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Preface 
The 5th APSCE International Conference on Computational Thinking and STEM Education 
2021 (CTE-STEM 2021) is organized by the Asia-Pacific Society for Computers in Education 
(APSCE). CTE-STEM 2021 is hosted by the National Institute of Education, Nanyang 
Technological University (NIE/NTU). This conference continues from the success of the 
previous four international Computational Thinking conferences organised by the Education 
University of Hong Kong (EdUHK) and JC@Coolthink in Hong Kong. In addition to 
Computational Thinking, we will be expanding the conference to invite STEM researchers and 
practitioners to share their findings, processes and outcomes in the context of computing 
education or computational thinking. 

CTE-STEM 2021 is a forum for worldwide sharing of ideas as well as dissemination of findings 
and outcomes on the implementation of computational thinking and STEM development. The 
conference will comprise keynote speeches, invited speeches, panel discussions, workshops 
and paper presentations. All accepted papers will be published in ISSN-coded proceedings. 

The International Teachers Forum is organized for teaching practitioners to share their 
practices in teaching Computational Thinking, Computing and STEM in the classroom. We 
believe bringing all these would create enriching experiences for educators and researchers to 
share, learn and innovate approaches to learning through Computational Thinking and STEM 
education. This year, teachers can participate in Lightning Talks to share ideas about teaching 
and learning CT. 

The Students Forum (BuildingBloCS) is organized by students, for students. It is Singapore’s 
annual Computing education outreach programme. Started back in 2017, it is not only a 
national computing education outreach programme, but also a platform for leadership 
development, innovation programme, EVIA (Education & Values In Action) and student-
friendly social network.  We have been very encouraged by the strong support given by 
Ministry of Education (Singapore) and many other community and industry partners. 

On behalf of APSCE and the Conference Organizing Committee, we would like to express 
our gratitude towards all speakers, panelists, as well as paper presenters for their contribution 
to the success of CTE-STEM 2021. 

We sincerely hope everyone enjoys and get inspired from CTE-STEM 2021. 

With Best Wishes, 

Professor LOOI, Chee-Kit 

Conference Chair,  
CTE-STEM 2021 
National Institute of Education 
Nanyang Technological 
University, Singapore 

A/P WADHWA, Bimlesh 

Conference Co-Chair, 
CTE-STEM 2021 
National University of 
Singapore, Singapore 

Professor DAGIENÉ, Valentina 

Conference Co-Chair,
CTE-STEM 2021 
Vilnius University, Lithuania 



Main Theme and Sub-themes 

“Computational Thinking and STEM Education” is the main theme of CTE-STEM 2021 
which aims to keep abreast of the latest development of how to facilitate students’ 
computational thinking abilities and STEM development, in the context of computing 
education or computational thinking. The conference also aims to disseminate findings and 
outcomes on the implementation of CT development in school and STEM education. There 
are 19 sub-themes under CTE-STEM 2021, namely: 

 

Computational Thinking and Coding Education in K-12 

Computational Thinking and Unplugged Activities in K-12 

Computational Thinking and Subject Learning and Teaching in K-12 

Computational Thinking and Teacher Development 

Computational Thinking and IoT 

Computational Thinking and STEM/STEAM Education 

Computational Thinking and Data Science 

Computational Thinking and Artificial Intelligence Education 

Computational Thinking Development in Higher Education 

Computational Thinking and Special Education Needs 

Computational Thinking and Evaluation 

Computational Thinking and Non-formal Learning 

Computational Thinking and Psychological Studies 

Computational Thinking in Educational Policy 

STEM Learning in the Classroom 

STEM Activities in Informal Contexts 

STEM Education Policies 

STEM Pedagogies and Curriculum 

STEM Teacher Education and Professional Development 

 

  



Paper Submissions to CTE-STEM 2021 

The conference received a total of 47 submissions (29 full papers, 14 short papers and 4 poster 
papers) by 116 authors from 21 countries/regions (see Table 1) 

Table 1: Distribution of Paper Submissions for CTE-STEM 2021 

Country/ Region No. of Authors Country/Region No. of Authors 
Canada 4 Lithuania 2 
China 19 Malaysia 5 
Cyprus 1 Mexico 4 
Estonia 1 Netherlands 1 
Finland 4 Peru 2 
Greece 2 Singapore 11 
Germany 2 Spain 1 
Hong Kong 14 Sweden 5 
India 4 Taiwan 9 
Italy 4 United States 18 
Japan 3 Total 116 

 

The International Programme Committee (IPC) is formed by 74 members and 13 co-chairs 
worldwide. Each paper with author identification anonymous was reviewed by at least three 
IPC Members or co-chairs. Meta-reviewers then made recommendation on the acceptance of 
papers based on IPC Members’ reviews. With the comprehensive review process, 35 
accepted papers are presented (10 full papers, 15 short papers and 10 poster papers) (see 
Table 2) at the conference. 

Table 2: Paper Presented at CTE-STEM 2021 

Sub-themes Full 
Paper 

Short 
Paper 

Poster 
Paper 

Total 

Computational Thinking and Coding Education in  
K-12 

2 1 2 5 

Computational Thinking and Unplugged Activities in K-
12 

0 0 1 1 

Computational Thinking and Subject Learning and 
Teaching in K-12 

3 2 0 5 

Computational Thinking and Teacher Development 1 1 0 2 
Computational Thinking and IoT 0 0 0 0 
Computational Thinking and STEM/STEAM Education 0 0 1 1 
Computational Thinking and Data Science 0 0 2 2 
Computational Thinking and Artificial Intelligence 
Education 

0 0 0 0 

Computational Thinking Development in Higher 
Education 

1 2 1 4 

Computational Thinking and Special Education Needs 0 1 0 1 
Computational Thinking and Evaluation 1 0 0 1 
Computational Thinking and Non-formal Learning 2 0 0 2 
Computational Thinking and Psychological Studies 0 1 0 1 
Computational Thinking in Educational Policy 0 0 0 0 



Sub-themes Full 
Paper 

Short 
Paper 

Poster 
Paper 

Total 

STEM Learning in the Classroom 0 3 0 3 
STEM Activities in Informal Contexts 0 1 0 1 
STEM Education Policies 0 1 0 1 
STEM Pedagogies and Curriculum 0 2 1 3 
STEM Teacher Education and Professional Development 0 0 2 2 

Total 10 15 10 35 
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Exploring the Effectiveness of Pair Programming in Developing Students’ 
Computational Thinking Skills through Scratch 

Wee Meng Frankie LEOW1, Wendy HUANG2 
1Bedok Green Secondary School, Singapore 

2National Institute of Education, Nanyang Technological University, Singapore 
leow_wee_meng_frankie@moe.edu.sg, wendy.huang@nie.edu.sg 

ABSTRACT 
Pair programming (PP) is a useful strategy to promote 
computational thinking (CT) among students. Studies have 
shown that PP under appropriate conditions can enhance 
student achievement and increase their motivation in 
learning programming. Furthermore, studies have also 
shown that Scratch, a graphical block-based programming 
language, enables student learning in programming to 
become more interesting, more challenging and more 
creative. This study explored the effectiveness of PP in 
developing students’ CT skills through Scratch in a 
Singapore secondary school. The findings suggest that PP 
is more effective than the solo programming, both 
in supporting and enhancing students’ learning 
and understanding of basic programming concepts and CT 
skills, as well as on improving students’ motivation 
toward programming. Limitations of this study and 
implications for teaching are also discussed. 

KEYWORDS 
Pair Programming, Scratch, Computational Thinking, 
Computer Applications, K-12 

1. INTRODUCTION
To nurture students to be future-ready and contribute 
effectively in an increasingly complex and interconnected 
world shaped by computer technologies, the Singapore 
Ministry of Education (MOE) has strengthened digital 
literacy among students through the Smart Nation Initiative 
(Smart Nation, 2014) and the National Digital Literacy 
Programme (MOE, 2020). As developing computational 
capabilities is one of the key enablers for these national 
initiatives, secondary schools and junior colleges computer 
education curriculum were also revised to introduce 
computational thinking (CT) and its related concepts such as 
abstraction, algorithmic thinking and decomposition to 
students through programming in subjects such as Computer 
Applications (CPA) and O-Level Computing (MOE, 2017, 
2019). Secondary students who took CPA are introduced to 
programming at secondary two through Scratch 2.0 
(Scratch), a graphical block-based programming language, 
using Scratch editor. 

The secondary two CPA students in a typical public co- 
educational school (it is called “School A” in this paper) 
initially learned Scratch through solo programming. While 
students worked independently to complete the Scratch 
projects, the teachers observed that students struggled to 
correctly apply the knowledge they have learned to create 
the projects and got frustrated as a result when the codes did 
not work as intended. Students may know the function of 
each graphical block but they did not know how to combine 
those blocks in order to produce valid and correct 

programs.  Students   also  faced  difficulties  in the  use  of 
variables, operators blocks, event blocks and blocks 
that encapsulate other blocks (e.g. loops). For example, 
students commonly have misconceptions regarding 
variable initialisation and loop conditions during the 
creation of their scratch projects. Hence, despite the ease in 
using Scratch to learn programming, many students tend to 
find programming difficult to learn and get frustrated when 
they are unable to get their programs to work as intended 
(Choo et al., 2017; Rahmat et al., 2012). 

To explore the effectiveness of PP in developing 
students’ CT skills and in motivating students to learn 
programming through Scratch, the secondary two CPA 
students in School A attended three PP lessons. This 
study explored the effectiveness of pair programming 
(PP) in developing students’ CT skills, measured by their 
learning  achievement in PP. The study focused on 
answering the following research questions: 

1. What is the effectiveness of PP in developing students’
CT skills through Scratch?

2. How motivated are students to learn programming
through Scratch when using PP?

2. LITERATURE REVIEW
2.1. Pair Programming 
PP involves two people working side by side each other at 
one computer and collaborate closely to create a program. 
One acts as the driver who is responsible for controlling the 
shared resources (e.g., computer, mouse, keyboard) and 
actively involved in the programming task such  as using the 
mouse to input the codes. The other acts as the navigator who 
is responsible for observing the driver’s work and providing 
support by pointing out errors in the codes and/or offering 
suggestions on how to solve a problem (Williams & Kessler, 
2002). During the program completion process, the driver 
and navigator roles are switched after a period of time 
(Williams & Kessler, 2002). 

Studies have shown that students regularly perform better 
with PP than with solo programming in CT (Lye & Koh, 
2014; Werner & Denning, 2009). Paired students were more 
likely to hand in solutions for their programming tasks that 
were of higher quality than students who programmed 
independently (McDowell et al., 2002). Furthermore, 
various studies have also  shown that  PP can 
(1) improve individual programming skills (Braught, Eby, &
Wahls, 2008; Cliburn, 2003) and (2) reduces frustration
experienced by novice programmers, increases their
satisfaction, enjoyment; and promote positive attitudes in
programming in them (Bishop-Clark, Courte, Evans, &
Howard, 2006; Preston, 2005).

mailto:leow_wee_meng_frankie@moe.edu.sg
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2.2. Computational Thinking 
During programming, students are exposed to CT. Wing 
(2017, p. 8) defines CT as the “thought processes involved 
in formulating a problem and expressing the solution(s) in 
ways that a computer—human or machine—can effectively 
carry out.” The “computer” here refers to an information 
processing agent that can be a human or a computer, or a 
combination of both. Selby (2014) further elaborates that CT 
as cognitive processes, involves thinking in abstractions, 
algorithmically and in terms of decomposition, 
generalization and evaluation. Binkley  et al. (2012) and 
Yadav et al. (2014) also posit that CT has the potential to 
foster creativity and problem-solving skills among students. 
Hence, CT is not just about problem formulation, but also 
about problem solving where students are encouraged to 
think in new ways to come up with solutions. Therefore, CT 
equips and empowers the students with knowledge, skills 
and programming competencies to move beyond being 
consumers of technology to becoming creative thinkers and 
problem-solvers in a tech-driven world. 

3. METHODS 
3.1. Participants 
The participants were 40 secondary two CPA students in 
School A. They were introduced to Scratch prior to the PP 
lessons and had some basic knowledge and skills about 
Scratch programming. 12 students were female and 28 
students were male. 

3.2. The Learning Platform: Scratch 
Scratch is a graphical block-based programming language 
suitable for students to learn programming because of its low 
floor (easy for novice programmers to get  started), high 
ceiling (opportunities for expert programmers to create 
complex projects) and wide walls (supporting different types 
of projects that grow out of the programmers’ own interests 
and learning profiles) (Resnick et al., 2009). Studies have 
shown that using Scratch improves students’ motivation in 
learning programming (Ouahbi et al., 2015) and 
understanding of basic programming concepts (Saez-Lopez 
et al., 2016). 

 

 
Figure 1. Scratch user interface 

Writing a program is done by dragging and dropping the 
graphical Scratch blocks to connect them to each other 
vertically. These blocks are color-coded and grouped into 
different categories based on their functions (e.g., event 
blocks, control blocks), thereby allowing programmers to 
see the relationship between the different blocks easily. 

Accordingly, students can create programs, which in Scratch 
are called projects, such as stories, animations, games, 
simulations, songs, etc. by connecting the blocks in the 
correct sequence. Figure 1 shows the Scratch user interface 
while Figure 2 shows an example of a program written using 
Scratch blocks. 

 

 
Figure 2. Example of a program written using Scratch 

blocks 

3.3. Procedure 
Prior to the intervention, students completed a solo 
programming project over one hour and 30 minutes. 
Thereafter, they attended three PP lessons (four hours thirty 
minutes in total). In each PP lesson, students shared one 
computer to work through the scenario, design and develop 
their Scratch project, with one driving (controlling the mouse 
and keyboard) and the other navigating (checking for errors 
and bugs, and providing support and feedback). The pairs 
must switch their roles every 10 minutes during PP. 

Pairs were assigned based on student choice. All students 
chose a same-gender classmate to work with for all the three 
PP lessons. There was a total of 6 pairs of girls and 14 pairs 
of boys. However, for each subsequent lesson, every student 
was required to choose a new partner. 

After students reviewed earlier lessons on Scratch 
programming, they were introduced to the Scratch project 
that they need to complete and the rubrics for the project as 
well as PP and the accompanying PP expectations. Table 1 
further shows a summary of the activities for each PP lesson. 

3.4. The Scratch Programming Projects 
Over the three classes, students were given two 
programming projects to assess their programming 
knowledge and capability during PP. They consisted of 
students’ choice of two semi-open projects with a defined 
outcome and an undefined process (see Table 2) and were to 
be completed by the paired students within lesson one (for 
PP project 1) and within lessons two and three (for PP project 
2). 

3.5. Data collection 
In this paper, data was collected during PP by observing 
students’ behaviors and interactions (including the questions 
asked by students when seeking help, frequency of seeking 
help from teachers, and verbatim comments by students 
during PP) as they designed, coded and implemented their 
Scratch projects. We observed how students applied CT 
skills such as evaluation when they encountered bugs and 
algorithmic thinking when conceptualising and 
implementing the projects. We also examined these projects 
based on the rubrics and compared 
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their scores with the Scratch projects done earlier through 
solo programming. 

Table 1. Sample PP lesson 

Table 2. Overview of the pair programming project 

4. FINDINGS AND DISCUSSIONS
4.1. Comparison of students’ scores for solo 

programming and PP 
To evaluate the effectiveness of PP in developing students’ 
CT skills, measured by their learning achievement in PP, 
paired samples t-tests were conducted to determine whether 
the mean of students’ scores for PP project 1 (M=9.48, 
SD=7.542) and PP project 2 (M=6.65, SD=7.150) 
significantly differed from the mean of students’ scores for 
solo programming task (M=5.18, SD=7.542). 

A pair programming session is considered effective to 
enhance students’ performance if their mean score for either 
PP projects 1 or 2 is higher than their score for a similar solo 
programming project and the improvement is statistically 
significant. In general, students working in pairs performed 
better compared to programming alone as both the mean 
scores for the PP projects were higher than the mean score 
for the solo programming project. 

The results for the paired t-tests indicated that the difference 
between PP project 1 and solo programming project was 
significant, t(39)=-3.61, p<.001. Therefore, this could mean 
that PP may positively affect the students’ learning 
performance. 

However, results for the paired t-tests showed that the 
difference between PP project 2 and solo programming 
project was not significant, t(39)=-1.30, p>0.001. It may be 
caused by three possible reasons. 

Firstly, it may be due to the increasing difficulty on PP 
project 2, which was a Scratch game in contrast to a  Scratch 
animation in PP project 1. Studies have shown that task 
complexity influences the effectiveness of PP and in turn, 
student learning (Hannay et. al., 2010). 

Secondly, it may be due to a change in partners in PP project 
2. Factors that had been identified to influence the effects of
PP include partners’ personalities and temperaments
(Hannay et al., 2010; Katira et al., 2004);  and social factors
such as gender, partnership and culture (Zhong, Wang, &
Chen, 2016). As students had to change partners, this meant
that they may be paired with a less desirable partner and
therefore, having compatibility of pairs issues and resulted
in lower motivation to persevere and complete the project. In
this case, as the pairs were of the same gender, the social
factor that is likely to contribute to the insignificant
difference between PP project 2 and solo programming
project is partnership between the pairs being affected by the
partners’ personalities and temperaments.

Thirdly, it may be due to the partner’s skills, knowledge and 
experiences (Hannay et al., 2010; Lui & Chan, 2006). For 
example, if a low progress student is paired with another low 
progress student, the improvement in the learning 
achievement for both students may not be as 

Lesson Time/min Description of lesson activities 

1 5 Revision of last Scratch lesson’s 
concepts. 

5 Students are introduced to PP 
(includes the showing of PP video in 
lesson 1. But the showing of PP video 
will not be implemented in lessons 2 
and 3) or reminded of PP expectations 
in lessons 2 and 3. 

5 Students get into pairs (each pair will 
need to have a different partner for 
each lesson) and are introduced to the 
different scenarios for  the Scratch 
project that they need to complete 
within the lesson (includes 
implementation details and rubrics for 
this project). 

10  Each pair   decides  on their preferred  task 
scenario for the project. Thereafter, 
the paired students will prepare the 
script and storyboard for their Scratch 
project. 

60 The paired students carry out PP to 
complete their project and will  switch 
roles after every 10 minutes. 

5 Summary of the concepts learned in 
the lesson. 

Type Project 

Solo Solo Project: Two sprites having a conversation at  the 
basketball court, with one sprite introducing 
himself/herself to and having a conversation with 
the other sprite to get to know him/her better. 

PP PP Project 1: Choose 1 out of 3 scenarios 

Animation 1: Two sprites having a conversation, 
with one sprite sharing a riddle with his/her friend. 

Animation 2: Two sprites having a conversation, 
with one sprite sharing his/her favourite Korean 
drama and why he/she likes this Korean drama to 
his/her friend. 

Animation 3: Two sprites having a conversation, 
with one sprite sharing his/her favourite game that 
he/she plays with his/her friend. 

PP Project 2: Choose 1 out of 3 scenarios 

Game 1: A cat appears and it is supposed to catch 
doughnuts as they fall from the sky. 

Game 2: A cat appears and it is supposed to jump 

onto blocks to collect stars. 

Game 3: A mouse appears at the start of the maze 
and it is supposed to find the cheese. A cat will 
forever chase after the mouse. 
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greater as the learning achievement of a pair that consists  of 
a high progress student and a low progress student. In  the 
latter, the high progress student will gain more knowledge 
and competencies in the CT skills since each time he/she 
teaches, he/she re-learns the materials while the low progress 
student will benefit from peer teaching. Therefore, PP can be 
beneficial even when partners bring different levels of prior 
programming experience, but the improvement in learning 
achievement may not always be the same for both partners. 
This suggests that  when students work with a partner who 
has relatively more experience, they can still learn. 

It can be therefore stated that PP may positively affect the 
students’ academic performance. Results of these analyses 
are shown in Table 3. 

Table 3. Results of paired t-tests for the different tasks 

4.2. Teachers’ Observations of Students’ Behaviors 
and Interactions during PP 

We observed three categories of pair behaviors during the 
completion of the projects: collaborative, exploratory and 
off-task. Pairs engaged collaboratively when they interact 
verbally and non-verbally to share their thoughts and ideas 
during the creation of their projects, and willingly switches 
roles after each 10 minutes interval. Exploratory behavior 

Majority of the pairs did not engage in planning during the 
10 minutes designated for the planning of the script and 
drawing of the storyboard. Instead, they engaged directly 
with Scratch Editor to plan and input the Scratch blocks for 
their projects. To further explore what PP looks like, we 
analysed the distribution of specific pair behaviors by gender 
pairs that were happening most of the time during the 
creation of the two PP projects. While collaborative behavior 
was the most common across pairs; a few pairs spent their 
time in off-task or exploratory behavior. The results are 
shown in Table 5. 

Table 5. Distribution of pair behaviors by gender pairs 
most of the time while completing PP projects 1 and 2 

goes beyond students engaging collaboratively. Pairs 
constructively challenge each other’s thoughts, ideas and 
programming decisions. On the other hand, off-task 
behavior involves pairs or individual student within the pairs 
being disengaged and holds up the programming process. 
For example, pairs engage in verbal or non-verbal exchanges 
not about their Scratch project or programming. Further 
description and examples are shown in Table 4. 

Table 4. Pair behaviors during game interaction We observed that during PP, students took the initiative to 
ask the teachers questions on whether their suggested codes 
are workable or whether their sequence of algorithmic 
thinking or of decomposition is correct. This contrasted with 
solo programming when more students either gave up or 
asked the teachers what are the codes to input in order to 
complete the solo project. 

Furthermore, while most pairs spent most of their time in 
collaborative behavior, we observed that most female pairs 
spent proportionally more time on collaborative behavior 
and a smaller proportion of their time in exploratory 
behavior, while some male pairs spent a greater proportion 
of their time in exploratory and off-task behaviors. This 
suggests that gender can be an issue in PP context. 
Although studies showed that males tend to be more 

between 
tasks 

Solo project 
vs PP project 
1 

Solo project 
vs PP project 
2 

Mean 
difference 

df Sig 

4.30 -3.61 39 0.0087 

1.48 -1.30 39 0.1997 

Category Description 

Partner gives and 
receives suggestions, 
ask questions and 
responds by carrying 
out the suggestions. 

Example 

Driver adds certain 
blocks of 
Navigator 
comments 
identify 

offers

Switches roles 
willingly. 

Exploratory Pair listens and 
engages 
constructively 
around suggestions. 
Verbalises reasons 

Driver makes the 
changes. 

Navigator spots 
errors and offers 
suggestions; Driver 
disagrees and 
navigator explains 

and reflect. his/her reasoning. 
Driver becomes 

Off-task Partner 
decisions 

the other partner’s 
input, without any 

convinced and 
makes the changes, 
then test the 
game/animation. 

One partner insists 
the other change  the 
sequence of 
codes and no 

explanation. Or 
driver is 

reason was given. 
The other ignores 
partner. 

programming while 
Navigator is not 
tracking what is 
happening on 
monitor (e.g., leave 
the 
station). 

Category of pair 
behavior 

Gender pair 

Collaborative 

Exploratory 

Off-task 

4 

Boy-boy 

10 
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assertive in their views and focus on independence (Leaper 
& Smith, 2004); and females try to avoid conflict and seek 
support, consensus and suggestions (Sullivan et. al., 2015), 
the issue of gender in PP in secondary school context needs 
further exploration. 

The findings showed that students behaviors and interactions 
varied across pairs, and differences could be due to the level 
of confidence (either individually or as a pair) in completing 
the projects based on their knowledge and skills in Scratch 
programming. Furthermore, the findings also showed that 
majority of the students were more motivated to learn and 
engage in programming through Scratch while doing PP. 
Overall, the result of this paper is consistent with other 
studies that PP could reduce frustration experienced, 
enhance student enjoyment, and promote positive attitudes 
in programming ((Bishop-Clark et al., 2006; McDowell et 
al., 2002; Preston, 2005). 

5. LIMITATIONS 
The findings in this paper are limited in several ways. First, 
we did not measure the quality of the relationship between 
partners as a factor affecting the students’ behaviors and 
interactions during PP. Studies have shown that one partner 
can dominate the interactions (Deitrick, Shapiro, & Gravel, 
2016). Second, we did not measure the class collaborative 
culture and the extent to which collaboration supported PP. 
Future work involving rich observational data could help 
describe the classroom culture regarding collaboration. 
Third, we did not have mixed gender pairing of students of 
which may have yielded additional insight into pair 
behaviors. Lastly, we did not investigate the time factor: 
period of switching roles. The period of switching roles in 
this study was a fixed time interval of 10 minutes. We did 
not investigate whether if fixing a longer time interval of 
15 to 20 minutes or having pairs switched their roles 
according to their own needs as and when they chose, would 
help in the learning of CT skills and achievement. This 
would provide additional insights on the effect of period of 
switching roles in PP on student learning. 

6. CONCLUSION AND IMPLICATIONS 
FOR TEACHING 

Overall, our findings suggest that students who programmed 
with a partner learned more than when they programmed 
alone. PP also seemed to motivate students to acquire CT 
skills. Hence, our finding supports prior studies that show 
the benefits of PP for learning and provide some detail on 
the factors that relate to those benefits. 

The findings in this paper also have implications for 
teaching. Firstly, the findings can help teachers understand 
what PP looks like in a secondary school classroom and the 
different variability in how pairs interact. Therefore, 
teachers must plan to create effective pairs. When pairs 
possess different levels of experience of programming 
knowledge and skills, both students will benefit, but in 
different ways. However, it is disadvantageous to pair 
students possessing very different attitudes toward 
collaboration together. For example, having a partner who 
prefers to programme alone can undermine the more 
collaborative student’s learning and lead to pair behaviors 

that hold up the progress of their Scratch project completion. 

Future research can examine the period of switching roles 
between the driver and the navigator and how this impacts 
the learning of CT skills and motivation in learning 
programming through Scratch. Additional research is needed 
in order to determine the extent to which the quality of the 
relationship between partners affects the students’ behaviors 
and interactions during PP, and in turn their learning 
achievement in programming. 
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ABSTRACT 
Numerous attempts have been made to apply coding games 
in computational thinking (CT) education, and using log 
data to explore CT learning is an emerging field. This paper 
explored the acquirement of CT concepts (sequences, loops, 
and conditionals) by primary and secondary school students 
who used a digital coding game called Coding Galaxy. It 
aims to investigate (1) whether secondary school students 
outperform primary school students, and (2) whether 
playing easy game missions is a scaffold for completing hard 
missions. Participants (N=188) were sampled from local 
schools in Hong Kong. Students were divided into three 
groups (A, B, C). Primary school students constituted Group 
A and B, while Group C consisted of secondary school 
students. Group A was assigned with only hard missions 
while easy missions were locked, whereas Group B and C 
were given access to both easy and hard missions. Data were 
extracted from students’ log files, and 6599 records were 
analyzed using learning analytics techniques. Students’ 
performance was evaluated based on game achievements 
and the effort they made to get the achievement. The results 
indicate that (1) students performed best in sequences, 
followed by loops and conditionals; (2) While secondary 
students shared the same pattern with primary students 
regarding the difficulty of acquiring CT concepts, secondary 
students performed better; and (3) While Group A shared 
similar game achievements with Group B, Group B made 
less effort in getting the achievements, indicating that easy 
missions can scaffold hard missions. The implications of the 
findings to various educational stakeholders are discussed. 

KEYWORDS 
Computational thinking, K-12 education, game-based 
learning, log data, learning analytics 

1. INTRODUCTION
Computational thinking (CT) has become a heated topic 
since 2006 when Jeanette Wing proposed the term as “an 
approach to solving problems, designing systems, and 
understanding human behavior, by drawing on the concepts 
fundamental to computer science” (Wing, 2006, p. 33). 
Later in 2014, Wing further gave a more descriptive 
definition, stating that CT involves “formulating a problem 
and expressing its solution(s) in such a way that a 
computer-human or machine-can effectively carry out” 
(Wing, 2014, p.1). Wing’s call for the importance of CT 
has aroused great effort in incorporating CT into 
educational practices (Martins-Pacheco et al., 2019), and 
programming education has become the main context for 
CT development (Grover & Pea, 2013). 

Programming for young children was originated from the 
term “Constructionism” (Papert, 1980) which argues that 
students build knowledge more effectively when they 
actively engage in creating their own projects. Papert 
developed a constructionist programming environment, the 
LOGO programming tool, to provide a place where 
students can represent their abstract ideas through concrete 
constructions (Papert 1980). With the popularity of CT 
education, programming tools have become the vehicle for 
numerous initiatives developed for supporting CT 
education, among which visual programming tools, 
represented by Scratch (Resnick et al., 2009), have widely 
applied for its low complexities in programming syntax 
(Zhao & Shute, 2019). 

CT learning environment can be categorized regarding its 
programming language and the nature of the task it 
displays (Manske et al., 2019). Regrading programming 
language, they can be classified into text-based 
programming tools, block-based visual programming tools, 
and arrow-based visual programming tools (Manske et al., 
2019; Moreno-León, 2018). While text-based tools support 
users to create programs in textual programming languages, 
block-based programming platforms share the features of 
“low floor” (easy to begin with) and “high ceiling” (allow 
complex projects) (Grover & Pea, 2013). Further, to 
support younger children to engage in programming 
activities, arrow-based programming environment, 
represented by Scratch Jr (Bers & Resnick, 2015), was 
created, where representations that are analogous to objects 
(eg. arrows) are used (Moreno-León, 2018; Manske et al., 
2019). As for the nature of the task, CT learning 
environments can be classified into open task environments 
and goal-oriented environments (Manske et al., 2019). In 
open task environments (eg. Scratch), users can author the 
design of their projects, with the flexibility of creating their 
own storyline, whereas goal-oriented platforms,  
represented by digital games, impose constraints on 
learning progression, providing explicit tasks for learners 
to complete. (Manske et al., 2019). 

For students, CT learning environments offer a playground 
to practice CT skills (Lockwood & Mooney, 2017), 
whereas for teachers, these tools provide a way to measure 
students’ learning progression (Shute et al., 2017). 
Students’ acquisition of CT concepts and skills can be 
measured through evaluating their programming projects, 
from which different levels of performance can be 
indicated (Tang et al., 2020). Yet there are some main 
concerns of this approach--the absence of an element does 
not necessarily indicate that the students lack the 
knowledge, while the presence of a code construct is not 
always an accurate indicator of how much the students 
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grasp the concept (Kurland et al., 1985; Brennan & 
Resnick, 2012). To tackle these challenges, digital games 
can serve as an effective tool to assess concept acquisition. 
As a goal-oriented learning tool, CT games are designed 
with tasks that cover certain CT concepts, and learners’ 
knowledge can be assessed through evaluating their 
performance in solving the task. 

To ensure the CT games can effectively support learning, 
appropriate instructional design is critical. Instructional 
design of a game refers to how the game affords players’ 
learning and playing (Laporte & Zaman, 2018), of which 
one important dimension is the organization of learning 
tasks, represented by the sequencing of the tasks 
(Merriënboer & Kirschner, 2017). Thus, for the design of 
CT games, it is vital to consider the sequencing of 
displaying tasks of different CT concepts and the 
sequencing of implementing different knowledge points for 
each concept. Although there have been numerous attempts 
in exploring the content taught by CT games, limited is 
known about how the concepts are delivered via game 
tasks (Laporte & Zaman, 2018), and studies focusing on 
the sequencing of CT concepts and knowledge points 
within concepts are still scarce. 

This paper will introduce a case study on K-12 students 
using a coding game to learn CT concepts. It aims to 
explore the sequencing of concept acquisition and 
knowledge points within a concept. As this is the first 
paper focusing on this particular coding tool, we start by 
investigating the three fundamental CT concepts, which are 
sequences, loops, and conditionals. The case study takes 
place in a self-regulated learning context where students 
were assigned game tasks to complete at home during the 
COVID-19 pandemic, involving both primary and 
secondary students. Students’ knowledge acquisition of CT 
concepts was assessed based on game performance, and the 
results of different cohorts were compared. The study aims 
to answer the following research questions: 

1. How does students’ game performance characterize the 
difficulty of acquiring CT concepts (sequences, loops, and 
conditionals)? 
2. Do primary and secondary students share the same 
order of difficulty of acquiring CT concepts? 
3. Is completing easy missions a scaffold for completing 
hard missions? 

2. METHOD 
2.1. Sample 

Participants were selected from local schools in Hong 
Kong. A total of 188 students consented to participate in 
this study, with 101 from Grade 6 in primary school (age 
10-12) and 87 from Grade 2 in secondary school (age 12- 

programming language where arrows are used as 
commands for players to manipulate directly. This context 
is developmentally appropriate for novice learners, because 
it could prevent syntax errors and have no requirement on 
children’s reading skills (Bers, 2018). Each mission is a 
puzzle in which the learner can control the character (an 
astronaut) to solve the puzzle using simple visual 
programming language. In doing so, the learner must 
identify viable routes and use available commands to work 
out the solution (See Figure 1). Additionally, the learners 
are encouraged to use the fewest commands for the 
solution in order to obtain the mission reward. 

 

 
Figure 1. Coding Galaxy Puzzle Map. 

The mission reward is presented as one, two, or three stars 
upon finishing a mission. Three stars are awarded for the 
optimal solution to the puzzle, involving correct 
identification of patterns and accurate use of commands, to 
achieve the destination with the fewest commands while 
collecting all crystals. Two stars are awarded for partially 
fulfilling these criteria. One star is awarded for those who 
only solve the puzzle but fail to fulfill other criteria. Also, 
there is no limit on time spent on each task, and multiple 
attempts are allowed for each mission. 

2.3 Research Design 

Participants were divided into three groups (see Table 1). 
Primary school students constituted Group A and B, while 
Group C consisted of secondary school students. All the 
students were assigned game chapters of sequences, loops, 
and conditionals. Group A was assigned with only hard 
missions while easy missions were locked on the platform, 
whereas Group B and C were given access to both easy and 
hard missions. All students were given two weeks to 
complete the tasks. Table 2 illustrate the design of game 
missions in terms of knowledge points and the mapping 
with easy and hard missions respectively. 

Table 1. Information of Each Group. 

14). According to the school curriculum, these groups of    
students have learned the basic CT concepts at school, so 
they were expected to be able to play the coding game 
under a self-regulated learning context. 

2.2. Apparatus 

The game adopted by this study, Coding Galaxy (CG 
hereafter), is designed based on an arrow-based visual 

   Grade Task  
Group A (n=50) Primary school Hard missions 
Group B (n=51) Primary school Easy missions, 

hard missions 
Group C (n=87) Secondary school Easy missions, 

  hard missions  
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Table 2. Map of Game Missions and Knowledge Points 

CT Concept Knowledge point Description Easy* Hard* 
Sequences Simple sequence Sequence with fewer than 10 commands √ 

Loops 

Conditionals 

Relative position 

Relative direction 

Complex sequence 
Apply preset loops 

Loop preset commands 

Loop one command 
Loop multiple 
commands 
Nested loops 
Add action under 
condition 
Create conditional 
command 

Basic spatial awareness, tracking positions to move √ √ 
with commands 
Basic spatial awareness, imagining relative directions √ √ 
from the view of the character 
Sequence with more than 10 commands √ 
A loop has already been completed in the solution, √ 
need to put it in with other commands to complete the 
whole solution. 
Some commands are already in the incomplete √ 
solution. Complete the loop by setting the loop time 
or inserting new commands. 
Solution contains loop with 1 command √ √ 
Solution contains loop with more than 1 command √ 

Solution contains loop within loop √ 
The condition has been preset, only need to add action √ 
through inserting commands 
Create conditional commands through selecting right √ 
conditions and inserting related commands 

*easy: easy missions, assigned to Group B and C *hard: hard missions, assigned to all groups

2.4 Data Analysis 

Two variables for assessing student knowledge acquisition 
were defined and used for analysis, namely achievement, 
and effort. Achievement refers to the average stars student 
get in each game mission, and effort is reflected by the 
number of attempts before achieving the highest number of 
stars for each mission. As completion of each mission is 
rewarded with three possibilities of number of stars, effort 
is presented in three dimensions, namely, 1-, 2-, and 3- star 
attempts. To be more specific, if the highest achievement a 
player reached in a mission is two stars, which is the third 
attempt for trying, then the value of effort for this mission 
is “2-star attempts equal to 3”. 

Log files of each participant were extracted from the game 
backstage, after which the dataset was processed based on 
the defined variables. While achievement was calculated 
with math formulas, data for effort was extracted with a 
Python script. 

3. RESULT AND DISCUSSION
3.1 RQ1: How do students’ game performance 
characterize the difficulty of acquiring CT concepts? 

A total of 6599 records were extracted. Students’ 
performance of each concept was compared. As for 
achievement, students got the highest stars in sequences, 
followed by loops and conditionals (see Figure 2), 
indicating a growing difficulty level of the three concepts. 
Yet regarding effort, the trend was mixed for three 
dimensions (see Figure 3). For 1-star attempts, the same 
order of difficulty was found, whereas the results of 3-star 
attempts showed that players used the most attempts to get 
the best solution in loops missions. 

Figure 2. Achievement of Each Concept.  

Figure 3. Effort of Each Concept. 

These findings indicated that achievement and effort 
reflected different trends in terms of the order of difficulty 
of the three concepts. This may be explained by the order 
students follow when they play the game. Since the game 
missions are displayed in chapters, with each chapter 
focusing on one CT concept, most students played the 
game following the order of chapters, which is sequences, 
loops, and conditionals, according to the timestamp from 
the log files. Thus, it is likely that playing sequences and 
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loops familiarized them with how to solve the puzzles, 
which can be a scaffold for playing conditionals chapters 
afterward. 

Further, both achievement and effort indicated that 
sequences is the easiest to learn while loops is 
comparatively difficult. This result is in line with the 
findings reported by Israel-Fishelson & Hershkovitz (2019) 
who used another coding game on primary school students. 
Based on indicators of the concept achievement and the 
number of attempts, they demonstrated that sequences was 
generally easiest for students while loops tended to be 
challenging. This provides some implications for 
educational practitioners who intend to teach programming 
to novices. It is recommended to start with introducing the 
concept of sequences, and more room for practice can be 
provided when teaching loops and conditionals . 

3.2 RQ2: Do primary and secondary students share the 
same order of difficulty of acquiring CT concepts? 

As Group B and C were assigned with the same game tasks, 
the performance of the tasks generated from the groups 
were compared regarding their achievement in the game 
(see Figure 4). Results showed that primary students 
(Group B) shared the same order of difficulty of concept 
acquisition with secondary students (Group C), with 
sequences as the easiest concept, followed by loops and 
conditionals. Moreover, secondary students outperformed 
primary students in all three concepts, with secondary 
students getting more than two stars on average for each 
concept, implying that the design of the arrow-based 
programming language may be too easy for students 
belong to this age bracket. Thus, for designers of CT 
learning environments, it is suggested to consider the age 
of potential users and their acceptance of different 
programming languages. 

 

Figure 4. Achievement of Primary and Secondary students. 

3.3 RQ3: Is completing easy missions a scaffold for 
completing hard missions? 

Students’ performance between Group A and B was 
compared. Figure 5 displayed the results of game 
achievement. It is indicated that the two groups performed 
similarly regarding the average number of stars. Yet the 
results for effort yielded different results (see Figure 6). 
For each concept, Group A had a lower value in 3-star 
attempts, implying that in cases where players were able to 
solve the puzzles with the optimal solutions, fewer 

attempts were made by those who played easy missions 
beforehand. This indicates that playing easy missions could 
possibly scaffold students to solve harder problems. 

 

Figure 5. Achievement of Group A and Group B. 
 

Figure 6. Effort of Group A and Group B. 

These results can provide rich implications for the design 
of programming games and CT learning environments. 
Referring to Table 2, suggestions of the design of 
programming tasks for novices are as follows. 

 For sequences, initial tasks can be designed with 
solutions less than ten commands, accompanied with 
come basic spacial awareness (relative position, 
relative direction), after which more complex 
sequence tasks can be introduced. 

 For loops (see Figure 7), learners can be exposed to 
applying preset loops in the tasks first where they can 
test how loops work. Also, loop preset commands can 
be used to support novices. This can be reached by 
giving the access to modifying a preset loop in terms 
of either setting loop times or inserting new 
commands inside a loop. This would help learners get 
a deeper understanding of how loops can be applied 
through trials and errors. After these warming-up 
tasks, students can be given the opportunity to try 
creating loop commands from single loops to nested 
loops. These designs click with the model of “use- 
modify-create” proposed by Lee et al. (2011) for 
supporting the design of CT practical activities. The 
model suggests a learning progression to lead students 
to go from user to modifier to creator of programming 
projects (Grover & Pea, 2013), and it has been 
successfully applied in many CT learning platforms 
(eg. Zhao & Shute, 2019). 
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Figure 7. Designs for Loops Tasks for Novices. 

 As for conditionals (see Figure 8), designers can start 
with offering a conditional command with a preset 
condition where players can add actions by inserting 
commands. This can reduce the cognitive load caused 
by choosing the right condition. In addition, to expose 
students to learning how to implement the right 
condition, some choices of conditions can be offered 
first. After these practices, learners can be introduced 
to tasks that require creating conditional commands 
from scratch. 

 

 

Figure 8. Designs for Conditional Tasks for Novices.   

4. CONCLUSION 
This paper presented a case study on how students 
performed in a programming game in a self-regulated 
learning context during the COVID-19 pandemic. Results 
indicated that sequences was the easiest concept to acquire, 
while loops and conditionals were comparatively 
challenging, suggesting that instructors can provide more 
support when teaching these two concepts to novices. 
While primary and secondary students displayed the same 
order of difficulty in acquiring the three concepts 
secondary students outperformed primary counterparts, 
with an average of more than two stars throughout the 
game, which indicates that arrow-based programming 
language may be too easy for secondary students. Plus, 
those who played both easy missions and hard missions 
used less effort to achieve the same performance compared 
to those who only had access to hard missions, implying 
that some scaffolding task designs (eg. apply preset loops) 
may lay a foundation for more challenging tasks (eg. 
nested loops). Suggestions for CT game design for the 
concept of sequences, loops, and conditionals were given, 
which were elaborated with examples. 

Limitations of the study are as follows. First, since playing 
the game was not a compulsory assignment for these 
students, it is likely that students’ motivation to complete 
these tasks was driven by their interest in programming. 
Thus, the results of performance may be more positive than 
the reality, as those who were capable of completing the 
tasks were probably more motivated to do so. For future 
research, it is suggested that external forces (eg. rewards) 

can be imposed to encourage more students to get involved. 
Second, the background information we collected from 
secondary students may not be enough to explain their 
higher performance than primary students. As the 
information was collected from their current secondary 
schools, how much they have learned before entering their 
current schools was unknown. Therefore, age may not be 
the only factor that resulted in the difference in 
performance. It would be more comprehensive if the 
difference can also be explained from their previous 
 programming experience. For future research about CT 
knowledge acquisition, it is recommended to collect 
information about students’ prior programming knowledge 
and extracurricular programming experience. 
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Computational thinking has become a necessary skill for 
students in the 21st century. Programming teaching is an 
effective way to cultivate computational thinking. However, 
programming is difficult and boring for some students. In 
this paper, it is explored whether game-based Scratch 
programming improves students’ computational thinking 
and programming self-efficacy. In addition, the paper also 
explores whether individual differences of students affect 
computational thinking. The results showed that game-
based Scratch programming could effectively improve the 
computational thinking skills, especially logical thinking. 
Secondly, playing Scratch games could improve students' 
programming self-efficacy. Finally, it was found that 
students' preference for games and computer operation 
skills would not affect the effect of programming games to 
cultivate computational thinking. 

KEYWORDS 
computational thinking, game-based programming, 
Scratch, self-efficacy, secondary vocational students 

1. INTRODUCTION
Under the wave of artificial intelligence, computational 
thinking, as a key ability of individuals in the artificial 
intelligence society, has been paid attention to and has 
become a necessary skill for students in the 21st century. In 
recent years, the cultivation of computational thinking has 
been incorporated into the instructional framework of 
information technology and other courses. For example, the 
UK has implemented a complete set of computational 
thinking courses in all disciplines, including computer 
science, information technology and digital literacy 
(Brown, Sentance, Crick, & Humphreys,2014). Besides, 
computational thinking has been set up in the primary and 
secondary school courses as one of its national instructional 
courses in Australia (Falkner, Vivian, & Falkner,2014). 

Computer programming education was introduced into the 
basic education more and more. The research found that the 
computer teaching content of secondary vocational school 
is single and traditional. Most of them stay in the teaching 
of basic computer operation and common office software, 
even though the computer major has been added Python or 
other programming language. Due to the difficulty and 
dullness of programming itself and the lack of basic 
computer knowledge of secondary vocational students, 
many students have a fear of programming. Therefore, the 
training effect of computational thinking is not satisfactory. 

Prensky (2003) pointed out that the mode of integrating 
entertainment and teaching was really suitable for 
teenagers. Game-based programming teaching can make 
abstract problems vivid and let students master the use of 

basic sentences of programming language in the process of 
accomplishing practical tasks. In this process, students can 
improve their programming ability and computational 
thinking ability. In addition, it combines game elements and 
game scenes, so it can help students be more interested and 
motivated to complete programming tasks. As a graphical 
programming software, Scratch programming has become a 
powerful tool for game-based  learning due to its 
modularity, interactivity, entertainment. Therefore, this 
paper attempts to apply Scratch programming game to 
secondary vocational students to improve their 
computational thinking ability and programming self- 
efficacy. Combined with students' personality 
characteristics, such as students' preference for the games 
and computer operation skills, this study puts forward the 
following research questions: 

(1) Can game-based Scratch programming significantly
improve computational thinking? If so, which sub
dimensions would be improved?

(2) Can game-based Scratch programming significantly
improve programming self-efficacy?

(3) Will individual differences such as students' preference
for games and computer operation skills affect the effect of
cultivating computational thinking?

2. CONCEPTS AND DIMENSIONS OF
COMPUTATIONAL THINKING
In 2006, Professor Wing first proposed the concept of
computational thinking (referred to as "CT"). She explained
that computational thinking is a series of thinking activities
covering the breadth of computer science, such as problem
solving, system design, and human behavior understanding,
using the basic concepts of computer science (Wing,2006).
There are many definitions about the dimensions of
computational thinking. International Society for
Technology in Education and Computer Science Teachers
Association defined computational thinking as abstraction,
algorithm design, automation, data representation, data
collection and data analysis (ISTE & CSTA ,2011); Shute,
Sun, & Asbell- Clarke (2017) defined computational
thinking as parallelism, algorithm thinking, problem
decomposition, debugging, iteration and generalization.
There is also a widely used way of classification. Romero,
Lepage, & Lille (2017) divided computational thinking into
five aspects: algorithmic thinking, abstraction,
decomposition, evaluation and generalization. In addition,
Brennan & Resnick (2012) defined computational thinking
as consisting of computational concepts, practices, and
perspectives from the perspective of practical activities,
which is also a highly operational definition in the
cultivation of computational thinking. Among them,
concepts refer to the concepts used in programming,
including: sequences, loops, events, parallelism,
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conditions, operators and data. Practices refer to the 
behaviors carried out when creating a programming project, 
including: increment and iteration, testing and debugging, 
reuse and mixing, abstraction and modularity. Perspectives 
refer to the understanding of oneself, the relationship with 
others and the surrounding technological world, including 
expression, connection and query. 

3. COMPUTATIONAL THINKING AND 
GAME-BASED PROGRAMMING 
The earliest game programming language is  logo language, 
followed by Scratch, Hopscotch, Code Combat, APP 
Inventor, Switch Playgrounds and so on. Based on  the 
unique advantages of game programming, it is often used in 
the basic teaching of computational thinking. For example, 
the Greek researcher used the educational game Run Marco 
to teach basic programming concepts in primary school. The 
results showed that the use of educational games can help 
students understand basic programming concepts, and 
students also showed strong enthusiasm in using this game 
(Giannakoulas & Xinogalos,2018). P. Rose, Habgood, & 
Jay (2020) developed a game based on Scratch 
programming called "Pirate Pluser". It was found that 
playing games can enhance the understanding of program 
abstraction for children aged 10-11 effectively. 
Furthermore, integrating Scratch into classroom activities 
has been shown to improve students' attitudes towards 
coding and computer programming (Korkmaz,2016). In 
addition to  video games, plug-in games are also a good 
choice. For example, the board game code monkey is 
developed for 8-year-old and above players. Players move 
the monkey pattern on the board to the destination by 
applying the computing concept. The game aims at helping 
players learn computational concepts, such as conditional, 
loops, boolean operators, logical operators, etc. In fact, in  
order to make the game successful, players need to 
decompose the problem to get the solution plan. Then via 
testing various plans in the system, players find the most 
effective strategy to overcome the challenge of the game. 
Therefore, the game needs a series of skills, such as problem 
decomposition, system testing and debugging, which are 
also important parts of CT. In addition, Jiang & Huang 
(2019) constructed a framework of children's  programming 
game based on the cultivation of computational thinking in 
their research, which corresponded the steps of using 
computer to solve problems with the game elements. 
Combined with the dimensions of computational thinking, 
the relationship among the dimensions of computational 
thinking  and game elements can correspond as shown in 
Table 1. 

Table 1. Correspondence between CT and programming 
  game elements  

CT programming game 
  elements  

It can be found that game-based programming has an impact 
on students' problem decomposition ability, programming 
concepts, logic and abstraction,  operation and debugging. 
Because the participants are beginners, the researchers 
divided the game into seven levels in this study. The process 
of problem decomposition was weakened. Therefore, 
combined with the definition of computational thinking and 
the specific content of Scratch programming game, this 
paper mainly reflects the development of students' cognitive 
and non cognitive level of Computational Thinking from the 
three elements of algorithm, logical thinking and debugging, 
in which the algorithm contains the basic algorithm 
concepts, namely sequences, conditions and loops. 

4. METHODS 
4.1 Participants 
The participants of this study were 36 nursing students from 
a secondary vocational college in Nanjing, Jiangsu 
Province, China. The participants were all girls, and they 
were all programming beginners. Before the experiment, the 
operation of office software was still taught on the 
information technology course. 

4.2 Instructional Design 
The researcher conducted a three-week tutorial on the 
Scratch programming game. In the teaching process, the 
teacher's explanation is the auxiliary, and the student's 
operation is the main. After explaining the basic game 
interface, the teacher gives the students the task to break 
through. The teacher assigned a total of 1-7 levels to pass. 
With the progress of the course, the difficulty of 
breakthrough is constantly upgrading.Figure 1 shows the 
interface of the fifth level breakthrough interface. 

 

 
Figure 1. Level 5 of Scratch game. 

4.3 Measures and Tools 
Combined with the definition of Computational Thinking 
and the key dimensions of computational thinking, the 
Computational Thinking test compiled by Korkmaz (2016) 
is used in this paper. This set of test questions is based on 
the basic concept of calculation and logic, grammar of 
programming language. It consists of 28 single topics and is 
suitable for students from Grade 5 to Grade 10. We have a 
pretest and a post test before and after the teaching. 

The computer programming self-efficacy scale was 

Problem decomposition and 
representation 

Algorithm construction 

Core mechanism 
 

Rule challenge 

adapted from Kukul & Karatas (2019) to evaluate the 
programming self-efficacy of the experimental subjects. 
The reliability coefficient for this questionnaire was 0.957. 
The question "Do you like to play games" was used to 

  Debugging Game objectives  divide students into three types: "like", "general" and "not 
like". What’s more the computer basic ability test scores 
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were used to divide the students' computer operation skills 
level. According to the average scores, the students were 
divided into low level group and high level group. 

5. RESULTS 
After the experiment, 36 valid questionnaires were 
collected, and the collected data were imported into 
SPSS.19.0 for data analysis. According to the research 
problems of this study, the analysis results are as follows: 

5.1 After playing the game, the results of Computational 
Thinking Test improved significantly 
First of all, in order to verify the impact of playing Scratch 
programming game on computational thinking 
performance, a paired sample T-test was conducted on the 
pretest and post test scores. The results showed that the 
average score of computational thinking increased 
significantly, and there was a significant difference between 
pretest and post test (P<0.01), indicating that the overall 
level of computational thinking improved after 

playing Scratch game. Secondly, we continued to explore 
how different elements of computational thinking were 
improved. The algorithm dimension, logic dimension and 
debugging dimension were tested by a paired sample T- test, 
and the results were shown in Table 2. It can be seen that 
students' algorithm performance, logic performance and 
debugging performance have been significantly improved 
after playing Scratch programming game(P<0.01). 
According to the effect size (d), It was found that Scratch 
programming game improved logical thinking most 
obviously, followed by algorithm, and finally debugging. 
This can be explained from the characteristics of Scratch 
game. Beginners pay most attention to how to pass the game 
when they play the game, so the training effect of 
programming logic thinking is the most significant. 
However, students can not master the programming 
algorithm in a short time, and debugging errors need to be 
completed on the basis of the algorithm 

 
Table 2. Difference between pretest and post test of CT 

Pretest Post test 
 

Mean  SD Mean  SD  T  P d 
CT 56.25 16.19 75.14 10.45 -6.77 0.000** 

Algorithm 
Logic 

Debugging 
* p < .05. 
** p < .01. 

18.75 
21.81 
10.42 

11.11 
8.96 
5.65 

18.72 
39.03 
16.39 

8.43 
6.19 
5.43 

-10.49 
-10.85 
-5.16 

0.000** 
0.000** 
0.000** 

2.12 
2.27 
1.08 

5.2 Playing Scratch programming game can effectively 
improve programming self-efficacy 

In order to accurately explore whether playing programming 
games can improve students' programming self-efficacy, the 
reliability analysis (alpha=0.096>0.9) KMO and Bartlett's 
test (KMO=0.84>0.7) of the self- efficacy questionnaire 
used in this paper were conducted. The results show that the 
questionnaire has high reliability. Then, a paired sample t-
test was carried out on the pretest and post test results of self-
efficacy questionnaire, and the 

First of all, the degree of preference for game and 
computational thinking post test results were tested. The 
preference degree was divided into three levels, namely 
"like", "not like" and "general". The results were shown in 
Table 4. The relationship between the preference degree and 
computational thinking performance was not significant. 
One of the possible reasons is that the subjects are all girls, 
and there is no great difference in their preference for games. 

       Table 4. The correlation between game liking and CT      

results were shown in Table 3. As described in the table, 
there was a significant difference in the scores of students' 

Preference 
for game 

Post test 
results 

 

programming self-efficacy between pretest and post test   Pearson 1 .07 
(P<0.01). Due  to  the difficulty  of programming, students   correlation    
often have a fear of difficulties in programming, especially Preference  Significance  .71 
for beginners. The results of this study show that Scratch for game  (double tail)    
programming games can help students improve their   Number of 36 36 
cognition of programming and increase their programming   cases  
confidence to a certain extent. Pearson .07 1 

Table 3. Difference between pretest and post test of  correlation  
  programming self-efficacy  Post test Significance .71 

Mean N SD SE T  P results  (double tail)    
Pretest 32.64 36 8.37 1.39  -    Number of 36 36 
Posttest 36.72 36 6.68 1.11 2.97 0.005**   cases  
* p < .05. 
** p < .01. 
5.3 The degree of game preference and computer 
foundation will not affect the performance of 
computational thinking 

Secondly, the computer skill level was divided into high 
level group and low level group according to the average 
score. A paired sample T-test was used to test the results of 
the two groups. The results showed that there were 
significant differences between pretest and post test of 
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Computational Thinking Test of the two groups. In order to 
further explore the influence of computer level on the post 
test results of computational thinking, T-test was conducted 
on the post test results of the two groups. Results were 
shown in Table 5 and the level of computer had no 
significant effect on the post test results of computational 
thinking (P>0.05). This may be because Scratch 
programming is a game based on block and does not need a 
high level of computer operation. 

  Table 5. The correlation between computer level and CT      
  M SD T P        

 
thinking. Paper presented at the Proceedings of the 2012 
annual meeting of the American educational research 
association, Vancouver, Canada. 

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S. 
(2014). Restart: The resurgence of computer science in 
UK schools. ACM Transactions on Computing Education 
(TOCE), 14(2), 1-22 

Falkner, K., Vivian, R., & Falkner, N. (2014). The 
Australian digital technologies curriculum: challenge 
and opportunity. Paper presented at the Proceedings of 
the Sixteenth Australasian Computing Education 

high level 
low level 

76.50 
73.44 

10.40 
10.60 0.09 0.39 Conference-Volume 148. 

