Kong, S. C., Chiu, M. M., & Lai, M. (2018). A study of
primary school students' interest, collaboration attitude,
and programming empowerment in computational
thinking education. Computers & Education, 127, 178-
189.

Kuo, W. C., & Hsu, T. C. (2020). Learning Computational
Thinking Without a Computer: How Computational
Participation Happens in a Computational Thinking
Board Game. The Asia-Pacific Education Researcher,
29(1), 67-83.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A
study of the difficulties of novice programmers. Acm
sigcse bulletin, 37(3), 14-18.

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L.
(2018). Analysis of linkages between an unplugged
activity and the development of computational thinking.
Computer Science Education, 28(3), 255-279.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching
and learning of computational thinking through
programming: What is next for K-12?. Computers in
Human Behavior, 41, 51-61.

Mayer, R. E. (1981). The psychology of how novices learn
computer programming. ACM Computing Surveys
(CSUR), 13(1), 121-141.

Papert, S. (1972). Teaching children thinking.
Programmed Learning and Educational Technology,
9(5), 245-255.

Papert, S. (1980). Mindstorms; Children, Computers and

Powerful Ideas. New York: Basic Book.
Perkins, D. (2003). Making thinking visible. New horizons

for learning.
Polya, G. (2004). How to solve it: A new aspect of

mathematical method (Vol. 85). Princeton university
press.

Prensky, M. (2008). Programming is the new literacy.
Edutopia magazine.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

Ritchhart, R., Church, M., & Morrison, K. (2011). Making
thinking visible: How to promote engagement,
understanding, and independence for all learners. John
Wiley & Sons.

Rist, R. S. (1990). Variability in program design: the
interaction of process with knowledge. International
Journal of Man-Machine Studies, 33(3), 305-322.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning
and teaching programming: A review and discussion.
Computer science education, 13(2), 137-172.

Santos A. (2019) Board Games as Part of Effective Game-
Based Learning Strategies. In: Spector M., Lockee B.,
Childress M. (eds) Learning, Design, and Technology.
Springer, Cham

Shneiderman, B. Software psychology: human factors in
computer and information systems. 1980. Winthrop Inc,
Cambridge MA.

Siegmund, J., Peitek, N., Brechmann, A., Parnin, C., &
Apel, S. (2020). Studying programming in the neuroage:
just a crazy idea?. Communications of the ACM, 63(6),
30-34.

Soloway, E. (1993). Should we teach students to
program?. Communications of the ACM, 36(10), 21-24.

Tang, K. Y., Chou, T. L., & Tsai, C. C. (2020). A content
analysis of computational thinking research: An
international publication trends and research typology.
The Asia-Pacific Education Researcher, 29(1), 9-19.

Tishman, S., & Palmer, P. (2005). Visible thinking.
Leadership compass, 2(4), 1-3.

Vee, A. (2013). Understanding computer programming as
a literacy. Literacy in Composition Studies, 1(2), 42-64.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wu, S.-Y., Fang, J.-C., & Lian, S.-M. (2018). Design a
Computational Thinking Board Game Based on
Programming Element. International Conference on
Computational Thinking Education 2018, Hong Kong.

Yen, J. C., & Liao, W. C. (2019). Effects of Cognitive
Styles on Computational Thinking and Gaming Behavior
in an Educational Board Game. International Journal of
Learning Technologies and Learning Environments,
2(2), 1-10

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

77

A Framework for Integrating Computational and Design Thinking Processes

ABSTRACT

Riccardo CHIANELLA1*, Diego REITANO2, Ettore MORDENTI3, George BARITSCH4
1,2,3,4 School of Design, Politecnico di Milano, Italy

riccardo.chianella@asp-poli.it, diego.reitano@asp-poli.it, ettore.mordenti@mail.polimi.it,
georgeoscar.baritsch@mail.polimi.it

Due to the rapid change brought by new emerging
technologies, computational thinking (CT) has become a
fundamental skill. Contrarily to the large number of studies
focused on introducing CT in STEM subjects, we direct our
research towards a broader context, that of design. Given the
importance of CT concept acquisition in terms of future
design thinking education, this paper presents a qualitative
study at the intersection of teaching design thinking and CT.
We develop an innovative framework to integrate the two
processes in design courses and we explore its potential and
limitations with design lecturers who could potentially
introduce the framework in their teaching practice.
Moreover, we reflect on what needs to change for CT
education to be successfully implemented in design schools
across the world. This study refers to the example of Italy
which, similarly to other countries, could constructively
improve its design teaching with CT to secure its large
design industry for the future.

KEYWORDS
computational thinking, design thinking, design university

1. INTRODUCTION
1.1. Context
Technological progress directly impacts the emergence of
new skills required by workers. The integration of these
skills should be at the center of attention for those
educational institutions preparing students entering the job
market with relevant courses and subjects. In particular, the
fourth industrial revolution gave life to fast-moving
technological trajectories enabling new forms of creation
based on the development of augmented, ubiquitous and
embedded technologies, where computation sits at the core
of the design production (Schwab, 2017). Therefore, we
argue that computational thinking (CT) should be integrated
into design to support its rapid evolution in the technology
era. By teaching designers how computers think and
integrating it within their practice, they can better cope with
emerging technologies. CT prepares students to become
better problem solvers and critical thinkers (DeSchryver &
Yadav, 2015).

Existing research successfully explored possible ways of
introducing computational thinking concepts in university
non-STEM subjects. For example, Basawapatna et al. (2011)
applied the CT process to game design. However, existing
research in the design field still considered CT only as a hard
skill, merely linked to coding or 3D modeling. Given the
lack of studies considering CT as an integral to the design
process, we identify a research gap in the field of CT for
design education. This work aims to fulfill this gap by
proposing a framework implementing CT into design
thinking which could be applied to a broad variety of design
classes.

This paper is organized as follows: first, we present the
affinities between design thinking and CT. Subsequently,
we introduce and define a proposed framework combining
the two processes. Through a series of interviews, we test
how the framework could be implemented into real-life
design studios and workshops. The resulting findings will
lead into a discussion which aims to identify its positive
aspects and limitations. We finally describe the further
research that has to be developed in order to better
integrate CT in design thinking.

1.2. Affinities between CT and design
To ensure coherence throughout the article, we adopt Wing’s
definition considering CT as “an approach to solving
problems, designing systems and understanding human
behavior that draws on concepts fundamental to computing”
(Wing, 2008). According to Wing, learning CT concepts is
now seen as a practice for leading students to develop more
transversal skills which do not just include programming. As
reported by Soleimani (2019), computation should be
considered as a thinking process, as “it is about effectively
structuring information and developing logics”. Tabesh
(2017) proposed a four-stage model of the computational
thinking process: decomposition, pattern recognition,
abstraction, algorithm design. Following these premises, we
argue that the implementation of CT in design education
should integrate the processes of design, rather than the tools.

In one of his writings, Denning analyzed the potential in
combining CT and design thinking. He stated that “If the two
kinds of thinking were blended together, some significant
advances in software design and development would surely
follow” (Denning, 2013). Moreover, Shute, Sun & Asbell-
Clarke defended that CT could help designers go beyond the
limits of design thinking, which is still too tied on “product
specifications and the requirements imposed by both the
human and the environment” (Shute, Sun, Asbell-Clarke,
2017). These statements lay the foundation to our proposal.

The way in which design is taught among most universities
around the world is by giving value to the development of a
design process. This plays a crucial role in guiding designers
across projects, whether they are designing objects, clothing,
interfaces or interiors. Similarly to CT, the design process
cannot be simplified into a problem-solving activity (Goel &
Pirolli, 1992), yet it is still based on an iterative and step-by-
step sequence of actions (Lawson, 2006). Many design
processes have been created, each one with a specific focus,
content, structure or graphical notation (Bobbe, Krzywinski
& Woelfel, 2016). Despite that, all processes show many
similarities (Eckert & Clarkson, 2005).

For this study, we focused on the widely-known design
thinking process developed by Stanford d.school (Plattner et
al., 2009). This process integrates most of the existing ones;

mailto:riccardo.chianella@asp-poli.it
mailto:diego.reitano@asp-poli.it
mailto:ettore.mordenti@mail.polimi.it
mailto:georgeoscar.baritsch@mail.polimi.it

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

78

it is taught in many design universities and has been
promoted by numerous companies from the design field,
including Apple, IDEO and SAP (Efeoglu et al., 2013).

1.3. Framework
Our proposed framework associates the four stages of CT
(decomposition, pattern recognition, abstraction and
algorithm creation) defined by Tabesh (2017) to the five
stages of Design Thinking (empathize, define, ideate,
prototype and test) described by Plattner et al. (2009).

Previous research has proven that the best way to teach
students about CT is by associating its basic principles to
already-known practices within their subject (Lu &
Fletcher’s, 2009). Moreover, the framework is shown in a
circular ring exemplifying it as a process that never ends.
The proposed framework is visualized at Fig.1, followed by
a description of how stages are linked to each other.

Figure 1. “Circular Framework For Computational And
Design Thinking Processes”. Design Thinking process

(inner circle) and CT process (outer circle).

• Empathize: it is the stage in which designers come to
understand people who experience a certain need or
problem through ethnographic (or desk) research and
observation. Through decomposition (CT), designers
deconstruct a problem in many parts.

• Define: designers analyze deconstructed information and
use the CT principle of pattern recognition to formulate
insights: non-obvious, actionable statements that show a
deep understanding of the investigated problem or need.
They lead to a design challenge.

• Ideate: the phase in which the challenge is taken on and
multiple solutions are generated to address it. A degree of
openness to outer influences is required in order to produce
innovative ideas. Abstraction is the CT principle that lets
designers expand the solution space into other contexts and
ultimately find a wider range of solutions.

• Prototype and Test: through prototyping designers
produce artifacts that represent the solution in its current
status. By testing the solution, designers evaluate it and
identify areas of improvement. Subsequently, the whole
process is iterated until the final solution is implemented,
following a process of algorithm design.

In order for students to fully take advantage of the
framework, they must put it into practice in their design
studios. Following Volcz (2018), we suggest alternating a

series of 4 to 5 theoretical lectures, one for each stage of the
framework, with hands-on practice, which can be achieved
in design studios or workshops. Directions on the specific
deliverables should be defined according to the specific type
of project. We will do it by applying it to three exemplary
design classes.

2. METHODOLOGY
To further analyze how the framework could be put into
practice in a real design course, interviews were conducted
with three prominent lectures of the School of Design of
Politecnico di Milano. We kept our research qualitative
rather than quantitative to collect in-depth insights tied to the
specific needs of each design course taught by each
interviewee. These interviews were semi-structured and
consisted of a set of priorly-defined open-ended questions.
They took place via an institutional teleconferencing
platform and lasted about one hour each. Interviews began
by questioning interviewees’ previous knowledge and CT
understanding in relation to Wing’s views. After that,
lecturers were shown the framework we developed. The
discussion was structured by analyzing each phase
individually, asking the interviewees to comment on its
consistency and applicability in the didactic context,
concentrating on their research area. In regard to the latter
comment we asked interviewees to also provide real
examples in order to make the modus operandi more
understandable.

Unsure on their level of CT understanding, we shared an
introduction to our study with the participants prior to our
interview. We ensured that all our participants knew that we
were referring to Wing’s definition of CT and we gave them
the chance to ask for clarifications. Therefore, this section
was a chance for making sure that participants understood
the purpose of our study, thus ensuring valuable feedback.
After our introduction, interviewees focused on the
framework. More specifically, they shared their general
impressions on how the CT process could enrich their
students’ learning outcomes. Then they went through each
individual step of the framework and theorized some
possible hands-on assignments based on the current courses
that they taught. Finally, they shared eventual perplexities or
improvements to the framework. Participants were asked to
think out loud, allowing us to follow their reasoning and
ensure that their suggestions were reliable and logical.

Collected data was analyzed through affinity diagramming
to organize what could seem unstructured or dissimilar
qualitative data (Hartson & Pyla, 2012). Contextual inquiry
data containing quotes from the interviews was fragmented
into post-its. Then the post-its were clustered according to
their similarities. Finally, clusters were atomized into
concise insights.

3. FINDINGS
The table below (Table 1) reports the results of the
interviews regarding some practical ways in which the
Circular Framework for Computational and Design Thinking
Processes (Fig. 1) could be implemented in a design course.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

79

Table 1: Application of the framework to some design courses

4. DISCUSSION
4.1. Positive aspects of the framework
As reported by the interviewed lecturers, the mathematical
and programming skills of design students in Politecnico di
Milano are perceived as relatively low when compared to the
European standards. Participants shared the common belief
that this was due to the students’ low interest in these
subjects and a lack of depth being offered in these areas. It
was thus important to create an accessible frameworkfor
students without an advanced knowledge in math or coding.

“By looking at the background our students have, this
[framework] is the only way in which design students could
ever understand it: by comparing it to their reality.”
(Lecturer in Methods and Instruments for Design)

Design lecturers referring to their previous experiences
generated another powerful finding: by integrating CT in the
design process, students learn how to be more versatile. For
example, a participant reported the example of a shoe design
project, where students incorporated computational tools in
the “empathize” stage. He mentioned the act of generating
new insights by studying the aerodynamics of distinct solid
shapes instead of referring to existing solutions. By quoting
the lecturer:

“Once implemented in design processes, students who know
computational thinking will be able to ask the right questions
about their projects. They will learn how to go beyond the
study of existing products by abstracting the modalities with
which a product is used.” (Lecturer in Knitting Design)

Moreover, lecturers perceived it as being particularly
suitable for advanced design courses and as a research tool
where students who are already familiar with the design
process can confidently change their workflow and apply CT
to design innovative projects.

“To get the full potential out of this framework, I would
rather introduce it in the Master’s course I’m teaching,
rather than the Bachelor’s one.” (Lecturer in Shapes and
Algorithms for Generative Design)

“This framework is more linked to our research fields, as it
allows a deeper understanding of the topic.” (Lecturer in
Methods and Instruments for Design)

4.2. Limitations of the framework
During the interviews, we came across different definitions
of CT introduced in the examples given to us by the lectures,

causing time to be spent to ensure a common understanding.
Additional efforts must be put into establishing a shared
understanding, prior to CT being introduced into design
classrooms within an institution.

Another limitation recognized by the interviewees regarding
the proposed framework concerns the fact that our
association of CT and design thinking works only at an
introductory level and cannot be applied to learn topics too
far from design. The idea of using our framework solely in
an introductory level is also partially due to a lack of skills
of students regarding computation. According to our
interviewees a greater knowledge of hard sciences would be
needed to be able to fully understand the CT process.
However, the introduction of hard science subjects could be
a deterrent for students to enroll:

"Students who come to design school do not like math. This
implies that if we add more math courses, less students will
apply, and we will lose funds. Many students coming from
high schools are frightened by these subjects." (Lecturer in
Methods and Instruments for Design)

Our interviews supported that for most projects an overlap
can be seen between CT and design thinking. However, there
seem to be some design areas in which CT should not be
integrated. This is for areas with a strong sensorial
component (e.g. fashion design), where a project’s success
heavily relies on factors that cannot be abstracted, like the
sensorial perception of a material to the users. There is a gap
between the minimum level of abstraction required by CT
and the sensorial qualities of certain design contexts.

“…An important role in the design process is the presence
of errors, which can often generate an interesting finding. I
believe that by applying CT, some projects would be error-
free, and thereby become less innovative.” (Lecturer in
Knitting Design)

Finally, according to two of the interviewees, the
collaboration of design lecturers and computer science
lecturers is preferable to develop an effective program to
introduce CT as an integration to design thinking. This level
of multidisciplinary collaboration has yet to be achieved,
though through the interviews it was found to be feasible.

5. CONCLUSIONS
This study contributed to the creation of a new method to
introduce CT to design students. This interdisciplinary
approach was finalized with the creation of a methodical

Course in: Knitwear Design

Empathize
(Decomposition)

Define
(Pattern
Recognition)

Ideate
(Abstraction)

Prototype and
Test (Algorithm
Design)

Study how fast animals run. Clusterize
findings based on movement, anatomy,
species, etc.
Within clusters, find a pattern that provides
the key to solving the design challenge. e.g.
the shape of the paw or texture of the skin.
Abstract the findings and create a concept.
e.g. The texture of the skin inspires a new
material for a shoe.
Make prototypes and incrementally
improve the required features. Test and
reiterate. e.g. When tested, does this
correlate with improvements in running?

Course in: Shapes and Algorithms for
Generative Design

Study a particular natural phenomenon by
breaking it down into its constituent
elements. e.g. Analyze waves in liquids.
Pick inspiring behaviors and find the
pattern that makes them similar. e.g. When
objects fall in water, they create ripples.
Abstract that pattern and create a code that
resembles it. e.g. An input for a 2D visual
effect that resembles ripples of water.

Complete code. Run it and test it.
Improve it and iterate the process till the
desired effect is achieved.

Course in: Methods and Instruments for
Design

Study the structure and behavior of resistant
and light materials.
Break down findings into clusters.
Identify cross-cluster patterns that provide a
solution to a certain problem. e.g. Which
structure is the lightest and most rigid one?
Abstract findings and integrate the structure
into an existing object. e.g. The structure can
substitute plastic parts in safety helmets.
Write a code that recreates the chosen 3D
structure (CAD modeling, mathematical
strength tests). 3D-print the structure and test
it in real life scenarios.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

80

framework merging computational and design thinking.
Although this was designed to be implemented in those
design universities where students lack mathematical and
programming skills, our study focused on the School of
Design of Politecnico di Milano. Here, the design process
has never been associated with CT before. Our work can
hence be considered as an example to address CT in other
design schools around the world.

After analyzing the opportunity from a theoretical
perspective, we developed the ‘Circular Framework for
Computational and Design Thinking Processes’ with the
purpose of integrating CT in the design thinking process.
This framework does not see CT as a compulsory skill for
designers. However, by introducing it alongside design
thinking in traditional design methods, it can help shape
designers who are more aware of technological power and
are more versatile. The framework was further developed by
running some qualitative research with lecturers in the
School of Design. Design lecturers were asked to further
improve the new method by sharing their expertise and
applying it to the courses they were currently teaching.

The findings from our research justified how to introduce CT
to design students and shared how it could be used to design
innovative projects. However, the model will still suffer
when put into some design teachings as one cannot consider
the individuality of each project or course. Moreover,
lecturers expressed their wish for establishing new
collaborations between design and computer science experts
to introduce the topic more properly. The framework and
definition of CT was discussed though views still
contradicted in small areas, exemplifying why design
scholars must agree on a single CT definition for this
framework to be utilized.

Now that the framework has been defined, we strongly
believe that the first step towards a more in-depth version is
to test it within a design studio. Recognizing the weight that
a student’s perception has on reliability and applicability of
our framework, further development should include a
qualitative collection of students' feedback on the “Circular
Framework For Computational And Design Thinking
Processes”. Moreover, we should include some quantitative
research method, for instance by assessing the level of CT
skills of students prior to and following introduction to the
framework. Finally, given that our research was conducted
in Politecnico di Milano, we would like to draw attention on
other design schools in other countries to further research on
how this framework could be implemented in their
curriculum. A global discussion on the topic would bring up
new limitations and advantages, hence improving the
framework on a world-wide level. The concept stemming
from our work is thereby an attempt to stimulate a deeper
reflection on the intrinsic relationship between design
education and CT. This could be expanded even more by
exploring how design thinking practices can be applied to
the design of computational solutions.

6. REFERENCES
Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C.,

& Marshall, K. S. (2011, March). Recognizing

computational thinking patterns. In Proceedings of the
42nd ACM technical symposium on Computer science
education, 245-250.

Bobbe, T., Krzywinski, J., & Woelfel, C. (2016). A
comparison of design process models from academic
theory and professional practice. In DS 84: Proceedings
of the DESIGN 2016 14th International Design
Conference, 1205-1214.

Denning, P. J. (2013). Design thinking. Communications of
the ACM, 56(12), 29-31.

DeSchryver, M. D., & Yadav, A. (2015). Creative and
computational thinking in the context of new literacies:
Working with teachers to scaffold complex technology-
mediated approaches to teaching and learning. Journal of
Technology and Teacher Education, 23(3), 411-431.

Eckert, C. M.; Clarkson, P. J. (2005): The reality of design.
In P. J. Clarkson, C. M. Eckert (Eds.): Design Process
Improvement A review of current practice. London, 1–29.

Efeoglu, A., Møller, C., Sérié, M., & Boer, H. (2013).
Design thinking: characteristics and promises. In
Proceedings of 14th International CINet Conference on
Business Development and Co-creation (pp. 241-256).

Goel, V., Pirolli, P. (1992): The structure of design
problem spaces. In Cognitive Science 16 (3), pp. 395–429

Hartson, R., & Pyla, P. S. (2012). The UX Book: Process
and guidelines for ensuring a quality user experience.
Elsevier.

Lawson, B. (2006). How designers think: The design
process demystified. Routledge.

Lu, J.J., & Fletscher, G.H.L. (2009). Thinking About
Computational Thinking. ACM SIGCSE Bulletin, 41(1),
260-264.

Plattner, H., Meinel, C., & Weinberg, U. (2009). Design-
thinking. Landsberg am Lech: Mi-Fachverlag.

Schwab, K. (2017). The fourth industrial revolution.
Currency.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.

Soleimani, A. (2019). Computational Design Thinking and
Thinking Design Computing. In 2019 Reynolds
Symposium: Education by Design. Portland, Oregon,
October 18-19, 2019.

Tabesh, Y. (2017). Computational thinking: A 21st century
skill. Olympiads in Informatics, 11(2), 65-70.

Volcz, I. (2018). The Use of Computational Thinking to
Advance Learning in the Pre-university Subject of Digital
Literacies. In Proceedings of the International
Conference on Computational Thinking Education 2018.
Hong Kong: The Education University of Hong Kong.
68-71

Wing, J. (2008). Computational thinking and thinking
about computing. Philosophical Transactions Of The
Royal Society A: Mathematical, Physical And
Engineering Sciences, 366(1881), 3717-3725.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

81

The Effects of an AR Programming Game on Students’ Different Prior
Computational Thinking Skills

Huai-Hsuan HUANG1*, Vandit SHARMA2, Kaushal Kumar BHAGAT 3, Wen-Min HSIEH4, Nian-Shing CHEN5

1,4,5 National Yunlin University of Science and Technology, Taiwan
2,3 Indian Institute of Technology Kharagpur, India

b10441011@gemail.yuntech.edu.tw, vanditsharma02@gmail.com, kkntnu@hotmail.com,
wmhsieh@gemail.yuntech.edu.tw, nianshing@gmail.com

ABSTRACT
Cultivating students’ computational thinking (CT) skills is
challenging and often entails introducing them to basic
programming concepts. These concepts are quite abstract
and difficult to visualize. Our study aims to address this
gap through an AR-based programming game. We
evaluated our game on 27 participants, ranging from
freshmen to seniors and having different prior CT skills.
The results show that our AR programming game
significantly improved students’ CT skills, especially for
students with lower prior CT levels. Some pedagogical
implications and design guidelines for teachers and game
developers to improve AR programming games are also
discussed.

KEYWORDS
computational thinking, AR-Game, programming skills,
tangible object, embodied cognition

1. INTRODUCTION
CT can be defined as a set of fundamental skills that
employ computer science concepts towards “solving
problems, designing systems, and understanding human
behavior” (Wing, 2006, p.33; Kong, Lai & Sun, 2020).
The importance of developing CT skills was emphasized
by Wing (2006), who mentioned that these skills should be
developed not only by students majoring in computer
science but by everyone. Students with well-developed CT
skills can perform better in various domains of expertise
(Hooshyar, Malva, Yang, Pedaste, Wang & Lim, 2021).
Therefore, from early to higher studies, educators should
put a large amount of emphasis on developing students’
CT skills.

Research has shown that CT can be developed through
programming or coding (Zhang & Nouri, 2019; Wei, Lin,
Meng, Tan, Kong & Kinshuk, 2020). However, coding is
often challenging for beginners since it requires the
knowledge of abstract concepts such as simulation,
algorithm, abstraction and so on (Lye & Koh, 2014).
Therefore, many CT instructors have started to use block-
based programming tools, essentially turning complex
programming languages into simplified blocks (Zhang &
Nouri, 2019; Zhao & Shute, 2019) that are easy to teach.
Scratch1 and Code.org2 are two examples of such tools
created specifically to improve the programming skills of
beginners. These websites simplify abstract programming

1 https://scratch.mit.edu/
2 https://code.org/

languages and gamify the learning process, thus building
students’ confidence and motivation in learning how to
code (Czerkawski & Lyman, 2015). Several researchers
have investigated the effectiveness of these web and game-
based programming tools. Results from a systematic
review study (Hu, Chen & Su, 2020) that collected 29
related empirical studies indicated that these programming
websites significantly improve learners’ coding skills.
Theodoropoulos and Lepouras (2020) also reviewed 44
studies to confirm the effectiveness of digital
programming games to develop CT. Apart from the
abovementioned games that are played on computers,
numerous block-based programming games, such as
Light-Bot3, RoboLogic 4, and Sprite Box 5 , running on
portable devices, i.e., smartphones and tablets, have
sprouted in recent years (Lindberg, Laine & Haaranen,
2018). These games allow learners to develop CT anytime
and anywhere. Despite several websites and mobile
applications being available for educational use, many
programming beginners still feel that coding is abstract
and frustrating (Dohn, 2019).

Providing programming learners an immersive coding
environment could be a solution to this problem.
Augmented Reality (AR), featuring its integration of
virtuality and reality, can augment the physical world with
interactive virtual additions and immerse users in an
authentic scenario (Rauschnabel, Rossmann & tom Dieck,
2017). Many past studies found that AR can be
implemented in education, especially for subjects having
abstract concepts. For example, research works that
applied AR in mathematics (Cai, Liu, Shen, Liu, Li &
Shen, 2018) and geometric (Gecu-Parmaksiz &
Delialioglu, 2019) courses showed significant
improvements in students’ learning performance because
AR can (1) visualize abstract knowledge and (2) engage
them in hands-on learning activities. By virtue of these two
advantages, we applied AR to develop a programming
game for students to enhance their CT skills. To examine
the effectiveness of our AR-Game, CodAR (Sharma,
Talukdar & Bhagat, 2019), we evaluated it with
undergraduate students. Based on this evaluation, we aim
to answer the following research question through this
study: What is the impact of playing the AR-Game on CT
skills for students with different prior CT levels?

3 https://lightbot.com/ 4 https://apps.apple.com/us/app/robologic-
lite/id300893278
5 https://spritebox.com/hour.html

mailto:b10441011@gemail.yuntech.edu.tw
mailto:vanditsharma02@gmail.com
mailto:kkntnu@hotmail.com
mailto:wmhsieh@gemail.yuntech.edu.tw
mailto:nianshing@gmail.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

82

2. METHOD
2.1. Participants
A total of 31 university students ranging from freshmen to
seniors participated in this study. The students were from
different disciplines (e.g., engineering, management,
design, humanities) and had registered in a general
education course, The Introduction of Smart Systems and
Mobile Phone Apps, at a university in Taiwan. Only one-
fourth of students majored in computer engineering and
routinely practiced writing programs. Other students had a
basic knowledge of CT skills due to previous instruction
this course gave. Note that four students' data could not be
collected completely; thus, their data were excluded.

2.2. Procedure
The study took about two classes of the general education
course in the middle of the semester. Figure 1 presents the
procedure of the research design. The students first took a
30-minute pre-test assessing their prior CT level. The first
author, who has played the game several times during its
development, served as the instructor. The instructor first
gave a brief introduction to the game. Students learned
how to sign in to the game, arrange the play cards, scan the
AR markers on the play cards, and then they started to play
the game. During the game-play, the instructor provided
prompt assistance but did not guide participants to achieve
the game’s goals. After around 30 minutes, students had to
stop playing the game and then take the post-test for 30
minutes.

Figure 1. The Procedure of Research Design

2.3. The AR-Game
Empirical evidence has shown that embodied strategies are
especially effective for learning (Macedonia, 2019). To
leverage the benefits of embodied cognition, marker-
based AR was adopted to design this game. According to
previous research (Gecu-Parmaksiz & Delialioglu, 2019),
applying AR in education can help students visualize
abstract knowledge and also engage them in real-time
instruction during learning. Therefore, this study used an
AR Programming mobile game to teach CT.

Two physical objects were required to play the AR- Game:
a smartphone/tablet and a set of playing cards. There were
six types of playing cards used in this game, out of which
one was used to generate the world for a level in AR, and
the rest acted as programming blocks. In the game,
students were expected to place the playing cards in a
logical sequence and use devices to scan and visualize the
playing cards required for each level (See Figure 2).

To complete the game, students went through 12 levels of
programming. The coding scenario involved helping the
game character, a bunny, collect all carrots placed on
platforms arranged differently for each level. The player's
primary objective was to guide the bunny to collect all

the carrots by properly arranging the programming blocks
specified for that level.

Whenever a player would place the playing cards and view
them through the handheld smartphone/tablet, the entire
game would come to life by the virtual superimposed
elements appearing over the playing cards (See Figure 3).

Figure 2. Student’s Manipulation of the Game

Figure 3. The Presentation of the Game

These virtual superimposed elements enabled players to
visualize their code corresponding to the chosen sequence
of the playing cards by watching the bunny in action.
Players could find problems with their solution through
this programming presentation visualized in real- time.
Since virtual superimposed items can be viewed from
different perspectives using AR, such a three- dimensional
programming environment could also help students having
an inferior sense of direction to overcome such
difficulties. Additionally, various in-game animations kept
the students engaged and motivated towards completing
the game while learning CT during the process.

2.4. Data Collection
The instruments used in this study included a pre-test and
a post-test, which were both identical. To examine the
effectiveness of the developed game, these tests were
designed based on a commercial mobile application,
LightBot3, adapting it into a pen-and-paper test. The
validity of the assessment was checked through audit trail
and literature review (Gouws, Bradshaw & Wentworth,
2013). The assessment included five ordering-sequence
questions. Each question contained an image that
presented a problem statement to the test takers. The
solution to each problem statement was a sequence of
commands that guided the main character in LightBot, a
robot, to reach its destination.

playing
cards

device

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

83

tailed

2.5. Data Analysis
The pre and post-test scores were determined together by
the first author and a sophomore student majoring in
Computer Science and Information Engineering at the
university. The scores were consistently discussed before
being determined.

The students’ prior CT level as determined by their pre-
test scores was used to identify the top 40% of the class as
the higher prior CT level (HPCT) group (M = 8.9, SD
= 1.87), and students at the bottom 40% of the class as the
lower prior CT level (LPCT) group (M = 3.7, SD = 1.00).
The scores of these two groups were separated by an
interval of six. To differentiate these two target CT level
groups clearly, seven students were excluded from the
analysis. There were ten students each in both the HPCT
and LPCT groups. Finally, to examine the impact on
students’ CT skills after playing the game, a paired sample
t-test was conducted to measure the CT gains made by
HPCT and LPCT groups.

3. RESULT
The results from analyzing the pre-test and post-test scores
for both HPCT and LPCT groups are presented in this
section. Note that seven students’ learning gains were
excluded from this two-group analysis since they had an
average prior CT level.

3.1. Improvements in CT skills
As shown in Table 1, LPCT students (t = 5.511, p
= .00037) made a significant progress after the playing
the game.
Table 1. Results for paired sample t-test to compare pre-
test and post-test scores for the LPCT and HPCT Groups

Groups Mean SD t Sig. (2-

HPCT Group (N=10)
Pre-test 8.9 1.868

1.167 .2729
Post-test 9.4 2.009
LPCT Group (N=10)
Pre-test 3.7 1.004

5.511 .0004*
Post-test 7.3 2.051

Note: *P<.001

4. DISCUSSION
Our quantitative results showed that the lower prior CT
level group improved more than its counterpart,
suggesting that this game is especially useful for students
with lower CT skills. This is consistent with the empirical
study conducted by Hooshyar et al. (2021), who compared
students’ CT gains from two different learning
approaches- conventional technology-enhanced learning
and game-based learning. Similar to us, they also
separated students in the game-based learning group into
two sub-groups based on their prior CT level. They found
that the students in the game-based learning group
outperformed the group under conventional instruction.
Moreover, students in the lower prior CT sub-group
benefited more from the intervention. McLaren et al.
(2017) also obtained similar results from their

comparative research, explaining this phenomenon using
the “expertise reversal effect” (Kalyuga, 2007), where they
suggested that, more or less, some groups benefit more
than others under such instructional techniques. We further
examined why the low prior CT group benefitted more
from this game. Two key areas where our game was able
to address difficulties typically faced by such students
were- (1) sequencing program scripts (Spohrer, 1989) and
(2) understanding the computational process (Du Boulay,
1986). Overcoming these difficulties requires scaffolding
techniques such as making predictions, planning, and
monitoring the coding process (Basu, Biswas, Sengupta,
Dickes, Kinnebrew & Clark, 2016). In practice, our AR-
Game served as a useful scaffolding tool, helping students
with lower prior CT skills overcome the two
abovementioned difficulties by visualizing the coding
process, enabling them to evaluate their programs and
solve the problems (Wong & Cheung, 2020).
We can identify two potential limitations that exist with
this study. First, since we have chosen participants from a
CT-related course as our data collection resource, this
possibly resulted in a selection bias. Collecting data from
a broader student population would help us obtain more
consistent results in the future. The second limitation is
concerned with the fact that study duration might not be
long enough to have significant effects on students’ CT
skills. However, since students with different prior CT
skills were subjected to the same amount of intervention,
we believe that our study nevertheless provides reliable
results. Future longitudinal research in this direction
should keep these limitations in mind.

5. CONCLUSION
In response to the pressing need to equip learners with CT
skills, this study presented an AR-based programming
game to engage students in a tangible and authentic coding
environment for CT development. The findings show that
students having lower prior CT skills are more likely to
benefit from the game. They can take advantage of AR by
predicting and debugging their coding through the visual
programming experience.
Pedagogical implications for teachers who teach
programming can be drawn based on the results of this
study. First, the developed game can be used by
programming beginners who face problems in
understanding concepts and lack the required CT skills.
Second, to design a curriculum that caters to students with
different CT levels, students’ prior knowledge should be
taken into consideration. Therefore, it is suggested that
teachers group students based on their prior CT skills to
maximize learning outcomes.
For game developers to improve the gaming experience for
everyone, serious games should have a pre-test section to
identify players’ prior knowledge, e.g., CT level in our
case. This information can then be used to adapt the game
according to the students’ skills. For instance, developers
can increase complexity for more experienced students by
matching them to a higher game level. Such practices will
help maintain student interest in the game as well as
maximize their learning outcomes.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

84

6. REFERENCES
Basu, S., Biswas, G., Sengupta, P., Dickes, A.,

Kinnebrew, J. S., & Clark, D. (2016). Identifying
middle school students’ challenges in computational
thinking-based science learning. Research and Practice
in Technology Enhanced Learning, 11(1).
https://doi.org/10.1186/s41039-016-0036-2

Cai, S., Liu, E., Shen, Y., Liu, C., Li, S., & Shen, Y.
(2020). Probability learning in mathematics using
augmented reality: impact on student’s learning gains
and attitudes. Interactive Learning Environments, 28(5),
560–573.
https://doi.org/10.1080/10494820.2019.1696839

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring
Issues About Computational Thinking in Higher
Education. TechTrends, 59(2).
https://doi.org/10.1007/s11528-015-0840-3

Dohn, N. B. (2020). Students’ interest in Scratch coding
in lower secondary mathematics. British Journal of
Educational Technology, 51(1), 71–83.
https://doi.org/10.1111/bjet.12759

Du Boulay, B. (1986). Some difficulties of learning to
program. Journal of Educational Computing
Research, 2(1), 57-73.

Gecu-Parmaksiz, Z., & Delialioglu, O. (2019).
Augmented reality-based virtual manipulatives versus
physical manipulatives for teaching geometric shapes
to preschool children. British Journal of Educational
Technology, 50(6), 3376–3390.
https://doi.org/10.1111/bjet.12740

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013).
Computational thinking in educational activities: an
evaluation of the educational game light-bot.
In Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education (pp. 10-15).

Hooshyar, D., Malva, L., Yang, Y., Pedaste, M., Wang,
M., & Lim, H. (2021). An adaptive educational
computer game: Effects on students' knowledge and
learning attitude in computational thinking. Computers
in Human Behavior, 114, 106575.

Hu, Y., Chen, C. H., & Su, C. Y. (2020). Exploring the
Effectiveness and Moderators of Block-Based Visual
Programming on Student Learning: A Meta-Analysis.
Journal of Educational Computing Research.
https://doi.org/10.1177/0735633120945935

Kalyuga, S. (2007). Expertise reversal effect and its
implications for learner-tailored
instruction. Educational psychology review, 19(4), 509-
539.

Kong, S. C., Lai, M., & Sun, D. (2020). Teacher
development in computational thinking: Design and
learning outcomes of programming concepts, practices
and pedagogy. Computers and Education, 151.
https://doi.org/10.1016/j.compedu.2020.103872

Lindberg, R. S. N., Laine, T. H., & Haaranen, L. (2018).
Gamifying programming education in K-12: A review
of programming curricula in seven countries and

programming games. British Journal of Educational
Technology. https://doi.org/10.1111/bjet.12685

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching
and learning of computational thinking through
programming: What is next for K-12?. Computers in
Human Behavior, 41, 51-61.

Macedonia, M. (2019). Embodied Learning: Why at
School the Mind Needs the Body. Frontiers in
Psychology, 10(October), 1–8.
https://doi.org/10.3389/fpsyg.2019.02098

McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi,
J. (2017). A computer-based game that promotes
mathematics learning more than a conventional
approach. International Journal of Game-Based
Learning (IJGBL), 7(1), 36-56.

Rauschnabel, P. A., Rossmann, A., & tom Dieck, M. C.
(2017). An adoption framework for mobile augmented
reality games: The case of Pokémon Go. Computers in
Human Behavior, 76, 276–286.
https://doi.org/10.1016/j.chb.2017.07.030

Sharma, Vandit & Talukdar, Jeevankur & Bhagat,
Kaushal. (2019). CodAR: An Augmented Reality
Based Game to Teach Programming. In Proceedings of
the 27th International Conference on Computers in
Education (pp. 600-602).

Spohrer, J. C., & Soloway, E. (1989). Simulating Student
Programmers. In IJCAI (Vol. 89, pp. 543-549).

Theodoropoulos, A., & Lepouras, G. (2020). Digital
Game-Based Learning and Computational Thinking in
P-12 Education (pp. 159–183).
https://doi.org/10.4018/978-1-7998-4576-8.ch007

Wei, X., Lin, L., Meng, N., Tan, W., Kong, S.-C., &
Kinshuk. (2020). The Effectiveness of Partial Pair
Programming on Elementary School Students’
Computational Thinking Skills and Self-Efficacy.
Computers & Education, 104023.
https://doi.org/10.1016/j.compedu.2020.104023

Wing, J. M. (2006). Computational thinking. In
Communications of the ACM (Vol. 49, Issue 3).
https://doi.org/10.1145/1118178.1118215

Wong, G. K. W., & Cheung, H. Y. (2020). Exploring
children’s perceptions of developing twenty-first
century skills through computational thinking and
programming. Interactive Learning Environments,
28(4), 438–450.
https://doi.org/10.1080/10494820.2018.1534245

Zhang, L. C., & Nouri, J. (2019). A systematic review of
learning computational thinking through Scratch in K-9.
Computers and Education, 141(June), 103607.
https://doi.org/10.1016/j.compedu.2019.103607

Zhao, W., & Shute, V. J. (2019). Can playing a video
game foster computational thinking skills? Computers
and Education, 141(January), 103633.
https://doi.org/10.1016/j.compedu.2019.103633

https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1111/bjet.12759
https://doi.org/10.1111/bjet.12740
https://doi.org/10.1177/0735633120945935
https://doi.org/10.1016/j.compedu.2020.103872
https://doi.org/10.1111/bjet.12685
https://doi.org/10.1016/j.chb.2017.07.030
https://doi.org/10.1016/j.compedu.2019.103633

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

85

A Systematic Review of Distributed Pair Programming Based on the Team
Effectiveness Model

Fan XU1*, Ana-Paula CORREIA2

1,2The Ohio State University, United States
xu.3849@osu.edu, correia.12@osu.edu

ABSTRACT
Distributed Pair Programming attracts increasing attention
as an approach to improve students’ collaborative problem-
solving skills. A systematic review of the empirical studies
published in the last decade was conducted, and 23 articles
were reviewed in the analysis. The results show the
educational contexts and the subjects of the selected studies,
as well as the mainstream programming language and the
popular integrated development environments in DPP-based
learning activities. The extracted interventions were
classified based on the Team Effectiveness Model and we
found that individual factors and team environment attracted
major investigations, whereas insufficient exploration was
on the task structure, pair efforts, and team dynamics in the
collaboration process in DPP-related practices to enhance
students’ computational thinking.

KEYWORDS
Distributed Pair Programming, Systematic Review,
Computational Thinking, STEM Education

1. INTRODUCTION
Programming has been integrated into school education in
many countries and regions (Falkner et al., 2014). A growing
number of researchers address the importance of
collaboration and teamwork in the learning of computational
thinking (Al-Jarrah & Pontelli, 2014). The Pair
Programming (PP) technique, referring that two
programmers sit side by side in front of only one set of
computer devices and work collaboratively on the same
design, algorithm, code, or test (Beck, 2000), has also been
widely used in education for more than a decade (Salleh et
al., 2014).

In light of the ever-evolving trends towards global
collaboration, distance education, and the current
teleworking new normal during the pandemic, programmers
commonly work in a geographically distributed manner. The
Distributed Pair Programming (DPP) is increasingly needed,
which means two programmers work collaboratively on the
same project from distributed locations under the support of
tools that allows screen sharing and communication (Baheti
et al., 2002). However, previous research showed major
investigations into collocated PP but limited exploration on
the impact of the geographical distribution (Hanks et al.,
2011). To explore what interventions have been used and
their effectiveness in supporting DPP, a systematic review of
empirical studies was conducted in this study.

2. FRAMEWORK
Faja (2011) indicated that limited attention has been paid to
theories that have the potential to reveal factors important to
the successful adoption of pair programming. The author

constructed the team effectiveness model as a conceptual
framework to understand PP as a team learning activity. In
this study, this model will be adopted to review the DPP-
related studies and the corresponding team effectiveness.

Figure 1. Team Effectiveness Model in Pair Programming.

3. METHODS
A systematic literature review was conducted in this study to
address our targeted research problems, following
Kitchenham and Charters’ guidelines (2007). The
overarching research purpose of this review is to identify and
understand and the factors that influence the effectiveness of
the implementation of the DPP approach. To be specific, the
following research questions will be addressed:

RQ1. What are the contexts where the DPP approach were
implemented in the existing empirical studies?

RQ2. What are the mainstream programing language and
Integrated Development Environments (IDE) in DPP
activities?

RQ3. What factors were investigated to facilitate DPP? Does
each intervention have positive effectiveness?

The primary data were collected by searching for related
articles published in the last decade across eight databases
(ACM Digital Library; IEEE Xplore; ISI Web of Science;
Science Direct; ERIC; Education Research Complete;
Academic Search Complete; and Education Full Text) with
the search string (“virtual pair programming” OR “remote
pair programming” OR “distributed pair programming”)
AND (experiment OR measurement OR evaluation OR
assessment) AND (effective OR efficient OR successful) AND
(empirical research OR empirical study OR data OR sample
OR participants).

Upon completion of the primary search, the identification of
relevant literature continued with the secondary search. All
of the reviewed articles and references in the articles
identified from the primary sources were reviewed based on
the exclusion criteria: 1) Articles in other types other than
peer-reviewed articles; 2) Articles in languages other than
English; 3) Articles without available full texts; 4) Articles
with no supporting empirical evidence on DPP or alternative
terms. Finally,23 studies were qualified for the synthesis.

mailto:xu.3849@osu.edu

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

86

4. PRELIMINARY RESULTS
The results show that the majority of studies (n=16)
conducted formal experiments with controllable variables.
And there were four case studies, and the remaining three
used surveys to achieve their research objectives. Besides
one case study that analyzed professional programmers’
programming processes and two experiments that recruited
programmers working in the software development industry
as or partially as the research subjects, most of the studies
were conducted in educational contexts: 17 with
undergraduate students, two with graduate students and two
with both undergraduates and graduates. And by analyzing
the contexts where the reviewed studies were implemented,
we found that 13 studies in total were designed and
developed as part of the computer science courses like
Object-oriented Programming. Whereas the rest ten were
conducted as independent experiments in the laboratory
context.

Regarding the programming language, the absolute majority
of the studies explored DPP as a technique to learn Java
(n=16), while there is respectively one article that mentioned
SQL, Python, R, and visual programming. It is also shown
that SCEPPSys (n=8) and Eclipse (n=4) are the mainstream
IDE to support the application of DPP.

Of the identified 23 studies, six focused on the impact of the
DPP approach. It has been suggested that DPP, under
favorable conditions, is beneficial for students to perform
better in exams, to produce codes of higher quality, and to
gain a learning experience with higher enjoyment. However,
Zacharis (2010) indicated that more effort was needed from
pairs for completing the same programming tasks compared
with individuals. Therefore, to fulfill its advantages as a
learning approach, suitable interventions provided by the
instructor are critical.

Figure 2. Influencing Factors and the Effectiveness.

The rest 17 of the studies explored the influencing factors
which possibly have a bearing on the effectiveness of DPP.
These factors, as well as their corresponding effects on
different aspects of the outcomes, were presented in Figure
2. The analysis result indicates that the individual factors
that directly related to participants attracted major

investigation. And efforts have also been made on the impact
of the team environment to the impact of DPP, such as the
IDE and the scripted-role orientation.

5. CONCLUSION
The results show that most studies were conducted in an
undergraduate educational context with computer science as
the subject. It is also indicated that Java is the mainstream
programming language in DPP-based learning activities, and
the popular integrated development environments include
SCEPPSys and Eclipse. The analysis of interventions in the
selected studies found that individual factors and team
environment attracted major investigations, and most of the
investigated factors have a positive effect on DPP. Whereas
limited attention has been paid to the DPP task structure, pair
efforts, and team dynamics in the collaboration process.
Future work should explore how these factors affect DPP and
how to use them in learning practices to enhance students’
computational thinking.

6. REFERENCES
Al-Jarrah, A., & Pontelli, E. (2014, October). " AliCe-

ViLlagE" Alice as a Collaborative Virtual Learning
Environment. In 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings (pp. 1-9). IEEE.

Beck, K. (2000). Extreme programming explained:
embrace change. Addison-Wesley Professional.

Baheti, P., Gehringer, E., & Stotts, D. (2002, August).
Exploring the efficacy of distributed pair programming.
In Conference on Extreme Programming and Agile
Methods (pp. 208-220). Springer, Berlin, Heidelberg.

Faja, S. (2011). Pair programming as a team based learning
activity: a review of research. Issues in information
systems, 12(2), 207-216.

Falkner, K., Vivian, R., & Falkner, N. (2014, January). The
Australian digital technologies curriculum: challenge and
opportunity. In Proceedings of the Sixteenth Australasian
Computing Education Conference-Volume 148 (pp. 3-
12).

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., &
Zander, C. (2011). Pair programming in education: a
literature review. Computer Science Education, 21(2),
135-173.

Kitchenham, B. A., & Charters, S. (2007). Guidelines for
performing systematic literature reviews in software
engineering technical report. Software Engineering
Group, EBSE Technical Report, Keele University and
Department of Computer Science University of
Durham, 2.

Organization for Economic Cooperation and Development.
(2013). PISA 2015: Draft collaborative problem solving
framework.

Salleh, N., Mendes, E., & Grundy, J. (2014). Investigating
the effects of personality traits on pair programming in a
higher education setting through a family of
experiments. Empirical Software Engineering, 19(3),
714-752.

Zacharis, N. Z. (2010). Measuring the effects of virtual pair
programming in an introductory programming java
course. IEEE Transactions on Education, 54(1), 168-170.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

87

Computational Thinking
and Special Education Needs

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

88

Proposal for the Production of Virtual Reality Environments in Elementary
Education with a Constructivist Approach

José E. GUZMÁN-MENDOZA1, Héctor CARDONA-REYES2*, M. Lorena BARBA-GONZÁLEZ3,

Klinge O. VILLALBA-CONDORI4, Dennis ARIAS-CHAVEZ5, M. Luisa Fernanda RÁBAGO-GONZÁLEZ6
1, 3 Center for Research in Mathematics, Quantum: Knowledge City, Zacatecas, Mexico.

2 CONACY Research fellow, CIMAT Zacatecas, Mexico.
4 Universidad Católica de Santa María, Perú

5 Universidad Continental, Arequipa, Perú
6 Technological University of Guadalajara

mitc.eder@gmail.com, hector.cardona@cimat.mx, maria.barba@cimat.mx, kvillalba@ucsm.edu.pe,
darias@continental.edu.pe, fernanda.lfrg21@gmail.com

ABSTRACT
Currently, education continues to search for new strategies
that contribute to an improvement in the learning of children
in primary education and one of the ways is to use emerging
technologies. In this sense, virtual reality environments
allow the child to build this knowledge in an immersive way
and through various forms of interaction to be more intuitive
with the environment allowing to reach knowledge. In this
work, virtual reality environments are proposed as a support
for basic education in regular children and children with
learning difficulties through the constructivism approach.
The elements involved in the design of the software and the
multidisciplinary work for the creation of these virtual
reality environments are presented. A case study is
presented where a virtual reality environment is used by
teachers of a basic education institution in Mexico as part of
their strategies to strengthen attention and hyperactivity
activities and cognitive stimulation in children and to give
continuity to the activities under the confinement measures
established as a consequence of the pandemic.

KEYWORDS
Virtual reality, constructivism, elementary education,
special needs.

1. INTRODUCTION
Elementary education over the years has adapted to the
technological changes and situations of a globalized
environment. Today the world is experiencing one of the
most complex scenarios in terms of health restrictions due
to the COVID-19 pandemic (Daniel, 2020, Burgess and
Sievertsen, 2020). These effects have caused the learning
theories implemented in elementary education to undergo
adaptations to guarantee the continuity of teaching in
schools. It is also important to consider that in classrooms
there is a wide diversity of students who require
personalized attention and learning strategies should be
directed to best meet their needs. To this end, the use of
technology has played a very important role in this process
of educational adaptation (Dean, 2002), allowing students
to develop their forms of organization, structures, and use
of diverse resources to incorporate them into their virtual
classes and build better learning.

Constructivism is a paradigm oriented to allow the student
to carry out his learning process in a dynamic way by
discovering his environment through the interaction

between the objects and their related environment, allowing
him to solve problems using past experiences (Tuncel and
Bahtiyar, 2015), at all times the teacher becomes a guide,
facilitator, and motivator (Shantz, 1995). There are several
types of tools that offer different forms of interaction, one
of which is virtual reality environments that allow
simulating elements of the real world using 3D
representations. Learning-oriented virtual reality
environments allow the user to interact with a reduced
abstract representation of the environment and the user can
create some short constructions within this environment
which behave according to a set of concepts under which it
has been modeled (Requena, 2008). This work proposes
virtual reality environments as a complement to the learning
process in elementary school children through scenarios that
promote cognitive development, based on the constructivist
model so that the student builds knowledge using a virtual
reality environment. This work consists of five sections,
Section 2 presents proposals available in the literature
suggested in technology use in education. In section 3, the
constructivist approach is presented through the
incorporation of virtual reality environments to support the
educational process. Section 4 presents a case study in
which the implementation of a virtual reality environment
with elementary education children is described. Finally, a
section of conclusions and future work are presented.

2. RELATED WORKS
Throughout the decades, various researchers in the field of
education have tried to define models for integrating ICTs
effectively into educational processes. One of the emerging
technologies that have become more relevant today is
Virtual Reality (VR).

From a pedagogical point of view, researchers and experts
are constantly modifying the learning theories used to
develop VR scenarios. However, several studies
interconnecting VR with constructivist theory have
demonstrated the potential of this pairing to create
educational environments where students effectively learn
representations of concepts, which maximizes learning. One
such study that demonstrates the effectiveness of using VR
and constructivism to develop meaningful learning is the
work of (Collins Jonny, 2018) where they use VR to create
an immersive environment using HTC Vive technology to
create an interactive system where students can interact with
figures in 4 dimensions, such as

mailto:mitc.eder@gmail.com
mailto:hector.cardona@cimat.mx
mailto:maria.barba@cimat.mx
mailto:kvillalba@ucsm.edu.pe
mailto:darias@continental.edu.pe
mailto:fernanda.lfrg21@gmail.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

89

the hypercube. With the experiment, they demonstrated that
the students who participated in the study acquired the
expected knowledge on the proposed topics.

In this sense, it is observed that constructivism allows
managing how a student can learn new knowledge. In the
case of the work of (Piovensan Melchoiri Peruzza, 2004),
they use a constructivist model to structure their contents in
a modular way. In their work, the authors present a didactic
tool called "ConstruiRV", which is characterized as a
distributed virtual reality system applied to the educational
environment. ConstruiRV is used in the classroom as a
pedagogical resource for teachers, and since it is designed
under the constructivist model, it allows students to learn
the concepts of a given discipline through virtual
experiences lived in the virtual environment, making
learning much more lasting, in addition to cooperating in the
learning of other students within the network, even if they
are physically distant. Another technology similar to
ConstruiRV is the Anatomy Builder VR, which is a virtual
reality system that was developed by (Hwaryoung Seo Jinsi,
2017) and is intended to support the teaching of anatomy.
The authors propose as the backbone of the project to seek
an alternative constructivist pedagogical model for learning
canine anatomy. This study demonstrated how a
constructivist approach can support the teaching of anatomy
using VR technology in an active, experiential way.

3. VIRTUAL REALITY ENVIRONMENTS
WITH A CONSTRUCTIVIST APPROACH.
When we talk about constructivism in education it is
inevitable to think about the construction of knowledge,
"Science does not discover ready-made realities, but builds,
creates and invents scenarios: in this way it tries to make
sense of what happens in the world, in society, in people".
(Segal, 1994). In this context, schools are there, building
educational improvements. It is important to reflect on the
conception of the teaching-learning process since this
conception guides the methodology chosen to carry it out.
From constructivism, this process can be thought of as a
dialectical interaction between the teacher's knowledge and
the student's knowledge, which enter into discussion,
opposition, and dialogue, leading to a productive and
meaningful synthesis (Granja, 2015).

One of the technologies that have had great relevance in
recent years is virtual reality, commonly known for its use
in video games and used to create simulations in the industry
(Bell and Fogler,1995). Virtual reality offers a high degree
of immersion to the user and a variety of interaction
possibilities when performing a task. In this context, virtual
reality environments oriented to the educational
environment help the student to abstract objects and
cognitive processes that are difficult to visualize or imagine
and concepts that are difficult to represent or explain
verbally (Sanchez et al., 2000). They also offer the
advantage of addressing areas where traditional methods
have little or no presence (Bell and Fogler, 1995).
According to (Requena, 2008), classroom teaching limits
the interaction between teachers, students, and learning
materials due to the short time allocated and

the wait between sessions for the teacher to evaluate and
provide feedback on the student's results. In this sense,
virtual reality environments can be a tool for students to
implement their ideas and learning by obtaining feedback in
a short time and can even be carried out from their homes.
In this way, virtual reality environments help to encourage
rapid interaction and real-time feedback, keep students
active by performing activities on their own or
collaboratively with other students and finally allow
teachers to have tools to measure student performance and
provide feedback.

4. CASE STUDY
This section presents the implementation of the Attention-
VR virtual environment in elementary school students from
two institutions in Mexico. The objective of this Virtual
Reality environment is to support the development of their
cognitive processes during the COVID-19 health
contingency, which currently continues to limit face-to- face
classroom activities and is restricted to online and blended
learning activities with small groups of students, as shown
in Figure 1.

Figure 1. Elementary school teachers working in small
groups with children with learning disabilities in an

educational institution in Mexico.

4.1. User Profile
The first elementary school has a population of 102 children
in 6 grades. Of the total population, 92 children were
identified as regular, i.e., they do not present any disability
or learning problem. Of the remaining 10 children, 8 have
been identified with learning problems related to Attention
Deficit and Hyperactivity Disorder (ADHD) and 2 with
learning problems related to Asperger's disease. In the
second elementary school, a total of 14 children are
reported, of which one has learning problems related to
Autism Spectrum Disorder (ASD) and the rest have learning
problems related to Intellectual Disability (ID). Figure 1
shows the work in the classroom under sanitary restrictions,
with limited groups of students and with safety protections
such as masks and face masks.

4.2. Technological Platform
The platform selected for Attention-VR is based on Google
Cardboard (Powell et al., 2016, Pierce, 2015) and the
Unity3D video game engine (Parisi, 2015) was used

for its development. This platform allows the creation of

low-cost and accessible virtual reality experiences since a

Cardboard-based application can be installed on most

smartphones allowing parents and teachers to have access

from anywhere. Figure 2 shows the implementation of

Attention-VR, which consists of a low-cost virtual reality

viewer, a generic Bluetooth controller, and a smartphone.

Figure 2. Elementary school teachers working in small

groups with children with learning disabilities in an

educational institution in Mexico.

4.3. Attention-VR

The goal of Attention-VR is that the child can discover

and interact with 3D objects in an immersive environment

and make decisions to solve problems designed by

teachers and educational experts. The instructional design

of Attention-VR is focused on the development of the

areas of Location, Attention, motivation, structure,

following instructions, motivation, and feedback, among

others. As can be seen in Table 1.

Table 1. Proposed instructional design for the Attention-

VR virtual reality environment.
Area Instruction

Location The child is placed in time and space in a specific way.

Attention and

feedback

The child identifies specific important objects within the

immersive environment and discards those that represent a

distraction. At each moment he/she obtains feedback to

accomplish the task.

Organization

and sequence

Small steps to accomplish within the virtual environment

are indicated to accomplish a goal.

Motivation and

structuring

Instructions are presented through elements such as audio,

animations, and avatars so that the child can continue with

the task.

Balance

between

demand and

motivation

That the child is able to stay motivated in the game and at

the same time is required to take a final step to achieve it.

Without exceeding the demand since the child may lose

motivation completely if he/she feels frustrated.

Reward and

satisfaction

That the child feels satisfaction for having achieved the

goal, leaving aside distractions, and reaching the happy

ending, the final reward is represented in the form of the

visual and auditory stimulus.

Attention-VR consists of a virtual map (see Figure 3)

containing two levels. The first level consists of

recognizing the virtual environment presented and

collecting a series of objects, always a virtual assistant

provides feedback and instructions for the child to solve

the task. The second level consists of finding a treasure by

avoiding obstacles, such as enemies, static distracting

objects, etc. As in the first level, the child can resort to the

help of avatars that always help the child to find the

treasure and escape to the pirate ship. Attention-VR also

has the possibility of new levels can be designed and

incorporated with new activities according to the

educational needs of children. These levels allow the child

to explore the environment, apply his or her judgment and

knowledge for deduction to the situations presented within

the virtual environment and formulate strategies for the

achievement of the tasks presented within each level,

seeking to build learning by having a meaningful

experience.

Figure 3. Complete map with available levels of

Attention-VR virtual reality environment.

Each level has 3D virtual elements that at all times assist

and feedback to the child in every situation presented

within the virtual environment. Among the elements, we

can find (see Figure 4). Helper avatars. Some avatars can

be consulted and provide instructions regarding the

activity to be performed, offer feedback information,

remind the user of the steps to follow to accomplish the

task, etc. Distracting objects. These are 3D objects that

can be animated or static, such as enemies, dynamic

objects that move through the scenario but do not have any

functionality related to the task to be performed. Rewards.

These are animated or static 3D objects that can refer to

the partial or total achievement of a task and Feedback

elements. These are multimedia elements within the virtual

environment such as audio that transmits indications about

the task, motivational phrases during the execution time,

clues, and key tips for the correct resolution of the task.

Figure 4. Interactive user support elements within the

Attention-VR virtual reality environment.

4.4. Results

The implementation of Attention-VR was carried out on

25 children from two primary education institutions of

different school grades, of which 8 children have learning

disabilities associated with ADHD. With the help of

parents and teachers, Attention-VR was installed on the

smartphones of each of them and they were provided with

a virtual reality viewer based on Google Cardboard.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

90

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

91

Throughout, the children were supervised by an adult. None
of the children experienced any discomfort such as dizziness
or vomiting (LaViola Jr, 2000, Kolasinski, 1995). The first
preliminary results show that the minimum duration to
complete the tasks was 6 minutes and the maximum was 15
minutes. In the end, some of the opinions obtained by the
children indicated some suggestions, such as increasing the
difficulty, no monsters, an airplane, horses. And positive
comments in which the children liked that they were
congratulated every time they finished the indicated tasks,
that the system talked to them at all times, among others.

5. CONCLUSIONS AND FUTURE
WORKS
Virtual reality is a technology that is increasingly positioned
as an alternative to support education by facilitating teachers
and students to improve the teaching- learning processes. A
constructivist approach allows that through virtual reality
environments students can carry out their learning process
interactively and dynamically in which knowledge from
past experiences can be applied to solve new problems and
new meaningful experiences. And in the case of teachers,
they can count on tools for the generation of new
educational content and mechanisms for student follow-up.
The importance of the constructivist model is that the
student takes charge under the guidance of his teacher,
building collaboratively and nurturing meaningful learning.
As future work, we are working on the definition of new
levels to be incorporated in Attention-VR based on the
design and needs of teachers and education experts. We are
also working on the design and incorporation of evaluation
instruments to measure the user's experience, perception,
and performance within the virtual environment.

6. ACKNOWLEDGMENTS
The authors would like to thank CONACYT for the support
provided for this research, the “José María Morelos y Pavón
Institute”, Ojuelos de Jalisco, Mexico, and the “Regular
Education Support Services Unit No. 19” (USAER-19),
Aguascalientes, Mexico, for their collaboration and for
providing the personnel and resources to carry out the case
study, and all the people who participated in the
communities of Vaquerías and Matancillas, Jalisco,
Mexico. This work is dedicated to the memory of the
student Gerardo Ortiz Aguiñaga (1995- 2020) student of
CIMAT Zacatecas Mexico and to his passion and dedication
for the development of this research, for which we honor his
memory.

7. REFERENCES
Bell, J. T., & Fogler, H. S. (1995, June). The investigation

and application of virtual reality as an educational tool.
In Proceedings of the American Society for Engineering
Education Annual Conference (pp. 1718-1728).

Burgess, S., & Sievertsen, H. H. (2020). Schools, skills,
and learning: The impact of COVID-19 on education.

Collins, J., Regenbrecht, H., & Langlotz, T. Back to the
future: Constructivism learning in virtual reality. IEEE

International Symposium on Mixed and Augmented
Reality Adjunct, 2018.

Daniel, J. (2020). Education and the COVID-19 pandemic.
Prospects, 49(1), 91-96.

Dean, A. (2002). Telelearning: Invention, Innovation
Implications: Towards a Manifesto. Australasian Journal
of Educational Technology, 5(2), 1-12.

Granja, D. O. (2015). El constructivismo como teoría y
método de enseñanza. Sophia, (19), 93-110.

Kolasinski, E. M. (1995). Simulator sickness in virtual
environments (Vol. 1027). US Army Research Institute
for the Behavioral and Social Sciences.

LaViola Jr, J. J. (2000). A discussion of cybersickness in
virtual environments. ACM Sigchi Bulletin, 32(1), 47-
56.

Melchiori Peruzza, A. P. P., & Zuffo, M. K. (2004, June).
ConstruiRV: constructing knowledge using the virtual
reality. In Proceedings of the 2004 ACM SIGGRAPH
international conference on Virtual Reality continuum
and its applications in industry (pp. 180-183).

Parisi, T. (2015). Learning virtual reality: developing
immersive experiences and applications for desktop,
web, and mobile. " O'Reilly Media, Inc.".

Pierce, D. (2015). Google cardboard is vr’s gateway drug.
Wired. Retrieved, 17.

Powell, W., Powell, V., Brown, P., Cook, M., & Uddin, J.
(2016, March). Getting around in google cardboard–
exploring navigation preferences with low-cost mobile
VR. In 2016 IEEE 2nd Workshop on Everyday Virtual
Reality (WEVR) (pp. 5-8). IEEE.

Pulgar, J. L. (2005). Evaluación del aprendizaje no formal.
Recursos prácticos para el profesorado.

Requena, S. H. (2008). El modelo constructivista con las
nuevas tecnologías: aplicado en el proceso de
aprendizaje. RUSC. Universities and Knowledge Society
Journal, 5(2), 26-35.

Sanchez, A., Barreiro, J. M., & Maojo, V. (2000). Design
of virtual reality systems for education: A cognitive
approach. Education and information technologies, 5(4),
345-362.

Segal, L. (1994). Sonar la realizad: El constructivismo de
Heinz Von Foerster. Paidos.

Seo, J. H., Smith, B. M., Cook, M., Malone, E., Pine, M.,
Leal, S., ... & Suh, J. (2017). Anatomy builder vr:
Applying a constructive learning method in the virtual
reality canine skeletal system. IEEE Virtual Reality
(VR), 18(22):399–400, 2017.

Shantz, D. (1995). Teacher education: Teaching
innovation or providing an apprenticeship?. Education,
115(3), 339-344.

Tuncel, İ., & Bahtiyar, A. (2015). A case study on
constructivist learning environment in content
knowledge courses in science teaching. Procedia-Social
and Behavioral Sciences, 174, 3178-3185.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

92

Computational Thinking
and Evaluation

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

93

A Preliminary, Systematic Review of Teaching and Learning
Computational Thinking

in
Early Childhood Education

ABSTRACT

Anika SAXENA1*, Gary WONG2
1,2 Faculty of Education, The University of Hong Kong, Hong Kong.

anikareena@gmail.com, wongkwg@hku.hk

Computational thinking (CT) and its implementation in the
K-12 curriculum have recently become important topics in
education and research worldwide. Due to the burgeoning
interest in CT in education, there has been a marked increase
in empirical research in this area. Many researchers suggest
that CT should be introduced and fostered early in education,
as it is a precursor of academic success. However, there is
little evidence from research that sums up empirical research
findings to give further teaching and learning directions
specific to early childhood education (ECE). Following the
pre-analysis, 32 articles were selected and included in the
study. Content analysis was applied to determine and
evaluate the shared codes and themes related to the findings.
The results demonstrate that ECE practitioners should
consider incorporating CT concepts with core subject areas
following an integrated teaching and learning approach in
ECE, using various developmentally appropriate
pedagogical practices.

KEYWORDS
computational thinking, systematic review, early childhood
education, teaching/learning strategies

1. INTRODUCTION
In early childhood education (ECE), computational thinking
(CT) refers to developing behavioural attributes and skills
related to patterning, sequencing, planning, and processing
(Brennan and Resnick, 2012; Berland and Wilensky, 2015;
Wilson and Moffat, 2010). Numerous studies have been
published to propose teaching and learning of CT in the early
years.

The published literature contains a broad range of definitions
for CT. For example, Papert (1980) first described
computational thinking as “how children develop procedural
thinking through computer programming”. Jeannette Wing
(2006) claimed that CT is a fundamental skill for everyone
and should be added to every child's ability. Kazimoglu,
Kiernan, Bacon, and Mackinnon, (2012), define CT as an
approach to problem-solving, systems design and
understanding human behaviours based on computer-based
concepts, and consider CT to be a skill that requires the use
of computer systems to solve problems in any discipline.

In contrast, some researchers advocated that unplugged
activities can be used to develop CT skills, leading to
developing similar skill sets without using computers.
Children can apply their concrete skills more abstractly in
later stages, with computational concepts (Rial-Fernández &
Santacruz-Valencia, 2019; Saxena et al., 2020). In early
years education, CT skills should be employed in play,

discovery, and creative activities, during which children can
practice their abilities to plan, sequence, and logically
connect their ideas (Rehmat, Ehsan and Cardella, 2020). By
enhancing their creations, children also review and make
authentic improvements, known as debugging, in
computational aspects and core to CT (Lavigne et al., 2020).
CT also involves evaluating problems, constructing ideas,
and designing projects (Bers et al., 2014) and (Komis et al.,
2016). The overall goal of implementing CT skills in the
curriculum is to develop thinking skills and their potential
application in various fields. Hence, CT is not just limited to
coding, robotics, and mathematical processing (Bers et al.,
2002).

Although many discussions and initiatives have been taken
in recent years, there is a lack of concrete, research-based
evidence or guidelines regarding exposure and age-
appropriate inclusion of CT in ECE. There is a lack of
empirical evidence demonstrating how early educators
should align these early learners' skills to succeed. With the
expansion of research in this area, it is necessary to
synthesize scientific evidence from quality, published
studies to enhance our understanding of developmentally
appropriate CT practice in early years education and to plug
the potential gaps in this research area.

1.1. Computational thinking in early childhood
Computational thinking is becoming an essential skill in the
21st century. Bers (2019) claimed CT as a new literacy skill
in ECE classrooms, stating that it should be taught as another
vital literacy area. Many researchers addressed the need and
claimed that the rationale for supporting the introduction of
computational thinking in the early years should not be
focused on creating a future workforce, but the future
citizenry. Due to the lack of a standard consensus definition
of CT; it is widely understood as a logical and algorithmic
way of thinking for problem-solving. Papert (1987)
describes CT as the combination of critical thinking and
computing; potentially incorporating and enhancing skills
for problem-solving, communication, collaboration,
creativity, and computation.

On the other hand, ECE practitioners find it challenging to
create hands-on opportunities to develop in their ECE
learning environment. Early childhood is a critical time
during which young children play, grow, and explore the
world around them. This systematic review will address the
needs of practitioners. It will investigate the feasibility,
efficiency, and potential pedagogical approaches for
developmentally appropriate CT development for preschool
children. Moreover, we aim to study the impact of
programming activities on particular CT skills.

mailto:anikareena@gmail.com
mailto:wongkwg@hku.hk

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

94

ECE educators' increasing interest and needs call for a
systematic review of the previous studies that can serve as a
"pathfinder" for future research. Few representative
literature reviews in ECE have been found. Çetin, M., &
Demircan, H. Ö. (2020) presented a literature review to
support computing education and its integration through
STEM in the early years. Manches & Plowman (2017)
reported the need to consider the conceptual thinking that
underlies computational thinking, specifically in the early
childhood education sector. Other researchers (Isnaini,
Budiyanto, and Widiastuti, 2019) and (Umam, Budiyanto, &
Rahmawati (2019) presented a literature review and
identified the potential contribution of robotics as an
educational tool. Several systematic reviews, such as Xia, L.,
& Zhong, B. (2018) presented systematic reviews focusing
on either K-12 education or specific learning tools only.
Thus, there is a need to conduct a systematic review of
review papers following the framework from Kitchenham et
al. (2009) to ensure quality and content that is specific to CT
in ECE, including children from birth to eight years old. This
systematic literature review will allow us to address some of
CT's critical issues in ECE and lead us to answer the
following research questions.

RQ1: How have people studied CT in ECE?

RQ2: What is the computational concept, perspectives and
tools to implement CT in ECE?

2. Methodology
2.1. Research Design
A systematic review methodology was employed in this
study. Following the guidelines set out by Kitchenham et al.
(2009), a systematic review was initiated to evaluate
research literature, using systematic and rigorous methods.
Lam and Kennedy, (2005), identified systematic review
methodology as the most robust approach that provides a
mechanism to analyse evidence-based research among a
range of published studies. This current, systematic literature
review is focused on studies of computational thinking in
early childhood educational settings published in the last
decade. Only peer-reviewed articles (rather than project
descriptions, analyses of programs, guidelines for practice,
and reports or conference papers), are included in this
review.

2.2. Procedures
This systematic review adhered to the guidelines laid out by
Kitchenham et al. (2009), and was performed initially
following the search string of keywords ("computational
thinking" OR "robotics" OR "coding" OR "programming")
AND ("Early Childhood Education" OR "preschool" OR
"Kindergarten" OR "young learners") for peer-reviewed
studies and carried out in the ScienceDirect, ERIC,
SCOPUS, ACM, Springer Link, IEEE Xplore databases.
These databases were searched without any constraints on
the publication date. The search resulted in 229 studies (33
webs of science, five in ScienceDirect, nine in ERIC, 52 in
SCOPUS, five in IEEE Xplore, 21 in SpringerLink, and 104
in ACM) on November 15th, 2020. Duplicates, inaccessible
studies, and publications not written in the English language
were excluded from this collection.

Figure 1. Distribution of articles about CT in ECE by year

Figure 1 shows the distribution of articles about CT by year,
particularly in the ECE sector. It is evident that research has
developed its strength over the years and offers a recent
increase in publications.

Following the procedures mentioned in figure 2. The
researchers examined crucial points of the study and their
relationships with each other.

Figure 2. Data collection and analysis process

The remaining studies' abstracts were screened, and both
empirical and nonempirical studies were included if they
addressed the inclusion criteria detailed in Table 1 below.

Table 1: Inclusion Criteria (IC)

After analysing the titles and abstracts of these papers
concerning the above inclusion criteria, 32 studies were
selected as relevant to the current research.

2.3. Data Analysis
The data collected were analysed using content analysis. The
next step was to identify commonalities and differences
amongst all the studies, based on research questions. The
standard codes and themes related to the findings were
determined and evaluated during the analysis. Then, the
categories were revised based on the consensus among the

IC1 Paper reports of CT studies in ECE. (RQ1)

IC2 Paper aimed at the Computational Concept,
Perspectives, and Tools to implement CT in ECE.
(RQ2)

IC3 Paper aimed at focusing on teaching and learning of

CT in ECE. (RQ2)

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

95

researchers. Tables were created for themes, including the
frequency values, and later converted into charts for
visualisation.

3. FINDINGS
This section details the analysis of selected papers (32) from
different perspectives, such as sample groups, duration of
CT intervention, pedagogical connection ,and teaching and
learning of CT in ECE. The research studies are summarised
and synthesised into four different categories based on
research questions.

3.1. How have people studied CT in ECE?

3.1.1. Sample Size
The selected papers’ sample size shows that most of the
studies have been done with either 20-40 participants, or
with over 80 participants, as shown in figure 3. This
indicates that with growing awareness of CT in ECE, several
studies are now focused on interventions with a broader
range of participants to see the results more precisely,
leading to more appropriate, age-specific intervention.

Figure 3. Sample size of

Figure 3. Sample size of empirical studies

3.1.2. Sample groups within early childhood
Amongst 32 papers, 30 described age or learning level of
participants. Few studies have focused on kindergarten to
grade 2 students. The frequency of the sample level or age
groups is shown in figure 4.

Figure 4. Age-specific sample groups of selected studies

The largest sample group is 5-6 year olds, and only a few
studies were conducted with 3-5 year old children. However,

few researchers included the duration of their studies, as seen
in figure 5.

3.1.3. Duration of empirical studies

Figure 5. Duration of empirical studies.

Twelve selected studies failed to clearly and explicitly
explain the duration intervention. The other studies
suggested that most studies are short term, being conducted
for less than four weeks, either in summer camps or during
after school programs. The number of studies undertaken in
regular classrooms remains limited.

3.1.4. Research methods used
The most popular research design amongst 32 research
papers is the non-experimental design, followed by quasi-
experimental and experimental design (Figure 6). The
nonexperimental research design tends to be the closest to
real life situations. For an experimental design to be
classified as a true experimental design, participant groups
need to be selected through random assignment, If chosen
through random sampling, this is considered to be quasi-
experimental. (Trochim & Donnely, 2006)

Figure 6. Research methods used in empirical studies.

3.1.5. Data gathering techniques used in these studies.
The most frequently used data-gathering techniques amongst
these studies are the learning assessment in pro- tests and
post-tests, and classroom observations. Some studies
adopted classroom observations and gathered the quality of
teaching and learning during experiments, and few studies
used it as a tool to obtain more comprehensive qualitative
analysis. Students’ surveys in an age-appropriate manner,
e.g. choosing smiles, have been used. Teacher and parent
interviews were conducted in a few studies. Videos,

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

96

photographs, and artefacts have also been used for analysis
in some studies (see figure 7).

Figure 7.Data gathering techniques used in these studies.

The next section of this paper will analyse data related to
conceptual understanding, and perspectives with the
available tools used in these empirical studies.

3.2. What are the computational concepts, practices,
perspectives, and tools needed to implement CT in ECE?
The selected studies have been examined following CT skills
in Brennan and Resnick's (2012) framework. CT concepts,
and perspectives are described in empirical studies. Most of
the studies labelled automation or coding as the emerging
concept (see figure 8). However, sequencing, problem-
solving, control of flow, decomposition, and debugging
are also used in some studies.

Figure 8. CT Computational concepts used in these studies.

The linkage of the CT conceptual understanding of the
competence and skill developed in each area will be
explored in the discussion section. It has been observed that
in the majority of studies there was regular use of unplugged
activities to support plugged experience. It is clearly stated
in the chart below (figure 9) that ScratchJr, KIBO and Bee-
Bots are the most dominant plugged tools in the ECE sector.
In contrast, it is clear from figure 10 that other methods and
plugged tools have been used to support young learners'
transition from concrete to abstract learning. Tangible
computing, CHERP Blocks from TangibleK, and many
other regular preschool activities related to sequencing,
music and movement, puzzles, matching games, picture
story, card games and even making bracelets to learn to
sequence, and debugging have been discussed. As Brennan
and Resnick (2012) mentioned in their research, concepts

are more comfortable identifying and accessing than
practices and perspectives.

Figure 9. CT Computational practices (Plugged)

Figure 10. CT Computational practices (Unplugged)

3.3. Computational perspectives used in these studies.

CT perspectives refer to the evolving student’ understanding
of their relationship to others and the technological world.
These perspectives include but are not limited to expressing,
questioning, and connecting. Studies indicated that students
developed a personal interest when they were engaged in
design and engineering. Several studies showed that students
also learned to collaborate with peers and develop creative
thinking skills.

Figure 11. CT perspectives described in these studies.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

97

4. DISCUSSION
4.1 What are the implications for teaching and learning
indicated by these empirical studies?
In this section, we generalise the viewpoints of the 32 papers
based on RQ.3 and make a comparison with existing studies.
Further research perspectives will be discussed.

In this review, we analyse scholarly articles on CT for
teaching and learning in ECE. By doing so, we would like to
investigate the impact of those studies. The themes
generated regarding teaching and learning will be discussed
under three subcategories.

4.2 A constructivist view of teaching and learning.
The vital aspect mentioned in several selected empirical
research studies is the concept of learning-by-doing
following Papert's (1980) idea that children should be
allowed to work with tangible objects to promote their
computational thinking, and defined as constructionism.
Currently, the CT learning process is widely used at various
levels of education, starting from preschool (Bers 2002;
Cejka et al. 2006; Kazakoff and Bers 2012, 2014; García-
Valcárcel-Muñoz-Repiso and Caballero-González Y. A.
2019), and in multiple fields and various dimensions:
science, technology, engineering and mathematics (STEM)
(Sullivan et al. 2016), engineering (Bers, M. U.; González-
González and Armas–Torres 2019), and other branches of
STEM (Sullivan, A., & Bers, M. U. (2018).

Urlings, Coppens and Borghans (2019) described the
relationship between the development of computational
thinking concepts and carefully selected and purposefully
developed educators. The educator's role is to provide
opportunities for young learners for hands-on learning
experiences. Bers, (2018), in her recent research paper,
mentioned that developing CT competencies through hands-
on activities will have a positive impact on the child. Many
opportunities should be given for students to ask questions,
define problems, develop and use models, plan and carry out
investigations, analyze and interpret data using
mathematical and algorithmic thinking., construction of
applications and designing solutions, engaging in their own
learning process, communicating and collaborating with
peers.

During the first two years of preschool education, it is
necessary to work with simple tools González et al. (2017).
Solutions for early-stage learning are needed, and teachers
have to use a playful approach to open up the world of math,
science, and language skills. It is required to foster the love
for discovery and investigation in young students and to
develop the social and emotional skills to be prepared for a
lifetime of successful learning.

In general, the proposed educational activities will
emphasise the importance of having pre-determined goals,
and they will stimulate logic and analysis capacity. The
requested continuous learning by doing.