Giannakoulas, A., & Xinogalos, S. (2018). A pilot study on 

6. CONCLUSION AND DISCUSSION 
With the advent of the era of artificial intelligence, 
computational thinking is not a unique way of thinking in 
the field of computer science, but has become a way of 
thinking in all social fields. This requires reseraches and 
teachers to shoulder the important task of cultivating 
computational thinking, and constantly explore the methods 
and strategies of cultivating computational thinking. 

The results show that the game-based programming is an 
effective method to cultivate computational thinking. 
Besides, the results also show that the improvement of logic 
is the most significant, followed by algorithm and 
debugging. A study showed that Scratch users often produce 
code with' code smells' such as duplicate blocks and long 
scripts which impact how they understand and debug 
projects (P. Rose, Habgood, & Jay,2020). Additionally, 
debugging is to identify and repair errors when the algorithm 
can not provide the expected solution, so debugging needs a 
good algorithm foundation. Therefore, educators should 
balance the entertainment and education of programming 
games, and pay attention to the learning of sequence, loops, 
conditionals and other algorithms. This study also explores 
whether playing Scratch programming game can effectively 
improve the secondary vocational students' programming 
self-efficacy, and the result is positive. Scratch's graphical, 
building block programming method shields the grammar 
rules, algorithm structure and other learning obstacles, 
greatly reducing the cognitive difficulty of students. 
Therefore, to  a certain extent, game-based Scratch 
programming can improve the confidence of programming. 
Finally, the study found that students' preference for the 
game and computer operation skills will not affect the effect 
of game-based programming to cultivate computational 
thinking. 

However, the cultivation of human thinking is a continuous 
process. Limited by the research sample and cycle, the 
conclusion of this study inevitably has some limitations. 
Therefore, how to design the instruction and research of 
computational thinking, and how to combine the proper 
learning strategies with the subject are the problems worthy 
of further study in the future. 
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ABSTRACT 
The purpose of this study is to explore the specific impact 
of playing programming games on each dimension of girls' 
computational thinking through playing Cat Eat Fish, a 
game designed based Scratch. The results showed that 
playing programming games can promote girl beginners' 
computational concepts and perspectives, but the role of 
playing programming games in promoting the girls’ 
computational practices did not be found. 

 
KEYWORDS 
computational thinking, game-based learning, girls 

 
1. INTRODUCTION 
Computational thinking (CT), a basic skill in the 21st 
century, has been incorporated into K12 education and 
higher education in many countries. According to Wing 
(2006), computational thinking covers a series of thinking 
activities in the field of computer science, specifically, it 
refers to the use of basic concepts of computer science for 
problem solving and system design. The dimensions of 
computational thinking in this study are based on Brennan 
and Resnick's definition (Brennan & Resnick,2012), in 
which the concepts of computation include sequences, 
repetitions, cycles, conditionals, and selection, the 
computational practice is to solve practical computational 
problems, and computational perspective involves the 
attitude and perspectives of computational thinking. 

It has been evidenced that the education of introductory 
programming can be supported by playing games, but it 
takes longer for girls to acquire the same computational 
thinking skills as boys (Atmatzidou & Demetriadis,2016). 
Playing games can promote students' understanding 
computational concepts (Kazimoglu, Kiernan, Bacon, & 
MacKinnon,2012). Some studies showed that playing 
games can improve attitude toward computational thinking, 
but others demonstrated that playing games had no effect on 
computational perspectives (Zhao & Shute,2019). 

There is an urgent need to explore whether playing games 
can promote the computational thinking of beginners, 
especially girls, and if the answer is yes, what aspects of 
computational thinking can be advanced by playing 

2. METHOD 
2.1. Participants and design 
The participants were 48 secondary school students from 
Nanjing Health School in China. They were all girls who 
had no programming experience and the average age of 
them was 16. The whole experiment lasted for 3 weeks. 

 
2.2. Materials 

2.2.1. Testing questionnaires 
The Computational Thinking test (CTt; Moreno-León, & 
Robles,2018) were selected to measure students' 
computational concepts. The testing questionnaire for 
computing practice was selected from the International 
Challenge on Informatics and Computational Thinking. The 
Computational Thinking Scales (CTS; Korkmaz, Çakir, & 
Özden,2017) was used to survey computational 
perspectives. 

 
2.2.2. The Cat Eat Fish game 
The game used in this study was designed based on Scratch 
called Cat Eat Fish, in which students were asked to 
combine the code blocks scattered in the code editing area 
to make the cat eat the fish. It contained seven levels and the 
one who took the least time and can successfully passes the 
game won. 

 
3. RESULTS 
3.1. Which Aspects of Computational Concepts Are More 
Effective After Playing the Game? 
The analysis results of the computational concepts scores, 
presented in Table 1, revealed a significant difference 
between pre-test scores and post-test scores. Cohen’s  effect 
size (d =1.39) suggested a large effect of playing the 
programming game (Cohen,1988). Table 2 and Table 3 
indicated that there were significant differences in the pre- 
test and post-test results of sequences, cycles, repetitions, 
conditions and selection, and the effect of cycles is the 
largest. 

 
Table 1. Results of paired t-test for girls’ computational 

  concepts.  
Mean N SD SE t p 

programming games. Thus, the research questions of this 
study are as follows:(1) Which aspects of computational 
concepts are more effective in playing games? (2) Can 

Pre-t 54.57 47 16.64 2.43 - 
Post-t 74.04 47 11.31 1.65 8.44 .000 

playing games promote girls’ computational practice? (3) 
Can playing games improve girls’ computational 
perspectives? If the answer is yes, what dimensions of 
computational perspectives would be improved? 

Table 2. Statistical description for each dimension of girls’ 
  computational concepts.  

Pretest Posttest 
   Mean SD Mean SD   

sequences 15.74 4.30 18.72 2.20 
cycles 18.51 5.61 21.49 4.65 
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repetitions 7.66 4.65 14.04 4.38 critical thinking -2.09 0.043 0.29 
conditions 4.47 3.79 9.04 3.99 algorithmic -1.78 0.082 0.23 
selection 8.19 5.05 10.43 5.09 

Table 3. Results of paired t-test and effects sizes for each 
dimension of girls’ computational concepts. 

t p d 
sequences -4.95 0.000 0.92 
cycles -3.33 0.002 1.72 
repetitions -7.70 0.000 1.41 
conditions -6.76 0.000 1.01 
selection -2.33 0.024 0.44 

3.2. Can Playing the Programming Game Promote Girls’ 
Computational Practices? 
The results, shown in Table 4, presented that there was no 
significant difference in the pre-test and post-test scores of 
girls’ computational practices. 

Table 4. Results of paired t-test for girls’ computational 
practices. 

Mean N SD SE t p   Pre- 

  thinking 

t 20.32 47 9.17 1.34 
Post-t 22.77 47 7.79 1.14 -1.84 0.073

3.3. Can Playing the Programming  Game  Improve Girls’ 
Computational Perspectives? 
A paired sample t-test was used to test the results of girls’ 
computational perspectives. The results, shown in Table 5, 
presented that there were significant differences between 
pre-test and post-test surveys. Table 6 and Table 7 showed 
statistically significant differences in the means of 
creativity, problem solving and critical thinking. From the 
size of the effect, creativity (d=0.50) and problem-solving 
(d=0.42) had a larger effect. 

Table 5. Results of paired t-test for girls’ computational 
perspectives. 

Mean N SD SE t p 
Pre-t 80.30 47 13.05 1.90 -
Post-t  87.47  47  12.12  1.77  4.52  .000 

Table 6. Statistical description for each dimension of girls’ 
computational perspectives. 

Pretest Posttest 
Mean SD Mean SD 

creativity 25.34 7.13 28.32  4.73 

4. DICUSSION AND CONCLUSION
The results of this study indicated that playing 
programming games can improve girls' computational 
concepts in a short period of time, and it improves 
girls' mastery of computational concepts such as 
sequences, circulations, repetitions, conditions and 
selection. Furthermore, the Cat Eat Fish game in this 
study cannot promote girls' computational practices. 
Girls' computational perspectives were significantly 
improved after playing the Cat Eat Fish programming 
game, especially creativity, problem-solving ability and 
critical thinking ability, while the algorithm thinking 
dimension of computational attitude was not 
significantly improved. In practice, teachers can 
design some simple programming games like Cat Eat 
Fish to promote girl beginners to foster computational 
thinking skills. Due to the short duration of this 
study, future researches can further explore 
whether playing programming games for a long time 
can improve the computational practices dimension 
of girls’ computational thinking. 
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iteration, functions) from computer science for solving 
different kinds of problems computationally (Wing, 

This paper discusses how computational thinking could 
be studied beyond computer science education, as a means 
for dealing with real-world multidisciplinary problems. It 
suggests the approach of students playing and modifying 
simulation games, that represent socio- scientific issues, 
with the use of integrated computational affordances, 
including coding, data editing and map design. It further 
presents the initial results of an empirical study, 
concerning the computational practices developed by 
junior-high school students while modified a simulation 
game in an authoring tool called ChoiCo. 

KEYWORDS 
block-based programming, simulation games, game 
modding, socio-scientific issues 

1. INTRODUCTION
Central role to the 21st-century education has the 
cultivation of globally sensitised citizens who can 
recognise and deal with complex, ill-structured issues 
affecting our world and societies (UN, 2018). These 
involve the so-called Socio-Scientific Issues (SSI); open- 
ended controversial problems and dilemmas with multiple 
variables and factors are not easy to be  described with 
formal mathematical models (Sadler, 2002). Global 
warming, sustainable lifestyles, urban development, 
ethical science are some examples. However, 
understanding and dealing with such issues requires 
system-based multidisciplinary approaches that differ 
significantly from the silo, linear problem-solving of 
school activities. To address this challenge, we suggest 
utilising computational thinking beyond the limits of 
computer science as a tool for realising authentic 
multidisciplinary problems. In this context, we studied 
children computational strategies while playing and 
modifying simulation games that dealt with SSI in an 
online environment called ChoiCo (Choices with 
Consequences) http://etl.ppp.uoa.gr/choico/. 

2. THEORETICAL FRAMEWORK
2.1. Computational thinking and game modding for 
Socio-Scientific Issues 
Several studies have shown that new coding technologies, 
such as programmable simulations and game design can 
enable children to develop computational thinking skills 
and understand concepts that were not accessible before 
(Kynigos & Grzioti, 2018). Computational thinking refers 
to the ability of efficiently applying practices, (e.g. pattern 
recognition, abstraction, automation) and concepts, (e.g. 
variables, 

2009, Grover & Pea, 2018). However, so far, it has been 
studied mainly through well-structured programming tasks 
in computer science education. With the need to integrate 
SSIs in education, it seems that it is a good time to study 
computational thinking in other STEAM contexts, utlizing 
it as a vehicle for understanding complex behaviors of real-
world phenomena. To achieve this integration, we suggest 
the approach of modding digital simulation games with 
coding and other high-level computational tools. The term 
modding refers to the process of modifying elements of a 
fully functional game to create a variation of it, usually 
called "mod" (Kynigos & Yiannoutsou, 2018). Modding 
differs from designing a game from scratch, in that the 
"modder" makes focused modifications to game elements, 
aiming to integrate his/her ideas into the gameplay 
experience. In that sense, coding is used as a means of self-
expression on the game's structural ideas. However, most 
educational game design environments, such as Scratch 
and Alice, focus on procedural or object-oriented 
programming without supporting the development of 
complex system-based simulation games, especially from 
inexperienced students. On the other hand, modelling 
tools, such as NetLogo, even though they can produce very 
accurate simulations of dynamic phenomena, they usually 
require advanced technological and scientific knowledge 
to intervene with the model or create one from scratch. 
Therefore, to develop game modding activities on SSI 
simulation games we used ChoiCo authoring tool 
developed by the Educational Technology Lab (NKUA). 

3. THE CHOICO AUTHORING TOOL
ChoiCo is an online authoring tool that allows the play and 
design of "choice-driven simulation" games representing 
socio-scientific issues through a system of choices and 
consequences. The player revolves in map- like areas 
making choices with positive or negative consequences to 
a set of game fields that should not cross certain "red lines" 
(Fig. 1). The user can modify all game elements with three 
computational affordances: a) a map editor for editing the 
game interface and choices, b) an interactive database for 
the game choices, consequences and fields, and c) block-
based programming for game rules. With ChoiCo's 
integrated affordances, children can progressively access 
and modify the game expressing their personal views on 
the gameplay values. 

4. EMPIRICAL STUDY
To investigate the computational thinking strategies that 
children develop and use when dealing with real-world 
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issues through ChoiCo games, we organised a 15-hours 
empirical study in a junior-high school with 8 students 
who worked in 4 groups. The study was divided into 8 
sessions. For the study, we created a ChoiCo game called 
"CT Chef" that dealt with the sustainable development of 
a restaurant. The player is a restaurant owner who has to 
make choices (e.g. food dishes, supplies and other actions) 
to keep his/her restaurant open by balancing  food quality, 
profit and regular customers (Fig. 1). The choices affect 
five game fields: money, healthy food, customers per day, 
animal product supplies, vegetable supplies. 

 

 
Fig 1: The game CT Chef in ChoiCo environment 

In the first two sessions, students played the game and 
discussed possible improvements. In the next sessions, 
they collaborated to create a game mod. We collected a set 
of qualitative data including interviews, audio and screen 
recordings of each group, student games and researcher 
diaries. The data were analysed qualitatively, using the 
"critical incident" as the analysis unit and a coding schema 
that was enhanced with new codes during the analysis. We 
aimed to identify patterns relevant to a) the development 
of computational strategies by students to make sense of 
the SSI b) uses of ChoiCo affordances significant to the 
learning process. 

 
5. INITIAL RESULTS 
All teams created 2 variations of the original game, 
resulting in 8 game mods. The analysis has revealed that 
students developed and applied computational strategies to 
and make decisions and deal with the simulated socio- 
scientific issue. We briefly present three of the main 
categories. 

1. Searching for patterns into the simulated 
phenomenon. Α computational strategy developed by all 
teams was recognising choices patterns either in the 
gameplay, the database or the code. We identified 3 
different strategies of pattern recognition relevant to the 
game SSI: a) search for patterns on the choices made as 
players to achieve a higher game score, b) identify patterns 
in the game data and classify the choices to categories 
according to these patterns. c) create new patterns on the 
choices’ data using the database and block-based 
programming. For pattern recognition students combined 
computational concepts with societal and scientific game 
axioms, such as balanced diet and restaurant profit. For 
instance, group2 created a data 

pattern that for every 3 choices that increase Health a little 
bit, there should be one choice that decreases it. 

2. Controlling the system behaviour with automation. 
A second strategy developed by all groups was the use of 
automation to control and intervene in the game flow. This 
strategy involved complex conditional structures, Boolean 
calculations and command sequencing, practices that are 
usually difficult for young children  to understand. 
Students realised these computational ideas by connecting 
them with the game context. 

3. Prediction and handling of events. Students during 
modding aimed to create a balanced game in terms of 
realism, fun and difficulty. To achieve that, they applied 
computational practices that involved: a) the prediction  of 
fields values for hypothetical gameplay scenarios. This 
allowed them to think of different approaches to the 
represented issue and to get familiar with the concept of 
variation and balance in a complex system. b) The creation 
of internal rules for handling events that may emerge 
during play. For instance, "If the player selects a particular 
choice, change the background". 

 
6. CONCLUSION 
The presented study's initial results showed that with the 
appropriate affordances, children may develop and apply 
computational thinking strategies to make sense of 
complex multidisciplinary problems and dilemmas such as 
balanced diet, food habits, and business management. It 
seems that game modding of open-ended simulation games 
could provide a meaningful context for applying 
programming and computational thinking in STEAM 
fields and real-world problems. Further research and 
analysis on this topic could contribute to the development 
of an integrated computational thinking approach where  it 
is applied in multidisciplinary problems and even in social 
studies and humanities. 
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In 21st century, Computational Thinking is a fundamental 
skill for every person, and CT skills will be added into the 
international PISA test in 2021. There is an international 
trend that many countries have begun to focus on 
computational thinking education. In China, we regard 
Computational Thinking as one of the core literacies of the 
Information Technology Curriculum. The practice of 
computational thinking education in elementary school is 
important, but the knowledge in this filed so abstract that it’s 
difficult for elementary students to understand. But 
unplugged computer science activities could simplify 
complex computer science concepts into operable teaching 
activities. In the unplugged environment, students could 
learn knowledge and develop their CT skills through 
interesting games and activities. Therefore, this study used 
LACID theory to design unplugged computer science ability 
activity for elementary school students. We take the Fruit 
Delivery Game Course as an example, and 30 students 
participated in the course. The study found that 1) the 
LACID theory could provide effective guidance for teacher 
to design Unplugged Computer Science Activities at the 
elementary level; 2) students generally had good learning 
experiences, and they were highly satisfied with the 
unplugged course. 3) "difficulty stratification of activity 
design" and "summarizing knowledge points by subjects" 
were two effective strategies. 

KEYWORDS 
computational thinking, Unplugged Computer Science 
Activity, elementary school students 

1. INTRODUCTION
Computational thinking is a fundamental skill for everyone, 
not just computer scientists. The concept of Computational 
Thinking was first proposed by Professor Jeannette M. Wing 
in 2006, she thought that Computational Thinking involves 
solving problems, designing systems, and understanding 
human behavior, by drawing on the concepts fundamental to 
computer science (Wing, 2006). Researchers are 
increasingly focusing on computational thinking, and 
computational thinking is attracting the attention of all 
disciplines including science and humanities (Bundy, 2007). 
Recently, the OECD proposed that computer science and 
computational thinking could cultivate students’ problem-
solving, creative and collaborative skills, and pointed out 
that computational thinking would be added into The 
Program for  International Student Assessment (PISA) in 
2021 (OECD, 2018). 

Wing emphasized that if we want to ensure a universal and 
solid foundation of understanding and prepare everyone for 

CT skills, then this kind of learning was best done from the 
early stages of childhood (Wing, 2008). With 
the international trend of computational thinking 
education, schools in China has paid attention to the 
education of CT skills. But, in the K-12 stage of 
computational thinking education research, we seemed to 
pay more attentions to students in grades 6-8. As there 
were only 20% studies focused on grades 3-5 
students (Yu & Wang, 2020). Therefore, the challenge 
we faced is to find a a suitable approach for the 
teaching of computational thinking in elementary 
schools, not just teach students to program. 

2. LITERATURE REVIEW
The core idea of Unplugged Computer Science activities is 
to pay attention to children, especially young children. 
We expect that young students could have the 
chance to experience the thinking path of scientists 
through playing unplugged activities. Use hands-on 
activities to cultivate their abstract thinking, 
decomposition, algorithm, and problem-solving 
abilities. For elementary school students, they would 
accomplish learning tasks through collaboration and 
interaction with their peers in unplugged learning. It 
might be better to develop students' computational thinking 
and problem-solving skills through unplugged teaching. 

The concept of Unplugged Computer Science was  
proposed by Professor Tim Bell from the University of 
New Zealand with two teachers Ina H. Witten and Mike 
Fellows. The concept of CS Unplugged was brought 
forward based on their practical teaching experience. 
According to them, CS Unplugged is a collection of 
free teaching material that teaches computer science 
through engaging games and puzzles that use cards, 
string, crayons and lots of running around (Bell, T,1998; 
Bell, Alexander, Freeman, & Grimley, 2009). With the 
popularity of the CS Unplugged project worldwide, 
teaching practice courses with cultural 
characteristics have been continuously added. 

Unplugged is a special type of CT education. Results 
showed that the CT skills of the students who 
participated in the unplugged class significantly 
increased after unplugged teaching (Brackmann C P, 
et.al, 2017). The main characteristic of the Unplugged 
activities are: No computers, Games, Kinaesthetic, 
Student directed, Easy implementation, Growing 
body of ideas, Sense of story (Nishida T, et al, 2009). 

Because it is feasible and can be promoted in 
every elementary school, it’s very important to 
bring CS Unplugged in primary education. Firstly, not all 
schools are adequately equipped with computers in 
China. Unplugged activities are extremely practical when 
computer equipment is insufficient. Secondly, unplugged 
form is very friendly  to some elementary school 
students who don't like programming, especially 
girls. By participating in 
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unplugged activities, they might be more willing to learn 
programming. Thirdly, although programming is a popular 
way to training students' CT skills, but it might lead to 
students’ misunderstandings of computer science. In 
contrast, unplugged activities might prevent this happening. 
Fourthly, it is more appropriate to use unplugged form in the 
short-term teaching of elementary schools. Fifthly, with the 
understanding the basic concepts of computer science, we 
could make important decisions related to computer’s 
security and reliability in daily life. 

The purpose of this research is to provide Unplugged CS 
teaching to the elementary school students in China. The 
question is "how to design the CS Unplugged teaching 
activities, and looking for effective strategies in teaching 
implementation". 

 
3. FRUIT TRANSFER GAME COURSE 
DISIGH BASED ON THE LACID THEORY 
The Learning-Activity-Centered Instructional Design 
(LACID) theory provides an instructional design model. 
LACID theory is learning activity-centered, and CS 
unplugged is all about activity. According to the theory, the 
main steps are: 1) trying to design the instructional plan,2) 
knowledge modeling, 3) clarifying the idea of activities 
segmentation, 4) redesigning the instructional plan (Yang, 
K. C,2005). 

The study takes the Fruit Transfer Game Course as an 
example. The main concept is “network topology”, which is 
an important concept in computer science. 
There are many kinds of network topology, and each form 
has its advantages and disadvantages. In real life, it is 
necessary to use a certain network topology to establish the 
connection between computers. By learning the concept, 
students would understand the basic principle of computer 
information transmission 

After the 4 steps of design, the teaching process was 
determined to be divided into 3 activities. Activity 1: 
“introduction the different types of internet information 
transmission”, Activity 2: “fruit transfer activity (including 
Circular/Liner fruit delivery activity)”, and Activity 3: 
“discussion and summary of the course knowledge”. 

 
4. IMPLEMENTATION AND FINDINGS 
There were 30 students participated in the course. We had 
questionnaire and interview after class. In the  questionnaire, 
students were asked to rate the course and provide 
suggestions from their perspectives. In interviews, they were 
asked about their learning experience and future learning 
tendencies. 
Through the analysis of questionnaire and interview data, we 
found that most students were very satisfied with the 
unplugged course. As their learning experience, students 
thought that they had a very pleasant learning experience. As 
for their attitude towards future learning, unplugged learning 
had positive influence on students’ learning preferences and 
attitudes. Almost all students who were interviewed 
indicated that they would be willing to 

participate in this unplugged course in the future. They also 
hoped there were similar elective courses in school. In 
addition, we found two effective strategies discovered during 
the implementation: "difficulty stratification of the activity 
design"; "summarizing knowledge points by subjects". 

5. RESEARCH SUMMARY 
It makes sense for students to experience more than one form 
of learning in computational thinking classroom. We found 
that the LACID theory could provide effective guidance for 
teacher to design Unplugged Computer Science Activities at 
the elementary level. It is worth mentioned that unplugged 
activities are no longer limited to informal instructional 
situations, such as homes, science museums, and 
extracurricular educational institutions. This study shows 
that unplugged computer science activity  could be carried 
out as formal curriculum in schools in the future. 
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ABSTRACT 
Computational Thinking (CT) has been described as taking 
an approach to solving problems, designing systems and 
understanding human behavior that draws on concepts 
fundamental to computing. It is the ability to integrate 
human creativity and insight with concepts derived from 
Computer Science. We argue that it is best to learn the 
fundamentals of CT at a young age, when the mind is most 
malleable, instead of much later when these concepts are 
taught as part of Computer Science courses. However, 
challenges arise not only when trying to teach these 
complex concepts to young children, but also when 
applying these teachings through kindergarten 
environments. We present a definition of the basic 
fundamental CT concepts and then describe a unique hybrid 
approach of offline and online activities to teach these 
fundamentals to students at the kindergarten (K1 and K2) 
level (children aged 4-6 years old). Finally, we validate this 
approach with a pilot class to determine its learning 
effectiveness. 

KEYWORDS 
E-Learning, Child Education, Computational Thinking, 
Blended Learning, Gamification 
1. INTRODUCTION 
The “4C’S” – critical thinking, creativity, collaboration and 
communication have already been recognized as core 21st 
Century skills to be embedded into school curricula. As 
technology such as A.I., machine learning and robotics 
advance rapidly; our children are faced with the prospect 
that over 80% of future job needs will be disrupted. The 
need to understand how to use computational tools and to 
be able to problem-solve is becoming a fundamental 
competency. “Computational Thinking” is the “5th C” of 
21st century skills and is being embedded as part of core 
curricula in education systems across the world. 
Computational Thinking (CT) has first been described by 
Papert Et. Al and Wing Et. Al as taking an approach to 
solving problems, designing systems and understanding 
human behavior that uses concepts fundamental to 
computing. It is the ability to integrate human creativity and 
insight with concepts derived from Computer Science. We 
can list previously defined CT skills from outside sources, 
such as (Barr Et Al 2011), into a general diagram to 
highlight the four most fundamental of CT skills. These CT 
skills are described as follows: 

Algorithmic Thinking: Getting to a solution through the 
clear definition of the instructions that need to be  followed. 
Decomposition: Also known as factoring, is to break down 
a complex problem or system into parts that are easier to 
conceive, understand, program and maintain. 

 

 
Figure 1. Categorization of previously defined CT 
elements. Although not comprehensive all listed topics lie 
under one of the listed categories and are a core part of 
kindergarten curriculum. 

Abstraction: To generalize several complex solutions or 
definitions based on similarities or common rules. Then 
apply these generalizations to an alternative context. 
Pattern Recognition: The process of classifying input data 
into objects or classes based on key features, and infer new 
solutions based on previously classified data. 

We assert that these skills should be taught at an early age, 
when the child is most malleable (Samuelson and Carlson 
Et al 2008). There are two major challenges that must be 
addressed when teaching to this audience. One of the most 
difficult challenges is how to approach teaching these  skills 
to children given that at the K1 and K2 level, their language 
and motor skills are still developing. The second challenge 
lies in providing a digital teaching medium which can be 
accepted. This is primarily due to resistance to the use of 
teaching through a digital platform (Turbill  Et. Al 2001) 
even though it is an effective medium for teaching concepts 
that are hard to understand (Lieberman Et al 2009). In this 
paper we present a methodology for teaching these 
fundamental CT skills using a hybrid of online and offline 
activities through a tablet computer and physical practice / 
worksheets. We discuss the design of the online animated 
videos which teach the high-level concept of the basic CT 
skills which is then augmented through teacher interactions. 
We also discuss the design of digital games to facilitate 
simulated practice of these CT skills, and their translation to 
real-world offline activities within the class. We evaluate 
the effectiveness of this methodology through a pilot study 
in which a short implementation of this design is used. 
Overall, the core contributions of this work are: 

• The first formal derivation and definition of the 
fundamental CT skills. 
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• The design of a hybrid approach of online and 
offline activities to teach the fundamental CT skills 
applicable to K1 & K2 groups. 

• An empirical method of evaluating the  student CT 
skills taught using this approach. 

We believe that through this hybrid design, children can 
learn the concepts of CT and apply these problem-solving 
skills early on in their lives and continue developing these 
skills to significantly improve their future academic 
progress and daily life activities. 
2. RELATED WORK 
We assert it is imperative these fundamental CT skills are 
taught at an early age. To devise a valid approach, a careful 
analysis of previous frameworks for teaching CT, and 
methods for engaging children must be conducted. In this 
section we discuss three key avenues of related work; 
(i) CT in education; (ii) engaging children using digital 
media as a teaching platform; and (iii) the use of simulation 
as a method to practice CT skills. 
2.1 Computational Thinking in Education 
The idea of teaching CT is not new. In the 1960’s, Alan 
Perlis was one of the first who argued for the need for 
college students of all disciplines to learn programming and 
the "theory of computation" (Guzdal 2008, Perlis 1962). 
Teaching CT shouldn’t be limited to college courses as 
introducing these CT concepts can be applied as a tool to 
im- prove the skills taught in K-12, and key problem-
solving skills used outside of school (Barr Et. Al, 2011). 
Similarly, we also derive how the basic sub- jects  of CT 
supplement the basic components of the general K1 and K-
2 curriculum (Table 1). This is not the only instance of ap- 
plying CT in an educational environment (Kazimogln Et al 
2012). Here the authors approach learning CT through 
digital game mediums. The benefit of this approach is that 
it allows students to learn the application of CT in pre-
programmed simulation environment. Although this 
approach has shown to be effective, the games and 
interfaces used are aimed towards older audiences, likely 
making them too complex for younger children to adopt and 
use. This makes this it difficult to directly apply this 
approach without making it more child friendly. Although 
not implemented, (Falkner Et. Al 2015) discusses how and 
when CT should be taught. However, their questionnaire 
suggests that teachers at that level only consider CT as a 
useful subject in Information Technology and Mathematics 
subjects. Because classes are designed to teach children as 
young as 6 years old (in K-2 grades) coding as a 
supplemental enrichment class, we assert the fundamentals 
of CT must be taught as an additional core subject instead 
of an enrichment class to maximize the impact of the 
benefits. To the best of our knowledge, our teaching method 
is the first that can be applied to allow teaching fundamental 
CT concepts to children at a K1-K2 level which can be 
accepted by kindergartens. 
2.2 Using Digital Media to Teach Children 
Media as a platform for teaching is not a new concept, in 
fact it was (Meir Et Al 1969) in the late 1960’s who 
explored how educational media, would contribute to the 

early years of childhood. Although this is only exploring 
physical art media it supports later investigations by  (Burns 
Et. Al 2004), which highlighted that video can be used as an 
interactive teaching medium, provided that it is carefully 
designed and integrated with online in-class materials. 
Additionally, (Lieberman et. Al 2009) investigates the 
effectiveness of digital media as a teaching platform for 
younger children (aged 3 to 6), showing that digitally 
assisted media can greatly assist in explaining high level 
concepts in a way that children can understand. These 
studies sparked the creation and usage of video games and 
media for entertainment and education (also known as 
edutainment). Such mediums in teaching environments have 
highlighted increased attention during use and retention of 
information afterwards when engaging with edutainment 
media at an educational capacity (Ritterfeld 2006). 
Examples for such edutainment tools are: mathematics 
(Elliot Et. Al, 1997), Creativity and Learning (Montemayor 
Et. Al, 2004), and Reading and Literacy (Verdugo Et. Al, 
2004) (Teaching English to children with English as a 
second language). Our work extends this by utilizing 
animated video which introduces and teaches difficult high-
level CT concepts to children in a way that can be 
understood, engaging and interactive. 
2.3 State of CT Teaching in K-12 
In the UK, the “Barefoot Computing” approach using 
traditional paper and pen has been adopted since 2014, with 
trained teachers teaching CT in primary schools. In recent 
years, CT are being taught using new tools (Sung Et. Al 
2016) in hardware such as Arduino and educational robots 
and coding software such as Scratch and Scratch Junior. 
However, limitations of these tools are as follows 
(i) high cost of hardware; (ii) unable to teach the full CT 
concepts; and (iii) require significant investment in trained 
teachers. All these factors limit how CT can be effectively 
delivered and deployed at scale in kindergartens. The right 
use of mobile devices can enhance the learning experience 
of students as well as strengthen teacher- development 
programs. Our work differs by applying specifically- 
designed software content on a mobile platform (Grover Et. 
Al 2013). 
2.4 Use of Gamification and Simulation to Practice CT 
Concepts 
As the core of kindergarten education is learnt through play, 
we strongly encourage the use of digital simulation 
environments, which in turn are transformed into video 
games, the process of gamification. Gamification allows for 
stress free, engaging and entertaining online practice of CT 
concepts. This in turn will relieve anxiety that can be 
experienced when applying the high level concepts to real 
world contexts. Examples of such simulation environments 
are shown by (Kazimogln Et. Al 2012, Montemayor Et. Al 
2004). However, these games are designed with older target 
audiences in mind. Our work crucially differs from related 
work in two ways. First: multiple games that simulate 
separate CT concepts are used in our digital application; 
Second, our user interface and experience is designed and 
implemented with simplicity in mind, allowing younger 
children to fully enjoy the experience whilst practicing the 
fundamental CT concepts 
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Figure 2: (a) How each game weighs against the four CT skills. Each + denotes a stronger relationship, each - denotes a weaker 
relationship. (b), (c), (d), (e), (f) each show in-game screenshots of Manta Match Mania, Tumble Trouble, Pearly Whirly, Crabby Patty 
and Chomp Chomp respectively. 

3. DESIGN OF A HYBRID APPROACH 
FOR K1 & K2 
This section describes the design of a unique approach for teaching 
the complex CT fundamentals in a way that can be understood by 
younger children. We also discuss how teachers facilitate the 
additional activities and how they can evaluate and report the 
students progression in the curriculum. 

3.1 Design Requirements 
From looking at current kindergarten curriculum as well as 
general feedback from acting kindergarten principals and 
teachers, we summarize that the curriculum design requires 
the following: 
• Children should learn through play and exploration 
Children should be encouraged to learn even if the concept 
is complex 

• Children should be exposed to digital medium 
whilst applying concepts to real world scenarios, limiting 
their screen time 

• Curriculum should be intuitive for teachers to 
understand and teach, even if they are not proficient in the 
subject being taught 
• Curriculum should be designed so that teachers are 
only required to supplement the lessons, and can be done 
with little to no pre-requisite knowledge of the subject 
• Teachers should be able to evaluate the progress of 
the class and/or an individual student 
3.2 Teaching Through Animations 
As the starting sequence in scaffolding, children would 
watch a pre-scripted video animation when they are first 
introduced to a new complex CT concept. The animation 
features “Doodle” as the primary teacher cum online 
character who will engage the children; complementing  the 
“offline” kindergarten teacher whose role is to re- enforce 
learning. This allows teachers with limited CT proficiency 
to confidently teach these complex concepts. The 
animations are done in the same spirit of educational 
children TV shows, utilizing pauses between questions as 
well as humorous gags to keep the attention of the children 
and allow them to actively engage. The animations are 
ordered to first introduce each CT skill, provide examples 
on what this skill entails, then expand and show how the 
skill is applied to real-world situations. 

3.3 CT Practice Through Games 
The online practice is provided via the digital application 
which is run on an android tablet device. This application 
features the child avatar known as the ’Buddy’ who builds a 
relationship with the child and game story as the Buddy 
helps them in small ways (Such as giving hints on how to 
complete difficult levels). This further enhances the 
engagement whilst relieving the anxiety of the educational 
factor being displayed to the children. The application 
contains six games which incorporate one or more CT 
elements in the gameplay (See Table 4(a) for  CT relations). 
By transposing CT exercises via gamification, we are able 
to allow kids a safe virtual environment to practice CT 
skills. The 5 Games which are included in the School of Fish 
application are: 
Pearly Whirly: This game instructs kids to pre-program the 
’Sally Submarine’ to navigate through a maze and collect 
each of the pearls. The kids pre-program a series of either a 
’left’ or ’right’ command. Upon execution the submarine 
will continuously move forward whilst making either a left 
or right turn at each junction based on the next command in 
a sequence. The level is completed when Sally is able to 
navigate the maze and collect all of the pearls in one 
sequence of inputs. 
Manta Match Mania: This game runs in the same spirit of 
a tangram puzzle. Players utilize the ’junk’ puzzle pieces on 
the right and arrange them so that they cover the requested 
’junk part’ on the left. This needs to be done within a given 
time frame otherwise the player loses one  of 3 lives and 
retries the puzzle. Each time a ’junk part’ is successfully 
constructed the player earns some ’pig coins’ and continues 
to the next puzzle. The game is completed when enough pig 
coins are collected. 
Crabby Patty: Players are presented with a 3x2 or 4x2 
array of crabs who will pose to form a pattern, with one of 
the crabs being hidden under a bucket. The aim is to select 
one of four solutions which they think matches the hidden 
crab. This is repeated until all the puzzles are solved, with 
incorrect answers removing one ’life’. The game ends when 
all puzzles are solved, or all lives are lost. 
Tumble Trouble: Colored critters fill the screen, and the 
player tries to clear the critters by drawing lines to match 4 
or more in a row. This game adds two twists; first they must 
clear a specific number of critters from a limited 
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supply, second a special ’clam’ critter requires  surrounding 
critters to be cleared several times before the clam is 
cleared. The game is complete either when these two goals 
are met, or there are no more possible moves. 
Chomp Chomp: A supplemental game. Players are 
presented with their buddy requesting a particular kind of 
food, and a 5x5 grid of randomized food from 5 particular 
types. The objective of the player is to ’feed’ the buddy by 
filling his ’hunger gauge’. They do this by swapping food 
around to match 3 of the same type of food which fills this 
gauge. The game ends when the hunger bar is filled. 
3.4 Integration of Offline Activities 
The final sequence of the scaffolding journey where offline 
activities is used to reinforce the skill acquisition process by 
getting children to apply the CT skills learnt through the 
online games to real-world teacher-led play activities. This 
is implemented with the toys and equipment the 
kindergartens already have in classrooms to perform 
activities which practice CT and problem-solving as play 
activities, so as not to discourage kids from interacting and 
allows the kids to enjoy the learning experience. Teachers 
help the kids follow the instructions given and are instructed 
to allow the kids to figure out the solutions themselves. 
Some examples of these activities include but are not 
limited to: 
• Making various animals with building blocks 

• Recognizing patterns from the surrounding 
environments 

• Planning the steps of what the child will do during 
the day 

• Breaking a big jigsaw puzzle into smaller parts 
then use abstraction to group them, making the puzzle easier 
to solve 

• Breaking a large math equation into smaller parts 
3.5 Evaluating and Grading student Performance 
Teachers require a means of grading and evaluating the 
progress of a student through the curriculum. A method of 
grading is provided via a dashboard application, which 
allows teachers to mark attendance to modules and track the 
child progress. This progress is empirically evaluated in two 
ways, The CT competency index and the puzzle quiz 
delivered at the start, mid and end of the curriculum. We 
define the CT competency index as an empirical point 
system and allocate points across three main topics; 
• Curriculum modules: for which a child is awarded 
points upon completion of the given module 

• Animations: for which a child is awarded points 
upon watching one of the Doodle animated lessons. 
• Online Activities: Each of the core CT Games 
described in Section 3.3 have 100 levels. Each of these 
levels can be completed with a rating from 1 to 3 stars. 3 
stars are given if the best approach/solution to the level was 
used. The total of all earned stars for each game contribute 
to points in the CT skill category which that game practices. 

The curriculum modules only comprise 6 score for two rea- 
sons; One is that the animations and online activities are 
usually a subset of the curriculum, hence a big part of the 
score is redistributed into the animated episodes  (where the 
concepts are taught) and the online game activities (where 
they are practiced and reinforced). The second reason is that 
the delivery of these classes cannot  be monitored, making 
the marking of these modules a subjective judgment from 
the teacher (which they do by marking the student as 
attended) and therefore cannot be empirically measured. 
The final raw CT score is calculated as follows: 

 

 
For each of the four games that contribute to the final raw 
score. We do not directly show the raw scores to the teacher, 
instead we show a graphical comparison of either a child’s 
score compared to the rest of the class or a child’s score 
against the rest of enlisted users via a percentage 
comparison. This allows the teacher to highlight that a child 
may be weaker in a particular skill and can suggest ways 
that that child can improve to the parent when reporting 
progress. We also use a variation of Raven’s progressive 
matrices (Burke 1985) to test their ability to systematically 
decompose patterns, selecting the correct missing piece. 
This variation does not calculate IQ, but only the raw correct 
answers as a grading metric. This test is taken before the 
start, halfway during, and after the curriculum is complete. 

4. PILOT STUDY: EVALUATING THE 
TEACHING EFFECTIVENESS 
This pilot study aims to validate how effectiveness of the 
methodology and curriculum described in this paper in 
teaching the fundamental CT skills. For this we developed 
a 12-hour variation of our curriculum, containing the 
introduction to each CT skill, some online interactive 
practice in class via the tablet device, and some offline 
activities. Additional worksheets are given out to be 
completed outside of class hours either with teacher or 
parental supervision. Before the classes begun, the 
children were given the introduction to the course where 
they learn how to use a tablet. They are then asked to 
complete the puzzle test described in Section 3.5. This test 
is given a second time after the completion of the course. 
Our hypothesis stated that: 
H1 Children improve the amount of correct answers given 
in the puzzle test after taking the classes 
H2 Any improvement is independent from whether the 
children have previously used a tablet device before. 

 
4.1 Participants 
Two classes of mixed K1 and K2 students aged 4-6 years 
old were selected from volunteer kindergartens. The first 
class C1 has had no previous exposure to tablet devices 
whilst C2 already uses some tablets as part of their 
curriculum. Before forms were distributed by the teachers to 
the child’s parents, only children whose parents have 
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completed and signed the form were allowed  to participate. 
C1 contained 15 students comprised of 6 female and 9 
males, C2 comprised of 10 students 5 male, 4 female. 
Making 25 students total. Later 2 males from C1 and 2 
females and 1 male from C2 were removed from the 
experiment results due to absence from some of the classes. 
4.2 Task and Procedure 
A 12-hour implementation of the designed described in 
Section 3 is used in this experiment. In this shortened 
version the modules which introduce each of the 
fundamental CT concepts as well as one online and one 
offline activity which practices the respective skill is used. 
The children first learn how to use a tablet and conduct the 
first puzzle test (described in Section 3.5) on the first day, 
then the classes run on days 2 - 5, The second puzzle test  is 
then executed on day 6. These classes are taught by a 
researcher whilst a kindergarten teacher is present at all 
times to supervise and facilitate as needed. Please see the 
additional materials for this 6-day curriculum. 
4.3 Variables 
Dependent Variables: Empirically we looked at  the amount 
of correct answers given in the test. Each answer is collected 
as a binary outcome. Observations of how the students 
partake in the classes and engage with the content are made 
and general feedback from the supervising kindergarten 
teachers and principals are collected through interviews. 
Independent Variables: 
Class { C1, C2 } between-subjects 
We measured the scores between the two classes to see if 
having previous experience with the tablet device causes 
any effect on the effectiveness of the curriculum. C1 has had 
no previous interaction with tablet devices while C2 has. 
TestTakenAt { Pre, Post } within-subjects 
We measured the scores of the puzzle test before and after 
the 10-hour course was taken to see if there is an 
improvement. 
4.4 Results 
The results of this pilot study are described in three ways; 
The directly measured variables, the observations made 
during class participation and the feedback given by the 
supervising teachers & principals 
Measured Results: As this was a between subjects study, for 
each of the measured dependent variables described in 
Section 4.3 we analyse each the measured Dependent 
Variables using a two-way ANOVA test against the 
Independent Variables. H1 stated that after the classes the 
children will have more correct answers. Figure 3 shows at 
what rate a child answered each question correctly before 
and after the classes, from this we can say this improvement 
is applied to questions which previously had a lower 
percentage of being correct. The results from the two-way 
repeated measures ANOVA test further support H1, 
showing a significant interaction effect between the pre and 
post-test scenario for both C1 & C2 on the amount of correct 
answers in the puzzle test with confidence level p < 0.05 
(~0.003). H2 states that any improvement in test 

results is independent from whether the children have 
previously used a tablet device before. Both two-way 
ANOVA results highlighted in Figure 10 and 11 show that 
there is no significant interaction (p > 0.05, ~0.379) between 
the two classes on the amount of correct answers in the Pre 
and Post-test environments, therefore H2 is accepted. 

 
Observed Results: The children were actively engaging with 
the classes; they answered the questions that were queried 
by Doodle during the animated episodes. They would 
answer questions asked by the experiment conductor 

 

 
 

Figure 3. Results of the pilot study. We can see some 
improvement of the amount of correct answers and that this 
improvement is similar in both classrooms. The large 
variance does suggest that the sample size might be too 
small. 

 
as well as the supervising teacher. The children at first had 
difficulty engaging with the online activities but after a 
small amount of practice were able to complete the given 
activities. An interesting observation was made during the 
execution of the puzzle tests. The students took longer and 
were systematically solving the questions in the post test 
environment. 
Feedback Results: The teachers and principals were briefly 
interviewed before and after the classes and posttest were 
conducted. Overall principals were positive about the 
unique style of how the classes were executed. At first  they 
rejected the idea of tablet computers being used in class but 
after watching how the kids actively engaged during tablet 
play they later retracted their rejection. They were 
concerned that some training (although minimal) in the use 
of the game and dashboard applications might be required 
in order for such a curriculum to be effective 
4.5 Discussion 
Our measured results support both H1 and H2. We 
recognize that the sample size is too small for a within 
subjects experiment. This was unavoidable as kindergarten 
classes typically only contain 5-15 students per  supervising 
teacher. Even with this small size the results were 
significant. We observed that during the posttest the 
children took a more systematic approach to solving the 
puzzles. This raises the question as to whether a child 
exposed to this teaching method will take a different 
approach to solving problems due to a changed mindset and 
can be investigated in future studies. We also observed that 
the children engaged very well with the Doodle 
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character as he taught the concepts in the animated videos 
and enjoyed the online activities in the tablet. The feedback 
from the teachers additionally state that the children enjoyed 
practicing these skills outside of the classroom as well as 
through the interactive offline activities. 

5. CONCLUSION & FUTURE WORK 
This work represents a first step into a method of teaching 
CT to a K1 & K2 audience, and opens several new venues 
for future work. Although the experiment described in this 
paper validated the hypothesis that our unique hybrid design 
of offline and online activities is effective in teaching a 
subject as complex as CT to a K1 & K2 audience, we 
acknowledge that these results are only preliminary and are 
an estimate due to a small sample size. Still, these results 
are significant and suggest that future work involve the full 
implementation of a curriculum which utilizes this hybrid 
approach be completed. Furthermore, a repeated experiment 
using this full implementation with a larger sample size will 
lead to the same conclusions. The results also suggested 
after the children were exposed to this new problem-solving 
methodology, they took a new approach to solving the 
puzzle test. This raises the question on whether we need new 
test methods to further evaluate each of the fundamental CT 
skills individually rather than as a whole. Additional future 
psychological studies can possibly reveal on how a child’s 
problem-solving mindset changes after being exposed to a 
curriculum which teaches CT methodology. 

6. ADDITIONAL MATERIALS 
Additional materials can be found online here: 
http://bit.ly/3s0UY84 
These materials include the shortened curriculum used for 
the study, a table summarizing each game’s contribution to 
the overall CT score, and sample questions used as part of 
the study’s evaluation. Sample Doodle episodes can be 
found here: http://bit.ly/3vkdBGp 
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information processes.” (Denning & Tedre, 2019). The CT 

components that arise more often in literature are 

abstraction, decomposition, algorithms, and debugging 

(Shute, Sun, & Asbell-Clarke, 2017).  

Constructivism in education (Vygotsky & Cole, 1978) and 

the developmental theory (Piaget, 1972), establish dynamic 

and collaborative learning where the learner actively creates 

knowledge. Based on these leaning theories and in reaction 

to technological innovations, various theoretical 

frameworks have emerged. Papert addressed CT primarily 

as the relationship between programming and thinking 

skills, and its possible further application to multiple 

disciplines (Papert, 1993). Furthermore, Collaborative 

learning promotes critical thinking skills much more 

effectively than do individualistic environments (Johnson & 

Johnson, 2008). 

The CT 3d framework (Brennan, Resnick, & MIT Media 

Lab, 2012) divides CT into three facets: a) computational 

concepts (the concepts applied in programming), b) 

computational practices (the problem-solving practices 

arising while programming), and c) computational 

perspectives (the views that programmers hold about 

themselves, their relationships to others, and the 

technological world around them). The 3d Framework is 

adopted in this article as is considered to provide a wide 

coverage of CT for young students. It is expected from 

learners to be able to understand CT concepts and develop 

CT practices and perspectives with increasing maturity 

depending on their age (Kong, 2016). 

Based on these theories and since using computer 

technology and programming at school is a way of learning 

these skills from a very early age (Lye & Koh, 2014), 

programmable robots are ideally suited for this purpose, 

because these environments can make the output of a created 

computer program concrete and tangible (Fanchamps, 

Slangen, Hennissen, & Specht, 2019). Moreover, 

collaborative peer-based environments enhance reflection 

and improves CT learning experiences (Buitrago Flórez et 

al., 2017). In our research project, we are therefore interested 

in whether a development on CT, through a better 

understanding of underlying programming concepts, using 

collaborative robotics environments is also feasible for 

preschoolers.  

Previous research indicates that preschoolers are able to 

program simple robotics projects in a playful and engaging 

way, enhancing their computer thinking skills, while they 

work collaboratively (Bers, Flannery, Kazakoff, & Sullivan, 

2014), as they not only learn computer concepts but solve 

problems by breaking them down into steps; they use 

abstraction and algorithms to translate the problem into a 

ABSTRACT
The implementation of programming in primary education 

is in the forefront of attention in many countries. The 

application of programmable robots offers many 

opportunities to learn the basic concepts of programming. 

Learning and understanding these underlying concepts is not 

only reserved for students of five years and older but can 

also be learned at a younger age. Until now, making a 

development on Computational Thinking (CT) objectively 

measurable among preschoolers was not possible since no 

validated instrument was available for this purpose. 

Furthermore, it is unclear which capabilities of CT are 

achieved at each age and which are not reachable. To 

establish which CT skills are of interest to students and 

within the reach of each age group and therefore, teachable, 

this study has been carried out. To assess CT, the Beginners 

Computational Thinking test (BCTt) was used, along with 

direct observation and interviews. Results show the 

suitability of the BCTt among 5 years-old students and, 

partially among 4 years-old students. When applying two 

types of programmable robots a significant increase in the 

development of CT was observed. A development of 

specific complex programming concepts can also be 

demonstrated. In addition to the skills shown, it also appears 

that children are highly motivated to learn programming at a 

very young age.  

KEYWORDS
Computational Thinking, preschoolers, primary education, 

programmable robots, assessment 

1. INTRODUCTION
Currently, many countries have focused on learning 

Computational Thinking (CT) increasingly at earlier stages 

such as early childhood education (Bocconi et al., 2016). 

However, there is still scarce knowledge available as to 

whether very young children can learn CT-skills in an 

understandable and applicable way (Hunsaker, 2018). Many 

questions remain, such as: can preschoolers understand and 

functionally apply underlying programming concepts, 

which addressed computational concepts can young children 

learn at all, and how can a development in CT among young 

children be made measurable even when they are not able to 

read?  

Computational Thinking was redefined as the ability to solve 

challenging problems using skills derived from the world of 

computer science (Wing, 2006). Since then, several 

definitions are found in the literature, nevertheless, they can 

be summarized as “the mental skills and practices for: a) 

designing computations that get computers to do jobs for us, 

and b) explaining and interpreting the world as a complex of 
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codable language; and they apply debugging, as they must 
modify their solution if it is not correct. To use Blue-bot 
seems to be adequate to introduce robotics to preschoolers 
(Alvarez, Bellegarde, Flahaut, & Lafouge, 2018); similarly, 
there is evidence of the use of Cubetto at schools as a suitable 
robotic environment for preschoolers for a first 
programming experience (Sáez Fernández, Viera López, & 
Pérez Marín, 2018). 

With regard to the assessment of CT, several instruments 
have been developed over the last two decades, but most of 
them are aimed at middle or high school students and are 
based on interviews or project analysis based on block 
programming, such as Fairy assessment in Alice (Werner, 
Denner, Campe, & Kawamoto, 2012). To make this 
development for preschoolers measurable, we are using the 
Beginners Computational Thinking test (BCTt) (Zapata- 
Cáceres, Martín-Barroso, & Román-González, 2020), which 
has been developed specifically for use among young 
children and has proven to be reliable for the assessment of 
CT focusing on 3d framework computational concepts, as 
we demand in this research. However, it is recommended to 
be used in parallel with other assessment tools as a system 
of assessments (Grover, Pea, & Cooper, 2015), therefore, 
qualitative data is also collected as part of our research to 
address other 3d framework CT dimensions. 

Considering the research that has already been carried out, 
we are interested in the following main research question: Is 
the BCTt usable among preschoolers and what interpretation 
can be made regarding the measured results? 

To answer this main research question, the following sub- 
questions have been formulated: (1) To what extent can the 
BCTt be used among preschoolers?, (2) Are preschoolers 
capable of understanding underlying programming 
concepts?, and (3) To which addressed computational 
concept can a development among preschoolers be 
measured? 

The research has been carried out under the following 
hypothesis: (1) Applying collaborative peer-based 
programming environments that provide the opportunity to 
understand programming concepts at an early age, motivates 
young children to learn how to program, (2) preschoolers, 
who learn to program making use of Blue-bot or Cubetto, 
show a measurable understanding of programming concepts, 
and (3) programming with Blue-bot or Cubetto contributes 
to the development of CT-skills among preschoolers. 

Our elaboration describes the method used, the participants 
involved, the case study designed, and the results obtained 
from the data analysis. Finally, conclusions, implications 
and suggestions for further research are presented. 

2. METHOD
To investigate our research questions, we used a pre-test and 
post-test design. This includes a) pre-assessment of CT- 
skills among preschoolers, b) a robotics-intervention using 
two different types of programming environments, and c) a 
post-test among preschoolers assessing CT-skills. 

In addition to the data obtained by applying the BCTt, we 
also collected qualitative data via direct observation and 

interviews, asking preschoolers various questions about the 
experience at the end of the programming sessions. 

2.1. Participants 
This study was conducted among preschoolers in the age 
category 4 and 5 years old of a K-12 School in The 
Netherlands. Preschoolers were divided randomly into pairs 
and assigned to an experimental group to conduct 
programming sessions with either Blue-bot (n=10) or 
Cubetto (n=10). The control group (n=36) did not participate 
in the programming sessions. 

2.2. Materials 
In the two treatment conditions we used Blue-bot and 
Cubetto as programming environments. Two different types 
of physical robots are to be programmed. The programming 
itself is performed by applying physical command cards, 
each containing a specific programming command (e.g. 
forwards, backwards, left, right, etc.). To compose a program 
these command cards must be sequenced in the correct order 
in a command reader, which creates a programming string. 
This created program can then be sent to either the Blue-bot 
or Cubetto robot via a Bluetooth connection. In both 
environments the following concepts were addressed: 
“sequence”, “loop-simple”, “loop-nested” and “conditional 
if-then”. 

To measure an effect on preschoolers CT-skills, the 
validated BCTt was used as a pre-test and post-test. The 
BCTt consists of 25 questions in which preschoolers must 
link programming sequences to different visual situations, 
e.g. see Figure 1, so 3d framework computational concepts
and, partially, computational practices are assessed. The
specific concepts addressed in the BCTt are sequences, loop- 
simple, loop-nested, conditional if-then, conditional if-then- 
else, and conditional while.

Figure 1. BCTt question example (question number 4). 

To determine the reliability of the BCTt for the specific 
research sample, the overall Cronbach's alpha was calculated 
(α = 0.911). The designers of the BCTt indicate a value of α 
= 0.824 for Cronbach's alpha. From this we can conclude that 
we amply meet the requirements for internal reliability. In 
addition, qualitative data has been collected to address other 
CT-skills: direct observation during the programming 
sessions; and interviews at the end of the sessions in which 
students were asked orally about their 
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feelings when interacting with the environments and with 
their peers, and other questions related to what they were 
supposed to learn and the characteristics of the 
environments. 

2.3. Procedure 
To enable young students who have had no previous contact 
with computer concepts and with low or no reading and 
writing skills to take the test, the BCTt includes very few 
texts just to support the symbols used for the statements, yet 
the translation to Dutch language of these texts has been 
calibrated by a research group of 8 education experts. 

Prior to the programming sessions, the BCTt was 
administered a pre-test to the whole sample (N=56). Because 
preschoolers of this age category cannot yet read, in 
accordance with the accompanying protocol, each question 
is read out loud two times. At the same time, preschoolers 
looked at the corresponding image and determined which 
programming sequence they think is correct. Subsequently, 
preschoolers were divided ad-randomly over the two 
treatment conditions and the control group, obtaining 
equally balanced groups. 

For five weeks, one group then received five programming 
sessions of 30 minutes each using Blue-bot. In the same 
conditions, the other group received five programming 
sessions using Cubetto. During the closing session, 
preschoolers which used Blue-bot had to solve a 
programming problem by applying the “repeat” loop; 
similarly, preschoolers which used Cubetto had to solve a 
programming problem by applying the “if-then” function. 
After completion of the programming sessions, the BCTt 
was again administered as a post-test in all groups in the 
same conditions in order to be able to identify differences in 
the CT development. In addition, qualitative data was 
collected via direct observation while interacting with the 
programming environment and with interviews conducted 
after the programming experience. 

3. RESULTS AND DATA-ANALYSIS
In order to be able to answer the main research question by means 
of the formulated sub-questions and hypotheses to be investigated, 
both qualitative (inventory) and quantitative data (SPSS) were 
analyzed. 

3.1. Qualitative data 
As the BCTt assesses 3d framework computational concepts 
and, partially, computational practices, but ignores 
computational perspectives, qualitative data is collected, 
through direct observation and with interviews at the end of 
the programming experience, in order to broaden the CT 
assessment. 

Students were highly motivated and enthusiastic throughout 
the entire programming experience, showing strong self- 
regulation and deep attention over long periods of time. The 
group using Cubetto were interested on using Blue-bot at a 
later date and vice versa. Direct observation shows that 
students understand the pictogram-based questions and are 
able to make the link between the visual definition of the 
problem and the solutions to be found represented by 
combinations of directional arrows from which the correct 

answer should be chosen. No differences were observed in 
terms of gender, approach, motivation, or skills, but they 
were between 4 and 5 years-old students, as there was a limit 
on what 4 years-old students were able to understand. 

With regard to CT components, students could think of a task 
to be executed by the robot, make an abstraction dividing the 
problem into smaller parts and translate it into an algorithm. 
Similarly, their persistence in the search of the answer was 
remarkable, since they were able to change their minds and 
correct their code errors, using the debugging process. 
Furthermore, the peer-based collaborative environment was 
a strong support for reflection, as thinking aloud and finding 
the solution together with a peer was key to solving the 
problems. 

Further observations show that both age categories 
understand the underlying principles of sequencing in order 
to be able to compile a program to be executed via the 
concatenation of the directional arrows as commands. For 4- 
year-old students the limit seems to be in questions that 
include loops. Students 5 years-old can presumably 
understand and answer the questions related to loops as well 
as those related to conditionals. Considering the results of 
the first research question on to what extent the BCTt can be 
used among preschoolers, it becomes clear that this 
instrument is applicable among 5 years-old students and 4 
years old students to some extent. This was later confirmed 
by the quantitative data results. 

Regardless of the programming environment used, the oral 
interviews conducted at the end of the programming 
experience also show very high motivation in the students, 
as the most common feelings they expressed when talking 
about the experience were those of happiness and joy, and 
that to solve problems make them feel smart. All the students 
like to use either cards or the Tablet to program. 90% of 
preschoolers who used Blue-bot thought they fully 
understood the concept of 'repetition', compared to 70% of 
those who used Cubetto. Although waiting their turn makes 
65% of students feel "impatient" or "unhappy" and 20% find 
it difficult to ask their peers for help, the collaborative 
methodology was well rated by the 100%, who felt “happy”, 
“glad” or “good” about working with a partner. All the 
students felt that they have learned something new and 
happened to know their right and left better. 

3.2. Beginners Computational Thinking Test (BCTt) 
To examine the hypotheses formulated in this research and 
to determine whether, and if so, which of the two 
programming environments used, both Blue-bot or Cubetto 
lead to significant differences with respect to the control 
group, and/or whether significant differences may occur in a 
comparison between the two programming environments, a 
variance analysis (Anova) with Levene's test was performed. 
Subsequently, post-hoc tests were performed to demonstrate 
possible significant effects and to confirm or reject 
hypothesis. Eta squared (η2) was calculated to reveal the 
magnitude of the effects. All statistical analyses assume a 
significance level of 5% (p = ≤ 0.05). The results concerning 
the second hypothesis whether preschoolers, who learn to 
program using Blue-bot or Cubetto, show a measurable 



understanding of underlying programming concepts are 

shown by a development on the averages (Table 1).  

Table 1. Differences by Computational Concept Addressed 

Blue-Bot Pre-assessment Post-assessment 

M SD M SD 

Total (25) 0.27 .21 0.42 .27 

Sequence 0.36 .23 0.72 .22 

Loop simple 0.36 .28 0.54 .25 

Loop nested 0.11 .16 0.23 .30 

Conditional if-

then 0.15 .24 0.25 .35 

Conditional if-

then-else 0.00 .00 0.25 .35 

Conditional 

while 0.60 .74 0.33 .19 

Cubetto Pre-assessment Post-assessment 

M SD M SD 

Total (25) 0.30 .21 0.48 .27 

Sequence 0.44 .19 0.87 .15 

Loop simple 0.42 .33 0.64 .34 

Loop nested 0.16 .23 0.21 .27 

Conditional if-

then 0.10 .21 0.25 .35 

Conditional if-

then-else 0.05 .16 0.30 .42 

Conditional 

while 0.50 .85 0.37 .48 

Control group Pre-assessment Post-assessment 

M SD M SD 

Total (25) 0.32 .20 0.27 .19 

Sequence 0.48 .18 0.55 .28 

Loop simple 0.43 .33 0.33 .31 

Loop nested 0.15 .23 0.13 .19 

Conditional if-

then 0.11 .27 0.10 .20 

Conditional if-

then-else 0.10 .23 0.10 .23 

Conditional 

while 0.50 .74 0.10 .19 

Note. Total = number of questions correct BCTt questionnaire; M 

= average; SD = standard deviation. 

Students who have programmed making use of Blue-bot or 

Cubetto show a development on programming concepts in a 

direct comparison with the control group. Table 1 shows that 

pupils who applied Blue-bot or Cubetto successfully solved 

more computational thinking issues and developed more 

understanding of the programming concepts “sequence”, 

“loops” (simple, nested) and “conditionals” (if-then, if-then-

else). A development on “conditionals-while” could not be 

demonstrated.  

The answer to the third hypothesis, whether programming 

making use of Blue-bot or Cubetto contributes to a 

development of CT-skills among preschoolers, can be 

deduced from the data presented in Table 2. The data show 

that in both treatment conditions, in contrast to the control 

group, a significant development can be measured for the 

total number of computational thinking issues solved (Total) 

and for the computational concepts addressed “sequence”, 

“loop-simple”, and “conditional-while”. A further 

examination of the data by applying post-hoc tests reveals 

that 1) for the “total number of computational thinking 

issues solved” both Blue-bot and Cubetto cause the 

significant effect, 2) for “sequence” Cubetto causes the 

significant difference, 3) for “loop-simple” Cubetto causes 

the significant difference, and 4) for “conditional-while” 

Cubetto causes the significant difference. Despite a strong 

development on the averages, as shown in Table 1, no 

significant increase can be demonstrated for the 

computational concepts addressed “loop-nested”, 

“conditional if-then” and “conditional if-then-else”. 

Table 2. Analysis of Variance (Anova) 

Quantity 

SS df MS F p SD η2 

Total (25)* .485 2,53 .243 .491 .011 .24 .156 

Sequence* .858 2,53 .429 .653 .003 .28 .198 

Loop-

simple* .934 2,53 .467 4.99 .010 .33 .158 

Loop-

nested .097 2,53 .049 .923 .404 .23 .034 

Conditional 

if-then .300 2,53 .150 2.17 .124 .27 .076 

Conditional 

if-then-else .419 2,53 .209 2.40 .101 .30 .083 

Conditional 

while* .797 2,53 .399 4.09 .022 .33 .134 

Note. Quantity = measured value; Total = number of questions 

correct BCTt-questionnaire; Computational concept addressed = 

sequence, loop simple, loop nested, conditional if-then, conditional 

if-then-else, conditional while; SS = sum of squares; DF = degrees 

of freedom; MS = mean square; F = f-value; p = significance level; 

SD = standard deviation; η2 = Eta squared; *significant effect 

measured. 

To determine if preschoolers aged 4 and 5 years old are 

capable of understanding the BCTt underlying programming 

concepts, a comparison between both ages was performed. 

Results on Table 3 show that the limit for 4-year-old 

preschoolers is the understanding of the concepts 

“sequence” and “loop-simple”. On the other concepts 

(“loop-nested”, “conditional if-then”, “conditional if-then-

else”, “conditional while”) no further development is 

measurable. This in contrast to the 5-year old preschoolers 

who show a development on all concepts, except for the 

“conditionals while” concept. 

Table 3. Age Difference by Computational Concept 

Age 4 years Pre-assessment Post-assessment 

M SD M SD 

Total (25) 0.17 .06 0.19 .10 

Sequence 0.37 .16 0.53 .26 

Loop simple 0.24 .18 0.28 .26 

Loop nested 0.00 .00 0.00 .02 

Conditional if-

then 0.00 .00 0.00 .00 
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Conditional if- 
then-else 0.00 .00 0.00 .00 
Conditional 
while 0.00 .00 0.00 .00 

Age 5 years Pre-assessment Post-assessment 

M SD M SD 

Total (25) 0.52 .14 0.56 .21 
Sequence 0.59 .17 0.80 .24 
Loop simple 0.69 .30 0.64 .31 
Loop nested 0.38 .18 0.42 .17 
Conditional if- 
then 0.30 .33 0.39 .31 
Conditional if- 
then-else 0.18 .29 0.41 .37 
Conditional 
while 1.32 .65 0.48 .37 

Note. Total = number of questions correct BCTt-questionnaire; M 
= average; SD = standard deviation. 

Furthermore, Table 4 presents a t-test analysis to assess 
whether there are significant differences between 
preschoolers aged 4 years and 5 years old concerning the 
understanding of computational concepts addressed in the 
BCTt. From these findings, it can be noted that 5-year old 
preschoolers score significantly better than 4-year-old 
preschoolers on all the concepts present in the BCTt. 

Table 4. T-test analysis comparing 4 and 5 years old 
Quantity 

t df p CI d 
Total (25)* -7.69 27.29 0.000 -0.47- -0.27 2.24
Sequence* -3.85 47.29 0.000 -0.40- -0.12 1.04
Loop-simple* 

-4.44 38.62 0.000 -0.52- -0.19 1.24
Loop-nested* 

-11.26 21.56 0.000 -0.49- -0.34 3.38
Conditional if- 
then* -5.92 21.00 0.000 -0.52- -0.25 1.79
Conditional if- 
then-else* -5.24 21.00 0.000 -0.57- -0.25 1.57
Conditional 
while* -6.20 21.00 0.000 -0.65- -0.32 1.87
Note. Total = number of questions correct BCTt-questionnaire; 
Computational concept addressed = sequence, loop simple, loop 
nested, conditional if-then, conditional if-then-else, conditional 
while; t = t-value; df = degrees of freedom; p = significance level; 
CI = confidence interval; d = Cohen’s d effect size; *significant 
effect measured 

4. CONCLUSIONS
Preschoolers showed understanding of the underlying 
programming concepts and a significant overall 
improvement in regard to CT-skills with mayor size effects 
compared to those of the control group. In addition, 
preschoolers were highly motivated when working in pairs 
when using robotic programming environments. Therefore, 
it could be concluded that collaborative peer-based 
environments are appropriate and enhance the learning of 

programming concepts at an early age, thus, it is advisable 
that CT-skills start to be taught at least at the age of 4. 

Both Blue-bot and Cubetto were proved suitable for 
preschoolers and caused a significant overall improvement 
in CT-skills. Cubetto causes the most significant 
improvements   in    specific  computational   concepts,  our 
hypothesis is that its layout allows children to abstract (one 
of the computational practices of the 3D framework) more 
easily from the proposed code, since a) command cards are 
displayed as a path, and b) the command cards are in the 
shape of the symbol used. On the contrary in Blue-bot a) the 
sequences are displayed from top to bottom, and b) the 
symbols are drawn inside de command cards. Although 
Cubetto seems more suitable for preschooler, we suggest 
using different programming environments with the same 
sample of students, so that they can benefit from them in a 
cross-curricular way, as both contribute to the development 
of CT-skills among preschoolers. 

However, the concepts that can be taught to each age group 
are different. From our results we can deduce that 5 years- 
old students are able to understand all computational 
concepts addressed in the BCTt, and show a significant 
improvement, after the programming sessions, in each of 
them (except in the “conditional while”), including the 
“conditional if-then-else”, even though this concept was not 
practiced in any of the programming sessions. The 
difference between the results of the two age groups is very 
significant, as 4 years-old students show 
understanding and improvement on only two of the six 
concepts addressed in the BCTt ("sequence" and 
"loop-simple"). Since the “conditional if-then” was 
practiced in the programming sessions and no 
understanding nor improvement was shown, it can be 
concluded that “conditional if-then” and, therefore, 
“conditional if-then-else” might not be reachable concepts 
for 4 years-old students. However, although they did not 
show understanding or improvement in the “conditional- 
while”, since this concept was not addressed in the 
programming environments, it cannot be stated with 
certainty that it is not within the reach of 4-year-olds. 

The BCTt shows a very high reliability as an instrument to 
assess CT-skills for 4 (α = 0.802) and 5 years-old students 
(α = 0.889) and, in combination with qualitative data, 
provides an adequate CT assessment for these age groups. 
Both 4- and 5-year-old students can complete the BCTt, 
understand the pictograms and are able to interpret the 
programming sequences posed as possible solutions. 
However, four of the six computational concepts addressed 
in the BCTt seem not reachable for 4 years-old students, as 
they were not able to answer the questions related to 
them nor show any improvement in the post-test in 
regard to those concepts. For this reason, we suggest a new 
version of the BCTt should be made targeted to 4 years-
old students and/or younger students. Furthermore, the 
research should be replicated with larger samples, more 
programming sessions (with a duration according to the 
limited attention span of very young children) and in 
other countries to confirm our findings.
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The focus of this paper is to investigate how elementary 
students learned computer science concepts through 
storytelling in Scratch. To serve this purpose, we conducted 
artifact interviews with 4th graders who were engaged with 
a computer science (CS) integrated module in their English 
language arts (ELA) class. Students created stories in 
Scratch with a focus on character traits. The constructionist 
design of the Scratch tool supports student learning through 
tinkering, the creation of meaningful artifacts, and through 
the theatrical metaphor that underlies interface design. This 
paper explores how two 4th graders demonstrated their 
CS/CT and ELA knowledge through the design of a Scratch 
artifact and how Scratch facilitated this interdisciplinary 
learning. While there have been studies in middle school and 
in after-school contexts that focus on digital storytelling and 
writing, there are few papers that examine interdisciplinary 
integration in the formal school context at the elementary 
level. 

KEYWORDS 
Interdisciplinary Integration, Artifact Interview, Scratch 

1. INTRODUCTION
The CS for All movement is very important for reaching all 
children to learn CS/CT skills in the US. We report on one 
such initiative in Western Massachusetts in a mid-size, 
ethnically diverse city: Springfield. The CS for All 
Springfield project focuses on supporting elementary school 
teachers, across 33 schools, to introduce computer science 
across grades K-5 through integrating Computer 
Science/Computational Thinking (CS/CT) into subject 
areas, as outlined by the state’s Digital Literacy and 
Computer Science (DLCS) standards. This project involves 
over 150 teachers and will serve over 11,000 students. 

2. RELATED WORK
2.1. Computational Thinking 
Wing (2006) defines computational thinking (CT) as 
“solving problems, designing systems, and understanding 
human behavior, by drawing on the concepts fundamental to 
computer science” (p. 33). Brennan and Resnick (2012) 
define computational thinking with three dimensions: 
computational concepts such as conditionals, computational 
practices such as decomposing problems or remixing others’ 
or your own work, and computational perspectives such as 
expressing, which is defined as using computation for self- 
expression. In their study, Brennan and Resnick considered 

the Scratch online community as inspiring for Scratchers to 
reuse and remix. They state that the Scratch 
online community supports Scratchers in reusing and 
remixing, “by helping them find ideas and code to build 
upon, enabling them to potentially create things much 
more complex than they could have created on their 
own” (p. 8). As well as the Scratch online community, 
Scratch itself provides tools for users to remix such as 
creatively remixing two existing characters through 
costumes in Scratch. 

2.2. Interdisciplinary Integration 
Many elementary schools in the US are not able to offer CS 
as a stand-alone topic due to the demands of the 
curriculum. Therefore, if CS is going to be taught in the 
US, it will be taught through interdisciplinary integration. 
The CS for All community needs research that delves into 
how to integrate CS/CT across the curriculum in 
meaningful ways, such that students learn the content in 
both areas. Our project takes such an interdisciplinary 
approach. For the purposes of this paper, we are focusing 
on integration of CS/CT ideas into the English Language 
Arts (ELA) curriculum using the Scratch program. 
Resnick et al. (2009) designed Scratch based on three 
constructionist design principles: (1) to make it more 
tinkerable, (2) more personally meaningful, and (3) more 
social than other programming environments. 

Scratch is an excellent tool for use in ELA due to 
the theatrical metaphor that underlies the user interface of 
the Scratch system and permits the development of 
interactive stories (Resnick et al., 2009). Since Scratch 
provides a “stage” upon which interactive animations and 
stories can be displayed, ELA teachers are able to 
approach important topics in reading and writing 
fiction, for example, the narrative story arc, the 
location of the story and character elements. Scratch 
animations unfold temporally, which allows for the 
narrative to evolve over time. Meanwhile, the background 
feature in Scratch allows the location of the story to change 
as the narrative evolves, and the sprite element 
(including provided characters, costumes, and the 
“say” blocks) allow students to create characters with 
specific traits, and these traits can also change and/or 
evolve with the narrative arc of the story. Elementary 
teachers can take advantage of these elements to 
integrate CS/CT into their ELA instruction. Moreover, 
Maloney et al. (2008) argue: “...the design of the Scratch 
blocks simplifies the mechanics of programming by 
eliminating syntax errors, providing feedback about 
placement of command blocks, and giving immediate 
feedback for experiments (p. 371).” These combined 
design elements - ease of use of the tool, the stage 
metaphor, and the ability for students to tinker and 
create meaningful programs - makes Scratch an ideal tool 
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for integrating CS content with ELA in the elementary 
classroom. 

 
 

2.3. Using Scratch for ELA integration 
Others have conducted research on using Scratch in the ELA 
classroom. Burke and Kafai (2010; 2012) have investigated 
the use of Scratch in teaching writing at the middle school 
level. Their results indicate that programming in Scratch can 
assist children in developing their storytelling and creative 
writing skills. They state that “writing to program can also 
serve as programming to write, in which a child learns the 
importance of sequence, structure, and clarity of 
expression—three aspects characteristic of effective coding 
and good storytelling alike.” (2010, p. 348) 

Fields et al., (2014) examined students' collaborative 
creation of interactive stories using Scratch, in which 
students received feedback on their stories. Their findings 
suggest that online collaborative creative storytelling and 
constructive feedback have the potential to generate both 
more complex story designs and code development. This co- 
evolution of coding skills and writing skills is a key element 
of integration. Meanwhile, Smith and Burrow (2016) present 
two anecdotal case studies conducted with their own young 
children as they observed them using Scratch, Jr. These 
teacher educators recognized the utility of Scratch for 
assisting in story development through their children’s 
tinkering with design elements of the system. They then use 
this knowledge to help construct Scratch integration lessons 
for their pre-service teacher education students. 

The work presented in this study extends the current research 
and specifically focuses on a fourth-grade ELA assignment 
that uses Scratch to teach students about both character traits 
and algorithmic development. In this study, we examine the 
following research question: How do 4th graders learn 
CS/CT concepts integrated into ELA through Scratch and an 
interdisciplinary integrated module? 

 
 

3. METHODS 
3.1. Context of the Study 
This study took place in the context of CS for All 
Springfield, a large, four-year study of the iterative design 
and development of integrated CS/CT modules across the 
elementary curriculum in the Springfield Public School 
(SPS) district. Students in the Springfield Public Schools are 
18.9% Black, 66.6%Latinx, 10.2% White, and 4.3% Asian, 
Native American, non-Hispanic, and multi-race students. 
Eighty-three percent of district students are considered high 
needs, and 76.7% are economically disadvantaged. The 
manifold goals of the larger study include an understanding 
of teacher professional development needs regarding CS/CT 
integration, barriers to such integration, and assessment of 
student learning. The study reported here is one aspect of the 
latter research goal. 
3.2. Setting and Participants 
Participants in this study were drawn from three different 
classrooms involved in year two of the four-year long 
study. All artifact interview participants were selected by 
the teacher. The interviews were collected with a select 

group of fourth grade students who completed 
ELA/Scratch projects. A total of twelve children were 
interviewed for this study. Seven children were interviewed 
individually, and two groups of students were also 
interviewed (one group of three and one group of two). 
Each interview lasted 10 to 15 minutes. For the purposes of 
this paper, we are focusing on two individual interviews 
only. Those two interviews were collected from a 
classroom where CS/CT was integrated into ELA. Other 
interviews were collected from classrooms where CS/CT 
was integrated into either math or social studies. The goal 
of our analysis is to understand how Scratch can support 
ELA learning in the upper elementary grades. Therefore, it 
was important for us to focus on the two interviews in the 
ELA classroom where students were successful with the 
curriculum. These two interviews are representative of the 
strength of the integrated approach for using Scratch to 
teach ELA. In this way, these interviews are examples of 
what is possible. Later work will be looking across all data. 
These two interviews were conducted with two 10-year-old 
boys (pseudonymously known as Martin and Kyle) who 
worked together on their ELA/Scratch project, but were 
interviewed separately. The size of the class where these 
interviews were conducted was 18 students (11 boys and 7 
girls). Nine students were Black while seven were Latinx 
and two were White Americans. Martin was a mixed race 
student (Latinx and Black), Kyle was a White (European- 
American) student. As for their programming experience, 
the classroom teacher reported that they did not have much 
experience in coding prior to the CS for all lessons. She 
added that some may have had a few classes last year in 
code.org with the computer teacher but other than that this 
was their first time ever using Scratch. 

 
3.3. Curriculum Design/Tools 
Two 4th grade teachers worked together to adopt a pre- 
existing curriculum to integrate CS/CT components across 
ELA. This dyad developed a six-lesson module to pilot in 
their classroom. The unit was designed based on “character 
traits” in 4th grade ELA. Character traits is an English 
Language Arts (ELA) unit taught in the district based on 
Massachusetts ELA standards (2017). In the module, 4th 
graders were taught to identify character traits and what 
behaviors a character trait is associated with, to describe their 
own character traits, to develop a story and manage 
sequencing the events, to use Scratch and to create a short 
Scratch animation (story) based on a few character traits. 

 
3.4. Data Collection 
The data were collected using the artifact interview method. 
By artifact we mean a completed or almost-completed work 
in a programming tool such as Scratch that students created 
while engaged in the integrated unit. The data consists of 
both their statements during the interviews and the actual 
Scratch program created. Ginsburg (1997) argues that 
clinical interview is a powerful technique for gaining insight 
into a child's way of thinking. Ginsburg writes that during a 
clinical interview the interviewer asks open-ended questions 
such as “how did you do it”? or “why” and does “an 
immediate interpretation of the subject’s response” and “on- 
the-spot hypothesis making and testing” (p. 34). The artifact 
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interview method evolved out of the clinical interview 
method. That is, an artifact interview is about interviewing a 
child’s conceptual understanding of a topic. In this approach, 
the interviewer engages in conversation with the Scratcher 
about their computational products and practices, using 
work samples to guide the conversation. It is similar to and 
newer than clinical interviewing, and focuses on an artifact 
that a child has created. Students’ laptop screens and voices 
were recorded during their artifact interviews. During artifact 
interviews, students were asked open-ended questions such 
as “Why did you use these particular blocks and sprites?” 
and What steps did you follow to create your project? All the 
interviews were conducted at the end of the module 
implementations. The researchers acted as participant 
observers in the classroom during module implementation. 
They worked to build a good rapport with the students during 
this time and the interviews were done in a conversational 
mood so that students engaged in the interview. 
Additionally, field notes and photographs of the module 
implementation were gathered. 

 
 

3.5. Data Analysis 
After transcribing the artifact interviews, we analyzed not 
only the participants’ statements on their Scratch artifacts 
during interviews but also the Scratch programs themselves. 
During the module implementation, the participants engaged 
in both Massachusetts’ DLCS standards (2016) such as “3- 
5.CT.b4: Individually and collaboratively create tests and 
modify a program in a graphical environment (e.g., block- 
based visual programming language)”, which is 
coding/programming in Scratch in this case, and 
Massachusetts’ ELA standards (2017) such as “W 4.3: Write 
narratives to develop real or imagined experiences or events 
using effective technique, descriptive details, and clear event 
sequences”, which is writing a story based on a few character 
traits in this case. In our data analysis, we focused on how 
separate standards of the two disciplines intersect in the 
participants’ Scratch stories. 

 
 

4. RESULTS 
The entire class worked in groups of three or four to write a 
story based on the character traits they picked at the 
beginning of the lessons and to create a short Scratch story 
based on their written story. Martin and Kyle were two 
members of a group of four. During the lessons, the group 
came up with a story called Zombie Apocalypse with three 
parts, beginning, middle, and end. The story was framed 
around a few characters traits such as brave (Martin’s 
choice), daring (Kyle’s choice), and fearless. Based on these 
character traits, using a graphic organizer and a story map, 
the group in the leadership of Kyle wrote a story around the 
following idea: carrying Zombies in it, a meteor called the 
Nebula hits the Earth, and then Zombies in the Nebula come 
out, destroy the Earth, and zombify all human beings. 
However, only three people and one goblin, students 
themselves, remain alive and the three people fight against 
zombies, kill them all, and save the world. Based on this 
story, Martin and Kyle were responsible for creating the 
beginning of the story in Scratch, so the projects of the two 

students were similar in terms of graphical content, and each 
of them separately designed the short Scratch story up to the 
point where zombies spread all over the world, which 
represented the beginning of the story. 

 
4.1. Martin’s project 
Briefly, the first scene of Martin’s Scratch project was that 
the Earth and the Nebula appear in outer space, and the 
Nebula slowly approaches (gliding) the Earth and crashes 
into it. After that, the backdrop switches to another one 
where there is fire all over the place in a city on the Earth 
because of the crash. This second scene is to represent the 
idea that the entire Earth was being destroyed by zombies. 
After this scene, the backdrop switches to another 
background in which there are three zombies that were 
released from the Nebula after the crash. These scenes are 
shown in order in Figure 1 below. 

 

Figure 1 (Screenshots of scenes of Martin’s Scratch story) 
 

4.1.1. Remixing for self-expression 
Martin was a Scratcher who could effectively utilize the 
tools that the Scratch environment provides such as remixing 
different characters in costumes according to the purpose of 
his project such as representing the character trait “brave” he 
picked. Figure 2 below is a screenshot of Martin’s character 
development on Scratch: 

 

Figure 2 (Screenshots of evolution of Martin’s character) 
 

As seen in Figure 2 above, Martin remixed the body of a 
knight sprite and the head of a black person sprite in Scratch 
library. When Martin was asked how he created it, he was 
simultaneously telling and showing the interviewer on his 
laptop screen how he made it: 

 
When I go to Devin, I took off. Let's go to 
people [in Scratch library]. Took off his [a black 
person sprite's] face [head]. [...] go here and 
then right then I choose the knight. [...] I got rid 
of the head [of the knight]. [...] Delete that, then 
get rid of the body [of the person sprite]. That, 
delete. [...] Copied this [the person’s head], then 
go here [knight body without head], paste [the 
head on the knight body costume]. Then [..] got 
rid of the neck [of the person sprite]. [...] And 
put the head on the top of the- [knight body]” 
(Interview 103019) 
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As a mixed-race person of Latinx and Black descent, and 
choosing “brave” as his character trait for this project, Martin 
not only represented himself as a Black person in the story 
but also remixed it with a knight that represents bravery. 
After Martin described and showed how he remixed two 
characters on Scratch to create a new character, the 
researchers asked “why did you create that sprite?” Martin 
replied as follows: 

 

[...] my character should be like just free with [a] 
shirt on [be]cause the zombies can easily get 
them. I want him to have protection. Then if the 
zombie[s] start climbing on their back and 
they're almost about to get him, he can take it off 
and run away. (Interview 103019). 

 
Martin thought that he cannot fight against zombies as a 
normal person with his regular clothes, so he chose to be a 
knight whose costumes protect against zombies and this part 
of the narrative needed to be shown visually and created 
computationally. Martin was able to make all this happen 
with the tools that Scratch provides for its users such as 
characters, backdrops, and blocks for action. 

 
4.2. Kyle’s project 
In his project, just like Martin’s, Kyle’s short Scratch story 
starts with a scene in outer space, as seen in Figure 3, where 
the Nebula approaches the Earth and hits it. And then, all 
zombies in the Nebula spread across all corners of the world. 
Right after this scene, the backdrop changes to another 
backdrop in which a few zombies were placed on different 
coordinates on the background and the buildings in that area 
were ruined. This background was to reflect the idea of 
zombies being released from the Nebula and of destroying 
the Earth. 

 

Figure 3 (Screenshots of scenes of Kyle’s Scratch story) 
 

4.2.1. Programming for narrative coherence 
Not knowing that the glide block existed on Scratch, Kyle 
did create a script that functions as a glide block in Scratch 
as shown in Figure 4 below. 

 
 
 
 

Figure 4 (A screenshot of Kyle’s glide block) 
 

When we asked Kyle how he created that script, he 
responded: 

 
All right, so this is the meteor. And, when I click 
this [green flag], which means go, it'll move 25 
steps. In this case it would be 25 steps closer to 
the earth. [...] And it goes 25 steps toward the 
earth, and then it waits three tenths of a second, 
and then moves 10 steps and waits two tenths of 
a second, and then goes another 10 steps, two 
tenths a second, and then goes another 10 steps. 
So, [it] looks like it's actually flying through, it's 
called the galaxy, towards earth. (Interview 
103019) 

According to the story, Kyle needed to animate an action 
where the meteor approaches the Earth before hitting it. Not 
knowing that the glide block existed in Scratch, Kyle 
programmed a script that functioned as a glide block in 
Scratch. This accomplished his goal of narrative coherence, 
such that viewers could see the meteor flying towards Earth. 
In this case, Kyle’s programming activity was guided by the 
narrative of the meteor moving from outer space to the earth. 

 
 

5. DISCUSSION 
Martin and Kyle’s individual work in Scratch demonstrates 
the powerful way in which the Scratch program can be used 
to support ELA lessons in the elementary classroom. The 
students were given the opportunity to write a story in 
Scratch that met the following State of Massachusetts (2017) 
writing standard for fourth grade: “Write narratives to 
develop real or imagined experiences or events using 
effective technique, descriptive details, and clear event 
sequences.” The sequencing of events maps very well to the 
temporal nature of the Scratch interface as demonstrated by 
the change in background. Both Martin and Kyle changed 
the background in the “beginning” of the story to 
demonstrate plot movement. Moreover, Scratch supported 
student imagination as the group (following Kyle’s lead) 
created a “Zombie” story - an aspect of popular culture as 
demonstrated in Zombie video games such as: “Zombie 
Apocalypse.” Both students were able to develop descriptive 
details and support the presentation of the details by 
engaging in computational practices and they did so by using 
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computational means. For example, Martin engaged in the 
activity of remixing in order to create a character that could 
successfully fight against the zombies. Interestingly, in this 
case, Martin elected to modify the knight to have the head of 
a Black boy. Arguably, Martin was placing himself in the 
story. This is an important constructionist design element of 
Scratch - Martin was able to create a more meaningful 
narrative, by placing himself in the story. This type of 
imagination is also important for success in writing and 
interpreting narratives, as one is able to personally connect 
to a story (Eagen, 1992). 

Meanwhile, Kyle demonstrated a keen understanding of the 
need for the story to unfold in a visually meaningful way, 
and since he was not aware of the glide block in Scratch 
(which would have allowed his zombie filled meteor to 
visually move across the screen) he created his own glide 
block. This is an especially important point regarding 
interdisciplinarity and Scratch. The narrative is that the 
meteor moved through space and collided with Earth. In 
order for that narrative to be communicated, Kyle needed to 
show the meteor moving smoothly across the screen over 
time. To solve this problem, Kyle created the code with 
imperceptibly short time variables (three-tenths of a second 
for every 25 steps). In writing this code, Kyle both learned 
how to program Scratch with some level of precision, and 
also served the narrative by creating the visual effect of the 
meteor streaking through space. Effectively, Kyle was able 
to serve the narrative while learning to code. 

 
6. CONCLUSION 
In this study, we used an interdisciplinary integration 
approach, with CS/CT concepts being integrated into ELA, 
to examine how two 4th graders expanded their ELA 
knowledge and their CS/CT knowledge through Scratch 
while engaged in the lesson. Scratch is an environment that 
allows for this integration because it was designed in a way 
that supports the creation of a story. Scratchers can create 
narrative elements through the tools that Scratch provides 
such as rich, visual graphics like sprites / characters, 
backdrops / setting, and action that can be created through 
blocks / programming. These narrative elements can be 
easily tinkered within Scratch to write a story as seen in our 
study. Scratch is a powerful tool for interdisciplinary 
integration, especially when children are provided with the 
opportunity to collaboratively engage in narrative, fictional 
writing assignments such as the one featured in this 
classroom. 
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ABSTRACT 
Although computational thinking (CT) has emerged as an 
important 21st century key competence (Voogt, Fisser, 
Good, Mishra & Yadav, 2015; Wing, 2006), it becomes 
apparent that there are great differences (Bocconi, 
Chioccariello, Dettori, Ferrari & Engelhardt, 2016). 
Selecting four countries (Denmark, Finland, Germany, and 
the USA) with different approaches of curricular  anchoring, 
linear regression analyses with relevant variables were 
conducted based on the data from the IEA International 
Computer and Information Literacy Study 2018 (Fraillon, 
Ainley, Schulz, Friedman & Daniel Duckworth, 2019). 

The social background of the students, the extent to which 
different computational thinking-related skills are learned at 
school, studying computer science (CS) or a similar subject, 
and the students’ gender were included in these analyses. 
The results first indicated that in all countries there was a 
close link between social background and students’ 
competences in computational thinking as well as between 
the extent to which computational thinking-related skills 
were learned at school and students’ competences in 
computational thinking. Second, there were also  differences 
in competence with regard to studying computer science in 
Germany, Denmark, and Finland and gender-specific 
differences in favor of boys in Germany, Denmark, and the 
USA. Third, it became apparent that the results offer 
individual points of improvement for each educational 
system – regardless of which approach of curricular 
anchoring they follow. 

 
KEYWORDS 
Computational thinking competences, IEA-ICILS 2018, 
School curriculum approaches, Individual characteristics 

 
1. INTRODUCTION 
In times of progressive digitalization, increasingly 
sophisticated technologization based on algorithmic 
structure, and the associated changes in all areas of life, the 
question arises as to what competences children and young 
people must acquire to successfully participate in society and 
be prepared for an adequate working life. Since school holds 
a key role in the acquisition of students’ competences and 
addressing the issue of relevant competences in the field of 
digitalization and information technology in education, the 
key competence computational thinking (CT) emerges 
(Labusch & Eickelmann, 2020). In a general overview of the 
different approaches in various educational systems three 
different approaches to the curricular anchoring of 
computational thinking can be identified (Eickelmann, 
2019): (1) computational thinking as a cross- 

 
curricular competence, (2) computational thinking as part of 
computer science, and (3) computational thinking as an 
individual subject or learning area. For the later analyses, 
four countries, participating in the international option 
computational thinking in the International Computer and 
Information Literacy Study 2018 (ICILS 2018), were 
selected that could be classified under the different 
approaches at the time of study’s data collection in 2018. 

In Finland, 'algorithmic thinking' has been anchored in 
mathematics since 2014. The revision of the core curriculum 
around algorithmic thinking and programming has already 
been completed in 2014, implementation  started in 2016 
with a two-year implementation phase. Finland has included 
computational thinking in the national curriculum as a cross-
curricular competence (first approach) that is anchored 
across disciplines (Bocconi, Chioccariello & Earp, 2018). 

In Germany, where the development of school curricula is 
guided at the federal state level, the integration of 
computational thinking varies from state to state. However, 
schools rely on the long tradition of computer science 
teaching (second approach) as an optional subject  (Bocconi, 
Chioccariello, Dettori, Ferrari & Engelhardt, 2016). 

Denmark has been piloting the integration of computational 
thinking in model schools since the summer of 2018, both as 
a separate subject (third approach) and as part of a subject 
integration approach (first approach) 
(Undervisningsministeriet, 2018). The cross-curricular topic 
‘IT and Media’ in K0 to K9 is integrated in all subjects and 
includes elements of computational thinking such as 
problem-solving and logical thinking (Bocconi, 
Chioccariello & Earp, 2018). 

In the USA, school curricula and policies vary regionally (all 
three approaches). Some companies are working with the US 
government to develop new computer science standards, and 
many states have issued new guidelines for curricula (Hsu, 
Irie & Ching, 2019). 

When considering the extent to which individual aspects of 
the acquisition of a competence, school assessment studies 
examining other areas of competence have shown the 
importance of using individual characteristics as 
explanations. Thus, for students’ computer and information 
literacy, a close link between social background and 
competences could be shown for all participating countries 
in ICILS 2013 and 2018 (Eickelmann et al., 2019; Fraillon, 
Ainley, Schulz, Friedman & Duckworth, 2019). 

Moreover, it is relevant to what extent students have learned 
computational thinking-related skills at school. In recent 
years, many partial competences of computational 
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thinking have been discussed (e.g. Bauer, Butler & Popovic, 
2015; Lye & Koh, 2014). What they all have in common – 
roughly summarized – is the partial competence of 
decomposition or analysis of data or problems. It is also 
concerned with the conception or simulation of solutions and 
the representation of processes. 

Since computer science lessons were not offered nationwide 
in 2018, it is necessary to look at whether students have 
participated in computer science lessons in the respective 
current school year. Another aspect is the gender of students, 
where differences have been shown to be crucial for 
computational thinking itself (e.g. Román- González, Pérez-
González & Jiménez-Fernandez, 2017). These 
considerations result in the following research question: 

To what extent can differences in students’ competences in 
computational thinking be explained by their social 
background, their school learning of computational 
thinking-related skills, studying the subject computer 
science, as well as their gender in four countries with 
different curricular anchoring of computational thinking? 

 
2. METHODS 
2.1. Study and Data 
The following analyses are based on data from the 
International Computer and Information Literacy Study 
2018 (ICILS 2018). The competences in computational 
thinking (CT) are defined in the framework of ICILS 2018 
as “an individual’s ability to recognize aspects of real- world 
problems which are appropriate for computational 
formulation and to evaluate and develop algorithmic 
solutions to those problems so that the solutions could be 
operationalized with a computer” (Fraillon, Ainley, Schulz, 
Duckworth & Friedman, 2019, p. 27). The construct of these 
competences formed the basis for the development of the 
computer-based student tests. The students (international 
average age of 14.4 years) worked on two computational 
thinking test modules of 25 minutes each. In addition, 
questionnaires for students, teachers, school principals, and 
ICT coordinators were used to determine 

family, analyses refer to the highest occupational status of 
parents (HISEI). A low HISEI score (below 40 points) is 
available, for example, for postmen and women, train 
conductors and hairdressers. A medium HISEI value (40 to 
59 points) is found, for example, for police officers, nurses, 
social workers, and administrative staff. A high HISEI score 
(60 or more points) is given, for example, to teachers, 
journalists, and lawyers. 

In the second model, three items were selected from a scale 
for the extent of school-based learning of computational 
thinking skills. The selection was based on theories and 
research, a high affinity to the computational thinking tests, 
and - determined with a preliminary analysis - the power of 
variance explanation. The items 'to break a complex process 
into smaller parts', 'to use simulations to help understand or 
solve real world problems', and 'to  make flow diagrams to 
show the different parts of a process' were considered. A 
distinction was made between 'at least to a moderate extent' 
as a reference category and 'to a small extent or not at all'. 

In the third model, the studying of the subject computer 
science (CS) or a similar subject is used. In the main survey, 
the students were asked whether they had studied computing, 
computer science, information technology, informatics or 
similar in the respective current school year. 

In the fourth model, the gender of the students was used to 
explain the variance (options 'female' and 'male'). 

 
3. RESULTS 
The following four tables show the corresponding regression 
models for students in Finland, Germany, Denmark, and the 
USA. 

 
Table 1. Regression Model I Explaining Differences in 

Students’ CT Competences by Social Background. 
Finland Germany   Denmark USA 

 
b (SE)     b     (SE)     b     (SE)     b     (SE) 

cultural capitalA 27.6*   (4.2)  48.6*  (5.5)  25.5*  (3.9)  44.4* (3.2) 

medium HISEI value 20.0*   (5.2)  30.2*  (5.9)  18.8*  (4.9)  22.5* (3.2) 

high HISEI value 44.9*   (5.4)  51.2*  (8.0)  30.8*  (5.7)  48.0* (3.9) 

the framework conditions. (Eickelmann et al., 2019; 
Fraillon, Ainley, Schulz, Friedman & Duckworth, 2019). 

 
2.2. Analyses 

constant 

R² 
b - regression weight (unstandardized). 
dependent variable: students' computational thinking. 
* significant coefficient (p < .05). 

481.7 443.5 498.9 466.8 
.07 .13 .05 .09 

To analyze the data, addressing the research question, 
linear regression analyses were carried out for the selected 
countries   (Finland, N=2,546 students; Denmark, 
N=2,404 students; Germany, N=3,655 students; USA, 
N=6,790 students). Four regression models were calculated 
for each of the four countries. 

In the first model, indicators of social background – cultural 
capital (model I) and HISEI (model II) – were drawn upon. 
Following this approach, the eighth graders in ICILS 2018 
were asked how many books they had at home (without 
magazines, newspapers, comics, and textbooks). The later 
analysis refers to the distinction between a maximum of 100 
books (low cultural capital) available and more than 100 
books (high cultural capital) available at home. To describe 
the socio-economic status of a student 

A 0 - maximum of 100 books; 1 - more than 100 books. 

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018 
 

It turns out that the correlation between computational 
thinking competences and cultural  capital  was significant in 
all four countries. While it was 25.5 points in Denmark and 
27.6 points in Finland, it was 44.4 points in the USA and 48.6 
points in Germany. For the medium HISEI value  in model 
II, there were values between 18.8 points (Denmark) and 30.2 
points (Germany), which were all significant. For the high 
HISEI value, there  were  significant values between 30.8 
points (Denmark) and 51.2 points (Germany). The 
explanation  of variance  amounted to between 5 percent 
(Denmark) and 13 percent (Germany). This also reveals that 
for Germany, for example, 13 percent of the variance in the 
competences in computational 
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thinking could be explained solely by the students’ social 
background, without further examining other factors. 

Table 2. Regression Model II Explaining Differences in 
Students’ CT Competences by Social Background and 

School Learning of CT-related Skills. 

to break a complex process int 
smaller partsB 
to use simulations to help 
understand or solve real world 
problemsB 
to make flow diagrams to show the 
different parts of a processB 
constant 
R² 
b - regression weight (unstandardized). 

19.2* (4.5) -4.6 (5.7) 12.7* (4.4) 13.0* (4.0) 

-23.5* (6.4) -37.9* (5.5) -33.4* (3.8) -20.4* (3.7) 

-22.3* (6.0) -12.5* (5.9) -9.4 (5.1) -11.4* (3.5)

493.2 470.0 513.4 484.3 

.11 .18 .11 .11 

Model III included whether the students had 
studied computer science or a similar subject in the 
corresponding current school year (time of measurement 
in 2018). While there was no correlation in the USA, 
Finland (17.3 points), and Germany (20.6 points) showed 
a positive correlation with the level of competence in 
computational thinking. In Denmark, by contrast, there 
was a negative correlation (- 26.2), which implies that 
those students who studied computer  science  or  
similar  subjects  scored  on  average 26.2 points less than 
those who did not. In Germany, all coefficients of social 
background increased from model III to model IV. The 
explanation of variance remained at 11 percent in the 
USA, rose to 12 percent in Denmark and Finland, and 
to 19 percent in Germany. 

Table 4. Regression Model IV Explaining Differences in 
Students’ CT Competences by Social Background, School 
Learning of CT-related Skills, Studying Computer Science, 

and Gender. 
dependent variable: students' computational thinking. 
* significant coefficient (p < .05). 
A 0 - maximum of 100 books; 1 - more than 100 books. 
B 0 - to a small extent or not at all; 1 - at least to a moderate extent. 

IEA: International Computer and Information Literacy Study 2018 © ICILS 2018 

The extent to which the ability to break a complex process 
into smaller parts was learned in school was either not in 
any (as in Germany) or in a positive with the competences 
in computational thinking (see table 2). However, the 
correlation between the extent of learning the ability to use 
simulations to help understand or solve real world problems 
and the competences in computational thinking was 
negative in all four countries (USA: -20.4, Finland: -23.5, 
Denmark: -33.4, Germany: -37.9). 
Regarding the extent to which students learned to make 
flow diagrams to show the different parts of a process in 
school, either no correlation (Denmark) or a negative 
correlation (USA: -11.4, Germany: -12.5, Finland: -22.3) to 
the competences in computational thinking was evident in 
these   countries.   From   model   II   to   model   III, the 
explanation of variance increased again – in Denmark, 
Finland, and the USA to 11 percent each and in Germany 
even to 18 percent. 
Table 3. Regression Model III Explaining Differences in 
Students’ CT Competences by Social Background, School 
Learning of CT-related Skills, and Studying CS.

In Model IV, the students’ gender was considered. This 
showed that even when social background, school-based 
acquisition of computational thinking-related skills, and 
studying computer science or a similar subject were included, 
gender differences were found for Denmark (7.2 points), 
Germany (16.2 points), and the USA (17.2 points). In all three 
cases, the boys scored significantly higher than the girls. In 
Denmark, Finland, and the USA, the explanation of variance 
persisted and was in the overall model 11 percent in the USA 
and 12 percent in Denmark and Finland. In Germany, it rose 
to 20 percent. In Germany, Denmark, and the USA, a small 
increase in the cultural capital coefficient was also observed, 
while in the USA, the medium HISEI value increased 
minimally. 
4. DISCUSSION
The overall review reveals that especially students’ social 
background can explain differences in computational 
thinking competences. As it has already been the case for 
other competence domains, a close link between the social 



Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

46 
 

 

background and the educational success of the students 
could be established for the competence area of 
computational thinking. At this point, all countries should 
consider the strategic and conceptual development of core 
curricula to overcome the high socially caused educational 
disparities that have been identified. 

Moreover, the results proved that there are computational 
thinking-related skills that are conducive to learning and 
those that seem to be counterproductive. It should be noted 
here that the study is limited to reveal whether and to what 
extent the individual skills were learned at school, while it 
didn’t examine how skills were learned. It would be useful 
to carry out in-depth analyses, possibly with qualitative 
design, to see exactly in what form, for instance, simulations 
and flowcharts were used. 

Overall, however, there is a tendency towards making 
teaching more productive so that students can achieve higher 
levels of competence in computational thinking. 

The differences in competence between girls and boys are 
also remarkable, especially when other variables are 
controlled. Here, it is important to foster girls and get them 
more enthusiastic about computational thinking, and if 
necessary, to teach them in a gender-sensitive way. In 
parallel, boys are to be further fostered to make the best 
possible use of their potential. 

In answer to the question as to what differences exist 
between the countries with regard to the approach of 
anchoring computational thinking in the curriculum, it 
should be emphasized that the results should not be used as 
a basis for concluding that one approach is better than the 
other. In this context, it should be emphasized that the four 
considered countries are all very highly developed and  have 
advanced educational systems. This is another reason why 
in-depth analysis that include aspects of the education 
system would be necessary. 
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ABSTRACT 
This study describes a standard decomposition process, 
which is designed to decompose content standards into 
observable components that might illustrate computational 
thinking skills. These components will be integrated into an 
online game-based learning environment as evidence of 
learning (EoL) and mastery (EoM). Focusing on three 
computer science standards, we describe how the standard 
decomposition process was used to generate standard 
decomposition tables. We show samples of the content of 
these decomposition tables and describe how these tables 
evolved based on educator feedback. 

 
KEYWORDS 
Computational thinking, Design-based implementation 
research, Game-based learning, Middle grades 

 
1. INTRODUCTION 
The definition of computational thinking (CT) has evolved 
over the last several decades. In early work, Papert (1972) 
generated the term CT to describe children’s learning during 
programming experiences. More recently, Wing (2006) 
broadened the definition of CT to include students’ thought 
processes. Jansen et al. (2018) concluded that CT provides 
people with a method to restructure complex real- world 
problems into systematic and well-structured problems and 
supports people in designing solutions that can be 
manipulated by machines or humans. Grover and Pea (2013) 
further built on this perspective, stating “CT’s essence is 
thinking like a computer scientist when confronted with a 
problem” (p. 39). Similarly, Aho (2012) considered that CT 
assists people in representing the solutions for solving 
complex problems as computational steps and algorithms. In 
this study, we adopt the CT definition as: a thought process 
(including a set of thinking skills) that occurs when students 
are confronted with a problem that can be formulated into 
steps and the solution can be executed by humans or 
machines. 

Most CT research focuses on programming-based 
environments. For example, Kazimoglu et al. (2012) had 
students design a program to control a robot. Brennan & 
Resnick (2012) used Scratch (a visual programming 
language) to develop CT skills, and Basawapatna et al. 
(2011) designed CT games. Many tools are available for 
educators to teach students how to code and write 
programming languages. In our study, we extend this work 
by defining CT skills more broadly and encouraging students 
to practice and make connections between CT skills. 

We use an online game-based learning environment to 
provide middle grades students with unique learning 
opportunities focused on CT. Game-based learning offers 
unique affordances for “stealth” learning (Sharp,  2012). For 
example, when playing games, students experience a state of 
flow (Csikszentmihalyi et al., 2014), which contributes to 
immersive learning experiences while playing. CT education 
researchers are working to extract and quantify these 
learning experiences to understand if  and what students are 
learning during immersive gameplay (e.g., Grover et al., 
2015; Grover et al., 2017). 

Immersive game-based learning environments are 
innovative, covert ways to assess students’ learning. The 
assessment information gathered within game-based 
learning environments could support teachers in tailoring 
student learning experiences based on students’ needs. In 
this study, we use the terms Evidence of Learning (EoL) 
and Evidence of Mastery (EoM) to describe observable 
behaviors to show students are progressing toward mastery 
(i.e., EoL) or show evidence of mastery (i.e., EoM). In our 
study, game developers will use this information to design 
learning experiences and integrate them into an existing 
commercial game. The most salient evidence of students’ 
learning will be extracted and communicated to teachers to 
inform differentiated instruction focused on CT skills. 

 
2. CURRENT PROJECT PURPOSE 
This study is part of a larger interdisciplinary project 
designed to develop a game-based learning environment 
within the existing Minecraft mod “Lumber Jack Tycoon.” 
The learning environment will be developed for middle 
grades students, designed around focus CSTA computer 
science standards with an emphasis on CT. Teachers will 
receive information about their students’ progress toward 
mastering learning standards through integration between 
the game, a data collection cloud infrastructure, and a 
learning management system called Canvas. 

We use design-based implementation research (DBIR) to 
guide the development of the game-based learning 
environment (Confrey, 2019; Fishman, et al., 2007; Penuel 
et al., 2011). As such, we rely heavily on co-development 
with educators who work directly with students who the 
game will ultimately serve. We formed an Educator 
Advisory Panel (EAP), which included middle grades 
educators with an interest in computer science and CT. The 
five EAP educators represented six middle schools across 
four public school districts in the southern United States. 
Three educators identified as teachers, one identified as an 
instructional coach, and one identified as an instructional 
technology specialist. 
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Working with five EAP members, we identified middle 
grades CSTA computer science standards to focus on within 
the game (subsequently referred to as the focus standards). 
These standards were: (a) high priority for teachers’ 
instruction, (b) tended to be difficult to teach, (c) may be 
taught efficiently in Minecraft, and (d) were relevant to CT 
(Tseng et al., 2020). The selected standards were grouped 
thematically into four groups including: (a) data and 
analysis, (b) problem decomposition, (c) teamwork and 
organization, and (d) equity and impact. For the purpose of 
this paper, we target the focus standards for data and 
analysis. We selected this group of standards given the 
strong connections to STEM disciplines and CT. 

As part of the larger project, we developed a process for 
decomposing the game and standards separately and then 
integrating those decompositions to create the game-based 
learning environment. For the purpose of this study, we 
describe the standard decomposition process that was 
developed to unpack or decompose content standards into 
components that illustrate CT skills. We refer to this process 
as the standard decomposition process throughout this paper. 
Our research question is: Using the standard decomposition 
process and incorporating educator feedback, what are the 
evidences of learning and mastery for three middle grades 
CSTA focus standards relating to the data and analysis 
thematic group (2-DA-07, 2-DA-08, and 2-DA-09)? 

3. METHOD
Guided by DBIR, we partnered with educators to decompose 
the three focus standards. A primary goal of this work was 
to create standard decomposition tables that could be used to 
inform assessment development within the game-based 
learning environment. The standard decomposition process 
included seven phases, which began in August 2020 and are 
ongoing. In this section, we describe the seven phases (3.1 - 
3.7) that comprise the standard decomposition process. 

3.1 Identify Existing Curricula Related to the Focus 
Standards. 

We developed a repository of curricular resources related  to 
middle grades computer science and CT. These curricular 
resources were identified through a web search, as well in 
consultation with our EAP and other researchers engaged in 
this work. These resources included well- developed data 
and analysis units with learning activities that were focused 
on conceptual understanding, rather than programming or 
coding. 

3.2 Review Curricular Resources. 
Two researchers separately reviewed the curricular 
resources to decompose each standard into: 

1. Steps related to each standard, suggesting an order for
the cognitive processes that students might engage in
related to the overall standard

2. The importance or objectives (OI) for each step  within
the standard decomposition

3. The  pre-knowledge,  skills,  and  abilities (pre-KSAs)
that  students  would  need  to  develop  as  evidence  of

learning or evidence that they are progressing toward 
mastery within each step of the standard decomposition 
(e.g., necessary pre-requisite knowledge related to each 
standard) 

4. The knowledge, skills, and abilities (KSAs) that
students would need to develop as evidence of mastery
within each step of the standard decomposition

3.3 Reconcile Differences. 
Researchers met to collaboratively discuss standard 
decomposition tables and combine their separate tables into 
one standard decomposition table including steps related to 
each standard, each with corresponding OIs, pre-KSAs, and 
KSAs. 

3.4 Gather Educator Feedback on the Steps, OIs, Pre- 
KSAs, and KSAs. 

We met virtually with five EAP members to discuss the 
focus standards and the extent to which the steps, OIs, pre- 
KSAs, and KSAs reflected their expectation of what their 
students should know and be able to perform related to the 
focus standard. For 2-DA-08, we drafted example evidence 
of learning (EoL) corresponding to the pre-KSAs and 
evidences of mastery (EoM) corresponding to the KSAs, 
which reflected observable behaviors that students 
demonstrate in the classroom related to each standard. 
During the meeting we also encouraged the five educators to 
provide EoL and EoM related to 2-DA-07 and 2-DA-09. 
Following the meeting, we solicited additional feedback on 
the standard decomposition tables using Google Documents. 
Two of five educators participated in the additional 
opportunity to provide feedback. 

3.5 Integrate Feedback from Educators and Generate EoL 
and EoM based on Existing Curricula and Educator 
Feedback. 

Following the virtual meeting with educators, we 
systematically reviewed the meeting transcript and 
researcher notes to refine the content of the standard 
decomposition tables based on educator feedback. In 
addition, we generated EoL and EoM for 2-DA-07 and 2- 
DA-09 based on educator feedback and the review of 
curricular resources. 

3.6 Confer with Educators and Gather Educator 
Feedback on the EoL and EoM. 

We invited educators to provide feedback asynchronously on 
the complete standard decomposition tables using an online 
platform called Google Jamboard. One of the purposes of 
this review was to ensure that we accurately captured 
educator feedback in our revisions. A second purpose was 
for educators to provide feedback on the EoL and EoM for 
2-DA-07 and 2-DA-09. Two of five educators participated
in this opportunity.

3.7 Integrate Feedback from Educators. 
We systematically reviewed the educator comments related 
to the updated standard decomposition tables and refined the 
language in the standard decomposition tables based on 
educators’ feedback. 



4. RESULTS
In this section, we summarize the EoLs and EoMs for the 

focus standards and summarize changes that we made 

based on educators’ feedback. These tables directly relate 

to this study’s research question, which focuses on 

identifying EoL and EoM. Tables 1 through 3 include 

sample EoL and EoM statements from the full standard 

decomposition tables. The contents of these tables identify 

a sample of behaviors that students demonstrate to show 

EoL or EoM with an emphasis on CT related to the focus 

standards, informed by a review of existing curricula and 

feedback from five educators. 

Table 1 includes a sample of EoL and EoM for 2-DA-07: 

Represent Data using Multiple Encoding Schemes. We 

identified three steps within this standard including 

(1) access data, (2) clean data, and (3) create and apply

encoding rules.

Table 2 includes a sample of the EoL and EoM for 2-DA-

08: Collect Data using Computational Tools and Transform 

the Data to Make it More Useful and Reliable. We 

identified four steps within this standard including 

(1) collect data, (2) clean data, (3) organize data, and (4)

explain data.