4.3 An integrated approach to teach CT in ECE.
Early years curricula all globally follow an integrated
approach for teaching and learning. Why should CT be
taught as a stand-alone subject area? The second implication
projected out through this review of published papers is that

we need to teach CT skills by taking the approach to integrate
this teaching with regular art, music, mathematics, and
science instruction. This allows students to develop a deeper
understanding of the core subject area curriculum while also
facilitating the development of students' CT practices and
skills (Bers 2002; Cejka et al. 2006; Kazakoff and Bers
2012, 2014; García-Valcárcel-Muñoz- Repiso and
Caballero-González Y. A. 2019, Rehmat et al. (2020).
Researchers and early years frontline practitioners should
support the view that 'play' is an essential medium for learning
in early years education and that it is part of a system that
contributes to embrace a cross-curriculum, integrated
approach that recognises the physical, cognitive, linguistic,
and social and emotional aspects of learning (Plowman &
Stephen, 2005).

4.4 Pedagogical approaches to teach CT in ECE.
The selected empirical research also suggests that ECE
children should be exposed to CT concepts following various
pedagogical approaches. Kazakoff, Sullivan and Bers
(2013); Lee and Junoh (2019; Portelance, Strawhacker and
Bers (2016) noted in their studies that children should
initially be given unplugged activities that do not involve
computers or computer programming and, for example, be
given a practical example of tasks with algorithm designs,
including a detailed step-by-step instruction set for solving a
problem or completing a task. The order of experiences
should move from (1) unplugged, (2) tinkering, (3) making,
and (4) remixing, providing developmentally appropriate
tasks for young children Rial-Fernández and Santacruz-
Valencia (2019). Roussou and Rangoussi (2019), suggested
that ECE classroom CT should be incorporated in a playful
way, suitable for the development of children, leading to
notable enhancement of the CT skills.

5. CONCLUSION
The reviewed literature added a new dimension in teaching
and learning CT in ECE towards a developmentally
appropriate integrated approach. It is crucial that we consider
'play' to be an essential element of teaching young children,
focus on teaching CT conceptual understanding from early
on, and that we choose the right tools for the job.

Suggestions for future studies can be divided into three
groups. First, there is a need to understand developmentally
appropriate practice in early years education through
research in the cognitive domain. Secondly, more practical
examples from evidence-based research should inform this
field of study and fill it with practical implementation plans
to enhance the teaching and learning of CT in ECE. Thirdly,
there is a need to develop authentic CT assessment tools to
access CT skills development in ECE. When children learn
to code, they should have prepared with a programmer to
code and create an algorithm.

6. REFERENCES
Berland, M., & Wilensky, U. (2015). Comparing virtual

and physical robotics environments for supporting
complex systems and computational thinking. Journal of
Science Education and Technology, 24(5), 628-647.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational thinking and tinkering:

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

98

Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157.

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J.
(2002). Teachers as designers: Integrating robotics in
early childhood education. Information technology in
childhood education annual, 2002(1), 123-145.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157.

Bers, Marina U., Carina González-González, and Mª Belén
Armas–Torres. "Coding as a playground: Promoting
positive learning experiences in childhood classrooms."
Computers & Education 138 (2019): 130-145.

Bers, M. U. (2019). Coding as another language: a
pedagogical approach for teaching computer science in
early childhood. Journal of Computers in Education,
6(4), 499-528.

Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American educational research
association, Vancouver, Canada (Vol. 1, p. 25).

Cejka, E., Rogers, C., & Portsmore, M. (2006).
Kindergarten robotics: Using robotics to motivate math,
science, and engineering literacy in elementary school.
International Journal of Engineering Education, 22(4),
711.

Çetin, M., & Demircan, H. Ö. (2020). Empowering
technology and engineering for STEM education through
programming robots: a systematic literature review. Early
Child Development and Care, 190(9), 1323-1335.

García-Valcárcel-Muñoz-Repiso, A., & Caballero-
González, Y. A. (2019). Robotics to develop
computational thinking in early Childhood Education.
Comunicar. Media Education Research Journal, 27(1).

González, Y. A. C., & Muñoz-Repiso, A. G. V. (2017,
November). Educational robotics for the formation of
programming skills and computational thinking in
childish. In 2017 International Symposium on Computers
in Education (SIIE) (pp. 1-5). IEEE.

Isnaini, R., Budiyanto, C., & Widiastuti, I. (2019,
December). Robotics-based learning to support
computational thinking skills in early childhood. In AIP
Conference Proceedings (Vol. 2194, No. 1, p. 020044).
AIP Publishing LLC.

Kazakoff, E., & Bers, M. (2012). Programming in a
robotics context in the kindergarten classroom: The
impact on sequencing skills. Journal of Educational
Multimedia and Hypermedia, 21(4), 371-391.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L.
(2012). A serious game for developing computational
thinking and learning introductory computer
programming. Procedia-Social and Behavioral Sciences,
47, 1991-1999.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,
Bailey, J., & Linkman, S. (2009). Systematic literature

reviews in software engineering–a systematic literature
review. Information and software technology, 51(1), 7-
15.

Komis, V., Romero, M., & Misirli, A. (2016, November).
A scenario-based approach for designing educational
robotics activities for co-creative problem solving. In
International Conference EduRobotics 2016 (pp. 158-
169). Springer, Cham.

Lam, R. W., & Kennedy, S. H. (2005). Using meta-analysis
to evaluate evidence: practical tips and traps. The
Canadian Journal of Psychiatry, 50(3), 167-174.

Lavigne, H. J., Lewis-Presser, A., & Rosenfeld, D. (2020).
An exploratory approach for investigating the integration
of computational thinking and mathematics for preschool
children. Journal of Digital Learning in Teacher
Education, 36(1), 63-77.

Lee, J., & Junoh, J. (2019). Implementing Unplugged
Coding Activities in Early Childhood Classrooms. Early
Childhood Education Journal, 47(6), 709-716.

Manches, A., & Plowman, L. (2017). Computing education
in children's early years: A call for debate. British
Journal of Educational Technology, 48(1), 191-201.

Papert, S. (1980). " Mindstorms" Children. Computers and
powerful ideas”.

Papert, S. (1987). Computer criticism vs. technocentric
thinking. Educational Researcher (Vol. 16, No. I)
January/February 1987.

Portelance, D. J., Strawhacker, A. L., & Bers, M. U.
(2016). Constructing the ScratchJr programming
language in the early childhood classroom. International
Journal of Technology and Design Education, 26(4),
489-504.

Rehmat, A. P., Ehsan, H., & Cardella, M. E. (2020).
Instructional strategies to promote computational
thinking for young learners. Journal of Digital Learning
in Teacher Education, 36(1), 46-62.

Rial-Fernández, B., & Santacruz-Valencia, L. P. (2019).
The Teaching of Programming is not the Future but the
Present. In 2019 International Symposium on Computers
in Education (SIIE) (pp. 1-6). IEEE.

Roussou, E., & Rangoussi, M. (2019, April). On the use of
robotics for the development of computational thinking in
kindergarten: educational intervention and evaluation. In
International Conference on Robotics and Education RiE
2017 (pp. 31-44). Springer, Cham.

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W.
(2020). Designing unplugged and plugged activities to
cultivate computational thinking: An exploratory study in
early childhood education. Asia-Pacific Education
Researcher, 29(1), 55-66.

Sullivan, A., & Bers, M. U. (2016). Robotics in the early
childhood classroom: learning outcomes from an 8-week
robotics curriculum in pre-kindergarten through second
grade. International Journal of Technology and Design
Education, 26(1), 3-20.

Trochim, W. M., & Donnelly, J. P. (2010). Research
methods knowledge base. 2006. Internet WWW page, at

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

99

URL:< http://www. socialresearchmethods.
net/kb/>(version current as of October 20, 2006).

Umam, M. U. K., Budiyanto, C., & Rahmawati, A. (2019,
December). Literature review of robotics learning devices
to facilitate the development of computational thinking in
early childhood. In AIP Conference Proceedings (Vol.
2194, No. 1, p. 020133). AIP Publishing LLC.

Urlings, C. C., Coppens, K. M., & Borghans, L. (2019).
Measurement of Executive Functioning Using a Playful

Robot in Kindergarten. Computers in the Schools, 36(4),
255-273.

Wilson, A., & Moffat, D. C. (2010, September). Evaluating
Scratch to Introduce Younger Schoolchildren to
Programming. In PPIG (Vol. 1, No. 1, pp. 1-12).

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Xia, L., & Zhong, B. (2018). A systematic review on
teaching and learning robotics content knowledge in K-
12. Computers & Education, 127, 267

ORCID Anika Saxena https://orcid.org/0000-0002-8527-6238

ORCID Gary Ka Wai Wong https://orcid.org/0000-0003-1269-0734

http://www/
https://orcid.org/0000-0002-8527-6238
https://link.springer.com/article/10.1007%2Fs40299-019-00478-w#auth-Gary_Ka_Wai-Wong
https://orcid.org/0000-0003-1269-0734

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

100

Computational Thinking
and Non-formal Learning

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

101

Bringing Physical Computing to an Underserved Community in an Informal
Learning Space

Chin-Lee KER1*, Bimlesh WADHWA2, Peter, Sen-Kee SEOW3, Chee-Kit LOOI4
2 National University of Singapore, Singapore

1, 3, 4 National Institute of Education, Nanyang Technological University, Singapore
chinlee.ker@nie.edu.sg, bimlesh@nus.edu.sg, peter.seow@nie.edu.sg, cheekit.looi@nie.edu.sg

ABSTRACT
This study investigates how underserved children in the
community develop Computational Thinking skills through
learning physical computing with the support from older
tutor volunteers. The children learned to construct physical
computing projects by learning to code the micro:bit, and
using various input sensors and controlling output devices.
We observed the students and their interaction with the
mentors to understand how they develop their
Computational Thinking skills as they construct the
projects. From our findings, learning with tutors can provide
the support in developing Computational Thinking skills in
the children.

KEYWORDS
Computational Thinking, Physical Computing, Computing
Education, Out-of-school Learning

1. INTRODUCTION
The wide-spread availability of devices like the micro:bit
has brought physical computing into the mainstream of
computing education. In Singapore, the micro:bit has gained
popularity in schools buoyed by the Ministry of Education
(MOE) initiative, for all primary school students to have 10
hours of coding in school. An important imperative of such
program is to develop students’ Computational Thinking
(CT) skills as they participate in such activities. Students
participate in coding activities which are run by external
trainers engaged by the schools. From our previous study
(Seow, Wadhwa, Lim & Looi, 2020), we found that such
training programs may not help students to develop CT
skills as students do not explicitly engage in using cognitive
skills such as abstraction, or practice such algorithmic or
system building.

In this study, we investigate how students develop CT skills
as they participate in activities in an informal context
outside schools. They learn to code the micro:bit and build
computing projects supported by mentors during one hour
sessions spanning over 8 weekends.

In our study, we were guided by the following questions:

1. How do we design a physical computing program for
out-of-school context?

2. What are the roles of mentors in developing CT skills
for students?

3. What CT skills do students develop as they participate
in computing activities outside school?

2. RELATED WORK
2.1. Physical Computing and Computational Thinking
Learning physical computing is an emerging approach to
learn computing. It teaches students about coding and CT
through hands-on activities with sensors using small

computing boards like the micro:bit (Rogers et al., 2017).
The project-approach to physical computing, an often-used
pedagogy in schools, serves as an open-ended exploratory
approach to examine the CT competencies that students
should learn. We observed that among many other factors
that inhibit the development of CT skills, the inherent
complexity of problem and solution space could overwhelm
students. Additionally, the cognitive load in designing and
developing their solutions could also hinder them in the
development of CT skills.

Papert (1972) described CT as a mental skill a child can
develop from practicing programming. Wing (2008)
catalysed a ‘CT for all’ movement. However, CT definition
has been debated, and it is often argued if CT makes better
problem solvers or if practice of coding can help develop
CT skills, with claims that everyone can benefit by CT not
yet being fully substantiated by studies (Nardelli, 2019). In
this study, we have adopted the CT definitions proposed by
Digital Promise as it succinctly describes cognitive
processes and computation practices (Digital Promise,
2020).

2.2. Learning Computing in School
In 2020, Singapore has made it mandatory for all primary
school children to undergo a 10-hour coding program. The
initiative is to help students to develop an appreciation for
CT and coding concepts. For the implementation of the
program, schools often engage the services of external
vendors to run workshops for students across the level. This
is a pragmatic reason considering that schools do not have
manpower resources to run the workshops for large numbers
of students across the level. Furthermore, schools may not
have teachers that have the knowledge or experience to
conduct the workshops for a large group of students. The
vendors can offer various programs to introduce coding
such as Scratch and Micro:bit. Whilst the intent is to help
students to learn about CT through coding, there is much
more emphasis in getting the students to code than
developing CT skills. Students are not involved in thought
processes of formulating problems that can be solved
computationally which is the essence of CT. From our prior
study (Seow et al., 2020), such workshop program may not
help students to develop CT skills as students do not
explicitly engage in using cognitive skills such as
abstraction, or practice such algorithmic or system building.

2.3. Leveraging on Community resources
Community resources, e.g., volunteers, can play the part of
an informal educator. These educators come up with
programs, choose and modify training material, as well as
expedite learning tasks (Fritz, Karmazin, Barbuto Jr &
Burrow, 2003). The pedagogies adopted by volunteer
educators play a critical role in influencing how good the

mailto:chinlee.ker@nie.edu.sg
mailto:bimlesh@nus.edu.sg
mailto:peter.seow@nie.edu.sg
mailto:cheekit.looi@nie.edu.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

102

learning program is and the kind of outcome they have on
young students (Worker, 2017). Volunteer educators (or
mentors) prominently affect the organisation of the learning
environment (Borden, Schlomer & Wiggs, 2011; Evans,
Ching & Ballard, 2012). They can also encourage children
to participate willingly by making activities fun (Worker,
2017). In a study by Worker (2017), volunteer educators
used a range of pedagogies when students designed and
constructed a device. These volunteers used targeted
questions and gave precise design suggestions. In another
study by Benander and Benander (2008), volunteers
performed active demonstration to their students. This
resulted in the students grasping a better understanding of
the computing concept. The use of class time was
productive as well.

2.4. Informal Mentoring
According to Hidi and Renninger (2006), mentors play a
crucial part in coming up with learning experiences to spark
and sustain interest in students. They push students to learn
even more, link the process of learning to their individual
identities, as well as transform a situational, fleeting interest
into a personal one. Many youths have an informal mentor
(Beam, Chen & Greenberger, 2002) who can be a major part
of their own lives (Klaw, Rhodes & Fitzgerald, 2003). In
informal mentoring, it is important for mentors to
communicate effectively with their mentees and have a
suitable character that matches that of their mentee
(Norling, 1995; Pisimisi & Ioannides, 2005; Townsend,
2002).

3. DESCRIPTION OF STUDY
3.1 Participants (Students, mentors)
In this study, students were part of a community student day
care centre. The learning setting was outside of the
classroom, instead of in a formal primary school or
institution. Students consisted mainly of lower SES
students, ranging from Primary 4 to 6 (10 to 12-year-olds).
Our volunteer mentors, also known as tutors, were 18-year-
old students from Junior Colleges. Although only a few of
them had little experience in computing, not everyone was
familiar with the micro:bit or had any form of computing
experience.

3.2 Data Collection (Methods)
Observations of the students and their interaction with the
tutors were made for all lessons. On the final weeks of the
workshops, we selected 2 groups for more in-depth
observation. For these groups, we observed the interaction
between the students and tutors, and recorded their
discussion and implementation of the project. For the group
project, tutors wrote down field notes on how the students
behaved in terms of 4 dimensions—say, write, do, and
make. Lastly, photos, audio and video recordings of the
students were collected.
We analysed the CT skills of students in terms of (i)
cognitive processes and (ii) practices based on the definition
of CT by Digital Promise (2020). The 4 types of cognitive
processes are essential CT skills:

(i) Abstraction is finding out and illustrating the most
relevant portions of a complicated structure. It includes
forming a procedure or categorising concepts.
(ii) Decomposition is getting down to the basics and
disentangling the whole structure into small blocks,
enabling simplicity and clarity.
(iii) Pattern recognition is noticing the associations or
interconnections between pieces of information. It
sieves out interactions between a cause and effect,
enabling one to forsee or expect what would happen
next time.
(iv) Testing and debugging refers to making sure that
the newly created system is working. Testing is double-
checking if the intended process runs smoothly.
Debugging is fixing the issues discovered through
testing that were deemed faulty or wrong.

The 4 types of computational practices are:
(i) Creating algorithms refers to coding the program
or constructing a chart that depicts key ideas, and
procedures to solve a problem.
(ii) Working with data refers to collating, working with
figures, organising, making sense of the numbers and
presenting it meaningfully.
(iii) Understanding systems means simplifying and
comprehending complicated plans by applying the
practices of – abstraction, decomposition, pattern
recognition, and testing and debugging.
(iv) Creating computational models involves piecing
together the codes, application, information and
everything that depicts the comprehension of the
system.

3.3 Activity: The 8-week programme for students
We started off with a basic training session for tutors,
introducing them to the micro:bit. It was followed by the 8-
week student programme. There was one other intermediate
training session at the end of lesson 4, as seen in Table 1.
The first 3 student sessions were on basic micro:bit projects.
There was a 1 to 1 mentoring (or tutoring) approach. Tutors
(or mentors) communicated with their students in an
engaging way, prompting them using scaffolds. The
student-tutor interaction enabled students to build rapport
with their tutors and create a tiny community to learn
programming with the micro:bit. Tutors were encouraged to
modify or adjust the lesson content according to the
student’s learning pace. They were not required to explicitly
follow the lesson slides or guidelines in the given sequence.
Most tutors were learning together hand in hand with the
students. Students were leading the learning. Tutors
followed the students’ learning patterns and attention spans.
This has encouraged self-directed learning.
Students were organized into 4 groups. In some lessons
students moved around to different learning stations to learn
how to use different micro:bit tools like sensors.
In this program, the learning outcomes of the students
were difficult to be assessed as compared to formal
settings. Instead of being officially graded in exams,
students completed a hands-on project—building a Smart
Home. With this context, tutors provided an example by
giving them a problem and a solution on how to improve a
home, using the micro:bit. While in groups, they were told

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

103

to construct a smart home model, programming for any
smart feature of their choice. The instructors probed
students to think of an issue and generate alternative
solutions. They then presented their model and idea on the
last session. The approach was flexible and more open-
ended, and the projects allowed students to freely explore
programming in the real-world context. Students discussed
in their groups, experimented with different codes and
designs, as well as tinkered.

Table 1. Programme Structure
Session Activity Description

T1 Training session for
Tutors—Basic

S1 Student Basic Training —
Calming LEDs

S2 Student Basic Training—
Rock Paper Scissors

S3 Student Basic Training—
Pressure Switch Alarm

- LED

S4 Student Basic Training—
Pressure Switch Alarm

- Buzzer, Radio

T2 Intermediate Training
session for Tutors

S5 Student Intermediate
Training—Micro:bit
Extensions and Tools

- Breadboard
- Input Sensors:

Distance, Light,
Water,
Temperature,
Sound, Motion

- Output: Rainbow
LED, Servo
Motor

S6 Student Intermediate
Training

S7 Student Group Project—
Create a Smart Home

S8 Student Group Project

Introduction to
the micro:bit
Pair Work- One
to one learning
with the tutors

Pair Work

Pair Work

Pair Work

Learning
Stations—
Students move
as a group in a
rotation basis

Learning
Stations
Group 1:
Automatic
Sliding Door

Group 2: Anti-
theft Phone
Sensor

Group 3: Card-
Swiping System
Group 4: Safe
Distance Sensor

4. OBSERVATIONS and ANALYSIS
There were 12 students observed for lessons and project.
For training lessons, each student was paired with one
dedicated tutor. For the project, students were put in
groups. They worked in 4 groups. Each group had 2-4
students and was mentored by 2-3 dedicated tutors. Tutor
observations during training lessons were captured
during the end of lesson debrief sessions.

A structured observation approach was followed for
the group project portion of the program to assess
CT competence through their behaviour, verbal cues,
visual cues and artefacts created. We tried to capture what
students said, wrote, skills demonstrated, and artefacts
created, with a focus on understanding their CT cognitive
processes and practices.

Typically, students brainstormed with tutors by
throwing out suggestions. They then decided on the
problem they want to solve. Next, they conceptualised
the solution by drawing, listing out sensors and
designing how the prototype should look like, in
relation to the placement of other components. In this
step, they brought in previous experiences and built on
them gradually. Lastly, they built the prototype, coded and
tested their solutions.

Below, we present our observations and analysis on
2 participant groups—Group 2 and Group 4, followed
by examples of the tutor observations based on the
above framework.

4.1 Observations of Group 2
Group 2, making an anti-theft phone sensor, used input from
a light sensor and programmed it to output
sound(buzzer) and light (LED).

4.1.1 Cognitive Processes
Abstraction
Students demonstrated good abstraction skills by
(i) choosing to focus on the light sensor, among all the
sensors available to them, (ii) narrowing down the project
scope by iteratively communicating the concept and
illustrating the complex ideas of the alarm system. As
seen in Figure 1, during brainstorming, a student briefly
drew out the phone holder, placement of the light sensor,
LEDs and buzzer. He explained it verbally through
pointing out the placement to the tutor, instead of labelling
parts of the model.

Figure 1. Layout Drawn by a Student during Brainstorming.

Decomposition
Students also demonstrated decomposition skills by
systematically breaking down the algorithmic tasks of

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

104

coding input from the light sensor and coding the part of
after receiving the input. They could explicitly explain each
step e.g., the first code step was articulated as “We would
like to tell the micro:bit to register the amount of light.” The
input transformation was further decomposed into the code
for LED and the code for the buzzer. It was guided by tutors
though. For example, prompts like “So now when there is a
lot of light, what do you want the micro:bit to do? or “We
want the micro:bit to make sound. What should we do?”
resulted in students pondering through the next step.

Pattern Recognition
Students showed a good understanding of the pattern
between the placement of the phone, light received, and
input reading obtained. An interesting point was the group
placing the light sensor underneath the phone. When the
phone is placed on the phone holder, the light sensor is
covered and does not receive any light. On the contrary,
once the phone is lifted from the phone holder, the light
sensor is exposed to light and receives light. This pattern
recognition forms the basis of this project. Tutors’
scaffolding with questions e.g., “When the phone is on top
of the light sensor, is there a lot of light or very little light?”
helped students see the reason to link the concepts of input
with multiple outputs. A student said “This is where you
place the phone, then after that LED lights will be placed
around it. When someone takes away the phone, there will
be sound, and the lights will also light [up].” Pattern
recognition was also reinforced through drawing students’
attention to making connection with the past lessons e.g.,
guidance like “Remember the last time when we tried using
the light sensor, what was the threshold that you used in the
code? Was it 700-800?” helped students to recall. They also
tested with different values outside the threshold range.

Testing and Debugging
Students continuously tested and debugged in resolving the
issues e.g., if the volume of the buzzer was too soft, they
tested with various values to get the optimum. In one case,
they isolated the problem to hardware and not code-
software and switched to a different buzzer. Another
instance of isolating the problem was when they tested the
code using digital and analog blocks and concluded that the
digital block was the correct one. They similarly tested for
different light thresholds as well.

Figure 2. Final Model of the Anti-theft Phone Sensor.

4.1.2 Practices
Students demonstrated their algorithmic thinking by
handling multiple conditions in the logic, and appropriately
using e.g., the “if-else” and “digital write pin” blocks. We

also observed systemic thinking as the students
demonstrated a good understanding of the problem and
solution in a wider context of Smart home. Furthermore, as
seen in Figure 2, for creating computational models, the
group made use of Lego blocks to place and secure the light
sensor in it. They also connected the light sensor, LED and
buzzer to the correct pins to piece the whole smart home.
4.2 Observations of Group 4
Group 4 worked on a self-conceptualized project idea based
on the ‘safe distancing’ concept, very relevant to the present
COVID context. They made use of the concept of “On pin
pressed”, which is similar to the pressure switch alarm,
covered in the third lesson. If detected, triggered by
someone violating the marked line in a human queue, it
would send a warning sound message indicating a violation
of safe distancing rule.

4.2.1 Cognitive Processes
Abstraction
As seen in Figure 3, students demonstrated abstraction
skills by (i) simplifying and illustrating their concept and
plan by drawing out the complex idea, (ii) narrowing the
project scope to a single objective of preventing people from
being too close or cutting queues, and (iii) listing their needs
for carrying out the project. A student aptly verbalized “So
if anyone steps on the carpet, there is this light and
something saying [a message], so he will go all the way to
the back of the queue”.

Figure 3. List of Materials and Layout of People in a Queue.

Decomposition
Students demonstrated decomposition skills by (i)
systematically dividing the logic into 3 chunks—physically
creating the distance sensor by placing the micro:bit
underneath the carpet (i.e., in-between 2 people 1 meter
apart), carrying out the appropriate action upon pin pressed,
and resetting the state and (ii) dividing the output into 3
parts—the warning message, LED, and alarm tone on the
buzzer. These parts are seen in the code in Figure 4.

Pattern Recognition
The group demonstrated pattern recognition skills by
applying the patterns they have seen, e.g., in real life human
queues and in the example from an earlier lesson.

Testing and Debugging
Students in this group relied on tutors for coding though, and
therefore did not demonstrate much of testing and
debugging skills.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

105

Figure 4. The Code of the Safe Distance Sensor.

4.2.2 Practices
The systemic skills were demonstrated, similar to that in
Group 2, by seeing safe-distancing application in context of
a smart environment. They also showed a good
understanding of constraints and resources needed for a real
application e.g., needing many micro:bits for a long queue.
Lastly, students created computational models successfully.
This was evident in their model in Figure 5 linking the pins
to the extensions—buzzer or LED, or in piecing the whole
setup of the safe distance sensor together.

Figure 5. Final Model of the Safe Distance Sensor.

4.3 Tutors’ Observations
Our observations were based on the framework shown in
Figure 6. The cognitive processes and practices were
analysed based on the 4 behaviors—say, write, do, make.

From the tutors’ observation framework, abstraction skills
were more developed as (i) students summarised the
concepts in their own words, and (ii) conceptualised the idea
by drawing it. Students could successfully recognise the
patterns of (i) the relationship between input and output, and
(ii) labels on the sensor as corresponding to the pins on the
micro:bit. Students were good in testing and debugging as
(i) despite not being given any prompts, they could still
distinguish when to use “If” and “On start”, correcting their
mistakes automatically. Tutors observed that a student
could create algorithms by (i) drawing diagrams, and (ii)
using “if” code. Students could work well with data as they
(i) experimented with different threshold numbers until they
got their ideal value. Students could understand systems
competently as they (i) adapted the code to the context of a
theft case, (ii) linked past experiences of the light sensor to
estimate the light sensor threshold, and (iii) linked the light
sensor to a real world application. All students could create
computational models by (i) building the structure together,
and (ii) suggesting the positioning of LED lights.

Figure 6. Tutors Observation Framework for CT

5. FINDINGS AND DISCUSSION
This study is a first-hand experience of designing a physical
computing program for an underserved community in an
out-of-school context. Here are a few things that made this
volunteer run program work. First, the program was held at
a place next to students’ homes making it easier for them to
attend. Students and tutors knew each other through other
programs and were familiar with the rules and regulations
of the place. Secondly, we conducted a survey to know the
experience students have with physical computing programs
and device usage in general. This informed us what needs to
be provided. We also checked whether students have access
to internet and devices, school supplies, and in identifying
the right content-area tutor. Thirdly, the program was
designed to have collaboration opportunities among tutors
as well among students to encourage attendance, facilitate
interaction and peer learning. Lastly, observing the
individual student needs and pace closely through 1 to 1
student-tutor pairing helped monitor each student’s
progress. Innovating the project concepts and providing for
additional resources made the program meaningful and
enjoyable to students.

Mentors played a significant role in developing CT skills for
students. Mentors not only helped provide a good
foundation of problem-solving and decomposition by
helping students through a design thinking process, but they
also contributed to students’ learning by coming up with an
example or adding a new concept. They built on the
student’s interests, keeping them learning and engaged.
They also helped develop an appreciation and confidence in
student abilities by answering their questions, providing
moral support, and learning together with them. They also
taught them how to be responsible by helping them
understand the importance of managing resources in a
project. We find that a close relationship between mentor
and student may be the key to the effectiveness of the
program. Greater attention to the importance and building
of a close relationship between students and mentors could
help inform the design of such out-of-school programs.

Students demonstrated sufficiently developed problem-
solving and abstraction skills. They were new to sensors and
related coding. Therefore, their pattern recognition and
coding skills were not seen to be at the same level. They
showed a keen interest in creating a project for a real-life
context, and in testing and debugging code. Our experience
shows that well designed, scaffolded physical computing
activities have the potential to improve students’ CT skills.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

106

It is true that some of the students do not engage 100% with
the experience in such informal settings, but for the
majority, it served as an opportunity to add CT skills to their
set of skills.

Although this exploratory study is susceptible to some
limitations, it explored an opportunity in a non-formal
education situation. In this study, we have been able to
explore variables and factors to be addressed in future
research works related to the acquisition of CT through
physical computing. We believe that such studies are
important in achieving broader goals of studying technology
as means to reduce socio-economic gaps in educational
achievement.

6. ACKNOWLEDGMENTS
We would like to thank Ulu Pandan Stars Centre
(UPSTARS) for collaborating with us. This project was
funded by the grant OER 03/18 PS, under the National
Institute of Education, Nanyang Technological University,
Singapore, IRB Ref. No. IRB-2019-02-018.

7. REFERENCES
Beam, M. R., Chen, C., & Greenberger, E. (2002). The

nature of adolescents' relationships with their “very
important” nonparental adults. American journal of
community psychology, 30(2), 305-325.

Benander, A. C., & Benander, B. A. (2008). Student
monks–Teaching recursion in an IS or CS programming
course using the Towers of Hanoi. Journal of
Information Systems Education, 19(4), 455.

Borden, L. M., Schlomer, G. L., & Wiggs, C. B. (2011).
The evolving role of youth workers. Journal of Youth
Development, 6(3), 124-136.

Digital Promise. (2020). Key Concepts of Computational
Thinking. Retrieved January 26, 2021, from
https://digitalpromise.org/initiative/computational-
thinking/key-concepts-of-computational-thinking/

Evans, E., Ching, C. C., & Ballard, H. L. (2012).
Volunteer guides in nature reserves: exploring
environmental educators’ perceptions of teaching,
learning, place and self. Environmental Education
Research, 18(3), 391-402.

Fritz, S., Karmazin, D., Barbuto Jr, J. E., & Burrow, S.
(2003). Urban and rural 4-H adult volunteer leaders'
preferred forms of recognition and motivation. Faculty

Publications: Agricultural Leadership, Education &
Communication Department, 24.

Hidi, S., & Renninger, K. A. (2006). The four-phase
model of interest development. Educational
psychologist, 41(2), 111-127.

Klaw, E. L., Rhodes, J. E., & Fitzgerald, L. F. (2003).
Natural mentors in the lives of African American
adolescent mothers: Tracking relationships over
time. Journal of Youth and Adolescence, 32(3), 223-232.

Nardelli, E. (2019). Do we really need computational
thinking?. Communications of the ACM, 62(2), 32-35.

Norling, E. (1995). Encouraging networking through
informal mentoring: a look at a newly-established
mentor scheme. In Second Australasian Women in
Engineering Forum. RMIT, Australia.

Papert, S. (1972). Teaching children
thinking. Programmed Learning and Educational
Technology, 9(5), 245-255.

Pisimisi, S. S., & Ioannides, M. G. (2005). Developing
mentoring relationships to support the careers of women
in electrical engineering and computer technologies. An
analysis on mentors’ competencies. European journal of
engineering education, 30(4), 477-486.

Rogers, Y., Shum, V., Marquardt, N., Lechelt, S., Johnson,
R., Baker, H., & Davies, M. (2017). From the BBC
Micro to micro: bit and Beyond: A British
Innovation. interactions, 24(2), 74-77.

Seow, P., Wadhwa, B., Lim, Z-X., & Looi, C-K. (2020).
Towards using Computational Modeling in learning of
Physical Computing – An Observational Study in
Singapore Schools. In Kong, S-C (Ed.), Proceedings of
the Fourth International Conference on Computational
Thinking Education 2020 (pp. 100-107). Hong Kong,
Hong Kong (China): The Education University of Hong
Kong.

Townsend, G. C. (2002). People who make a difference:
Mentors and role models. ACM SIGCSE Bulletin, 34(2),
57-61.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3725.

Worker, S. (2017). Volunteer educators bring their own
ideas about effective teaching to a 4-H
curriculum. California Agriculture, 71(4), 208-213

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

107

Combining Maker Technologies to Promote Computational Thinking and Heart-
ware skills through Project-based Activities: Design Considerations and Empirical

Outputs

Ali HAMIDI1*, Sepideh TAVAJOH2*, Marcelo MILRAD3*
1,2,3 Faculty of Technology, Linnaeus University, Sweden

ali.hamidi@lnu.se, st222yd@student.lnu.se, marcelo.milrad@lnu.se

ABSTRACT
Many countries have started to integrate Computational
Thinking (CT) as an essential 21st century skill into different
schools’ STEM related subjects. Despite positive
developments in terms of CT integration into schools’
curricula, there are still important issues and challenges to
address on how to teach and use programming and CT in the
classrooms. As part of our ongoing efforts to introduce and
to apply different maker technologies to foster CT, this paper
describes the results of an exploratory study aiming at
designing and implementing learning activities in informal
settings using the Engino® Robotics Platform (ERP) and the
BBC micro:bit. We conducted a one-week-long workshop
with the participation of 22 children aged 10-15 years old.
The constructionist theoretical perspective and the Four P’s
Creative Learning theory (projects, peers, passion, and play)
were applied for conceptualizing and designing our
activities. The initial results of our efforts indicate that
firstly, learning contexts enriched by the combination of
different maker technologies can help students to develop
CT skills; Secondly, remixing learning experiences can
bring CT into STEM subjects; and lastly, the design of the
proposed workshop and the planned activities serve as the
basis of a learning environment that can foster problem
solving, creativity, and heart-ware skills when the four P's
are taken into account. The current study contributes with
empirical knowledge that can be used for the advancement
of design practices to promote CT development in
connection to STEM-related subjects both in informal and
formal learning settings.

KEYWORDS
computational thinking (CT), STEM education,
constructionism, informal learning, four P’s creative
learning theory

1. INTRODUCTION
Many countries have recently started to make the necessary
changes in the primary and secondary school curriculum to
integrate Computational Thinking (CT) as part of the 21st
century skills included in their different school subjects
(Grover & Pea, 2018). In Sweden, the integration of CT and
programming in the school curricula has started in 2017
based on a National IT strategy, which builds upon the
suggested proposal by the National Agency of Education.
Accordingly, schools’ syllabuses were updated by
positioning CT in the revised curricula and focusing on
programming, algorithmic thinking, and problem-solving in
the subjects of Mathematics and Technology (Skolverket,
2020). Despite these positive developments, there are still
important issues and challenges with regard to how to put in

practice these changes into the curriculum. It is worth to
mention, for example, that there is not yet a national strategy
that provides recommendations on how to practically
implement these curricular changes (Kohen-Vacs & Milrad,
2019) and operationalize them in schools. An evidence of
such claims is a recent survey answered by more than 550
teachers conducted by the Sweden teachers’ union. It reveals
that more than 70% of the teachers who took part in CT and
programming related courses still feel very uncertain about
how to teach and use programming and CT in schools
(Dagens Nyheter, 2020). Consequently, there is a need for
carrying out research and implementation efforts related to
how to address these topics and put them into practice in
schools.

In line with the efforts mentioned before, this paper presents
the results of an exploratory study aiming at to introduce
different maker technologies (Fitton et al., 2015) to design
CT practices and activities. For this purpose, we use the ERP
and the BBC micro:bit. One of our aims is to design and
foster educational activities in order to develop CT skills and
abilities for students in K-12 schools both in formal and
informal learning settings (Kynigos & Grizioti, 2020;
Yilmaz Ince & Koc, 2020; Lee & Low, 2020). Our approach
can be characterized by the combination of constructionist
views of learning supported by the use of complementary
maker technologies and materials. The specific focus here is
on STEM-related subjects in informal learning settings that
support the aims described above. Considering the
increasing need for designing and developing educational
activities and support for teachers in terms of CT educational
materials (Tyrén et al., 2018), the use of maker technologies
and software systems may help to compensate the limitations
of each one of these tools and systems if they were used
separately. When different maker technologies and materials
are used in CT related activities, a positive relation is exerted
between designing and learning throughout structural
aspects of CT that expands users’ perceptions and
understanding of it (Sung et al., 2017). Remixing
experiences that are referred to sharing, modifying,
embedding, or adapting an object within another object, are
considered as an element of a CT pedagogical framework as
proposed by Kotsopoulos et al., (2017). This framework
covers other aspects of pedagogical experiences in
connection to constructionist education such as making and
tinkering. To date, with the high expectations of developing
STEM skills (Sung et al., 2017), there have been attempts to
apply different approaches to teach these areas together with
CT development (Kohen-Vacs et al., 2020). Thus, the
research question that is at the core of this work can be
formulated as follows: What are the effects of

mailto:ali.hamidi@lnu.se
mailto:st222yd@student.lnu.se
mailto:marcelo.milrad@lnu.se

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

108

combining different Maker Technologies while trying to
promote CT skills in informal learning settings?

The remaining of the paper is organized as follows, in
section II we describe our approach and the theoretical
perspectives that guide our research efforts. In section III we
present the settings and the activities carried out as part of
these efforts. The data collection methods we have used are
described in section IV while section V presents the analysis
and outcomes of our work in the findings & discussion
section. Finally, the conclusions are presented in section VI.

2. METHODOLOGICAL APPROACH
In this section we present both the theoretical perspectives
that guide our work followed by the technological approach
used in the activities described later in the paper.

2.1. Theoretical Approach
Considering the challenges related to teachers’ CT and
programming competences and the lack of suitable
knowledge and infrastructure in schools (Kohen-Vacs &
Milrad, 2019), we have decided to explore our research ideas
within the context of informal learning. According to Lee et
al., (2019), heart-ware skills can be developed in informal
learning settings beyond the school’s curricula. Heart-wear
skills refer to the holistic development of students in terms
of active contribution, gaining confidence, and leadership
opportunities. As part of our ongoing practices to introduce
and apply different maker technologies (Fitton et al., 2015)
for CT development we considered different aspects of an
appropriate activity from a constructionist perspective which
is used as a theory of learning and a theory of design too
(Kynigos, 2015). However, as argued by Kynigos & Grizioti
(2018), the challenges for designers and teachers still remain
when new affordances of maker and digital technologies are
introduced. In order to increase the level of the participants´
engagement with our practice, we considered also the theory
of Four P’s Creative Learning as suggested by Resnick
(2014). According to this theory, four factors related to
Projects, Peers, Passion, and Play are the guiding principles
for the active engagement of pupils in the construction and
explorative approaches to CT.
Guided by these ideas, we have designed several learning
activities as part of a one-week-long workshops for engaging
students with a few CT tools related to maker activities,
design and programming in connection to STEM related
subjects. The ERP and the BBC micro:bit have been used in
a summer camp workshop with the participation of students
to integrate the potentials and affordances of each system,
and also by the combination of those two together. We
intended to cover most of the STEM elements through the
application of the functionality and affordances of these two
systems in the context of authentic learning scenarios. While
using the Engino robotics sets in some of our activities
brings together the Technology and Engineering parts of the
STEM (Yilmaz & Koc, 2020), the workshop on the use of
micro:bit was designed with a particular focus on the Science
part. The technological aspects of the two technologies and
software tools we used in our workshops are presented in the
coming subsection.

1 https://enginoeducation.com/

2.2. Technological Approach
Engino 1 proposes a novel building system of modular
connectors that provides a three-dimensional building
structure. It enables users to simply snap-fit on various
locations of building blocks in order to construct functional
models quite easily and quickly. The Engino sets are
designed for different age groups from simple constructing
level with building blocks to advanced wireless robotics that
include peripherals and sensors for students of all ages
(Engino, 2020). The controllers can be programmed either
manually or through a scratch-like programming software
that is named KEIRO™ which is a key element of the
system. The drag-and-drop block based graphical
programming platform can be switched to an Arduino IDE
environment providing both C/C++ and Python
programming languages.

BBC micro:bit 2 is a small microcontroller that was
developed in 2015 to encourage students to become creative
in the digital world in connection to STEM subjects with the
possibility to be connected to other devices or sensors. The
matrix display, programmable buttons, and built-in sensors
are providing an educational platform with a lot of potential
to be used in educational settings (Tyrén et al, 2018). The
Microsoft MakeCode editor is a free programming
environment that is used for coding with the micro:bit by
snapping different blocks together. In the next section we
described the settings and activities in which our exploratory
study took place.