Table 3 includes a sample of EoL and EoM for 2-DA-09: 

Refine Computational Models based on the Data [Students] 

have Generated. We identified two steps within this 

standard including (1) review model output, and (2) refine 

the model.  

Table 1. Sample of Standard Decomposition Table for “2-

DA-07: Represent Data using Multiple Encoding Schemes”. 

Steps EoL EoM 

Access Data 

Manipulate data 

using 

computing 

devices to aid 

human 

processing 

Identify the 

type of data 

(e.g., numeric, 

categorical) 

Explain why 

different types 

of data are 

valuable 

Clean Data 

Filter variables 

to identify 

which data are 

necessary 

Recognize 

patterns within 

a column or 

row of data 

Create and 

Apply 

Encoding 

Rules 

List possible 

encoding 

methods 

Describe the 

necessary 

features of an 

encoding 

system 

Choose the best 

way to encode 

information 

based on how it 

will be used 

Evaluate 

different 

encoding 

methods used 

Compare 

encoding 

methods with 

other students’ 

work 

Resolve 

conflicts when 

using encoding 

rules 

Table 2. Sample of Standard Decomposition for “2-DA-08: 

Collect Data using Computational Tools and Transform  

the Data to Make it More Useful and Reliable”. 

Steps EoL EoM 

Collect Data 

Identify 

examples of 

data and non-

data 

Identify and 

record relevant 

data 

Clean Data 

Make decisions 

about how to 

handle missing 

data 

Compare 

cleaning 

strategies with 

other students 

Organize Data 

Identify 

different 

systems for 

representing 

data 

Employ an 

effective data 

organization 

system with 

team members  

Explain Data 

Evaluate 

different 

organizational 

systems 

Explain how 

data were 

identified, 

collected, and 

stored in a way 

that connects to 

solving a 

problem 

Table 3. Sample of Standard Decomposition Table for  

“2-DA-09: Refine Computational Models based on the 

Data [Students] have Generated”. 

Steps EoL EoM 

Review 

Model Output 

Extend 

encoding 

schemes to 

rules of models 

Describe how 

data generated 

by the model 

help solve a 

problem 

Refine the 

Model 

Identify 

opportunities to 

improve the 

model 

Create an 

improved 

model (i.e., 

more accurate, 

efficient, 

simpler, and/or 

intuitive) 

The sample content from Tables 1 through 3 reflects the 

types of behaviors that students would be expected to 

display in the classroom related to each of the focus 

standards, with an emphasis on CT skills. 

Because this study’s research question specifies the 

incorporation of five educators’ feedback across iterations 

of the EoL and EoM, we share general findings related to 

how the standard decomposition tables evolved based on 

educator feedback. In the initial synchronous feedback 

session, the educators registered concern about students’ 

lack of familiarity with computers. Further, the educators 

emphasized the need for scaffolding.  Based on educator 

comments on specific statements, we made a number of 

revisions and additions. Following the first feedback 

session, the number of statements for 2-DA-08 increased 

two-fold and many of the previous statements were 

clarified based on educator feedback. Time constraints 

meant only eight suggestions were received on 2-DA-07 
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and none on 2-DA-09. During the follow up asynchronous 
feedback opportunity, two educators identified having 
students do things multiple ways, the use of peers for sharing 
and review, and the use of manipulatives as positives. 
Although there was a similar number of changes suggested 
on specific items in the second round of feedback, most of 
the comments were on clarifying the language of the 
standards and making the verbs as observable as possible. 

5. DISCUSSION
This paper describes a standard decomposition process 
designed to inform the development of an online game- 
based learning environment in Minecraft. The process 
described in this paper explicates student behaviors that 
build from progressing toward mastery (i.e., EoL) to mastery 
(i.e., EoM). As such, the types of behaviors or cognitive 
processes that students are expected to do are articulated. 
The standard decomposition process defined student 
behaviors connected to the standards that emphasize CT 
skills. This information subsequently informs what students 
will actually be expected to do within the gaming 
experience. 

The standard decomposition tables are a contribution to the 
field of education focused on computer science and CT 
because they build on existing assessment work in CT 
(Grover et al., 2015; Grover et al., 2017). The standard 
decomposition tables were co-developed with five educators 
within a DBIR framework. The phases described in the 
methods of this paper outline a process for gathering and 
integrating educator feedback systematically. Due to space 
limitations, this paper includes a sample of the standard 
decomposition tables. 

Minecraft allows us to build a community-based gaming 
environment that facilitates an understanding of CT. Our 
next step is to integrate the learning standard decompositions 
with the game element decompositions. This integrative step 
will result in the development of learning experiences within 
Minecraft. This game development process is highly 
scalable for others interested in doing similar game 
development work. 
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ABSTRACT 
One approach to expanding computational thinking (CT) in 
K-12 education is for mathematics and science teachers to
integrate CT into their curriculum. However, teachers must
first engage with computational practices themselves and
gain confidence in their ability to teach CT to their students.
To this end, we developed a four-week professional
development for 11 science and mathematics high school
teachers. We engaged teachers in four CT- STEM practices
focused on data, modeling,  algorithms, and programming.
Then, each teacher co-designed a computationally enhanced
curriculum for their classroom  in collaboration with a
member of our research team. Data from pre-post surveys
showed an overall increase in teachers’ reported confidence
in teaching CT-STEM practices after the professional
development. However, teachers’ change in confidence
varied across the four practices and across individual
teachers. The variance aligns with the variance in teachers’
responses on  what they learned. Different teachers reported
learning a variety of knowledge and skills, whether about CT 
itself, specific CT tools, or how to integrate CT into a
particular curricular topic. These findings suggest that
engaging teachers in co- design of computational-enhanced
STEM curriculum may cultivate multiple pathways that help 
teachers integrate CT into K-12 classrooms.

KEYWORDS 
computational thinking, STEM education, CT integration, 
teacher professional development, curriculum design 

1. INTRODUCTION
Computational thinking (CT) has been recently emphasized 
in K-12 education, particularly in mathematics and science 
learning (Barr & Stephenson, 2011; Grover & Pea, 2013). 
However, the adoption of CT has been hindered by the 
difficulties teachers often face when trying to integrate CT 
into their curriculum. CT is relatively new and many 
teachers are not equipped with the skills and tools to 
integrate it effectively into their curriculum (Aljowaed, & 
Alebaikan, 2018; Yadav, Gretter, Hambrusch, & Sands, 
2016). Further, teachers are unfamiliar with how to teach CT 
practices, particularly where they intersect with their content 
areas (Ketelhut, Mills, Hestness, Cabrera, Plane, & 
McGinnis, 2020; Wu, Looi, Liu, & How, 2018). 

Researchers have identified key CT-STEM practices that 
reflect authentic STEM practices used in modern science 
(Weintrop et al., 2016). These CT-STEM practices aim to 
help students develop science and mathematics content 
understanding by engaging students in computational 

inquiry. The CT practices in mathematics and science 
classrooms are organized into four strands: data practices, 
modeling and simulation practices, computational problem- 
solving practices, and systems thinking practices. Our team 
has expanded these practice categories to include algorithms 
and programming since these are key CT practices identified 
by others (e.g., Brennan & Resnick, 2012; Grover, 2017; 
Peel, Dabholkar, Wu, Horn & Wilensky, in press; Selby & 
Woollard, 2013; Tang, Yin, Lin, Hada, & Zhai, 2020). In this 
paper, we focus on modeling and simulation (using, 
modifying, and creating computational models) and data 
practices (collecting, visualizing, and analyzing data), as 
well as algorithms and programming. 

While the CT-STEM practices are present throughout 
mathematics and science content, they can vary in their use 
across subject areas. As such, teachers and curriculum 
designers typically choose to focus on one or two central CT-
STEM practices in a unit. For example, a physics teacher 
may design a unit that focuses on computational modeling 
by having students use a model to understand a phenomenon, 
collect and analyze data from the model, and explore the 
model’s algorithm and how that program runs the model. 
Designing curricula with such practices requires software 
and knowledge of that software that allows teachers to build 
a complex model, collect data, and allow students to code. 

The integration of CT into science and math classes requires 
both curriculum designers and teachers to reimagine 
classroom practices and to learn how to incorporate 
computational methods and tools (Ball & Forzani, 2009; 
Windschitl et al., 2012). Teachers require professional 
development, resources, and support to learn about CT, how 
to use the computational tools, and how to teach CT-STEM 
practices. While recent approaches to supporting teachers 
with CT integration have begun to emerge, this area of 
professional development and research is in early stages 
(Ketelhut et al., 2020; Yadav, Mayfield, Zhou, Hambrusch, 
& Korb, 2014; Yadav, Zhou, Mayfield, Hambrusch, & Korb, 
2011). 

We have begun to address this gap through professional 
development that focuses on developing computationally 
enriched STEM units with teachers. We position teachers as 
active co-designers in modifying their existing STEM 
curricula to include computational tools and practices. Co- 
designing with teachers foregrounds their views on 
curriculum alignment with teaching practices and 
expectations for student learning (Allen & Penuel, 2015; 
Coburn, 2005; Penuel, Riel, Krause, & Frank, 2009). Co- 
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design, as we have defined it, engages teachers in 
constructionist learning in that teachers learn through the 
construction of new CT-integrated units (Kelter et al., 
2020a). When teachers actively design and create lessons 
and computational tools, they learn about CT and its 
integration in the classrooms (Peel et al., 2020b). However, 
it is unclear how teacher knowledge develops regarding 
specific CT-STEM practices. Prior work has shown 
variation in teacher outcomes from co-design and 
professional development experiences, given their different 
goals and prior experiences with CT (Kelter et al., 2020a; 
Naimipour, Guzdial, & Shreiner, 2020; Svihla, Reeve, Sagy, 
& Kali 2015). We expand this work by exploring how 
individual teachers differ in their learning of CT- STEM 
practices. Specifically, we investigate: (1) Did teachers 
develop confidence in teaching each CT-STEM practice 
through a four-week professional development? and (2) 
What did they learn about CT? 

  Table 1. Teacher Pseudonyms and CT Background.  
   Teacher Background / Experience with CT  

Beth 3rd year freshman biology teacher, has PhD in 

participated (See Table 1). Note that pseudonyms are given 
to align with teachers’ subject area: biology, chemistry, 
environmental sciences, mathematics, and physics. All 
teachers received up to $4000 U.S. dollars for participation 
and were asked to create a CT-STEM curriculum for their 
classroom that would be implemented in the following 
school year. The teachers, seven graduate students, and one 
post-doctoral researcher were assigned to co-design teams 
by subject area. 

Due to the COVID-19 pandemic, CTSI was held online. 
Table 2 shows an overview of activities held during the four-
week professional development. For discussions, 
workshops, and co-design meetings, teachers and 
researchers met on Zoom for synchronous discussion or 
instructional activities. Otherwise, they communicated 
asynchronously via emails and Slack and worked on 
materials asynchronously. 

Table 2. Overview of Professional Development Activities 
  over four weeks, Organized by Day.  
  Week       Monday         Tuesday       Wednesday         Thursday Friday    

microbiology, uses some CT practices, e.g., “asked students 
to write step by step procedures to design experiments and I 
have asked about the rules something needs to follow to work 
properly (like a ribosome incorporating new amino acids 
from a set of instructions on mRNA)” 

1 Introductions 
 
 

Intro to CT 
Lesson 

CT-STEM 
units 

 
CT-STEM 
Practices 

Intro to 
programming 

 
Computational 
tools, Part 1 

Computational 
tools, Part 2 

 
Unit planning 

Intro to co- 
design teams 

 
Reflection 

 

Betsy 17th year inclusion biology and chemistry teacher,  little CT 
    experience, “used [CT] sparingly when teaching Chemistry” 
Carrie 11th  year  honors  chemistry  teacher,  participated  in CTSI 

2019 and two prior PDs with CT-STEM team, uses CT to 
teach specific content, e.g., “Asking students to come up 
with the  ‘rules’  for gas particle  movement  prior to having 

2-4 Co-design 
 

Review 
units 

Co-design   Co-design 
 

CT-STEM 
Workshop 

Co-design 
 

Cross-Team 
Conference 

Co-design 
 

Reflection 
 

Mini-Expo 
(Week 3) 
Expo 

   them work through a NetTango on the same subject.”  
Chelsea 9th year chemistry and physics teacher, implemented units 

  developed by Carrie during CTSI 2019  
Emma 11th year environmental science and biology teacher,  participated 

in CTSI 2019 and two prior CT-STEM PDs , engages students 
in CT in various ways, e.g., “Use of computational models 
(simulations, sage modeler), strong focus on data collection, 
analysis, visualization. Discussions of how scientists look at 
real world problems, using tools that have been developed to 
look at phenomena or problems 

   we are studying”  
Evan 15th year AP environmental sciences teacher, little 

experience with CT: “I have done small chunks of CT work 
through the years, but never intentionally set out to instill a 

   CT nature into my curriculum or science pedagogy.”  
Matt 8th year AP Statistics and geometry teacher, participated in 

CTSI  2019  and  “use  other  simulation  tools  for  my  AP 
   Statistics class on a regular basis.”  

Martin 15th year mathematics, no prior experience with CT, 
  implemented unit developed by Matt during CTSI 2019  

Marshall 10th year mathematics, computer sciences,  and  social sciences 
teacher, has experience teaching programming and 

   algorithms  
Paul 31st year AP physics teacher, some prior experience with 

code,  used   CT  to  teach   specific  concepts,  e.g.,   “Have 
   students write code for laws, i.e., Snell's Law, etc.”  

Parvez 23rd year freshman physics, some prior experience with 
Java, implemented a short CT-STEM curriculum three years 
ago, use computational models, specifically “controlled PhET 
simulations a lot with worksheets with directions and 

  critical thinking questions”  

2. METHOD 
CT-STEM Summer Institute (CTSI), a four-week 
professional development workshop that positioned teachers 
and researchers as co-designers of curricula. In 2020, 11 
high school science or mathematics teachers from four U.S. 
public schools with varying experience with CT 

  (Week 4) 
 
 

To introduce teachers to computational practices and tools, 
the first week of CTSI (4.5 days) consisted of workshops 
led by the researchers. Sessions introduced teachers to CT- 
STEM practices through lessons designed for students. 
Lessons demonstrated how computational tools can engage 
students in CT-STEM practices while learning disciplinary 
content. For example, the Intro to CT lesson (https://ct-  
stem.northwestern.edu/curriculum/preview/495/page/0/) 
first asked teachers to use, modify, and debug a series of 
computational models that simulate how fire spreads 
through a forest (Wilensky, 1997) using NetLogo, a multi- 
agent programmable modeling environment (Wilensky, 
1999). Next, teachers collected and analyzed ‘density vs. 
percent burned’ data using CODAP (Common Online Data 
Analysis Platform, 2020), a web-based data analysis 
environment. Then, they posed research questions about 
other variables that may affect the spread of fire and 
discussed how scientists use such computational models. 
On each student page, teachers identified what CT-STEM 
practices students would engage in and how they would 
support students in these activities. Their ideas were 
discussed within a small breakout room and with the whole 
group to ensure that everyone was on the same page, 
similar to how a teacher may engage with students online. 

In addition to NetLogo and CODAP, teachers engaged with 
NetTango, a blocks-based programming interface for 
exploring NetLogo Web models (Horn, Baker, & Wilensky, 
2020) in a lesson focused on basic programming (https://ct- 
stem.northwestern.edu/curriculum/preview/1505/page/0/) 

https://ct-stem.northwestern.edu/curriculum/preview/495/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/495/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/1505/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/1505/page/0/
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and a lesson on ecology and predator-prey dynamics using 
blocks to create wolf-moose interactions (https://ct- 
stem.northwestern.edu/curriculum/preview/353/page/0/). 
Teachers completed each lesson as students and discussed 
CT pedagogy for using these tools. Additional CT tools such 
as Python and SageModeler (2020) were introduced to 
specific teachers interested in using them. 

Because the goal of CTSI is for teachers to design a CT- 
integrated curriculum for their classroom, the last three 
weeks of CTSI provided co-design time for teams of teachers 
and researchers to work on computational models and 
curricular units. Each subject-area team included at least two 
teachers, one researcher, and one undergraduate research 
assistant. Teams varied in how they  communicated and co-
designed curricula. Some teams met every day to check in 
and work together on models, curricula, and/or student 
activities via video conference. Others worked 
asynchronously using online tools (primarily Slack and 
Google Drive) and met when  activities were ready or when 
someone on the team needed help. Regardless, all teams 
reviewed each other’s work and gave feedback on materials 
at least once a week, typically on Monday or Tuesday. 

To foster community across teams, all teachers and 
researchers participated in weekly Wednesday workshops 
on relevant topics (e.g., CT pedagogy) as well as Friday 
reflection sessions. Teachers also received additional 
feedback on their units in various formats. Every Thursday, 
each teacher was paired with another teacher outside of their 
team to discuss their units (Cross-Team Conferences). 
Further, in Week 3, they discussed their unit with CT 
professionals in their subject area (Mini-Expo). Finally, at 
the end of CTSI, the teachers showcased their co-designed 
CT-STEM curriculum to CT professionals, colleagues, 
friends, and family in an Expo open to the community, using 
videos about their units and discussions with those who 
attended: https://padlet.com/sally_wu/CTSIExpo. 

 
2.1. Data Sources 
To assess changes in teacher confidence after CTSI (RQ1), 
we conducted 36-item pre/post surveys that asked teachers 
to rate on a 5-point Likert Scale (1 = Strongly Disagree, 5 = 
Strongly Agree) their confidence in teaching each of four 
CT-STEM practices: data, simulation and modeling, 
algorithm, programming. For example, data practices items 
include “I am confident in my ability to identify 
computational data practices in an educational STEM 
activity.” and “I am confident in my ability to answer student 
questions regarding computational data activities.” Teachers 
also responded to an open-ended question that asked: “What 
did you learn from CTSI?” 

3. RESULTS 
We use survey responses to assess whether teachers 
developed confidence in each of the four CT practices (RQ1) 
and what teachers learned about CT (RQ2) after the four-
week professional development. 

3.1. Overall change in teachers’ reported confidence 
As shown in Figure 1, our teachers, on average, felt some 
confidence with all four CT-STEM practices prior to our 

summer institute. After the summer institute, they, on 
average, reported even higher confidence in their ability to 
teach all four CT-STEM practices, particularly in modeling 
and algorithms. We ran an asymptotic Wilcoxon-Pratt 
Signed-Rank test to analyze the pre-post changes in teacher 
confidence across each of the four practices. Two of the 
practices, modeling and algorithms, were statistically 
significant  at  the  10%  level  with  p-values  of  0.026 and 
0.081 respectively. The changes in data practices and 
programming practices were not significant at generally 
accepted  significance  levels  with  p-values  of  0.130 and 
0.197. We did not expect statistical significance because of 
our relatively small sample size and with some participants 
who showed zero differences (partially due to a ceiling 
effect). 

 

Figure 1. Average Reported Confidence in Four CT-STEM 
Practices. 

To better understand the overall change, we examined each 
teachers’ pre and post confidence rating for each of the four 
practices (Table 3). Some teachers rated their confidence as 
extremely high (max = 5) at both the pre and post surveys, 
such as Emma on data and modeling practices and  Marshall 
on algorithms and programming practices, resulting in no 
pre-post differences. The pre-survey ratings show some 
variation in teachers’ prior confidence in data, modeling, and 
algorithm practices (range = 2.0 to 5.0), as well as large 
variation in teachers’ prior confidence in programming 
(range = 0.0 to 5.0). At the post-survey, teachers reported 
generally high confidence in all practices (range = 3.3-5.0). 
Table 3. Teachers’ Reported Confidence Rating in Each of 

  the Four CT-STEM Practices.  
Data Modeling Algorithm Programming 

 
 

  Teacher Pre Post Pre Post Pre Post Pre Post 
Beth 3.0 5.0 2.6 4.9 2.6 5.0 0.0  5.0 
Betsy 2.8 3.9 3.7 3.8 2.9 4.8 2.8 3.8 
Carrie 4.3 4.0 4.4 4.9 4.4 4.2 3.4 3.3 
Chelsea 4.0 3.9 4.0 3.6 4.0 4.0 3.8 4.0 
Emma 5.0 5.0 5.0 5.0 4.9 4.7 4.7 4.3 
Evan 3.0 4.8 2.0 5.0 2.0 5.0 1.0 5.0 
Matt 4.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 
Martin 3.4 4.1 2.6 3.8 3.7 4.6 3.7 3.4 
Marshall 4.7 5.0 3.1 5.0 5.0 5.0 5.0 5.0 
Paul 4.2 4.0 4.4 4.3 4.3 4.1 4.0 3.9 

   Parvez 4.2 3.8 3.9 4.3 3.3 4.2 4.1 4.2 

https://ct-stem.northwestern.edu/curriculum/preview/353/page/0/
https://ct-stem.northwestern.edu/curriculum/preview/353/page/0/
https://padlet.com/sally_wu/CTSIExpo


Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

55 
 

 
Several teachers reported greater confidence in all practices 
after CTSI, particularly Beth, Evan, and Matt. Some teachers 
reported greater confidence in some specific practices but 
not others. For example, Betsy reported only a slight 
difference in confidence in regard to modeling and overall 
increased confidence in all other practices. Martin Marshall, 
and Parvez, who teach math or physics, also fall into this 
category, reporting similar pre-post difference in data and 
programming practices and general increases in modeling 
and algorithm practices. Finally, a set of teachers reported 
similar confidence in all four practices before and after 
CTSI, specifically Carrie, Chelsea, Emma, and Paul. 

 
3.2. What teachers learned 
We explore what teachers learned (RQ2) by analyzing their 
responses to “What did you learn from CTSI?” We use the 
qualitative responses to understand the variance in 
individual teachers’ reported change in confidence across 
teachers who reported greater confidence in all practices 
after CTSI (Beth, Evan, Matt), greater confidence in some 
specific practices but not others (Betsy, Martin, Marshall, 
Parvez), and similar confidence before and after CTSI 
(Carrie, Chelsea, Emma, Paul). 

Teachers who generally showed a general increase in 
confidence across all four practices (Beth, Matt, Evan) 
mentioned learning about a variety of related topics that 
helped them co-design their curriculum, including CT, 
specific tools (e.g., NetLogo), their subject-area content, 
collaboration, and pedagogy: 

I learned how to use NetLogo, NetTango, and CODAP, how 
to integrate such models into a  content-heavy, nuanced unit, 
and a lot about collaboration. (Beth) 

OMG- I have learned to embrace co-design, learned to work 
at odd hours, Slack the heck out of my co-design mates and 
learn the basics of coding and manipulating code. I have 
also learned to value the feedback my mates have given me, 
their patience and to learn to take feedback positively for a 
growth-mindset. I have also learned that my science 
pedagogy is in need of a redshift, or rather a new lens to look 
at science through- that of CT. I am grateful to be energized 
by all the possibilities and potential accomplishments this 
will translate into for my students. (Evan) 

Increased my understanding of computational thinking, 
computational modeling, incorporating CT practices in a 
mathematics classroom, and my ability to develop and adapt 
NetLogo & CODAP models to fit my needs in a statistics 
classroom. (Matt) 

All three teachers discussed how learning about CT and 
specific tools helped them address their teaching goals. Beth 
and Matt mentioned learning about computational models 
and integrating them into their classroom. Further, Evan 
described how he grew as a designer and teacher, including 
learning to value his team’s feedback and gaining “a new 
lens to look at science” through CT. 

The teachers who showed increased confidence in some of 
the practices Betsy, Martin, Marshall, Parvez) also reported 
gaining specific skills and CT knowledge that support 
students in their classrooms: 

 
I learned a lot about programming. I learned that I can  still 
learn. I learned what computational thinking is and how to 
apply it in the classroom. (Betsy) 

I learned what the heck CT means, I learned how to 
incorporate CT into my lessons, I learned a little bit of 
programming in NetLogo and how to use CODAP, I brushed 
up slightly on my Python skills, and I deepened my 
understanding of my own content (specifically sampling 
distributions). (Martin) 

I got a lot of technical skills in Python, CODAP, and 
NetLogo. I can build (but better modify!) agent-based 
simulations! I can make quick data visualizations with 
CODAP! I can make MUCH BETTER data visualizations 
with Python! I also learned some nuanced ideas about how 
to better incorporate CT into a scaffolded unit, and I think 
the segue into the more advanced concepts is done much 
more smoothly than I initially planned.” (Marshall) 

Learned to code in NetLogo and make custom designed 
lessons. Also learned to use NetTango block modeling for 
students. (Parvez) 

These teachers all mention learning to code/program. Most 
of them have some prior experience and thus were able to 
gain specific tools and skills to build activities for their 
students. This may explain why they did not necessarily gain 
confidence in teaching particular CT-STEM practices, but 
instead, they came away with new ideas for how to use tools 
with their students, such as “MUCH BETTER data 
visualizations with Python” and “nuanced ideas about how 
to better incorporate CT into a scaffolded unit” (Marshall). 

The set of teachers that showed little change in reported 
confidence (Carrie, Chelsea, Emma, Paul) also mentioned 
learning about CT, content, and curriculum design. 
However, compared to other groups, they mention more 
specific strategies for teaching their subject area and 
curricular topic: 

I was introduced to Sage Modeler, and I also learned 
additional details about working with the [curriculum 
editor] interface. (Carrie) 

CTSI was helpful this year to separate various aspects of 
computational thinking. (Chelsea) 

I was able to develop a new unit around infectious diseases, 
this led to a lot of content knowledge about particular 
diseases, as well as CT knowledge of how to model and think 
about these diseases. In working with my team I was able to 
break down specific knowledge points for kids to figure out 
and develop models to help them do that. (Emma) 

I have learned a lot about coding. Also, the coding forced me 
to think about physics- concepts and equations-  such that I 
could write correct codes to model phenomena. (Paul) 

These teachers reported learning different things, from CT 
itself (Chelsea), to specific tools (Carrie), and ways to think 
about teaching their content through models (Emma), or 
coding (Paul). Particularly for Emma and Paul, it may be that 
designing CT-STEM activities helped them realize what 
they did not yet know about their topic and “forced” them to 
think deeper about the nature of their content from the CT 
perspective. 
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4. DISCUSSION 
Given that CT integration is difficult for teachers, our work 
begins to shed light on how and what teachers can learn 
about CT through professional development focused on co- 
design of CT-integrated curriculum. Our teachers, on 
average, felt some confidence with all four CT-STEM 
practices prior to our summer institute, which is not 
surprising given that they showed interest in CT and wanted 
to participate in CTSI over the summer. Yet, after the 
professional development, our teachers, on average, reported 
higher confidence in teaching  CT-STEM practices, 
particularly in modeling and algorithm practices. This gives 
us encouragement that the professional development may be 
a good approach to help teachers engage in and learn about 
CT-STEM practices, even if they are already confident in 
some of those practices. 

 
Our findings also show that teachers' confidence did not 
change in the same way across the four CT-STEM practices. 
Some seemed to gain confidence in all practices, while other 
teachers only gained confidence in a few practices, and still 
others showed no change after our professional 
development. These differences were expected, given that a 
few teachers were already extremely confident in teaching 
CT-STEM practices prior to the professional development, 
and thus it did not affect their confidence with specific 
practices. For them,  the experience may have been an 
opportunity to learn about specific software and tools that 
they can use to design curricula or engage students in their 
classroom, rather than an opportunity to learn about CT-
STEM practices. Teachers’ responses to what they learned 
from the summer institute suggests that they learned many 
related skills and ideas for designing and implementing CT-
STEM curriculum. Some learned how to program and code 
using particular tools and strategies to address their teaching 
goals. Others learned about CT itself, how it may be “a  new 
lens to look at science” (Evan), and how to integrate it into 
existing content in their curriculum. Some teachers 
described changes in how they view content and teaching, 
which may affect their pedagogy, which will be analyzed in 
a future paper on how teachers implemented their units. 

Even though our study only involved 11 teachers, it revealed 
much variation in what teachers gained through our 
professional development, which researchers and educators 
should take into account when designing and assessing such 
programs. Our findings align with prior work that shows 
variation in teacher outcomes from co- design experiences 
and a need for multiple sources of data to capture teachers’ 
pathways (Kelter et al., 2020; Naimipour et al., 2020; Peel et 
al., 2021; Svihla et al., 2015). Although quantitative 
measures are important to ensure that teachers gain the 
prerequisite skills and knowledge to develop quality 
curricula and engage their students in CT, expanding 
qualitative analyses or designing alternative measures to 
capture teachers' learning and teaching of CT will help 
illuminate the various ways in which they grow in their 
pedagogy. Further, additional measures will help reveal 
what aspects of co-design and professional development 
experiences are essential to 

ensure teachers’ growth builds on their divergent needs and 
prior experiences with CT. 

 
Given the variance in teachers’ goals and experience with 
CT, we designed our professional development to be 
adaptable so that teachers can gain the knowledge, skills, and 
insights required to learn about and integrate CT into their 
classroom. In our professional development, the co- design 
sessions were particularly flexible for teachers so that it 
supports constructionist design (Kelter et al., 2020). Each co-
design session foregrounds teachers’ goals and thus was 
shaped by the different types of support and levels of 
engagement with CT needed to help each teacher  achieve 
their goals. Teachers may be restructuring  how they 
introduce content, brainstorming what features to include in 
an CT activity, writing student questions, or programming 
computational models with the support of their co-designers. 
The variation in the co-design process allows for 
differentiated support based on teachers’ prior experiences 
and teaching goals for their curriculum. Hence, regardless of 
their approach, goals, and needs during the professional 
development, all teachers moved towards the same 
destination: They all reported learning about some aspect of 
CT, produced a CT-STEM curriculum, and felt confident in 
their ability to teach CT-STEM practices to their students 
alongside content in mathematics and science classrooms. 
This work shows promise for professional development 
focused on constructionist design as a way to engage 
teachers in CT education. We advocate for additional work 
that empowers teachers as designers of CT curriculum and 
identifies additional pathways for teachers who may or may 
not have prior confidence and experience in CT. Such work 
will help us build additional professional development 
opportunities that effectively engage teachers in integrating 
and teaching CT in STEM classrooms. 
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ABSTRACT 
During the COVID-19 pandemic, we conducted an online- 
only teacher development course (TDC) on computational 
thinking (CT) teaching in a primary school context. Twelve 
in-service primary school teachers participated in the 
course, which consisted of thirteen 3-hour lessons. Analysis 
of the participants’ CT concepts test results showed that 
they successfully developed a good understanding of CT. 
They also significantly improved in all four content 
knowledge-related dimensions of technological 
pedagogical content knowledge (TPACK) of programming 
for CT development.  Participants’ evaluation of teaching 
survey reflected that they agreed the course was of high 
quality. These positive results implied that TDCs on CT 
teaching can be conducted online successfully. This study 
indicated the importance of providing a sustained TDCs for 
teachers to gain sufficient CT knowledge and pedagogies of 
CT teaching. For successful online teaching, it was essential 
to maintain the teachers’ engagement in class by adjusting 
the teaching pace to ensure all of them can follow the tasks 
and assigning sufficient tutors to render timely assistance 
when support was needed in completing the programming 
tasks. 

 
KEYWORDS 
computational thinking, online learning and teaching, 
primary school, programming, teacher development 

 
1. INTRODUCTION 
Wing (2006) argued that computational thinking (CT) is a 
thinking process by which one formulates problems and 
finds solutions by drawing on the fundamental concepts of 
computer science. To help children become creative 
problem solvers, the integration of CT into K-12 education 
through programming is an important initiative (Hsu, 
Chang, & Hung, 2018). However, there is a limited number 
of teachers with CS background (Yadav, Gretter, 
Hambrusch, & Sands, 2016) and a lack of specific 
pedagogies for teaching CT through programming 
(Menekse, 2015). Thus, it is critical to conduct professional 
development for teachers to equip them with sufficient CT 
knowledge and related pedagogies. Few empirical studies 
were found on effective TDCs in CT in relation to 
programming (Menekse, 2015; Kong, Lai, & Sun, 2020). 
Also, the organization of online-only TDCs on CT teaching 
was a new and emerging area that needed to be explored. 
This study aimed to report an experience of conducting an 
online TDC on CT teaching and the evaluation results of the 
teachers’ learning progress in CT concepts, and 
technological pedagogical content 

knowledge (TPACK) of programming for CT development. 
 

2. BACKGROUND 
2.1. CT in Relation to Programming in a Primary School 

Context 
Programming is regarded as an effective method for 
developing students’ CT (Kong & Abelson, 2019). Block- 
based programming environments such as Scratch and  App 
Inventor provide a pleasant learning experience for young 
students because their visual programming languages are 
favorable for children to learn (Lye & Koh, 2014); as a 
result, these environments can stimulate students’ interest in 
programming (Weintrop & Wilensky, 2017). Brennan and 
Resnick (2012) proposed a CT framework after observing 
young students’ behavior while programming with Scratch. 
This framework consisted of three components: CT 
concepts, CT practices, and CT perspectives. CT concepts 
refers to the concepts applied in programming. CT practices 
refers to the problem-solving practices used in 
programming. CT perspectives refers to how programmers 
see themselves, their relationships with others, and the 
digital world. This framework provided a concrete direction 
for CT development in relation to programming among 
young learners. The TDC in this study adopted these three 
components to develop teachers’ competencies in delivering 
CT lessons in primary school. 

 
2.2. Importance of Teacher Development in CT 
Two major challenges to incorporating CT education in 
primary schools were found in this study, which may be 
overcome by conducting effective TDCs. First, there were 
only a small portion of teachers with a CS background 
(Yadav et al., 2016). Some of them were not familiar with 
block-based programming environments (Hubbard, 2018), 
which would make it difficult for them to teach CT  through 
programming. Second, sustained professional development 
was inadequate. Bower et al. (2017) found that most TDCs 
are short in duration and put emphasis  only on teaching how 
to program rather than on incorporating related pedagogies 
(Menekse, 2015). Consequently, teachers could only make 
use of some general pedagogical strategies that were not 
specific to CT development when teaching (Bower & 
Falkner, 2015). Kong et al. (2020) suggested that primary 
school teachers’ CT knowledge and their TPACK had 
significantly improved after completing two 39-hour 
courses. Therefore, it is critical to provide sustained TDCs 
for teachers  to equip them with ample knowledge and 
pedagogies of teaching CT through programming. 
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2.3. Factors of Conducting Effective TDCs on CT 
There are two main factors leading to an effective TDC on 
CT development. First, the course design requires a 
sustained period of learning instead of a one-off lesson 
(Garet, Porter, Desimone, Birman, & Yoon, 2001). A 
sustained course provides a better training opportunity for 
teachers since they have adequate time to acquire the 
content knowledge. For CT development, Kong et al. (2020) 
suggested that teachers need to learn how to teach CT and 
apply what they had learned by producing group projects. 
In addition, teachers’ active engagement has proved to be a 
critical factor of a successful development course (Darling-
Hammond, Hyler, & Gardner, 2017). Kong et al. (2020) 
proposed a pedagogy (i.e., to play, to think, and to code) to 
teach CT, which highly required the participants’ 
engagement in class. They got ample opportunities to play 
the App at first. Then they had to think about how to 
produce the App. Finally, they needed to compose the 
programs by themselves. Teachers need active participation 
and engagement rather than passively receiving the 
knowledge (Darling-Hammond et al., 2017). 

 
3. METHODOLOGY 
3.1. Design and Structure of the Course 
The design principle of this online TDC was to fulfil the 
important factors for successful teacher development 
including a sustained period of learning and teachers’ active 
engagement. The TDC lasted for 5 weeks, and it provided 
both theory-based CT content knowledge and hands-on 
experiences of programming pedagogies. The course was 
conducted entirely online on Zoom. It consisted of thirteen 
3-hour lessons and was divided into three parts. 

The first part consisted of seven lessons. Six sample CT 
units were shown to demonstrate how to use App Inventor 
and pedagogical content knowledge (i.e., to play, to think, 
and to code) to teach CT. At the beginning of each lesson, 
the teachers played the apps. Then, they were guided to 
think about the components and logical flow of the apps. 
The teachers tried to deconstruct programming tasks into 
smaller steps so that they could learn how to turn abstract 
concepts into an algorithm to solve a problem. Finally, the 
teachers followed the student guides to code and test the 
app. If they were not able to finish coding the app in class, 
they could use the student guides, which demonstrated how 
to drag and drop the blocks step by step, to continue their 
learning after class. After teaching each unit, we had 
reflection on CT concepts, practices, and perspectives 
development with the teachers. 

In the second part, the teachers had a lesson in which they 
observed an online CT lesson conducted by a local  primary 
school. This lesson aimed to enhance their pedagogical 
understanding of how to deliver CT in  relation to 
programming in a primary school context. During the 
observation, teachers could learn by reflecting on the 
successful and those less successful experience and 
incorporating the remarkable part into his/her own teaching. 
We consolidated this learning by holding a reflection 
section in the next lesson for the teachers to share their 
observation. 

The third part of the course consisted of five lessons. The 
teachers worked in groups to produce a portfolio of artifacts, 
including a mobile app made in App Inventor for teaching 
primary school students, student worksheets, and a unit of 
CT teaching scheme with pedagogical design, to be 
presented in the last lesson of the course. They were given 
sufficient time to discuss their CT content knowledge and 
the pedagogical design of their teaching. This offered a 
chance for them to put their CT and pedagogical content 
knowledge into practice. Figure 1 shows the design and 
structure of this TDC. 

 

 
Figure 1. Design and Structure of the TDC 

3.2. Participants and Procedures 
The TDC was conducted in April and May 2020 with 39 
lesson hours and 3 hours per lesson. This 5-week program 
was conducted entirely online on Zoom due to the 
pandemic. To ensure that the TDC maintain as high  quality 
as face-to-face meeting, we had to provide support to 
teachers online when they encountered difficulties in 
handling the programming hands-on activities to increase 
their engagement. We slowed down the programming 
process to make sure that all teachers went through these 
tasks. We divided a programming task into several sub- 
tasks. We needed to ensure that they finished the sub-task 
before going to the next sub-task so that they could complete 
activities with successful experience. Also, we asked them 
to work in small groups with tutor supports when they were 
conducting the programming tasks and when testing and 
debugging the programs. The teachers needed to corporate 
in completing the programming tasks when working in 
groups. The tutors would give immediate help to the 
teachers when all group members got stuck in the 
programming activities. In face-to-face meetings, we have 
one to two tutors in a classroom, but we assigned additional 
tutors for each group in this online course to provide support 
to the participants. 
A total of 12 in-service primary school teachers attended the 
TDC. Eight (66%) were male and four (33%) were female. 
Most of the participants taught IT (66%) at their schools, 
whereas the others taught subjects such as mathematics, 
Chinese, and visual arts. Their average teaching experience 
was 15.8 years. To evaluate their learning progress, we 
asked them to complete (1) a CT concepts test and (2) a 
TPACK questionnaire concerning programming for CT 
development at the beginning of the course. They also 
completed two post-tests in the second last lesson. At the 
end of the course, participants were asked to completed the 
evaluation of teaching survey. All teachers participated in 
the tests and surveys online. 

 
3.3. Measures 

3.3.1. CT Concepts Test 
A multiple-choice CT concepts test was adopted to  evaluate 
participants’ learning progress (Kong et al., 2020). The pre- 
and post-tests were conducted in the first and 



Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

60 
 

 

second last lessons. The test consisted of 25 items, which 
required teachers to analyze the outcome of executing the 
scripts in block-based programming environments. The test 
assessed progress in four categories of CT concepts, 
including repetition (3 items), conditionals (8 items), data 
(8 items), and procedures (6 items). Figure 2 shows a 
sample question about procedure. 

 

 
Figure 2. A Sample Item for Assessing CT Concepts 

 
3.3.2. TPACK of Programming for CT Development 

Questionnaire 
Seven dimensions of TPACK were delineated by Mishra 
and Koehler (2006). Since the foundation of CT 
development was the content knowledge (CK) of 
programming for CT development, this study focused on 
evaluating the teachers’ TPACK development in four CK- 
related dimensions (i.e. content knowledge [CK], 
technological content knowledge [TCK], pedagogical 
content knowledge [PCK], and technological pedagogical 
content knowledge [TPACK]). In the CT context, CK 
refers to the CK of CT concepts, practices, and 
perspectives in a programming context; TCK refers to 
knowledge of the use of programming features in a block- 
based programming environment to teach CT; PCK refers 
to the knowledge of teaching CT (e.g. unplugged activities) 
without using technologies; and TPACK refers to the 
knowledge of using technologies and pedagogies for 
teaching CT in relation to programming in a context of an 
explementary use (Kong et al., 2020). 
The questionnaire contained 29 items, which was modified 
from a TPACK instrument developed by Kong et al. (2020). 
The sample item of CK was “I have sufficient knowledge 
about programming.” The sample item of PCK was 
“Without using technology, I can help my students to 
understand the content knowledge of programming through 
various ways.” The sample item of TCK was “I can choose 
appropriate tools in App Inventor to teach students how to 
program.” The sample item of TPACK was “I can teach 
lessons that appropriately combine the content of 
programming, technologies, and teaching approaches.” 
Each item of this instrument was anchored from 1 (strongly 
disagree) to 5 (strongly agree). 

4. RESULTS AND DISCUSSION 
4.1. Results of the CT Concepts Test 
Significant improvement was found in the results of the  CT 
concepts test as a whole (t(11)=3.36, p<.01) after the 
completion of the course, as shown in Table 1. Among the 
individual concepts, the teachers showed the greatest 
improvement in their understanding of the concept of 
procedures by the end of the course (t(11)=4.71, p<.01). 

Table 1. Pre- and Post-test Results of CT Concepts Test. 
 

 
Note.** p<.01 

4.2. Results of the TPACK of Programming 
Questionnaire 

Significant improvements were found across all CK- related 
dimensions in TPACK after the completion of the course, as 
shown in Table 2. Of these, teachers’ TCK showed the 
greatest improvement, which indicated that they had gained 
much more confidence in using the tools in the App Inventor 
block-based programming environments to prospectively 
develop their students’ CT. 

Table 2. Pre- and Post-test Results of the TPACK of 
Programming Questionnaire. 

 

 
Note.*** p<.001, ** p<.01. a1 = Strongly Disagree; 2 = Disagree; 
3 = Neutral; 4 = Agree; 5 = Strongly Agree. 

4.3. Results of the Participants’ Evaluation of Teaching 
Survey 

At the end of the course, all 12 participants responded to the 
evaluation of teaching survey. Table 3 shows that all 
teachers agreed that they experienced the thinking process 
during the lessons and they considered that the teaching was 
of high quality. 

Table 3. Participants’ Evaluation of Teaching Survey 
Results 

 
Note. 1 = Strongly Disagree; 2 = Disagree; 3 = Agree; 4 = 
Strongly Agree. 

Table 4 shows that the most useful aspect of this course was 
understanding the importance of “to think” rather than 
rushing to code in CT learning. Tutor support was also 
essential in online learning. Two teachers appreciated that 
the teaching team installed all the apps to the tablet and 
allowed them to borrow and bring home before the course. 
They suggested that it was a good practice to upload the 
learning materials to the online platform so that they could 
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prepare prior to the lesson. They appreciated using these 
apps to play around and think along with the teacher and 
learning with their peers before starting to code in class. 

Table 4. Participants’ Reponses of the Evaluation of 
Teaching Survey 

 

5. IMPLICATIONS AND CONCLUSION 
This study reports a successful experience of conducting an 
online TDC on CT teaching. The results showed that 
teachers’ CT concepts, and TPACK of programming for CT 
development improved considerably after the course. The 
teachers’ positive experience and responses provided two 
practical implications for conducting TDCs on CT in the 
future. 
First, the design of the course required a sustained period of 
learning with the provision of theory-based CT CK and 
hands-on practice of programming pedagogies. It was 
important to offer sufficient examples to illustrate the 
teaching of CT with a focus on CT concepts, practices, and 
perspectives, as teachers needed to nurture their students’ 
CT in these three dimensions. Second, we need to enhance 
the teachers’ engagement in online course by adjusting the 
teaching pace and assigning sufficient tutors to provide 
support (Bao, 2020). In online teaching, we suggest 
adjusting the teaching pace to facilitate teachers’ successful 
programming experience rather than rushing to complete all 
tasks designed in the unit. Since more lesson time is used to 
finish the programming tasks, sometimes we need to give 
up the more difficult part of the tasks. We also suggest 
breaking down the programming tasks into sufficient sub-
tasks to make sure all participants can  follow and complete 
the sub-tasks one by one. Apart from adjusting the teaching 
pace and content, allocating sufficient tutors to render 
timely support to the online class is essential to enhance the 
participants’ engagement. While the instructors may not 
remotely view each participant’s progress during the online 
lesson, the tutors can provide immediate suggestion to 
participants in small groups during the programming 
activities, in particular testing and debugging. The greatest 
limitation of this study was its small sample size. We shall 
conduct similar evaluations in scenarios with more teachers 
to investigate the effectiveness of TDCs in online teaching 
mode. 
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ABSTRACT 
STEM education requires learners to utilise computational 
thinking process to solve complex problems. One such 
STEM activity is Logic Puzzle that was developed by Artec, 
a Japanese Research and Development education Company 
that established STEM education products such as robotics 
and logic puzzles for preschool children in Japan. Logic 
Puzzles are learning tools for children to strengthen 
numeracy skills as children learn to solve puzzle problems 
that relate to spatial relations of direction, position and 
distance, processes of ordering and patterning, matching, 
sorting, and comparing, counting, and applying simple 
measurements. These processes employ computational 
thinking which associates with four thinking steps, namely, 
decomposition, pattern recognition, abstraction, and 
algorithm. However, while applying computational thinking 
processes to solve problems in  logic puzzle activity, 
extended logic a thinking process that enables the mind to 
have multiple interpretations is also applied. This paper 
discusses how STEM: logic puzzle activity enables learners 
to apply computational thinking with the four thinking steps 
along with extended logic to solve problems in logic puzzle. 

 
KEYWORDS 
Artec logic puzzle, computational thinking, extended logic 

 
 

1. INTRODUCTION 
Logic Puzzle is related to STEM. Logic Puzzle consists of 
12 different themes across 48 lessons. The author shall draw 
on her own classroom experience of using the theme on 
balance game to elaborate how children learned to solve 
logic puzzle problems that relate to STEM. Children learn 
about law of physics concerning distribution of weight to 
balance 2 numbers of 3-dimensional (D) blocks. Children are 
required to count the numbers of blocks to assemble 3- D 
blocks based on 2-D pictures in the logic puzzle workbook. 
Children apply engineering skillsets to balance the blocks on 
top of each other without falling off. Consequently, 
technology is included as science and mathematics are 
involved to balance the 3-D blocks. The process of solving 
logic puzzle problems enables children to apply 
computational thinking in 4 thinking steps, decomposition, 
pattern recognition, abstraction, and algorithm (Wing, 2008, 
2011), (Selby, Cynthia & Woollard, John, 2013), (German, 
2019), (Charoula et al. 2016). The following sections discuss 
how learners apply the 4 thinking steps along with extended 
logic to solve logic puzzle 25 on balance game. 

2. COMPUTATIONAL THINKING, 
EXTENDED LOGIC AND LOGIC 
PUZZLE 25 

 

 
Figure 1. Logic Puzzle Box 

 

 
Figure 2. Logic Puzzle Workbook, Balance Game, Challenge 1.2 

The logic Puzzle box contains different types of Artec blocks 
and parts for learners to solve logic puzzle problems in the 
logic puzzle workbook. 

2.1 Algorithm 
Algorithm is primarily a guide or manual or set of 
instructions to work on a particular piece of work. 
(https://techterms.com/definition/algorithm). Learners have 
to follow the balance game instructions by building 1 set of 
green and yellow 3-D blocks from the given 2-D pictures in 
the workbook of challenge 1.2. Next, they have to position 
the green 3-D block on the given green rectangle and balance 
the 3-D yellow block on the latter without falling off. This 
also applies to the 3-D yellow block on the yellow rectangle. 
2.2 Abstraction 
The 3 phases of abstraction are singling out object from a situation, 
symbolising singled out object as a concept and arranging the 
singled-out object to connect to a system (Winter, 2014). The first 
phase is for learners to single out the relevant coloured Artec 
blocks to build 1 set of green and yellow 3-D blocks from 
the puzzle box. The second phase is to learn from the 
instructor concerning the purpose of putting 2 numbers of 3-
D blocks on top of one another to symbolise the concept of 
balancing. The third phase is for learners to arrange 2 
numbers of 3-D blocks to be put on top of one another to 
fulfill the concept of balance based on the rule or instructions 
of logic puzzle 25. 
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2.3 Decomposition 
The process of first phase of abstraction relates to 
decomposition in breaking down the matter (Donze & 
Wong, 2018) and segregation (Yamaguchi, 2017). Learners 
are required to break down the 2-D pictures from the 
workbook to single out the quantity and types of Artec 
blocks by segregating the required ones from the puzzle box 
to build the 3-D blocks. 
2.4 Pattern Recognition 
The third phase of abstraction relates to pattern recognition 
as learners have to find and recognise a pattern or sequence 
from 2 unassociated items (Ripley & Taylor,  1987), (Baron, 
2006). Learners have to find a sequence to put two different 
3-D blocks on top of one another without falling off to fulfil 
the concept of balancing, which relates to the 3rd phase of 
abstract as discussed in 2.2. 
2.5 Extended Logic 
Recognising the pattern of balancing both 3-D blocks in a 
vertical position, learners also apply extended logic thinking 
process that enables them to interpret in multiple 
perspectives (Wiseman, 2004) and (Kok, 2011). Learners 
also realised that there were more than 1 solutions to solve 
puzzle 25. Learners are motivated to think beyond one 
solution to solve the problem. In other words, the puzzle 
activity enables learners to extend beyond 1 solution to 
another, thus offering learners to be flexible in thinking  too. 
The entire process to solve Logic Puzzle in Balancing Game 
fosters computational thinking development. 

 

 
Figure 3. 

3. CONCLUSION 
The discussion shows that logic puzzle enables learners to 
apply 4 thinking domains of algorithm, abstraction, 
decomposition, pattern recognition and extended logic. Each 
thinking domain is applied interconnectedly to solve puzzle 
problem. For example, in the first phase of abstraction, 
learners have to break down the 2-D pictures to single out 
the relevant Artec blocks and parts to form 3-D blocks, thus 
relating to decomposition. The third phase of abstraction 
relates to the process of finding a pattern or sequence to put 
both 3-D blocks on top of one another to fulfil the concept 
of balancing. Learners also realise that there is more than 1 
solution to solve the puzzle problem because they are able to 
“stretch” or “extend” the answer into multiple interpretations 
that relates to application of extended logic. Therefore, logic 
puzzle designed by Artec company, a STEM activity enables 
learners to apply 

computational thinking skills along with extended logic to 
solve problems. 
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ABSTRACT 
In the digital age, the demand for digital talents in our 
commercial society has greatly increased. Digital talents 
mainly refer to the general names of professionals in various 
industries who can perform data analysis and forecast trends 
on the basis of the building data models. Taking Accounting 
Practice course as an example, this paper expounds the 
teaching model of integrating computational thinking into 
non-stem subjects. The main strategy adopted in this paper 
is to design different practical tasks according to three 
teaching difficulties. Based on the concept of 
constructivism, students can use different tools at different 
stages and find an efficient problem-solving model 

KEYWORDS 
Computational Thinking (CT), Constructivism, 
Accounting, curriculum design, framework 

1. INTRODUCTION 
In the era of data, enterprises are eager to make decisions, 
arrange inventory, advertise and deliver related consumer 
products by collecting and using data. Therefore, the 
demand for undergraduates with data analysis skills is 
increasing rapidly. To meet the needs of the business 
community, the Association of Advanced Business Schools 
(AACSB) takes data analysis as an essential skill into 
accounting practice and theory courses, and they have 
developed the A7 certification standard with independent 
AACSB certification. Accounting is a major that uses data 
analysis most in business disciplines, and undergraduates 
need to obtain more training in data analysis skills. 
However, it is not easy to liberate students from the 
complicated regulations and become masters of digital 
resources. 

Wing (2006, 2008) defined computational thinking as a 
general thinking to solve problems, which was developed 
by others (National Research Council 2010). The 
accounting courses aim to develop students' skills and 
enable them to understand how to use data to formulate and 
solve business problems. The injection of computational 
thinking provides accounting professionals with the 
opportunity to use technology to analyze data and solve the 
data-analysis problems. 

2. COMPUTATIONAL THINKING 
FRAMEWORK OF FINANCIAL 
ACCOUNTING 
In this paper, our goal is to provide the CT in a practical 
framework and procedures for implementing computational 
thinking in accounting majors. 

Based on the characteristics of accounting and the two 
dimensions of computational thinking, the research team 
proposes a theoretical framework for integrating 
computational thinking into accounting courses, as shown 
in Figure 1. 

 

 

Figure  1.  CT  framework for integrating computational 
thinking with Accounting work 

The proposed framework in accounting course has five 
components: Identification, Abstraction, Decomposition, 
Algorithm, as well as Evaluation (see Figure 1). 

3. EXAMPLE OF CT IN ACCOUNTING 
COURSE 
In this section，we provide an example from our framework. 
Here, we have carefully selected the professional course “financial 
statement analysis”, which has the closest relationship with data 
analysis skills in the accounting major as an example. 

At first, instructor divides courses into three levels (see Table 1 
below) according to the difficulty of using tools and course 
contents. 

 
 

Table 1. CT classify learning Content in three difficult 
level 
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Identification 
 
 
 
 
 
 

Thinking 
process 

 
 

Tool 
(software) 

 
Algorithm 

Basic (Easy) 
 

Identify 
subject, data, 
formula 
expression 

 
 
 

Single-step 
reasoning 

 
 

Bookkeeping 
software 

 
Basic formula 

Mastery(Medi 
um) 
Identify 
various 
indicators and 
can infer the 
relationship 
between each 
other 

Multi-step 
reasoning 

 
 

Mind-map; 
Excel; Tableau 

 
Weighted 
index 
processing 

Advance(Diff 
icult) 
Identify the 
correct data in 
a fuzzy data 
set 

 
 
 

Critical 
thinking and 
multi-level 
reasoning 

Excel; Open- 
source 
software 
Complex 
Model 

4. DISCUSSION AND CONCLUSION 
Our aim is to integrate computational thinking into practical 
courses of accounting major by providing a thinking framework. 
Applying computational thinking to practical courses and course 
evaluation through instructional design can encourage students to 
master the ability of using technical tools to solve practical 
problems, and enable students to have a thinking path to solve 
problems. The essence of the problem can only be discovered in 
the plight of nowhere to go. Through reasoning the  characteristics 
of the problems in the thinking process, students finally mastered 
the technical tools and solved the problems. Several elements of 
the framework require teachers to set the difficulty levels 
according to task content and students' technical ability in 
curriculum design. 
On the other hand, adding the 3A element of computational 
thinking to the grading index of students' homework will help to 
cultivate students' skills and application of learning CT in these 
three aspects. There are still many issues to be explored in CT 
application teaching of non-STEM disciplines, such as different 
students' preferences in the use of technology tools, and how to 

We take the chapter "Application of DuPont Analysis" as an 
example to briefly summarize the CT application project in 
Zhujiang College of South China Agricultural University. 

Chapter: Applications of DuPont Analysis 

Objective: Based on the concept of constructivism, using the 
model of computational thinking to solidify students' problem- 
solving path, to understand and master related concepts. 

Difficult level: Medium 

Methods: Group cooperation/individual completion of case 
analysis 

Tools: Mind -manager; Excel （software）  

Task: Provide complete financial data for five years and 
incomplete data for the sixth year of an enterprise. After mastering 
the index decomposition of DuPont analysis, students are required 
to predict the ROE index of the sixth year with 5- year data. 
Assessment: The instructor rates their answers based on the criteria 
listed in Table 2. 

Table 2. Evaluation Norms based on the elements of 
computational thinking 

reconcile the differences in learning time when different students 
master the use of tools. 
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Norm A+ 
Accuracy Completely 

correct 

Abstract The 
formula 
expression 
completely 
corrects. 

Algorithm Build 
Model and 
verify right 

 

Completely 
correct 
The 
formula 
expression 
completely 
corrects. 

No Model, 
Calculate 
right 

B 

Partially 
correct 
Can't 
complete 
all 
formulas 

C 

Few correct 
 
Can’t 
understand 
all formulas 

Flaws in 
the 
calculation 
process 

Flaws 
multi-step 

in 

calculations, 
but simple 
calculations 
OK 
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graphical  elements  function  like  Lego  blocks,  allowing 
users to write a multitude of programs or construct various 
types of visualizations, simply by arranging them in a way 
that “fits”. This bottom-up approach deconstructs 
the thought process behind the concept being taught. It not 
only greatly reduces the learning curve, but it also 
reinforces knowledge on the individual parts that make up 
a program or visualization in this case. 

In addition, Scratch by MIT’s success in adopting the 
visual programming paradigm reveals an approach to 
educating data visualization literacy that addresses the 
areas of improvement (AOI) found in existing tools: 

Table 1. Advantages of visual programming paradigm 

Advantages Existing Tool’s AOI 
A more powerful form of 
free-flow visualization 
Efficient and accessible 
collaborative learning 
feature 
Encourage critical 
analysis of any variety of 
visualizations 

3. VIZBLOCKS
3.1. Objectives 

Construct-A-Vis (Bishop 
et al., 2019). 
Construct-A-Vis, 
C’est La Vis (Alper et al., 
2017). 
C’est La Vis, 
Diagram Safari (Gäbler et 
al., 2019). 

ABSTRACT 

In the conversation of computational thinking as a vital 
ingredient of STEM, the role of data literacy education has 
been overlooked. Data literacy is fundamental to 
computational thinking, yet research on tools for data 
literacy is still in its infancy. This paper explores a way to 
promote data literacy education through a new platform 
called VizBlocks. It proposes that having an information 
repository of data literacy resources complemented by a 
visual programming tool, will enable K-12 children to 
creatively learn data visualization. 
KEYWORDS 
Data Visualization Literacy, Visualization in Education, 
Visualization with Children, Visual Programming Paradigm 

1. INTRODUCTION
In recent years, the argument for adding 
computational thinking (CT) to every child’s analytical 
ability as a vital ingredient of STEM learning sparked by 
Jeannette Wing has rallied educators, education 
researchers, and policy makers. An examination of the 
current state of discourse on computational thinking in 
K–12 education shows that with broadly agreed on 
definitions of CT in K-12 education, focus has been 
shifted to investigating ways to promote and assess the 
development of CT (Grover, & Pea, 2013). In the 
U.S., the AI4K12 Initiative is a developing 
guideline on artificial intelligence (AI) education 
for K-12 students. In Touretzky and Gardner- 
McCune’s recent work, they explore the key insights that 
K-12 students can gain into the big ideas of AI, and how 
the learning of AI may influence other aspects of 
their educational experience (Touretzky & Gardner-
McCune, 2022). 

Despite the conversation on promoting CT 
education broadening into the sub-branches of 
computer science, conversation on how data literacy 
education plays an important role in promoting CT has 
been overlooked. One of the core CT skills is 
representing data through models. This however cannot 
be achieved without a firm grasps of data literacy. An 
examination gauging the ability to interpret data 
visualizations indicates that the public has a low level of 
data literacy (Börner et al., 2015). This reflects that most 
people are unable to effectively comprehend 
valuable information using data visualizations which 
helps in learning, problem solving and making informed 
decisions. Education pertaining to data literacy is thus 
essential to be conducted in conjunction with CT 
education. 
2. VISUAL PROGRAMMING
PARADIGM
The visual programming paradigm which encodes 
source code as graphical elements lends very well for 
encoding key components (e.g., axis and labels) and 
data points that construct a data visualization as graphical 
elements. These 

The core objectives of VizBlocks are: 
1. Build a tool based on a visual block-based

paradigm to enable K-12 children to learn data
visualization literacy creatively

2. Build an information repository of data
visualization literacy resources

To allow children to learn data visualization literacy skills 
creatively, they can use a visual programming extension of 
Scratch called Vizblocks. By extending the successful 
model of Scratch, the goal is to allow children to creatively 
learn data visualization literacy skills whilst strongly 
enforcing knowledge on the individual parts that make up  a 
data visualization. 

The information repository would serve as a one-stop 
platform for elementary school teachers and students to 
access materials used for teaching and learning of data 
visualization literacy, access the Vizblocks tool as well as 
contribute to the resources. This in turn, builds a community 
of shared learning. 
3.2. Vizblocks Tool 

Figure 1. Vizblocks extension blocks to draw histogram. 
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Vizblocks currently supports the creation of 8 types of 
visualizations: 

1. Dot Plot 5. Histogram 
2. Pictograph 6. Line Chart 
3. Bar Chart 7. Scatter Plot 
4. Pie Chart 8. Heatmap 

 
The choice for these 8 types of data visualizations was made 
by studying Pre-K-12 Guidelines for  Assessment and 
Instruction in Statistics Education II (Bargagliotti et al., 
2020). 

 
Vizblocks is built with little assumption of children’s prior 
knowledge of Scratch. Most data visualizations can be built 
in a drag and drop manner without programming 
knowledge. However, since Vizblocks is built on Scratch, 
children can make use of existing Scratch blocks to read in 
data programmatically instead of using multiple similar 
blocks for the same purpose. An added benefit of learning 
with Vizblocks is that children might be keen to explore 
computational thinking to ease visualization creation. 
3.3. Vizblocks Information Repository 
The information repository alongside the VizBlocks 
extension has been built and is currently deployed at 
https://vizblocks.comp.nus.edu.sg. 

 
Users can access the Vizblocks tool through the website. by 
simply clicking the “new project” button or on existing 
projects. They can create, read, update, and delete projects 
on the cloud. 

 
The Vizblocks website also supports a “Studio” feature. 
From an educator’s point of view, a studio functions as a 
classroom where folders can be organized as submission 
boxes. It is also a place where teachers and students can 
communicate; From a student’s point of view, a studio can 
be a collection of similar projects, serving to organize 
projects for ease of access. It can also be a place for like- 
minded students to gather and learn from each other. 

 
Figure 2. Studio on the VizBlocks website. 

 

Figure 3. Users communication in Studio. 
 

In addition, educators can download lesson plans with 
detailed step-by-step guides on the website. There is also an 
assessment test functionality to help educators gauge their 
students’ performance. 

 

 
Figure 4. Pie Chart Pre-Assessment Test on VizBlocks 
4. CONCLUSION 
For K-12 children and educators who need to receive or give 
education on data visualization literacy, VizBlocks is both 
an information repository and visual programming tool that 
allows creative learning of data visualization literacy 
through a visual block-based paradigm, easy access to 
relevant materials and a community of shared learning. 
Unlike existing tools such as C’est La Vis, Construct-A-Vis 
and Diagram Safari, VizBlocks is a more powerful free-
form visualization tool. Its bottom-up approach not only has 
a low barrier of entry but also reinforces knowledge on the 
core concepts of visualizations thereby equipping children 
with the skill to critically analyze any variety of 
visualizations. Additionally, it has an extensive support for 
collaborative learning that is not constrained by physical 
proximity and additional hardware. 
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ABSTRACT 
Learning programming is never easy since not only the 
knowledge but also the strategies to use the knowledge are 
necessary for programming. Although board games have 
been recognized as a promising approach to teaching 
computational thinking and programming, they are usually 
limited to turn-based design and lack the training of thinking 
a plan. On the other hand, learning with mini- languages and 
visual programming basically needs the use of computers 
and thus requires the ability to operate computers. We 
implemented the stored program concept and combined it 
with the idea of making thinking visible  in a multi-layer 
board game to help to learn programming. Learners’ 
thinking results of programming can be reflected on this 
new kind of board game and synchronized with problems 
along with solutions. We conducted an experiment on the 
learning performance improvement by comparing it with a 
well-designed board game for learning computational 
thinking, and the results showed the effectiveness of using 
such a multi-layer board game. 

 
KEYWORDS 
programming, computational thinking, board games, make 
thinking visible, teaching and learning strategies 

 
1. INTRODUCTION 
Programming skill might not be an ability that is directly 
related to one’s professional, but it is generally agreed that 
it is useful in everyone’s career. Over the past decades, 
programming is moving into many of the domains 
previously dominated by writing (Vee, 2013). Without 
programming, as Soloway (1993) claimed, we will have cut 
off half the power of computational medium. Programming 
is further conceptualized as computational thinking (CT), 
which refers to a universally applicable attitude and skill set 
for everyone (Wing, 2006). The study conducted by Hsu et 
al. (2018) showed that CT had gained the attention of 
scholars and educators, and the subject of programming 
constitutes the biggest proportion of CT research papers. 

Programming is the ability to make digital technology do 
whatever, and some call this skill human-machine 
interaction (Prensky, 2008). A recent study conducted by 
Siegmund et al. (2020) even showed an interesting result 
that a clear left-lateral activation during program 
comprehension. Programming empowerment was defined 
as a person’s perceived autonomy and competence to use 
CT effectively (Kong et al., 2018). Papert (1972) also 

argued that providing children with access to computers 
can give them the power to invent. Interacting with digital 
media is the ability to read while being able to create our 
own games, animations, or simulations is the ability to 
write (Resnick et al., 2009). However, learning 
programming is never easy since not only knowledge but 
also the way knowledge is used or applied, i.e., strategies, 
are necessary for programming (Davies, 1993). Robin et al. 
(2003) recommended focusing on the combination and use 
of new language features besides the learning of those 
features, and the result of a survey conducted by Lahtinen 
et al. (2005) also supports this argument. The variability in 
program design shows the interaction with programmers’ 
knowledge (Rist, 1990); this makes programming hard to 
learn and master. Détienne and Soloway (1990) identified 
different strategies involved in program understanding. 
Brooks (1983) noted at least three distinct sources of 
differences in the ability of program comprehension: 
programming knowledge, domain knowledge, and 
comprehension strategies. 

The approaches to teaching novices programming include 
board games and educational programming environments. 
When we reviewed these approaches, we made three 
observations. First, invisible programming thinking makes it 
difficult to learn. Programming is a process of thinking 
abstraction and composition, and such thinking is invisible. 
Second, directly learning with computers is difficult to 
novices, even though many mini-languages and visual 
environments are given. We argue that it is difficult to  trace 
the execution of programs and, to human brains, running 
programs on computers is too fast! Novice programmers 
need to slow down the execution and see the states. Third, 
the lack of teaching how to think a whole  plan in existing 
programming board games. Programming is thinking a 
whole plan to deal with all situations in advance rather than 
making every decision individually. The devised plan 
actually results in a stored program that can be loaded and 
modified for executing again; it is the basics of computers. 
These observations led us to develop  a board game that can 
visualize learners’ thinking results  of programming on top 
of problems. 

 
2. RELATED WORK 
2.1. Board games for CT and programming 
Board games are cost-effective instructional materials that 
can be integrated into a set of game-based learning strategies 
(Santos, 2019), and the game was one of the main 
pedagogies in CT research (Tang et al., 2020). Many 
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board games have been developed to improve  students’ CT 
and programming achievement with or without the help of 
technology. Kuo and Hsu (2020) utilized a board game 
named Robot City in their study and proved that the game 
could deepen students’ higher-level thinking and motivate 
students to learn. Wu et al. (2018) designed a CT board 
game, namely Interstellar Explorer, to develop players’ 
logical thinking, problem-solving ability, imagination, and 
creativity. Yen & Liao (2019) showed that the use of board 
games as teaching material for programming courses could 
significantly improve the learning outcomes of field-
independent learners. These research results show that 
board games are a promising approach to cultivate learners’ 
knowledge of CT and programming. To teachers, the cost-
effective feature makes it easy and simple to adopt board 
games in classrooms. To learners, board games are realistic 
and tangible. If computer concepts can be properly  
transformed into the rules and elements of board games, 
learners may get the computing ideas without computers. 

 
2.2. Mini-languages and visual programming 
Mini-languages and visual programming are other 
approaches to teaching CT and programming. For the 
purpose of education, giving learners a small set of language 
elements, natural-language-like syntax, or visual interface 
for writing code can avoid the difficulty in learning a 
practical programming language in the industry. LOGO and 
the use of Turtle graphics is a famous example (Papert, 
1980). With a small syntax and simple semantics, even a 
very young one can have a grip on programming 
(Brusilovsky et al., 1997). Programming is also regarded as 
a direct approach to foster CT (Lye & Koh, 2014). There are 
also many visual programming environments designed for 
education, including Scratch, App Inventor, and Alice. This 
approach greatly lowers the threshold of learning 
programming. Chang (2014) demonstrated the effects of 
using the two visual programming environments and 
explored the relationships among learning engagement, 
learning anxiety, and learning playfulness. However, this 
approach directly relies on computers, and they might be the 
next learning materials after learners got the idea through 
board games. 

 
2.3. Make thinking visible 
Making thinking visible is to have a window into learners’ 
thinking by some sort of organizing structure such as 
thinking routines (Perkins, 2003; Tishman & Palmer, 2005; 
Ritchhart et al., 2011). It is developed by Project Zero, an 
educational research group at Harvard University. Making 
thinking visible is to know what students understand and 
how they are understanding. One of the ways to make 
thinking visible is to surface the many opportunities for 
thinking during subject matter learning, and thinking 
routines are helpful tools in the process. Each thinking 
routine is made up of a series of steps helping learners to 
think. By operating such a pattern, we can scaffold learners’ 
thinking and make that thinking visible. 

Programming can be made visible if we properly design a 
thinking module and thinking routines for it. Like other 
thinking, programming thinking is also pretty much 

invisible. Our observation is that invisible thinking is the 
reason why programming is difficult for novices. The 
thinking happens under the hood, within our mind-brain, 
and this makes it difficult for experts to teach novices. It is 
more difficult when we write and run programs on 
computers since computers run so fast and learners can only 
see the results and trace them on code. We based our 
research on the idea of making thinking visible to concretely 
design the system along with thinking routines. 

 
2.4. Stored program and problem solving 
The ability to store programs in computers makes it possible 
to not only execute but also modify programs (Aspray, 
1990). The stored program concept is based on the universal 
Turing machine and included in the von Neumann 
architecture, which is employed by almost every computer 
in the past 70 years. 

The process of programming can be regarded as thinking a 
whole plan based on the stored program concept. The plan 
is to deal with all situations in advance rather than making 
every decision individually, and we need to revise programs 
again and again. Shneiderman (1980) mentioned the 
importance of planning in computer programming based on 
the four stages in problem-solving given by  Polya (1957): 
understanding the problem, devising a plan, carrying out the 
plan, and looking back. Bishop-Clark (1992) examined the 
problem solving of a novice programmer writing a first draft 
program and suggested instructors should consider 
emphasizing the planning stage. Unfortunately, so far as we 
know, existing board games for teaching CT and 
programming encourage learners to think every small step 
since these existing  board games are basically turn-based. 
Awareness of runtime is very important as well. Some 
conditions cannot be determined until we really execute 
programs. The usage of branches (if-else) is meaningful 
only if we don’t know what the conditions exactly are. 

 
3. OUR METHODOLOGY AND THE 
MULTI-LAYER BOARD GAME DESIGN 
In order to help novices learn programming, we developed 
a thinking module to make the thinking results of 
programming visible and traceable and designed a board 
game with this thinking module. 

Since programming is a process of thinking, it is quite 
invisible. When a programming problem is given, 
programmers need to think about how to use their 
knowledge with strategies to write their solution. The 
problem is naturally given in the form of words, i.e., a 
description of the problem, while the solution is a piece of 
code in terms of decomposition: sequences, branches, and 
loops (Dahl et al., 1972). This means there is a gap between 
programming problems and their solutions, and 
programming itself is to cross the gap. Programming is 
invisible and difficult so that learning programming takes 
time and novices tend to drop at the beginning. In order to 
increase learners’ development at the beginning to prevent 
novices from dropping, we developed a thinking module to 
bridge the gap between the words of problems and the code 
of solutions, as shown in Figure 1. Thinking from 
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word-level to code-level is invisible, and making thinking 
visible can make it much easier to learn (Perkins, 2003). 

 

Figure 1. The thinking module bridges the gap between the 
words of a given problem and the code of its solution. 

 
3.1. The thinking module 
The design of our thinking module is shown in Figure 2, 
which is a multi-layered grid that visualizes the thinking of 
programming. Our methodology is making problems, 
solutions, and thinking results of programming visible by 
the multi-layered grid along with thinking routines. In this 
thinking module, problems can be visualized on top of the 
grid with conditions and constraints, and the solution to a 
problem is a route on the grid. The grid at the bottom is a 
printed matter, which corresponds to the story map in many 
board games. The problem layer represents obstacles on the 
grid, i.e., rocks and lakes in other map-based strategy board 
games. The transparent layer is a thin clear plastic sheet, like 
the transparency (slide) used for projectors before, where 
we can draw and erase. With the transparent layer, learners 
can draw their thinking results on top of the problem, i.e., 
overlapping the thinking layer with the problem layer, as 
shown in Figure 3. This makes learners’ thinking results 
visible and traceable. Learners can repeatedly draw, 
observe, and modify the route to visualize their thinking 
results. Furthermore, learners can synchronize their 
thinking results with the problem to find out the error or 
even synchronize with a given solution. This multi-layered 
grid can make problems, solutions, and learners’ thinking 
results visible. 

 

 
Figure 2. The design of our thinking module. 

 

Figure 3. Learners can draw their thinking results of 
programming on the transparent layer (the red dotted line). 

 
3.2. The board game design 
We designed a multi-layer board game based on this 
thinking module. As shown in Figure 4, there are a grid 
board, many obstacles, and a set of command cards in the 
board game. The obstacles are placed on the grid to 
represent the problem, and learners need to list command 
cards in order to move from the Start at the left-bottom to 
the Goal at the right-top. The rule is similar to many map- 

based strategy board games---giving commands to control 
the movement. The no-entry sign means the places that 
cannot be crossed. The player can use command pieces  like 
Forward, Turn-left, Turn-right, If-then, and Do-while to 
conduct the movement. For If-then and Do-while command 
pieces, a flag is used as the timing to change or stop the 
action. For example, using Do-while along with a flag and 
Forward means going forward until encountering the 
specified flag. Before putting these command pieces 
together, learners can draw the route by pen and try to figure 
out the commands to use. In fact, the used commands form 
a program written in a mini-language, and the drawing on 
the transparent layer is the program execution. This design 
asks learners to think like a computer and visualize the 
execution. The problem shown in Figure 4 is a little hard 
since it needs the use of sequence, branch, and loop to solve. 
Figure 5 shows another problem where If-then and Forward 
are given along with many animal pieces and food pieces. 
The  player can only move on the places without a no-entry 
sign and give specific foods to different animals according 
to the rules, for example giving meat to lions. In Figure 5, a 
learner is drawing the route by pen and listing the commands 
to use. 

 

 
Figure 4. A draft version of our multi-layer board game. 

 

Figure 5. A learner is drawing the route and listing the 
commands to use. 

Unlike the design in existing board games, a whole plan 
needs to be set up first for a given problem rather than 
considering a solution for the current situation every time. 
This design follows the stages in problem-solving  analyzed 
by Polya (1957). It helps learners to understand the problem 
with visualized elements on the problem layer and 
encourages learners to devise a plan. After the plan is 
devised, carrying it out on the thinking layer step by step 
and looking back to check the result. Our design helps 
learners to think like what computers actually do. By 
overlapping the thinking layer with the problem layer and 
the solution layer, it is easier to figure out where the error is; 
learners’ programs are visible and traceable. The thinking 
layer can also be kept as a learning portfolio or compared 
with others’ thinking results. Furthermore, the thinking 
layer is a stored program, which can be overlapped with the 
problem layer next time to execute 
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again. The design itself is analog and unplugged, but it 
emulates computer behavior. For those who need guidance, 
and additional transparency can be inserted as the 
scaffolding layer between the thinking layer and the 
problem layer to help learners write down parts of the 
solution gradually. 

Although we follow the way of traversing upon the grid in 
existing CT board games, there are three main differences 
from them, as shown in Figure 6. First, learners can directly 
draw and erase on top of the problem to trace the movement. 
By observing the drawn route, learners can understand 
where the error is and how to fix it. Second, unlike other 
turn-based board games, it requires learners to think and 
draw a whole plan. The drawn route is a complete plan to be 
carried out. Third, our design trains learners to simulate the 
execution as computers. The route drawn on the transparent 
layer represents the stored program concept, and learners 
can simulate the execution slowly to understand what 
computers do. 

 

Figure 6. The transparent layer make programming thinking 
visible and traceable. 

 
3.3. The learning design 
This design is based on cognitive constructivism. Instead of 
teaching how to program directly, our board game lets 
students improve their understanding through experiences. 
The use of familiar and concrete models increases novices’ 
understanding of computers and programming (Mayer, 
1981). Transforming programs to the routes on a grid is such 
a concrete model. We followed the idea of making thinking 
visible (Ritchhart et al., 2011) and concretely applied it to 
our design. Thinking routines for programming are given: 

“Which commands should we  use  and  compose?”  “What 
is the result of executing this single command?” “How to 
modify this command for fixing the error?” 

Teachers can regularly use these thinking routines to 
develop student thinking of programming. Our design 
makes it possible to synchronize thinking results with the 
problem and compare thinking results with the solution.  To 
students, programming is a process of decomposition. It is 
decomposing a program into smaller parts in the form of 
sequence, branch, and loop. The design of our thinking 
module makes every decomposition visible and traceable. 
On the grid, sequences are mapped to a block as in other 
board games, i.e., every sequence makes a step forward, and 
branches are transformed to matching different conditions, 
and loops are represented with matching the sentinel. Note 
that the flags in Figure 4 are sentinels in 

loops and the question marks in Figure 5 denote runtime 
conditions. Teachers ask students to put flags to specify 
when the loop should be stopped and write branches in 
advance to handle different possible conditions. 

What we want to teach is to make a whole plan in advance 
for a given problem and allowing to trace step by step 
instead of thinking every small step. What learners thought 
can be drawn and stored; is to teach the stored program 
concept. We hide some conditions to ask learners to use 
branches meaningfully; it is to teach being aware of runtime. 

 
4. EXPERIMENT RESULTS AND DATA 
ANALYSIS 
To know the learning performance improvement on 
programming using our multi-layer board game, we 
conducted an experiment by recruiting 60 participants, 
randomly divided into two groups to learn with different 
board games, and compared the learning achievement of 
programming between two groups. All subjects are the 
students from two universities in Taiwan, and the learning 
materials used in the control group and experiment group 
are the Robot City board game and our multi-layer board 
game, respectively. In the Robot City board game, players 
can collect resource pieces for the given tasks and control 
their avatars' movement (robots) by command cards. Note 
that Robot City is a multiplayer board game, while the 
current version of our board game is to encourage players to 
discuss and think of the movement together. We chose 
Robot City for comparison since it is a famous map-based 
strategy board game in Taiwan, and the elements in our 
board game are very close to it, except our board game has 
a transparent layer and non-turn-based design. 

 
4.1. Measuring tools and experimental procedure 
To understand the learning performance improvement, we 
designed eight questions for pre-test and post-test: 3 for 
sequence logic, 3 for branch logic, and 2 for loop logic. In 
the preparation of pre-test and post-test, Carnegie Mellon 
University’s definition of CT and Oracle reference for 
programming are used as references. 

The experimental procedure is shown in Figure 7. In our 
experiment, we exclude any subjects who already learned 
programming. In the beginning, we gave a pre-test to  know 
how they understand CT and programming. Then we gave 
an introduction to the learning material, i.e., how to play the 
Robot City board game and our multi-layer board game for 
the control group and the experiment group, respectively. 
Then we gave subjects 60 minutes to play  and conducted a 
post-test after that; we assume it is  enough to get a brief 
understanding of the given board game. Due to the 
limitations on the number of players in a board game, we 
arranged 2~4 subjects in a game for both groups. Note that 
for the case of the experiment group, we further divided the 
game into three parts:  sequence, branch, and loop. In other 
words, subjects in the experiment group are asked to solve 
the three kinds of problems in order during the 60 mins. On 
the other hand, subjects in the control group followed the 
rules in Robot City to freely play and learn the three kinds 
of logic. 
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Figure 7. The experimental procedure. 

 
 

Group 
 
 

Experiment 

Total Sequence Branch Loop 

PreTest PostTest PreTest PostTest PreTest PostTest PreTest PostTest 

Mean 24.7667 34.6000 12.9333 14.2000 7.9333 12.5333 3.9000 7.8667 

N 30 30 30 30 30 30 30 30 

Std. Deviation 4.03163 4.85372 1.99885 1.34933 2.25806 2.81294 1.64736 2.67470 

4.2. Experiment results and discussion 
After we collected and analyzed the data, we found that  
the data are not normally distributed. In both pre-test and 
post-test, the skewness and kurtosis values of the two 
groups are mostly more than ±1. A possible cause might  
be the background of the individual subject. Unlike the 

Control 
Mean 25.8148 29.3704 13.8519 14.2963 8.7778 10.1852 3.1852 4.8889 

N 27 27 27 27 27 27 27 27 

Std.  Deviation  3.38591  4.12499  1.97497 1.70553 1.84669 2.20205  1.77671 1.78311 
 
 

Table 3. Mann-Whitney U test of the two groups. 
Group N    Mean Rank U p 

Experiment 30 27.77 833.00 

students in a normal class who are usually selected based on 
some rules or entrance exams, we simply recruited subjects 
from several departments in the universities. Another 
possible cause might be the design of the test sheet, which 
might not make the variations in the value broadly meet the 
normal distribution criteria. As shown in Table 1, the 
Shapiro-Wilk significance values for each test 

PreTest 
 
 
 

PostTest 
 
 
 

PreTest 

 
Control 27   30.37 820.00 

 
Experiment     30    37.17   1115.00 

 
Control 27   19.93 538.00 

 
Experiment     30    25.43    763.00 

Control 27   32.96 890.00 

368.000 .550 
 
 
 

160.000 .000* 
 
 
 

298.000 .064 

are mostly smaller than .05, which means the data are not    
normally distributed. 

 
Table 1. Tests of normality. 

 
 

Kolmogrov-Smirnov  Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

PreTest .177 57 .000 .944 57 .010 

 
PostTest 

 
 
 

PreTest 

Experiment     30    27.90    837.00 
 

Control 27   30.22 816.00 
 

Experiment     30    27.22    816.50 
 

Control 27   30.98 836.50 
 

Experiment     30    35.58   1067.50 

 
372.000   .484 

 
 
 

351.500   .352 

Total 
 
 

Sequence 
 
 

Branch 

 
 

PostTest .121 57 .000 .946 57 .013 

PreTest .299 57 .000 .763 57 .000 
 

 

PostTest .445 57 .000 .561 57 .000 

PreTest .274 57 .000 .877 57 .000 
 

 

PostTest .263 57 .000 .827 57 .000 

PreTest .279 57 .000 .800 57 .000 

PostTest 
 
 
 

PreTest 
 
 
 

PostTest 

 
Control 27   21.69 585.50 

 
Experiment     30    32.23    967.00 

 
Control 27   25.41 686.00 

 
Experiment     30    36.75   1102.50 

 
Control 27   20.39 550.50 

207.500 .001* 
 
 
 

308.000 .095 
 
 
 

172.500 .000* 

Loop            
PostTest .186 57 .000 .881 57 .000 

 
 

Table 2 shows the mean values of pre-test and post-test for 
the two groups, where both Robot City and the multi-layer 
board game improved the learning in all three kinds of logic. 
However, we found the multi-layer board game has 
succeeded in providing a significant increase in the aspects 
of branch logic and loop logic. Table 3 shows the results  of 
the Mann-Whitney U test, which can be used to analyze the 
data that we cannot assume normality in both groups. In 
Table 3, there is a significant difference between the 
experiment group and the control group in the post-test 
result regarding the aspects of branch logic and loop logic. 
According to the information in Table 2 and Table 3, we can 
know that the subjects learned the concept of branch and 
loop better with the multi-layer board game. The use of a 
transparent layer might help the reflection of thinking 
results, and carrying out a plan as executing a stored 
program might give a better understanding of program 
execution. For the branch logic, learners may also know 
how to use if-else better since we hide several runtime 
conditions and ask learners to think a whole plan in advance. 
As to the loop logic, we use sentinels instead of counters to 
help learners to understand how to construct loop logic. 

*p < 0.05 
Table 2. Mean values of test results of the two groups. 

The experiment in this study also shown the effectiveness 
of learning with CT board games such as Robot City. 
Besides, most subjects also mentioned that they had more 
fun in playing Robot City and the multi-layer board game 
focuses more on learning. The current version of our board 
game cannot attract children and needs learners to discuss 
initiatively for controlling the same avatar. 

5. CONCLUSIONS 
We followed the idea of making thinking visible to develop 
a thinking module for learning programming and designed 
a multi-layer board game with a transparent  layer. Such a 
new kind of board game is based on the stored program 
concept and asks learners to think of a whole plan. The 
experiment results showed that such a multi-layer board 
game could indeed make an effective contribution to the 
learning performance improvement on programming. This 
paper reports our first step toward a board game for learning 
programming. We plan to fuse more computer concepts in 
the multi-layer board game, and making the game more fun 
is included in our future work as well. 
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Due to the rapid change brought by new emerging 
technologies, computational thinking (CT) has become a 
fundamental skill. Contrarily to the large number of studies 
focused on introducing CT in STEM subjects, we direct our 
research towards a broader context, that of design. Given the 
importance of CT concept acquisition in terms of future 
design thinking education, this paper presents a qualitative 
study at the intersection of teaching design thinking and CT. 
We develop an innovative framework to integrate the two 
processes in design courses and we explore its potential and 
limitations with design lecturers who could potentially 
introduce the framework in their teaching practice. 
Moreover, we reflect on what needs to change for CT 
education to be successfully implemented in design schools 
across the world. This study refers to the example of Italy 
which, similarly to other countries, could constructively 
improve its design teaching with CT to secure its large 
design industry for the future. 

KEYWORDS 
computational thinking, design thinking, design university 

1. INTRODUCTION
1.1. Context 
Technological progress directly impacts the emergence of 
new skills required by workers. The integration of these 
skills should be at the center of attention for those 
educational institutions preparing students entering the job 
market with relevant courses and subjects. In particular, the 
fourth industrial revolution gave life to fast-moving 
technological trajectories enabling new forms of creation 
based on the development of augmented, ubiquitous and 
embedded technologies, where computation sits at the core 
of the design production (Schwab, 2017). Therefore, we 
argue that computational thinking (CT) should be integrated 
into design to support its rapid evolution in the technology 
era. By teaching designers how computers think and 
integrating it within their practice, they can better cope with 
emerging technologies. CT prepares students to become 
better problem solvers and critical thinkers (DeSchryver & 
Yadav, 2015). 

Existing research successfully explored possible ways of 
introducing computational thinking concepts in university 
non-STEM subjects. For example, Basawapatna et al. (2011) 
applied the CT process to game design. However, existing 
research in the design field still considered CT only as a hard 
skill, merely linked to coding or 3D modeling. Given the 
lack of studies considering CT as an integral to the design 
process, we identify a research gap in the field of CT for 
design education. This work aims to fulfill this gap by 
proposing a framework implementing CT into design 
thinking which could be applied to a broad variety of design 
classes. 

This  paper  is  organized  as  follows:   first,  we present the 
affinities between design thinking and CT. Subsequently, 
we introduce and define a proposed framework combining 
the two processes. Through a series of interviews, we test 
how the framework could be implemented into real-life 
design studios and workshops. The resulting findings will 
lead into a discussion which aims to identify its positive 
aspects and limitations. We finally describe the further 
research that has to be developed in order to better 
integrate CT in design thinking. 

1.2. Affinities between CT and design 
To ensure coherence throughout the article, we adopt Wing’s 
definition considering CT as “an approach to solving 
problems, designing systems and understanding human 
behavior that draws on concepts fundamental to computing” 
(Wing, 2008). According to Wing, learning CT concepts is 
now seen as a practice for leading students to develop more 
transversal skills which do not just include programming. As 
reported by Soleimani (2019), computation should be 
considered as a thinking process, as “it is about effectively 
structuring information and developing logics”. Tabesh 
(2017) proposed a four-stage model of the computational 
thinking process: decomposition, pattern recognition, 
abstraction, algorithm design. Following these premises, we 
argue that the implementation of CT in design education 
should integrate the processes of design, rather than the tools. 

In one of his writings, Denning analyzed the potential in 
combining CT and design thinking. He stated that “If the two 
kinds of thinking were blended together, some significant 
advances in software design and development would surely 
follow” (Denning, 2013). Moreover, Shute, Sun & Asbell- 
Clarke defended that CT could help designers go beyond the 
limits of design thinking, which is still too tied on “product 
specifications and the requirements imposed by both the 
human and the environment” (Shute, Sun, Asbell-Clarke, 
2017). These statements lay the foundation to our proposal. 

The way in which design is taught among most universities 
around the world is by giving value to the development of a 
design process. This plays a crucial role in guiding designers 
across projects, whether they are designing objects, clothing, 
interfaces or interiors. Similarly to CT, the design process 
cannot be simplified into a problem-solving activity (Goel & 
Pirolli, 1992), yet it is still based on an iterative and step-by- 
step sequence of actions (Lawson, 2006). Many design 
processes have been created, each one with a specific focus, 
content, structure or graphical notation (Bobbe, Krzywinski 
& Woelfel, 2016). Despite that, all processes show many 
similarities (Eckert & Clarkson, 2005). 

For this study, we focused on the widely-known design 
thinking process developed by Stanford d.school (Plattner et 
al., 2009). This process integrates most of the existing ones; 
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it is taught in many design universities and has been 
promoted by numerous companies from the design field, 
including Apple, IDEO and SAP (Efeoglu et al., 2013). 

1.3. Framework 
Our proposed framework associates the four stages of CT 
(decomposition, pattern recognition, abstraction and 
algorithm creation) defined by Tabesh (2017) to the five 
stages of Design Thinking (empathize, define, ideate, 
prototype and test) described by Plattner et al. (2009). 

Previous research has proven that the best way to teach 
students about CT is by associating its basic principles to 
already-known practices within their subject (Lu & 
Fletcher’s, 2009). Moreover, the framework is shown in a 
circular ring exemplifying it as a process that never ends. 
The proposed framework is visualized at Fig.1, followed by 
a description of how stages are linked to each other. 

 

 
Figure 1. “Circular Framework For Computational And 
Design Thinking Processes”. Design Thinking process 

(inner circle) and CT process (outer circle). 

• Empathize: it is the stage in which designers come to 
understand people who experience a certain need or 
problem through ethnographic (or desk) research and 
observation. Through decomposition (CT), designers 
deconstruct a problem in many parts. 

• Define: designers analyze deconstructed information and 
use the CT principle of pattern recognition to formulate 
insights: non-obvious, actionable statements that show a 
deep understanding of the investigated problem or need. 
They lead to a design challenge. 

• Ideate: the phase in which the challenge is taken on and 
multiple solutions are generated to address it. A degree of 
openness to outer influences is required in order to produce 
innovative ideas. Abstraction is the CT principle that lets 
designers expand the solution space into other contexts and 
ultimately find a wider range of solutions. 

• Prototype and Test: through prototyping designers 
produce artifacts that represent the solution in its current 
status. By testing the solution, designers evaluate it and 
identify areas of improvement. Subsequently, the whole 
process is iterated until the final solution is implemented, 
following a process of algorithm design. 

In order for students to fully take advantage of the 
framework, they must put it into practice in their design 
studios. Following Volcz (2018), we suggest alternating a 

series of 4 to 5 theoretical lectures, one for each stage of the 
framework, with hands-on practice, which can be achieved 
in design studios or workshops. Directions on the specific 
deliverables should be defined according to the specific type 
of project. We will do it by applying it to three exemplary 
design classes. 

2. METHODOLOGY 
To further analyze how the framework could be put into 
practice in a real design course, interviews were conducted 
with three prominent lectures of the School of Design of 
Politecnico di Milano. We kept our research qualitative 
rather than quantitative to collect in-depth insights tied to the 
specific needs of each design course taught by each 
interviewee. These interviews were semi-structured and 
consisted of a set of priorly-defined open-ended questions. 
They took place via an institutional teleconferencing 
platform and lasted about one hour each. Interviews began 
by questioning interviewees’ previous knowledge and CT 
understanding in relation to Wing’s views. After that, 
lecturers were shown the framework we developed. The 
discussion was structured by analyzing each phase 
individually, asking the interviewees to comment on its 
consistency and applicability in the didactic context, 
concentrating on their research area. In regard to the latter 
comment we asked interviewees to also provide real 
examples in order to make the modus operandi more 
understandable. 

Unsure on their level of CT understanding, we shared an 
introduction to our study with the participants prior to our 
interview. We ensured that all our participants knew that we 
were referring to Wing’s definition of CT and we gave them 
the chance to ask for clarifications. Therefore, this section 
was a chance for making sure that participants understood 
the purpose of our study, thus ensuring valuable feedback. 
After our introduction, interviewees focused on the 
framework. More specifically, they shared their general 
impressions on how the CT process could enrich their 
students’ learning outcomes. Then they went through each 
individual step of the framework and theorized some 
possible hands-on assignments based on the current courses 
that they taught. Finally, they shared eventual perplexities or 
improvements to the framework. Participants were asked to 
think out loud, allowing us to follow their reasoning and 
ensure that their suggestions were reliable and logical. 

Collected data was analyzed through affinity diagramming 
to organize what could seem unstructured or dissimilar 
qualitative data (Hartson & Pyla, 2012). Contextual inquiry 
data containing quotes from the interviews was fragmented 
into post-its. Then the post-its were clustered according to 
their similarities. Finally, clusters were atomized into 
concise insights. 

3. FINDINGS 
The table below (Table 1) reports the results of the 
interviews regarding some practical ways in which the 
Circular Framework for Computational and Design Thinking 
Processes (Fig. 1) could be implemented in a design course. 
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Table 1: Application of the framework to some design courses 

4. DISCUSSION
4.1. Positive aspects of the framework 
As reported by the interviewed lecturers, the mathematical 
and programming skills of design students in Politecnico di 
Milano are perceived as relatively low when compared to the 
European standards. Participants shared the common belief 
that this was due to the students’ low interest in these 
subjects and a lack of depth being offered in these areas. It 
was thus important to create an accessible frameworkfor 
students without an advanced knowledge in math or coding. 

“By looking at the background our students have, this 
[framework] is the only way in which design students could 
ever understand it: by comparing it to their reality.” 
(Lecturer in Methods and Instruments for Design) 

Design lecturers referring to their previous experiences 
generated another powerful finding: by integrating CT in the 
design process, students learn how to be more versatile. For 
example, a participant reported the example of a shoe design 
project, where students incorporated computational tools in 
the “empathize” stage. He mentioned the act of generating 
new insights by studying the aerodynamics of distinct solid 
shapes instead of referring to existing solutions. By quoting 
the lecturer: 

“Once implemented in design processes, students who know 
computational thinking will be able to ask the right questions 
about their projects. They will learn how to go beyond the 
study of existing products by abstracting the modalities with 
which a product is used.” (Lecturer in Knitting Design) 

Moreover, lecturers perceived it as being particularly 
suitable for advanced design courses and as a research tool 
where students who are already familiar with the design 
process can confidently change their workflow and apply CT 
to design innovative projects. 

“To get the full potential out of this framework, I would 
rather introduce it in the Master’s course I’m teaching, 
rather than the Bachelor’s one.” (Lecturer in Shapes and 
Algorithms for Generative Design) 

“This framework is more linked to our research fields, as it 
allows a deeper understanding of the topic.” (Lecturer in 
Methods and Instruments for Design) 

4.2. Limitations of the framework 
During the interviews, we came across different definitions 
of CT introduced in the examples given to us by the lectures, 

causing time to be spent to ensure a common understanding. 
Additional efforts must be put into establishing a shared 
understanding, prior to CT being introduced into design 
classrooms within an institution. 

Another limitation recognized by the interviewees regarding 
the proposed framework concerns the fact that our 
association of CT and design thinking works only at an 
introductory level and cannot be applied to learn topics too 
far from design. The idea of using our framework solely in 
an introductory level is also partially due to a lack of skills 
of students regarding computation. According to our 
interviewees a greater knowledge of hard sciences would be 
needed to be able to fully understand the CT process. 
However, the introduction of hard science subjects could be 
a deterrent for students to enroll: 

"Students who come to design school do not like math. This 
implies that if we add more math courses, less students will 
apply, and we will lose funds. Many students coming from 
high schools are frightened by these subjects." (Lecturer in 
Methods and Instruments for Design) 

Our interviews supported that for most projects an overlap 
can be seen between CT and design thinking. However, there 
seem to be some design areas in which CT should not be 
integrated. This is for areas with a strong sensorial 
component (e.g. fashion design), where a project’s success 
heavily relies on factors that cannot be abstracted, like the 
sensorial perception of a material to the users. There is a gap 
between the minimum level of abstraction required by CT 
and the sensorial qualities of certain design contexts. 

“…An important role in the design process is the presence 
of errors, which can often generate an interesting finding. I 
believe that by applying CT, some projects would be error- 
free, and thereby become less innovative.” (Lecturer in 
Knitting Design) 

Finally, according to two of the interviewees, the 
collaboration of design lecturers and computer science 
lecturers is preferable to develop an effective program to 
introduce CT as an integration to design thinking. This level 
of multidisciplinary collaboration has yet to be achieved, 
though through the interviews it was found to be feasible. 

5. CONCLUSIONS
This study contributed to the creation of a new method to 
introduce CT to design students. This interdisciplinary 
approach was finalized with the creation of a methodical 

Course in: Knitwear Design 

Empathize 
(Decomposition) 

Define 
(Pattern 
Recognition) 

Ideate 
(Abstraction) 

Prototype and 
Test (Algorithm 
Design) 

Study how fast animals run. Clusterize 
findings based on movement, anatomy, 
species, etc. 
Within clusters, find a pattern that provides 
the key to solving the design challenge. e.g. 
the shape of the paw or texture of the skin. 
Abstract the findings and create a concept. 
e.g. The texture of the skin inspires a new
material for a shoe. 
Make prototypes and incrementally 
improve the required features. Test and 
reiterate. e.g. When tested, does this 
correlate with improvements in running? 

Course in: Shapes and Algorithms for 
Generative Design 

Study a particular natural phenomenon by 
breaking it down into its constituent 
elements. e.g. Analyze waves in liquids. 
Pick inspiring behaviors and find the 
pattern that makes them similar. e.g. When 
objects fall in water, they create ripples. 
Abstract that pattern and create a code that 
resembles it. e.g. An input for a 2D visual 
effect that resembles ripples of water. 

Complete code. Run it and test it. 
Improve it and iterate the process till the 
desired effect is achieved. 

Course in: Methods and Instruments for 
Design 

Study the structure and behavior of resistant 
and light materials. 
Break down findings into clusters. 
Identify cross-cluster patterns that provide a 
solution to a certain problem. e.g. Which 
structure is the lightest and most rigid one? 
Abstract findings and integrate the structure 
into an existing object. e.g. The structure can 
substitute plastic parts in safety helmets. 
Write a code that recreates the chosen 3D 
structure (CAD modeling, mathematical 
strength tests). 3D-print the structure and test 
it in real life scenarios. 
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framework merging computational and design thinking. 
Although this was designed to be implemented in those 
design universities where students lack mathematical and 
programming skills, our study focused on the School of 
Design of Politecnico di Milano. Here, the design process 
has never been associated with CT before. Our work can 
hence be considered as an example to address CT in other 
design schools around the world. 

After analyzing the opportunity from a theoretical 
perspective, we developed the ‘Circular Framework for 
Computational and Design Thinking Processes’ with the 
purpose of integrating CT in the design thinking process. 
This framework does not see CT as a compulsory skill for 
designers. However, by introducing it alongside design 
thinking in traditional design methods, it can help shape 
designers who are more aware of technological power and 
are more versatile. The framework was further developed by 
running some qualitative research with lecturers in the 
School of Design. Design lecturers were asked to further 
improve the new method by sharing their expertise and 
applying it to the courses they were currently teaching. 

The findings from our research justified how to introduce CT 
to design students and shared how it could be used to design 
innovative projects. However, the model will still suffer 
when put into some design teachings as one cannot consider 
the individuality of each project or course. Moreover, 
lecturers expressed their wish for establishing new 
collaborations between design and computer science experts 
to introduce the topic more properly. The framework and 
definition of CT was discussed though views still 
contradicted in small areas, exemplifying why design 
scholars must agree on a single CT definition for this 
framework to be utilized. 

Now that the framework has been defined, we strongly 
believe that the first step towards a more in-depth version is 
to test it within a design studio. Recognizing the weight that 
a student’s perception has on reliability and applicability of 
our framework, further development should include a 
qualitative collection of students' feedback on the “Circular 
Framework For Computational And Design Thinking 
Processes”. Moreover, we should include some quantitative 
research method, for instance by assessing the level of CT 
skills of students prior to and following introduction to the 
framework. Finally, given that our research was conducted 
in Politecnico di Milano, we would like to draw attention on 
other design schools in other countries to further research on 
how this framework could be implemented in their 
curriculum. A global discussion on the topic would bring up 
new limitations and advantages, hence improving the 
framework on a world-wide level. The concept stemming 
from our work is thereby an attempt to stimulate a deeper 
reflection on the intrinsic relationship between design 
education and CT. This could be expanded even more by 
exploring how design thinking practices can be applied to 
the design of computational solutions. 
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ABSTRACT 
Cultivating students’ computational thinking (CT) skills is 
challenging and often entails introducing them to basic 
programming concepts. These concepts are quite abstract 
and difficult to visualize. Our study aims to address this 
gap through an AR-based programming game. We 
evaluated our game on 27 participants, ranging from 
freshmen to seniors and having different prior CT skills. 
The results show that our AR programming game 
significantly improved students’ CT skills, especially for 
students with lower prior CT levels. Some pedagogical 
implications and design guidelines for teachers and game 
developers to improve AR programming games are also 
discussed. 

 
KEYWORDS 
computational thinking, AR-Game, programming skills, 
tangible object, embodied cognition 

 
1. INTRODUCTION 
CT can be defined as a set of fundamental skills that 
employ computer science concepts towards “solving 
problems, designing systems, and understanding human 
behavior” (Wing, 2006, p.33; Kong, Lai & Sun, 2020). 
The importance of developing CT skills was emphasized 
by Wing (2006), who mentioned that these skills should be 
developed not only by students majoring in computer 
science but by everyone. Students with well-developed CT 
skills can perform better in various domains of expertise 
(Hooshyar, Malva, Yang, Pedaste, Wang & Lim, 2021). 
Therefore, from early to higher studies, educators should 
put a large amount of emphasis on developing students’ 
CT skills. 

Research has shown that CT can be developed through 
programming or coding (Zhang & Nouri, 2019; Wei, Lin, 
Meng, Tan, Kong & Kinshuk, 2020). However, coding is 
often challenging for beginners since it requires the 
knowledge of abstract concepts such as simulation, 
algorithm, abstraction and so on (Lye & Koh, 2014). 
Therefore, many CT instructors have started to use block- 
based programming tools, essentially turning complex 
programming languages into simplified blocks (Zhang & 
Nouri, 2019; Zhao & Shute, 2019) that are easy to teach. 
Scratch1 and Code.org2 are two examples of such tools 
created specifically to improve the programming skills of 
beginners. These websites simplify abstract programming 

 
1 https://scratch.mit.edu/ 
2 https://code.org/ 

languages and gamify the learning process, thus building 
students’ confidence and motivation in learning how to 
code (Czerkawski & Lyman, 2015). Several researchers 
have investigated the effectiveness of these web and game-
based programming tools. Results from a systematic 
review study (Hu, Chen & Su, 2020) that collected 29 
related empirical studies indicated that these programming 
websites significantly improve learners’ coding skills. 
Theodoropoulos and Lepouras (2020) also reviewed 44 
studies to confirm the effectiveness  of digital 
programming games to develop CT. Apart from the 
abovementioned games that are played on computers, 
numerous block-based programming games, such as 
Light-Bot3, RoboLogic 4, and Sprite Box 5 , running on 
portable devices, i.e., smartphones and tablets, have 
sprouted in recent years (Lindberg, Laine & Haaranen, 
2018). These games allow learners to develop CT anytime 
and anywhere. Despite several websites and mobile 
applications being available for educational use, many 
programming beginners still feel that coding is abstract 
and frustrating (Dohn, 2019). 

Providing programming learners an immersive coding 
environment could be a solution to this problem. 
Augmented Reality (AR), featuring its integration of 
virtuality and reality, can augment the physical world with 
interactive virtual additions and immerse users in an 
authentic scenario (Rauschnabel, Rossmann & tom Dieck, 
2017). Many past studies found that AR can be 
implemented in education, especially for subjects having 
abstract concepts. For example, research works that 
applied AR in mathematics (Cai, Liu, Shen, Liu, Li & 
Shen, 2018) and geometric (Gecu-Parmaksiz & 
Delialioglu, 2019) courses showed significant 
improvements in students’ learning performance because 
AR can (1) visualize abstract knowledge and (2) engage 
them in hands-on learning activities. By virtue of these two 
advantages, we applied AR to develop a programming 
game for students to enhance their CT skills. To examine 
the effectiveness of our AR-Game, CodAR (Sharma, 
Talukdar & Bhagat, 2019), we evaluated it with 
undergraduate students. Based on this evaluation, we aim 
to answer the following research question through this 
study: What is the impact of  playing the AR-Game on CT 
skills for students with different prior CT levels? 

 
 

3 https://lightbot.com/ 4 https://apps.apple.com/us/app/robologic- 
lite/id300893278 
5 https://spritebox.com/hour.html 
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2. METHOD 
2.1. Participants 
A total of 31 university students ranging from freshmen to 
seniors participated in this study. The students were from 
different disciplines (e.g., engineering, management, 
design, humanities) and had registered in a general 
education course, The Introduction of Smart Systems and 
Mobile Phone Apps, at a university in Taiwan. Only one-
fourth of students majored in  computer engineering and 
routinely practiced writing programs. Other students had a 
basic knowledge of CT skills due to previous instruction 
this course gave. Note that four students' data could not be 
collected completely; thus, their data were excluded. 

 
2.2. Procedure 
The study took about two classes of the general education 
course in the middle of the semester. Figure 1 presents the 
procedure of the research design. The students first took a 
30-minute pre-test assessing their prior CT level. The first 
author, who has played the game several times during its 
development, served as the instructor. The instructor first 
gave a brief introduction to the game. Students learned 
how to sign in to the game, arrange the play cards, scan the 
AR markers on the play cards, and then they started to play 
the game. During the game-play, the instructor provided 
prompt assistance but did not guide participants to achieve 
the game’s goals. After around 30 minutes, students had to 
stop playing the game and then take the post-test for 30 
minutes. 

 

 

Figure 1. The Procedure of Research Design 
 

2.3. The AR-Game 
Empirical evidence has shown that embodied strategies are 
especially effective for learning (Macedonia, 2019). To 
leverage the benefits of embodied cognition, marker- 
based AR was adopted to design this game. According to 
previous research (Gecu-Parmaksiz & Delialioglu, 2019), 
applying AR in education can help students visualize 
abstract knowledge and also engage them in real-time 
instruction during learning. Therefore, this study used an 
AR Programming mobile game to teach CT. 

Two physical objects were required to play the AR- Game: 
a smartphone/tablet and a set of playing cards. There were 
six types of playing cards used in this game, out of which 
one was used to generate the world for a level in AR, and 
the rest acted as programming blocks. In the game, 
students were expected to place the playing cards in a 
logical sequence and use devices to scan and visualize the 
playing cards required for each level (See Figure 2). 

To complete the game, students went through 12 levels  of 
programming. The coding scenario involved helping the 
game character, a bunny, collect all carrots placed on 
platforms arranged differently for each level. The player's 
primary objective was to guide the bunny to collect all 

the carrots by properly arranging the programming  blocks 
specified for that level. 

Whenever a player would place the playing cards and view 
them through the handheld smartphone/tablet, the entire 
game would come to life by the virtual superimposed 
elements appearing over the playing cards (See Figure 3). 

 

 
Figure 2. Student’s Manipulation of the Game 

 

 
Figure 3. The Presentation of the Game 

These virtual superimposed elements enabled players to 
visualize their code corresponding to the chosen  sequence 
of the playing cards by watching the bunny in action. 
Players could find problems with their solution through 
this programming presentation visualized in real- time. 
Since virtual superimposed items can be viewed from 
different perspectives using AR, such a three- dimensional 
programming environment could also help students having 
an inferior sense of direction to  overcome such 
difficulties. Additionally, various in-game animations kept 
the students engaged and motivated towards completing 
the game while learning CT during the process. 

 
2.4. Data Collection 
The instruments used in this study included a pre-test and 
a post-test, which were both identical. To examine the 
effectiveness of the developed game, these tests were 
designed based on a commercial mobile application, 
LightBot3, adapting it into a pen-and-paper test. The 
validity of the assessment was checked through audit trail 
and literature review (Gouws, Bradshaw & Wentworth, 
2013). The assessment included five ordering-sequence 
questions. Each question contained an image that 
presented a problem statement to the test takers. The 
solution to each problem statement was a sequence of 
commands that guided the main character in LightBot, a 
robot, to reach its destination. 

playing 
cards 

device 
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2.5. Data Analysis 
The pre and post-test scores were determined together by 
the first author and a sophomore student majoring in 
Computer Science and Information Engineering at the 
university. The scores were consistently discussed before 
being determined. 

The students’ prior CT level as determined by their pre- 
test scores was used to identify the top 40% of the class as 
the higher prior CT level (HPCT) group (M = 8.9, SD 
= 1.87), and students at the bottom 40% of the class as the 
lower prior CT level (LPCT) group (M = 3.7, SD = 1.00). 
The scores of these two groups were separated by an 
interval of six. To differentiate these two target CT level 
groups clearly, seven students were excluded from the 
analysis. There were ten students each in both the HPCT 
and LPCT groups. Finally, to examine the impact on 
students’ CT skills after playing the game, a paired sample 
t-test was conducted to measure the CT gains made by 
HPCT and LPCT groups. 

 
3. RESULT 
The results from analyzing the pre-test and post-test scores 
for both HPCT and LPCT groups are presented in this 
section. Note that seven students’ learning gains  were 
excluded from this two-group analysis since they had an 
average prior CT level. 

3.1. Improvements in CT skills 
As shown in Table 1, LPCT students (t = 5.511, p 
= .00037) made a significant progress after the playing 
the game. 
Table 1. Results for paired sample t-test to compare pre- 
test and post-test scores for the LPCT and HPCT Groups 

Groups Mean SD t Sig. (2- 
 

 

HPCT Group (N=10) 
Pre-test 8.9 1.868 

1.167 .2729 
Post-test 9.4 2.009 
LPCT Group (N=10) 
Pre-test 3.7 1.004 

5.511 .0004* 
Post-test 7.3 2.051 

 
 

Note: *P<.001 
 
4. DISCUSSION 
Our quantitative results showed that the lower prior CT 
level group improved more than its counterpart, 
suggesting that this game is especially useful for students 
with lower CT skills. This is consistent with the  empirical 
study conducted by Hooshyar et al. (2021), who compared 
students’ CT gains from two different learning 
approaches- conventional technology-enhanced learning 
and game-based learning. Similar to us, they also 
separated students in the game-based learning group into 
two sub-groups based on their prior CT level. They found 
that the students in the game-based learning group 
outperformed the group under conventional instruction. 
Moreover, students in the lower prior CT sub-group 
benefited more from the intervention. McLaren et al. 
(2017) also obtained similar results from their 

comparative research, explaining this phenomenon using 
the “expertise reversal effect” (Kalyuga, 2007), where they 
suggested that, more or less, some groups benefit more 
than others under such instructional techniques. We further 
examined why the low prior CT group benefitted more 
from this game. Two key areas where our game  was able 
to address difficulties typically faced by such students 
were- (1) sequencing program scripts (Spohrer, 1989) and 
(2) understanding the computational process (Du Boulay, 
1986). Overcoming these difficulties requires scaffolding 
techniques such as making predictions, planning, and 
monitoring the coding process (Basu, Biswas, Sengupta, 
Dickes, Kinnebrew & Clark, 2016). In practice, our AR-
Game served as a useful scaffolding tool, helping students 
with lower prior CT skills overcome the two 
abovementioned difficulties by visualizing the coding 
process, enabling them to evaluate their programs and 
solve the problems (Wong & Cheung, 2020). 
We can identify two potential limitations that exist with 
this study. First, since we have chosen participants from a 
CT-related course as our data collection resource, this 
possibly resulted in a selection bias. Collecting data from 
a broader student population would help us obtain more 
consistent results in the future. The second limitation is 
concerned with the fact that study duration might not be 
long enough to have significant effects on students’ CT 
skills. However, since students with different prior CT 
skills were subjected to the same amount of intervention, 
we believe that our study nevertheless provides reliable 
results. Future longitudinal research in this direction 
should keep these limitations in mind. 