3. SETTINGS AND ACTIVITIES
During the summer of 2020, 22 children aged 10-15 years old
gathered at the Innovation Lab located at Videum Science
Park in Sweden, to carry out different activities by using the
technologies mentioned above. The children took part in 5
workshops, conducted on daily basis for one week, each one
lasting 7 hours. Two researchers in collaboration with five
tutors from Linnaeus University (LNU) participated and
worked together to carry out the workshops. As shown in
Table 1, students were divided in two groups, each one
consisting of 11 children. Each group took part in four
different workshops including Web design, 3D printing,
Engino (focus on Robotics), and micro:bit (focus on STEM)
in order to get familiar with different digital tools and
technologies. However, the focus of this study is on the two
latter workshops as our emphasis is on CT skills and
programming. While one group of children joined for
example the Engino workshop, the another group of children
worked with the micro:bit. Each daily workshop comprised a
three‐hours morning session, one‐hour lunch break, and a
three‐hours afternoon session. In the morning, we conducted
an introduction and instructions to simple practices on how
to use the different tools and continued with the students’
practical activities and experience in the afternoon. While the
first four days of the workshops followed the structure
described in table 1, the last day was specified to conduct a
competition and students were free to work on their previous
products, to develop them, and to have group collaboration.
Students’ parents were also invited to join their children in
the last day.

2 https://microbit.org/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

109

Table 1. Workshops’ Schedule (Each Day 7 Hours)

3.1. Robotics Workshop
This workshop began with an introduction to the ERP
equipment and instructions on how to use it. The workshop
was designed based on two main activities: constructing
robots and programming them. According to our previous
experiences, in order to maximize the productivity of this
workshop (given the time constrains we had) we provided
half-built models and asked the participants to add other
required peripheral devices and make them ready for
programming. The idea here was to increase children’s
motivation when they change or redesign the models
according to their own interests to increase their sense of
ownership of their designs. Different sensors were also
available to control the robot by the means of programming.
As shown in Figure 1, two main tasks were designed.

tasks were explored and examined with the students to make
them familiar with the materials and programming software.

Figure 2. Application of the Maker Technologies in the

Context of a Greenhouse

As shown in Figure 2, the children were asked to fill the
small pots with soil and to plant seeds for better making
sense of this authentic situation. Thereafter, they mounted
the micro:bit in the greenhouse and measured the
temperature and light level. A fan also was connected to the
micro:bit that should be set to switch on when the
temperature exceeds a pre-defined value. Similar to the
previous workshop, children worked in pairs to carry out the
given tasks. Table 2 below summarizes the focus and
description of the activities for each one of the workshops.

 Table 2. Workshops’ Focus and Description
Focus Activity Description

Figure 1. Tasks to perform in the Engino Workshop

In the first one, we designed a lane in which the robot needs
to be programmed to pass on the road without hitting the
barriers. In the next task, a line tracker robot (car or train)
should be controlled to follow the black line that was taped
on the floor. In both tasks, two students created a group and
worked together to carry out the assignments. In order to
perform that, two sensors including an infrared (IR) sensor
and an ultrasonic sensor were used. To get familiar with the
devices a brief instruction was presented on how to calibrate
and set them up when they were connected to the software.

Robotics

ERP

STEM

BBC
micro:bit

Constructing experience

Developing & redesigning half-built robots

Connecting sensors and other peripheral
devices and setting them up

Programming the robots as line tracker

Working with a ready built greenhouse and
planting seeds

Working with sensors for measuring humidity,
temperature, and light level

Connecting the sensors and calibrating them

Programming to activate the fan depending on
temperature and humidity

Technology and software integration to the
greenhouse

3.2. STEM Workshop
The aim of conducting the STEM workshop by using the
micro:bit was to design an activity in which students could
be involved in authentic and meaningful activities such as
building a greenhouse and controlling it using different
sensors and actuators (see Figure 2). This workshop was
conducted one day after the robotics workshop. The idea was
that students’ experience and knowledge gained from the
first workshop could be used in the second one. In addition,
the physical structure of the greenhouses that were used in
this workshop was built using the Engino construction
physical materials and blocks. Thus, this approach provided
an opportunity to think and compare different affordances
provided by each one of the proposed technologies and their
use in connection to STEM, programming environments,
and CT. This workshop began with an introduction about the
micro:bit and the Microsoft MakeCode. Thereafter, simple

4. DATA COLLECTION METHOD
Data was collected from three sources namely: a pre-
questionnaire, observations and informal discussions during
the workshops, and a post-questionnaire. The pre-
questionnaire was filled online before the start of the
workshops by 16 students with the aim of getting
information about the participants’ background in
programming and CT basics. We asked them to provide brief
information about their knowledge and experience in visual
programming languages, what programming is used for, and
how to control a device through programming. Due to the
nature of our exploratory study and the oral and written skills
of the participants, we decided to conduct the data collection
process through a participant observation approach where
the researchers observed the students’ activities and
challenges while interacting with them through informal
discussions. The latest helped us to collect data through a
close familiarity with the individuals. The paper-basedpost-

Day#1
Day#2
Day#3
Day#4
Day#5

Engino
Group Ι
Group ΙΙ

Micro:bit 3D printing Web design
Group ΙΙ - -
Group Ι - -

Group Ι Group ΙΙ
Group ΙΙ Group Ι

Group Ι + Group ΙΙ

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

110

questionnaire was answered after the completion of all
workshops to collect students’ ideas, feedback, suggestions,
and reflections. We collected 18 responses (4 students did
not provide written answers) related to the children´s
achievement from the workshops, their ideas about different
maker technologies, and their suggestions for the content of
future workshops. Thereafter, a qualitative data analysis
(QDA) has been applied to analyze the data collected that
includes our interpretation and understanding of the data and
then sorting it into categories based on contextual factors
such as participants’ enrolment, intentions, and hands-on
experiences. The theoretical perspectives mentioned earlier
in the paper (heart-ware skills & four P’s creative learning
theory) played an important role with regard to the data
analysis in term of comparison and categorization.

5. FINDINGS & DISCUSSION
In this section, we first describe our findings based on the
analysis of the data we collected. Thereafter, we discuss our
results that are presented in three sub-sections.

The pre-questionnaire that was answered one week before
conducting the workshops helped us to have a better view on
the participants’ previous knowledge in connection to
programming and CT. The questions were sorted in a way to
gather students’ perceptions on the general use of
programming to more detailed questions about central CT
concepts. Students’ responses revealed that most of them use
computers for gaming. Accordingly, those who used
computers for gaming basically defined programming as the
means of developing games and similar too websites. On the
other hand, some children looked at programming from a
much broader view as two of them stated:

Programming is used for almost everything. Programming
is used to make the world better.

When it comes to CT concepts, a variety of opinions were
listed for algorithms, variables, input/output, conditional,
and functions. While concepts like algorithms and variables
were more familiar to the children, some others (such as
functions) were not well known. For example, an answer to
a question about variables was quoted that it is like a virtual
box with changeable values. Another example is regarding
conditional that was again referred to a game:

Conditional is something in a game that you lose a life if you
touch something.

Based on our observations and dialogues with the children,
the construction part and hand-on activities were very
interesting to them. Although the half-built models were
ready to use for programming through adding some extra
parts and peripherals, students liked to redesign, detach and
connect different parts again and again. The latest is much
aligned to the constructionist theory view on design
(Kynigos, 2015). Looking at the children’s responses in the
post-questionnaire indicates that both sessions were
interesting for the students. Some of them were more
motivated in working with Engino and some preferred to
work with micro:bit. Nevertheless, the combination of the
two maker technologies were pointed out as the most
interesting part for some children.

The design approach we applied in both activities was
similar to what Kynigos & Grizioti (2020) referred to as
“half-baked games'' to be changed and completed in a
process of try and error. The latest provides some initial
insights on how to design an activity to deploy the potential
affordances of both, the Engino and micro:bit together.
While in the first activity children examined and got inspired
with the Engino constructions and programming, they
brought their experience to the next workshop with the
micro:bit working on a pre-built Engino greenhouse. The
qualitative analysis of the collected data, particularly the
observation notes, revealed three preliminary results as
describe below.

5.1. Contexts Enriched by Combining Different Maker
Technologies Help Students to Develop CT Skills
According to the collected data through our observations,
children learned some CT concepts and practices (Grover &
Pea, 2018) in an authentic integrated context. The
combination of digital technologies aligned with the
constructionist approach and the 4P’s constructs (Resnick,
2014) offers a playful experimentation that facilitates CT
development through its integration in different activities.
For example, the logic and logical thinking was practiced by
the children when they set out their cars in the Engino
workshop, and where they tried to make a smart fan in the
micro:bit workshop. In both cases, they applied the If
statement by using true/false values in order to control the
artifact. That can be seen clearly when children used two IR
sensors on both sides of the car and applied AND & OR
expressions in the programming to avoid the car hitting
obstacles. The algorithm and algorithmic thinking were
followed by the children with sequence, selection, and
repetition. While sequence and selection were seen in the
loops of the KEIRO software environment and the
MakeCode programming, the repetition was applied by most
of the children where they used While forever to repeat the
command unlimitedly.
We also recognized a process of abstraction that was
conducted by one of the children in the micro:bit workshop.
She first displayed a sequence of arrows in different
directions by using the On Start block of the MakeCode
programming environment. Then, she used the repeat loop
block instead of using the same commands repeatedly. The
result was interesting because she used the following block
as shown in Figure 3 with a forever statement. Since the
repeat block does not take a string input, so she learned how
to use forever block instead.

Figure 3. Abstraction Learning Sample by MakeCode

We also found several indications of CT practices while
children worked on their digital artifacts. For example,
problem decomposition has been frequently grasped when

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

111

the robots hit the barriers, so that students should check the
program, sensors calibration, connections etc. The same was
seen in the micro:bit workshop when a children could not
work with the humidity sensor, so he first checked the code
and then realized that the problem comes from the incorrect
connection of the wires to the sensors’ pins. Testing and
debugging were the other elements that were tried
repetitively by the participants. Specifically, the IR sensor
was the most challenging part that required lots of tries and
errors in terms of setting the accuracy. The critical
competencies of collaboration, creativity, and promotion of
heart-ware skills (Lee et al., 2019) were also an inseparable
part of our workshops since children worked together and
presented their results to each other to promote also
collaborative learning.

5.2. Bringing CT into STEM Subjects
As argued by Grover & Pea (2018), CT skills can be
developed in learning contexts outside the classroom in
terms of generativity. The integration of CT concepts within
the STEM subjects in after-school activities can be seen as
viable way to enrich CT learning as well as developing CT
competencies. The analysis of our data indicates that
combining the Engino greenhouse with the micro:bit toolkit
is an effective effort towards bridging CT and STEM in a
context that provides the integration and interaction of both
physical and digital objects. The activity we have illustrated
above led to children’s engagement with STEM subjects in
connection to CT development while they executed several
attempts to redesign the models to benefit from the potentials
of maker technologies (Fitton et al., 2015). The examples
described in the previous section such as calibrating the
sensors and using them to control the robot address the
engineering and technology aspects of STEM. For example,
students’ practices on how to turn the robot depending on the
velocity and position of motors help students to understand
engineering and technology concepts. Moreover, the
greenhouse activity provides a context for developing the
science part of STEM. For example, children were curious to
test whether their code for air circulation was working by the
use of the fan. The code they created with MakeCode
program was intended to switch it ON when the indoor
temperature of the greenhouse changed. In order to do that,
children were changing the location of the greenhouse to
make the change of temperature noticeable. They examined
even that by placing the greenhouse inside the refrigerator.
Our observations, following the children activities also
revealed another important result that was beyond our initial
plan for these workshops. Although the research design was
planned to use only the Engino physical parts with the
micro:bit programming microcontroller, some groups of
children were very enthusiastic to integrate the micro:bit
potentials with Engino controllers and motors and even the
KEIRO programming platform to open the windows and
doors while the micro:bit sensors send the signals. A sample
of such effort is shown in Figure 4. The children´s response
to our question while talking with them about their intention
to combine the two platforms was that they wanted to benefit
from Engino´s possibilities and peripherals like the motors
and gears to be connected to physical objects that were

provided by micro:bit sets like fans. However, they figured
out that they cannot connect the MakeCode programming
environment to KEIRO that is the software system used by
Engino. In order to solve the problem above, they decided to
use the manual controlling functions of the Engino motors.
They used ERP controller’s buttons to open or close the
window when the micro:bit displayed a high or low
temperature.

Figure 4. A Sample of Digital Tools Combination

5.3. Providing a Creative-learning Environment
The example given above for problem-solving indicates that
children´s interest and ability to solve a problem may
increase when they have more functionalities in the
technologies they use, so that they can combine, share, adapt,
or place one physical and virtual tool within another one
(Kotsopoulos et al., 2017). Considering the design scenario
of the workshops, children´s engagement in the different
activities from filling the pots and planting the seeds to
controlling the environmental parameters through the
remixing digital tools are providing a creative-learning
environment as suggested by Resnick (2014). He emphasizes
the value of the 4P’s elements as Projects, Peers, Passion,
and Play. While the meaningful projects introduced by
Engino and the micro:bit provide the opportunity for sharing
the ideas and collaboration between peers, combining
different tools increases pupils’ passion. The creative
solutions they applied to compensate the shortcomings of
each one of the tools through adapting to another platform is
an evidence of such claim. For instance, while trying to
control the Engino motors´ rotation basedon the micro:bit
signals, a group of students experienced moments of
disappointment and discouragement when they could not
make it work as they expected, but also a feeling of joy and
happiness when they discovered a solution to control it
manually. The latest increased students’ confidence to share
their learnings with their friends. Such emotions show that
students were indeed engaged with the activity that
illustrates heart-ware skills development of students at the
same time (Lee et al., 2019). Moreover, we believe that the
last day of the workshop devoted to playing and contesting
in an informal learning environment acted as an important
role to follow the children’s goals where their active
contribution was observed. Some parents also joined their
children in the last day where students shared their findings,
delights, feelings and emotions with them that highlights the
value of the passion element in our design.

6. CONCLUSION
The learning design strategies used in this CT activity
brought an opportunity for children to follow the different
steps towards designing, building, and programming where
creative learning took place through testing and debugging

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

112

of different solutions including software programs. In
general, by using different maker technologies in the
domains of biology and programming, our preliminary
results illustrate that firstly, a range of CT skills emerged
from the concepts to practices both in the construction and
the programming parts such as problem decomposition,
logical and algorithmic thinking, abstraction, testing and
debugging. Secondly, it improved the link between CT and
a couple of STEM relevant aspects through the application,
manipulation and control of both physical and virtual
objects. Thirdly, the design of the workshops, the planned
activities, and the results illustrate that a creative learning
environment can emerged when heart-ware skills are
promoted and the four factors of projects, peers, passion,
and play are taken into account.

Looking back to our research question on the effects of
maker technologies on CT skills development, we consider
the main contribution of this research from two perspectives.
First, as a practice for researchers to explore how to use and
combine different maker technologies and educational
materials in an informal learning context in order to foster
and develop children´s CT skills. The design and
implementation of the different learning activities make it
possible to see the similarities and differences of interacting
with different technologies and their combination in terms of
what they can offer to both educators and students. It
provides a free space for students to practice problem solving
where they can choose alternative solutions. Second, the
results of this study could be also helpful for teachers who
are willing to design educational activities that include
knowledge about CT and programming in connection to
STEM related subjects. Although teachers did not participate
in our study, the results presented here can be considered as
a point of departure for post activities with close
collaboration of teachers where a seamless learning view can
be fostered in school settings as well as in informal
educational contexts. Finally, the informal learning setting
described in our study would cover inadequate infrastructure
of the schools.

7. REFERENCES
Dagens Nyheter (2020). Sju av tio lärare osäkra på att

undervisa i programmering. Retrieved May 27, 2020,
from https://www.dn.se/nyheter/sverige/sju-av-tio-larare-
osakra-pa-att-undervisa-i-programmering/

Engino (2020). Total Educational Solution: Combination
of STEM & Robotics. Retrieved Aug 20, 2020, from
https://www.engino.com/w/index.php

Fitton, D., Read, J. C., & Dempsey, J. (2015, June).
Exploring children's designs for maker technologies. In
Proceedings of the 14th International Conference on
Interaction Design and Children, 379-382.

Grover, S., & Pea, R. (2018). Computational Thinking: A
competency whose time has come. Computer science
education: Perspectives on teaching and learning in
school. London: Bloomsbury Academic, 19-37.

Kohen-Vacs, D., & Milrad, M. (2019). Computational
Thinking Education for In-Service Elementary Swedish

Teachers: Their Perceptions and Implications for
Competence Development. In International Conference
on Computational Thinking Education 2019. Hong Kong:
The Education University of Hong Kong, 109-112.

Kohen-Vacs, D., Kynigos, C., & Milrad, M. (2020). On the
Integration of Learning Mathematics and Programming.
Proceedings of International Conference on
Computational Thinking Education 2020. Hong Kong: The
Education University of Hong Kong., 53-56.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K.,
Somanath, S., Weber, J., & Yiu, C. (2017). A
pedagogical framework for computational thinking.
Digital Experiences in Mathematics Education, 3(2),
154-171.

Kynigos, C. (2015). Constructionism: Theory of Learning
or Theory of Design? In Selected regular lectures from
the 12th International Congress on Mathematical
Education, Cham: Springer, 417-438.

Kynigos, C., & Grizioti, M. (2020). Modifying games with
ChoiCo: Integrated affordances and engineered bugs for
computational thinking. British Journal of Educational
Technology.

Lee, P. T., Lee, X. R., Low, C. W., & Kokila, A. (2019,
June). Implementing Computational Thinking through
Nonformal Learning in after School Activities at Students
Society Club. In Proceedings of the International
Conference on Computational Thinking Education 2019.
Hong Kong: The Education University of Hong Kong,
201-202.

Lee, P. T., & Low, C. W. (2020). Implementing a
Computational Thinking Curriculum with Robotic
Coding Activities through Non-formal Learning.
CoolThink@ JC, 150.

Resnick, M. (2014, August). Give P’s a chance: Projects,
peers, passion, play. In Constructionism and creativity:
Proceedings of the third international constructionism
conference. Austrian computer society, Vienna, 13-20.

Skolverket (2020). Digitalization. Retrieved May 26, 2020,
from https://www.skolverket.se/temasidor/digitalisering

Sung, W., Ahn, J., & Black, J. B. (2017). Introducing
computational thinking to young learners: Practicing
computational perspectives through embodiment in
mathematics education. Technology, Knowledge and
Learning, 22(3), 443-463.

Tyrén, M., Carlborg, N., Heath, C., & Eriksson, E. (2018,
June). Considerations and Technical Pitfalls for Teaching
Computational Thinking with BBC micro: bit. In
Proceedings of the Conference on Creativity and Making
in Education, 81-86.

Yilmaz Ince, E., & Koc, M. (2020). The consequences of
robotics programming education on computational
thinking skills: An intervention of the Young Engineer's
Workshop (YEW). Computer Applications in Engineering
Education, 191-208.

http://www.dn.se/nyheter/sverige/sju-av-tio-larare-
http://www.dn.se/nyheter/sverige/sju-av-tio-larare-
http://www.engino.com/w/index.php
http://www.engino.com/w/index.php
http://www.skolverket.se/temasidor/digitalisering
http://www.skolverket.se/temasidor/digitalisering

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

113

Computational Thinking
and Psychological Studies

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

114

Influential Factors of Hong Kong Secondary School Students’ Intrinsic Motivation
to Coding Education during the COVID-19 Epidemic: A Correlational Analysis

Xin ZHANG1*, Gary K. W. WONG2, Qiaobing WU3, Bill Y. P. TSANG4

1,2Faculty of Education, The University of Hong Kong, Hong Kong
3Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong

4The Youth Global Network, Hong Kong
zhangxsid@gmail.com, wongkwg@hku.hk, qiaobing.wu@polyu.edu.hk, bill.tsang@ygn.org.hk

ABSTRACT
This study explores the relationship among Hong Kong
secondary school students’ demographics, psychosocial
attributes, social interaction and subjective experience with
the COVID-19 epidemic, and their intrinsic motivation to
coding education under the educational context of school
closure on a worldwide scale due to the pandemic. An online
questionnaire survey was carried out in three subsidized
secondary schools of Hong Kong before the face-to-face
teaching and learning resumed in early June 2020. 204
participants were from Form 2 (equivalent to Grade 8). The
results of correlational analysis showed that:
(1) students’ psychosocial attributes during the pandemic
was significantly positively correlated with their intrinsic
motivation to coding education; (2) students’ social
interaction during the pandemic were significantly positively
correlated with their intrinsic motivation to coding
education; and (3) students’ subjective experience with the
pandemic was significantly positively correlated with their
intrinsic motivation to coding education. The findings may
have implications for educators and academics of
computational thinking to identify the factors which will
enhance student engagement and learning outcome in a time
of uncertainty and crisis.

KEYWORDS
intrinsic motivation, coding education, psychosocial
attributes, social interaction, COVID-19

1. INTRODUCTION
Beginning from early 2020, the COVID-19 epidemic
rampaged throughout much of the globe. By April 2020,
around 91.3% of the world’s learners, almost 1.6 billion of
total enrolled couldn’t go to school due to 194 country- wide
closures of schools, according to the United Nations
Educational, Scientific, and Cultural Organization (2020).
The months-long suspension of face-to-face classes and
students’ home confinement, and the subsequent
arrangement of remote learning have imposed many knotty
and unprecedented challenges for teachers, parents, and
students, e.g. public concern on the equity in access to
remote learning occupied many headlines, teachers’
helplessness on the growing absenteeism and late
submission of homework that were uncommon for
conventional learning were seen around in most of the online
forums or discussion groups for educators.

Thus, understanding the influential factors of students’
learning motivation during these unprecedented times is a
timely move for the education sector, as the rapid shift in

the delivery mode of instruction has led educators to explore
effective ways to provide appropriately supportive
environments to maintain students’ motivation. In this study,
we surveyed Hong Kong secondary students during late May
and early June of 2020 to explore the association between
demographics, psychosocial attributes, social interaction and
subjective experience with the pandemic during the COVID-
19 lockdown to get a broader sense of possible buffering role
of various factors for students’ intrinsic motivation to coding
education.

2. INTRINSIC MOTIVATION
The self-determination theory (SDT) provides an account for
human motivation and personality that focuses on people’s
inherent growth tendencies and innate psychological needs
(Ryan & Deci, 2000a). Based on the different underlying
reasons and goals of human actions, SDT also distinguishes
between different types of motivation such as intrinsic
motivation versus extrinsic motivation. Being intrinsically
motivated means that individuals engage in activities out of
the inherent interest and enjoyment of the behavior itself, and
such internal locus of causality leads to functional
differences of intrinsic motivation from other types of
motivation (Ryan & Deci, 2000b). When individuals feel
their psychological needs are satisfied, they tend to be more
intrinsically motivated. Therefore, it is important to detail the
factors and psychosocial attributes that engender it, as in a
learning environment where teachers and peers are not
physically present, and parents may not be around
supporting, intrinsic motivation is particularly relevant for
catalyzing students’ commitment to learning out of nothing
but only rewards in learning behavior itself and protecting
them from maladjustment.

The crucial importance of student motivation to a series of
positive development outcomes has been well-documented
(Cerasoli et al., 2014; De Naeghel et al., 2012; Lazowski and
Hulleman, 2016); however, student motivation under a
typically uncertain time has been scantly address. Under the
new learning environment shaped by various restrictive
measures such as school closure, remote learning, and home
confinement, what makes students more intrinsically
motivated? To step into this void, we investigated Hong
Kong secondary students’ intrinsic motivation in coding
education during the COVID-19 epidemic and focused on
the connections between a variety of personal and contextual
factors with the intrinsic motivation, which may provide
important insights into potential avenues for ameliorating the
negative effects of various on the vulnerable students during
uncertain times.

mailto:zhangxsid@gmail.com
mailto:wongkwg@hku.hk
mailto:qiaobing.wu@polyu.edu.hk
mailto:bill.tsang@ygn.org.hk

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

115

3. METHODS
3.1. Participants and data collection
The data was drawn from the Jockey Club Coding for
Community Project, which aims to provide the
underprivileged youths in Hong Kong with coding courses
to develop their computational thinking skills, and an adult-
youth partnership scheme to promote their relational
development and community involvement through
designing mobile applications to address practical issues in
local communities. Participants of this project were invited
to respond to an online questionnaire before face-to-face
classes resumed on June 8, 2020. The sample in this study
comprises 204 Form 2 (equivalent to Grade 8) students (78
females) from three Hong Kong subsidized secondary
schools, with an average age of 13 (age range: 12 to 15).

3.2. Instruments
An adapted version of the Intrinsic Motivation Inventory
(Jiang & Wong, 2017; McAuley, Duncan, & Tammen, 1989)
was used where the mean score was calculated out of
10 items on a five-point Likert scale (sample item:
‘Programming activity was fun to do’, M = 2.71, SD = .93, α
= .96). For psychosocial attributes, we measured students’
general self-efficacy (sample item: ‘I am confident that I
could deal efficiently with unexpected events’, M = 12.92,
SD = 3.72, α = .87), grit (sample item: ‘I often set a goal but
later choose to pursue a different one’, M = 3.10, SD = .54, α
= .65), resilience (sample item: ‘I am able to solve problems
without harming myself or others’, M = 37.69, SD = 8.89, α
= .87), sense of community (sample item: ‘I feel like a
member of this neighborhood’, M = 35.13, SD = 7.68, α =
.92), and youth social responsibility (sample item: ‘It’s
important for people in their teens to know what’s going on
in the word’, M = 12.04, SD = 11.68, α = .81) with validated
scales (Bollen & Hoyle, 1990; Duckworth et al., 2007;
Liebenberg, Ungar, & LeBlanc, 2013; Pancer et al., 2007;
Peterson, Speer, & McMillan, 2008; Romppel et al., 2013).

For contextual factors, we asked students to rate their
communication frequency and change in communication
with different people during the school closure with a five-
point Likert scale. We also asked if students had certain
interaction with their parent(s) such as ‘go shopping’, ‘play
games together’ etc. A binary response was used in each
activity with 1 (yes) and 0 (no), and the sum of responses to
eight items were computed for analysis.

For students’ subjective experience with the pandemic, we
asked if they felt generally anxious about the pandemic and
if their studies and emotions were bothered by the pandemic.
Students also were asked to evaluate the impact of their
longer time staying at home on their relationship with family
members and their school-based studies, and the
effectiveness of a list of 11 major anti-pandemic measures to
combat the spread of the disease such as the ‘compulsory
quarantine for a period of 14 days upon arrival at Hong
Kong’, ‘prohibition of any group gathering of more than four
or eight persons in any public places during a specific
period’, etc.

We also documented students’ demographic information
such as sex and age, parental educational attainment,
housing types, financial assistance scheme status, and their
Wi-Fi ownership at home.

4. BIVARIATE ANALYSIS RESULTS
The objective of this study was to explore the factors
associated with students’ intrinsic motivation in coding
education during the COVID-19 epidemic. We computed
correlation coefficient of intrinsic motivation and a set of
demographic variables (i.e., age, sex, parental educational
attainment, etc.), psychosocial attributes (i.e., general self-
efficacy, resilience, sense of community, etc.), and
contextual factors that reflected students’ lives and
subjective experience on the pandemic during the months-
long school closure.

The Pearson correlation coefficient indicated no significant
relationships between sex, age, parental educational
attainment, housing type and students’ intrinsic motivation
in coding education during the COVID-19 epidemic.
However, a significant correlation was identified between
students’ financial assistance scheme status (β = -.18, p
< .05), meaning that students from families receiving the
Comprehensive Social Security Assistance tended to show
lower intrinsic motivation in coding education. Besides,
students’ satisfaction of their internet condition at home was
significantly correlated with their intrinsic motivation in
coding education (β = .16, p < .05).

For psychosocial attributes, general self-efficacy (β = .21, p
< .01), Grit (β = .15, p < .05), resilience (β = .43, p < .01),
sense of community (β = .45, p < .01), and social
responsibility attitude (β = .18, p < .05) were all found to be
significantly related to students’ intrinsic motivation to
coding education during the COVID-19 epidemic, which
means if students had higher level of beliefs about their
capabilities to learn or perform behaviors at designated level
(Bandura, 1986, 1997), higher level of effort perseverance
and passion for long-term goals, higher ability to cope with
a crisis, higher level of belonging to their communities, and
more affirmative attitude toward commitment to the
communities and civic engagement, then they would be
more likely to evaluate coding education as interesting,
enjoyable, and desirable during the COVID-19 epidemic.

Among different people, students’ communication
frequencies with parents (β = .17, p < .05), non-classmate
friends (β = .17, p < .05), classmates (β = .19, p < .01), and
teachers (β = .31, p < .01) were found to be significantly
related to their intrinsic motivation. Although it is a relatively
weak positive linear relationship, the correlation coefficient
for the relationship between students’ communication
frequency with teachers and their intrinsic motivation is
greater than others, indicating that even in a remote learning
setting, teachers still play an important role. For students’
perceived change in communication with different people,
only the change in communication with friends (β = .16, p <
.05) was found to be positively correlated with their intrinsic
motivation, meaning that if students tend to perceive their
communication with friends had increased during the school
closure period, they will be

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

116

more likely to be intrinsically motivated. Parent-child
interaction (β = .16, p < .05) was also found to be
significantly associated with students’ intrinsic motivation in
coding education. If students had done more activities with
parents, such as went shopping, did physical exercises, went
outing, talked about their studies, emotions, current affairs or
family issues, they would display higher intrinsic motivation.

The subjective experience with the pandemic was also
significantly related to students’ intrinsic motivation in
coding education. First, students who were more anxious
about the pandemic showed greater intrinsic motivation. If
they tended to agree they felt anxious about the pandemic (β
= .29, p < .01), or they tended to agree the pandemic had
bothered their emotions (β = .16, p < .05), they would be
more likely to be intrinsically motivated. Second, if students
tend to hold positive evaluation on the impact of their longer
time staying at home on their relationship with family
members (β = .18, p < .05) and their school-based studies (β
= .20, p < .01), they will have more intrinsic motivation in
coding education. At last, their evaluation on the
effectiveness of various anti-pandemic measures (β
= .27, p < .01) was also found to be significantly correlated
with the intrinsic motivation, which means if students tended
to perceive the anti-pandemic measures were effective in
protecting their health or facilitating their studies, they
would display more intrinsic motivation in coding education.

5. DISCUSSION
The purpose of this study was to examine the influential
factors associated with Hong Kong secondary school
students’ intrinsic motivation to coding education under the
COVID-19 epidemic. The results revealed some links
between students’ socio-economic status, social
environmental factors, subjective experience in the
pandemic, and their intrinsic motivation.

5.1. More positive psychological states, higher intrinsic
motivation
According to self-determination theory, it is essential for
individuals to develop intrinsic motivation based on the
satisfaction of three basic psychological needs: competence,
autonomy, and relatedness (Ryan & Deci, 2000a). When
students feel satisfied with these three psychological needs,
they would become more intrinsically motivated, which in
turn leads to higher level of engagement and learning
outcomes. The psychosocial attributes concerned in this
study covered most of these three basic psychological needs,
and therefore supporting intrinsic motivation. Intrinsic
motivation’s relatively stronger relationship with sense of
community compared to other variables is noteworthy. In this
development project, it is expected that students would
engage in collaborative and affective relationships with their
classmates, teachers, and adult mentors to solve practical
problems for community good and therefore the concept of
relatedness is thought to hold importance for their well-being
throughout the project.

5.2. More social interaction, higher intrinsic motivation
Variables of interaction with parents, teachers, non-
classmate friends, and classmates were consistently found to
be positively associated with higher intrinsic motivation. A
plausible explanation could be related to their received social
support from such interaction in both online and offline
social encounters (Wang & Wang, 2013), and the perceived
social presence of their teachers and classmates in imaging
an online learning community. The idea that adolescents’
supportive relationship with parents, teachers, and peers is
related to their motivation at school is not new (Wentzel,
1998); however, in remote learning where teachers and peers
no longer physically present, the subjective experience
mediating such interaction and their intrinsic motivation is
worthy further investigation.

5.3. More positive subjective experience with the crisis,
higher intrinsic motivation
Many researchers have examined the role of anxiety in
learning and their findings generally have shown that there
is a negative relationship between anxiety and academic
outcomes (Wolf & Smith, 1995). Past research often
investigated anxieties to specific subjects and exams, and
their relationship with certain academic outcomes, if
experiencing the COVID-19 epidemic can be considered as
a stressful event, then how feeling anxious about the
pandemic affected academic outcome has been little
addressed. Unexpectedly, a positive relationship between
anxiety and students’ intrinsic motivation was identified in
this study, indicating that the current sample can use the
anxious experience about the pandemic to motivate
themselves. This implies that anxiety is not necessarily a
handicap, in fact, students may be able to use anxiety as a
source of self-motivation, and thereby alleviating negative
issues brought about by anxiety and make the most of it.
Further studies can look into how students experience and
respond to anxiety may influence their academic outcomes.

Due to the reversal of COVID-19 pandemic, everything
became uncertainties. If students perceived the longer time
of staying at home has positive influence on their
relationship with family members, and their school-based
studies, in other words, if they perceived such longer time at
home is beneficial for their family relationship, and they also
could be adaptive to remote learning, they would have more
intrinsic motivation in code learning during the pandemic.
Besides, if they perceived the various anti- pandemic
measures are effective in protecting them, they will be more
intrinsically motivated. The positive subjective experience
with the pandemic may reflect certain active coping
strategies adopted by students to promote their sense of
control over an uncertain time and safeguard their mental
health, which therefore played a protective factor for their
intrinsic motivation.

The results of the present study need to be interpreted with
several limitations. First, the cross-sectional survey makes it
difficult to evaluate the temporal relationship among the
variables concerned, so it is not sufficient to establish a
cause-and-effect relationship based on the available data. To
remedy this, longitudinal data will be collected with the
progressing of the project in the next two academic years, to
further illuminate the direction of influence among these

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

117

variables. Another limitation is that we adopted a translation
and back-translation process (Brislin, 1970) for the original
scales that had not been previously used in Chinese
language, in future studies, the full set of the scales will be
validated.

6. ACKNOWLEDGEMENT
This study was funded by the Hong Kong Jockey Club
Charities Trust (Project S/N# 2019/0114). The authors
would like to thank the Hong Kong Jockey Club Charities
Trust for the generous support in the development of Hong
Kong youths’ computational thinking skills and
psychosocial skills, and their relational development and
community involvement.

7. REFERENCES
Bollen, K. A., & Hoyle, R. H. (1990). Perceived Cohesion:

A Conceptual and Empirical Examination. Social Forces,
69(2), 479–504.

Brislin, R. (1970). Back-translation for Cross-cultural
Research. Journal of Applied Psychology, 1(3), 185-216.

Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014).
Intrinsic Motivation and Extrinsic Incentives Jointly
Predict Performance: A 40-year Meta-analysis.
Psychological Bulletin, 140(4), 980-1008.

De Naeghel J., Van Keer H., Vansteenkiste M., Rosseel Y.
(2012). The Relation between Elementary Students’
Recreational and Academic Reading Motivation, Reading
Frequency, Engagement, and Comprehension: A Self-
determination Theory Perspective. Journal of
Educational Psychology, 104(4), 1006–1021.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly,
D. R. (2007). Grit: Perseverance and Passion for Long-
term Goals. Journal of Personality and Social
Psychology, 92(6), 1087–1101.

Jiang, S., & Wong, G. K. (2017, December). Assessing
Primary School Students' Intrinsic Motivation of
Computational Thinking. In 2017 IEEE 6th International
Conference on Teaching, Assessment, and Learning for
Engineering (TALE) (pp. 469-474). IEEE.

Lazowski, R. A., & Hulleman, C. S. (2016). Motivation
Interventions in Education: A Meta-analytic Review.
Review of Educational Research, 86(2), 602-640.

Liebenberg, L., Ungar, M., & LeBlanc, J. C. (2013). The
CYRM-12: A Brief Measure of Resilience. Canadian
Journal of Public Health, 104(2), e131-e135.

McAuley, E., Duncan, T., & Tammen, V. V. (1989).
Psychometric Properties of the Intrinsic Motivation
Inventory in A Competitive Sport Setting: A
Confirmatory Factor Analysis. Research Quarterly for
Exercise and Sport, 60(1), 48-58.

Pancer, S. M., Pratt, M., Hunsberger, B., & Alisat, S.
(2007). Community and Political Involvement in
Adolescence: What Distinguishes the Activists from the
Uninvolved? Journal of Community Psychology, 35(6),
741–759.

Peterson, N. A., Speer, P. W., & McMillan, D. W. (2008).
Validation of A Brief Sense of Community Scale:
Confirmation of the Principal Theory of Sense of
Community. Journal of Community Psychology, 36(1),
61-73.

Romppel, M., Herrmann-Lingen, C., Wachter, R.,
Edelmann, F., Düngen, H. D., Pieske, B., & Grande, G.
(2013). A Short Form of the General Self-Efficacy Scale
(GSE-6): Development, Psychometric Properties and
Validity in an Intercultural Non-clinical Sample and A
Sample of Patients at Risk for Heart Failure. GMS
Psycho-Social-Medicine, 10.

Ryan, R. M., & Deci, E. L. (2000a). Self-determination
Theory and the Facilitation of Intrinsic Motivation, Social
Development, and Well-being. American Psychologist,
55(1), 68-78.

Ryan, R. M., & Deci, E. L. (2000b). Intrinsic and Extrinsic
Motivations: Classic Definitions and New Directions.
Contemporary Educational Psychology, 25(1), 54-67.

UNESCO (2020). School Closures Caused by Coronavirus
(Covid-19). Retrieved August 15 2020, from
https://en.unesco.org/covid19/educationresponse

Wang, E. S. T., & Wang, M. C. H. (2013). Social Support
and Social Interaction Ties on Internet Addiction:
Integrating Online and Offline Contexts.
Cyberpsychology, Behavior, and Social Networking,
16(11), 843-849.

Wolf, L. F., & Smith, J. K. (1995). The Consequence of
Consequence: Motivation, Anxiety, and Test
Performance. Applied Measurement in Education, 8(3),
227-242.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

118

STEM Learning
in the Classroom

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

119

An Evolving Definition of Computational Thinking in Science and Mathematics
Classrooms

Amanda PEEL1*, Sugat DABHOLKAR2, Sally WU3, Michael HORN4, Uri WILENSKY5

1,2,3,4,5 Northwestern University, USA
amanda.peel@northwestern.edu, sugat@u.northwestern.edu, sally.wu@northwestern.edu, michael-horn@northwestern.edu,

uri@northwestern.edu

ABSTRACT
Computational Thinking (CT) curricula are increasingly
being integrated into K-12 education across multiple subject
areas. Our approach to this integration is to define
Computational Thinking in terms of prevalent practices of
professional disciplines. As our understanding of these
practices evolve, so too must our operational definition of
CT. Here we present a refined definition of CT in science
and mathematics classrooms. Based on our extensive
research designing and studying CT curricular units in
collaboration with science and mathematics teachers, we
have arrived at a working draft of a revised computational
thinking in science and math taxonomy. We present the new
version of taxonomy which has six revised categories of
practices: computational modeling and simulation,
computational visualization, algorithms, data practices,
programming, and computational problem solving. We
describe each category and how they are related.

KEYWORDS
Computational Thinking, Science and Mathematics
education, Taxonomy, Practices

1. INTRODUCTION
The concept of Computational Thinking (CT) has been
evolving as researchers, educators, and policymakers devise
new ways to support the development of computational
literacy in K-12 education. One popular approach has been
to integrate CT into core classes, such as science and
mathematics (Heintz, Mannila, & Färnqvist, 2016). In this
effort, our team developed a definition of CT as a taxonomy
of practices specific to science and mathematics contexts
(Weintrop et al., 2016). This taxonomy is comprised of four
categories: data practices, modeling and simulation
practices, computational problem-solving practices, and
systems thinking practices. This taxonomy has been widely
cited and used to frame many CT integrations (e.g., Ketelhut
et al., 2020; Suters & Suters, 2020).

Our team has used this taxonomy since its publication to
create curricular units for middle school and high school
students and provide professional development for in-
service teachers (https://ct-stem.northwestern.edu). Our
extensive research regarding designing CT-integrated
curricula, teacher practices, and student learning using the
initial version of taxonomy has prompted us to revise it into
a second version (Swanson, Anton, Bain, Horn, &
Wilensky, 2019; Arastoopour Irgens, et al., 2019; Peel,
Dabholkar, Anton, Wu, Wilensky, & Horn, 2020;
Dabholkar, Arastoopour Irgens, Horn, & Wilensky, 2020).
In this version, we make two major changes that address
issues that emerged from our work with the taxonomy.

First, we identified three new practices that are central to CT
in science and mathematics but were not explicitly
developed into separate categories in the first taxonomy:
algorithms, programming, and visualization practices. We
realized that creating separate categories for these practices
is important for integration and scaffolding in CT-integrated
curricula. For example, students sometimes struggle to
program and understand algorithms when creating
computational models. The inclusion of algorithm and
programming practices as top-level categories support skills
and knowledge necessary to engage in computational
creation. These categories make these skills and associated
knowledge explicit in the conceptualization of CT in science
and math. Moreover, algorithms are key tools used in
modern science and math, and algorithms cannot be
implemented without programming. We also broadened our
account of visualization to include more diverse set of
representations and practices.

Second, we revised the prior four practices to improve
clarity in terms of their interpretations for curricular
integration. After working with teachers for several years
and iterations of professional development and co-design,
we found there were issues with the interpretation of some
of the practices. For example, many teachers see “data
practices” and confound it with traditional science data
practices, rather than computational data practices.
Similarly, we found that systems thinking practices were
often disconnected from computational thinking. In these
cases, the development of systems thinking and data
practices in science classrooms are essential, but the
activities used to teach these are not always CT. We take the
position that systems thinking practices are developed with
CT when students engage with computational models. As
such, we combined the computational modeling practices
and systems thinking practices.

To streamline the sub-practices within each overarching
category, we re-designed the sub-practices to represent a
spectrum within each category. In this way, the sub-
practices increase in sophistication from top to bottom and
are self-contained within each practice category. To shape
the spectrum, we created sub-practices that represent a use,
modify, assess, and create spectrum (modified from Lee et
al., 2011). Students can use a computational tool to
understand a phenomenon, engage in investigations, or
solve a problem. However, this represents the baseline for
CT practices within the taxonomy. While these practices
support student learning, we argue it is essential for the
development of CT practices and knowledge to move
beyond the use of computational tools to the modification,
assessment, and creation of computational tools.

mailto:amanda.peel@northwestern.edu
mailto:sugat@u.northwestern.edu
mailto:sally.wu@northwestern.edu
mailto:michael-horn@northwestern.edu
mailto:uri@northwestern.edu

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

120

Our second version of the taxonomy of practices is an
evolving draft, and formal feedback will be collected from
stakeholders in the future. The goal of this paper is to
describe the current draft of the second taxonomy of CT in
science and mathematics practices and how these practices
are operationalized in the classroom. Our final goal is to
provide a taxonomy that supports the integration of CT in
K-12 science and mathematics classrooms.

2. NEW TAXONOMY DESCRIPTION
Integration of CT into science and mathematics curricula is
intended to promote: 1) understanding the ubiquity and
importance of computing in STEM, 2) understanding how
modern STEM professionals use computing, 3) access to
computing-related content and practices for all students, and
4) science and mathematics learning in new and deeper
ways. There are six practice categories represented as
columns in the taxonomy: computational modeling and
simulation, computational visualization, algorithms,
computational data, programming, and computational
problem-solving (Figure 1). We view the sub-practices
within each category as target competencies for students by
the end of their K-12 education.

Figure 1. Taxonomy of CT Practices in Science and Mathematics

There are inherent linkages between the practice categories,
in that some sub-practices require the use of other sub-
practices and several sub-practices can be used in any one
activity. Linkages between practices are discussed in more
detail in section 3 of this document. The practice categories
are structured with a use, modify, assess, and create
spectrum. As students engage in practices on this spectrum,
the practices become more sophisticated. Engaging in
practices related to modifying and creating begins to require
engaging in practices from other categories. For example,
creating a computational model requires programming
practices and algorithm creation practices. The following
sections describe each practice category.

2.1. Computational Modeling and Simulation Practices
Computational models and simulations are useful tools to
understand complex systems and reason about phenomena.
Students competent in these practices will be able to use,
modify, assess, and create dynamic computational models
in order to understand complex phenomena and solve
problems. Computational models and simulations in this

category are conceptualized as dynamic models and
simulations, not static models. Examples of classroom
computational modeling tools include NetLogo Wilensky,
1999), SageModeler (2020), etc. When engaging students in
computational modeling practices, models can be used to
understand a phenomenon, to understand a system’s
dynamics, and to test predictions and hypotheses. Simple
animations of phenomena are not considered computational
models or simulations because they have neither parameters
that students can tinker with and alter when running the
model or simulation nor can they be modified or elaborated.

We argue that using, modifying, assessing, and creating
computational models supports the development of systems
dynamics competencies. Systems dynamics competencies
may include understanding: 1) positive and negative
feedback and their impact on the system, 2) stocks and flows
of a system, 3) micro and macro levels and how changes in
the micro level impact the macro level, and 4) emergent
phenomena. People have mental models that represent their
understanding of a phenomenon or system. When people
simulate that mental model of the system in their minds,
their reasoning is often incomplete or fails to match the
system in all of its complexity (Forrester, 1993). Using
computational models to simulate systems and phenomena
allows students to reason about systems in more
sophisticated and nuanced ways. These computational
simulations can then impact students’ mental models and
bring their understanding of the system and phenomenon
more in line with canonical definitions and representations.

Designing and constructing computational models allows
for deeper understanding of phenomena (Wilensky &
Reisman, 2006). Computational models can take on many
forms and focus on different aspects of a phenomenon. For
example, one might use an agent-based model (e.g.,
NetLogo) to describe interactions between many things at a
micro level while a systems dynamic model (e.g.,
SageModeler) might be used to describe interactions at
higher system level. Assessing computational models can be
done at every stage (using, modifying, and creating).
Students should be able to assess the limitations and
affordances of a model, the simplifications made in the
model, and how well the model represent reality. Assessing
computational models also includes meta-modeling
knowledge, such as understanding how models are used in
science and mathematics, understanding the value of
computational models, and critically reflecting on how
models are used are interpreted.

2.2. Computational Visualization Practices
Visualization is a metacognitive skill in science and science
education (Gilbert, 2005) as well as mathematics education.
Students competent in these practices will be able to use,
modify, assess, and create computational visualizations in
order to understand and represent complex phenomena,
analyze and interpret data, and solve problems. We
conceptualize computational visualizations as graphs,
tables, diagrams, static models, models (dynamic) as long as
they are made within a computational medium. This can
range from something that is completely made by the
computer (e.g., graphs in NetLogo), to something made by
the user with a computational tool (e.g., graphs in Microsoft

Computational
Modeling and

Using computational
models to understand a
complex phenomenon

Using computational
models to hypothesize
and test predictions

Visualization
Practices

Using a
computational
visualization to
understand a
phenomenon
Using a
computational
visualization to
identify and
predict trends

Algorithm Computational Programming Computational

Practices Data Practices Practices Practices

Using an
algorithm to
solve a problem
or understand a
phenomenon

Selecting an
appropriate
algorithm to
solve a problem

Using a computational
tool to understand a
system's components
and dynamics

Using a model to
understand how
positive and negative
feedback function and
impact a complex
system

Assessing
computational
visualizations

Assessing
algorithms

Using
computation to
collect and
create data

Using
computation to
transform,
manipulate, and
clean data

Using

computation to
analyze data

Reading and Choosing effective

understanding computational

code tools to solve a
problem

Modifying
code

Using a
computational tool
to solve a problem

Writing
elegant,
readable, and
maintainable
code

Preparing
problems for a
computational
solution

Modifying a
computational Modifying an
visualization to algorithm to
better fit a better address a
phenomenon/ problem
data
Designing and
constructing
computational
visualizations

Using
computation to
explore and
draw insight
from large data
sets
Modifying a
computational
approach to
better fit data

Decomposing
Debugging complex problems
programs into smaller

solvable pieces

Assessing
computational models

Designing and
constructing
algorithms

Developing
modular
solutions and
abstractions
Iteratively
designing and
testing
programs

Systematically
troubleshooting a
solution

Modifying a
computational model
to better fit a
phenomenon
Designing and
constructing
computational models

Modifying a
computational tool
to solve a problem

Creating a
computational tool
to solve a problem

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

121

Excel), to something made through programming (graphs in
R or Python). This also includes technical drawings used for
creating computational drawings and designs.

When students engage in computational visualization
practices, they think about how to represent a phenomenon,
or a part of the phenomenon. A visualization can be used as
a way to think about and understand a phenomenon in
different and new ways, especially when the visualization
provides a new way of looking at the phenomenon.
Computational visualizations can be used for identifying
and predicting trends. Assessing computational
visualization can be done at every stage (using, modifying,
and creating). Students should assess the affordances and
limitations of specific kinds of visualizations and be able to
choose tools based on knowledge of strengths and
weaknesses of visualization types.

2.3. Algorithm Practices
The ability of researchers to make sense of large amounts of
data often comes down to the sophistication of algorithms
available to process those data. Algorithm practices involve
using, modifying, assessing, and creating algorithms to
solve problems and understand phenomena. Much of the
computational power harnessed in STEM comes from using
computation to complete a multitude of small tasks times in
a short period of time and to make such work as
computationally efficient as possible. In the case of K-12
education, we expect that students can understand and use
algorithmic logic and concepts, such as loops, conditionals,
logic, procedures, recursion, and variables.

Algorithms can be developed and implemented in
classrooms using a variety of formats ranging including
unplugged approaches, block-based coding environments,
or interactive computational notebooks (e.g., Jupyter,
https://jupyter.org/). Algorithms can be assessed at each
stage (using, modifying, and creating). Students can assess
correctness by asking, “Does the algorithm accomplish the
task?” or “How well does the algorithm accomplish the
task?” Efficiency can be assessed by asking, “Can the
algorithm complete the same task in less steps or more
concise steps?”, “How much time does it take to run the
algorithm?”, and “How much memory does the algorithm
require?” For example, when the number of agents in an
agent-based computational model are doubled, does it take
twice as long (linear) to run? Four times as long (quadratic)
to run? Students can also assess clarity by asking, “Is the
algorithm written clearly?” and “Can others understand my
algorithm?” While the initial algorithm writing process can
be messy, the final algorithm should be as clear as possible.
There are also opportunities to critically reflect on the role
of algorithms in society.

2.4. Computational Data Practices
Data practices are central to scientific inquiry and
mathematics. As data sets become larger and calculations
become more complex, computational tools can help in a
range of ways including data collection, cleaning,
transformation, analysis, and visualization. As such, it is
important that students learn computational data practices.
Students engage in computational data practices when they
data create, collecte, manipulate, and analyze data with

computational tools. This can range from using pre-
programmed algorithms to writing code in order to complete
the data-related task. Students with computational data
practice competencies will be able to use, modify, and create
computational approaches and tools to collect, manipulate,
visualize, and analyze data.

2.5. Programming Practices
We define programming as the act of writing code on a
computer, creating a distinct practice category from
algorithm practices, which include a broader range of
practices related to, but beyond coding. Programming
practices are central to designing and constructing
computational tools. Much of the work of STEM
professionals consists of modifying existing tools and
approaches and coding new tools and approaches to meet
their needs. Students with programming competencies will
be able to read, understand, and write code in order to solve
problems and understand phenomena. Learning to program
involves reading and understanding existing code, learning
to modify code to meet the user’s needs, and learning to
write code. Writing code involves testing and debugging the
code, developing abstractions, and iteratively testing and
designing the program. When writing code, attention should
be given to the creation of readable and maintainable code.
Following programming conventions and using comments
to annotate the code is key forreadability and maintenance.
Comments can communicate a programmer's intent, which
may or may not be clear in the code itself.

2.6. Computational Problem-solving Practices
Computational tools have become useful to solve problems
in science and math. Engaging in these practices should help
students solve problems with computational tools and
approaches and understand computation’s role in scientific
and mathematic problem solving. Computational problem-
solving practices involve using computation to solve a
problem. This requires understanding different approaches
to solve the problem computationally, and the ability to
choose a computational tool or approach that is appropriate
and effective in solving the problem. Problems often have
to be decomposed into smaller solvable pieces and prepared
for a computational solution (e.g., raw data may need to be
manipulated in order to run an algorithm that solves the
problem). Computational solutions to problems also need to
be iteratively designed, tested, and troubleshot in order to
solve the problem effectively.

Students should engage in these practices with different
computational tools to support skills and understandings of
specific tools and how they can be used in different problem
contexts. For example, students can create a computational
model in order to predict how a new pesticide will impact
crop yield. When creating the model, students engage in
computational modeling practices, algorithm practices, and
programming practices. Then, using the model to predict the
yield outcomes of using the pesticide engages students in
computational data and modeling practices. We propose that
when students use computational tools to solve a problem,
they may better understand the purpose of those tools and
how scientists and mathematicians use them.

3. LINKAGES BETWEEN PRACTICES

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

122

While each practice category represents a contained
spectrum of knowledge and skill specific to that category,
there are inherent linkages between practice categories. A
CT-integrated activity can potentially engage students in a
combination of interlinked sub-practices. In some cases, it
is impossible to avoid separating multiple sub-practices
from different practice categories. For example, the modify
and create sub-practices within computational modeling,
computational visualizations, and computational data
practices require algorithm and programming practices.
Designing and constructing computational models involves
designing and constructing algorithms and programming
practices when coding the model. There is a linkage
between programming practices and others when reading or
writing code is involved. For example, reading the code of
a computational model engages students in programming
practices and computational modeling practices.
There are linkages between data and visualization practices
when a computational visualization is made to analyze data
(e.g., graphing data to identify trends) or to collect data (e.g.,
collecting data from a computational model). There are also
linkages between computational visualization and
computational modeling practices because computational
models are a type of computational visualization. However,
not all computational visualizations are computational
models. Students use a computational visualization when
they use a computational model. Students modify a
computational visualization when they modify the visual
aspects of a computational model (e.g., how agents look,
how to represent the phenomenon, graphing data from the
model). Students design and constructing a computational
visualization when they design and construct a
computational model. Computational problem-solving
practices are linked with other practices when the practices
are used to solve a problem. For example, if students use,
modify, or create an algorithm to solve a problem, they are
engaging in both algorithm and problem-solving practices.
While designing CT integrated curricular activities, we
recommend viewing the practices as interconnected sets and
not in isolation. The 10 new CT-integrated science and math
units designed with this draft taxonomy will be available on
the project webpage after implementations are complete
(https://ct-stem.northwestern.edu/).

4. CONCLUSION
This paper has presented a draft second version of a
taxonomy of practices that defines CT in science and
mathematics classrooms. The six practice categories
represent CT practices specific to science and mathematics
contexts. We have expanded and revised the taxonomy to
include more key practices and clarify their roles in the
classroom context. We plan to present this draft taxonomy
to stakeholders, including practicing scientists and
mathematicians, teachers with CT experience, and CT
researchers. The feedback will inform another round of
revisions, and a final version of the revised taxonomy will
be disseminated. We have piloted this version of the
taxonomy with a professional development program that
resulted in 10 new CT-integrated science and mathematics
units designed by teacher-researcher co-design teams,

which are currently being implemented in schools.
Our goal is to define and characterize CT in science and
mathematics contexts. We believe this will help facilitate
the integration of CT and provide a resource for those who
are unfamiliar with CT practices. Further, we believe the
taxonomy can help shape CT in science and mathematics
practices, which may enhance student outcomes related to
authentic science and mathematics learning.

5. REFERENCES
Arastoopour Irgens, G., Dabholkar, S., Bain, C., Woods, P., Hall,

K., Swanson, H., Horn, M.S., Wilensky, U. (2020). Modeling
and Measuring High School Students’ Computational Thinking
Practices in Science. Journal of Science Education and
Technology, 29(1), 137-161.

Dabholkar, S., Arastoopour Irgens, G., Horn, M., & Wilensky, U.
(2020). Students' epistemic connections between science
inquiry practices and disciplinary ideas in a computational
science unit. Proceedings of the International Conference for
the Learning Sciences (ICLS 2020), Nashville, USA: ISLS.

Forrester, J. W. (1993). System dynamics and the lessons of 35
years. In A systems-based approach to policymaking (pp. 199-
240): Springer.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A Review of
Models for Introducing Computational Thinking. Computer
Science and Computing in K–12 Education.

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J., &
McGinnis, J. R. (2020). Teacher change following a
professional development experience in integrating
computational thinking into elementary science. Journal of
Science Education and Technology, 29(1), 174-188.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson,
J., Malyn-Smith, J., & Werner, L. (2011). Computational
thinking for youth in practice. Acm Inroads, 2(1), 32-37.

Peel, A., Dabholkar, S., Anton, G., Wu, S., Wilensky, U., &
Horn, M. (2020). A Case Study of Teacher Professional
Growth Through Co-design and Implementation of
Computationally Enriched Biology Units. Proceedings of the
International Conference for the Learning Sciences (ICLS
2020), Nashville, USA: ISLS.

SageModeler [Computer software]. (2020). Concord, MA: The
Concord Consortium and the CREATE for STEM Institute at
Michigan State University.

Suters, L., & Suters, H. (2020). Coding for the Core:
Computational Thinking and Middle Grades Mathematics.
Contemporary Issues in Technology and Teacher Education,
20(3), 435-471.

Swanson, H., Anton, G., Bain, C., Horn, M., & Wilensky, U.
(2019). Introducing and assessing computational thinking in
the secondary science classroom. In Computational Thinking
Education (pp. 99-117): Springer.

Wilensky, U. (1999). NetLogo [Computer Software]. Retrieved
December 1, 2019, from http://ccl.northwestern.edu/netlogo/

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining Computational
Thinking for Mathematics and Science Classrooms. Journal of
Science Education and Technology, 25(1), 127-147.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a
sheep, or a firefly: Learning biology through constructing and
testing computational theories—an embodied modeling
approach. Cognition and instruction, 24(2), 171-209.

http://ccl.northwestern.edu/netlogo/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

123

Action Research on Engineering Design-oriented and Project-based
STEM Teaching Model

Hong YU1, Lu ZOU2*

1,2 South China Normal University, China
454534852@qq.com, zoulu_98@qq.com

ABSTRACT
From the perspective of engineering design and based on the
LBD’s Binary Cycles Model, this study constructed the
engineering design-oriented and project-based STEM
teaching model after three rounds of action research. This
model includes four process modules as the startup, the
preparation, the practice and the summary of the engineering
project. More, it deconstructs the behavioral activities in
each module from the perspective of the teachers and the
students. Teachers mainly carry out the teaching activities of
establishing situation, describing task, providing scaffold,
guiding methods, evaluating artifacts and
summary/migrating, while students carry out the learning
activities of understanding challenges, clarifying projects,
investigation/inquiry, engineering design,
demonstration/communication and reflection/improvement.
This model provides a new paradigm for the implementation
of STEM teaching in basic education, and the results proved
that students’ STEM literacy was improved, especially in
engineering and technology.

KEYWORDS
STEM, STEM teaching model, engineering design, project-
based learning

1. INTRODUCTION
STEM education is a new educational form that organically
integrates four disciplines of Science, Technology,
Engineering and Mathematics, which is conducive to the
cultivation of the core skills of talents in the 21st century and
enhancing the talents’ competitiveness. Since the
Undergraduate Science, Mathematics and Engineering
Education report issued by the National Science Board
(NSB) firstly proposed the concept of “science,
mathematics, engineering, and technology” (National
Science Board, 1986), countries around the world have
gradually incorporated STEM education into their talent
training program and curriculum system. China also attaches
great importance to the localization of STEM education.
However, basic education in China has long existed in the
phenomenon of "teacher-oriented", "theory rather than
practice" and so on, as well as the curriculum lacks
engineering education content connected with higher
education. As the result, students’ motivation to learn and
innovate cannot be effectively stimulated, which is contrary
to the original intention of STEM education. Studies have
pointed out that engineering design-oriented STEM project
teaching is conducive to promoting students’ interest in
STEM subjects and STEM careers (Shahali et al., 2016).
Therefore, it’s necessary to carry out project-based STEM
education oriented by engineering design in primary and
secondary schools from the perspective of talent

cultivation, which is intended to improve talents’
comprehensive literacy. Furthermore, the research question
is: How to implement the engineering design-oriented and
project-based STEM teaching?

2. RELATED WORK
2.1. Engineering Design and STEM Education
From the perspective of teaching strategies, STEM education
can be divided into two orientations currently: scientific
inquiry orientation and engineering by design orientation.
Scientific inquiry-oriented STEM education focuses on the
generation of intellectual outcomes and provides a
standardized thinking way to solve scientific problems;
engineering design-oriented STEM education is a practical
process of applying engineering methods to solve practical
problems, which is a real sense of putting science into
practice, and its main activities are design, manufacturing
and improvement (Huang et al., 2020), focusing on the
generation of learning outcomes in materialized form. In the
study of curriculum reform, engineering-oriented STEM
courses have proven to be the most appropriate form of
implementing the concept of integrated STEM education,
containing three core elements as contextual learning,
engineering design, and scientific inquiry (Xie et al., 2017).
The typical curriculum design model with engineering
design orientation is the 6E design- based learning model
proposed by the International Technology and Engineering
Educators Association (ITEEA). This model combines the
thinking of scientific inquiry with the practice of engineering
design, which mainly includes six stages as engagement,
exploration, explanation, engineering, enrichment and
evaluation (Barry N B., 2014).

2.2. Project-based Learning and STEM Education
Thomas argues that Project-based learning is an experiential
learning approach that engages students in projects and is an
active learning that allows students to promote their own
understanding of an area of knowledge (Thomas, 2000). He
defines five characteristics of project- based learning: (1)
The projects are the core to the curriculum; (2) A method to
guide students’ understanding of the core disciplinary
knowledge; (3) Students’ activities involve constructive
investigation; (4) A certain degree of students’ drive; (5) The
topic, context, and tasks of the project based on real
situations. Participation in project- based STEM courses
influences students’ attitudes toward STEM skills, practical
values, and career aspirations (Beier et al., 2018)., A STEM
project design model was proposed based on the
constructivist perspective, which takes the "project or
problem" as the core point and focuses on the corresponding
intensive practice and summary

mailto:454534852@qq.com
mailto:zoulu_98@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

124

improvement after the completion of the project (Yu & Hu,
2015).

Based on the above theories, this study combining
engineering design concepts and STEM project-based
teaching methods constructs an engineering design- oriented
and project-based STEM teaching model and conducts three
rounds of action research, with the intention of exploring a
STEM teaching model in basic education suitable for
China’s national conditions, and opening up new paths for
articulation with higher education.

3. PRIMARY CONSTRUCTION
In order to promote deep and sustained interdisciplinary
learning and develop students’ ability to solve complex and
unstructured problems, Kolodner (2002) proposed the
“Design & Exploration” double- cycle model of Learning By
Design™ (LBD), which consists of Design/Redesign cycle
and Investigate & Explore cycle. The Design/Redesign cycle
includes all activities needed by

completing a design task, such as planning design,
understanding challenge, presenting & sharing gallery walk,
analyzing & explaining, construction & test, Presenting &
sharing pin-up session, while the Investigate & Explore cycle
includes designing investigation, making hypothesis,
clarifying question, presenting & sharing poster session,
analyzing results, and conducting investigation, which are a
series of investigation activities based on specific design
content. In addition, "Need to Do" and "Need to Know" are
the links between the two circles. The model integrates
multiple designs and multiple investigations, which means
that integrates doing practice with learning knowledge,
which is in line with the engineering and projected-based
STEM teaching concept. Based on the LBD’s Cycles by
Kolodner, this research constructs the engineering design-
oriented and projected- based STEM teaching model from
the perspectives of both teachers and students. The
preliminary construction results are shown in Figure 1.

Figure 1. The Preliminary Construction of Engineering Design-oriented and Project-based STEM Teaching Model.

The preliminary construction of engineering design-
oriented and project-based STEM teaching model takes a
specific engineering project as the starting point, and
students engage in STEM learning through “Investigate &
Explore” circular process and “Engineering Design” circular
process, with the works constructed by students being the
final resulting output. The main purpose of “Investigate &
Explore” process is to let students acquire the knowledge
needed to complete this engineering design and know "how
to do it", which mainly includes the steps of making
hypothesis, brainstorming of group discussion, making
investigation plan and implementing investigation; In
addition, “Engineering Design” process’s main purpose is to
let students construct project works through design and
hands-on practice, and discover "what they need to know" in
the practice before obtaining the required knowledge
through investigation and exploration again. It mainly
includes the steps of planning/designing the engineering
projects, brainstorming of group discussion, constructing
engineering design works, and testing the works. In addition,
reflection is integrated throughout the students’ activities,
and teacher’s main task is to provide support services such
as learning guidance for the students’ learning.

4. METHODOLOGY
4.1. The Research Object
In this study, students from grade 4 to grade 6 in a primary
school in Guangzhou province were selected as the object

of action research. The school is well-equipped with the
infrastructure for STEM teaching. In addition, according to
Piaget’s theory of cognitive development, primary school
students have some logical thinking skills, but still need the
support of specific content when they engage in thinking
activities. Engineering design-oriented and project-based
STEM teaching allows students to carry out project-based
engineering design activities in specific contexts, which
meets the demands of students’ development of hands-on
practical ability, problem-solving ability and innovative
thinking.

4.2. The Research Method
Action research is an important method for educational
research, and its conducting process is a spiral cycle
consisting of the four components as planning, action,
observation and reflection. Educational action research is a
research method based on a certain purpose and plan to
systematically investigate specific issues in educational
action for the purpose of improving the effectiveness of
educational action (Kemmis & Zhang, 1994). In this study,
three rounds of action research were used to conduct an
exploration of an engineering design-oriented and project-
based STEM teaching model.

4.3. The Research Process

4.3.1. The First Round of Action Research
Research Objective: To analyze the process module of
engineering design-oriented and project-based STEM
teaching model.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

125

Teaching Content: “The Design of Sweeping Robot” (4
lessons)

Research processes: (1) Planning: Make an instructional
design plan for “The Design of Sweeping Robot” to
summarize the process modules of teaching; (2) Action:
Carry out STEM teaching practice according to the
developed instructional design; (3) Observation: The main
processes of the classroom; (4) Reflection: Reflect on
whether the process modules of the engineering design-
oriented and project-based STEM teaching model are
reasonable according to the classroom videos and teaching
logs.

Summary: After the first round of action research, we found
that the engineering design-oriented and project- based
STEM teaching model can be divided into four main
processes: project startup, project preparation, project
practice and project summary, so that the teaching model can
be initially divided into four modules.

4.3.2. The Second Round of Action Research
Research Objective: To analyze the pedagogical elements of
teachers in engineering design-oriented and project- based
STEM education.

Teaching content: “the Making of Arduino Light Painting”
(4 lessons)

Research processes: (1) Planning: Make an instructional
design plan for “the Making of Arduino Light Painting” to
analyze the teaching elements; (2) Action: Carry out STEM
teaching practice according to the developed instructional
design; (3) Observation: teachers’ classroom behaviors; (4)
Reflection: Reflect on whether the summary of teachers’
teaching activities in the STEM education is reasonable
according to classroom videos and teaching logs.

Summary: After the second round of action research, we
found that the preliminary teaching activities of teachers lack
the process of “providing learning scaffolds”. Learning
scaffolds should be provided for students’ investigative
exploration and engineering design in the project preparation
session following the description of the task in order to guide
them to explore more possibilities in the heterogeneous
problems.

4.3.3. The Third Round of Action Research
Research Objective: To analyze the composition of the
students’ activities in engineering design-oriented and
project-based STEM education.

Teaching Content: “Building A Bridge for Bay Area” (4
lessons)

Research processes: (1) Planning: Make an instructional
design plan for “Building A Bridge for Bay Area” to analyze
the activity composition of students; (2) Action: Carry out
STEM teaching practice according to the developed
instructional design; (3) Observation: students’ learning
activities; (4) Reflection: Reflect on whether the division of
the elements of the students’ activities in engineering design-
oriented and project-based STEM education is reasonable
according to classroom videos and the classroom
observation forms.

Summary: After the third round of action research, we found
that students’ learning activities lack the transfer and
improvement link after summary and the adjustment link
after reflection. Therefore, homework should be assigned at
the end of the class so that students can consolidate the
knowledge and skills they have learned as well as seek the
expansion and deeper construction of knowledge. In
addition, students should not only to reflect on the whole
learning process, but also apply the reflection results to the
practice and conduct engineering project practice again.

5. MODIFICATION OF MODEL
5.1. Engineering Project Startup
Establish situation and understand challenges: Situational
learning is one of the characteristics of engineering- oriented
STEM education. Therefore, engineering design- oriented
STEM projects need to be carried out in a specific context.
Teachers need to create specific engineering situations based
on reality before students begin to study STEM projects, so
that students can relate to their own experience and
understand the problems or challenges they will face in the
project.

Describe the task and clarity project: Teachers can assign
tasks and make a certain task description after students
understand the project’s background and challenges in a
specific context, so that students can make clear to the theme
of the STEM study and the specific project they need to
undertake.

5.2. Engineering Project Preparation
Provide scaffolds and investigate & Explore: After assigning
tasks, teachers should provide certain support services for
students’ learning, such as listing questions and providing
examples for reference, so that students can conduct
investigation & exploration activities in a targeted and
structured way after clarifying specific engineering projects.
During the link of investigation & exploration, students
firstly put forward relevant hypotheses based on the specific
issues, and conduct brainstorming in the form of group
discussion to determine the hypothesis and formulate a
specific investigation plan, finally conduct investigation
according to the plan with adjusting the behaviors of each
link through constant reflection, laying the knowledge
foundation for the subsequent practical sessions of the
project.

5.3. Engineering Project Practice
Method guidance and engineering design: In this part,
students first plan and design the project based on the
acquired knowledge, then modify the planning and design as
well as construct the works with group discussion, finally
test the practical results and optimize them. In the entire
processes, students continue to reflect on each stage and
modify the actions of the previous stage, while teachers are
responsible for providing methodological guidance.

5.4. Engineering Project Summary
Evaluate the works, demonstrate and communicate: Students
present the constructed works, and each group will conduct
mutual evaluation and exchange experience,

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

126

while teachers are responsible for reviewing students’ works
and giving feedback and suggestions.

Summarize and migrate, reflect and improve: Teachers
comment and summarize the constructed works displayed by
students, and finally assign extracurricular homework

for students to transfer knowledge; Students communicate
with other groups’ members when they show their works,
and finally they reflect on the deficiencies in the whole
project, modify the deficiencies, and re-practice the
engineering design after class.

Figure 2. The Engineering Design-oriented and Project-based STEM Teaching Model.

6. CONCLUSION
After three rounds of action research, we constructed an
evaluation index system for the teaching effect of cultivating
STEM literacy from three dimensions: STEM knowledge,
STEM skills and STEM emotional attitude. Then 30 students
who were action research object of the third round were
asked to evaluate the STEM teaching results of “Building A
Bridge for Bay Area”. As the result,
28 of them showed significant improvement in STEM
knowledge and skills, especially in the field of engineering
and technology, and they showed great interests in
engineering design-oriented and project-based STEM
education as they gained a great sense of achievement in
engineering project practice. However, the remaining 2
students barely participated in the overall STEM learning
activities because they didn’t like learning and lacked social
skills, as the interviews showed.

In conclusion, this study summarizes an engineering design-
oriented and project-based STEM teaching model based on
the LBD’s Cycles by Kolodner after three rounds of action
research, which provides a new paradigm for STEM
teaching development in basic education. However, the
validity of the model still needs to be validated on a larger
scale due to the current limitation of the sample size.
Furthermore, increasing students’ engagement in
engineering design-oriented and project-based STEM
learning is also a factor that should be considered.

7. REFERENCES
Barry N B. (2014). The ITEEA 6E Learning by

DeSIGNTM Model. Journal of Technology and
Engineering Teacher, 2014(3), 14-19.

Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V.,
Bishnoi, S., & Gilberto, J. M. (2018). The effect of
authentic project-based learning on attitudes and career

aspirations in STEM. Journal of Research in Science
Teaching, 1–21.

Huang, X. D., & Yu, R. W. (2020). STEM Engineering
Teaching Model: Meaning, Construction and
Application. Chinese Journal of Educational Science
Research, 2020(7), 60-66.

Kemmis, S., & Zhang, X. Y. (1994). Action Research.
Chinese Journal of Educational Science Research,
1994(4), 32-36.

Kolodner, J. L. (2002). Learning by DesignTM Iterations
of Design Challenges for Better Learning of Science
Skills. Journal of Cognitive Studies, 9(3), 338-350.

National Science Board. (1986). Undergraduate Science
Mathematics and Engineering Education. Retrieved
October 12, 2020, from
http://www.nsf.gov/nsb/publications/1986/nsb0386.pdf

Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., &
Zulkifeli, M. A. (2016). STEM Learning through
Engineering Design: Impact on Middle Secondary
Students’ Interest towards STEM. Eurasia Journal of
Mathematics, Science and Technology Education, 13(5),
1189–1211.

Thomas, J. W. (2000). A review of research on project-
based learning. Retrieved from
http://www.dl.icdst.org/pdfs/files1/aac48826d9652cb154
e2dbf0033376fa.pdf

Xie, L., & Li, C. M. (2017). The Study of Curriculum
Reform based on Integrated STEM Education. Chinese
Journal of Curriculum, Teaching Material, and Method,
37(6), 63-68+62.

Yu, S. Q., & Hu, X. (2015). STEM Education and Its
Model for Interdisciplinary Integration. Chinese Journal
of Open Education Research, 21(4), 13-22.

http://www.nsf.gov/nsb/publications/1986/nsb0386.pdf
http://www.dl.icdst.org/pdfs/files1/aac48826d9652cb154e2dbf0033376fa.pdf
http://www.dl.icdst.org/pdfs/files1/aac48826d9652cb154e2dbf0033376fa.pdf

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

127

A Case Study of 7th Grade Students Learning Programming to Solve Mathematics
Problems

Wendy HUANG1*, Chee-Kit LOOI2, Mi Song KIM3

1, 2 National Institute of Education, Nanyang Technological University, Singapore
3University of Western Ontario, Canada

wendy.huang@nie.edu.sg, cheekitlooi@nie.edu.sg, mkim574@uwo.ca

ABSTRACT
Unlike previous research that focused on transfer of
cognitive skills gained in programming to problem solving,
we contend that students can learn programming to directly
solve mathematics problems. Our study begins a line of
inquiry on whether computational thinking (CT) can be
considered a distinct approach for mathematics problem
solving in schools. This paper presents analysis of an
episode that featured two students who conceptualized and
coded an algorithmic solution to a textbook word problem.
A comparison is made with the standard deductive
approach. We generalize the differences in the two
approaches in terms of knowledge types. The case is
paradigmatic of a broader phenomenon in which CT makes
a difference in how students approach problem solving in
school mathematics.

KEYWORDS
computational thinking, mathematics education, problem
solving, computer programming, secondary education

1. INTRODUCTION
Enthusiasm around teaching programming in connection to
mathematics led researchers to empirically investigate the
effect of computer programming on K-12 mathematics
learning. In 1989, McCoy and Dodl published a quantitative
study of 800 high school students that concluded transfer of
skills from computer programming experience to
mathematical problem solving. In 1995, Yelland reviewed
research on the LOGO experiments conducted in the 1980s
and found mixed results on cognitive gains in mathematics
achievement and problem solving. Schanzer et al (2018)
reported that the Bootstrap programming curriculum
improved students’ ability to solve algebra word problems
on pre/post-tests. In their review of 15 studies, Forsström
and Kaufmann (2018) found that under certain
circumstances, programming in mathematics education
could improve student motivation and performance in
mathematics. There have been many studies relating
programming and learning mathematics concepts,
especially in geometry (e.g., Sung et al., 2020; Benton et al.,
2017), but very few have specifically related programming
to school mathematics problem solving.

Unlike previous research that focused on transfer or
bridging of cognitive skills gained in programming to
problem solving, we contend that students can learn
programming to directly solve mathematics problems.
Therefore, our study begins a line of inquiry on whether CT
can be considered a distinct approach for mathematics
problem solving in schools, such that students formulate

problems computationally and then effectively solve them
by writing programs. We also contribute to designing for
such learning in secondary level education.

2. RESEARCH QUESTIONS
In design-based research (DBR), we strive to engineer
certain learning outcomes while “building theories about
why designs work and how to adapt them to new
circumstances” (p. 9, Cobb, et al., 2003). In our study, we
designed instructional materials to support students learning
programming to solve mathematics problems in order to
answer the following questions:

1. What counts as evidence of CT?

2. Does CT make a difference in how students
approach mathematics problems?

3. INTERVENTION DESIGN
The instructional design being tested was based on four
principles.

3.1. CT for programming. Programming for math.
Among many contested definitions of CT, we chosen one
that aligns well with learning to program. CT is defined as
“the thought process involved in formulating a problem and
expressing its solution(s) in such a way that a computer—
human or machine—can effectively carry out” (Wing,
2014). Computers are defined as information processing
agents that carry out numerical calculations or symbolic
manipulations (Denning and Tedre, 2019).

While it is possible to design algorithms without
implementing them on machines, there are compelling
reasons to learn computational problem solving via
programming. As students give instructions (i.e., code) to a
machine, they learn how computers blindly and
mechanistically process the code. It is harder to learn this
from giving verbal commands to a human computer.
Humans can tolerate ambiguity when interpreting natural
language.

3.2. Programming to solve mathematics problems
Problem solving is an important instructional goal in school
mathematics (e.g., National Council of Teachers of
Mathematics, 2000; Common Core State Standards, 2010).
In Singapore syllabus documents, it is considered “central
to mathematics learning” (MOE, 2006) and involves
“applying mathematics in practical tasks, in real life
problems and within mathematics itself” (MOE, 1990).

Conventionally, students solve problems directly using the
technologies of paper, pen, and sometimes a calculator. A

mailto:wendy.huang@nie.edu.sg
mailto:cheekitlooi@nie.edu.sg
mailto:mkim574@uwo.ca

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

128

computational thinker designs algorithms for an
intermediary, a computing agent, to find the solution.

3.3. Learning programming should be embedded in math
contexts
Rather than have students take a generic programming class
before applying the skill to mathematics, we designed the
instructional materials so that students learn programming
within a mathematics context. The materials assume no
prior knowledge in programming and uses mathematics
examples that most 7th grade students are already familiar
with in the Singapore context.

3.4. Focus on using the language, rather than learning
the language.
We selected and sequenced lessons so that students learn
programming concepts at a level essential to doing
something meaningful with mathematics. The Code by
Math web-based platform uses Lua, a programming
language that novices can learn quickly. We determined the
following to be essential programming concepts for
computational problem solving: output, sequencing,
arithmetic operators, basic mathematical functions,
variables, loops, and selection.

4. METHOD
The case study reported is from the second DBR cycle and
took place at a typical public school. The teacher assisted us
in getting four 7th grade students to volunteer and obtained
consent from the parents. The program lasted four days and
each day’s session lasted 1 hour.

On day 1, we conducted a 10-minute focus group to find out
about their interest in mathematics and programming. The
students expressed minimal interest in the mathematics
subject, due to a history of getting poor grades, finding the
subject difficult and boring, and having trouble
understanding their teachers’ instruction. None of the
students had any experience with computer programming
but were cautiously open to trying it.

After explaining pair programming roles and how to use the
instructional materials, students worked through the lessons
in a self-guided way. The printed and soft copies of the
instructional documents provided links to select lessons on
the Code by Math website (www.codebymath.com), and
additional exercises.

For data collection, we recorded students’ screens to capture
what they were typing and their facial expressions. As
backup, we used separate audio and video recorders.

5. ANALYSIS
We chose to analyze the following 10-minute episode
because it drew attention to the distinctive influence of CT.
We describe the episode in two segments: (1) developing an
algorithmic solution, and (2) coding the algorithmic
solution. Lastly, we compare the computational solution to
the pen-and-paper solution that students would normally be
expected to produce.
On the third day, Isaac and Fei Hong (pseudonyms) had just
completed a brief introduction on loops, and learned

how to evaluate and display values based on the loop
counter, as shown in Figure 1.