 
5. CONCLUSION 
In response to the pressing need to equip learners with CT 
skills, this study presented an AR-based  programming 
game to engage students in a tangible and authentic coding 
environment for CT development. The findings show that 
students having lower prior CT skills are more likely to 
benefit from the game. They can take advantage of AR by 
predicting and debugging their coding through the visual 
programming experience. 
Pedagogical implications for teachers who teach 
programming can be drawn based on the results of this 
study. First, the developed game can be used by 
programming beginners who face problems in 
understanding concepts and lack the required CT skills. 
Second, to design a curriculum that caters to students with 
different CT levels, students’ prior knowledge should be 
taken into consideration. Therefore, it is suggested that 
teachers group students based on their prior CT skills to 
maximize learning outcomes. 
For game developers to improve the gaming experience for 
everyone, serious games should have a pre-test section to 
identify players’ prior knowledge, e.g., CT level in our 
case. This information can then be used to adapt the game 
according to the students’ skills. For instance, developers 
can increase complexity for more experienced students by 
matching them to a higher game level. Such practices will 
help maintain student interest in the game as well as 
maximize their learning outcomes. 
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ABSTRACT 
Distributed Pair Programming attracts increasing attention 
as an approach to improve students’ collaborative problem- 
solving skills. A systematic review of the empirical studies 
published in the last decade was conducted, and 23 articles 
were reviewed in the analysis. The results show the 
educational contexts and the subjects of the selected studies, 
as well as the mainstream programming language and the 
popular integrated development environments in DPP-based 
learning activities. The extracted interventions were 
classified based on the Team Effectiveness Model and we 
found that individual factors and team environment attracted 
major investigations, whereas insufficient exploration was 
on the task structure, pair efforts, and team dynamics in the 
collaboration process in DPP-related practices to enhance 
students’ computational thinking. 

KEYWORDS 
Distributed Pair Programming, Systematic Review, 
Computational Thinking, STEM Education 

1. INTRODUCTION
Programming has been integrated into school education in 
many countries and regions (Falkner et al., 2014). A growing 
number of researchers address the importance of 
collaboration and teamwork in the learning of computational 
thinking (Al-Jarrah & Pontelli, 2014). The Pair 
Programming (PP) technique, referring that two 
programmers sit side by side in front of only one set of 
computer devices and work collaboratively on the same 
design, algorithm, code, or test (Beck, 2000), has also been 
widely used in education for more than a decade (Salleh et 
al., 2014). 

In light of the ever-evolving trends towards global 
collaboration, distance education, and the current 
teleworking new normal during the pandemic, programmers 
commonly work in a geographically distributed manner. The 
Distributed Pair Programming (DPP) is increasingly needed, 
which means two programmers work collaboratively on the 
same project from distributed locations under the support of 
tools that allows screen sharing and communication (Baheti 
et al., 2002). However, previous research showed major 
investigations into collocated PP but limited exploration on 
the impact of the geographical distribution (Hanks et al., 
2011). To explore what interventions have been used and 
their effectiveness in supporting DPP, a systematic review of 
empirical studies was conducted in this study. 

2. FRAMEWORK
Faja (2011) indicated that limited attention has been paid to 
theories that have the potential to reveal factors important to 
the successful adoption of pair programming. The author 

constructed the team effectiveness model as a conceptual 
framework to understand PP as a team learning activity. In 
this study, this model will be adopted to review the DPP- 
related studies and the corresponding team effectiveness. 

Figure 1. Team Effectiveness Model in Pair Programming. 

3. METHODS
A systematic literature review was conducted in this study to 
address our targeted research problems, following 
Kitchenham and Charters’ guidelines (2007). The 
overarching research purpose of this review is to identify and 
understand and the factors that influence the effectiveness of 
the implementation of the DPP approach. To be specific, the 
following research questions will be addressed: 

RQ1. What are the contexts where the DPP approach were 
implemented in the existing empirical studies? 

RQ2. What are the mainstream programing language and 
Integrated Development Environments (IDE) in DPP 
activities? 

RQ3. What factors were investigated to facilitate DPP? Does 
each intervention have positive effectiveness? 

The primary data were collected by searching for related 
articles published in the last decade across eight databases 
(ACM Digital Library; IEEE Xplore; ISI Web of Science; 
Science Direct; ERIC; Education Research Complete; 
Academic Search Complete; and Education Full Text) with 
the search string (“virtual pair programming” OR “remote 
pair programming” OR “distributed pair programming”) 
AND (experiment OR measurement OR evaluation OR 
assessment) AND (effective OR efficient OR successful) AND 
(empirical research OR empirical study OR data OR sample 
OR participants). 

Upon completion of the primary search, the identification of 
relevant literature continued with the secondary search. All 
of the reviewed articles and references in the articles 
identified from the primary sources were reviewed based on 
the exclusion criteria: 1) Articles in other types other than 
peer-reviewed articles; 2) Articles in languages other than 
English; 3) Articles without available full texts; 4) Articles 
with no supporting empirical evidence on DPP or alternative 
terms. Finally,23 studies were qualified for the synthesis. 
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4. PRELIMINARY RESULTS 
The results show that the majority of studies (n=16) 
conducted formal experiments with controllable variables. 
And there were four case studies, and the remaining three 
used surveys to achieve their research objectives. Besides 
one case study that analyzed professional programmers’ 
programming processes and two experiments that recruited 
programmers working in the software development industry 
as or partially as the research subjects, most of the studies 
were conducted in educational contexts: 17 with 
undergraduate students, two with graduate students and two 
with both undergraduates and graduates. And by analyzing 
the contexts where the reviewed studies were implemented, 
we found that 13 studies in total were designed and 
developed as part of the computer science courses like 
Object-oriented Programming. Whereas the rest ten were 
conducted as independent experiments in the laboratory 
context. 

Regarding the programming language, the absolute majority 
of the studies explored DPP as a technique to learn Java 
(n=16), while there is respectively one article that mentioned 
SQL, Python, R, and visual programming. It is also shown 
that SCEPPSys (n=8) and Eclipse (n=4) are the mainstream 
IDE to support the application of DPP. 

Of the identified 23 studies, six focused on the impact of the 
DPP approach. It has been suggested that DPP, under 
favorable conditions, is beneficial for students to perform 
better in exams, to produce codes of higher quality, and to 
gain a learning experience with higher enjoyment. However, 
Zacharis (2010) indicated that more effort was needed from 
pairs for completing the same programming tasks compared 
with individuals. Therefore, to fulfill its advantages as a 
learning approach, suitable interventions provided by the 
instructor are critical. 

Figure 2. Influencing Factors and the Effectiveness. 
 

 

The rest 17 of the studies explored the influencing factors 
which possibly have a bearing on the effectiveness of DPP. 
These factors, as well as their corresponding effects on 
different aspects of the outcomes, were presented in Figure 
2. The analysis result indicates that the individual factors 
that    directly    related    to    participants    attracted major 

investigation. And efforts have also been made on the impact 
of the team environment to the impact of DPP, such as the 
IDE and the scripted-role orientation. 

 
5. CONCLUSION 
The results show that most studies were conducted in an 
undergraduate educational context with computer science as 
the subject. It is also indicated that Java is the mainstream 
programming language in DPP-based learning activities, and 
the popular integrated development environments include 
SCEPPSys and Eclipse. The analysis of interventions in the 
selected studies found that individual factors and team 
environment attracted major investigations, and most of the 
investigated factors have a positive effect on DPP. Whereas 
limited attention has been paid to the DPP task structure, pair 
efforts, and team dynamics in the collaboration process. 
Future work should explore how these factors affect DPP and 
how to use them in learning practices to enhance students’ 
computational thinking. 
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ABSTRACT 
Currently, education continues to search for new strategies 
that contribute to an improvement in the learning of children 
in primary education and one of the ways is to use emerging 
technologies. In this sense, virtual reality environments 
allow the child to build this knowledge in an immersive way 
and through various forms of interaction to be more intuitive 
with the environment allowing to reach knowledge. In this 
work, virtual reality environments are proposed as a support 
for basic education in regular children and children with 
learning difficulties through the constructivism approach. 
The elements involved in the design of the software and the 
multidisciplinary work for the creation of these virtual 
reality environments are presented. A case study is 
presented where a virtual reality environment is used by 
teachers of a basic education institution in Mexico as part of 
their strategies to strengthen attention and hyperactivity 
activities and cognitive stimulation in children and to give 
continuity to the activities under the confinement measures 
established as a consequence of the pandemic. 

 
KEYWORDS 
Virtual reality, constructivism, elementary education, 
special needs. 

 
1. INTRODUCTION 
Elementary education over the years has adapted to the 
technological changes and situations of a globalized 
environment. Today the world is experiencing one of the 
most complex scenarios in terms of health restrictions due 
to the COVID-19 pandemic (Daniel, 2020, Burgess and 
Sievertsen, 2020). These effects have caused the learning 
theories implemented in elementary education to undergo 
adaptations to guarantee the continuity of teaching in 
schools. It is also important to consider that in classrooms 
there is a wide diversity of students who require 
personalized attention and learning strategies should be 
directed to best meet their needs. To this end, the use of 
technology has played a very important role in this process 
of educational adaptation (Dean, 2002), allowing students 
to develop their forms of organization, structures, and use 
of diverse resources to incorporate them into their virtual 
classes and build better learning. 

Constructivism is a paradigm oriented to allow the student 
to carry out his learning process in a dynamic way by 
discovering his environment through the interaction 

between the objects and their related environment, allowing 
him to solve problems using past experiences (Tuncel and 
Bahtiyar, 2015), at all times the teacher becomes a guide, 
facilitator, and motivator (Shantz, 1995). There are several 
types of tools that offer different forms  of interaction, one 
of which is virtual reality environments that allow 
simulating elements of the real world using 3D 
representations. Learning-oriented virtual reality 
environments allow the user to interact with a reduced 
abstract representation of the environment and the user can 
create some short constructions within this environment 
which behave according to a set of concepts under which it 
has been modeled (Requena, 2008). This work proposes 
virtual reality environments as a complement to the learning 
process in elementary school children through scenarios that 
promote cognitive development, based on the constructivist 
model so that the student builds knowledge using a virtual 
reality environment. This work consists of five sections, 
Section 2 presents proposals available in the literature 
suggested in technology use in education. In section 3, the 
constructivist approach is presented through the 
incorporation of virtual reality environments to support the 
educational process. Section 4 presents a case study in 
which the implementation of a virtual reality environment 
with elementary education children is described. Finally, a 
section of conclusions and future work are presented. 

 
2. RELATED WORKS 
Throughout the decades, various researchers in the field of 
education have tried to define models for integrating ICTs 
effectively into educational processes. One of  the emerging 
technologies that have become more relevant today is 
Virtual Reality (VR). 

From a pedagogical point of view, researchers and experts 
are constantly modifying the learning theories used to 
develop VR scenarios. However, several studies 
interconnecting VR with constructivist theory have 
demonstrated the potential of this pairing to create 
educational environments where students effectively learn 
representations of concepts, which maximizes learning. One 
such study that demonstrates the effectiveness of using VR 
and constructivism to develop meaningful learning is the 
work of (Collins Jonny, 2018) where they use VR to create 
an immersive environment using HTC Vive technology to 
create an interactive system where students can interact with 
figures in 4 dimensions, such as 

mailto:mitc.eder@gmail.com
mailto:hector.cardona@cimat.mx
mailto:maria.barba@cimat.mx
mailto:kvillalba@ucsm.edu.pe
mailto:darias@continental.edu.pe
mailto:fernanda.lfrg21@gmail.com


Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

89 

the hypercube. With the experiment, they demonstrated that 
the students who participated in the study acquired the 
expected knowledge on the proposed topics. 

In this sense, it is observed that constructivism allows 
managing how a student can learn new knowledge. In the 
case of the work of (Piovensan Melchoiri Peruzza, 2004), 
they use a constructivist model to structure their contents in 
a modular way. In their work, the authors present a didactic 
tool called "ConstruiRV", which is characterized as a 
distributed virtual reality system applied to the educational 
environment. ConstruiRV is used in the classroom as a 
pedagogical resource for teachers, and  since it is designed 
under the constructivist model, it allows students to learn 
the concepts of a given discipline through virtual 
experiences lived in the virtual environment, making 
learning much more lasting, in addition to cooperating in the 
learning of other students within the network, even if they 
are physically distant. Another technology similar to 
ConstruiRV is the Anatomy Builder VR, which is a virtual 
reality system that was developed by (Hwaryoung Seo Jinsi, 
2017) and is intended to support the teaching of anatomy. 
The authors propose as the backbone of the project to seek 
an alternative constructivist pedagogical model for learning 
canine anatomy. This study demonstrated how a 
constructivist approach can support the teaching of anatomy 
using VR technology in an active, experiential way. 

3. VIRTUAL REALITY ENVIRONMENTS
WITH A CONSTRUCTIVIST APPROACH.
When we talk about constructivism in education it is 
inevitable to think about the construction of knowledge, 
"Science does not discover ready-made realities, but builds, 
creates and invents scenarios: in this way it tries to make 
sense of what happens in the world, in society, in people". 
(Segal, 1994). In this context, schools are there, building 
educational improvements. It is important to reflect on the 
conception of the teaching-learning process since this 
conception guides the methodology chosen to carry it out. 
From constructivism, this process can be thought of as a 
dialectical interaction between the teacher's knowledge and 
the student's knowledge, which enter into discussion, 
opposition, and dialogue, leading to a productive and 
meaningful synthesis (Granja, 2015). 

One of the technologies that have had great relevance in 
recent years is virtual reality, commonly known for its use 
in video games and used to create simulations in the industry 
(Bell and Fogler,1995). Virtual reality offers a high degree 
of immersion to the user and a variety of interaction 
possibilities when performing a task. In this context, virtual 
reality environments oriented to the educational 
environment help the student to abstract objects and 
cognitive processes that are difficult to visualize or imagine 
and concepts that are difficult to represent or explain 
verbally (Sanchez et al., 2000). They also offer the 
advantage of addressing areas where traditional methods 
have little or no presence (Bell and Fogler, 1995). 
According to (Requena, 2008), classroom teaching limits 
the interaction between teachers, students, and learning 
materials due to the short time allocated and 

the wait between sessions for the teacher to evaluate and 
provide feedback on the student's results. In this sense, 
virtual reality environments can be a tool for students to 
implement their ideas and learning by obtaining feedback in 
a short time and can even be carried out from their homes. 
In this way, virtual reality environments help to encourage 
rapid interaction and real-time feedback, keep students 
active by performing activities on their own or 
collaboratively with other students and finally allow 
teachers to have tools to measure student performance and 
provide feedback. 

4. CASE STUDY
This section presents the implementation of the Attention- 
VR virtual environment in elementary school students from 
two institutions in Mexico. The objective of this Virtual 
Reality environment is to support the development of their 
cognitive processes during the COVID-19 health 
contingency, which currently continues to limit face-to- face 
classroom activities and is restricted to online and blended 
learning activities with small groups of students, as shown 
in Figure 1. 

Figure 1. Elementary school teachers working in small 
groups with children with learning disabilities in an 

educational institution in Mexico. 

4.1. User Profile 
The first elementary school has a population of 102 children 
in 6 grades. Of the total population, 92 children were 
identified as regular, i.e., they do not present any disability 
or learning problem. Of the remaining 10 children, 8 have 
been identified with learning problems related to Attention 
Deficit and Hyperactivity Disorder (ADHD) and 2 with 
learning problems related to Asperger's disease. In the 
second elementary school,  a total of 14 children are 
reported, of which one has learning problems related to 
Autism Spectrum Disorder (ASD) and the rest have learning 
problems related to Intellectual Disability (ID). Figure 1 
shows the work in the classroom under sanitary restrictions, 
with limited groups of students and with safety protections 
such as masks and face masks. 

4.2. Technological Platform 
The platform selected for Attention-VR is based on  Google 
Cardboard (Powell et al., 2016, Pierce, 2015) and the 
Unity3D video game engine (Parisi, 2015) was used 



for its development. This platform allows the creation of 

low-cost and accessible virtual reality experiences since a 

Cardboard-based application can be installed on most 

smartphones allowing parents and teachers to have access 

from anywhere. Figure 2 shows the implementation of 

Attention-VR, which consists of a low-cost virtual reality 

viewer, a generic Bluetooth controller, and a smartphone. 

Figure 2. Elementary school teachers working in small 

groups with children with learning disabilities in an 

educational institution in Mexico. 

4.3. Attention-VR 

The goal of Attention-VR is that the child can discover 

and interact with 3D objects in an immersive environment 

and make decisions to solve problems designed by 

teachers and educational experts. The instructional design 

of Attention-VR is focused on the development of the 

areas of Location, Attention, motivation, structure, 

following instructions, motivation, and feedback, among 

others. As can be seen in Table 1. 

Table 1. Proposed instructional design for the Attention-

VR virtual reality environment. 
Area Instruction 

Location The child is placed in time and space in a specific way. 

Attention and 

feedback 

The child identifies specific important objects within the 

immersive environment and discards those that represent a 

distraction. At each moment he/she obtains feedback to 

accomplish the task. 

Organization 

and sequence 

Small steps to accomplish within the virtual environment 

are indicated to accomplish a goal. 

Motivation and 

structuring 

Instructions are presented through elements such as audio, 

animations, and avatars so that the child can continue with 

the task. 

Balance 

between 

demand and 

motivation 

That the child is able to stay motivated in the game and at 

the same time is required to take a final step to achieve it. 

Without exceeding the demand since the child may lose 

motivation completely if he/she feels frustrated. 

Reward and 

satisfaction 

That the child feels satisfaction for having achieved the 

goal, leaving aside distractions, and reaching the happy 

ending, the final reward is represented in the form of the 

visual and auditory stimulus. 

Attention-VR consists of a virtual map (see Figure 3) 

containing two levels. The first level consists of 

recognizing the virtual environment presented and 

collecting a series of objects, always a virtual assistant 

provides feedback and instructions for the child to solve 

the task. The second level consists of finding a treasure by 

avoiding obstacles, such as enemies, static distracting 

objects, etc. As in the first level, the child can resort to the 

help of avatars that always help the child to find the 

treasure and escape to the pirate ship. Attention-VR also 

has the possibility of new levels can be designed and 

incorporated with new activities according to the 

educational needs of children. These levels allow the child 

to explore the environment, apply his or her judgment and 

knowledge for deduction to the situations presented within 

the virtual environment and formulate strategies for the 

achievement of the tasks presented within each level, 

seeking to build learning by having a meaningful 

experience. 

Figure 3. Complete map with available levels of 

Attention-VR virtual reality environment. 

Each level has 3D virtual elements that at all times assist 

and feedback to the child in every situation presented 

within the virtual environment. Among the elements, we 

can find (see Figure 4). Helper avatars. Some avatars can 

be consulted and provide instructions regarding the 

activity to be performed, offer feedback information, 

remind the user of the steps to follow to accomplish the 

task, etc. Distracting objects. These are 3D objects that 

can be animated or static, such as enemies, dynamic 

objects that move through the scenario but do not have any 

functionality related to the task to be performed. Rewards. 

These are animated or static 3D objects that can refer to 

the partial or total achievement of a task and Feedback 

elements. These are multimedia elements within the virtual 

environment such as audio that transmits indications about 

the task, motivational phrases during the execution time, 

clues, and key tips for the correct resolution of the task. 

Figure 4. Interactive user support elements within the 

Attention-VR virtual reality environment. 

4.4. Results 

The implementation of Attention-VR was carried out on 

25 children from two primary education institutions of 

different school grades, of which 8 children have learning 

disabilities associated with ADHD. With the help of 

parents and teachers, Attention-VR was installed on the 

smartphones of each of them and they were provided with 

a virtual reality viewer based on Google Cardboard. 
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Throughout, the children were supervised by an adult. None 
of the children experienced any discomfort such as dizziness 
or vomiting (LaViola Jr, 2000, Kolasinski, 1995). The first 
preliminary results show that the minimum duration to 
complete the tasks was 6 minutes and the maximum was 15 
minutes. In the end, some of  the opinions obtained by the 
children indicated some suggestions, such as increasing the 
difficulty, no monsters, an airplane, horses. And positive 
comments in which the children liked that they were 
congratulated every time they finished the indicated tasks, 
that the system talked to them at all times, among others. 

5. CONCLUSIONS AND FUTURE 
WORKS 
Virtual reality is a technology that is increasingly positioned 
as an alternative to support education by facilitating teachers 
and students to improve the teaching- learning processes. A 
constructivist approach allows that through virtual reality 
environments students can carry out their learning process 
interactively and dynamically in which knowledge from 
past experiences can be applied to solve new problems and 
new meaningful experiences. And in the case of teachers, 
they can count on tools for the generation of new 
educational content and mechanisms for student follow-up. 
The importance of the constructivist model is that the 
student takes charge under the guidance of his teacher, 
building collaboratively and nurturing meaningful learning. 
As future work, we are working on the definition of new 
levels to be incorporated in Attention-VR based on the 
design and needs of teachers and education experts. We are 
also working on the design and incorporation of evaluation 
instruments to measure the user's experience, perception, 
and performance within the virtual environment. 
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Computational thinking (CT) and its implementation in the 
K-12 curriculum have recently become important topics in
education and research worldwide. Due to the burgeoning
interest in CT in education, there has been a marked increase
in empirical research in this area. Many researchers suggest
that CT should be introduced and fostered early in education,
as it is a precursor of academic success. However, there is
little evidence from research that sums up empirical research
findings to give further teaching and learning directions
specific to early childhood education (ECE). Following the
pre-analysis, 32 articles were selected and included in the
study. Content analysis was applied to determine and
evaluate the shared codes and themes related to the findings.
The results demonstrate that ECE practitioners should
consider incorporating CT concepts with core subject areas
following an integrated teaching and learning approach in
ECE, using various developmentally appropriate
pedagogical practices.

KEYWORDS 
computational thinking, systematic review, early childhood 
education, teaching/learning strategies 

1. INTRODUCTION
In early childhood education (ECE), computational thinking 
(CT) refers to developing behavioural attributes and skills 
related to patterning, sequencing, planning, and processing 
(Brennan and Resnick, 2012; Berland and Wilensky, 2015; 
Wilson and Moffat, 2010). Numerous studies have been 
published to propose teaching and learning of CT in the early 
years. 

The published literature contains a broad range of definitions 
for CT. For example, Papert (1980) first described 
computational thinking as “how children develop procedural 
thinking through computer programming”. Jeannette Wing 
(2006) claimed that CT is a fundamental skill for everyone 
and should be added to every child's ability. Kazimoglu, 
Kiernan, Bacon, and Mackinnon, (2012), define CT as an 
approach to problem-solving, systems design and 
understanding human behaviours based on computer-based 
concepts, and consider CT to be a skill that requires the use 
of computer systems to solve problems in any discipline. 

In contrast, some researchers advocated that unplugged 
activities can be used to develop CT skills, leading to 
developing similar skill sets without using computers. 
Children can apply their concrete skills more abstractly in 
later stages, with computational concepts (Rial-Fernández & 
Santacruz-Valencia, 2019; Saxena et al., 2020). In early 
years education, CT skills should be employed in play, 

discovery, and creative activities, during which children can 
practice their abilities to plan, sequence, and logically 
connect their ideas (Rehmat, Ehsan and Cardella, 2020). By 
enhancing their creations, children also review and make 
authentic improvements, known as debugging, in 
computational aspects and core to CT (Lavigne et al., 2020). 
CT also involves evaluating problems, constructing ideas, 
and designing projects (Bers et al., 2014) and (Komis et al., 
2016). The overall goal of implementing CT skills in the 
curriculum is to develop thinking skills and their potential 
application in various fields. Hence, CT is not just limited to 
coding, robotics, and mathematical processing (Bers et al., 
2002). 

Although many discussions and initiatives have been taken 
in recent years, there is a lack of concrete, research-based 
evidence or guidelines regarding exposure and age- 
appropriate inclusion of CT in ECE. There is a lack of 
empirical evidence demonstrating how early educators 
should align these early learners' skills to succeed. With the 
expansion of research in this area, it is necessary to 
synthesize scientific evidence from quality, published 
studies to enhance our understanding of developmentally 
appropriate CT practice in early years education and to plug 
the potential gaps in this research area. 

1.1. Computational thinking in early childhood 
Computational thinking is becoming an essential skill in the 
21st century. Bers (2019) claimed CT as a new literacy skill 
in ECE classrooms, stating that it should be taught as another 
vital literacy area. Many researchers addressed the need and 
claimed that the rationale for supporting the introduction of 
computational thinking in the early years should not be 
focused on creating a future workforce, but the future 
citizenry. Due to the lack of a standard consensus definition 
of CT; it is widely understood as a logical and algorithmic 
way of thinking for problem-solving. Papert (1987) 
describes CT as the combination of critical thinking and 
computing; potentially incorporating and enhancing skills 
for problem-solving, communication, collaboration, 
creativity, and computation. 

On the other hand, ECE practitioners find it challenging to 
create hands-on opportunities to develop in their ECE 
learning environment. Early childhood is a critical time 
during which young children play, grow, and explore the 
world around them. This systematic review will address the 
needs of practitioners. It will investigate the feasibility, 
efficiency, and potential pedagogical approaches for 
developmentally appropriate CT development for preschool 
children. Moreover, we aim to study the impact of 
programming activities on particular CT skills. 
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ECE educators' increasing interest and needs call for a 
systematic review of the previous studies that can serve as a 
"pathfinder" for future research. Few representative 
literature reviews in ECE have been found. Çetin, M., & 
Demircan, H. Ö. (2020) presented a literature review to 
support computing education and its integration through 
STEM in the early years. Manches & Plowman (2017) 
reported the need to consider the conceptual thinking that 
underlies computational thinking, specifically in the early 
childhood education sector. Other researchers (Isnaini, 
Budiyanto, and Widiastuti, 2019) and (Umam, Budiyanto, & 
Rahmawati (2019) presented a literature review and 
identified the potential contribution of robotics as an 
educational tool. Several systematic reviews, such as Xia, L., 
& Zhong, B. (2018) presented systematic reviews focusing 
on either K-12 education or specific learning tools only. 
Thus, there is a need to conduct a systematic review of 
review papers following the framework from Kitchenham et 
al. (2009) to ensure quality and content that is specific to CT 
in ECE, including children from birth to eight years old. This 
systematic literature review will allow us to address some of 
CT's critical issues in ECE and lead us to answer the 
following research questions. 

RQ1: How have people studied CT in ECE? 

RQ2: What is the computational concept, perspectives and 
tools to implement CT in ECE? 

2. Methodology 
2.1. Research Design 
A systematic review methodology was employed in this 
study. Following the guidelines set out by Kitchenham et al. 
(2009), a systematic review was initiated to evaluate 
research literature, using systematic and rigorous methods. 
Lam and Kennedy, (2005), identified systematic review 
methodology as the most robust approach that provides a 
mechanism to analyse evidence-based research among a 
range of published studies. This current, systematic literature 
review is focused on studies of computational thinking in 
early childhood educational settings published in the last 
decade. Only peer-reviewed articles (rather than project 
descriptions, analyses of programs, guidelines for practice, 
and reports or conference papers), are included in this 
review. 

2.2. Procedures 
This systematic review adhered to the guidelines laid out by 
Kitchenham et al. (2009), and was performed initially 
following the search string of keywords ("computational 
thinking" OR "robotics" OR "coding" OR "programming") 
AND ("Early Childhood Education" OR "preschool" OR 
"Kindergarten" OR "young learners") for peer-reviewed 
studies and carried out in the ScienceDirect, ERIC, 
SCOPUS, ACM, Springer Link, IEEE Xplore databases. 
These databases were searched without any constraints on 
the publication date. The search resulted in 229 studies (33 
webs of science, five in ScienceDirect, nine in ERIC, 52 in 
SCOPUS, five in IEEE Xplore, 21 in SpringerLink, and 104 
in ACM) on November 15th, 2020. Duplicates, inaccessible 
studies, and publications not written in the English language 
were excluded from this collection. 

 

 
Figure 1. Distribution of articles about CT in ECE by year 

Figure 1 shows the distribution of articles about CT by year, 
particularly in the ECE sector. It is evident that research has 
developed its strength over the years and offers a recent 
increase in publications. 

Following the procedures mentioned in figure 2. The 
researchers examined crucial points of the study and their 
relationships with each other. 

 

 
Figure 2. Data collection and analysis process 

The remaining studies' abstracts were screened, and both 
empirical and nonempirical studies were included if they 
addressed the inclusion criteria detailed in Table 1 below. 

Table 1: Inclusion Criteria (IC) 

 
 

After analysing the titles and abstracts of these papers 
concerning the above inclusion criteria, 32 studies were 
selected as relevant to the current research. 

2.3. Data Analysis 
The data collected were analysed using content analysis. The 
next step was to identify commonalities and differences 
amongst all the studies, based on research questions. The 
standard codes and themes related to the findings were 
determined and evaluated during the analysis. Then, the 
categories were revised based on the consensus among the 

IC1 Paper reports of CT studies in ECE. (RQ1) 
 

IC2 Paper aimed at the Computational Concept, 
Perspectives, and Tools to implement CT in ECE. 
(RQ2) 

 
IC3  Paper aimed at focusing on teaching and learning  of 

CT in ECE. (RQ2) 
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researchers. Tables were created for themes, including the 
frequency values, and later converted into charts for 
visualisation. 

3. FINDINGS 
This section details the analysis of selected papers (32) from 
different perspectives, such as sample groups, duration of 
CT intervention, pedagogical connection ,and teaching and 
learning of CT in ECE. The research studies are summarised 
and synthesised into four different categories based on 
research questions. 

3.1. How have people studied CT in ECE? 

3.1.1. Sample Size 
The selected papers’ sample size shows that most of the 
studies have been done with either 20-40 participants, or 
with over 80 participants, as shown in figure 3. This 
indicates that with growing awareness of CT in ECE, several 
studies are now focused on interventions with a broader 
range of participants to see the results more precisely, 
leading to more appropriate, age-specific intervention. 

Figure 3. Sample size of 
 

Figure 3. Sample size of empirical studies 

3.1.2. Sample groups within early childhood 
Amongst 32 papers, 30 described age or learning level of 
participants. Few studies have focused on kindergarten to 
grade 2 students. The frequency of the sample level or age 
groups is shown in figure 4. 

 
 

 
Figure 4. Age-specific sample groups of selected studies 

The largest sample group is 5-6 year olds, and only a few 
studies were conducted with 3-5 year old children. However, 

few researchers included the duration of their studies, as seen 
in figure 5. 

3.1.3. Duration of empirical studies 
 

Figure 5. Duration of empirical studies. 

Twelve selected studies failed to clearly and explicitly 
explain the duration intervention. The other studies 
suggested that most studies are short term, being conducted 
for less than four weeks, either in summer camps or during 
after school programs. The number of studies undertaken in 
regular classrooms remains limited. 

3.1.4. Research methods used 
The most popular research design amongst 32 research 
papers is the non-experimental design, followed by quasi- 
experimental and experimental design (Figure 6). The 
nonexperimental research design tends to be the closest to 
real life situations. For an experimental design to be 
classified as a true experimental design, participant groups 
need to be selected through random assignment, If chosen 
through random sampling, this is considered to be quasi- 
experimental. (Trochim & Donnely, 2006) 

 
 

 
Figure 6. Research methods used in empirical studies. 

3.1.5. Data gathering techniques used in these studies. 
The most frequently used data-gathering techniques amongst 
these studies are the learning assessment in pro- tests and 
post-tests, and classroom observations. Some studies 
adopted classroom observations and gathered the quality of 
teaching and learning during experiments, and few studies 
used it as a tool to obtain more comprehensive qualitative 
analysis. Students’ surveys in an age-appropriate manner, 
e.g. choosing smiles, have been used. Teacher and parent 
interviews were conducted in a few studies. Videos, 
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photographs, and artefacts have also been used for analysis 
in some studies (see figure 7). 

 

 
Figure 7.Data gathering techniques used in these studies. 

The next section of this paper will analyse data related to 
conceptual understanding, and perspectives with the 
available tools used in these empirical studies. 

3.2. What are the computational concepts, practices, 
perspectives, and tools needed to implement CT in ECE? 
The selected studies have been examined following CT skills 
in Brennan and Resnick's (2012) framework. CT concepts, 
and perspectives are described in empirical studies. Most of 
the studies labelled automation or coding as the emerging 
concept (see figure 8). However, sequencing, problem-
solving, control of flow, decomposition, and debugging      
are      also      used      in      some      studies. 

 

 
Figure 8. CT Computational concepts used in these studies. 

The linkage of the CT conceptual understanding of the 
competence and skill developed in each area will be 
explored in the discussion section. It has been observed that 
in the majority of studies there was regular use of unplugged 
activities to support plugged experience. It is clearly stated 
in the chart below (figure 9) that ScratchJr, KIBO and Bee- 
Bots are the most dominant plugged tools in the ECE sector. 
In contrast, it is clear from figure 10 that other methods and 
plugged tools have been used to support young learners' 
transition from concrete to abstract learning. Tangible 
computing, CHERP Blocks from TangibleK, and many 
other regular preschool activities related to sequencing, 
music and movement, puzzles, matching games, picture 
story, card games and even making bracelets to learn to 
sequence, and debugging have been discussed. As Brennan 
and Resnick (2012) mentioned in their research, concepts 

are more comfortable identifying and accessing than 
practices and perspectives. 

 

 
Figure 9. CT Computational practices (Plugged) 

 

 
Figure 10. CT Computational practices (Unplugged) 

3.3. Computational perspectives used in these studies. 

CT perspectives refer to the evolving student’ understanding 
of their relationship to others and the technological world. 
These perspectives include but are not limited to expressing, 
questioning, and connecting. Studies indicated that students 
developed a personal interest when they were engaged in 
design and engineering. Several studies showed that students 
also learned to collaborate with peers and develop creative 
thinking skills. 

 

Figure 11. CT perspectives described in these studies. 
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4. DISCUSSION 
4.1 What are the implications for teaching and learning 
indicated by these empirical studies? 
In this section, we generalise the viewpoints of the 32 papers 
based on RQ.3 and make a comparison with existing studies. 
Further research perspectives will be discussed. 

In this review, we analyse scholarly articles on CT for 
teaching and learning in ECE. By doing so, we would like to 
investigate the impact of those studies. The themes 
generated regarding teaching and learning will be discussed 
under three subcategories. 

4.2 A constructivist view of teaching and learning. 
The vital aspect mentioned in several selected empirical 
research studies is the concept of learning-by-doing 
following Papert's (1980) idea that children should be 
allowed to work with tangible objects to promote their 
computational thinking, and defined as constructionism. 
Currently, the CT learning process is widely used at various 
levels of education, starting from preschool (Bers 2002; 
Cejka et al. 2006; Kazakoff and Bers 2012, 2014; García- 
Valcárcel-Muñoz-Repiso and Caballero-González Y. A. 
2019), and in multiple fields and various dimensions: 
science, technology, engineering and mathematics (STEM) 
(Sullivan et al. 2016), engineering (Bers, M. U.; González- 
González and Armas–Torres 2019), and other branches of 
STEM (Sullivan, A., & Bers, M. U. (2018). 

Urlings, Coppens and Borghans (2019) described the 
relationship between the development of computational 
thinking concepts and carefully selected and purposefully 
developed educators. The educator's role is to provide 
opportunities for young learners for hands-on learning 
experiences. Bers, (2018), in her recent research paper, 
mentioned that developing CT competencies through hands- 
on activities will have a positive impact on the child. Many 
opportunities should be given for students to ask questions, 
define problems, develop and use models, plan and carry out 
investigations, analyze and interpret data using 
mathematical and algorithmic thinking., construction of 
applications and designing solutions, engaging in their own 
learning process, communicating and collaborating with 
peers. 

During the first two years of preschool education, it is 
necessary to work with simple tools González et al. (2017). 
Solutions for early-stage learning are needed, and teachers 
have to use a playful approach to open up the world of math, 
science, and language skills. It is required to foster the love 
for discovery and investigation in young students and to 
develop the social and emotional skills to be prepared for a 
lifetime of successful learning. 

In general, the proposed educational activities will 
emphasise the importance of having pre-determined goals, 
and they will stimulate logic and analysis capacity. The 
requested continuous learning by doing. 

4.3 An integrated approach to teach CT in ECE. 
Early years curricula all globally follow an integrated 
approach for teaching and learning. Why should CT be 
taught as a stand-alone subject area? The second implication 
projected out through this review of published papers is that 

we need to teach CT skills by taking the approach to integrate 
this teaching with regular art, music, mathematics, and 
science instruction. This allows students to develop a deeper 
understanding of the core subject area curriculum while also 
facilitating the development of students' CT practices and 
skills (Bers 2002; Cejka et  al.  2006; Kazakoff and Bers 
2012, 2014; García-Valcárcel-Muñoz- Repiso and 
Caballero-González Y. A. 2019, Rehmat et al. (2020). 
Researchers and early years frontline practitioners should 
support the view that 'play' is an essential medium for learning 
in early years education and that it is part of a system that 
contributes to embrace a cross-curriculum, integrated 
approach that recognises the physical, cognitive, linguistic, 
and social and emotional aspects of learning (Plowman & 
Stephen, 2005). 

4.4 Pedagogical approaches to teach CT in ECE. 
The selected empirical research also suggests that ECE 
children should be exposed to CT concepts following various 
pedagogical approaches. Kazakoff, Sullivan and Bers 
(2013); Lee and Junoh (2019; Portelance, Strawhacker and 
Bers (2016) noted in their studies that children should 
initially be given unplugged activities that do not involve 
computers or computer programming and, for example, be 
given a practical example of tasks with algorithm designs, 
including a detailed step-by-step instruction set for solving a 
problem or completing a task. The order of experiences 
should move from (1) unplugged, (2) tinkering, (3) making, 
and (4) remixing, providing developmentally appropriate 
tasks for young children Rial-Fernández and Santacruz- 
Valencia (2019). Roussou and Rangoussi (2019), suggested 
that ECE classroom CT should be incorporated in a playful 
way, suitable for the development of children, leading to 
notable enhancement of the CT skills. 

5. CONCLUSION 
The reviewed literature added a new dimension in teaching 
and learning CT in ECE towards a developmentally 
appropriate integrated approach. It is crucial that we consider 
'play' to be an essential element of teaching young children, 
focus on teaching CT conceptual understanding from early 
on, and that we choose the right tools for the job. 

Suggestions for future studies can be divided into three 
groups. First, there is a need to understand developmentally 
appropriate practice in early years education through 
research in the cognitive domain. Secondly, more practical 
examples from evidence-based research should inform this 
field of study and fill it with practical implementation plans 
to enhance the teaching and learning of CT in ECE. Thirdly, 
there is a need to develop authentic CT assessment tools to 
access CT skills development in ECE. When children learn 
to code, they should have prepared with a programmer to 
code and create an algorithm. 
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ABSTRACT 
This study investigates how underserved children in the 
community develop Computational Thinking skills through 
learning physical computing with the support from older 
tutor volunteers. The children learned to construct physical 
computing projects by learning to code the micro:bit, and 
using various input sensors and controlling output devices. 
We observed the students and their interaction with the 
mentors to understand how they develop their 
Computational Thinking skills as they construct the 
projects. From our findings, learning with tutors can provide 
the support in developing Computational Thinking skills in 
the children. 

KEYWORDS 
Computational Thinking, Physical Computing, Computing 
Education, Out-of-school Learning 

1. INTRODUCTION
The wide-spread availability of devices like the micro:bit 
has brought physical computing into the mainstream of 
computing education. In Singapore, the micro:bit has gained 
popularity in schools buoyed by the Ministry of Education 
(MOE) initiative, for all primary school students to have 10 
hours of coding in school. An important imperative of such 
program is to develop students’ Computational Thinking 
(CT) skills as they participate in such activities. Students 
participate in coding activities which are run by external 
trainers engaged by the schools. From our previous study 
(Seow, Wadhwa, Lim & Looi, 2020), we found that such 
training programs may not help students to develop CT 
skills as students do not explicitly engage in using cognitive 
skills such as abstraction, or practice such algorithmic or 
system building. 

In this study, we investigate how students develop CT skills 
as they participate in activities in an informal context 
outside schools. They learn to code the micro:bit and build 
computing projects supported by mentors during one hour 
sessions spanning over 8 weekends. 

In our study, we were guided by the following questions: 

1. How do we design a physical computing program for
out-of-school context?

2. What are the roles of mentors in developing CT skills
for students?

3. What CT skills do students develop as they participate
in computing activities outside school?

2. RELATED WORK
2.1. Physical Computing and Computational Thinking 
Learning physical computing is an emerging approach to 
learn computing. It teaches students about coding and CT 
through hands-on activities with sensors using small 

computing boards like the micro:bit (Rogers et al., 2017). 
The project-approach to physical computing, an often-used 
pedagogy in schools, serves as an open-ended exploratory 
approach to examine the CT competencies that students 
should learn. We observed that among many other factors 
that inhibit the development of CT skills, the inherent 
complexity of problem and solution space could overwhelm 
students. Additionally, the cognitive load in designing and 
developing their solutions could also hinder them in the 
development of CT skills. 

Papert (1972) described CT  as  a  mental  skill  a  child can 
develop from practicing programming. Wing (2008) 
catalysed a ‘CT for all’ movement. However, CT definition 
has been debated, and it is often argued if CT makes better 
problem solvers or if practice of coding can help develop 
CT skills, with claims that everyone can benefit by CT not 
yet being fully substantiated by studies (Nardelli, 2019). In 
this study, we have adopted the CT definitions proposed by 
Digital Promise as it succinctly describes cognitive 
processes and computation practices (Digital Promise, 
2020). 

2.2. Learning Computing in School 
In 2020, Singapore has made it mandatory for all primary 
school children to undergo a 10-hour coding program. The 
initiative is to help students to develop an appreciation for 
CT and coding concepts. For the implementation of the 
program, schools often engage the services of external 
vendors to run workshops for students across the level. This 
is a pragmatic reason considering that schools do not have 
manpower resources to run the workshops for large numbers 
of students across the level. Furthermore, schools may not 
have teachers that have the knowledge or experience to 
conduct the workshops for a large group of students. The 
vendors can offer various programs to introduce coding 
such as Scratch and Micro:bit. Whilst the intent is to help 
students to learn about CT through coding, there is much 
more emphasis in getting the students to code than 
developing CT skills. Students are not involved in thought 
processes of formulating problems that can be solved 
computationally which is the essence of CT. From our prior 
study (Seow et al., 2020), such workshop program may not 
help students to develop CT skills as students do not 
explicitly engage in using cognitive skills such as 
abstraction, or practice such algorithmic or system building. 

2.3. Leveraging on Community resources 
Community resources, e.g., volunteers, can play the part of 
an informal educator. These educators come up with 
programs, choose and modify training material, as well as 
expedite learning tasks (Fritz, Karmazin, Barbuto Jr & 
Burrow, 2003). The pedagogies adopted by volunteer 
educators play a critical role in influencing how good the 
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learning program is and the kind of outcome they have on 
young students (Worker, 2017). Volunteer educators (or 
mentors) prominently affect the organisation of the learning 
environment (Borden, Schlomer & Wiggs, 2011; Evans, 
Ching & Ballard, 2012). They can also encourage children 
to participate willingly by making activities fun (Worker, 
2017). In a study by Worker (2017), volunteer educators 
used a range of pedagogies when students designed and 
constructed a device. These volunteers used targeted 
questions and gave precise design suggestions. In another 
study by Benander and Benander (2008), volunteers 
performed active demonstration to their students. This 
resulted in the students grasping a better understanding of 
the computing concept. The use of class time was 
productive as well. 

2.4. Informal Mentoring 
According to Hidi and Renninger (2006), mentors play a 
crucial part in coming up with learning experiences to spark 
and sustain interest in students. They push students to learn 
even more, link the process of learning to their individual 
identities, as well as transform a situational, fleeting interest 
into a personal one. Many youths have an informal mentor 
(Beam, Chen & Greenberger, 2002) who can be a major part 
of their own lives (Klaw, Rhodes & Fitzgerald, 2003). In 
informal mentoring, it is important for mentors to 
communicate effectively with their mentees and have a 
suitable character that matches that of their mentee 
(Norling, 1995; Pisimisi & Ioannides, 2005; Townsend, 
2002). 

3. DESCRIPTION OF STUDY
3.1 Participants (Students, mentors) 
In this study, students were part of a community student day 
care centre. The learning setting was outside of the 
classroom, instead of in a formal primary school or 
institution. Students consisted mainly of lower SES 
students, ranging from Primary 4 to 6 (10 to 12-year-olds). 
Our volunteer mentors, also known as tutors, were 18-year- 
old students from Junior Colleges. Although only a few of 
them had little experience in computing, not everyone was 
familiar with the micro:bit or had any form of computing 
experience. 

3.2 Data Collection (Methods) 
Observations of the students and their interaction with the 
tutors were made for all lessons. On the final weeks of the 
workshops, we selected 2 groups for more in-depth 
observation. For these groups, we observed the interaction 
between the students and tutors, and recorded their 
discussion and implementation of the project. For the group 
project, tutors wrote down field notes on how the students 
behaved in terms of 4 dimensions—say, write, do, and 
make. Lastly, photos, audio and video recordings of the 
students were collected. 
We analysed the CT skills of students in terms of (i) 
cognitive processes and (ii) practices based on the definition 
of CT by Digital Promise (2020). The 4 types of cognitive 
processes are essential CT skills: 

(i) Abstraction is finding out and illustrating the most
relevant portions of a complicated structure. It includes
forming a procedure or categorising concepts.
(ii) Decomposition is getting down to the basics and
disentangling the whole structure into small blocks,
enabling simplicity and clarity.
(iii) Pattern recognition is noticing the associations or
interconnections between pieces of information. It
sieves out interactions between a cause and effect,
enabling one to forsee or expect what would happen
next time.
(iv) Testing and debugging refers to making sure that
the newly created system is working. Testing is double- 
checking if the intended process runs smoothly.
Debugging is fixing the issues discovered through
testing that were deemed faulty or wrong.

The 4 types of computational practices are: 
(i) Creating algorithms refers to coding the program
or constructing a chart that depicts key ideas, and
procedures to solve a problem.
(ii) Working with data refers to collating, working with
figures, organising, making sense of the numbers and
presenting it meaningfully.
(iii) Understanding systems means simplifying and
comprehending complicated plans by applying the
practices of – abstraction, decomposition, pattern
recognition, and testing and debugging.
(iv) Creating computational models involves piecing
together the codes, application, information and
everything that depicts the comprehension of the
system.

3.3 Activity: The 8-week programme for students 
We started off with a basic training session for tutors, 
introducing them to the micro:bit. It was followed by the 8- 
week student programme. There was one other intermediate 
training session at the end of lesson 4, as seen in Table 1. 
The first 3 student sessions were on basic micro:bit projects. 
There was a 1 to 1 mentoring (or tutoring) approach. Tutors 
(or mentors) communicated with their students in an 
engaging way, prompting them using scaffolds. The 
student-tutor interaction enabled students to build rapport 
with their tutors and create a tiny community to learn 
programming with the micro:bit. Tutors were encouraged to 
modify or adjust the lesson content according to the 
student’s learning pace. They were not required to explicitly 
follow the lesson slides or guidelines in the given sequence. 
Most tutors were learning together hand in hand with the 
students. Students were leading the learning. Tutors 
followed the students’ learning patterns and attention spans. 
This has encouraged self-directed learning. 
Students were organized into 4 groups. In some lessons 
students moved around to different learning stations to learn 
how to use different micro:bit tools like sensors. 
In this program, the learning outcomes of the students 
were difficult to be assessed as compared to formal 
settings. Instead of being officially graded in exams, 
students completed a hands-on project—building a Smart 
Home. With this context, tutors provided an example by 
giving them a problem and a solution on how to improve a 
home, using the micro:bit. While in groups, they were told 
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to construct a smart home model, programming for any 
smart feature of their choice. The instructors probed 
students to think of an issue and generate alternative 
solutions. They then presented their model and idea on the 
last session. The approach was flexible and more open- 
ended, and the projects allowed students to freely explore 
programming in the real-world context. Students discussed 
in their groups, experimented with different codes and 
designs, as well as tinkered. 

Table 1. Programme Structure 
Session Activity Description 

T1 Training session for 
Tutors—Basic 

S1 Student Basic Training — 
Calming LEDs 

S2 Student Basic Training— 
Rock Paper Scissors 

S3 Student Basic Training— 
Pressure Switch Alarm 

- LED

S4 Student Basic Training— 
Pressure Switch Alarm 

- Buzzer, Radio

T2 Intermediate Training 
session for Tutors 

S5 Student Intermediate 
Training—Micro:bit 
Extensions and Tools 

- Breadboard
- Input Sensors:

Distance, Light, 
Water,
Temperature,
Sound, Motion

- Output: Rainbow
LED, Servo
Motor

S6 Student Intermediate 
Training 

S7 Student Group Project— 
Create a Smart Home 

S8 Student Group Project 

Introduction to 
the micro:bit 
Pair Work- One 
to one learning 
with the tutors 

Pair Work 

Pair Work 

Pair Work 

Learning 
Stations— 
Students move 
as a group in a 
rotation basis 

Learning 
Stations 
Group 1: 
Automatic 
Sliding Door 

Group 2: Anti- 
theft Phone 
Sensor 

Group 3: Card- 
Swiping System 
Group 4: Safe 
Distance Sensor 

4. OBSERVATIONS and ANALYSIS
There were 12 students observed for lessons and project. 
For training lessons, each student was paired with one 
dedicated tutor. For the project, students were put in 
groups. They worked in 4 groups. Each group had 2-4 
students and was mentored by 2-3 dedicated tutors. Tutor 
observations during training lessons were captured 
during the end of lesson debrief sessions. 

A structured observation approach was followed for 
the group project portion of the program to assess 
CT competence through their behaviour, verbal cues, 
visual cues and artefacts created. We tried to capture what 
students said, wrote, skills demonstrated, and artefacts 
created, with a focus on understanding their CT cognitive 
processes and practices. 

Typically, students brainstormed with tutors by 
throwing out suggestions. They then decided on the 
problem they want to solve. Next, they conceptualised 
the solution by drawing, listing out sensors and 
designing how the prototype should look like, in 
relation to the placement of other components. In this 
step, they brought in previous experiences and built on 
them gradually. Lastly, they built the prototype, coded and 
tested their solutions. 

Below, we present our observations and analysis on 
2 participant groups—Group 2 and Group 4, followed 
by examples of the tutor observations based on the 
above framework. 

4.1 Observations of Group 2 
Group 2, making an anti-theft phone sensor, used input from 
a light sensor and programmed it to output 
sound(buzzer) and light (LED). 

4.1.1 Cognitive Processes 
Abstraction 
Students demonstrated good abstraction skills by 
(i) choosing to focus on the light sensor, among all the 
sensors available to them, (ii) narrowing down the project 
scope by iteratively communicating the concept and 
illustrating the complex ideas of the alarm system. As 
seen in Figure 1, during brainstorming, a student briefly 
drew out the phone holder, placement of the light sensor, 
LEDs and buzzer. He explained it verbally through 
pointing out the placement to the tutor, instead of labelling 
parts of the model. 

Figure 1. Layout Drawn by a Student during Brainstorming. 

Decomposition 
Students also demonstrated decomposition skills by 
systematically breaking down the algorithmic tasks of 
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coding input from the light sensor and coding the part of 
after receiving the input. They could explicitly explain each 
step e.g., the first code step was articulated as “We would 
like to tell the micro:bit to register the amount of light.” The 
input transformation was further decomposed into the code 
for LED and the code for the buzzer. It was guided by tutors 
though. For example, prompts like “So now when there is a 
lot of light, what do you want the micro:bit to do? or “We 
want the micro:bit to make sound. What should we do?” 
resulted in students pondering through the next step. 

 
Pattern Recognition 
Students showed a good understanding of the pattern 
between the placement of the phone, light received, and 
input reading obtained. An interesting point was the group 
placing the light sensor underneath the phone. When the 
phone is placed on the phone holder, the light sensor is 
covered and does not receive any light. On the contrary, 
once the phone is lifted from the phone holder, the light 
sensor is exposed to light and receives light. This pattern 
recognition forms the basis of this project. Tutors’ 
scaffolding with questions e.g., “When the phone is on top 
of the light sensor, is there a lot of light or very little light?” 
helped students see the reason to link the concepts of input 
with multiple outputs. A student said “This is where you 
place the phone, then after that LED lights will be placed 
around it. When someone takes away the phone, there will 
be sound, and the lights will also light [up].” Pattern 
recognition was also reinforced through drawing students’ 
attention to making connection with the past lessons e.g., 
guidance like “Remember the last time when we tried using 
the light sensor, what was the threshold that you used in the 
code? Was it 700-800?” helped students to recall. They also 
tested with different values outside the threshold range. 

 
Testing and Debugging 
Students continuously tested and debugged in resolving the 
issues e.g., if the volume of the buzzer was too soft, they 
tested with various values to get the optimum. In one case, 
they isolated the problem to hardware and not code- 
software and switched to a different buzzer. Another 
instance of isolating the problem was when they tested the 
code using digital and analog blocks and concluded that the 
digital block was the correct one. They similarly tested for 
different light thresholds as well. 

 

Figure 2. Final Model of the Anti-theft Phone Sensor. 
 

4.1.2 Practices 
Students demonstrated their algorithmic thinking by 
handling multiple conditions in the logic, and appropriately 
using e.g., the “if-else” and “digital write pin” blocks. We 

also observed systemic thinking as the students 
demonstrated a good understanding of the problem and 
solution in a wider context of Smart home. Furthermore, as 
seen in Figure 2, for creating computational models, the 
group made use of Lego blocks to place and secure the light 
sensor in it. They also connected the light sensor, LED and 
buzzer to the correct pins to piece the whole smart home. 
4.2 Observations of Group 4 
Group 4 worked on a self-conceptualized project idea based 
on the ‘safe distancing’ concept, very relevant to the present 
COVID context. They made use of the concept of “On pin 
pressed”, which is similar to the pressure switch alarm, 
covered in the third lesson. If detected, triggered by 
someone violating the marked line in a human queue, it 
would send a warning sound message indicating a violation 
of safe distancing rule. 

4.2.1 Cognitive Processes 
Abstraction 
As seen in Figure 3, students demonstrated abstraction 
skills by (i) simplifying and illustrating their concept and 
plan by drawing out the complex idea, (ii) narrowing the 
project scope to a single objective of preventing people from 
being too close or cutting queues, and (iii) listing their needs 
for carrying out the project. A student aptly verbalized “So 
if anyone steps on the carpet, there is this light and 
something saying [a message], so he will go all the way to 
the back of the queue”. 

 

 
 

Figure 3. List of Materials and Layout of People in a Queue. 
 

Decomposition 
Students demonstrated decomposition skills by (i) 
systematically dividing the logic into 3 chunks—physically 
creating the distance sensor by placing the micro:bit 
underneath the carpet (i.e., in-between 2 people 1 meter 
apart), carrying out the appropriate action upon pin pressed, 
and resetting the state and (ii) dividing the output into 3 
parts—the warning message, LED, and alarm tone on the 
buzzer. These parts are seen in the code in Figure 4. 

 
Pattern Recognition 
The group demonstrated pattern recognition skills by 
applying the patterns they have seen, e.g., in real life human 
queues and in the example from an earlier lesson. 

 
Testing and Debugging 
Students in this group relied on tutors for coding though, and 
therefore did not demonstrate much of testing and 
debugging skills. 
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Figure 4. The Code of the Safe Distance Sensor. 
 

4.2.2 Practices 
The systemic skills were demonstrated, similar to that in 
Group 2, by seeing safe-distancing application in context of 
a smart environment. They also showed a good 
understanding of constraints and resources needed for a real 
application e.g., needing many micro:bits for a long queue. 
Lastly, students created computational models successfully. 
This was evident in their model in Figure 5 linking the pins 
to the extensions—buzzer or LED, or in piecing the whole 
setup of the safe distance sensor together. 

 

Figure 5. Final Model of the Safe Distance Sensor. 
 

4.3 Tutors’ Observations 
Our observations were based on the framework shown in 
Figure 6. The cognitive processes and practices were 
analysed based on the 4 behaviors—say, write, do, make. 

 
From the tutors’ observation framework, abstraction skills 
were more developed as (i) students summarised the 
concepts in their own words, and (ii) conceptualised the idea 
by drawing it. Students could successfully recognise the 
patterns of (i) the relationship between input and output, and 
(ii) labels on the sensor as corresponding to the pins on the 
micro:bit. Students were good in testing and debugging as 
(i) despite not being given any prompts, they could still 
distinguish when to use “If” and “On start”, correcting their 
mistakes automatically. Tutors observed that a student 
could create algorithms by (i) drawing diagrams, and (ii) 
using “if” code. Students could work well with data as they 
(i) experimented with different threshold numbers until they 
got their ideal value. Students could understand systems 
competently as they (i) adapted the code to the context of a 
theft case, (ii) linked past experiences of the light sensor to 
estimate the light sensor threshold, and (iii) linked the light 
sensor to a real world application. All students could create 
computational models by (i) building the structure together, 
and (ii) suggesting the positioning of LED lights. 