Figure 1. Screenshot of the lesson on loops from the Code
by Math website
Next, they were given the math problem shown in Figure 2,
which came from the New Syllabus Mathematics book 7th
edition, and marked as an advanced exercise.

A class has between 30 to 40 students. Each boy in the
class brings 15 chocolate bars for a class party to
celebrate Teacher’s Day. The chocolate bars are shared
equally among the 20 girls of the class and their form
teacher with no leftovers. (p. 23)

a) How many students are there in the class?
b) How many chocolate bars does their form teacher

receive?

Figure 2. Textbook word problem

5.1. Developing an algorithmic solution
After 4 minutes of discussing the problem on their own,
students began using a “guess-and-check” method. They
had deduced that the number of possible boys was between
10 and 20. However, they seemed to be guessing randomly
rather than in a systematic way. After a while, they could
not proceed to solve the problem, so I (first author) guided
them through clarifying “what we know” and listing these
on the paper.
After a pause, one of the students said: “Can’t we just take
every number between 10 and 20 and then times 15 and
divide by 21?” I realized that this student had just articulated
an algorithmic solution, so I said: “…and you want to try
every number so you can use what?” They responded,
“code”. I pressed them to be more precise and we had the
following exchange:
WH (first author): “…a loop, right? so where would you
want the loop to start at?”
Isaac: “ten”
WH: “and it’s going to go until…”
Isaac: “eleven”
FH (Fei Hong): “twelve, thirteen”
WH: “so it’s going to go from ten to…”
Isaac: “twenty”
WH: “and like he said, first you’re going to multiply
by…”

http://www.codebymath.com/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

129

Isaac: “fifteen”
WH: “and then divide by…”
FH: “twenty one”
WH: “and see if you get a whole number. So now write code
to do this, ok? But you kind of get the idea. That’s your set
of instructions…The idea is that we’re going to be repeating
the instructions over and over.”

5.2. Coding the algorithmic solution
Isaac constructed a loop for the range of possible number of
boys, as shown in Figure 3. He said “oh” after clicking the
Run button and his partner nodded, perhaps realizing that
the output confirmed what they expected and also showed
numbers that corresponded with the range of possible
numbers of boys.

Figure 3. Isaac’s code and output

As shown in Figure 4, Isaac added lines 4 and 5 to reflect
the two computation steps to be carried out for each value
of i, where i is the possible number of boys. The variable c
is an intermediate variable that stores the number of
chocolates brought by i number of boys. However, there
were some errors which reflected an immature
understanding about encapsulating commands inside loops.

Figure 4. Code showing errors
After fixing the errors in the code, students got the output as
shown in Figure 5.

Figure 5. Output from the correct code

The students and I took a moment to interpret the results. It
was striking that only when i = 14, was the result of c/21 a
whole number (10). This meant that the number of
chocolates brought by 14 boys were divisible by 21
(representing the 20 girls + 1 form teacher). So each girl and
teacher received 10 chocolates, and there were 34 students
in the class (20 girls + 14 boys).

5.3. Comparison with conventional problem solving
The problem we gave the students came from a textbook
chapter on the topic of least common multiples (LCM),
along with worked examples on solving similar problems.
According to the textbook, students should deduce that the
solution must be divisible by both 21 and 15, and therefore
must be a multiple of the two numbers.
Students could find the common multiples using prime
factorization:
21 = 7*3
15 = 5*3
LCM = 3 * 7 * 5 = 105
Students could either deduce or recall that common
multiples are always multiples of the LCM, so the next
multiple is 105 * 2 = 210. This corresponds to 14 boys and
each girl and teacher receiving 10 chocolates each. 14 boys
+ 20 girls = 34 students in the class.
Another way to frame the solution is that the number of
chocolates must be between 150 and 300, because the least
number of boys is 10, so 10 boys * 15 chocolates per boy
= 150 chocolates and the most number of boys is 20, so 20
boys *15 chocolates per boy = 300 chocolates. Therefore,
the number of chocolates must a number between 150 and
300 that is divisible by 21. This formulation would exclude
the LCM, which was 105 chocolates (7 boys * 15 chocolates
per boy).

6. DISCUSSION
We expected to see evidence of CT, but did not know from
the outset what it would look like (RQ1). It was not
sufficient for students to simply demonstrate CT by
completing programming exercises. What is novel was the
possibility that learning programming could have “primed”
students to conceptualize the textbook problem in
computational terms, rather than to apply the concept of
“common multiples” (a problem feature that they failed to
recognize). We theorize that learning loops, in particular,
might have inspired students to “discover” a method to have
the computer systematically calculate all the possible
solutions and then to select the result that met the problem
constraints. A “brute force” approach is easy to grasp and
can therefore provide entry into the world of computational
problem solving. We are currently analyzing other cases
where we see students doing something similar, as evidence
of algorithmic thinking specifically for mathematics
problem solving. Another open question is whether the
order of first conceiving the algorithm off-computer and
then implementing on- computer is always so distinct.
To address RQ2, we showed that CT made a difference in
what was included and left out of the thinking process

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

130

when compared to similar worked problems in the math
textbook. In this case, the textbook examples required that
students apply the concept of “common multiples”.
Students did not need this concept for the computational
formulation. However, they did need to specify the lower
and upper bounds of the solution space and develop
computations that would be repeated between those bounds.
There is, of course, overlap in some areas of thinking, such
as understanding the mathematical features of the problem
so that key parts are abstracted and translated into numbers
and operations.
We are still exploring how to theoretically describe the
differences between the computational approach and the
school math approach. One starting point is in
epistemology. According to Abelson and Sussman (1996),
The computer revolution is a revolution in the way we think
and in the way we express what we think. The essence of this
change is the emergence of what might best be called
procedural epistemology—the study of the structure of
knowledge from an imperative point of view, as opposed to
the more declarative point of view taken by classical
mathematical subjects. Mathematics provides a framework
for dealing precisely with notions of ‘what is.’ Computation
provides a framework for dealing precisely with notions of
‘how to’. (Structure and Interpretation of Computer
Programs, 1996, p.xxiii)
Declarative knowledge is presented as a statement of fact:
“the number of chocolates brought by the boys is between
150 and 300 such that the number is divisible by 21”. Stated
imperatively, a computational formulation to the same
problem is: “for each number between 10 and 20, multiply
by 15, then divide the result by 21. If the dividend is a whole
number, the number of chocolates per girl or teacher is
found”. Although an oversimplification, the knowledge
categories represent our early attempt to describe the
phenomenon.

7. LIMITATIONS
DBR studies are validated through the accumulation of
storied truths (Gee, 2013), as explanations of underlying
mechanisms within rich, contextualized cases. This paper
provides one case that we theorize to be paradigmatic of a
broader phenomenon where CT enables secondary level
students to approach a math problem differently from what
they usually do in school. As we iteratively develop
analytical labels and relationships based on the first two
rounds of the study, we can use them to describe new cases.
Future DBR cycles will take place in natural classroom
settings, which would provide increased sample size and
diversity.

8. CONCLUSION
We set out to investigate the broad phenomenon of how
students develop CT while learning programming to solve
mathematics problems. We designed the instructional
materials to embody principles that reflected how we
viewed the relationship between CT, programming, and
mathematics problem solving, as well as a commitment to
making the materials accessible to students of all abilities.

When interacting with students during a particular session,
we identified a critical moment in which a student clearly
articulated an algorithmic solution, which prepared them to
write code that expressed the solution. Therefore, the case is
paradigmatic of conditions where CT can make a difference
in how students conceptualize a mathematics problem. A
comparison of students’ computational solution and the
expected textbook-based one revealed a possible area for
theory-building according to knowledge types.

9. REFERENCES
Abelson, H., Sussman, G. J., & Sussman, J. (1996).

Structure and Interpretation of Computer Programs - 2nd
Edition. The MIT Press.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble,
L. (2003). Design experiments in educational research.
Educational Researcher , 32(1), 9–13.

Common Core State Standards. (2010). Standards for
Mathematical Practice. Retrieved January 29, 2021,
from http://www.corestandards.org/Math/Practice/

Denning, P. J., & Tedre, M. (2019). Computational
Thinking. MIT Press.

Forsström, S. E., & Kaufmann, O. T. (2019). A literature
review exploring the use of programming in mathematics
education. International Journal of Learning, Teaching
and Educational Research, 17(12).
https://doi.org/10.26803/ijlter.17.12.2

Gee, J. (2013). The anti-education era: Creating smarter
students through digital learning. New York: Palgrave
Macmillan.

McCoy, L. P., & Dodl, N. R. (1989). Computer
programming experience and mathematical problem
solving. Journal of Research on Computing in Education,
22(1), 14–25.

Ministry of Education. (1990). Mathematics syllabus
(lower secondary). Singapore: Author.

Ministry of Education. (2006). Secondary mathematics
syllabus. Singapore: Author.

National Council of Teachers of Mathematics. (2000).
Principles and standards for school mathematics.
Reston, VA.

Schanzer, E., Fisler, K., & Krishnamurthi, S. (2018).
Assessing Bootstrap: Algebra students on scaffolded and
unscaffolded word problems. Proceedings of the 49th
ACM Technical Symposium on Computer Science
Education, 8–13.

Wing, J. M. (2014).Computational thinking benefits
society. Retrieved January 28, 2021, from
http://socialissues.cs.toronto.edu/index.html%3Fp=279.h
tml

Yelland, N. (1995). Mindstorms or a storm in a teacup? A
review of research with Logo. International Journal of
Mathematical Education in Science and Technology,
26(6), 853-869

http://www.corestandards.org/Math/Practice/
http://socialissues.cs.toronto.edu/index.html%3Fp%3D279.h

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

131

STEM Activities in Informal
Contexts

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

132

Developing STEM Makers with Mentoring and Authentic Problem-Solving
Strategies

Xiaojing WENG1*, Thomas K.F. CHIU2, Morris S.Y. JONG3

1,2,3Department of Curriculum and Instruction & Centre for Learning Sciences and Technologies
The Chinese University of Hong Kong, Hong Kong

xweng@link.cuhk.edu.hk, tchiu@cuhk.edu.hk, mjong@cuhk.edu.hk

ABSTRACT
Maker education is regarded as a global initiative.
Empowering STEM makers in schools becomes an
important task for K-12 educators. Creativity, critical
thinking, STEM identity, and STEM interest are all vital
attributes of a good STEM maker. While researchers have
proposed various pedagogical approaches to supporting the
processes of STEM making, rare studies have been carried
out to compare the effectiveness of these approaches. To fill
the research gap, we have conducted a quasi-experimental
study (with 63 secondary school students in Hong Kong) to
explore the pedagogical effects of mentoring and authentic
problem-solving strategies in supporting STEM making.
Implications for the development of maker education and
future work are also discussed in this paper.

KEYWORDS
STEM education, maker, mentoring, authentic problem-
solving, instructional design

1. INTRODUCTION
Maker movement has started to spread widely since the
early of this century (Sang & Simpson, 2019). The
advocation of this cultural phenomenon, which is to
cultivate learners to become "makers rather than
consumers" of products (Chiu et al., accepted; Marshall &
Harron, 2018), matches the pursue of developing students’
multiple capabilities in Science, Technology, Engineering,
and Mathematics (STEM) areas (Honey et al., 2014).
Correspondingly, making activities have been adopted to
promote STEM education. Many researchers have reported
the effects of maker-centered method in STEM education.
For example, to develop learners’ creativity, critical
thinking, and algorithmic thinking (Jeng et al., 2020), and
to improve learners’ psychological perceptions towards
STEM (Chiu, et al., 2020; Lin et al., 2019; Schlegel et al.,
2019). Among these intervention outcomes, there are four
significant attributes for youth to be identified as STEM
makers, including creativity, critical thinking, STEM
identity, and STEM interest.

Meanwhile, educators are trying to enrich learners’ STEM
making experience. One of the strategies used is to infuse
other instructional mechanisms into making activities

opportunities; authentic problem-solving method exposes
students to ill-structured real-world problems and enables
them to practice their creativity and critical thinking skills
when exploring solutions. Some researchers have reported
their experience of integrating mentoring and/or authentic
problem-solving approaches in students’ making activities
(Carbonell-Carrera et al., 2019; Kuo et al., 2019), but few of
them have compared the outcomes of adopting these two
methods in developing student makers. To fill the research
gap, this study aims to investigate the effectiveness of using
mentoring and authentic problem-solving strategies in
cultivating students to become STEM makers. Accordingly,
the main research question of the study is: “Which of the
two instructional designs is more effective in improving
students’ creativity, critical thinking, STEM identity, and
STEM interest, mentoring or authentic problem-solving?”

2. RESEARCH DESIGN
2.1. Research Participants
Two classes of students from two different secondary
schools in Hong Kong have participated in this study. These
two schools shared a similar academic background. Besides,
teachers of these two classes were both certificated teachers
with PGDE and around 5 years of Mathematics teaching
experience. These two classes were randomly assigned to be
the mentoring class (n=32) and the authentic problem-
solving class (n=31). In addition, 8 mentors, who were
undergraduate students in STEM-related majors, were
recruited to help students in the mentoring class.

2.2. Research Intervention
There were three phases of the study. Step 1: Pre-test. A
week before the STEM making courses, a questionnaire was
distributed to all student participants. The questionnaire
items, which included creativity, critical thinking, STEM
identity, and STEM interest scales, were adopted from the
previously published works (Kelley et al., 2019; Tyler-
Wood et al., 2010; Young et al., 2013), and the Cronbach
Alpha (CA) for each scale was adequate in general (see
Table 1).

 Table 1. Scale characteristics
 Scales Items CA

(Geng et al., 2019; So et al., 2020). For instance, mentoring
and authentic problem-solving approaches are two choices
of them (Hernandez et al., 2017; Musavi et al., 2018). These
two instructional designs have been highlighted because of
their potential in developing student learning. For instance,
mentors can help learners get access to a variety of learning
resources and provide them with capability development

Creativity

Q1: I am confident in my ability to
understand how knowledge or insights
might transfer to other situations or
contexts.
Q2: I am confident in my ability to find
sources of information and inspiration
when others do not.
Q3: I am confident in my ability to

0.8

 elaborate and improve on ideas.

mailto:xweng@link.cuhk.edu.hk
mailto:tchiu@cuhk.edu.hk
mailto:mjong@cuhk.edu.hk

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

133

Critical
thinking

Q4: I am confident in my ability to
evaluate reasoning and evidence that
support an argument.
Q5: I am confident in my ability to identify
in detail what needs to be known to answer
a question.
Q6: I am confident in my ability to justify

0.7

choices of evaluation criteria.

STEM
identity

Q7: My classmates ask me for help with
STEM.
Q8: My teachers expect me to study
STEM in the future.

0.9

Q9: My parents think I am good at STEM.
STEM
interest

Q10: I find STEM fascinating. 0.9
Q11: I find STEM exciting.

Q12: I find STEM appealing.

Step 2: Making programme implementation. The making
courses lasted for 5 weeks. Both participating classes
organized students into groups (with 3-4 students in a team).
Learners used Arduino kits to design and make their STEM
projects. The difference between the two classes was that
students in the mentoring class were assigned one mentor
for each student team. On the other hand, the students in the
authentic problem-solving class were assigned a real-world
problem, which was to design a smart traffic light for the
community, at the beginning of the programme. Table 2
shows the themes of the learning activities. Step 3: Post-test.
A week after the making courses, the questionnaire was

The homogeneity of the regression coefficient of the
two groups was analyzed, results showed that these two
groups have no difference in creativity (F(1, 59) = 0.67, p
= .42), STEM identity (F(1, 59) = 0.01, p = .91), and
STEM interest (F(1, 59) = 2.38, p = .13), which confirmed
the assumption of homogeneity. The analysis results of
critical thinking did not pass the homogeneity test. In the
next step, ANCOVAs were performed to analyze the
scores in the four dimensions of the post-tests.

For the dependent variable creativity, there was no
significant difference in the post-test scores for creativity
(see Table 4). For the dependent variable STEM identity,
the adjusted means of mentoring and authentic problem
groups were 4.55 and 3.24, respectively. The post-test
scores of the two groups achieved significance (F(1, 60) =
187.09, p < .001, η2 = .76), showing a large effect size. For
the dependent variable STEM interest, the adjusted
means of mentoring and authentic problem groups were
4.59 and 3.87, respectively. The post-test scores of the
two groups achieved significance (F(1, 60) = 19.52, p
< .001, η2 = .25), showing a large effect size. Therefore,
we conclude from the data analysis that students developed
better STEM identity and STEM interest with the
mentoring approach.

 Table 4. Post-test Descriptive Data and ANCOVA
Results

Variable Group N Mean Adjusted F η2
Mean

Creativity Mentoring 32 4.22 4.22 0.15 0

distributed to the two participating classes again. Authentic
problem

31 4.27 4.27

Table 2. Themes of Classroom Activities Critical Mentoring 32 3.22 3.15 104.39 0.64
Time Theme thinking Authentic 31 4.42 4.49 ***

Week 1 Meet Arduino and my first Arduino program problem
Week 2 Change the brightness of LED STEM Mentoring 32 4.60 4.55 187.09 0.76

Use variable resistance to change the identity Authentic 31 3.18 3.24 ***
Week 3 brightness of LED problem

Use the photoresistor (LDR) to change the STEM Mentoring 32 4.60 4.59 19.52 0.25
Week 4 brightness of LED interest Authentic 31 3.85 3.87 ***
Week 5 Arduino for Problem-solving

3. RESULTS
Participants’ pre-test scores of creativity, critical thinking,
STEM identity, and STEM interest were shown in Table 3.
They were covariates used to exclude the effects of
students’ pre-test on their post-test performance.

Table 3. Students’ Pre-test Results
 Groups Variables Mean SD

Creativity 2.78 0.64

problem

Mentoring
(n=32)

Authentic
problem-
solving
(n=31)

Critical thinking 3.16 0.58
STEM identity 3.02 0.80
STEM interest 3.02 0.88
Creativity 2.85 0.72
Critical thinking 2.85 0.61
STEM identity 2.67 0.56
STEM interest 2.87 0.85

*p < 0.05, **p < 0.01, ***p < 0.001

4. DISCUSSION AND CONCLUSION
This research shows that, in the context of STEM
making activities, mentoring is more capable than
authentic problem-solving in cultivating students’ STEM
identity and STEM interest. It might be due to the
formation patterns of interest and identity. Once
students’ interest has been developed, it can sustain
when they know more about the representative
professionals in the related area through instruction
and/or out-of-school experiences (Jong et al., 2006;
Krapp, 2007). Likewise, when students are
developing their identity, they tend to make use of
the resources available in the environment (Chiu &
Churchill, 2015, 2016; Chiu & Mok, 2017, Dong et
al., 2020), especially the external support offered by
the STEM professionals. Infusing the mentoring strategy
into students’ STEM making activities fits learners’
interest and identity development tracks. It allows learners
to approach in-school or out-of-school STEM mentors who
can guide their STEM interest and STEM identity
development.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

134

Though the advantages of adopting the mentoring approach
have been proved in this study, the potential of using
authentic problem-solving method has not been identified.
We regard that there is a need to further probe into the
effectiveness of the authentic problem-solving strategy for
STEM maker development.

5. REFERENCES
Carbonell-Carrera, C., Saorin, J. L., Melian-Diaz, D., & De

la Torre-Cantero, J. (2019). Enhancing creative thinking
in STEM with 3D CAD modelling. Sustainability, 11(21),
6036.

Chiu T. K. F., Chai C. S., Williams, J, & Lin T. J. (accepted)
Teacher professional development on self-determination
theory-based design thinking in STEM education,
Education Technology & Society.

Chiu, T. K. F., Jong, M. S. Y., & Mok, I. A. C. (2020). Does
learner expertise matter when designing emotional
multimedia for learners of primary school mathematics?
Educational Technology Research and Development,68,
2305–2320.

Chiu, T. K. F., & Mok, I. A. (2017). Learner expertise and
mathematics different order thinking skills in multimedia
learning. Computers & Education, 107, 147–164.

Chiu, T. K. F., & Churchill, D. (2016). Design of learning
objects for concept learning: Effects of multimedia
learning principles and an instructional approach.
Interactive Learning Environments, 24(6), 1355–1370.

Chiu, T. K. F., & Churchill, D. (2015). Exploring the
characteristics of an optimal design of digital materials for
concept learning in mathematics: Multimedia learning and
variation theory. Computers & Education, 82, 280– 291.

Dong, A., Jong, M. S. Y., & King, R. B. (2020). How does
prior knowledge influence learning engagement? The
mediating roles of cognitive load and help-seeking.
Frontiers in Psychology, 11, 591203.

Geng, J., Jong, M. S. Y., Chai, C. S. (2019). Hong Kong
teachers’ self-efficacy and concerns about STEM
education. The Asia-Pacific Education Researcher, 28(1),
35–45.

Hernandez, P. R., Bloodhart, B., Barnes, R. T., Adams, A.
S., Clinton, S. M., Pollack, I., & Fischer, E. V. (2017).
Promoting professional identity, motivation, and
persistence: Benefits of an informal mentoring program
for female undergraduate students. PLoS One, 12(11),
e0187531.

Honey, M., Pearson, G., & Schweingruber, H. A. (Eds.).
(2014). STEM integration in K-12 education: Status,
prospects, and an agenda for research. National
Academies Press.

Jong, M. S. Y., Shang, J. J., Lee, F. L., Lee, J. H. M., &
Law, H. Y. (2006). Learning online: A comparative study
of a game-based situated learning approach and a
traditional web-based learning approach. In Z. Pan, R.

Aylett, H. Diener, X. Jin, S. Gobel, & L. Li (Eds.), Lecture
notes in computer science: Technologies for e-Learning
and digital entertainment (pp. 541–551). Springer.

Jeng, Y. L., Lai, C. F., Huang, S. B., Chiu, P. S., & Zhong,
H. X. (2020). To cultivate creativity and a Maker mindset
through an Internet-of-Things programming Course.
Frontiers in Psychology, 11, 1572.

Kelley, T. R., Knowles, J. G., Han, J., & Sung, E. (2019).
Creating a 21st century skills survey instrument for high
school students. American Journal of Educational
Research, 7(8), 583–590.

Krapp, A. (2007). An educational–psychological
conceptualisation of interest. International Journal for
Educational and Vocational Guidance, 7(1), 5–21.

Kuo, H. C., Tseng, Y. C., & Yang, Y. T. C. (2019).
Promoting college student's learning motivation and
creativity through a STEM interdisciplinary PBL human-
computer interaction system design and development
course. Thinking Skills and Creativity, 31, 1–10.

Lin, H. C. S., Yu, S. J., Sun, J. C. Y., & Jong, M. S. Y.
(2019). Engaging university students in a library guide
through wearable spherical video-based virtual reality:
Effects on situational interest and cognitive load.
Interactive Learning Environments, 1–16.

Marshall, J. A., & Harron, J. R. (2018). Making learners: A
framework for evaluating making in STEM education.
Interdisciplinary Journal of Problem-Based Learning,
12(2), Article 3.

Musavi, M., Friess, W. A., James, C., & Isherwood, J. C.
(2018). Changing the face of STEM with stormwater
research. International Journal of STEM Education, 5(1),
Article 2.

Sang, W., & Simpson, A. (2019). The Maker movement: A
global movement for educational change. International
Journal of Science and Mathematics Education, 17(1),
65–83.

Schlegel, R. J., Chu, S. L., Chen, K., Deuermeyer, E.,
Christy, A. G., & Quek, F. (2019). Making in the
classroom: Longitudinal evidence of increases in self-
efficacy and STEM possible selves over time. Computers
& Education, 142, 103637.

So, H. J., Jong, M. S. Y., & Liu, C. C. (2020).
Computational thinking education in the Asian Pacific
region. The Asia-Pacific Education Researcher, 29(1), 1–
8.

Tyler-Wood, T., Knezek, G., & Christensen, R. (2010).
Instruments for assessing interest in STEM content and
careers. Journal of Technology and Teacher Education,
18(2), 345–368.

Young, D. M., Rudman, L. A., Buettner, H. M., & McLean,
M. C. (2013). The influence of female role models on
women’s implicit science cognitions. Psychology of
Women Quarterly, 37(3), 283–292.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

135

STEM Education Policies

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

136

Euro-Asia Collaboration for Enhancing STEM Education

Anders BERGLUND1, Valentina DAGIENE2*, Mats DANIELS3, Vladimiras DOLGOPOLOVAS4, Siegfried
ROUVRAIS5, Miriam TARDELL6

1, 3, 6 Uppsala University, Sweden,
2, 4 Vilnius University, Lithuania

5 IMT Atlantique, Lab-STICC, UMR CNRS 6285, France
anders.berglund@it.uu.se, valentina.dagiene@mif.vu.lt, mats.daniels@it.uu.se, vladimiras.dolgopolovas@mif.vu.lt,

siegfried.rouvrais@imt-atlantique.fr, miriam.tardell@uadm.uu.se

ABSTRACT
EASTEM is a capacity-building project funded by
Erasmus+ with the aim of improving employability of
STEM (Science, Technology, Engineering and
Mathematics) graduates from partner universities by
ensuring students acquire skills needed in the workplace.
EASTEM uses approaches from student-centred STEM
education to develop the competence of lecturers and bridge
the gap between industry and universities. Over the course
of three full years (2019-2022) the project brought together
ten universities from Asia and three universities from
Europe to work together on improving STEM education,
creating a platform for partner universities to exchange best
practices on student-centred STEM education. Two
associate partners, the Ministry of Education and Training
of Vietnam and Vietnam Electronics Industries Association
are supporting EASTEM activities.

KEYWORDS
STEM education, STEM centres, academia and industry
collaboration, student-centred approach, computational
thinking

1. INTRODUCTION
Universities across the world are seeking to form global
partnerships and fostering relationships with other
institutions.

EASTEM project (http://eastemproject.eu/) is focused on
advances in the quality of teaching. Increased connections
between universities, corporate partners and schools
brought about by the EASTEM project are set to improve
the employability of graduates, fulfilling industry needs of
the workforce in Indonesia, Thailand and Vietnam. The
recent shift to online teaching and learning in all our partner
universities have further increased the need to teach in ways
that engage students. Improving the competence of teachers
and the quality of higher education in STEM to ensure that
graduates can make the best of their abilities are considered
crucial measures for industrial competitiveness in partner
countries.

There is an increase in demand for skilled professionals
within the STEM field across the globe, and a high number
of STEM workers are reaching retirement age, adding
further pressure to an already skill-short area. Thus, a high
quality STEM education is seen as a critical success factor
for Asian countries in light of the fourth industrial
revolution. Development of professional skills such as
teamwork, communication and leadership skills, quality of
education in relation to the demands of the job market, and

employability are skills that we can learn by collaborating
and cooperating.

The project partners are drivers for change in educational
approaches in their local and national context. Still the
majority of teaching is based on traditional methods rather
than meeting today’s need of the students. This is in spite of
government efforts. For example, in Vietnam the Ministry
of Education and Training has identified STEM education
as a key factor for development. In Indonesia, all of higher
education curriculum must refer to Kerangka Kualifikasi
Nasional Indonesia (Indonesia National Qualification
Framework), focusing in part on competence development.
As part of the Thailand 4.0 Policy of the Thai government
and the strategy of the Ministry of Education, Thailand is
hoping to develop a holistic strategy to prepare teachers and
school leaders to deliver education reform, with a strong
emphasis on improving teachers’ skills to make the best use
of technology in the classroom.

The project partner universities have established policies
and strategies for moving their institutions forward into the
next decade, with a strategy to proactively support the needs
of the communities and society, to produce quality
graduates who have a mind to serve the society and to
develop research and create innovations for the
development of economy, society and local security.
Nevertheless, the institutions involved in EASTEM is at the
forefront of this movement, they have expressed a need for
the activities planned in this project. In spite of the focus on
development of professional skills development for
employability in recent years nationally, regionally and
locally, the penetration rate remains low, particularly in
STEM education.

With the knowledge exchanged through the partnership,
each partner’s expertise and experiences from different
contexts can synergistically enrich each other, and will in
turn subsequently benefit the members within this resulting
strengthened network. This includes developing strategies
for enhancing each university’s own STEM education
system, to establish a platform for networking on STEM
education, and to safeguard the pitfalls of education in rapid
changes of science and technology.

EASTEM structure and activities are built on a European
model for how learning and teaching in the STEM area
should be enhanced. These strategies can (and should) be
contrasted to formalized “teaching methods”, where certain
predefined protocol for how the teaching should take place
is to be followed. Such formalized teaching methods lack
the flexibility to follow the development of the discipline,

mailto:anders.berglund@it.uu.se
mailto:valentina.dagiene@mif.vu.lt
mailto:mats.daniels@it.uu.se
mailto:vladimiras.dolgopolovas@mif.vu.lt
mailto:siegfried.rouvrais@imt-atlantique.fr
mailto:miriam.tardell@uadm.uu.se
http://eastemproject.eu/

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

137

the students, the students’ future employers, and the needs
of these entities, and are difficult to adapt to new student
groups and/or new environments. These strategies should be
adapted to the local cultural, social, economic and
disciplinary environment. By doing that, they turn out to be
powerful tools for enhancing the quality of STEM
education.

There have been several initiatives focused on skills
development and employability. EASTEM, described in
this paper, differentiates itself on several points, grounded
in a European model for enhancing STEM education.
Firstly, EASTEM focus on approaches for making
education more focused on the students and their needs, not
through specific teaching methods. Secondly, the main
attention is to integrated STEM education. Thirdly, in order
to capitalize on previous and current initiatives we address
student competence development on three levels in order to
vitalize the student-centred STEM education. Fourthly,
EASTEM lays the organizational foundation for a STEM
Education network, providing visibility to initiatives within
the field. Finally, in being rooted in staff development in
two phases, the Asian universities conduct and establish
their own staff development adaptation to local contexts.

2. COLLABORATION AND EXCHANGE
OF GOOD PRACTICES
Working together in the EASTEM project, we are currently
a part of the ongoing national and European reform of
STEM in schools and universities. The motivation is to
move from subject-oriented STEM to transdisciplinary and
project-oriented STEM (Pears et al, 2019). The political
goal is to increase the motivation of students in STEM and
increase the number and diversity of students interested in
STEM university subjects and professional STEM and
engineering careers. The educational goal is to focus on
transdisciplinary aspects and promote research-based
education (Cook, Bush, 2018). At the same time, a number
of international, regional and national research-based
initiatives are underway to improve university and high
school STEM education, focusing on student skills
development and related aspects.

Synergistic learning combining Computational Thinking
(CT) and STEM has proven to be an effective method for
advancing learning and understanding in a number of
STEM domains and simultaneously helping students
develop important computer science concepts and practices
(Park, Green, 2019).

Many computational environments and tools have been
developed to promote CT competencies in STEM
education. The way scientists and engineers approach
problems is very similar to CT methodology: Identify
problems and do research; Decompose the problem; Design
the algorithm or create plan; Analyse results; Debug and
modify, etc. (Palts, Pedaste, 2020).

Educators are often confused about CT and STEM and have
difficulties to see the link. However, CT is a way of solving
problems and can be integrated with various disciplines.
Especially STEM contexts are very suitable for this. CT
skills incorporate analytical thinking, engineering thinking,
and scientific thinking. Thus, they could be positioned as a

kind of universal skill for the modern student, and this is
especially true for STEM education.

Besides critical thinking, creativity, communication and
collaboration, CT can be seen as an important part of 21st
century learning. The importance of CT is still
underestimated in education. CT is a set of problem-solving
methods that involve expressing problems and their
solutions in ways a computer could execute (Denning,
Tedre, 2019). Modern computation tools are changing the
way science and mathematics are practiced. CT
encompasses a wide range of mental processes, which are
considered necessary supplies for the 21st-century children.

The aim of EASTEM project is to provide a European-
Asian insight on student-centred STEM education research
practice. It is based on a collection of best practices, case
studies, analytical reviews, theoretical contributions focused
on approaches to students’ skills development and
university-industry collaborative practices as related to
university STEM education. The motivation is as follows. A
look at the university STEM in terms of institutional
development, focusing on: (a) country-specific STEM
results for a range of unique experiences and best practices;
(b) a look at collaborative practices and outcomes associated
with global and international STEM activities. Specific
topics could include: educational policies and managerial
approaches to university STEM development and research;
research on curriculum development and integration
focusing on students’ STEM professional competencies;
Euro-Asian University and university- industry
collaboration in research and best practices as related to
university STEM. The project activities and outcomes are
organized in three main strands.

2.1. Train lecturers in student-centred competence
development
Partners developed trainings in student-centred STEM
education approaches with the help of Uppsala University,
Sweden. In the first phase, a number of lecturers from Asian
partner institutions participated in a course in student-
centred competence development. Then they set up a pilot
course where students solve problems from local industries
and communities in international teams at the different
partner institutions. In the second phase, lecturers trained in
the first phase conducted staff development sessions for
other lecturers both within and outside of their institutions.
At some occasions this was made for lecturers at the local
institutions, but at some institutions those courses were also
regional or national

In conclusion, the European and Asian partners have jointly
developed and implemented student-centred STEM
education staff trainings at the Asian partner institutions. At
the same, a quality revision of the Asian partners teaching
of STEM is taking place.

During the pilot course, the course participants (lecturers)
taught modules for students applying their new ideas. In this
way, the pilot module served as a test bed at the same time
as it is an occasion for the lectures to apply student-centred
teaching approaches. Lecturers who have participated in the
Training of Trainers courses are now applying SCL
approaches that we have learnt in regular teaching with

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

138

students. A particular focus has been on attitudes, both of
the staff towards their new roles and the learners towards
being in control of their own learning.

2.2. Establish STEM education centres
Vilnius University, Lithuania is supporting lecturers, deans
and administrative staff at Asian partner universities to
establish, staff and run STEM education centres to ensure
the sustainability and increase the visibility of student-
centred STEM activities. These centres should anchor
STEM activities firmly within the university structure and
serve as focal points for each university’s STEM initiatives.
By engaging both university students and external partners
such as local high schools in centre activities, the centres
have the potential to develop into hubs for STEM education
and learning in each city or region. The establishment centre
for excellence in STEM education is based on each partner
university sharing of current status and good case practices.

The establishing of the Centre for Excellence in STEM
Education allows:
• to improve study programmes quality through integrated

style of study and to modernize the curricula of study
programmes by including innovative learning and
teaching tools;

• to engage students with STEM disciplines and to allow
students to get acquainted with different STEM
disciplines;

• to strengthen the link between academic environment
(university) and work life, to develop competences
needed for the job market;

• to develop the students’ and teachers’ soft skills;
• strengthen partnerships between university-industry-

school;
Preparation of the feasibility study based on each partner’s
needs and best practices in STEM Centres. Mapping STEM
Education centre conceptions in each partner’s institution:
preparation of the guidelines, recommendations, strategical
plan of STEM centre establishment. Implementation part
consists of preparation of training material, developing
training modules, innovative methodological tools and pilot
implementation:

1. Staff development in STEM Education Centre
Management;

2. Staff development for Centre activities coordinators
(university lecturers, researchers, who organize and
implement activities in centre);

3. Launch of STEM centres (in each Partner University);
4. Piloting the STEM centres platform:

• Activities (at university level);
• Lecturers: 1) study and research organization for

students; 2) consultation, expertise, research of
educational process; 3) preparation of
methodological material and tools for teachers;

• University students’ involvement in centre activities
integrative modules, research, practice supervised by
lecturers;

• Activities (at the K-12 level);

• School teachers training;
• School students: formal and non-formal education

activities in STEM centre;
5. Evaluation of launched centres activities;
6. Centres for Excellence in STEM Education consortium

establishment.
An interdisciplinary platform for STEM education at
universities provides sustainability for the project network,
activities, increasing visibility of student-centred
educational approaches and research in STEM education
(https://www.fsf.vu.lt/en/eastem-centres-platform).

2.3. Facilitate industry engagement and competence
integration into STEM educational programmes
New skills are required in the era of the Fourth Industrial
Revolution and recognizing the importance of competence
development for students, institutions are to facilitate
education focused on students’ needs but also offer STEM
programmes that better align with labor market needs.
Based on major accreditation requirements in the six partner
countries, several University-Industry collaboration formats
were categorized in themes (Rouvrais et al, 2020). They lay
the foundation of a structured relationship model for STEM
universities, which now permits to build on good case
practices from all partner institutions. It thus contributes to
advancing STEM-educational frameworks for curriculum
guidelines aligned with skills for industry.

Going beyond concerns and models of an EASTEM
educational framework, incl. curriculum development,
SCL, industry collaboration, training of trainers and STEM
centres, a more strategic level is to be reached. EASTEM
aims to provide partner institutions with the knowledge to
develop their own processes for continuous integration of
good practices into their STEM educational ecosystem.
With support on a strategic level from university
management, STEM activities are more sustainable.

IMT Atlantique, France engages with partners on how to
better reach university management (e.g. programme
leaders and deans, vice-rectors and rectors). They work to
develop a strategy, canvas and maturity tools for continuous
integration of competence development and EASTEM
models into various levels of university education.
Anchoring the need for support on a strategic level leads to
sustainability of the various action plans, at short to longer
terms. In addition, designed tools should lead to a new way
to interact with stakeholders in the design, development,
operation and revision of STEM university education
according to various needs or more formal requirements.

3. CAPACITY BUILDING IMPACTS
EASTEM addresses university-enterprise cooperation,
entrepreneurship and employability of graduates for the
Asian region. Student-centred competence development
within STEM education and active engagement with
industry should help bridge the skills gap in our partner
countries and improve graduate employability.

STEM education centres, similar supporting units or
established groups of like-minded lecturers have been set up
at partner institutions and provided a focal point for STEM
education activities including external stakeholders

https://www.fsf.vu.lt/en/eastem-centers-platform

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

139

such as high schools and companies. Through a
questionnaire and interviews, we have developed a
framework aimed to support the Asian partners including
eight themes for university-industry collaboration
(Rouvrais et al, 2020), which provides the foundations for
improving local industry engagement strategies and
processes in partner institutions. In 2020-2021 the STEM
education centres should incorporate and pilot various
student-centred STEM activities involving corporate
partners, lecturers, teachers, and university and high school
students.

According to our Asian partners, the EASTEM project has
created value by building strong national and international
networks, promoting cooperation between the EU and the
partner countries, between partner countries and within
partner countries. Elevating the Training of Trainers courses
to a national level as our partners have done in Thailand and
Indonesia and intend to do in Vietnam strengthens the
potential for wider dissemination of methodologies inspired
by European universities, thus promoting voluntary
convergence with EU developments in higher education.

With our focus on improving the quality of higher education
and enhancing its relevance for the labour market and
society, EASTEM objectives are also in line with the new
EU Skills Agenda, more specifically increasing STEM
graduates and fostering entrepreneurial and transversal
skills. Lecturers from our three European partners gain
additional insight and perspective on SCL teaching
approaches and industry engagement and establish new
partnerships with colleagues in Asia.

Through the STEM centres, partner universities have
strengthened relationships with industry partners and high
schools. For example, when launching a STEM centre in
November 2019, Mahidol University (Thailand) signed a
memorandum of understanding with Imagineering
Education Company. Partners in Vietnam and Thailand
emphasize the potential for their STEM centres to establish
cooperation between academia and industry. Partners in
Thailand have also pointed out that the EASTEM Training
of Trainers courses help improve the quality of education,
with the potential to transform teaching and learning
philosophy and inspire lifelong learning.

Vietnam’s government recognizes STEM education as a
driving factor for a strong labour workforce that meets the
requirements of the 4th Industrial Revolution. For example,
in Thua Thien-Hue province, EASTEM’s activities
connecting universities with high schools and industry
partners are also in line with the province’s ambition to
develop a smart city urban cluster.

4. CONCLUSIONS
In EASTEM we focus on STEM education and we go
beyond methods. Drawing from successful strategies to

address the skills gap, we aim to strengthen student-centred
competence development by taking a holistic approach also
by including computational thinking.

By jointly developing the Training of Trainers course
methodology, Asian partner university lecturers have been
trained to design, teach and assess STEM classes using
student-centred approaches. The Training of Trainers course
evaluation results have shown how participating lecturers
have increased their knowledge and skill in applying
student-centred approaches into their teaching.

These core strategies can be taken as the European model
for how learning and teaching in the STEM area could be
enhanced. They are based on research on students’ learning
of the discipline and do not prescribe certain teaching
methods as being better than others. Instead, these strategies
can (and should) be contrasted to formalized “teaching
methods”, where certain predefined protocols for how the
teaching should take place are to be followed.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge all their colleagues
from the EASTEM project, co-funded by the Erasmus+
Programme of the European Union (reference 598915-EPP-
1-2018-1-SE-EPPKA2-CBHE-JP).

6. REFERENCES
Cook, K. L, Bush, S. B (2018). Design thinking in

integrated STEAM learning: Surveying the landscape
and exploring exemplars in elementary grades. School
Science and Mathematics, v. 118, no. 3-4, 93-103

Denning, P.J., Tedre, M. (2019). Computational Thinking.
The MIT Press, Cambridge.

Palts, T., Pedaste, M. (2020). A Model for Developing
Computational Thinking Skills, Informatics in
Education, v. 19, no. 1, 113-128, Retrieved from:
https://infedu.vu.lt/journal/INFEDU/article/27/info

Park, Y., Green, J. (2019). Bringing Computational
Thinking into Science Education. Journal of the Korean
Earth Science Society, v. 40, no. 4, 340-352.

Pears, A., Barendsen, E., Dagienė, V., Dolgopolovas, V.,
Jasutė, E. (2019). Holistic STEAM education through
computational thinking: a perspective on training future
teachers. Informatics in schools. New ideas in school
informatics: In proceedings of the 12th Intl. Conf. on
informatics in schools: situation, evolution, and
perspectives, Larnaca, Cyprus, Nov 18–20, Springer,
LNCS vol. 11913, pp. 41-52.

Rouvrais, S., Jacovetti, G, Chantawannakul, P., Suree, T.,
Bangchokdee, S. (2020). University-Industry
collaboration themes in STEM higher education: An
Euro-ASEAN perspective. In 16th International CDIO
Conference, Gothenburg, Sweden, 91-102.

https://infedu.vu.lt/journal/INFEDU/article/27/info

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

140

STEM Pedagogies and
Curriculum

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

141

Designing an Interdisciplinary Social-scientific STEM Curriculum on Students’
Empathy, Efficacy, and Interest

Biyun HUANG1*, Morris Siu-Yung JONG2, Ching Sing CHAI3, Yun DAI4, Darwin LAU5

1, 3, 4 Centre for Learning Sciences and Technologies & Department of Curriculum and Instruction
2,5 Department of Mechanical and Automation Engineering

The Chinese University of Hong Kong, Hong Kong
lucyhuang99@cuhk.edu.hk, mjong@cuhk.edu.hk, cschai@cuhk.edu.hk, yundai@cuhk.edu.hk, darwinlau@cuhk.edu.hk

ABSTRACT
More and more countries have regarded that STEM
education is one of the best pathways to develop future
citizens optimally equipped for the needs of future
industries. Students can develop 21st century skills such as
communication, collaboration, design thinking, and
innovation through learning STEM-related subjects.
However, few studies focus on combining STEM and social
care education to enhance students’ empathy and STEM
competencies. The present work aimed to design a social-
scientific STEM curriculum based on students’ abilities and
backgrounds. Apart from that, it probed into the students’
changes in the areas of empathy, self-efficacy, and interest
after learning the curriculum via a quantitative survey. The
results showed that the students made positive changes in the
areas concerned.

KEYWORDS
STEM, social care, interdisciplinary, empathy, self-efficacy

1. INTRODUCTION
In recent years, STEM education has been increasingly
advocated and implemented in more and more countries and
regions (Lee et al., 2019; Martín‐Páez et al., 2019). It is
widely believed that STEM education can enhance students’
communication, cooperation, design thinking, innovation,
and other skills needed in the 21st century (Honey et al.,
2014; Geng et al., 2019). Consequently, the number of
studies on STEM has been growing, including those on
STEM pedagogy (e.g., Simeon et al., 2020), learning
effectiveness evaluation (e.g., Huang & Jong, 2020), teacher
preparation and development (e.g., Chai et al., 2020; So et
al., 2020), and others. Simultaneously, there is a growing
awareness that empathy can be an important component of
STEM teaching and learning, especially when teaching
design thinking. Empathy is the ability to understand and
respond adaptively to others’ feelings and sufferings, which
is a vital step to compassionate actions (Preston & de Waal,
2002; Riess, 2017). Enhancing people’s empathy will enable
them to design products that are more attuned to users’ needs
and optimize user experience (Carlson & Dobson, 2020).
However, the existing literature shows little experimental
research investigating STEM and empathy integration
(Gunckel & Tolbert, 2018).

In light of the lack of a robust body of literature in this
regard, we designed an interdisciplinary social-scientific
STEM curriculum that combines social care and STEM
topics and evaluated its impact on empathy, self-efficacy,
and interest in a secondary school.

2. THEORETICAL FRAMEWORK
2.1. Research background
In contrast to traditional didactic approaches, STEM
education emphasizes the integration of learning with real-
life problems to develop students’ abilities to solve problems
and build other skills needed in the 21st century (Nadelson
& Seifert, 2017; Lee et al., 2019). Many efforts were made
to study how different scientific disciplines, such as
mathematics and technology, can be combined to promote
the development of high-level thinking skills and the
creation of high-quality STEM products (Martín‐Páez et al.,
2019). Apart from integrating two or more science subjects
to develop students’ abilities, it would be prudent to consider
integrating these science subjects with some humanistic
subjects, e.g., social care. Through the interdisciplinary
learning process, students can learn to care for others and
apply their STEM knowledge to design products that are
suitable for addressing and fulfilling a full spectrum of
potential user requirements. It would be interesting to
explore whether students’ empathy, interest, and self-
efficacy improve after participating in such programs.

2.2. The EDIPT design thinking model
This curriculum’s design is informed by The EDIPT design
thinking model proposed by the Hasso Plattner Institute of
Design at Stanford University (Hasso Plattner Institute of
Design [HPID], 2010). This model is a widely accepted
design model in the STEM field. The model suggested that
students can experience five stages in the design process:
empathize, define, ideate, prototype, and test (HPID, 2010).
In the empathize stage, students can visit and have a
conversation with the users to understand their thoughts and
their needs. In the definition stage, students can synthesize
and select the needs they think are important to meet and then
determine the one they will strive to address in their design.
In the ideate stage, learners practice divergent thinking and
propose a range of possible solutions to choose from. Next,
students build their proposed solutions and prototype them,
which could bring them closer to the final solution. In the
test stage, students present the prototypes to users, garner
feedback, and then refine them. Thoring and Müller (2011)
conducted a study to observe how the EDIPT model was
practiced in the Hasso Plattner Institute in Potsdam,
Germany, and developed a process model to describe the
process steps in detail. Henrisken et al. (2018) applied the
model in a teacher education course and found that this
model promoted creativity and empathy. In the design
industry,

mailto:lucyhuang99@cuhk.edu.hk
mailto:mjong@cuhk.edu.hk
mailto:cschai@cuhk.edu.hk
mailto:yundai@cuhk.edu.hk
mailto:darwinlau@cuhk.edu.hk

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

142

Da Silva et al. (2020) integrated the design thinking model
with another design thinking tool to improve new product
development and identified it as an appropriate framework
in guiding product design.

3. METODS
3.1. Design of the social-scientific curriculum
We designed the course with reference to the EDIPT model.
As the class time was limited, we focused on the first three
aspects of the design process, empathize, define, and ideate.
After ideating, we asked students to compile and present
their written solutions. Then, expert and peer feedback were
provided to help students know the direction for improving
their work. The entire curriculum consists of three
components: social care, STEM, and proposal writing. The
duration of the interdisciplinary curriculum was six weeks.

The theme of the curriculum was social housing and product
design. In the STEM course, students learned the STEM
knowledge and skills necessary for realizing the solutions,
such as coding through Thunkable, and Internet of Things
(IoT). At the same time, in the social care course, students
experienced the complete process of problem identification,
solution proposal, and expert feedback. Students watched
the videos of interviews with people living in social houses
to understand the users’ needs. Then, they analyzed and
identified the problems they want to help solve. Next, the
students brainstormed together to come up with possible
solutions. Afterward, the groups refined their ideas and
developed a more specific solution after the class. Class
presentations were organized during the course, and experts
and peers were invited to provide suggestions for
improvements. Concurrently, in the proposal writing course,
students learned to present their design ideas in the form of
a proposal. See Figure 1 for the interdisciplinary social-
scientific curriculum.

interdisciplinary course and design social care products with
their knowledge. All students underwent the curriculum. A
total of 55 students and their parents co- signed the consent
form. Only the students who signed the consent form were
included in the analysis of this study. In order to track the
changes in affective, the students were asked to complete a
pre-questionnaire prior to the course. At the end of the
course, students completed a post- questionnaire.

3.3. Instrument
The questionnaire-based instrument consisted of three
dimensions: empathy, self-efficacy, and interest (12 items in
total, in a 6-point scale). In terms of empathy, we referred to
the instrument of Vossen et al. (2015) for examining
students’ willingness to understand and contribute to
community services. For example, one of the questions was,
“I would try to understand how others feel about community
service.” In terms of self-efficacy, we referred to the
instrument of Chen et al. (2001) for measuring students’
confidence in applying STEM knowledge to serve their
communities. One of the questions was, “I believe I can use
STEM knowledge to come up with useful ideas for helping
the community.” In terms of interest, we referred to the
instrument of Luo et al. (2019) for examining students’
interest in STEM. For example, “I like to design products
related to STEM.” To establish content validity, three
experts were invited to provide feedback about the
measurement tool. Modifications on the content were
conducted based on their suggestions.

4. RESULTS
Forty-two students completed both the pre- and post-
surveys. The reliability test showed that the Cronbach Alpha
of the subscales of empathy, self-efficacy, and interest were
0.83, 0.89, 0.79. The result indicated there was a high level
of internal consistency for this instrument. Paired-sample t-
tests were conducted to compare if there were any
differences between students’ pre- and post- survey scores.
Results indicated that the post-survey scores were
significantly higher than the post-survey scores in all the
examined dimensions. For example, in the empathy
dimension, there was a significant difference in the pre-
survey score (M=4.29, SD=0.87) and post-test (M=4.69,
SD=0.96), t (41) =-2.63, p=0.01. See Table 1.

 Table 1. Paired-sample t-test results of the survey.

Mean SD t value df Sig (two
 tailed)

Empathy
Pre-test

4.29 0.87 -2.63 41 0.01

Figure 1. The interdisciplinary social-scientific curriculum.

Post-test 4.69 0.96
Self-efficacy 3.88 1.06 -2.63 41 0.001
Pre-test
Post-test 4.60 0.98

3.2. Participants
Interest
Pre-test

4.13 0.90 -3.04 41 0.004

Two grade 8 classes from a secondary school participated Post-test 4.63 1.03
in this study. Given that grade 8 students had laid some
foundation in their STEM knowledge in the previous year
(i.e., grade 7), it could be easier for them to adapt to the

Note. n =42

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

143

5. DISCUSSION AND CONCLUSION
This work explores how STEM and social-care education
can be integrated for students to experience real-life
problems and actively explore solutions by themselves. The
study found that such a curriculum can potentially enhance
students’ empathy, self-efficacy, and interest. The
innovative curriculum demonstrated how interdisciplinary
courses could be designed to enhance students’ social
emotional competencies. As this study was implemented in
a normal teaching environment, the practices are applicable
in similar schools. A limitation of the study is that no control
group was in the research setting. If possible, a control group
could be introduced to size-up the effectiveness of using
social-scientific curriculum and scientific-only curriculum
on students’ empathy, efficacy, and interest. Another
limitation is that the data collected so far have been mainly
quantitative. In the next round, more data (e.g., interview
data) will be collected to triangulate the results.

6. REFERENCES
Chai, C. S., Jong, M. S. Y., & Yan, Z. M. (2020).

Surveying Chinese teachers’ technological pedagogical
STEM knowledge: A pilot validation of STEM-TPACK
survey. International Journal of Mobile Learning &
Organisation, 11(2), 203–214.

Chen, G., Gully, S., & Eden, D. (2001). Validation of a
new general self-Efficacy scale. Organizational Research
Methods, 4, 62-83.

Da Silva, R. H., Kaminski, P. C., & Armellini, F. (2020).
Improving new product development innovation
effectiveness by using problem solving tools during the
conceptual development phase: Integrating Design
Thinking and TRIZ. Creativity and Innovation
Management, 29(4), 685-700.

David Carlson, J., & Dobson, T. (2020). Fostering empathy
through an inclusive pedagogy for career creatives.
International Journal of Art & Design Education, 39(2),
430-444.

Geng, J., Jong, M. S. Y., Chai, C. S. (2019). Hong Kong
teachers’ self-efficacy and concerns about STEM
education. The Asia-Pacific Education Researcher, 28(1),
35–45.

Gunckel, K. L., & Tolbert, S. (2018). The imperative to
move toward a dimension of care in engineering
education. Journal of Research in Science Teaching,
55(7), 938-961.

Hasso Plattner Institute of Design (2010, January 1). An
introduction to design thinking process guide. ALNAP.
https://www.alnap.org/help-library/an-introduction-to-
design-thinking-process-guide

Henriksen, D., Richardson, C., & Mehta, R. (2017). Design
thinking: A creative approach to educational problems of
practice. Thinking Skills and Creativity, 26, 140–153.

Honey, M., Pearson, G., & Schweingruber, H. (Eds).
(2014). STEM integration in K-12 education: Status,
prospects, and an agenda for research. The National
Academies Press.

Huang, B., & Jong, M. S. Y. (2020). Developing a generic
rubric for evaluating students’ works in STEM education.
Proceedings of the 2020 International Symposium on
Educational Technology (ISET) (pp. 210-213). Institute
of Electrical and Electronics Engineers.

Lee, M. H., Chai, C. S., & Hong, H. Y. (2019). STEM
education in Asia Pacific: Challenges and development.
The Asia-Pacific Education Researcher, 28, 1-4.
https://doi.org/10.1007/s40299-018-0424-z

Luo, Z., Dang, Y., & Xu, W. (2019). Academic interest
scale for adolescents: Development, validation, and
measurement invariance with Chinese students. Frontiers
in psychology, 10,
https://doi.org/10.3389/fpsyg.2019.02301

Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., &
Vílchez‐González, J. M. (2019). What are we talking about
when we talk about STEM education? A review of
literature. Science Education, 103(4), 799-822.

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM
defined: Contexts, challenges, and the future, The Journal
of Educational Research, 110(3), 221-223

Preston, S., & De Waal, F. (2002). Empathy: Its ultimate
and proximate bases. Behavioral and Brain Sciences,
25(1), 1-20. https://doi:10.1017/S0140525X02000018

Riess, H. (2017). The science of empathy. Journal of
patient experience, 4(2), 74-77.

Simeon, M.I., Samsudin, M.A. & Yakob, N. (2020). Effect
of design thinking approach on students’ achievement in
some selected physics concepts in the context of STEM
learning. International Journal of Technology and Design
Education. https://doi.org/10.1007/s10798-020-09601-1

So, W. M. W., He, Q., Chen, Y., & Chow, C. F. (2020).
School-STEM professionals’ collaboration: A case study
on teachers’ conceptions. Asia-Pacific Journal of
Teacher Education,
https://doi.org/10.1080/1359866X.2020.1774743

Thoring, K., & Müller, R. M. (2011). Understanding the
creative mechanisms of design thinking: an evolutionary
approach. Proceedings of the Second Conference on
Creativity and Innovation in Design (DESIRE'11) (pp.
137-147). Association for Computing Machinery.

Vossen, H.G.M., Piotrowski, J.T., Valkenburg, P.M.
(2015). Development of the adolescent measure of
empathy and sympathy (AMES). Personality and
Individual Differences, 4, 66-71.

https://www.alnap.org/help-library/an-introduction-to-design-thinking-process-guide
https://www.alnap.org/help-library/an-introduction-to-design-thinking-process-guide
https://doi.org/10.1007/s40299-018-0424-z
https://doi.org/10.3389/fpsyg.2019.02301
https://doi.org/10.1007/s10798-020-09601-1
https://doi.org/10.1080/1359866X.2020.1774743

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

144

A Co-design Approach for Developing Computational Thinking Skills in
Connection to STEM Related Curriculum in Swedish Schools

ABSTRACT

Rafael ZEREGA1*, Ali HAMIDI2*, Sepideh TAVAJOH3*, Marcelo MILRAD4*
1,2,3,4 Faculty of Technology, Linnaeus University, Sweden

rafael.zerega@lnu.se, ali.hamidi@lnu.se, st222yd@student.lnu.se, marcelo.milrad@lnu.se

Computational thinking (CT) is a set of problem-solving
methods which several scholars advocate for its inclusion in
the educational curricula for K-12. Incorporating this
knowledge into existing syllabuses is a challenge for both the
educational community and researchers within the field of
STEM education. The focus of this study is on the importance
of co-design and constructionism in the process of planning
and designing teaching modules to introduce students to CT
using both robotic constructions and programming. This paper
presents and discusses the design process of a series of
workshops conducted with a group of middle school students
during the fall of 2020. The main goal of these workshops was
to introduce students to the main concepts and practices of CT,
thus addressing the goals defined by the Swedish Agency for
Education (Skolverket). Our initial findings indicate that co-
designing educational activities (with a focus on
constructionism and challenge- based learning) in close
collaboration between teachers and researchers can lead to
effective ways to foster the development of CT skills among
students.

KEYWORDS
Computational Thinking, Co-design, STEM Education, K-12
curricula, Challenge-based Learning, Constructionism.

1. INTRODUCTION
Computational thinking (CT) is an approach to problem-
solving which many researchers within the computer science
education community advocate for its inclusion in the current
K-12 educational curriculum. One strong argument for such
recommendations is to provide students with the required
knowledge and necessary skills to face the challenges of our
modern society (Wing, 2006; Grover & Pea, 2018). As Wing
argued, we live in a society of ubiquitous computing,
however, we do not yet live in a society of CT (Wing, 2006).

During the last few years, Sweden has started a process of
adapting the curriculum of different subject matters, including
mathematics and technology, so that K-12 students can
acquire different skills for being able to produce creative and
innovative solutions to solve authentic problems. Although
the goals set by the Swedish National Agency for Education
are clearly defined (Skolverket, 2018) in terms of the
knowledge and skills that are to be developed by students in
these particular subjects, it is, however, not

specified what learning strategies and methods should be
used to reach these goals and effectively teach CT concepts
in the classroom (Kohen-Vacs & Milrad, 2019). One of the
aims of this paper is to explore possible ways in which CT
learning activities and teaching modules can be
designed in a collaborative way between teachers and
researchers so that they can be integrated into the
schools’ curriculum for elementary and middle
education within STEM-related subjects aiming at
reaching the goals established by the Swedish Agency
for Education (Skolverket, 2018).

This study is a continuation of the research activities we had
started in the spring of 2020 related to validating
different design approaches for teaching CT in Swedish
schools taking into account the goals defined by
Skolverket for the subject matter of technology. In order to
reach this purpose, we are using the Engino® Robotics
Platform (ERP)1 which is an educational tool specially
designed for primary and secondary STEM education.
Considering all the above, the main research question
that guides our research efforts in the focus of this paper
can be formulated as follows: How teaching modules for
STEM related subjects in elementary and high schools
should be designed and organized so that they can help
students develop and practice CT concepts?

The paper is organized as follows; in the coming section we
present the theoretical framework on which this study
is grounded. In section three and four we describe the design
of our research interventions and the main findings. Finally,
the discussions and conclusions are presented in sections
five and six.

2. THEORETICAL FOUNDATIONS
In this section we discuss some theoretical aspects and
concepts related to CT and its integration into K-12
STEM education. The concepts on which the learning
theory of constructionism are based and on how children
are builders of their own intellectual structures (Papert,
1980) have had a notable influence in the context of
CT considering that learning to solve problems and to
design solutions is a way of creating knowledge and a
fundamental aspect of CT (Grover & Pea, 2018). These
authors explain that the ultimate goal of CT is creating a
computational artifact that could be a physical device, pure
software or the combination of both. Another concept of
importance within CT education is the use of learning
challenges (Conde et al., 2019). Conde and
colleagues argue that challenge-based learning is an

1 https://www.engino.com/w/index.php/products/robotics

mailto:rafael.zerega@lnu.se
mailto:ali.hamidi@lnu.se
mailto:st222yd@student.lnu.se
mailto:marcelo.milrad@lnu.se
http://www.engino.com/w/index.php/products/robotics

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

145

effective strategy for teaching CT because it allows students
to learn to define and solve a problem, it promotes
collaborative work, and it connects students with real world
problems.

Two additional concepts that we would like to highlight in the
context of this study is the importance of using co-design
(Spikol et al., 2009) as an approach to create a common
ground between educational practitioners and researchers as
well as the TPACK framework for technological education
(Wong et al., 2014). Designing teaching modules is a complex
process that requires the involvement of all stakeholders.
Engaging in co-design is, therefore, an essential aspect when
planning learning activities. By actively involving different
stakeholders (teachers, researchers, IT-developers, etc.) and
working in direct contact with one another and assigning them
specific roles based on their area of expertise, it is possible to
yield educational innovation (Spikol et al., 2009). Wong et al.
(2014) describes how the TPACK framework can be used in
combination with co-design so that practitioners and
researchers can combine their knowledge and expertise to
allow teachers to integrate technological tools with their
pedagogical and content knowledge in an integral manner to
create rich learning environments.

3. RESEARCH DESIGN
In this section we present the main aspects concerning the
research design approach used for this study.

3.1. Participants and Settings

The workshops that are the central part in this study were
conducted during the fall of 2020 at an international middle
school in the south of Sweden. The activity took place as part
of the weekly schedule in the subject of technology defined in
the study curriculum of the school with the participation of
four researchers, three teachers, and 25 students from eighth
grade aged 13-14 years old. In three workshops of three hours,
one session per week, students were divided by the teachers
into two main groups. Within these two groups students were
free to team up in smaller groups of 2-3 for conducting the
activities together. The data we have collected for the analysis
of the activities comes from field notes and pictures taken
during the workshops. In addition, the students had to fill in a
questionnaire regarding their perceptions about the activities
they did and the way in which they came up with solutions to
carry out the different tasks during the workshops.

3.2. Workshop Design Approach
According to Mannila et al. (2014), there cannot be an
appropriate development of CT-related ideas if teachers are
not involved when designing learning activities. Likewise,
Spikol et al. (2009) and Wu et al. (2020) highlight the
importance of co-design when defining educational strategies
for STEM-related subjects in K-12 classrooms. Based on
these concepts, a couple of months before

conducting the workshops with the students, the research team
met with the teachers during a series of sessions to introduce
them to the ERP system and to plan together learning
activities to bring CT concepts to their students.

3.3. Workshop Activities with the Students
The first workshop was focused on hands-on activities with
the Engino building parts with two main goals in mind. The
first was to make them get familiar with the ERP construction
tools as they had never worked with it before. The second goal
was to put into practice some CT concepts such as pattern
recognition, which has major relevance when engaging in
construction activities. After receiving a brief instruction on
how to work, students started building the models for the robot
of their choice by using instructions printed on paper or a 3D
interactive version of them that they could have on their
computers. The second workshop, carried out one week after
the first one, focused on programming in two different
modalities: (1) manual programming, by using the physical
buttons that the ERP robots have, to program basic functions
only (Figure 1a), and (2) a block-based programming with the
KEIRO software for designing more advanced algorithms
(Figure 1b). Thus, the students had the chance to work with
mechanical construction combined with programming and
algorithmic thinking, which is another important CT concept.
The main task here was to program the vehicles to move along
a rectangular track that had been drawn on the floor.

The third workshop was held two weeks after the previous one
and it had a higher level of complexity in the tasks which were
focused on programming the robot vehicles and making use
of infrared (IR) sensors that the students connected to the
vehicles they had built in the previous workshop. The students
were given a brief introduction where they learnt some basic
concepts of programming such as using conditionals, loops
and logical operators. The main task was to program the robot
so that by using two IR sensors it would move along a track
that was demarcated with dark tape (Figure 1b).

(a) (b)

Figure 1. Manual Programming (a) and Software
Programming (b).

The main goal with this task was to make students learn to
calibrate the IR sensors and to acquire concepts of algorithm
design. In addition, this workshop aimed to develop other
relevant CT concepts and practices, such as logical thinking,
problem decomposition, testing and debugging.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

146

4. EMPIRICAL FINDINGS
In the first workshop, which focused on the physical
construction of the robot vehicles, students had to get familiar
with the assembly method of the plastic pieces that the Engino
ERP uses. At first, the students were very unfamiliar with this
assembly method and it was especially difficult for them when
they had to disassemble one piece from another. At times the
students were frustrated when they had to struggle just to
figure out how to disassemble a given piece. However, over
time the students showed a clear improvement in their abilities
to assemble and disassemble the pieces as they started to
understand the method for assembling the pieces by trial and
error.

During the second workshop the students were given a pre-
assembled chassis and they had to build the rest of the vehicle
in any fashion they deemed appropriate. The students showed
great capacity for innovative design. When the students had to
manually program the vehicles by using the physical buttons
they have on the top (see Figure 1a) so that they would follow
a rectangular track marked on the classroom’s floor, the
students faced a series of challenges. To begin with, they had
to figure out what was the underlying principle that made the
vehicles turn to either side and this required a lot of
exploration as well as plenty of trial and error efforts. The
students had to figure out how to program the vehicle so that
it would move forwards just the necessary distance and then
turn at just the right point in order to accurately follow the
track. The third workshop posed several additional challenges
for the students in two main areas: learning to use the IR
sensors and creating a functional algorithm. The first major
challenge was to make the IR sensors scan the edge of the
track effectively so that the vehicle would not cross it. This
task required the students to solve many different problems
that arose. One of them had to do with the proper calibration
of the IR sensor so that it would detect the edge of the track
marked with a dark tape over a light-colored surface. The
latter required the students figuring out how to place the
sensor correctly so that it would effectively detect when the
car was starting to trespass the dark colored tape that was
marking the edge of the track.

5. DISCUSSION
In this section we will elaborate on our findings and focus the
discussion around two main issues, namely, the design of the
teaching modules for CT skills development and how to
incorporate CT education into the technology subject.

5.1. Activity Design for CT Skills Development
The three workshops that were described in this paper have a
strong theoretical foundation that rely on the principles of
constructionism and CT concepts and practices (Kynigos,
2015; Grover & Pea, 2018). We planned the activities putting
emphasis on the entire process of building the robots, starting
with the construction of the physical structure and followed
by the design of the algorithms and programming.

Teaching CT concepts does not necessarily require explicitly
referring to them. We used a strategy based on exploration and
learning by doing, thus allowing the students to acquire CT
skills through their own practices. In the different activities,
the teachers were only providing some general guidelines and
serving as advisors when the students required their
assistance. The activities we designed for the three workshops
were based on a hands-on approach. The first workshop was
designed with the goal of making the learning process both
enjoyable and challenging to ensure a high level of
engagement from the participants (Conde et al., 2019). This
focus on constructionism and challenge-based tasks was
essential for designing these activities. During the second and
third workshops we added a focus on programming. Table 1
summarizes the main CT concepts and practices that were
applied by students in the different workshops.

Table 1. CT Concepts and Practices Used by Students in
each Workshop

5.2. Incorporating CT into Swedish STEM Education
Looking at constructionism as a theory of learning and a
theory of design (Kynigos, 2015), the suggested plans for
integrating the educational practice of CT in the subject of
mathematics and technology constitutes a relevant
contribution towards reaching the goals defined by the
Swedish National Agency for Education (Skolverket, 2018).
According to the Swedish curricula for grades 7-9, the
technology subject aims to develop students’ curiosity in
technology and help them handle technical problems through
creative and innovative ways. The design approach used for
this workshop series gives students the opportunity to learn
by doing. The ideas described by Conde et al. (2019) focusing
on the importance of challenge-based learning plays a
relevant role when designing teaching instances where
students have the chance to identify problems, propose
solutions, and engage in an iterative process of design, testing
and evaluation of the proposed solutions.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

147

Another core content of the technology subject that is defined
by Skolverekt has to do with working out innovative and
creative methods for developing technological solutions. A
good case of innovative solutions could be witnessed when the
students were working on calibrating the IR sensors. We used
black tape to mark on the floor the edge of the track where the
vehicles should move along. However, students had
unsuccessful results when calibrating the IR sensors to detect
the dark tape that marked the edge of the track. After many
attempts the students finally realized that the problem was
that the color of the floor was very similar to that of the tape
and thus the IR sensor was not able to detect the difference in
color between the floor and the tape. The students had to figure
out how to increase the contrast between the track’s surface
and the dark tape marking its border to solve this unforeseen
problem.

Lastly, it is also important to reflect on the importance of
collaborative practices between teachers and researchers in
order to elaborate effective teaching modules through an
approach based on co-design (Spikol et al., 2009). This is
especially relevant when identifying and defining in which
ways the technological knowledge can complement the
pedagogical and content knowledge that is addressed by the
TPACK framework (Wong et al., 2014) to co-design teaching
modules aiming at fostering CT skills among students.
Designing teaching modules grounded on the core ideas of
constructionism and challenge-based learning, like the
workshops we conducted, allowed students to develop and put
into practice relevant CT skills. Co-designing these learning
activities between researchers and practitioners is an effective
method to create learning instances where the technological
knowledge can complement the pedagogical and content
knowledge in a well-coordinated interplay.

6. CONCLUSION
CT is a thought process and an approach to problem-solving
that is based on a set of concepts and practices that can provide
students with the necessary skills to face the challenges of
modern society. This study described our approach for
designing teaching modules to introduce CT concepts and
practices in STEM education for middle schools in Sweden. A
strong emphasis was given to the exploration of these ideas in
the subject of technology following the goals set by
Skolverket. Constructionism and challenge-based learning are
effective approaches to promote CT development. One of our
goals was to demonstrate that students applied CT concepts
and principles when facing the different challenges that they
encountered during their experience building and
programming robots. The three workshop sessions we
conducted offered the students the possibility to apply CT
concepts and practices. In addition, co-design is an effective
approach to actively involve researchers within computer
science education and K-12 teachers in the process of planning
and designing teaching modules that bring CT knowledge and
skills to the classrooms.

7. REFERENCES
Conde, M. Á., Fernández, C., Alves, J., Ramos, M. J., Celis-

Tena, S., Gonçalves, J., ... & Peñalvo, F. J. G. (2019,
October). RoboSTEAM- A Challenge Based Learning
Approach for integrating STEAM and develop
Computational Thinking. In Proceedings of the Seventh
International Conference on Technological Ecosystems for
Enhancing Multiculturality, 24-30.

Grover, S., & Pea, R. (2018). Computational Thinking: A
competency whose time has come. Computer science
education: Perspectives on teaching and learning in school,
London: Bloomsbury Academic, 19-37.

Kohen-Vacs, D., & Milrad, M. (2019). Computational
Thinking Education for In-Service Elementary Swedish
Teachers: Their Perceptions and Implications for
Competence Development. In International Conference on
Computational Thinking Education, 13-15 June 2019, Hong
Kong. The Education University of Hong Kong, 109- 112.

Kynigos, C. (2015). Constructionism: Theory of learning or
theory of design? In Selected regular lectures from the 12th
International Congress on Mathematical Education.
Springer, Cham, 417–438.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C.,
Rolandsson, L., & Settle, A. (2014, June). Computational
thinking in K-9 education. In Proceedings of the working
group reports of the 2014 on innovation & technology in
computer science education conference. 1- 29.

Papert, S. (1980). Mindstorms: Children, Computers and
Powerful Ideas (1st Edition). New York, Basic Books.

Skolverket (2018). Curriculum for the compulsory school,
preschool class and school-age educare. Retrieved January
 10, 2021, from
https://www.skolverket.se/getFile?file=3984

Spikol, D., Milrad, M., Maldonado, H., & Pea, R. (2009, July).
Integrating co-design practices into the development of
mobile science collaboratories. Ninth IEEE International
Conference on Advanced Learning Technologies. IEEE,
393-397.

Wing, J. (2006). Computational Thinking. Communications of
the ACM, 49(3), 33-36.

Wong, L. H., Chai, C. S., Zhang, X., & King, R. B. (2014).
Employing the TPACK framework for researcher-teacher
co-design of a mobile-assisted seamless language learning
environment. IEEE Transactions on Learning
Technologies, 8(1), 31-42.

Wu, S. P., PeeL, A., Bain, C., Anton, G., Horn, M., &
Wileknsky, U. (2020). Workshops and Co-design Can Help
Teachers Integrate Computational Thinking into Their K-12
STEM Classes. CoolThink@ JC, 63

http://www.skolverket.se/getFile?file=3984
http://www.skolverket.se/getFile?file=3984
https://www.skolverket.se/getFile?file=3984
https://www.skolverket.se/getFile?file=3984

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

148

Analysis of the Development Direction of STEM Curriculum in China

Lihua PENG

Shanghai International Studies University, China

1090537294@qq.com

ABSTRACT
Due to the characteristics of interdisciplinary training of
innovative talents, STEM education has been enriched in
various countries from concept improvement to curriculum
construction since it was put forward. Different countries
also have different development modes. While China's
STEM education has made some achievements, there is also
room for some progress in STEM curriculum
construction.This study searched the relevant literatures on
the construction of STEM courses on CNKI(Chinese
National Knowledge Infrastructure) and Web of Science,
finding out the current status and trend of the development
of STEM courses in China.Through an in-depth analysis on
the basis of the differences between domestic and foreign
studies, put forward the future research direction of STEM
courses in China.

KEYWORDS
STEM education, STEM course, curriculum integration

1. INTRODUCTION
In the 1980s, faced with the shortage of scientific and
technological talents, American proposed STEM education
based on Science, Technology, Engineering and
Mathematics. STEM is different from traditional course,
get rid of the knowledge system of single subject, focused
on the tasks and projects. STEM guides students to
interdisciplinary field using knowledge, integrate available
resources, cooperation to complete learning tasks. Next
Generation Science Standards points out that the goal of
science education is to reflect the combination of practice
and experience in the real world.

Under the background of STEM education, Chinese
science and technology education workers get into STEM
field and carry out the education of science and technology
education. Chinese integrated STEM curriculum
concentrated in the 3d printing science, robot, visual
programming and so on. It mainly in the form of a
comprehensive practice course or Mak-er activities. Pay
attention to the students' participation and experience.
However,there are also some problems on the basis of
emphasizing the position of students and the learning and
application of multidisciplinary knowledge(Yang, 2020).

Based on this, this study searches the relevant literatures on
the construction of STEM courses, finding out the current
status and trend of the development of STEM courses in
China. Through the analysis on the differences between
domestic and foreign studies, puts forward the future
research directions of STEM Courses in China.

2. RESEARCH DESIGN
This study focus on CNKI and Web of Science, using
keywords STEM and STEM Curriculum, by artificial
removal of relevance to the theme of literature, selected 30
papers as the research samples.It aims to answer the
following questions:

(1) What is the current situation of STEM
curriculum research in China?

(2) What are the differences in STEM curriculum
development at home and abroad?

(3) What are the suggestions for the future
development of Chinese STEM curriculum?

3. FINDINGS
China's basic education has been dominated by "exam-
oriented education" in form for a long time. Traditional
teaching only focuses on the impart of knowledge and skills
while neglecting the cultivation of students' innovative
ability. The introduction of STEM education concepts is a
good to China to improve students' innovative ability.In
recent years, the research on STEM courses in China
shows an increasing trend, and STEM courses continue to
attract the attention of more and more researchers and
teachers.The development of STEM courses can be broadly
divided into the following stages:

Introduction stage. Before 2014, researchers begin to pay
attention to STEM course.In 2014, Shanghai rely on
Shanghai STEM cloud center and Shanghai international
research center for science education, developed a high-
quality curriculum and good topics for students in learning,
introducing and drawing lessons from foreign curriculum
resources. Beginning the experimental of teacher training
and implementation of the pilot programs, Beijing, Jiangsu
and other provinces follow.(Feng Hua, 2016)

Exploratory stage. Around 2015, researches on STEM
education focused more on the characteristics of STEM
curriculum, considering the possibility and direction of its
future development. Researchers put forward suggestions
on the localization design of STEM curriculum on the basis
of eliminating realistic obstacles.

Booming development stage. After 2018, researchers
gradually focused on course design strategies and structural
framework, and effectively improved students'
computational thinking and innovation ability through
course design.

At present, the related research of STEM curriculum
mainly focuses on the primary and secondary
education.Research topics tend to be mathematics courses

mailto:1090537294@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

149

and engineering courses. In engineering, some researchers
put forward the STEM course mode of "subject-
engineering integration".In the early school years, STEM
education focus on improving students' interest in learning
and their ability to understanding.At the high school level,
STEM education seeks application, integration of subject
content and high-quality products.(Feng Hua, 2016)

4. DIFFERENCES BETWEEN DOMESTIC
AND FOREIGN STUDIES
Abroad STEM education focus on design thinking,
students' core skills and STEM literacy are cultivated. The
curriculum activity objectives correspond to educational
standards.(Chen Peng, 2019) Compared with foreign
countries, there is a lack of STEM curriculum standards in
China, which leads to vague curriculum objectives and no
standardized teaching materials. Using STEM courses to
increase the capital of college entrance, it alienates the goal
of developing students' core literacy.Compared with
foreign research, there are more policy introduction and
interpretation and theoretical discussion, and less practical
research.

America has developed the STEM teacher qualification
and teacher training program,it can guarantee the
standardization of teaching STEM courses.China has a
vague image of qualified STEM teachers, which leads to
the lack of a systematic admission system for STEM
teachers.In addition, domestic STEM teacher professional
development trainings are unable to meet the number of
teacher professional development needs.(McFadden, 2017)

Foreign curriculum design has a certain theoretical
support, the theoretical basis for the formulation of
teaching objectives and learning outcomes in different
grades. Domestic STEM courses lack the guidance of
teaching theories. Existing STEM courses in schools
usually attach importance to the integration of teaching
forms or the use of technical tools to produce works, which
fails to truly realize the integration of students'
interdisciplinary knowledge and the improvement of their
real problem-solving ability.

5. CONCLUSION
5.1 Improve the Standard System of STEM
Curriculum

The history of STEM education proves that the integrated
STEM education with interdisciplinary and knowledge
fusion will be ab inevitable trend in the future.Schools need
to build subject standard and appropriately combining with
STEM course standard, build STEM teacher practical
community, encourage teachers' cooperation,(Roehrig,
2021) Reasonably plan the development approach of
subsubjects and comprehensive courses, and carry out
STEM education in an orderly way based on the actual
teaching situation.

5.2 Strengthen the Theoretical Construction of STEM
Curriculum Development
Drawing lessons from foreign STEM curriculum
development theories, the STEM curriculum will be more

flexible and systematic throughout the whole teaching
process.We should encourage innovativing teaching
activities, project-driven teaching, pay attention to the
creation of a learning community.Focusing on the
cognitive and behavioral changes of students in the
learning process, formative evaluation and summative
evaluation are used to design the next step of learning to
adapt to the development of students.(Hasani, 2021)

5.3 Innovate the Teaching Mode of STEM Curriculum
Engineering education should be integrated into the "gap"
of school curriculum in a reasonable way, so as to provide
engineering learning context and opportunities for the
integration of different courses.In the process of systematic
knowledge imparting, focus on the individual learning
needs of different students.With the support of various
forces inside and outside the classroom, we integrate
resources inside and outside the school to form an open,
balanced and sustainable STEM learning ecosystem.(Gale,
2020)
6. REFERENCES
Chen, P. (2019) Research and Enlightenment of Innovative

STEM Education Curriculum Based on Design Thinking
-- A Case Study of Stanford University's D.Loft STEM
Curriculum.China Audio-visual Education,
2019(08):82-90.

Feng, H. (2016). Comprehensive curriculum construction
from the perspective of STEM education. Management of
Primary and Secondary Schools, (05):14-16.

Gale, J., Alemdar, M., Lingle, J., & Newton, S. (2020).
Exploring critical components of an integrated STEM
curriculum: an application of the innovation
implementation framework. International Journal of
STEM Education, 7(1), 5.

Hasani, A., Juansah, D. E., Sari, I. J., Islami, E., & Zaky, R.
A. (2021). Conceptual Frameworks on How to Teach
STEM Concepts in Bahasa Indonesia Subject as Integrated
Learning in Grades 1–3 at Elementary School in the
Curriculum 2013 to Contribute to Sustainability Education.
Sustainability, 13(1), 173.