Figure 6. Tutors Observation Framework for CT 
 
5. FINDINGS AND DISCUSSION 
This study is a first-hand experience of designing a physical 
computing program for an underserved community in an 
out-of-school context. Here are a few things that made this 
volunteer run program work. First, the program was held at 
a place next to students’ homes making it easier for them to 
attend. Students and tutors knew each other through other 
programs and were familiar with the rules and regulations 
of the place. Secondly, we conducted a survey to know the 
experience students have with physical computing programs 
and device usage in general. This informed us what needs to 
be provided. We also checked whether students have access 
to internet and devices, school supplies, and in identifying 
the right content-area tutor. Thirdly, the program was 
designed to have collaboration opportunities among tutors 
as well among students to encourage attendance, facilitate 
interaction and peer learning. Lastly, observing the 
individual student needs and pace closely through 1 to 1 
student-tutor pairing helped monitor each student’s 
progress. Innovating the project concepts and providing for 
additional resources made the program meaningful and 
enjoyable to students. 

Mentors played a significant role in developing CT skills for 
students. Mentors not only helped provide a good 
foundation of problem-solving and decomposition by 
helping students through a design thinking process, but they 
also contributed to students’ learning by coming up with an 
example or adding a new concept. They built on the 
student’s interests, keeping them learning and engaged. 
They also helped develop an appreciation and confidence in 
student abilities by answering their questions, providing 
moral support, and learning together with them. They also 
taught them how to be responsible by helping them 
understand the importance of managing resources in a 
project. We find that a close relationship between mentor 
and student may be the key to the effectiveness of the 
program. Greater attention to the importance and building 
of a close relationship between students and mentors could 
help inform the design of such out-of-school programs. 

Students demonstrated sufficiently developed problem- 
solving and abstraction skills. They were new to sensors and 
related coding. Therefore, their pattern recognition and 
coding skills were not seen to be at the same level. They 
showed a keen interest in creating a project for a real-life 
context, and in testing and debugging code. Our experience 
shows that well designed, scaffolded physical computing 
activities have the potential to improve students’ CT skills. 
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It is true that some of the students do not engage 100% with 
the experience in such informal settings, but for the 
majority, it served as an opportunity to add CT skills to their 
set of skills. 

Although this exploratory study is susceptible to some 
limitations, it explored an opportunity in a non-formal 
education situation. In this study, we have been able to 
explore variables and factors to be addressed in future 
research works related to the acquisition of CT through 
physical computing. We believe that such studies are 
important in achieving broader goals of studying technology 
as means to reduce socio-economic gaps in educational 
achievement. 
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ABSTRACT 
Many countries have started to integrate Computational 
Thinking (CT) as an essential 21st century skill into different 
schools’ STEM related subjects. Despite positive 
developments in terms of CT integration into schools’ 
curricula, there are still important issues and challenges to 
address on how to teach and use programming and CT in the 
classrooms. As part of our ongoing efforts to introduce and 
to apply different maker technologies to foster CT, this paper 
describes the results of an exploratory study aiming at 
designing and implementing learning activities in informal 
settings using the Engino® Robotics Platform (ERP) and the 
BBC micro:bit. We conducted a one-week-long workshop 
with the participation of 22 children aged 10-15 years old. 
The constructionist theoretical perspective and the Four P’s 
Creative Learning theory (projects, peers, passion, and play) 
were applied for conceptualizing and designing our 
activities. The initial results of our efforts indicate that 
firstly, learning contexts enriched by the combination of 
different maker technologies can help students to develop 
CT skills; Secondly, remixing learning experiences can 
bring CT into STEM subjects; and lastly, the design of the 
proposed workshop and the planned activities serve as the 
basis of a learning environment that can foster problem 
solving, creativity, and heart-ware skills when the four P's 
are taken into account. The current study contributes with 
empirical knowledge that can be used for the advancement 
of design practices to promote CT development in 
connection to STEM-related subjects both in informal and 
formal learning settings. 

KEYWORDS 
computational thinking (CT), STEM education, 
constructionism, informal learning, four P’s creative 
learning theory 

1. INTRODUCTION 
Many countries have recently started to make the necessary 
changes in the primary and secondary school curriculum to 
integrate Computational Thinking (CT) as part of the 21st 
century skills included in their different school subjects 
(Grover & Pea, 2018). In Sweden, the integration of CT and 
programming in the school curricula has started in 2017 
based on a National IT strategy, which builds upon the 
suggested proposal by the National Agency of Education. 
Accordingly, schools’ syllabuses were updated by 
positioning CT in the revised curricula and focusing on 
programming, algorithmic thinking, and problem-solving in 
the subjects of Mathematics and Technology (Skolverket, 
2020). Despite these positive developments, there are still 
important issues and challenges with regard to how to put in 

 
practice these changes into the curriculum. It is worth to 
mention, for example, that there is not yet a national strategy 
that provides recommendations on how to practically 
implement these curricular changes (Kohen-Vacs & Milrad, 
2019) and operationalize them in schools. An evidence of 
such claims is a recent survey answered by more than 550 
teachers conducted by the Sweden teachers’ union. It reveals 
that more than 70% of the teachers who took part in CT and 
programming related courses still feel very uncertain about 
how to teach and use programming and CT in schools 
(Dagens Nyheter, 2020). Consequently, there is a need for 
carrying out research and implementation efforts related to 
how to address these topics and put them into practice in 
schools. 

In line with the efforts mentioned before, this paper presents 
the results of an exploratory study aiming at to introduce 
different maker technologies (Fitton et al., 2015) to design 
CT practices and activities. For this purpose, we use the ERP 
and the BBC micro:bit. One of our aims is to design and 
foster educational activities in order to develop CT skills and 
abilities for students in K-12 schools both in formal and 
informal learning settings (Kynigos & Grizioti, 2020; 
Yilmaz Ince & Koc, 2020; Lee & Low, 2020). Our approach 
can be characterized by the combination of constructionist 
views of learning supported by the use of complementary 
maker technologies and materials. The specific focus here is 
on STEM-related subjects in informal learning settings that 
support the aims described above. Considering the 
increasing need for designing and developing educational 
activities and support for teachers in terms of CT educational 
materials (Tyrén et al., 2018), the use of maker technologies 
and software systems may help to compensate the limitations 
of each one of these tools and systems if they were used 
separately. When different maker technologies and materials 
are used in CT related activities, a positive relation is exerted 
between designing and learning throughout structural 
aspects of CT that expands users’ perceptions and 
understanding of it (Sung et al., 2017). Remixing 
experiences that are referred to sharing, modifying, 
embedding, or adapting an object within another object, are 
considered as an element of a CT pedagogical framework as 
proposed by Kotsopoulos et al., (2017). This framework 
covers other aspects of pedagogical experiences in 
connection to constructionist education such as making and 
tinkering. To date, with the high expectations of developing 
STEM skills (Sung et al., 2017), there have been attempts to 
apply different approaches to teach these areas together with 
CT development (Kohen-Vacs et al., 2020). Thus, the 
research question that is at the core of this work can be 
formulated as follows: What are the effects of 
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combining different Maker Technologies while trying to 
promote CT skills in informal learning settings? 

The remaining of the paper is organized as follows, in 
section II we describe our approach and the theoretical 
perspectives that guide our research efforts. In section III we 
present the settings and the activities carried out as part of 
these efforts. The data collection methods we have used are 
described in section IV while section V presents the analysis 
and outcomes of our work in the findings & discussion 
section. Finally, the conclusions are presented in section VI. 

2. METHODOLOGICAL APPROACH 
In this section we present both the theoretical perspectives 
that guide our work followed by the technological approach 
used in the activities described later in the paper. 

2.1. Theoretical Approach 
Considering the challenges related to teachers’ CT and 
programming competences and the lack of suitable 
knowledge and infrastructure in schools (Kohen-Vacs & 
Milrad, 2019), we have decided to explore our research ideas 
within the context of informal learning. According to Lee et 
al., (2019), heart-ware skills can be developed in informal 
learning settings beyond the school’s curricula. Heart-wear 
skills refer to the holistic development of students in terms 
of active contribution, gaining confidence, and leadership 
opportunities. As part of our ongoing practices to introduce 
and apply different maker technologies (Fitton et al., 2015) 
for CT development we considered different aspects of an 
appropriate activity from a constructionist perspective which 
is used as a theory of learning and a theory of design too 
(Kynigos, 2015). However, as argued by Kynigos & Grizioti 
(2018), the challenges for designers and teachers still remain 
when new affordances of maker and digital technologies are 
introduced. In order to increase the level of the participants´ 
engagement with our practice, we considered also the theory 
of Four P’s Creative Learning as suggested by Resnick 
(2014). According to this theory, four factors related to 
Projects, Peers, Passion, and Play are the guiding principles 
for the active engagement of pupils in the construction and 
explorative approaches to CT. 
Guided by these ideas, we have designed several learning 
activities as part of a one-week-long workshops for engaging 
students with a few CT tools related to maker activities, 
design and programming in connection to STEM related 
subjects. The ERP and the BBC micro:bit have been used in 
a summer camp workshop with the participation of students 
to integrate the potentials and affordances of each system, 
and also by the combination of those two together. We 
intended to cover most of the STEM elements through the 
application of the functionality and affordances of these two 
systems in the context of authentic learning scenarios. While 
using the Engino robotics sets in some of our activities 
brings together the Technology and Engineering parts of the 
STEM (Yilmaz & Koc, 2020), the workshop on the use of 
micro:bit was designed with a particular focus on the Science 
part. The technological aspects of the two technologies and 
software tools we used in our workshops are presented in the 
coming subsection. 

 
1 https://enginoeducation.com/ 

2.2. Technological Approach 
Engino 1 proposes a novel building system of modular 
connectors that provides a three-dimensional building 
structure. It enables users to simply snap-fit on various 
locations of building blocks in order to construct functional 
models quite easily and quickly. The Engino sets are 
designed for different age groups from simple constructing 
level with building blocks to advanced wireless robotics that 
include peripherals and sensors for students of all ages 
(Engino, 2020). The controllers can be programmed either 
manually or through a scratch-like programming software 
that is named KEIRO™ which is a key element of the 
system. The drag-and-drop block based graphical 
programming platform can be switched to an Arduino IDE 
environment providing both C/C++ and Python 
programming languages. 

BBC micro:bit 2 is a small microcontroller that was 
developed in 2015 to encourage students to become creative 
in the digital world in connection to STEM subjects with the 
possibility to be connected to other devices or sensors. The 
matrix display, programmable buttons, and built-in sensors 
are providing an educational platform with a lot of potential 
to be used in educational settings (Tyrén et al, 2018). The 
Microsoft MakeCode editor is a free programming 
environment that is used for coding with the micro:bit by 
snapping different blocks together. In the next section we 
described the settings and activities in which our exploratory 
study took place. 

3. SETTINGS AND ACTIVITIES 
During the summer of 2020, 22 children aged 10-15 years old 
gathered at the Innovation Lab located at Videum Science 
Park in Sweden, to carry out different activities by using the 
technologies mentioned above. The children took part in 5 
workshops, conducted on daily basis for one week, each one 
lasting 7 hours. Two researchers in collaboration with five 
tutors from Linnaeus University (LNU) participated and 
worked together to carry out the workshops. As shown in 
Table 1, students were divided in two groups, each one 
consisting of 11 children. Each group took part in four 
different workshops including Web design, 3D printing, 
Engino (focus on Robotics), and micro:bit (focus on STEM) 
in order to get familiar with different digital tools and 
technologies. However, the focus of this study is on the two 
latter workshops as our emphasis is on CT skills and 
programming. While one group of children joined for 
example the Engino workshop, the another group of children 
worked with the micro:bit. Each daily workshop comprised a  
three‐hours  morning  session,  one‐hour  lunch  break,  and  a 
three‐hours afternoon session. In the morning, we conducted 
an introduction and instructions to simple practices on how 
to use the different tools and continued with the students’ 
practical activities and experience in the afternoon. While the 
first four days of the workshops followed the structure 
described in table 1, the last day was specified to conduct a 
competition and students were free to work on their previous 
products, to develop them, and to have group collaboration. 
Students’ parents were also invited to join their children in 
the last day. 

 
2 https://microbit.org/ 
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Table 1. Workshops’ Schedule (Each Day 7 Hours) 
 

 
3.1. Robotics Workshop 
This workshop began with an introduction to the ERP 
equipment and instructions on how to use it. The workshop 
was designed based on two main activities: constructing 
robots and programming them. According to our previous 
experiences, in order to maximize the productivity of this 
workshop (given the time constrains we had) we provided 
half-built models and asked the participants to add other 
required peripheral devices and make them ready for 
programming. The idea here was to increase children’s 
motivation when they change or redesign the models 
according to their own interests to increase their sense of 
ownership of their designs. Different sensors were also 
available to control the robot by the means of programming. 
As shown in Figure 1, two main tasks were designed. 

tasks were explored and examined with the students to make 
them familiar with the materials and programming software. 

 

  
Figure 2. Application of the Maker Technologies in the 

Context of a Greenhouse 

As shown in Figure 2, the children were asked to fill the 
small pots with soil and to plant seeds for better making 
sense of this authentic situation. Thereafter, they mounted 
the micro:bit in the greenhouse and measured the 
temperature and light level. A fan also was connected to the 
micro:bit that should be set to switch on when the 
temperature exceeds a pre-defined value. Similar to the 
previous workshop, children worked in pairs to carry out the 
given tasks. Table 2 below summarizes the focus and 
description of the activities for each one of the workshops. 

  Table 2. Workshops’ Focus and Description        
Focus Activity Description 

 

 
 
 
 
 
 
 

Figure 1. Tasks to perform in the Engino Workshop 

In the first one, we designed a lane in which the robot needs 
to be programmed to pass on the road without hitting the 
barriers. In the next task, a line tracker robot (car or train) 
should be controlled to follow the black line that was taped 
on the floor. In both tasks, two students created a group and 
worked together to carry out the assignments. In order to 
perform that, two sensors including an infrared (IR) sensor 
and an ultrasonic sensor were used. To get familiar with the 
devices a brief instruction was presented on how to calibrate 
and set them up when they were connected to the software. 

Robotics 

ERP 
 
 
 
 

STEM 

BBC 
micro:bit 

Constructing experience 

Developing & redesigning half-built robots 

Connecting sensors and other peripheral 
devices and setting them up 

Programming the robots as line tracker 

Working with a ready built greenhouse and 
planting seeds 

Working with sensors for measuring humidity, 
temperature, and light level 

Connecting the sensors and calibrating them 

Programming to activate the fan depending on 
temperature and humidity 

Technology and software integration to the 
greenhouse 

3.2. STEM Workshop 
The aim of conducting the STEM workshop by using the 
micro:bit was to design an activity in which students could 
be involved in authentic and meaningful activities such as 
building a greenhouse and controlling it using different 
sensors and actuators (see Figure 2). This workshop was 
conducted one day after the robotics workshop. The idea was 
that students’ experience and knowledge gained from the 
first workshop could be used in the second one. In addition, 
the physical structure of the greenhouses that were used in 
this workshop was built using the Engino construction 
physical materials and blocks. Thus, this approach provided 
an opportunity to think and compare different affordances 
provided by each one of the proposed technologies and their 
use in connection to STEM, programming environments, 
and CT. This workshop began with an introduction about the 
micro:bit and the Microsoft MakeCode. Thereafter, simple 

4. DATA COLLECTION METHOD 
Data was collected from three sources namely: a pre- 
questionnaire, observations and informal discussions during 
the workshops, and a post-questionnaire. The pre- 
questionnaire was filled online before the start of the 
workshops by 16 students with the aim of getting 
information about the participants’ background in 
programming and CT basics. We asked them to provide brief 
information about their knowledge and experience in visual 
programming languages, what programming is used for, and 
how to control a device through programming. Due to the 
nature of our exploratory study and the oral and written skills 
of the participants, we decided to conduct the data collection 
process through a participant observation approach where 
the researchers observed the students’ activities and 
challenges while interacting with them through informal 
discussions. The latest helped us to collect data through a 
close familiarity with the individuals. The paper-basedpost- 

Day#1 
Day#2 
Day#3 
Day#4 
Day#5 

Engino 
Group Ι 
Group ΙΙ 

 
 

Micro:bit 3D printing Web design 
Group ΙΙ - - 
Group Ι - - 

Group Ι Group ΙΙ 
Group ΙΙ Group Ι 

Group Ι + Group ΙΙ 
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questionnaire was answered after the completion of all 
workshops to collect students’ ideas, feedback, suggestions, 
and reflections. We collected 18 responses (4 students did 
not provide written answers) related to the children´s 
achievement from the workshops, their ideas about different 
maker technologies, and their suggestions for the content of 
future workshops. Thereafter, a qualitative data analysis 
(QDA) has been applied to analyze the data collected that 
includes our interpretation and understanding of the data and 
then sorting it into categories based on contextual factors 
such as participants’ enrolment, intentions, and hands-on 
experiences. The theoretical perspectives mentioned earlier 
in the paper (heart-ware skills & four P’s creative learning 
theory) played an important role with regard to the data 
analysis in term of comparison and categorization. 

 
 
5. FINDINGS & DISCUSSION 
In this section, we first describe our findings based on the 
analysis of the data we collected. Thereafter, we discuss our 
results that are presented in three sub-sections. 

The pre-questionnaire that was answered one week before 
conducting the workshops helped us to have a better view on 
the participants’ previous knowledge in connection to 
programming and CT. The questions were sorted in a way to 
gather students’ perceptions on the general use of 
programming to more detailed questions about central CT 
concepts. Students’ responses revealed that most of them use 
computers for gaming. Accordingly, those who used 
computers for gaming basically defined programming as the 
means of developing games and similar too websites. On the 
other hand, some children looked at programming from a 
much broader view as two of them stated: 

Programming is used for almost everything. Programming 
is used to make the world better. 

When it comes to CT concepts, a variety of opinions were 
listed for algorithms, variables, input/output, conditional, 
and functions. While concepts like algorithms and variables 
were more familiar to the children, some others (such as 
functions) were not well known. For example, an answer to 
a question about variables was quoted that it is like a virtual 
box with changeable values. Another example is regarding 
conditional that was again referred to a game: 

Conditional is something in a game that you lose a life if you 
touch something. 

Based on our observations and dialogues with the children, 
the construction part and hand-on activities were very 
interesting to them. Although the half-built models were 
ready to use for programming through adding some extra 
parts and peripherals, students liked to redesign, detach and 
connect different parts again and again. The latest is much 
aligned to the constructionist theory view on design 
(Kynigos, 2015). Looking at the children’s responses in the 
post-questionnaire indicates that both sessions were 
interesting for the students. Some of them were more 
motivated in working with Engino and some preferred to 
work with micro:bit. Nevertheless, the combination of the 
two maker technologies were pointed out as the most 
interesting part for some children. 

The design approach we applied in both activities was 
similar to what Kynigos & Grizioti (2020) referred to as 
“half-baked games'' to be changed and completed in a 
process of try and error. The latest provides some initial 
insights on how to design an activity to deploy the potential 
affordances of both, the Engino and micro:bit together. 
While in the first activity children examined and got inspired 
with the Engino constructions and programming, they 
brought their experience to the next workshop with the 
micro:bit working on a pre-built Engino greenhouse. The 
qualitative analysis of the collected data, particularly the 
observation notes, revealed three preliminary results as 
describe below. 

5.1. Contexts Enriched by Combining Different Maker 
Technologies Help Students to Develop CT Skills 
According to the collected data through our observations, 
children learned some CT concepts and practices (Grover & 
Pea, 2018) in an authentic integrated context. The 
combination of digital technologies aligned with the 
constructionist approach and the 4P’s constructs (Resnick, 
2014) offers a playful experimentation that facilitates CT 
development through its integration in different activities. 
For example, the logic and logical thinking was practiced by 
the children when they set out their cars in the Engino 
workshop, and where they tried to make a smart fan in the 
micro:bit workshop. In both cases, they applied the If 
statement by using true/false values in order to control the 
artifact. That can be seen clearly when children used two IR 
sensors on both sides of the car and applied AND & OR 
expressions in the programming to avoid the car hitting 
obstacles. The algorithm and algorithmic thinking were 
followed by the children with sequence, selection, and 
repetition. While sequence and selection were seen in the 
loops of the KEIRO software environment and the 
MakeCode programming, the repetition was applied by most 
of the children where they used While forever to repeat the 
command unlimitedly. 
We also recognized a process of abstraction that was 
conducted by one of the children in the micro:bit workshop. 
She first displayed a sequence of arrows in different 
directions by using the On Start block of the MakeCode 
programming environment. Then, she used the repeat loop 
block instead of using the same commands repeatedly. The 
result was interesting because she used the following block 
as shown in Figure 3 with a forever statement. Since the 
repeat block does not take a string input, so she learned how 
to use forever block instead. 

 

  
 

Figure 3. Abstraction Learning Sample by MakeCode 
 

We also found several indications of CT practices while 
children worked on their digital artifacts. For example, 
problem decomposition has been frequently grasped when 
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the robots hit the barriers, so that students should check the 
program, sensors calibration, connections etc. The same was 
seen in the micro:bit workshop when a children could not 
work with the humidity sensor, so he first checked the code 
and then realized that the problem comes from the incorrect 
connection of the wires to the sensors’ pins. Testing and 
debugging were the other elements that were tried 
repetitively by the participants. Specifically, the IR sensor 
was the most challenging part that required lots of tries and 
errors in terms of setting the accuracy. The critical 
competencies of collaboration, creativity, and promotion of 
heart-ware skills (Lee et al., 2019) were also an inseparable 
part of our workshops since children worked together and 
presented their results to each other to promote also 
collaborative learning. 

5.2. Bringing CT into STEM Subjects 
As argued by Grover & Pea (2018), CT skills can be 
developed in learning contexts outside the classroom in 
terms of generativity. The integration of CT concepts within 
the STEM subjects in after-school activities can be seen as 
viable way to enrich CT learning as well as developing CT 
competencies. The analysis of our data indicates that 
combining the Engino greenhouse with the micro:bit toolkit 
is an effective effort towards bridging CT and STEM in a 
context that provides the integration and interaction of both 
physical and digital objects. The activity we have illustrated 
above led to children’s engagement with STEM subjects in 
connection to CT development while they executed several 
attempts to redesign the models to benefit from the potentials 
of maker technologies (Fitton et al., 2015). The examples 
described in the previous section such as calibrating the 
sensors and using them to control the robot address the 
engineering and technology aspects of STEM. For example, 
students’ practices on how to turn the robot depending on the 
velocity and position of motors help students to understand 
engineering and technology concepts. Moreover, the 
greenhouse activity provides a context for developing the 
science part of STEM. For example, children were curious to 
test whether their code for air circulation was working by the 
use of the fan. The code they created with MakeCode 
program was intended to switch it ON when the indoor 
temperature of the greenhouse changed. In order to do that, 
children were changing the location of the greenhouse to 
make the change of temperature noticeable. They examined 
even that by placing the greenhouse inside the refrigerator. 
Our observations, following the children activities also 
revealed another important result that was beyond our initial 
plan for these workshops. Although the research design was 
planned to use only the Engino physical parts with the 
micro:bit programming microcontroller, some groups of 
children were very enthusiastic to integrate the micro:bit 
potentials with Engino controllers and motors and even the 
KEIRO programming platform to open the windows and 
doors while the micro:bit sensors send the signals. A sample 
of such effort is shown in Figure 4. The children´s response 
to our question while talking with them about their intention 
to combine the two platforms was that they wanted to benefit 
from Engino´s possibilities and peripherals like the motors 
and gears to be connected to physical objects that were 

provided by micro:bit sets like fans. However, they figured 
out that they cannot connect the MakeCode programming 
environment to KEIRO that is the software system used by 
Engino. In order to solve the problem above, they decided to 
use the manual controlling functions of the Engino motors. 
They used ERP controller’s buttons to open or close the 
window when the micro:bit displayed a high or low 
temperature. 

 

 
Figure 4. A Sample of Digital Tools Combination 

5.3. Providing a Creative-learning Environment 
The example given above for problem-solving indicates that 
children´s interest and ability to solve a problem may 
increase when they have more functionalities in the 
technologies they use, so that they can combine, share, adapt, 
or place one physical and virtual tool within another one 
(Kotsopoulos et al., 2017). Considering the design scenario 
of the workshops, children´s engagement in the different 
activities from filling the pots and planting the seeds to 
controlling the environmental parameters through the 
remixing digital tools are providing a creative-learning 
environment as suggested by Resnick (2014). He emphasizes 
the value of the 4P’s elements as Projects, Peers, Passion, 
and Play. While the meaningful projects introduced by 
Engino and the micro:bit provide the opportunity for sharing 
the ideas and collaboration between peers, combining 
different tools increases pupils’ passion. The creative 
solutions they applied to compensate the shortcomings of 
each one of the tools through adapting to another platform is 
an evidence of such claim. For instance, while trying to 
control the Engino motors´ rotation basedon the micro:bit 
signals, a group of students experienced moments of 
disappointment and discouragement when they could not 
make it work as they expected, but also a feeling of joy and 
happiness when they discovered a solution to control it 
manually. The latest increased students’ confidence to share 
their learnings with their friends. Such emotions show that 
students were indeed engaged with the activity that 
illustrates heart-ware skills development of students at the 
same time (Lee et al., 2019). Moreover, we believe that the 
last day of the workshop devoted to playing and contesting 
in an informal learning environment acted as an important 
role to follow the children’s goals where their active 
contribution was observed. Some parents also joined their 
children in the last day where students shared their findings, 
delights, feelings and emotions with them that highlights the 
value of the passion element in our design. 

6. CONCLUSION 
The learning design strategies used in this CT activity 
brought an opportunity for children to follow the different 
steps towards designing, building, and programming where 
creative learning took place through testing and debugging 
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of different solutions including software programs. In 
general, by using different maker technologies in the 
domains of biology and programming, our preliminary 
results illustrate that firstly, a range of CT skills emerged 
from the concepts to practices both in the construction and 
the programming parts such as problem decomposition, 
logical and algorithmic thinking, abstraction, testing and 
debugging. Secondly, it improved the link between CT and 
a couple of STEM relevant aspects through the application, 
manipulation and control of both physical and virtual 
objects. Thirdly, the design of the workshops, the planned 
activities, and the results illustrate that a creative learning 
environment can emerged when heart-ware skills are 
promoted and the four factors of projects, peers, passion, 
and play are taken into account. 

Looking back to our research question on the effects of 
maker technologies on CT skills development, we consider 
the main contribution of this research from two perspectives. 
First, as a practice for researchers to explore how to use and 
combine different maker technologies and educational 
materials in an informal learning context in order to foster 
and develop children´s CT skills. The design and 
implementation of the different learning activities make it 
possible to see the similarities and differences of interacting 
with different technologies and their combination in terms of 
what they can offer to both educators and students. It 
provides a free space for students to practice problem solving 
where they can choose alternative solutions. Second, the 
results of this study could be also helpful for teachers who 
are willing to design educational activities that include 
knowledge about CT and programming in connection to 
STEM related subjects. Although teachers did not participate 
in our study, the results presented here can be considered as 
a point of departure for post activities with close 
collaboration of teachers where a seamless learning view can 
be fostered in school settings as well as in informal 
educational contexts. Finally, the informal learning setting 
described in our study would cover inadequate infrastructure 
of the schools. 
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ABSTRACT 
This study explores the relationship among Hong Kong 
secondary school students’ demographics, psychosocial 
attributes, social interaction and subjective experience with 
the COVID-19 epidemic, and their intrinsic motivation to 
coding education under the educational context of school 
closure on a worldwide scale due to the pandemic. An online 
questionnaire survey was carried out in three subsidized 
secondary schools of Hong Kong before the face-to-face 
teaching and learning resumed in early June 2020. 204 
participants were from Form 2 (equivalent to Grade 8). The 
results of correlational analysis showed that: 
(1) students’ psychosocial attributes during the pandemic 
was significantly positively correlated with their intrinsic 
motivation to coding education; (2) students’ social 
interaction during the pandemic were significantly positively 
correlated with their intrinsic motivation to coding 
education; and (3) students’ subjective experience with the 
pandemic was significantly positively correlated with their 
intrinsic motivation to coding education. The findings may 
have implications for educators and academics of 
computational thinking to identify the factors which will 
enhance student engagement and learning outcome in a time 
of uncertainty and crisis. 

 
KEYWORDS 
intrinsic motivation, coding education, psychosocial 
attributes, social interaction, COVID-19 

 
1. INTRODUCTION 
Beginning from early 2020, the COVID-19 epidemic 
rampaged throughout much of the globe. By April 2020, 
around 91.3% of the world’s learners, almost 1.6 billion of 
total enrolled couldn’t go to school due to 194 country- wide 
closures of schools, according to the United Nations 
Educational, Scientific, and Cultural Organization (2020). 
The months-long suspension of face-to-face classes and 
students’ home confinement, and the subsequent 
arrangement of remote learning have imposed many knotty 
and unprecedented challenges for teachers, parents, and 
students, e.g. public concern on the equity in access to 
remote learning occupied many headlines, teachers’ 
helplessness on the growing absenteeism and late 
submission of homework that were uncommon for 
conventional learning were seen around in most of the online 
forums or discussion groups for educators. 

Thus, understanding the influential factors of students’ 
learning motivation during these unprecedented times is a 
timely move for the education sector, as the rapid shift in 

the delivery mode of instruction has led educators to explore 
effective ways to provide appropriately supportive 
environments to maintain students’ motivation. In this study, 
we surveyed Hong Kong secondary students during late May 
and early June of 2020 to explore the association between 
demographics, psychosocial attributes, social interaction and 
subjective experience with the pandemic during the COVID-
19 lockdown to get a broader sense of possible buffering role 
of various factors for students’ intrinsic motivation to coding 
education. 

 
2. INTRINSIC MOTIVATION 
The self-determination theory (SDT) provides an account for 
human motivation and personality that focuses on people’s 
inherent growth tendencies and innate psychological needs 
(Ryan & Deci, 2000a). Based on the different underlying 
reasons and goals of human actions, SDT also distinguishes 
between different types of motivation such as intrinsic 
motivation versus extrinsic motivation. Being intrinsically 
motivated means that individuals engage in activities out of 
the inherent interest and enjoyment of the behavior itself, and 
such internal locus of causality leads to functional 
differences of intrinsic motivation from other types of 
motivation (Ryan & Deci, 2000b). When individuals feel 
their psychological needs  are satisfied, they tend to be more 
intrinsically motivated. Therefore, it is important to detail the 
factors and psychosocial attributes that engender it, as in a 
learning environment where teachers and peers are not 
physically present, and parents may not be around 
supporting,  intrinsic motivation is particularly relevant for 
catalyzing students’ commitment to learning out of nothing 
but only rewards in learning behavior itself and protecting 
them from maladjustment. 

The crucial importance of student motivation to a series of 
positive development outcomes has been well-documented 
(Cerasoli et al., 2014; De Naeghel et al., 2012; Lazowski and 
Hulleman, 2016); however, student motivation under a 
typically uncertain time has been scantly address. Under  the 
new learning environment shaped by various restrictive 
measures such as school closure, remote learning, and home 
confinement, what makes students more intrinsically 
motivated? To step into this void, we investigated Hong 
Kong secondary students’ intrinsic motivation in coding 
education during the COVID-19 epidemic and focused on 
the connections between a variety of personal and contextual 
factors with the intrinsic motivation, which may provide 
important insights into potential avenues for ameliorating the 
negative effects of various on the vulnerable students during 
uncertain times. 
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3. METHODS 
3.1. Participants and data collection 
The data was drawn from the Jockey Club Coding for 
Community Project, which aims to provide the 
underprivileged youths in Hong Kong with coding courses 
to develop their computational thinking skills, and an adult- 
youth partnership scheme to promote their relational 
development and community involvement through 
designing mobile applications to address practical issues in 
local communities. Participants of this project were invited 
to respond to an online questionnaire before face-to-face 
classes resumed on June 8, 2020. The sample in this study 
comprises 204 Form 2 (equivalent to Grade 8) students (78 
females) from three Hong Kong subsidized secondary 
schools, with an average age of 13 (age range: 12 to 15). 

 
3.2. Instruments 
An adapted version of the Intrinsic Motivation Inventory 
(Jiang & Wong, 2017; McAuley, Duncan, & Tammen, 1989) 
was used where the mean score was calculated out of 
10 items on a five-point Likert scale (sample item: 
‘Programming activity was fun to do’, M = 2.71, SD = .93, α 
= .96). For psychosocial attributes, we  measured students’ 
general self-efficacy (sample item: ‘I am  confident that I 
could deal efficiently with unexpected events’, M = 12.92, 
SD = 3.72, α = .87), grit (sample item: ‘I often set a goal but 
later choose to pursue a different one’, M = 3.10, SD = .54, α 
= .65), resilience (sample item: ‘I am able to solve problems 
without harming myself or others’, M = 37.69, SD = 8.89, α 
= .87), sense of community (sample item: ‘I feel like a 
member of this neighborhood’, M = 35.13, SD = 7.68, α = 
.92), and youth social responsibility (sample item: ‘It’s 
important for people in their teens to know what’s going on 
in the word’, M = 12.04, SD = 11.68, α = .81) with validated 
scales (Bollen & Hoyle, 1990; Duckworth et al., 2007; 
Liebenberg, Ungar,  & LeBlanc, 2013; Pancer et al., 2007; 
Peterson, Speer, & McMillan, 2008; Romppel et al., 2013). 

For contextual factors, we asked students to rate their 
communication frequency and change in communication 
with different people during the school closure with a five- 
point Likert scale. We also asked if students had certain 
interaction with their parent(s) such as ‘go shopping’, ‘play 
games together’ etc. A binary response was used in each 
activity with 1 (yes) and 0 (no), and the sum of responses  to 
eight items were computed for analysis. 

For students’ subjective experience with the pandemic, we 
asked if they felt generally anxious about the pandemic and 
if their studies and emotions were bothered by the pandemic. 
Students also were asked to evaluate the impact of their 
longer time staying at home on their relationship with family 
members and their school-based studies, and the 
effectiveness of a list of 11 major anti-pandemic measures to 
combat the spread of the disease such as the ‘compulsory 
quarantine for a period of 14 days  upon arrival at Hong 
Kong’, ‘prohibition of any group gathering of more than four 
or eight persons in any public places during a specific 
period’, etc. 

We also documented students’ demographic information 
such as sex and age, parental educational attainment, 
housing types, financial assistance scheme status, and their 
Wi-Fi ownership at home. 

 
4. BIVARIATE ANALYSIS RESULTS 
The objective of this study was to explore the factors 
associated with students’ intrinsic motivation in coding 
education during the COVID-19 epidemic. We computed 
correlation coefficient of intrinsic motivation and a set of 
demographic variables (i.e., age, sex, parental educational 
attainment, etc.), psychosocial attributes (i.e., general self- 
efficacy, resilience, sense of community, etc.), and 
contextual factors that reflected students’ lives and 
subjective experience on the pandemic during the months- 
long school closure. 

The Pearson correlation coefficient indicated no significant 
relationships between sex, age, parental educational 
attainment, housing type and students’ intrinsic motivation 
in coding education during the COVID-19 epidemic. 
However, a significant correlation was identified between 
students’ financial assistance scheme status (β = -.18, p 
< .05), meaning that students from families receiving the 
Comprehensive Social Security Assistance tended to show 
lower intrinsic motivation in coding education. Besides, 
students’ satisfaction of their internet condition at home was 
significantly correlated with their intrinsic motivation in 
coding education (β = .16, p < .05). 

For psychosocial attributes, general self-efficacy (β = .21, p 
< .01), Grit (β = .15, p < .05), resilience (β = .43, p < .01), 
sense of community (β = .45, p < .01), and social 
responsibility attitude (β = .18, p < .05) were all found to  be 
significantly related to students’ intrinsic motivation to 
coding education during the COVID-19 epidemic, which 
means if students had higher level of beliefs about their 
capabilities to learn or perform behaviors at designated level 
(Bandura, 1986, 1997), higher level of effort perseverance 
and passion for long-term goals,  higher ability to cope with 
a crisis, higher level of belonging to their communities, and 
more affirmative attitude toward commitment to the 
communities and civic engagement, then they would be 
more likely to evaluate coding education as interesting, 
enjoyable, and desirable during  the COVID-19 epidemic. 

Among different people, students’ communication 
frequencies with parents (β = .17, p < .05), non-classmate 
friends (β = .17, p < .05), classmates (β = .19, p < .01), and 
teachers (β = .31, p < .01) were found to be significantly 
related to their intrinsic motivation. Although it is a relatively 
weak positive linear relationship, the correlation coefficient 
for the relationship between students’ communication 
frequency with teachers and their intrinsic motivation is 
greater than others, indicating that even in a remote learning 
setting, teachers still play an important role. For students’ 
perceived change in communication with different people, 
only the change in communication with friends (β = .16, p < 
.05) was found to be positively correlated with their intrinsic 
motivation, meaning that if students tend to perceive their 
communication with friends had increased during the school 
closure period, they will be 



Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

116 
 

more likely to be intrinsically motivated. Parent-child 
interaction (β = .16, p < .05) was also found to be 
significantly associated with students’ intrinsic motivation in 
coding education. If students had done more activities with 
parents, such as went shopping, did physical exercises, went 
outing, talked about their studies, emotions, current affairs or 
family issues, they would display higher intrinsic motivation. 

The subjective experience with the pandemic was also 
significantly related to students’ intrinsic motivation in 
coding education. First, students who were more anxious 
about the pandemic showed greater intrinsic motivation. If 
they tended to agree they felt anxious about the pandemic (β 
= .29, p < .01), or they tended to agree the pandemic had 
bothered their emotions (β = .16, p < .05), they would be 
more likely to be intrinsically motivated. Second, if students 
tend to hold positive evaluation on the impact of their longer 
time staying at home on their relationship with family 
members (β = .18, p < .05) and their school-based studies (β 
= .20, p < .01), they will have more intrinsic motivation in 
coding education. At last, their evaluation on the 
effectiveness of various anti-pandemic measures (β 
= .27, p < .01) was also found to be significantly correlated 
with the intrinsic motivation, which means if students tended 
to perceive the anti-pandemic measures were effective in 
protecting their health or facilitating their studies, they 
would display more intrinsic motivation in coding education. 

 
5. DISCUSSION 
The purpose of this study was to examine the influential 
factors associated with Hong Kong secondary school 
students’ intrinsic motivation to coding education under the 
COVID-19 epidemic. The results revealed some links 
between students’ socio-economic status, social 
environmental factors, subjective experience in the 
pandemic, and their intrinsic motivation. 

 
5.1. More positive psychological states, higher intrinsic 
motivation 
According to self-determination theory, it is essential for 
individuals to develop intrinsic motivation based on the 
satisfaction of three basic psychological needs: competence, 
autonomy, and relatedness (Ryan & Deci, 2000a). When 
students feel satisfied with these three psychological needs, 
they would become more intrinsically motivated, which in 
turn leads to higher level of engagement and learning 
outcomes. The psychosocial attributes concerned in this 
study covered most of these three basic psychological needs, 
and therefore supporting intrinsic motivation. Intrinsic 
motivation’s relatively stronger relationship with sense of 
community compared to other variables is noteworthy. In this 
development project, it is expected that students would 
engage in collaborative and affective relationships with their 
classmates, teachers, and adult mentors to solve practical 
problems for community good and therefore the concept of 
relatedness is thought to hold importance for their well-being 
throughout the project. 

5.2. More social interaction, higher intrinsic motivation 
Variables of interaction with parents, teachers, non- 
classmate friends, and classmates were consistently found to 
be positively associated with higher intrinsic motivation. A 
plausible explanation could be related to their received social 
support from such interaction in both online and offline 
social encounters (Wang & Wang, 2013), and the perceived 
social presence of their teachers and classmates in imaging 
an online learning community. The idea that adolescents’ 
supportive relationship with parents, teachers, and peers is 
related to their motivation at school is not new (Wentzel, 
1998); however, in remote learning where teachers and peers 
no longer physically present, the subjective experience 
mediating such interaction and their intrinsic motivation is 
worthy further investigation. 

 
5.3. More positive subjective experience with the crisis, 
higher intrinsic motivation 
Many researchers have examined the role of anxiety in 
learning and their findings generally have shown that there 
is a negative relationship between anxiety and academic 
outcomes (Wolf & Smith, 1995). Past research often 
investigated anxieties to specific subjects and exams, and 
their relationship with certain academic outcomes, if 
experiencing the COVID-19 epidemic can be considered as 
a stressful event, then how feeling anxious about the 
pandemic affected academic outcome has been little 
addressed. Unexpectedly, a positive relationship between 
anxiety and students’ intrinsic motivation was identified in 
this study, indicating that the current sample can use the 
anxious experience about the pandemic to motivate 
themselves. This implies that anxiety is not necessarily a 
handicap, in fact, students may be able to use anxiety as a 
source of self-motivation, and thereby alleviating negative 
issues brought about by anxiety and make the most of it. 
Further studies can look into how students experience and 
respond to anxiety may influence their academic outcomes. 

Due to the reversal of COVID-19 pandemic, everything 
became uncertainties. If students perceived the longer time 
of staying at home has positive influence on their 
relationship with family members, and their school-based 
studies, in other words, if they perceived such longer time at 
home is beneficial for their family relationship, and they also 
could be adaptive to remote learning, they would have more 
intrinsic motivation in code learning during the pandemic. 
Besides, if they perceived the various anti- pandemic 
measures are effective in protecting them, they will be more 
intrinsically motivated. The positive subjective experience 
with the pandemic may reflect  certain active coping 
strategies adopted by students to promote their sense of 
control over an uncertain time and safeguard their mental 
health, which therefore played a protective factor for their 
intrinsic motivation. 

The results of the present study need to be interpreted with 
several limitations. First, the cross-sectional survey makes it 
difficult to evaluate the temporal relationship among the 
variables concerned, so it is not sufficient to establish a 
cause-and-effect relationship based on the available data. To 
remedy this, longitudinal data will be collected with the 
progressing of the project in the next two academic years, to 
further illuminate the direction of influence among these 



Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

117 
 

variables. Another limitation is that we adopted a translation 
and back-translation process (Brislin, 1970) for the original 
scales that had not been previously used in Chinese 
language, in future studies, the full set of the scales will be 
validated. 
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ABSTRACT 
Computational Thinking (CT) curricula are increasingly 
being integrated into K-12 education across multiple subject 
areas. Our approach to this integration is to define 
Computational Thinking in terms of prevalent practices of 
professional disciplines. As our understanding of these 
practices evolve, so too must our operational definition of 
CT. Here we present a refined definition of CT in science 
and mathematics classrooms. Based on our extensive 
research designing and studying CT curricular units in 
collaboration with science and mathematics teachers, we 
have arrived at a working draft of a revised computational 
thinking in science and math taxonomy. We present the new 
version of taxonomy which has six revised categories of 
practices: computational modeling and simulation, 
computational visualization, algorithms, data practices, 
programming, and computational problem solving. We 
describe each category and how they are related. 

KEYWORDS 
Computational Thinking, Science and Mathematics 
education, Taxonomy, Practices 

 
1. INTRODUCTION 
The concept of Computational Thinking (CT) has been 
evolving as researchers, educators, and policymakers devise 
new ways to support the development of computational 
literacy in K-12 education. One popular approach has been 
to integrate CT into core classes, such as science and 
mathematics (Heintz, Mannila, & Färnqvist, 2016). In this 
effort, our team developed a definition of CT as a taxonomy 
of practices specific to science and mathematics contexts 
(Weintrop et al., 2016). This taxonomy is comprised of four 
categories: data practices, modeling and simulation 
practices, computational problem-solving practices, and 
systems thinking practices. This taxonomy has been widely 
cited and used to frame many CT integrations (e.g., Ketelhut 
et al., 2020; Suters & Suters, 2020). 

Our team has used this taxonomy since its publication to 
create curricular units for middle school and high school 
students and provide professional development for in- 
service teachers (https://ct-stem.northwestern.edu). Our 
extensive research regarding designing CT-integrated 
curricula, teacher practices, and student learning using the 
initial version of taxonomy has prompted us to revise it into 
a second version (Swanson, Anton, Bain, Horn, & 
Wilensky, 2019; Arastoopour Irgens, et al., 2019; Peel, 
Dabholkar, Anton, Wu, Wilensky, & Horn, 2020; 
Dabholkar, Arastoopour Irgens, Horn, & Wilensky, 2020). 
In this version, we make two major changes that address 
issues that emerged from our work with the taxonomy. 

 
First, we identified three new practices that are central to CT 
in science and mathematics but were not explicitly 
developed into separate categories in the first taxonomy: 
algorithms, programming, and visualization practices. We 
realized that creating separate categories for these practices 
is important for integration and scaffolding in CT-integrated 
curricula. For example, students sometimes struggle to 
program and understand algorithms when creating 
computational models. The inclusion of algorithm and 
programming practices as top-level categories support skills 
and knowledge necessary to engage in computational 
creation. These categories make these skills and associated 
knowledge explicit in the conceptualization of CT in science 
and math. Moreover, algorithms are key tools used in 
modern science and math, and algorithms cannot be 
implemented without programming. We also broadened our 
account of visualization to include more diverse set of 
representations and practices. 

Second, we revised the prior four practices to improve 
clarity in terms of their interpretations for curricular 
integration. After working with teachers for several years 
and iterations of professional development and co-design, 
we found there were issues with the interpretation of some 
of the practices. For example, many teachers see “data 
practices” and confound it with traditional science data 
practices, rather than computational data practices. 
Similarly, we found that systems thinking practices were 
often disconnected from computational thinking. In these 
cases, the development of systems thinking and data 
practices in science classrooms are essential, but the 
activities used to teach these are not always CT. We take the 
position that systems thinking practices are developed with 
CT when students engage with computational models. As 
such, we combined the computational modeling practices 
and systems thinking practices. 

To streamline the sub-practices within each overarching 
category, we re-designed the sub-practices to represent a 
spectrum within each category. In this way, the sub- 
practices increase in sophistication from top to bottom and 
are self-contained within each practice category. To shape 
the spectrum, we created sub-practices that represent a use, 
modify, assess, and create spectrum (modified from Lee et 
al., 2011). Students can use a computational tool to 
understand a phenomenon, engage in investigations, or 
solve a problem. However, this represents the baseline for 
CT practices within the taxonomy. While these practices 
support student learning, we argue it is essential for the 
development of CT practices and knowledge to move 
beyond the use of computational tools to the modification, 
assessment, and creation of computational tools. 
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Our second version of the taxonomy of practices is an 
evolving draft, and formal feedback will be collected from 
stakeholders in the future. The goal of this paper is to 
describe the current draft of the second taxonomy of CT in 
science and mathematics practices and how these practices 
are operationalized in the classroom. Our final goal is to 
provide a taxonomy that supports the integration of CT in 
K-12 science and mathematics classrooms. 

 
2. NEW TAXONOMY DESCRIPTION 
Integration of CT into science and mathematics curricula is 
intended to promote: 1) understanding the ubiquity and 
importance of computing in STEM, 2) understanding how 
modern STEM professionals use computing, 3) access to 
computing-related content and practices for all students, and 
4) science and mathematics learning in new and deeper 
ways. There are six practice categories represented as 
columns in the taxonomy: computational modeling and 
simulation, computational visualization, algorithms, 
computational data, programming, and computational 
problem-solving (Figure 1). We view the sub-practices 
within each category as target competencies for students by 
the end of their K-12 education. 

 

Figure 1. Taxonomy of CT Practices in Science and Mathematics 
 

There are inherent linkages between the practice categories, 
in that some sub-practices require the use of other sub- 
practices and several sub-practices can be used in any one 
activity. Linkages between practices are discussed in more 
detail in section 3 of this document. The practice categories 
are structured with a use, modify, assess, and create 
spectrum. As students engage in practices on this spectrum, 
the practices become more sophisticated. Engaging in 
practices related to modifying and creating begins to require 
engaging in practices from other categories. For example, 
creating a computational model requires programming 
practices and algorithm creation practices. The following 
sections describe each practice category. 

 
2.1. Computational Modeling and Simulation Practices 
Computational models and simulations are useful tools to 
understand complex systems and reason about phenomena. 
Students competent in these practices will be able to use, 
modify, assess, and create dynamic computational models 
in order to understand complex phenomena and solve 
problems. Computational models and simulations in this 

category are conceptualized as dynamic models and 
simulations, not static models. Examples of classroom 
computational modeling tools include NetLogo Wilensky, 
1999), SageModeler (2020), etc. When engaging students in 
computational modeling practices, models can be used to 
understand a phenomenon, to understand a system’s 
dynamics, and to test predictions and hypotheses. Simple 
animations of phenomena are not considered computational 
models or simulations because they have neither parameters 
that students can tinker with and alter when running the 
model or simulation nor can they be modified or elaborated. 

We argue that using, modifying, assessing, and creating 
computational models supports the development of systems 
dynamics competencies. Systems dynamics competencies 
may include understanding: 1) positive and negative 
feedback and their impact on the system, 2) stocks and flows 
of a system, 3) micro and macro levels and how changes in 
the micro level impact the macro level, and 4) emergent 
phenomena. People have mental models that represent their 
understanding of a phenomenon or system. When people 
simulate that mental model of the system in their minds, 
their reasoning is often incomplete or fails to match the 
system in all of its complexity (Forrester, 1993). Using 
computational models to simulate systems and phenomena 
allows students to reason about systems in more 
sophisticated and nuanced ways. These computational 
simulations can then impact students’ mental models and 
bring their understanding of the system and phenomenon 
more in line with canonical definitions and representations. 

Designing and constructing computational models allows 
for deeper understanding of phenomena (Wilensky & 
Reisman, 2006). Computational models can take on many 
forms and focus on different aspects of a phenomenon. For 
example, one might use an agent-based model (e.g., 
NetLogo) to describe interactions between many things at a 
micro level while a systems dynamic model (e.g., 
SageModeler) might be used to describe interactions at 
higher system level. Assessing computational models can be 
done at every stage (using, modifying, and creating). 
Students should be able to assess the limitations and 
affordances of a model, the simplifications made in the 
model, and how well the model represent reality. Assessing 
computational models also includes meta-modeling 
knowledge, such as understanding how models are used in 
science and mathematics, understanding the value of 
computational models, and critically reflecting on how 
models are used are interpreted. 

2.2. Computational Visualization Practices 
Visualization is a metacognitive skill in science and science 
education (Gilbert, 2005) as well as mathematics education. 
Students competent in these practices will be able to use, 
modify, assess, and create computational visualizations in 
order to understand and represent complex phenomena, 
analyze and interpret data, and solve problems. We 
conceptualize computational visualizations as graphs, 
tables, diagrams, static models, models (dynamic) as long as 
they are made within a computational medium. This can 
range from something that is completely made by the 
computer (e.g., graphs in NetLogo), to something made by 
the user with a computational tool (e.g., graphs in Microsoft 
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Excel), to something made through programming (graphs in 
R or Python). This also includes technical drawings used for 
creating computational drawings and designs. 

When students engage in computational visualization 
practices, they think about how to represent a phenomenon, 
or a part of the phenomenon. A visualization can be used as 
a way to think about and understand a phenomenon in 
different and new ways, especially when the visualization 
provides a new way of looking at the phenomenon. 
Computational visualizations can be used for identifying 
and predicting trends. Assessing computational 
visualization can be done at every stage (using, modifying, 
and creating). Students should assess the affordances and 
limitations of specific kinds of visualizations and be able to 
choose tools based on knowledge of strengths and 
weaknesses of visualization types. 

 
2.3. Algorithm Practices 
The ability of researchers to make sense of large amounts of 
data often comes down to the sophistication of algorithms 
available to process those data. Algorithm practices involve 
using, modifying, assessing, and creating algorithms to 
solve problems and understand phenomena. Much of the 
computational power harnessed in STEM comes from using 
computation to complete a multitude of small tasks times in 
a short period of time and to make such work as 
computationally efficient as possible. In the case of K-12 
education, we expect that students can understand and use 
algorithmic logic and concepts, such as loops, conditionals, 
logic, procedures, recursion, and variables. 

Algorithms can be developed and implemented in 
classrooms using a variety of formats ranging including 
unplugged approaches, block-based coding environments, 
or interactive computational notebooks (e.g., Jupyter, 
https://jupyter.org/). Algorithms can be assessed at each 
stage (using, modifying, and creating). Students can assess 
correctness by asking, “Does the algorithm accomplish the 
task?” or “How well does the algorithm accomplish the 
task?” Efficiency can be assessed by asking, “Can the 
algorithm complete the same task in less steps or more 
concise steps?”, “How much time does it take to run the 
algorithm?”, and “How much memory does the algorithm 
require?” For example, when the number of agents in an 
agent-based computational model are doubled, does it take 
twice as long (linear) to run? Four times as long (quadratic) 
to run? Students can also assess clarity by asking, “Is the 
algorithm written clearly?” and “Can others understand my 
algorithm?” While the initial algorithm writing process can 
be messy, the final algorithm should be as clear as possible. 
There are also opportunities to critically reflect on the role 
of algorithms in society. 

2.4. Computational Data Practices 
Data practices are central to scientific inquiry and 
mathematics. As data sets become larger and calculations 
become more complex, computational tools can help in a 
range of ways including data collection, cleaning, 
transformation, analysis, and visualization. As such, it is 
important that students learn computational data practices. 
Students engage in computational data practices when they 
data create, collecte, manipulate, and analyze data with 

computational tools. This can range from using pre- 
programmed algorithms to writing code in order to complete 
the data-related task. Students with computational data 
practice competencies will be able to use, modify, and create 
computational approaches and tools to collect, manipulate, 
visualize, and analyze data. 

 
2.5. Programming Practices 
We define programming as the act of writing code on a 
computer, creating a distinct practice category from 
algorithm practices, which include a broader range of 
practices related to, but beyond coding. Programming 
practices are central to designing and constructing 
computational tools. Much of the work of STEM 
professionals consists of modifying existing tools and 
approaches and coding new tools and approaches to meet 
their needs. Students with programming competencies will 
be able to read, understand, and write code in order to solve 
problems and understand phenomena. Learning to program 
involves reading and understanding existing code, learning 
to modify code to meet the user’s needs, and learning to 
write code. Writing code involves testing and debugging the 
code, developing abstractions, and iteratively testing and 
designing the program. When writing code, attention should 
be given to the creation of readable and maintainable code. 
Following programming conventions and using comments 
to annotate the code is key forreadability and maintenance. 
Comments can communicate a programmer's intent, which 
may or may not be clear in the code itself. 

 
2.6. Computational Problem-solving Practices 
Computational tools have become useful to solve problems 
in science and math. Engaging in these practices should help 
students solve problems with computational tools and 
approaches and understand computation’s role in scientific 
and mathematic problem solving. Computational problem- 
solving practices involve using computation to solve a 
problem. This requires understanding different approaches 
to solve the problem computationally, and the ability to 
choose a computational tool or approach that is appropriate 
and effective in solving the problem. Problems often have 
to be decomposed into smaller solvable pieces and prepared 
for a computational solution (e.g., raw data may need to be 
manipulated in order to run an algorithm that solves the 
problem). Computational solutions to problems also need to 
be iteratively designed, tested, and troubleshot in order to 
solve the problem effectively. 

Students should engage in these practices with different 
computational tools to support skills and understandings of 
specific tools and how they can be used in different problem 
contexts. For example, students can create a computational 
model in order to predict how a new pesticide will impact 
crop yield. When creating the model, students engage in 
computational modeling practices, algorithm practices, and 
programming practices. Then, using the model to predict the 
yield outcomes of using the pesticide engages students in 
computational data and modeling practices. We propose that 
when students use computational tools to solve a problem, 
they may better understand the purpose of those tools and 
how scientists and mathematicians use them. 