McFadden, J. R., & Roehrig, G. H. (2017). Exploring
teacher design team endeavors while creating an
elementary-focused STEM-integrated curriculum.
International Journal of STEM Education, 4(1), 1-22.

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., &
Wieselmann, J. R. (2021). Understanding coherence and
integration in integrated STEM curriculum. International
Journal of STEM Education, 8(1), 1-21.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

150

STEM Teacher Education and
Professional Development

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

151

Teacher Sensemaking on Computational Thinking
in a Community of Math Teachers

Chung Yiu SIU1, Mi Song KIM2*, Wendy HUANG3, Chee-Kit LOOI4
1,2Curriculum Studies, Faculty of Education, Western University, Canada

3,4National Institute of Education, Singapore
syiu24@uwo.ca, mkim574@uwo.ca, wendy.huang@nie.edu.sg, cheekit.looi@nie.edu.sg

ABSTRACT

For pedagogical innovation in innovative curriculum
design, much attention has been paid to the importance of
teachers’ attitudes and beliefs about teaching and learning.
However, little research focuses on elucidating the
thorough process of teachers’ sensemaking of pedagogical
innovation such as integrating computational thinking
(CT) into the school curriculum. Therefore, the aim of this
study is to explore how mathematics teachers make sense
of integrating CT into the mathematics curriculum. This
study employed a case-study design with 9 teachers during
the 2019-2020 school year using observations of teacher
professional development meetings, semi-structured
interviews with the teachers, and teacher artifacts. Using
Weick’s (1995) properties of sensemaking, our findings
indicate that the most prevalent properties of sensemaking
for the teachers in this study were social, ongoing, driven
by plausibility rather than accuracy, and retrospective.
These findings are important to support continuing
professional development.

KEYWORDS
Teacher Sensemaking, Sensemaking Properties, Teacher-
Led Curriculum Innovation

1. INTRODUCTION
To respond to educational reforms, teachers are expected
to support the increasingly sophisticated skills students
need to learn for preparing further education and success at
work in the 21st century. This is facilitated by continuing
professional development where teachers learn and adjust
the pedagogies needed to teach these skills (Darling-
Hammond et al., 2017). For innovative curriculum design,
much attention has been paid to the importance of
teachers’ attitudes and beliefs about teaching and learning.
However, little research focuses on elucidating the
thorough process of teachers’ sensemaking of pedagogical
innovation such as integrating computational thinking
(CT) into the school curriculum. Therefore, the aim of this
study is to explore how mathematics teachers make sense
of integrating CT into the mathematics curriculum. Our
research questions are: What are the patterns of teacher
sensemaking? and How does the sensemaking perspective
describe teacher-led curriculum innovation?

2. LITERATURE REVIEW
Sensemaking has been frequently used in non-educational
fields such as organizational research (Dervin, 1983).
Although recently it has become a growing topic of science
education research, teacher sensemaking is relatively new
in teacher education, in particular in CT. Therefore, in this
study, we make use on the notion of sensemaking from
organizational studies to elucidate the process of teacher
sensemaking on Computational

Thinking in math lessons. Sensemaking occurs ‘‘when the
discrepancy between what one expects and what one
experiences is great enough, and important enough, to cause
individuals or groups to ask what is going on, and what they
should do next’’ (Maitlis & Christianson, 2014,
p. 70). Sensemaking depicts the path that people as actors
‘‘structure the unknown’’ (Waterman, 1990, p. 41) and how
people establish coherence, clarify situations, frame
problems, make decisions, take actions, and justify their
choices within organizational settings. For many teachers,
the pedagogical innovations can be seen as something
‘‘unknown’’ as they are new to them. According to Coburn
(2001), schools are also considered as organizational
settings. Weick (1995) proposed seven properties of
sensemaking: (a) grounded in identity construction, (b)
retrospective, (c) enactive of sensible environments, (d)
social, (e) ongoing, (f) focused on and by extracted cues,
and (g) driven by plausibility rather than accuracy. The
property of grounded in identity construction means that
individuals make sense of a circumstance through their
exceptional senses and self- identity and with their
understanding of the influence of the circumstance on them.
The ‘‘retrospective’’ refers to individuals’ reflection on the
past events which affect their sense making of present
events. For example, in our study, we consider the past
events as the past CT experiences of teachers. The enactive
of sensible environment means that sensemakers contribute
to the environment and the affected environment returns a
kind of influence to sensemakers. The social property
relates to the experience of shared collective action
(Czarniawska-Joerges, 1992) beyond simply achieving
shared meaning. The ongoing signifies that sensemakers
perceive something as a disruption to their existing frame,
seek to connect it to past experiences, and feel them. The
focused on and by extracted cues denotes that a
characteristic that the sensemakers recognizes as a crucial
and representative trait of the entire phenomenon. The
driven by plausibility rather than accuracy entails that
sensemaking is about taking ‘‘a relative approach to truth,
predicting that people will believe what can account for
sensory experience but what is also interesting, emotionally
appealing, and goal relevant” (Weick, 1995, p. 879). These
sensemaking properties provide an effective way to examine
how mathematics teachers make sense of integrating CT
into the mathematics curriculum.

3. THE STUDY
The study employed a qualitative case study to understand
how teachers make sense of Computational Thinking by
designing and implementing math lessons. In this study as
part of a larger design-based research project, our
participants were secondary mathematics teachers in
Singapore who intended to integrate CT in teaching

mailto:syiu24@uwo.ca
mailto:mkim574@uwo.ca
mailto:wendy.huang@nie.edu.sg
mailto:cheekit.looi@nie.edu.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

152

mathematics Grade 7 to 10 students. Since 2018, a group of
mathematics teachers has been co-planning and
implementing CT lessons. Our research team supported the
participant teachers’ CT concepts for designing and
implementing math lessons in classrooms. They observed or
learned about a series of Math+CT lesson guided by a
mathematics educator who is familiar with CT. The demo
lessons have considerable curriculum-relevant teaching
materials and activities such as how to use spreadsheet
software to understand the computing concept of recursion.
Our case study with 5 teachers carried out during the 2019-
2020 school year using observations of teacher professional
development meetings, semi- structured interviews with the
teachers, and teacher artifacts. For this study, extensive
amount of qualitative data from the audio- and video-
recordings of regular teacher meetings were transcribed in
verbatim.

4. FINDINGS
Our findings indicate that the properties of sensemaking for
the teachers were social, driven by plausibility rather than
accuracy, retrospective, and ongoing. For the teachers in
this study, social appeared as the most salient property when
teachers made sense of CT. Teachers held meetings twice a
month to share their collaborative lesson planning
experiences and understanding of CT and practices of CT
lessons. The meetings enabled them to acquire more sources
to make sense of CT as their interactions in meetings. For
example, Teacher A was new to CT and did not use any CT
terminologies at first. However, he used more CT
terminologies later such as the four-pillar cognitive
processes of CT: decomposition, pattern recognition,
abstraction and algorithmic and became one of the most
enthusiastic members in generating ideas of planning CT
lessons in the group. Through their social collaboration
during teacher meetings, the experienced often shared their
previous CT lesson plans and experiences with the teachers,
in particular new teachers who joined the project later.
Experienced teacher B shared his difficulties and struggling
on designing the part of pattern recognition for worksheets.
As a result, the new teachers could make sense of CT with
other experienced teachers. When they were making sense
of CT, they were based on their status and situation to design
and implement a CT lesson plan, driven by plausibility. As
facing constant educational reform and extensive
administrative work, the actions of teachers were often
time-sensitive, subject to the speed/accuracy trade-off and
responsive to new innovations. The scarcity of time led
them to make plausible and sensible decisions for CT
lessons rather than an accurate and comprehensive
resolution. During the regular meetings, the experienced
teacher participants often mention their retrospective
experience in designing and implementing CT. Experienced
teachers realized that the structure of the worksheets that
ordered the four CT pillars did not encounter challenges.
Other teachers were comfortable and agreeable to use
previous teaching materials that were established by leaders
in this project and successfully adopted them in lessons.
Teachers made

sense based on their ‘‘feeling.’’ Normally, this property
allows people to make sense shortly and briefly as feeling is
unstable and in a moment.

5. DISCUSSION AND IMPLICATIONS
We argue that teacher sensemaking properties contribute a
practical framework to analyze how mathematics teachers
make sense of integrating CT into the mathematics
curriculum. These sensemaking properties provide an
effective way to examine how math teachers contended with
matter of coherence and dealt with the meaning from mostly
conflicting messages they confronted in their local
environment. Our findings showed that teachers made sense
of CT through social, driven by plausibility rather than
accuracy, retrospective and ongoing. This reveals that a
collaborative group is important for teachers to make sense
of teacher-led curriculum innovation. The collaborative
group, however, could not benefit teachers without regular
meetings and teachers’ initiative. In our case, as CT
integration was new to the participant teachers in this study,
their experience and knowledge were insufficient initially.
So, a group of proactive teachers and a platform were of
utmost importance for them to share understanding of
innovation and practices with one another. This also made
them more confidence in implementing the innovation.
Further, teacher-led curriculum innovation from teachers
happened based on their feeling. As teachers were not
familiar with the innovation, they tended to relate it to what
they felt rather than what it is. Since innovation comes
endlessly, feeling it motivated them to take a path to
comprehend new things. Last, given that retrospective
relates to past experience, the experience regards to teacher-
led curriculum innovation is crucial. The properties of
sensemaking have shown that teachers need sources to make
sense of innovation. Thus, it is important to establish
teachers’ on-going professional development innovation
that will provide references for them to make sense of it.

6. REFERENCES
Coburn, C. E. (2001). Collective sensemaking about

reading: How teachers mediate reading policy in their
professional communities. Educational Evaluation and
Policy Analysis, 23(2), 145-170.

Czarniawska-Joerges, B. (1992). Exploring complex
organizations. Sage Publications.

Darling-Hammond, L., Hyler, M. E., & Gardner, M.
(2017). Effective teacher professional
development. Learning Policy Institute.

Dervin, B. (1983). An overview of sense-making research:
Concepts, methods, and results to date. International
Communication Association Annual Meeting, 1-13.

Maitlis, S., & Christianson, M. (2014). Sensemaking in
organizations: Taking stock and moving
forward. Academy of Management Annals, 8(1), 57-125.

Waterman, R. H. (1990). Adhocracy: The power to
change. Memphis, TN: Whittle Direct Books.

Weick, K. E. (1995). Sensemaking in organizations. Sage

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

153

A Systematic Review of Teachers’ Preparedness towards Computational Thinking
Integration in Mathematics

Shiau-Wei CHAN1, Chee-Kit LOOI2*, Shivani MAHEDIRATA3, Mi Song KIM4
1,2National Institute of Education, Nanyang Technological University, Singapore

3,4University of Western Ontario, Canada
shiauwei5634@gmail.com, cheekit.looi@nie.edu.sg, smahedir@uwo.ca, mkim574@uwo.ca

ABSTRACT
As earlier studies highlighted the importance of teachers’
preparedness to develop computational thinking (CT) for
students in school education, this study aims to explore the
teaching areas involved in the mathematics teachers’
preparedness to integrate CT in classrooms, as well as to
investigate the considerations for effective training or
professional development activities to prepare mathematics
teachers in teaching CT. A total of 16 journal articles from
2015 to 2020 were reviewed in this study. The findings
indicated that not all the teaching areas (i.e. classroom
management, teaching methods, subject knowledge,
technology, planned curriculum, assessing students, and
choosing teaching materials) were involved in the teachers’
preparedness for each study. Several considerations for
effective training or professional development had been
proposed. The results can be utilized to inform initial teacher
education plans and ongoing professional development
opportunities to better prepare the teacher to teach CT in the
mathematics classrooms.

KEYWORDS
Systematic review, teachers’ preparedness, computational
thinking, mathematics

1. INTRODUCTION
Teachers from all levels require educational experience to
prepare them to teach CT concepts effectively (Rich, Yadav,
& Schwarz, 2019). Chalmers (2018) findings maintain for
teachers to be able to successfully integrate and teach CT in
classrooms, they need to have increased knowledge and
awareness of the subject and its concepts, only when the
teachers are confident can they deliver meaningful
knowledge to the students. This further highlights the
importance of the preparedness of teachers. Thus, this study
intends to conduct a systematic review of teachers’
preparedness towards CT integration in mathematics. Two
following research questions guide this systematic review:
a) What are the teaching areas involved in the
mathematics teachers’ preparedness to integrate CT in
classrooms?
b) What are the considerations for effective training or
professional development activities to prepare mathematics
teachers in teaching CT?

individual and collective knowledge, ability, skills,
perceptions, and attitudes of teachers to support the
enactment of curricula. The teacher’s level of preparation
is measured according to the teacher’s views on the
following seven teaching areas: (1) classroom
management, (2) teaching methods, (3) subject knowledge,
(4) technology, (5) planned curriculum, (6) assessing
students and (7) choosing teaching materials (Lu, 2005).

Courses or training are implemented to meet the need for
teacher preparation. Earlier studies (e.g. Angeli and Jaipal-
Jamani, 2018) revealed that the training given to the pre-
service teachers was able to develop pre-service teachers’
CT skills and better prepare them to teach CT in the
classrooms. Besides the teacher education courses or
training, the CT professional development courses were
also implemented for in-service teachers. For example,
Yadav, Gretter, Good, and McLean (2017) executed a
study with 76 in-service teachers in a program that
included two 39-hour courses. The findings revealed that
participants have a better understanding of CT concepts
and practices, and have made improvements in three of the
four knowledge-related dimensions related to technical
knowledge content.
3. METHOD
The method utilized in this systematic review was based on
the method of performing systematic reviews in the social
sciences by Petticrew and Roberts (2006). Five scientific
databases were employed to execute systematic review,
namely Scopus, Web of Science, Science Direct,
LearnTechLib, and ProQuest Education database. We used
several combinations of search terms to find the relevant
articles for this systematic review, i.e. "computational
thinking" AND ("math" OR "mathematics") AND
("teacher"). The initial search resulted in a total of 156
articles.

The inclusion criteria for this systematic review were
including (a) The article published in the last five years, i.e.
between 1st January 2015 and 31st December 2020 as the
field of CT in the mathematics teacher education was only
being developed in recent years; (b) The article published
in the peer-reviewed journals; (c) The article reported on
the empirical evidence of the research, involving
qualitative or quantitative, and mixed-method; (d) The
article presented the CT in the mathematics teacher
education; (e) The participants must be mathematics in-
service teachers or pre-service teachers; and (f) The article
published in the English language. Meanwhile, the
exclusion criteria were including (a) The article published

2. LITERATURE REVIEW
Teachers’ preparedness was defined by Gonzales (2018) as
“[t]he state of “being ready for some purpose, use or
activity” (p. 15) before having to accomplish an activity.
Ondimu (2018) described teachers’ preparedness as

mailto:shiauwei5634@gmail.com
mailto:cheekit.looi@nie.edu.sg
mailto:smahedir@uwo.ca
mailto:mkim574@uwo.ca

in the book chapter, book series, and conference
proceedings; (b) The article that only reported on the
literature review, opinion, and framework or model; and
(c) The article did not relate CT in the mathematics in-
service teachers or pre-service teacher education. Using the
above inclusion and exclusion criteria, 16 articles were
included in this systematic review.

4. FINDINGS
4.1 Teacher Preparation
To review the math teachers’ preparation to integrate CT in
classrooms, we adapted Lu’s (2005) seven teaching areas.
It includes (1) classroom management, (2) teaching
methods, (3) subject knowledge, (4) technology, (5)
planned curriculum, (6) assessing students, and (7)
choosing teaching materials (see Table 1).

Table 1. Teacher preparedness in seven teaching areas in
the reviewed articles
No Authors & Year 1 2 3 4 5 6
1 Li (2020) /
2 Piedade, Dorotea, Pedro, & Matos

(2020)
/ /

3 Reichert, Barone, & Kist (2020) / /
4 Araujo, Floyd, & Gadanidis (2019) / / / /

5 Papadakis & Kalogiannakis (2019) / / /

6 Masfingatin, & Maharani (2019) /

7 Rich, Yadav, & Schwarz (2019) /

8 Tuhkala, Wagner, Iversen, &
Kärkkäinen (2019)

/

9 Yuan, Kim, Hill, & Kim (2019) / /

10 Chalmers (2018) / / / /

11 Günbatar, & Bakırcı (2018) /

12 Valentine (2018) / / /

13 Wang,
Utemov, Krivonozhkina, Liu, &
Galushkin (2018)

/

14 Gadanidis (2017) / / /

15 Gadanidis, Cendros, Floyd, &
Namukasa (2017)

/ / / /

16 Leonard et al. (2017) / / /

*(1) classroom management, (2) teaching methods, (3) subject
knowledge, (4) technology, (5) planned curriculum, (6) assessing
students and (7) choosing teaching materials

4.2 Teacher Training and Professional Development
Yadav et al. (2017) concluded that teacher training and
professional development activities are vital as it was
observed that teachers only had a basic understanding and
knowledge of CT. They found that the current training
being provided to teachers is not enough, so ‘training needs
to begin early on in the teacher preparation programs to
allow pre-service teachers to understand how
computational thinking ideas are related to their content
areas’ (p. 217).

According to Chalmers (2018), a big part of the
professional development practices should be, ‘a greater
awareness of computational thinking concepts, practices,
and perspectives would increase teachers’ understanding
and confidence to embed computational thinking and
robotics into primary school classrooms’ (p. 97). Wang et
al. (2017) shed light on access methodological resources
like flipped classrooms, as a driving force to increase the
teachers’ motivation levels.

Valentine (2018) discussed how increasing chances for
pre-service teachers to experience and interact with
concepts and tools of math and CT and viewing them as
doers or makers is an important consideration for
professional development training. She adds that this lays
a strong foundation and cultivates a habit of active thinking
with respect to what to teach and how to teach those math
and CT concepts in the classrooms. ‘Future work might
consider creating opportunities for pre-service teachers to
plan their own constructivist-oriented mathematics lessons
and try these out with classmates and in their field
placements’ (p. 16). Pre-service teachers would benefit
significantly from STEM content courses taught in an
integrated way since pre-service teachers tend to apply an
integrated method to STEM teaching after they have been
taught in such a way.

5. CONCLUSION
Research question one explored the level of mathematics
teachers’ preparedness to integrate CT in classrooms. The
results revealed not all the seven teaching areas were
covered for teachers’ preparedness in each study. Most of
the studies (11 studies) investigated the use of technology,
followed by subject knowledge (8 studies), planned
curriculum (6 studies), teaching methods (5 studies),
assessing students (5 studies), classroom management (1
study), and choosing teaching materials (1 study).

Research question two investigated the considerations for
effective training or professional development activities to
prepare mathematics teachers in teaching CT. Several
considerations for effective training or professional
development activities were including the importance of
introducing the teacher preparation programs early, imbue
in a greater awareness of CT concepts, practices, and
perspectives, access methodological resources, as well as
experience and interact with concepts and tools of math
and CT.

There is a need for teacher professional development and
ongoing training for the pre-service and in-service teachers
who integrate CT in their mathematics classrooms. This
systematic review can be useful for teachers, educators,
and researchers seeking to greatly improve the quality of
training or professional development programs to enhance
the teachers' preparedness of teaching CT in mathematics
lessons.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

154

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

155

6. REFERENCES
Angeli, C., & Jaipal-Jamani, K. (2018). Preparing pre-

service teachers to promote computational thinking in
school Classrooms. In Khine M. (Eds). Computational
Thinking in the STEM Disciplines. Springer, Cham.

Araujo, R. C., Floyd, L., & Gadanidis, G. (2019). Teacher
candidates’ key understandings about computational
thinking in mathematics and science education. Journal of
Computers in Mathematics and Science Teaching, 38(3),
205-229.

Chalmers, C. (2018). Robotics and computational thinking
in primary school. International Journal of Child-
Computer Interaction, 17, 93-100.

Gadanidis, G. (2017). Five Affordances of Computational
thinking to support elementary mathematics education.
Journal of Computers in Mathematics and Science
Teaching, 36(2), 143-151.

Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I.
(2017). Computational thinking in mathematics teacher
education. Contemporary Issues in Technology and
Teacher Education, 17(4), 458-477.

Gonzales, K. K. (2018). Teachers' confidence and
preparedness for teaching mobile learners. Dissertations,
The University of Southern Mississippi.

Günbatar, M. S., & Bakırcı, H. (2018). STEM teaching
intention and computational thinking skills of pre-service
teachers. Education and Information Technologies, 24(2),
1615-1629.

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A.,
Outka-Hill, J., Robinson, R., & Hester-Croff, C. (2017).
Preparing teachers to engage rural students in
computational thinking through robotics, game design, and
culturally responsive teaching. Journal of Teacher
Education, 69(4), 386-407.

Li, Q. (2020). Computational thinking and teacher
education: An expert interview study. Human Behavior
and Emerging Technologies, 1 – 15.

Lu, X. (2005). Teacher quality and teacher preparedness in
public secondary schools: Evidence from SASS 1999-
2000. Dissertations. 1044.

Masfingatin, T., & Maharani, S. (2019). Computational
thinking: Students on proving geometry theorem.
International Journal of Scientific & Technology
Research, 8(9), 2216 – 2223.

Ondimu, S. M. (2018). Teachers’ preparedness for
implementation of the competency based curriculum in
private pre-schools in Dagoretti North Sub-county,

Nairobi City County. Master Thesis, University of
Nairobi.

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a
course for teaching introductory programming with
Scratch to pre-service kindergarten teachers. International
Journal of Technology Enhanced Learning, 11(3), 231-
246.

Petticrew, M., & Roberts, H. (2006). Systematic reviews in
the social sciences: A practical guide. Oxford, England:
Blackwell.

Piedade, J., Dorotea, N., Pedro, A., & Matos, J. F. (2020).
On teaching programming fundamentals and
computational thinking with educational robotics: A
didactic experience with pre-service teachers. Education
Sciences, 10(9), 214.

Reichert, J. T., Barone, D. A. C., & Kist, M. (2020).
Computational Thinking in K-12: An analysis with
Mathematics Teachers. EURASIA Journal of Mathematics,
Science and Technology Education, 2020, 16(6), em1847.

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019).
Computational thinking, mathematics, and science:
Elementary teachers’ perspectives on integration. Journal
of Technology and Teacher Education, 27(2), 165-205.

Tuhkala, A., Wagner, M.-L., Iversen, O. S., & Kärkkäinen,
T. (2019). Technology comprehension — Combining
computing, design, and societal reflection as a national
subject. International Journal of Child-Computer
Interaction, 20, 54-63.

Valentine, K. D. (2018). Tinkering with logo in an
elementary mathematics methods course. Interdisciplinary
Journal of Problem-based Learning, 12(2).

Wang, Z., Utemov, V. V., Krivonozhkina, E. G., Liu, G., &
Galushkin, A. A. (2018). Pedagogical readiness of
mathematics teachers to implement innovative forms of
educational activities. Eurasia Journal of Mathematics,
Science and Technology Education, 14(1), 543-552.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017).
Computational thinking in teacher education. In P. Rich &
C. B. Hodges (Eds.), Emerging research, practice, and
policy on computational thinking (pp. 205–220). Springer
Publishing Company.

Yuan, J., Kim, C., Hill, R., & Kim, D. (2019). Robotics
integration for learning with technology. Contemporary
Issues in Technology and Teacher Education, 19(4), 708-
735.

	Top changed
	First 2 pages
	Proceedings Cover
	Preface

	Preface A4
	Preface

	Editors
	E_Editors

	20 May- Proceedings
	COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12
	COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12
	COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12
	STEM PEDAGOGIES AND CURRICULUM
	STEM TEACHER EDUCATION AND PROFESSIONAL DEVELOPMENT
	Computational Thinking and Coding Education in K-12
	Exploring the Effectiveness of Pair Programming in Developing Students’ Computational Thinking Skills through Scratch
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1. Pair Programming
	2.2. Computational Thinking

	3. METHODS
	3.1. Participants
	3.2. The Learning Platform: Scratch
	3.3. Procedure
	3.4. The Scratch Programming Projects
	3.5. Data collection

	4. FINDINGS AND DISCUSSIONS
	4.1. Comparison of students’ scores for solo programming and PP
	4.2. Teachers’ Observations of Students’ Behaviors and Interactions during PP

	5. LIMITATIONS
	6. CONCLUSION AND IMPLICATIONS FOR TEACHING
	7. DECLARATION OF CONFLICTING INTERESTS
	8. REFERENCES

	Achievement and Effort in Acquiring Computational Thinking Concepts: A Log- based Analysis in a Game-based Learning Environment
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHOD
	2.1. Sample
	2.3 Research Design
	2.2. Apparatus
	2.4 Data Analysis

	3. RESULT AND DISCUSSION
	3.1 RQ1: How do students’ game performance characterize the difficulty of acquiring CT concepts?
	3.2 RQ2: Do primary and secondary students share the same order of difficulty of acquiring CT concepts?
	3.3 RQ3: Is completing easy missions a scaffold for completing hard missions?

	4. CONCLUSION
	5. REFERENCES

	Cultivating Computational Thinking through Game-based Scratch Programming
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	3. COMPUTATIONAL THINKING AND GAME-BASED PROGRAMMING
	4. METHODS
	4.1 Participants
	4.2 Instructional Design
	4.3 Measures and Tools

	5. RESULTS
	5.1 After playing the game, the results of Computational Thinking Test improved significantly
	5.2 Playing Scratch programming game can effectively improve programming self-efficacy
	5.3 The degree of game preference and computer foundation will not affect the performance of computational thinking

	6. CONCLUSION AND DISCUSSION
	7. REFERENCES

	Developing Girls' Computational Thinking by Playing Programming Games
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHOD
	2.1. Participants and design
	2.2. Materials
	2.2.2. The Cat Eat Fish game

	3. RESULTS
	3.1. Which Aspects of Computational Concepts Are More Effective After Playing the Game?
	3.2. Can Playing the Programming Game Promote Girls’ Computational Practices?

	4. DICUSSION AND CONCLUSION
	3.3. Can Playing the Programming Game Improve Girls’ Computational Perspectives?

	5. REFERENCES

	Programming Socio-scientific Games: A Computational Thinking Approach to Real-world Problems
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. THEORETICAL FRAMEWORK
	2.1. Computational thinking and game modding for Socio-Scientific Issues

	4. EMPIRICAL STUDY
	5. INITIAL RESULTS
	6. CONCLUSION
	7. REFERENCES

	Computational Thinking and Unplugged Activities in K-12
	Research on the Design of Unplugged Computer Science Teaching Activities in Elementary School—Taking the Fruit Delivery Game Course as an Example
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	5. RESEARCH SUMMARY
	6. REFERENCES

	Computational Thinking and Subject Learning and Teaching in
	A Hybrid Approach to Teaching Computational Thinking at a K-1 and K-2 Level
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Computational Thinking in Education
	2.2 Using Digital Media to Teach Children
	2.3 State of CT Teaching in K-12
	2.4 Use of Gamification and Simulation to Practice CT Concepts

	3. DESIGN OF A HYBRID APPROACH
	3.1 Design Requirements
	3.2 Teaching Through Animations
	3.3 CT Practice Through Games
	3.4 Integration of Offline Activities
	3.5 Evaluating and Grading student Performance

	4. PILOT STUDY: EVALUATING THE TEACHING EFFECTIVENESS
	4.1 Participants
	4.2 Task and Procedure
	4.3 Variables
	4.4 Results
	4.5 Discussion

	5. CONCLUSION & FUTURE WORK
	6. ADDITIONAL MATERIALS
	7. REFERENCES

	Using the Beginners Computational Thinking Test to Measure Development on Computational Concepts Among Preschoolers
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHOD
	2.1. Participants
	2.2. Materials
	2.3. Procedure

	3. RESULTS AND DATA-ANALYSIS
	3.1. Qualitative data
	3.2. Beginners Computational Thinking Test (BCTt)

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. COMPLIANCE WITH ETHICAL STANDARDS
	7. REFERENCES

	Storytelling through Programming in Scratch: Interdisciplinary Integration in the Elementary English Language Arts Classroom
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORK
	2.1. Computational Thinking
	2.2. Interdisciplinary Integration
	2.3. Using Scratch for ELA integration

	3. METHODS
	3.1. Context of the Study
	3.2. Setting and Participants
	3.3. Curriculum Design/Tools
	3.4. Data Collection
	3.5. Data Analysis

	4. RESULTS
	4.1. Martin’s project
	4.1.1. Remixing for self-expression
	4.2. Kyle’s project
	4.2.1. Programming for narrative coherence

	5. DISCUSSION
	6. CONCLUSION
	8. REFERENCES

	Students’ Learning of Computational Thinking in Schools with Different Curriculum Approaches Including Individual Student Characteristics
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHODS
	2.1. Study and Data

	3. RESULTS
	2.2. Analyses

	4. DISCUSSION
	5. REFERENCES

	A Standard Decomposition Process to Inform the Development of Game-Based Learning Environments Focused on Computational Thinking
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. CURRENT PROJECT PURPOSE
	3. METHOD
	3.1 Identify Existing Curricula Related to the Focus Standards.
	3.2 Review Curricular Resources.
	3.3 Reconcile Differences.
	3.4 Gather Educator Feedback on the Steps, OIs, Pre- KSAs, and KSAs.
	3.5 Integrate Feedback from Educators and Generate EoL and EoM based on Existing Curricula and Educator Feedback.
	3.6 Confer with Educators and Gather Educator Feedback on the EoL and EoM.
	3.7 Integrate Feedback from Educators.

	4. RESULTS
	5. DISCUSSION
	6. REFERENCES

	Computational Thinking and Teacher Development
	Different Paths, Same Direction: How Teachers Learn Computational Thinking in STEM Practices through Professional Development
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHOD
	2.1. Data Sources

	3. RESULTS
	3.1. Overall change in teachers’ reported confidence
	3.2. What teachers learned

	4. DISCUSSION
	5. REFERENCES

	An Experience of Conducting Online Teacher Development for Computational Thinking Teaching in a Primary School Context
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. BACKGROUND
	2.1. CT in Relation to Programming in a Primary School Context
	2.2. Importance of Teacher Development in CT
	2.3. Factors of Conducting Effective TDCs on CT

	3. METHODOLOGY
	3.1. Design and Structure of the Course
	3.2. Participants and Procedures
	3.3. Measures
	3.3.2. TPACK of Programming for CT Development Questionnaire

	4. RESULTS AND DISCUSSION
	4.1. Results of the CT Concepts Test
	4.2. Results of the TPACK of Programming Questionnaire
	4.3. Results of the Participants’ Evaluation of Teaching Survey

	6. REFERENCES

	Computational Thinking and STEM/STEAM Education
	ARTEC Logic Puzzle: The Role of Computational Thinking with Extension to Extended Logic
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. COMPUTATIONAL THINKING, EXTENDED LOGIC AND LOGIC PUZZLE 25
	2.1 Algorithm
	2.2 Abstraction
	2.3 Decomposition
	2.4 Pattern Recognition
	2.5 Extended Logic

	3. CONCLUSION
	4. REFERENCE

	Computational Thinking and Data Science
	Infusing Computational Thinking into the Accounting Practice Course
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. COMPUTATIONAL THINKING FRAMEWORK OF FINANCIAL ACCOUNTING
	3. EXAMPLE OF CT IN ACCOUNTING COURSE
	4. DISCUSSION AND CONCLUSION
	5. REFERENCES

	VizBlocks: A Data Visualization Literacy Education Tool
	KEYWORDS
	1. INTRODUCTION
	3. VIZBLOCKS
	3.1. Objectives

	2. VISUAL PROGRAMMING PARADIGM
	3.2. Vizblocks Tool
	3.3. Vizblocks Information Repository

	4. CONCLUSION
	5. REFERENCES

	Computational Thinking Development in
	Making the Thinking Results of Programming Visible and Traceable with a Multi-layer Board Game
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORK
	2.1. Board games for CT and programming
	2.2. Mini-languages and visual programming
	2.3. Make thinking visible
	2.4. Stored program and problem solving

	3. OUR METHODOLOGY AND THE MULTI-LAYER BOARD GAME DESIGN
	3.1. The thinking module
	3.2. The board game design
	3.3. The learning design

	4. EXPERIMENT RESULTS AND DATA ANALYSIS
	4.1. Measuring tools and experimental procedure
	4.2. Experiment results and discussion

	5. CONCLUSIONS
	6. REFERENCES

	A Framework for Integrating Computational and Design Thinking Processes
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	1.1. Context
	1.2. Affinities between CT and design
	1.3. Framework

	2. METHODOLOGY
	3. FINDINGS
	4. DISCUSSION
	4.1. Positive aspects of the framework
	4.2. Limitations of the framework

	5. CONCLUSIONS
	6. REFERENCES

	The Effects of an AR Programming Game on Students’ Different Prior Computational Thinking Skills
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHOD
	2.1. Participants
	2.2. Procedure
	2.3. The AR-Game
	2.4. Data Collection
	2.5. Data Analysis

	3. RESULT
	3.1. Improvements in CT skills

	4. DISCUSSION
	5. CONCLUSION
	6. REFERENCES

	A Systematic Review of Distributed Pair Programming Based on the Team Effectiveness Model
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. FRAMEWORK
	3. METHODS
	4. PRELIMINARY RESULTS
	5. CONCLUSION
	6. REFERENCES

	Computational Thinking and Special Education Needs
	Proposal for the Production of Virtual Reality Environments in Elementary Education with a Constructivist Approach
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORKS
	4. CASE STUDY
	4.1. User Profile
	4.2. Technological Platform
	4.3. Attention-VR
	4.4. Results

	5. CONCLUSIONS AND FUTURE WORKS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	Computational Thinking and Evaluation
	A Preliminary, Systematic Review of Teaching and Learning Computational Thinking
	Early Childhood Education
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. Methodology
	2.1. Research Design
	2.2. Procedures
	2.3. Data Analysis

	3. FINDINGS
	3.1. How have people studied CT in ECE?
	3.1.2. Sample groups within early childhood
	3.1.3. Duration of empirical studies
	3.1.4. Research methods used
	3.3. Computational perspectives used in these studies.

	4. DISCUSSION
	4.1 What are the implications for teaching and learning indicated by these empirical studies?
	4.2 A constructivist view of teaching and learning.
	4.3 An integrated approach to teach CT in ECE.
	4.4 Pedagogical approaches to teach CT in ECE.

	5. CONCLUSION
	6. REFERENCES

	Computational Thinking and Non-formal Learning
	Bringing Physical Computing to an Underserved Community in an Informal Learning Space
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORK
	2.2. Learning Computing in School
	2.3. Leveraging on Community resources
	2.4. Informal Mentoring

	3. DESCRIPTION OF STUDY
	3.1 Participants (Students, mentors)
	3.2 Data Collection (Methods)
	3.3 Activity: The 8-week programme for students

	4. OBSERVATIONS and ANALYSIS
	4.1 Observations of Group 2
	4.1.1 Cognitive Processes Abstraction
	Decomposition
	Pattern Recognition
	Testing and Debugging
	4.1.2 Practices
	4.2 Observations of Group 4
	4.2.1 Cognitive Processes Abstraction
	Decomposition
	Pattern Recognition
	Testing and Debugging
	4.2.2 Practices
	4.3 Tutors’ Observations

	5. FINDINGS AND DISCUSSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	Combining Maker Technologies to Promote Computational Thinking and Heart- ware skills through Project-based Activities: Design Considerations and Empirical Outputs
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. METHODOLOGICAL APPROACH
	2.1. Theoretical Approach
	2.2. Technological Approach

	3. SETTINGS AND ACTIVITIES
	3.1. Robotics Workshop
	3.2. STEM Workshop

	4. DATA COLLECTION METHOD
	5. FINDINGS & DISCUSSION
	5.2. Bringing CT into STEM Subjects
	5.3. Providing a Creative-learning Environment

	6. CONCLUSION
	7. REFERENCES

	Computational Thinking and Psychological Studies
	Influential Factors of Hong Kong Secondary School Students’ Intrinsic Motivation to Coding Education during the COVID-19 Epidemic: A Correlational Analysis
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. INTRINSIC MOTIVATION
	3. METHODS
	3.1. Participants and data collection
	3.2. Instruments

	4. BIVARIATE ANALYSIS RESULTS
	5. DISCUSSION
	5.1. More positive psychological states, higher intrinsic motivation
	5.3. More positive subjective experience with the crisis, higher intrinsic motivation

	6. ACKNOWLEDGEMENT
	7. REFERENCES

	STEM Learning in the Classroom
	An Evolving Definition of Computational Thinking in Science and Mathematics Classrooms
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2.2. Computational Visualization Practices
	2.3. Algorithm Practices
	2.4. Computational Data Practices
	2.5. Programming Practices

	3. LINKAGES BETWEEN PRACTICES
	4. CONCLUSION
	5. REFERENCES

	Action Research on Engineering Design-oriented and Project-based STEM Teaching Model
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED WORK
	2.1. Engineering Design and STEM Education

	3. PRIMARY CONSTRUCTION
	4. METHODOLOGY
	4.1. The Research Object
	4.2. The Research Method
	4.3. The Research Process
	4.3.2. The Second Round of Action Research
	4.3.3. The Third Round of Action Research

	5. MODIFICATION OF MODEL
	5.1. Engineering Project Startup
	5.2. Engineering Project Preparation
	5.3. Engineering Project Practice
	5.4. Engineering Project Summary

	6. CONCLUSION
	7. REFERENCES

	A Case Study of 7th Grade Students Learning Programming to Solve Mathematics Problems
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RESEARCH QUESTIONS
	3. INTERVENTION DESIGN
	3.3. Learning programming should be embedded in math contexts
	3.4. Focus on using the language, rather than learning the language.

	4. METHOD
	5. ANALYSIS
	5.1. Developing an algorithmic solution
	5.2. Coding the algorithmic solution
	5.3. Comparison with conventional problem solving

	6. DISCUSSION
	7. LIMITATIONS
	8. CONCLUSION
	9. REFERENCES

	STEM Activities in Informal Contexts
	Developing STEM Makers with Mentoring and Authentic Problem-Solving Strategies
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RESEARCH DESIGN
	2.1. Research Participants
	2.2. Research Intervention

	3. RESULTS
	4. DISCUSSION AND CONCLUSION
	5. REFERENCES

	STEM Education Policies
	Euro-Asia Collaboration for Enhancing STEM Education
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. COLLABORATION AND EXCHANGE OF GOOD PRACTICES
	2.1. Train lecturers in student-centred competence development
	2.2. Establish STEM education centres
	2.3. Facilitate industry engagement and competence integration into STEM educational programmes

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	STEM Pedagogies and Curriculum
	Designing an Interdisciplinary Social-scientific STEM Curriculum on Students’ Empathy, Efficacy, and Interest
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. THEORETICAL FRAMEWORK
	2.1. Research background
	2.2. The EDIPT design thinking model

	3. METODS
	3.1. Design of the social-scientific curriculum
	3.3. Instrument

	4. RESULTS
	3.2. Participants

	5. DISCUSSION AND CONCLUSION
	6. REFERENCES

	A Co-design Approach for Developing Computational Thinking Skills in Connection to STEM Related Curriculum in Swedish Schools
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. THEORETICAL FOUNDATIONS
	3. RESEARCH DESIGN
	4. EMPIRICAL FINDINGS
	5. DISCUSSION
	6. CONCLUSION
	7. REFERENCES

	Analysis of the Development Direction of STEM Curriculum in China
	KEYWORDS
	1. INTRODUCTION
	2. RESEARCH DESIGN
	3. FINDINGS
	4. DIFFERENCES BETWEEN DOMESTIC AND FOREIGN STUDIES
	5. CONCLUSION
	5.1 Improve the Standard System of STEM Curriculum
	5.2 Strengthen the Theoretical Construction of STEM Curriculum Development
	5.3 Innovate the Teaching Mode of STEM Curriculum

	6. REFERENCES

	STEM Teacher Education and Professional Development
	KEYWORDS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. THE STUDY

	4. FINDINGS
	5. DISCUSSION AND IMPLICATIONS
	6. REFERENCES
	A Systematic Review of Teachers’ Preparedness towards Computational Thinking Integration in Mathematics
	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHOD
	4. FINDINGS
	4.1 Teacher Preparation
	/

	5. CONCLUSION
	6. REFERENCES

	Bottom Changed
	Proceedings End

	Blank Page