3. LINKAGES BETWEEN PRACTICES 
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While each practice category represents a contained 
spectrum of knowledge and skill specific to that category, 
there are inherent linkages between practice categories. A 
CT-integrated activity can potentially engage students in a 
combination of interlinked sub-practices. In some cases, it 
is impossible to avoid separating multiple sub-practices 
from different practice categories. For example, the modify 
and create sub-practices within computational modeling, 
computational visualizations, and computational data 
practices require algorithm and programming practices. 
Designing and constructing computational models involves 
designing and constructing algorithms and programming 
practices when coding the model. There is a linkage 
between programming practices and others when reading or 
writing code is involved. For example, reading the code of 
a computational model engages students in programming 
practices and computational modeling practices. 
There are linkages between data and visualization practices 
when a computational visualization is made to analyze data 
(e.g., graphing data to identify trends) or to collect data (e.g., 
collecting data from a computational model). There are also 
linkages between computational visualization and 
computational modeling practices because computational 
models are a type of computational visualization. However, 
not all computational visualizations are computational 
models. Students use a computational visualization when 
they use a computational model. Students modify a 
computational visualization when they modify the visual 
aspects of a computational model (e.g., how agents look, 
how to represent the phenomenon, graphing data from the 
model). Students design and constructing a computational 
visualization when they design and construct a 
computational model. Computational problem-solving 
practices are linked with other practices when the practices 
are used to solve a problem. For example, if students use, 
modify, or create an algorithm to solve a problem, they are 
engaging in both algorithm and problem-solving practices. 
While designing CT integrated curricular activities, we 
recommend viewing the practices as interconnected sets and 
not in isolation. The 10 new CT-integrated science and math 
units designed with this draft taxonomy will be available on 
the project webpage after implementations are complete 
(https://ct-stem.northwestern.edu/). 

 
4. CONCLUSION 
This paper has presented a draft second version of a 
taxonomy of practices that defines CT in science and 
mathematics classrooms. The six practice categories 
represent CT practices specific to science and mathematics 
contexts. We have expanded and revised the taxonomy to 
include more key practices and clarify their roles in the 
classroom context. We plan to present this draft taxonomy 
to stakeholders, including practicing scientists and 
mathematicians, teachers with CT experience, and CT 
researchers. The feedback will inform another round of 
revisions, and a final version of the revised taxonomy will 
be disseminated. We have piloted this version of the 
taxonomy with a professional development program that 
resulted in 10 new CT-integrated science and mathematics 
units designed by teacher-researcher co-design teams, 

which are currently being implemented in schools. 
Our goal is to define and characterize CT in science and 
mathematics contexts. We believe this will help facilitate 
the integration of CT and provide a resource for those who 
are unfamiliar with CT practices. Further, we believe the 
taxonomy can help shape CT in science and mathematics 
practices, which may enhance student outcomes related to 
authentic science and mathematics learning. 
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ABSTRACT 
From the perspective of engineering design and based on the 
LBD’s Binary Cycles Model, this study constructed the 
engineering design-oriented and project-based STEM 
teaching model after three rounds of action research. This 
model includes four process modules as the startup, the 
preparation, the practice and the summary of the engineering 
project. More, it deconstructs the behavioral activities in 
each module from the perspective of the teachers and the 
students. Teachers mainly carry out the teaching activities of 
establishing situation, describing task, providing scaffold, 
guiding methods, evaluating artifacts and 
summary/migrating, while students carry out the learning 
activities of understanding challenges, clarifying projects, 
investigation/inquiry, engineering design, 
demonstration/communication and reflection/improvement. 
This model provides a new paradigm for the implementation 
of STEM teaching in basic education, and the results proved 
that students’ STEM literacy was improved, especially in 
engineering and technology. 

 
KEYWORDS 
STEM, STEM teaching model, engineering design, project- 
based learning 

 
1. INTRODUCTION 
STEM education is a new educational form that organically 
integrates four disciplines of Science, Technology, 
Engineering and Mathematics, which is conducive to the 
cultivation of the core skills of talents in the 21st century and 
enhancing the talents’ competitiveness. Since the 
Undergraduate Science, Mathematics and Engineering 
Education report issued by the National Science Board 
(NSB) firstly proposed the concept of “science, 
mathematics, engineering, and technology” (National 
Science Board, 1986), countries around the world have 
gradually incorporated STEM education into their talent 
training program and curriculum system. China also attaches 
great importance to the localization of STEM education. 
However, basic education in China has long existed in the 
phenomenon of "teacher-oriented", "theory rather than 
practice" and so on, as well as the curriculum lacks 
engineering education content connected with higher 
education. As the result, students’ motivation to learn and 
innovate cannot be effectively stimulated, which is contrary 
to the original intention of STEM education. Studies have 
pointed out that engineering design-oriented STEM project 
teaching is conducive to promoting students’ interest in 
STEM subjects and STEM careers (Shahali et al., 2016). 
Therefore, it’s necessary to carry out project-based STEM 
education oriented by engineering design in primary and 
secondary schools from the perspective of talent 

cultivation, which is intended to improve talents’ 
comprehensive literacy. Furthermore, the research question 
is: How to implement the engineering design-oriented and 
project-based STEM teaching? 

 
2. RELATED WORK 
2.1. Engineering Design and STEM Education 
From the perspective of teaching strategies, STEM education 
can be divided into two orientations currently: scientific 
inquiry orientation and engineering by design orientation. 
Scientific inquiry-oriented STEM education focuses on the 
generation of intellectual outcomes and provides a 
standardized thinking way to solve scientific problems; 
engineering design-oriented STEM education is a practical 
process of applying engineering methods to solve practical 
problems, which is a real sense of putting science into 
practice, and its main activities are design, manufacturing 
and improvement (Huang et al., 2020), focusing on the 
generation of learning outcomes in materialized form. In the 
study of curriculum reform, engineering-oriented STEM 
courses have proven to be the most appropriate form of 
implementing the concept of integrated STEM education, 
containing three core elements as contextual learning, 
engineering design, and scientific inquiry (Xie et al., 2017). 
The typical curriculum design model with engineering 
design orientation is the 6E design- based learning model 
proposed by the International Technology and Engineering 
Educators Association (ITEEA). This model combines the 
thinking of scientific inquiry with the practice of engineering 
design, which mainly includes six stages as engagement, 
exploration, explanation, engineering, enrichment and 
evaluation (Barry N B., 2014). 

 
2.2. Project-based Learning and STEM Education 
Thomas argues that Project-based learning is an  experiential 
learning approach that engages students in projects and is an 
active learning that allows students to promote their own 
understanding of an area of knowledge (Thomas, 2000). He 
defines five characteristics of project- based learning: (1) 
The projects are the core to the curriculum; (2) A method to 
guide students’ understanding of the core disciplinary 
knowledge; (3) Students’ activities involve constructive 
investigation; (4) A certain degree of students’ drive; (5) The 
topic, context, and tasks of the project based on real 
situations. Participation in project- based STEM courses 
influences students’ attitudes toward STEM skills, practical 
values, and career aspirations (Beier et al., 2018)., A STEM 
project design model was proposed based on the 
constructivist perspective, which takes the "project or 
problem" as the core point and focuses on the corresponding 
intensive practice and summary 
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improvement after the completion of the project (Yu & Hu, 
2015). 

Based on the above theories, this study combining 
engineering design concepts and STEM project-based 
teaching methods constructs an engineering design- oriented 
and project-based STEM teaching model and conducts three 
rounds of action research, with the intention of exploring a 
STEM teaching model in basic education suitable for 
China’s national conditions, and opening up new paths for 
articulation with higher education. 

 
3. PRIMARY CONSTRUCTION 
In order to promote deep and sustained interdisciplinary 
learning and develop students’ ability to solve complex and 
unstructured problems, Kolodner (2002) proposed the 
“Design & Exploration” double- cycle model of Learning By 
Design™ (LBD), which consists of Design/Redesign cycle 
and Investigate & Explore cycle. The Design/Redesign cycle 
includes all activities needed by 

completing a design task, such as planning design, 
understanding challenge, presenting & sharing gallery walk, 
analyzing & explaining, construction & test, Presenting & 
sharing pin-up session, while the Investigate & Explore cycle 
includes designing investigation, making hypothesis, 
clarifying question, presenting & sharing poster session, 
analyzing results, and conducting investigation, which are a 
series of investigation activities based on specific design 
content. In addition, "Need to Do" and "Need to Know" are 
the links between the two circles. The model integrates 
multiple designs and multiple investigations, which means 
that integrates doing practice with learning knowledge, 
which is in line with the engineering and projected-based 
STEM teaching concept. Based on the LBD’s Cycles by 
Kolodner, this research constructs the engineering design-
oriented and projected- based STEM teaching model from 
the perspectives of both teachers and students. The 
preliminary construction results are shown in Figure 1. 

 
Figure 1. The Preliminary Construction of Engineering Design-oriented and Project-based STEM Teaching Model. 

The preliminary construction of engineering design- 
oriented and project-based STEM teaching model takes a 
specific engineering project as the starting point, and 
students engage in STEM learning through “Investigate & 
Explore” circular process and “Engineering Design” circular 
process, with the works constructed by students being the 
final resulting output. The main purpose of “Investigate & 
Explore” process is to let students acquire the knowledge 
needed to complete this engineering design and know "how 
to do it", which mainly includes the steps of making 
hypothesis, brainstorming of group discussion, making 
investigation plan and implementing investigation; In 
addition, “Engineering Design” process’s main purpose is to 
let students construct project works through design  and 
hands-on practice, and discover "what they need to know" in 
the practice before obtaining the required knowledge 
through investigation and exploration again. It mainly 
includes the steps of planning/designing the engineering 
projects, brainstorming of group discussion, constructing 
engineering design works, and testing the works. In addition, 
reflection is integrated throughout the students’ activities, 
and teacher’s main task is to provide support services such 
as learning guidance for the students’ learning. 

 
4. METHODOLOGY 
4.1. The Research Object 
In this study, students from grade 4 to grade 6 in a primary 
school in Guangzhou province were selected as the object 

of action research. The school is well-equipped with the 
infrastructure for STEM teaching. In addition, according to 
Piaget’s theory of cognitive development, primary school 
students have some logical thinking skills, but still need the 
support of specific content when they engage in thinking 
activities. Engineering design-oriented and project-based 
STEM teaching allows students to carry out project-based 
engineering design activities in specific contexts, which 
meets the demands of students’ development of hands-on 
practical ability, problem-solving ability and innovative 
thinking. 

 
4.2. The Research Method 
Action research is an important method for educational 
research, and its conducting process is a spiral cycle 
consisting of the four components as planning, action, 
observation and reflection. Educational action research is a 
research method based on a certain purpose and plan to 
systematically investigate specific issues in educational 
action for the purpose of improving the effectiveness of 
educational action (Kemmis & Zhang, 1994). In this study, 
three rounds of action research were used to conduct an 
exploration of an engineering design-oriented and project- 
based STEM teaching model. 

4.3. The Research Process 

4.3.1. The First Round of Action Research 
Research Objective: To analyze the process module of 
engineering design-oriented and project-based STEM 
teaching model. 
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Teaching Content: “The Design of Sweeping Robot” (4 
lessons) 

Research processes: (1) Planning: Make an instructional 
design plan for “The Design of Sweeping Robot” to 
summarize the process modules of teaching; (2) Action: 
Carry out STEM teaching practice according to the 
developed instructional design; (3) Observation: The main 
processes of the classroom; (4) Reflection: Reflect on 
whether the process modules of the engineering design- 
oriented and project-based STEM teaching model are 
reasonable according to the classroom videos and teaching 
logs. 

Summary: After the first round of action research, we found 
that the engineering design-oriented and project- based 
STEM teaching model can be divided into four main 
processes: project startup, project preparation, project 
practice and project summary, so that the teaching model can 
be initially divided into four modules. 

 
4.3.2. The Second Round of Action Research 
Research Objective: To analyze the pedagogical elements of 
teachers in engineering design-oriented and project- based 
STEM education. 

Teaching content: “the Making of Arduino Light Painting” 
(4 lessons) 

Research processes: (1) Planning: Make an instructional 
design plan for “the Making of Arduino Light Painting” to 
analyze the teaching elements; (2) Action: Carry out STEM 
teaching practice according to the developed instructional 
design; (3) Observation: teachers’ classroom behaviors; (4) 
Reflection: Reflect on whether the summary of teachers’ 
teaching activities in the STEM education is reasonable 
according to classroom videos and teaching logs. 

Summary: After the second round of action research, we 
found that the preliminary teaching activities of teachers lack 
the process of “providing learning scaffolds”.  Learning 
scaffolds should be provided for students’ investigative 
exploration and engineering design in the project preparation 
session following the description of the task in order to guide 
them to explore more possibilities in the heterogeneous 
problems. 

 
4.3.3. The Third Round of Action Research 
Research Objective: To analyze the composition of the 
students’ activities in engineering design-oriented and 
project-based STEM education. 

Teaching Content: “Building A Bridge for Bay Area” (4 
lessons) 

Research processes: (1) Planning: Make an instructional 
design plan for “Building A Bridge for Bay Area” to analyze 
the activity composition of students; (2) Action: Carry out 
STEM teaching practice according to the developed 
instructional design; (3) Observation: students’ learning 
activities; (4) Reflection: Reflect on whether the division of 
the elements of the students’ activities in engineering design-
oriented and project-based STEM education is reasonable 
according to classroom videos and the classroom 
observation forms. 

Summary: After the third round of action research, we found 
that students’ learning activities lack the transfer and 
improvement link after summary and the adjustment link 
after reflection. Therefore, homework should be assigned at 
the end of the class so that students can consolidate the 
knowledge and skills they have learned as well as seek the 
expansion and deeper construction of knowledge. In 
addition, students should not only to reflect on the whole 
learning process, but also apply the reflection results to the 
practice and conduct engineering project practice again. 

 
5. MODIFICATION OF MODEL 
5.1. Engineering Project Startup 
Establish situation and understand challenges: Situational 
learning is one of the characteristics of engineering- oriented 
STEM education. Therefore, engineering design- oriented 
STEM projects need to be carried out in a specific context. 
Teachers need to create specific engineering situations based 
on reality before students begin to study STEM projects, so 
that students can relate to their own experience and 
understand the problems or challenges they will face in the 
project. 

Describe the task and clarity project: Teachers can assign 
tasks and make a certain task description after students 
understand the project’s background and challenges in a 
specific context, so that students can make clear to the theme 
of the STEM study and the specific project they  need to 
undertake. 

 
5.2. Engineering Project Preparation 
Provide scaffolds and investigate & Explore: After assigning 
tasks, teachers should provide certain support services for 
students’ learning, such as listing questions and providing 
examples for reference, so that students can conduct 
investigation & exploration activities in a targeted and 
structured way after clarifying specific engineering projects. 
During the link of investigation & exploration, students 
firstly put forward relevant hypotheses based on the specific 
issues, and conduct brainstorming in the form of group 
discussion to determine the hypothesis and formulate a 
specific investigation plan, finally conduct investigation 
according to the plan with adjusting the behaviors of each 
link through constant reflection, laying the knowledge 
foundation for the subsequent practical sessions of the 
project. 

 
5.3. Engineering Project Practice 
Method guidance and engineering design: In this part, 
students first plan and design the project based on the 
acquired knowledge, then modify the planning and design as 
well as construct the works with group discussion, finally 
test the practical results and optimize them. In the entire 
processes, students continue to reflect on each stage and 
modify the actions of the previous stage, while teachers are 
responsible for providing methodological guidance. 

 
5.4. Engineering Project Summary 
Evaluate the works, demonstrate and communicate: Students 
present the constructed works, and each  group will conduct 
mutual evaluation and exchange experience, 
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while teachers are responsible for reviewing students’ works 
and giving feedback and suggestions. 

Summarize and migrate, reflect and improve: Teachers 
comment and summarize the constructed works displayed by 
students, and finally assign extracurricular homework 

for students to transfer knowledge; Students communicate 
with other groups’ members when they show their works, 
and finally they reflect on the deficiencies in the whole 
project, modify the deficiencies, and re-practice the 
engineering design after class. 

 
Figure 2. The Engineering Design-oriented and Project-based STEM Teaching Model. 

 
6. CONCLUSION 
After three rounds of action research, we constructed an 
evaluation index system for the teaching effect of cultivating 
STEM literacy from three dimensions: STEM knowledge, 
STEM skills and STEM emotional attitude. Then 30 students 
who were action research object of the third round were 
asked to evaluate the STEM teaching results of “Building A 
Bridge for Bay Area”. As the result, 
28 of them showed significant improvement in STEM 
knowledge and skills, especially in the field of engineering 
and technology, and they showed great interests in 
engineering design-oriented and project-based STEM 
education as they gained a great sense of achievement in 
engineering project practice. However, the remaining 2 
students barely participated in the overall STEM learning 
activities because they didn’t like learning and lacked social 
skills, as the interviews showed. 

In conclusion, this study summarizes an engineering design-
oriented and project-based STEM teaching model based on 
the LBD’s Cycles by Kolodner after three rounds of action 
research, which provides a new paradigm for STEM 
teaching development in basic education. However, the 
validity of the model still needs to be validated on a larger 
scale due to the current limitation of the sample size. 
Furthermore, increasing students’ engagement in 
engineering design-oriented and project-based STEM 
learning is also a factor that should be considered. 
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ABSTRACT 
Unlike previous research that focused on transfer of 
cognitive skills gained in programming to problem solving, 
we contend that students can learn programming to directly 
solve mathematics problems. Our study  begins a line of 
inquiry on whether computational thinking (CT) can be 
considered a distinct approach for mathematics problem 
solving in schools. This paper presents analysis of an 
episode that featured two students who conceptualized and 
coded an algorithmic solution to a textbook word problem. 
A comparison is made with the standard deductive 
approach. We generalize the differences in the two 
approaches in terms of knowledge types. The case is 
paradigmatic of a broader phenomenon in which CT makes 
a difference in how students approach problem solving in 
school mathematics. 

KEYWORDS 
computational thinking, mathematics education, problem 
solving, computer programming, secondary education 

 
1. INTRODUCTION 
Enthusiasm around teaching programming in  connection to 
mathematics led researchers to empirically investigate the 
effect of computer programming on K-12 mathematics 
learning. In 1989, McCoy and Dodl published a quantitative 
study of 800 high school students that concluded transfer of 
skills from computer programming experience to 
mathematical problem solving. In 1995, Yelland reviewed 
research on the LOGO experiments conducted in the 1980s 
and found mixed results on cognitive gains in mathematics 
achievement and problem solving. Schanzer et al (2018) 
reported that the Bootstrap programming curriculum 
improved students’ ability to solve algebra word problems 
on pre/post-tests. In their review of 15 studies, Forsström 
and Kaufmann (2018) found that under certain 
circumstances, programming in mathematics education 
could improve student motivation and performance in 
mathematics. There have been many studies relating 
programming and learning mathematics concepts, 
especially in geometry (e.g., Sung et al., 2020; Benton et al., 
2017), but very few have specifically related programming 
to school mathematics problem solving. 

Unlike previous research that focused on transfer or 
bridging of cognitive skills gained in programming to 
problem solving, we contend that students can learn 
programming to directly solve mathematics problems. 
Therefore, our study begins a line of inquiry on whether CT 
can be considered a distinct approach for mathematics 
problem solving in schools, such that students formulate 

problems computationally and then effectively solve them 
by writing programs. We also contribute to designing for 
such learning in secondary level education. 

 
2. RESEARCH QUESTIONS 
In design-based research (DBR), we strive to engineer 
certain learning outcomes while “building theories about 
why designs work and how to adapt them to new 
circumstances” (p. 9, Cobb, et al., 2003). In our study, we 
designed instructional materials to support students learning 
programming to solve mathematics problems in order to 
answer the following questions: 

1. What counts as evidence of CT? 

2. Does CT make a difference in how students 
approach mathematics problems? 

 
3. INTERVENTION DESIGN 
The instructional design being tested was based on four 
principles. 

 
3.1. CT for programming. Programming for math. 
Among many contested definitions of CT, we chosen one 
that aligns well with learning to program. CT is defined as 
“the thought process involved in formulating a problem and 
expressing its solution(s) in such a way that a computer—
human or machine—can effectively carry out” (Wing, 
2014). Computers are defined as information processing 
agents that carry out numerical calculations or symbolic 
manipulations (Denning and Tedre, 2019). 

While it is possible to design algorithms without 
implementing them on machines, there are compelling 
reasons to learn computational problem solving via 
programming. As students give instructions (i.e., code) to  a 
machine, they learn how computers blindly and 
mechanistically process the code. It is harder to learn this 
from giving verbal commands to a human computer. 
Humans can tolerate ambiguity when interpreting natural 
language. 

 
3.2. Programming to solve mathematics problems 
Problem solving is an important instructional goal in school 
mathematics (e.g., National Council of Teachers of 
Mathematics, 2000; Common Core State Standards, 2010). 
In Singapore syllabus documents, it is considered “central 
to mathematics learning” (MOE, 2006) and involves 
“applying mathematics in practical tasks, in real life 
problems and within mathematics itself” (MOE, 1990). 

Conventionally, students solve problems directly using the 
technologies of paper, pen, and sometimes a calculator. A 
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computational thinker designs algorithms for an 
intermediary, a computing agent, to find the solution. 

 
3.3. Learning programming should be embedded in math 
contexts 
Rather than have students take a generic programming class 
before applying the skill to mathematics, we designed the 
instructional materials so that students learn programming 
within a mathematics context. The materials assume no 
prior knowledge in programming and uses mathematics 
examples that most 7th grade students are already familiar 
with in the Singapore context. 

 
3.4. Focus on using the language, rather than learning 
the language. 
We selected and sequenced lessons so that students learn 
programming concepts at a level essential to doing 
something meaningful with mathematics. The Code by 
Math web-based platform uses Lua, a programming 
language that novices can learn quickly. We determined the 
following to be essential programming concepts for 
computational problem solving: output, sequencing, 
arithmetic operators, basic mathematical functions, 
variables, loops, and selection. 

 
4. METHOD 
The case study reported is from the second DBR cycle and 
took place at a typical public school. The teacher assisted us 
in getting four 7th grade students to volunteer and obtained 
consent from the parents. The program  lasted four days and 
each day’s session lasted 1 hour. 

On day 1, we conducted a 10-minute focus group to find out 
about their interest in mathematics and programming. The 
students expressed minimal interest in the mathematics 
subject, due to a history of getting poor grades, finding the 
subject difficult and boring, and having trouble 
understanding their teachers’ instruction. None of the 
students had any experience with computer programming 
but were cautiously open to trying it. 

After explaining pair programming roles and how to use the 
instructional materials, students worked through the lessons 
in a self-guided way. The printed and soft copies of the 
instructional documents provided links to select lessons on 
the Code by Math website (www.codebymath.com), and 
additional exercises. 

For data collection, we recorded students’ screens to capture 
what they were typing and their facial expressions. As 
backup, we used separate audio and video recorders. 

 
5. ANALYSIS 
We chose to analyze the following 10-minute episode 
because it drew attention to the distinctive influence of  CT. 
We describe the episode in two segments: (1) developing an 
algorithmic solution, and (2) coding the algorithmic 
solution. Lastly, we compare the computational solution to 
the pen-and-paper solution that students would normally be 
expected to produce. 
On the third day, Isaac and Fei Hong (pseudonyms) had just 
completed a brief introduction on loops, and learned 

how to evaluate and display values based on the loop 
counter, as shown in Figure 1. 

 

 
Figure 1. Screenshot of the lesson on loops from the Code 
by Math website 
Next, they were given the math problem shown in Figure 2, 
which came from the New Syllabus Mathematics book 7th   
edition,    and    marked    as    an    advanced exercise. 

 
 

A class has between 30 to 40 students. Each boy in the 
class brings 15 chocolate bars for a class party to 
celebrate Teacher’s Day. The chocolate bars  are shared 
equally among the 20 girls of the class and their form 
teacher with no leftovers. (p. 23) 

 
a) How many students are there in the class? 
b) How many chocolate bars does their form teacher 

receive? 
 

Figure 2. Textbook word problem 
 

5.1. Developing an algorithmic solution 
After 4 minutes of discussing the problem on their own, 
students began using a “guess-and-check” method. They 
had deduced that the number of possible boys was between 
10 and 20. However, they seemed to be guessing randomly 
rather than in a systematic way. After a while, they could 
not proceed to solve the problem, so I (first author) guided 
them through clarifying “what we know” and listing these 
on the paper. 
After a pause, one of the students said: “Can’t we just take 
every number between 10 and 20 and then times 15 and 
divide by 21?” I realized that this student had just articulated 
an algorithmic solution, so I said: “…and you want to try 
every number so you can use what?” They responded, 
“code”. I pressed them to be more precise and we had the 
following exchange: 
WH (first author): “…a loop, right? so where would you 
want the loop to start at?” 
Isaac: “ten” 
WH: “and it’s going to go until…” 
Isaac: “eleven” 
FH (Fei Hong): “twelve, thirteen” 
WH: “so it’s going to go from ten to…” 
Isaac: “twenty” 
WH: “and like he said, first you’re going to multiply 
by…” 

http://www.codebymath.com/
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Isaac: “fifteen” 
WH: “and then divide by…” 
FH: “twenty one” 
WH: “and see if you get a whole number. So now write code 
to do this, ok? But you kind of get the idea. That’s your set 
of instructions…The idea is that we’re going to be repeating 
the instructions over and over.” 

5.2. Coding the algorithmic solution 
Isaac constructed a loop for the range of possible number of 
boys, as shown in Figure 3. He said “oh” after clicking the 
Run button and his partner nodded, perhaps realizing that 
the output confirmed what they expected and also showed 
numbers that corresponded with the range of possible 
numbers of boys. 

 

 
Figure 3. Isaac’s code and output 

As shown in Figure 4, Isaac added lines 4 and 5 to reflect 
the two computation steps to be carried out for each value 
of i, where i is the possible number of boys. The variable c 
is an intermediate variable that stores the number of 
chocolates brought by i number of boys. However, there 
were some errors which reflected an immature 
understanding about encapsulating commands inside loops. 

 

 
Figure 4. Code showing errors 
After fixing the errors in the code, students got the output as 
shown in Figure 5. 

 

 
Figure 5. Output from the correct code 

The students and I took a moment to interpret the results.  It 
was striking that only when i = 14, was the result of c/21 a 
whole number (10). This meant that the number of 
chocolates brought by 14 boys were divisible by 21 
(representing the 20 girls + 1 form teacher). So each girl and 
teacher received 10 chocolates, and there were 34 students 
in the class (20 girls + 14 boys). 

 
5.3. Comparison with conventional problem solving 
The problem we gave the students came from a textbook 
chapter on the topic of least common multiples (LCM), 
along with worked examples on solving similar problems. 
According to the textbook, students should deduce that the 
solution must be divisible by both 21 and 15, and therefore 
must be a multiple of the two numbers. 
Students could find the common multiples using prime 
factorization: 
21 = 7*3 
15 = 5*3 
LCM = 3 * 7 * 5 = 105 
Students could either deduce or recall that common 
multiples are always multiples of the LCM, so the next 
multiple is 105 * 2 = 210. This corresponds to 14 boys and 
each girl and teacher receiving 10 chocolates each. 14  boys 
+ 20 girls = 34 students in the class. 
Another way to frame the solution is that the number of 
chocolates must be between 150 and 300, because the least 
number of boys is 10, so 10 boys * 15 chocolates per boy 
= 150 chocolates and the most number of boys is 20, so 20 
boys *15 chocolates per boy = 300 chocolates. Therefore, 
the number of chocolates must a  number between 150 and 
300 that is divisible by 21. This formulation  would exclude 
the LCM, which was 105 chocolates (7 boys * 15 chocolates 
per boy). 

6. DISCUSSION 
We expected to see evidence of CT, but did not know from 
the outset what it would look like (RQ1). It was not 
sufficient for students to simply demonstrate CT by 
completing programming exercises. What is novel was the 
possibility that learning programming could have  “primed” 
students to conceptualize the textbook problem in 
computational terms, rather than to apply the concept of 
“common multiples” (a problem feature that they failed to 
recognize). We theorize that learning loops, in particular, 
might have inspired students to “discover” a method to have 
the computer systematically calculate all the possible 
solutions and then to select the result that met the problem 
constraints. A “brute force” approach is easy to grasp and 
can therefore provide entry into the world  of computational 
problem solving. We are  currently analyzing other cases 
where we see students doing something similar, as evidence 
of algorithmic thinking specifically for mathematics 
problem solving. Another open question is whether the 
order of first conceiving the algorithm off-computer and 
then implementing on- computer is always so distinct. 
To address RQ2, we showed that CT made a difference in 
what was included and left out of the thinking process 



Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational 
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education. 

 

130 
 

when compared to similar worked problems in the math 
textbook. In this case, the textbook examples required that 
students apply the concept of “common multiples”. 
Students did not need this concept for the computational 
formulation. However, they did need to specify the lower 
and upper bounds of the solution space and develop 
computations that would be repeated between those bounds. 
There is, of course, overlap in some areas of thinking, such 
as understanding the mathematical features of the problem 
so that key parts are abstracted and translated into numbers 
and operations. 
We are still exploring how to theoretically describe the 
differences between the computational approach and the 
school math approach. One starting point is in 
epistemology. According to Abelson and Sussman (1996), 
The computer revolution is a revolution in the way we think 
and in the way we express what we think. The essence of this 
change is the emergence of what might best be called 
procedural epistemology—the study of the structure of 
knowledge from an imperative point of view, as opposed to 
the more declarative point of view taken by classical 
mathematical subjects. Mathematics provides a framework 
for dealing precisely with notions of ‘what is.’ Computation 
provides a framework for dealing precisely with notions of 
‘how to’. (Structure and Interpretation of Computer 
Programs, 1996, p.xxiii) 
Declarative knowledge is presented as a statement of fact: 
“the number of chocolates brought by the boys is between 
150 and 300 such that the number is divisible by 21”. Stated 
imperatively, a computational formulation to the same 
problem is: “for each number between 10 and 20, multiply 
by 15, then divide the result by 21. If the dividend is a whole 
number, the number of chocolates per girl or teacher is 
found”. Although an oversimplification, the knowledge 
categories represent our early attempt to describe the 
phenomenon. 

7. LIMITATIONS 
DBR studies are validated through the accumulation of 
storied truths (Gee, 2013), as explanations of underlying 
mechanisms within rich, contextualized cases. This paper 
provides one case that we theorize to be paradigmatic of a 
broader phenomenon where CT enables secondary level 
students to approach a math problem differently from what 
they usually do in school. As we iteratively develop 
analytical labels and relationships based on the first two 
rounds of the study, we can use them to describe new cases. 
Future DBR cycles will take place in natural classroom 
settings, which would provide increased sample size and 
diversity. 

8. CONCLUSION 
We set out to investigate the broad phenomenon of how 
students develop CT while learning programming to solve 
mathematics problems. We designed the instructional 
materials to embody principles that reflected how we 
viewed the relationship between CT, programming, and 
mathematics problem solving, as well as a commitment to 
making the materials accessible to students of all abilities. 

When interacting with students during a particular session, 
we identified a critical moment in which a student clearly 
articulated an algorithmic solution, which prepared them  to 
write code that expressed the solution. Therefore, the case is 
paradigmatic of conditions where CT can make a difference 
in how students conceptualize a mathematics problem. A 
comparison of students’ computational solution and the 
expected textbook-based one revealed a possible area for 
theory-building according to knowledge types. 
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ABSTRACT 
Maker education is regarded as a global initiative. 
Empowering STEM makers in schools becomes an 
important task for K-12 educators. Creativity, critical 
thinking, STEM identity, and STEM interest are all vital 
attributes of a good STEM maker. While researchers have 
proposed various pedagogical approaches to supporting the 
processes of STEM making, rare studies have been carried 
out to compare the effectiveness of these approaches. To fill 
the research gap, we have conducted a quasi-experimental 
study (with 63 secondary school students in Hong Kong) to 
explore the pedagogical effects of mentoring and authentic 
problem-solving strategies in supporting STEM making. 
Implications for the development of maker education and 
future work are also discussed in this paper. 

 
KEYWORDS 
STEM education, maker, mentoring, authentic problem- 
solving, instructional design 

 
1. INTRODUCTION 
Maker movement has started to spread widely since the 
early of this century (Sang & Simpson, 2019). The 
advocation of this cultural phenomenon, which is to 
cultivate learners to become "makers rather than 
consumers" of products (Chiu et al., accepted; Marshall & 
Harron, 2018), matches the pursue of developing students’ 
multiple capabilities in Science, Technology, Engineering, 
and Mathematics (STEM) areas (Honey et al., 2014). 
Correspondingly, making activities have been adopted to 
promote STEM education. Many researchers have reported 
the effects of maker-centered method in STEM education. 
For example, to develop learners’ creativity, critical 
thinking, and algorithmic thinking (Jeng et al., 2020), and 
to improve learners’ psychological perceptions towards 
STEM (Chiu, et al., 2020; Lin et al., 2019; Schlegel et al., 
2019). Among these intervention outcomes, there are four 
significant attributes for youth to be identified as STEM 
makers, including creativity, critical thinking, STEM 
identity, and STEM interest. 

Meanwhile, educators are trying to enrich learners’ STEM 
making experience. One of the strategies used is to infuse 
other   instructional   mechanisms   into   making activities 

opportunities; authentic problem-solving method exposes 
students to ill-structured real-world problems and enables 
them to practice their creativity and critical thinking skills 
when exploring solutions. Some researchers have reported 
their experience of integrating mentoring and/or authentic 
problem-solving approaches in students’ making activities 
(Carbonell-Carrera et al., 2019; Kuo et al., 2019), but few of 
them have compared the outcomes of adopting these two 
methods in developing student makers. To fill the research 
gap, this study aims to investigate the effectiveness of using 
mentoring and authentic problem-solving strategies in 
cultivating students to become STEM makers. Accordingly, 
the main research question of the study is: “Which of the 
two instructional designs is more effective in improving 
students’ creativity, critical thinking, STEM identity, and 
STEM interest, mentoring or authentic problem-solving?” 

 
2. RESEARCH DESIGN 
2.1. Research Participants 
Two classes of students from two different secondary 
schools in Hong Kong have participated in this study. These 
two schools shared a similar academic background. Besides, 
teachers of these two classes were both certificated teachers 
with PGDE and around 5 years of Mathematics teaching 
experience. These two classes were randomly assigned to be 
the mentoring class (n=32) and the authentic problem-
solving class (n=31). In addition, 8 mentors, who were 
undergraduate students in STEM-related majors, were 
recruited to help students in the mentoring class. 

 
2.2. Research Intervention 
There were three phases of the study. Step 1: Pre-test. A 
week before the STEM making courses, a questionnaire was 
distributed to all student participants. The questionnaire 
items, which included creativity, critical thinking, STEM 
identity, and STEM interest scales, were adopted from the 
previously published works (Kelley et al., 2019; Tyler- 
Wood et al., 2010; Young et al., 2013), and the Cronbach 
Alpha (CA) for each scale was adequate in general (see 
Table 1). 

 
  Table 1. Scale characteristics  
  Scales Items CA 

(Geng et al., 2019; So et al., 2020). For instance, mentoring 
and authentic problem-solving approaches are two choices 
of them (Hernandez et al., 2017; Musavi et al., 2018). These 
two instructional designs have been highlighted because of 
their potential in developing student learning. For instance, 
mentors can help learners get access to a variety of learning 
resources and provide them with capability development 

 
 
 

Creativity 

Q1: I am confident in my ability to 
understand how knowledge or insights 
might transfer to other situations or 
contexts. 
Q2: I am confident in my ability to find 
sources of information and inspiration 
when others do not. 
Q3: I am confident in my ability to 

0.8 

  elaborate and improve on ideas.  
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Critical 
thinking 

Q4: I am confident in my ability to 
evaluate reasoning and evidence that 
support an argument. 
Q5: I am confident in my ability to identify 
in detail what needs to be known to answer 
a question. 
Q6: I am confident in my ability to justify 

0.7 

choices of evaluation criteria. 

STEM 
identity 

Q7: My classmates ask me for help with 
STEM. 
Q8: My teachers expect me to study 
STEM in the future. 

0.9 

Q9: My parents think I am good at STEM. 
STEM 
interest 

Q10: I find STEM fascinating. 0.9 
Q11: I find STEM exciting. 

Q12: I find STEM appealing. 

Step 2: Making programme implementation. The making 
courses lasted for 5 weeks. Both participating classes 
organized students into groups (with 3-4 students in a team). 
Learners used Arduino kits to design and make their STEM 
projects. The difference between the two classes was that 
students in the mentoring class were assigned one mentor 
for each student team. On the other hand, the students in the 
authentic problem-solving class were assigned a real-world 
problem, which was to design a smart traffic light for the 
community, at the beginning of the programme. Table 2 
shows the themes of the learning activities. Step 3: Post-test. 
A week after the making courses, the questionnaire was 

The homogeneity of the regression coefficient of the 
two groups was analyzed, results showed that these two 
groups have no difference in creativity (F(1, 59) = 0.67, p 
= .42), STEM identity (F(1, 59) = 0.01, p = .91), and 
STEM interest (F(1, 59) = 2.38, p = .13), which confirmed 
the assumption of homogeneity. The analysis results of 
critical thinking did not pass the homogeneity test. In the 
next step, ANCOVAs were performed to analyze the 
scores in the four dimensions of the post-tests. 

For   the   dependent   variable   creativity,    there  was  no 
significant  difference  in the post-test  scores for creativity 
(see Table 4). For the dependent variable STEM identity, 
the  adjusted means  of mentoring  and  authentic  problem 
groups were 4.55 and 3.24, respectively. The post-test 
scores of the two groups achieved significance (F(1, 60) = 
187.09, p < .001, η2 = .76), showing a large effect size. For 
the dependent variable STEM interest, the adjusted 
means of mentoring and authentic problem groups were 
4.59 and 3.87, respectively. The post-test scores of the 
two groups achieved significance (F(1, 60) = 19.52, p 
< .001, η2 = .25), showing a large effect size. Therefore, 
we conclude from the data analysis that students developed 
better STEM identity and STEM interest with the 
mentoring approach. 

    Table 4. Post-test Descriptive Data and ANCOVA 
Results 

Variable Group N Mean Adjusted F η2 
Mean 

Creativity Mentoring 32 4.22 4.22 0.15 0 

distributed to the two participating classes again. Authentic 
problem 

31 4.27 4.27 

Table 2. Themes of Classroom Activities Critical Mentoring 32 3.22 3.15 104.39 0.64 
Time Theme thinking Authentic 31 4.42 4.49 *** 

Week 1 Meet Arduino and my first Arduino program problem 
Week 2 Change the brightness of LED STEM Mentoring 32 4.60 4.55 187.09 0.76 

Use variable resistance to change the identity Authentic 31 3.18 3.24 *** 
Week 3 brightness of LED problem 

Use the photoresistor (LDR) to change the STEM Mentoring 32 4.60 4.59 19.52 0.25 
Week 4 brightness of LED interest Authentic 31 3.85 3.87 *** 
Week 5 Arduino for Problem-solving 

3. RESULTS
Participants’ pre-test scores of creativity, critical thinking, 
STEM identity, and STEM interest were shown in Table 3. 
They were covariates used to exclude the effects of 
students’ pre-test on their post-test performance. 

Table 3. Students’ Pre-test Results 
 Groups Variables Mean SD 

Creativity  2.78 0.64 

problem 

Mentoring 
(n=32) 

Authentic 
problem- 
solving 
(n=31) 

Critical thinking 3.16 0.58 
STEM identity 3.02 0.80 
STEM interest 3.02 0.88 
Creativity 2.85 0.72 
Critical thinking 2.85 0.61 
STEM identity 2.67 0.56 
STEM interest 2.87 0.85 

*p < 0.05, **p < 0.01, ***p < 0.001

4. DISCUSSION AND CONCLUSION
This research shows that, in the context of STEM 
making activities, mentoring is more capable than 
authentic problem-solving in cultivating students’ STEM 
identity and STEM interest. It might be due to the 
formation patterns of interest and identity. Once 
students’ interest has been developed, it can sustain 
when they know more about the representative 
professionals in the related area through instruction 
and/or out-of-school experiences (Jong et al., 2006;    
Krapp,    2007).    Likewise,    when    students are 
developing their identity, they tend to make use of 
the resources available in the environment (Chiu & 
Churchill, 2015, 2016; Chiu & Mok, 2017, Dong et 
al., 2020), especially the external support offered by 
the STEM professionals. Infusing the mentoring strategy 
into students’ STEM making activities fits learners’ 
interest and identity development tracks. It allows learners 
to approach in-school or out-of-school STEM mentors who 
can guide their STEM interest and STEM identity 
development. 
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Though the advantages of adopting the mentoring approach 
have been proved in this study, the potential of using 
authentic problem-solving method has not been identified. 
We regard that there is a need to further probe into the 
effectiveness of the authentic problem-solving strategy for 
STEM maker development. 
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ABSTRACT 
EASTEM is a capacity-building project funded by 
Erasmus+ with the aim of improving employability of 
STEM (Science, Technology, Engineering and 
Mathematics) graduates from partner universities by 
ensuring students acquire skills needed in the workplace. 
EASTEM uses approaches from student-centred STEM 
education to develop the competence of lecturers and bridge 
the gap between industry and universities. Over the course 
of three full years (2019-2022) the project brought together 
ten universities from Asia and three universities from 
Europe to work together on improving STEM education, 
creating a platform for partner universities to exchange best 
practices on student-centred STEM education. Two 
associate partners, the Ministry of Education and Training 
of Vietnam and Vietnam Electronics Industries Association 
are supporting EASTEM activities. 

KEYWORDS 
STEM education, STEM centres, academia and industry 
collaboration, student-centred approach, computational 
thinking 

1. INTRODUCTION 
Universities across the world are seeking to form global 
partnerships and fostering relationships with other 
institutions. 

EASTEM project (http://eastemproject.eu/) is focused on 
advances in the quality of teaching. Increased connections 
between universities, corporate partners and schools 
brought about by the EASTEM project are set to improve 
the employability of graduates, fulfilling industry needs of 
the workforce in Indonesia, Thailand and Vietnam. The 
recent shift to online teaching and learning in all our partner 
universities have further increased the need to teach in ways 
that engage students. Improving the competence of teachers 
and the quality of higher education in STEM to ensure that 
graduates can make the best of their abilities are considered 
crucial measures for industrial competitiveness in partner 
countries. 

There is an increase in demand for skilled professionals 
within the STEM field across the globe, and a high number 
of STEM workers are reaching retirement age, adding 
further pressure to an already skill-short area. Thus, a high 
quality STEM education is seen as a critical success factor 
for Asian countries in light of the fourth industrial 
revolution. Development of professional skills such as 
teamwork, communication and leadership skills, quality of 
education in relation to the demands of the job market, and 

employability are skills that we can learn by collaborating 
and cooperating. 

The project partners are drivers for change in educational 
approaches in their local and national context. Still the 
majority of teaching is based on traditional methods rather 
than meeting today’s need of the students. This is in spite of 
government efforts. For example, in Vietnam the Ministry 
of Education and Training has identified STEM education 
as a key factor for development. In Indonesia, all of higher 
education curriculum must refer to Kerangka Kualifikasi 
Nasional Indonesia (Indonesia National Qualification 
Framework), focusing in part on competence development. 
As part of the Thailand 4.0 Policy of the Thai government 
and the strategy of the Ministry of Education, Thailand is 
hoping to develop a holistic strategy to prepare teachers and 
school leaders to deliver education reform, with a strong 
emphasis on improving teachers’ skills to make the best use 
of technology in the classroom. 

The project partner universities have established policies 
and strategies for moving their institutions forward into the 
next decade, with a strategy to proactively support the needs 
of the communities and society, to produce quality 
graduates who have a mind to serve the society and to 
develop research and create innovations for the 
development of economy, society and local security. 
Nevertheless, the institutions involved in EASTEM is at the 
forefront of this movement, they have expressed a need for 
the activities planned in this project. In spite of the focus on 
development of professional skills development for 
employability in recent years nationally, regionally and 
locally, the penetration rate remains low, particularly in 
STEM education. 

With the knowledge exchanged through the partnership, 
each partner’s expertise and experiences from different 
contexts can synergistically enrich each other, and will in 
turn subsequently benefit the members within this resulting 
strengthened network. This includes developing strategies 
for enhancing each university’s own STEM education 
system, to establish a platform for networking on STEM 
education, and to safeguard the pitfalls of education in rapid 
changes of science and technology. 

EASTEM structure and activities are built on a European 
model for how learning and teaching in the STEM area 
should be enhanced. These strategies can (and should) be 
contrasted to formalized “teaching methods”, where certain 
predefined protocol for how the teaching should take place 
is to be followed. Such formalized teaching methods lack 
the flexibility to follow the development of the discipline, 
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the students, the students’ future employers, and the needs 
of these entities, and are difficult to adapt to new student 
groups and/or new environments. These strategies should be 
adapted to the local cultural, social, economic and 
disciplinary environment. By doing that, they turn out to be 
powerful tools for enhancing the quality of STEM 
education. 

There have been several initiatives focused on skills 
development and employability. EASTEM, described in 
this paper, differentiates itself on several points, grounded 
in a European model for enhancing STEM education. 
Firstly, EASTEM focus on approaches for making 
education more focused on the students and their needs, not 
through specific teaching methods. Secondly, the main 
attention is to integrated STEM education. Thirdly, in order 
to capitalize on previous and current initiatives we address 
student competence development on three levels in order to 
vitalize the student-centred STEM education. Fourthly, 
EASTEM lays the organizational foundation for a STEM 
Education network, providing visibility to initiatives within 
the field. Finally, in being rooted in staff development in 
two phases, the Asian universities conduct and establish 
their own staff development adaptation to local contexts. 

2. COLLABORATION AND EXCHANGE 
OF GOOD PRACTICES 
Working together in the EASTEM project, we are currently 
a part of the ongoing national and European reform of 
STEM in schools and universities. The motivation is to 
move from subject-oriented STEM to transdisciplinary and 
project-oriented STEM (Pears et al, 2019). The political 
goal is to increase the motivation of students in STEM and 
increase the number and diversity of students interested in 
STEM university subjects and professional STEM and 
engineering careers. The educational goal is to focus on 
transdisciplinary aspects and promote research-based 
education (Cook, Bush, 2018). At the same time, a number 
of international, regional and national research-based 
initiatives are underway to improve university and high 
school STEM education, focusing on student skills 
development and related aspects. 

Synergistic learning combining Computational Thinking 
(CT) and STEM has proven to be an effective method for 
advancing learning and understanding in a number of 
STEM domains and simultaneously helping students 
develop important computer science concepts and practices 
(Park, Green, 2019). 

Many computational environments and tools have been 
developed to promote CT competencies in STEM 
education. The way scientists and engineers approach 
problems is very similar to CT methodology: Identify 
problems and do research; Decompose the problem; Design 
the algorithm or create plan; Analyse results; Debug and 
modify, etc. (Palts, Pedaste, 2020). 

Educators are often confused about CT and STEM and have 
difficulties to see the link. However, CT is a way of solving 
problems and can be integrated with various disciplines. 
Especially STEM contexts are very suitable for this. CT 
skills incorporate analytical thinking, engineering thinking, 
and scientific thinking. Thus, they could be positioned as a 

kind of universal skill for the modern student, and this is 
especially true for STEM education. 

Besides critical thinking, creativity, communication and 
collaboration, CT can be seen as an important part of 21st 
century learning. The importance of CT is still 
underestimated in education. CT is a set of problem-solving 
methods that involve expressing problems and their 
solutions in ways a computer could execute (Denning, 
Tedre, 2019). Modern computation tools are changing the 
way science and mathematics are practiced. CT 
encompasses a wide range of mental processes, which are 
considered necessary supplies for the 21st-century children. 

The aim of EASTEM project is to provide a European- 
Asian insight on student-centred STEM education research 
practice. It is based on a collection of best practices, case 
studies, analytical reviews, theoretical contributions focused 
on approaches to students’ skills development and 
university-industry collaborative practices as related to 
university STEM education. The motivation is as follows. A 
look at the university STEM in terms of institutional 
development, focusing on: (a) country-specific STEM 
results for a range of unique experiences and best practices; 
(b) a look at collaborative practices and outcomes associated 
with global and international STEM activities. Specific 
topics could include: educational policies and managerial 
approaches to university STEM development and research; 
research on curriculum development and integration 
focusing on students’ STEM professional competencies; 
Euro-Asian University and university- industry 
collaboration in research and best practices as related to 
university STEM. The project activities and outcomes are 
organized in three main strands. 

2.1. Train lecturers in student-centred competence 
development 
Partners developed trainings in student-centred STEM 
education approaches with the help of Uppsala University, 
Sweden. In the first phase, a number of lecturers from Asian 
partner institutions participated in a course in student- 
centred competence development. Then they set up a pilot 
course where students solve problems from local industries 
and communities in international teams at the different 
partner institutions. In the second phase, lecturers trained in 
the first phase conducted staff development sessions for 
other lecturers both within and outside of their institutions. 
At some occasions this was made for lecturers at the local 
institutions, but at some institutions those courses were also 
regional or national 

In conclusion, the European and Asian partners have jointly 
developed and implemented student-centred STEM 
education staff trainings at the Asian partner institutions. At 
the same, a quality revision of the Asian partners teaching 
of STEM is taking place. 

During the pilot course, the course participants (lecturers) 
taught modules for students applying their new ideas. In this 
way, the pilot module served as a test bed at the same time 
as it is an occasion for the lectures to apply student-centred 
teaching approaches. Lecturers who have participated in the 
Training of Trainers courses are now applying SCL 
approaches that we have learnt in regular teaching with 
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students. A particular focus has been on attitudes, both of 
the staff towards their new roles and the learners towards 
being in control of their own learning. 

2.2. Establish STEM education centres 
Vilnius University, Lithuania is supporting lecturers, deans 
and administrative staff at Asian partner universities to 
establish, staff and run STEM education centres to ensure 
the sustainability and increase the visibility of student- 
centred STEM activities. These centres should anchor 
STEM activities firmly within the university structure and 
serve as focal points for each university’s STEM initiatives. 
By engaging both university students and external partners 
such as local high schools in centre activities, the centres 
have the potential to develop into hubs for STEM education 
and learning in each city or region. The establishment centre 
for excellence in STEM education is based on each partner 
university sharing of current status and good case practices. 

The establishing of the Centre for Excellence in STEM 
Education allows: 
• to improve study programmes quality through integrated 

style of study and to modernize the curricula of study 
programmes by including innovative learning and 
teaching tools; 

• to engage students with STEM disciplines and to allow 
students to get acquainted with different STEM 
disciplines; 

• to strengthen the link between academic environment 
(university) and work life, to develop competences 
needed for the job market; 

• to develop the students’ and teachers’ soft skills; 
• strengthen partnerships between university-industry- 

school; 
Preparation of the feasibility study based on each partner’s 
needs and best practices in STEM Centres. Mapping STEM 
Education centre conceptions in each partner’s institution: 
preparation of the guidelines, recommendations, strategical 
plan of STEM centre establishment. Implementation part 
consists of preparation of training material, developing 
training modules, innovative methodological tools and pilot 
implementation: 

1. Staff development in STEM Education Centre 
Management; 

2. Staff development for Centre activities coordinators 
(university lecturers, researchers, who organize and 
implement activities in centre); 

3. Launch of STEM centres (in each Partner University); 
4. Piloting the STEM centres platform: 

• Activities (at university level); 
• Lecturers: 1) study and research organization for 

students; 2) consultation, expertise, research of 
educational process; 3) preparation of 
methodological material and tools for teachers; 

• University students’ involvement in centre activities 
integrative modules, research, practice supervised by 
lecturers; 

• Activities (at the K-12 level); 

• School teachers training; 
• School students: formal and non-formal education 

activities in STEM centre; 
5. Evaluation of launched centres activities; 
6. Centres for Excellence in STEM Education consortium 

establishment. 
An interdisciplinary platform for STEM education at 
universities provides sustainability for the project network, 
activities, increasing visibility of student-centred 
educational approaches and research in STEM education 
(https://www.fsf.vu.lt/en/eastem-centres-platform). 

2.3. Facilitate industry engagement and competence 
integration into STEM educational programmes 
New skills are required in the era of the Fourth Industrial 
Revolution and recognizing the importance of competence 
development for students, institutions are to facilitate 
education focused on students’ needs but also offer STEM 
programmes that better align with labor market needs. 
Based on major accreditation requirements in the six partner 
countries, several University-Industry collaboration formats 
were categorized in themes (Rouvrais et al, 2020). They lay 
the foundation of a structured relationship model for STEM 
universities, which now permits to build on good case 
practices from all partner institutions. It thus contributes to 
advancing STEM-educational frameworks for curriculum 
guidelines aligned with skills for industry. 

Going beyond concerns and models of an EASTEM 
educational framework, incl. curriculum development, 
SCL, industry collaboration, training of trainers and STEM 
centres, a more strategic level is to be reached. EASTEM 
aims to provide partner institutions with the knowledge to 
develop their own processes for continuous integration of 
good practices into their STEM educational ecosystem. 
With support on a strategic level from university 
management, STEM activities are more sustainable. 

IMT Atlantique, France engages with partners on how to 
better reach university management (e.g. programme 
leaders and deans, vice-rectors and rectors). They work to 
develop a strategy, canvas and maturity tools for continuous 
integration of competence development and EASTEM 
models into various levels of university education. 
Anchoring the need for support on a strategic level leads to 
sustainability of the various action plans, at short to longer 
terms. In addition, designed tools should lead to a new way 
to interact with stakeholders in the design, development, 
operation and revision of STEM university education 
according to various needs or more formal requirements. 

3. CAPACITY BUILDING IMPACTS 
EASTEM addresses university-enterprise cooperation, 
entrepreneurship and employability of graduates for the 
Asian region. Student-centred competence development 
within STEM education and active engagement with 
industry should help bridge the skills gap in our partner 
countries and improve graduate employability. 

STEM education centres, similar supporting units or 
established groups of like-minded lecturers have been set up 
at partner institutions and provided a focal point for STEM 
education activities including external stakeholders 

https://www.fsf.vu.lt/en/eastem-centers-platform
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such as high schools and companies. Through a 
questionnaire and interviews, we have developed a 
framework aimed to support the Asian partners including 
eight themes for university-industry collaboration 
(Rouvrais et al, 2020), which provides the foundations for 
improving local industry engagement strategies and 
processes in partner institutions. In 2020-2021 the STEM 
education centres should incorporate and pilot various 
student-centred STEM activities involving corporate 
partners, lecturers, teachers, and university and high school 
students. 

According to our Asian partners, the EASTEM project has 
created value by building strong national and international 
networks, promoting cooperation between the EU and the 
partner countries, between partner countries and within 
partner countries. Elevating the Training of Trainers courses 
to a national level as our partners have done in Thailand and 
Indonesia and intend to do in Vietnam strengthens the 
potential for wider dissemination of methodologies inspired 
by European universities, thus promoting voluntary 
convergence with EU developments in higher education. 

With our focus on improving the quality of higher education 
and enhancing its relevance for the labour market and 
society, EASTEM objectives are also in line with the new 
EU Skills Agenda, more specifically increasing STEM 
graduates and fostering entrepreneurial and transversal 
skills. Lecturers from our three European partners gain 
additional insight and perspective on SCL teaching 
approaches and industry engagement and establish new 
partnerships with colleagues in Asia. 

Through the STEM centres, partner universities have 
strengthened relationships with industry partners and high 
schools. For example, when launching a STEM centre in 
November 2019, Mahidol University (Thailand) signed a 
memorandum of understanding with Imagineering 
Education Company. Partners in Vietnam and Thailand 
emphasize the potential for their STEM centres to establish 
cooperation between academia and industry. Partners in 
Thailand have also pointed out that the EASTEM Training 
of Trainers courses help improve the quality of education, 
with the potential to transform teaching and learning 
philosophy and inspire lifelong learning. 

Vietnam’s government recognizes STEM education as a 
driving factor for a strong labour workforce that meets the 
requirements of the 4th Industrial Revolution. For example, 
in Thua Thien-Hue province, EASTEM’s activities 
connecting universities with high schools and industry 
partners are also in line with the province’s ambition to 
develop a smart city urban cluster. 

4. CONCLUSIONS 
In EASTEM we focus on STEM education and we go 
beyond methods. Drawing from successful strategies to 

address the skills gap, we aim to strengthen student-centred 
competence development by taking a holistic approach also 
by including computational thinking. 

By jointly developing the Training of Trainers course 
methodology, Asian partner university lecturers have been 
trained to design, teach and assess STEM classes using 
student-centred approaches. The Training of Trainers course 
evaluation results have shown how participating lecturers 
have increased their knowledge and skill in applying 
student-centred approaches into their teaching. 

These core strategies can be taken as the European model 
for how learning and teaching in the STEM area could be 
enhanced. They are based on research on students’ learning 
of the discipline and do not prescribe certain teaching 
methods as being better than others. Instead, these strategies 
can (and should) be contrasted to formalized “teaching 
methods”, where certain predefined protocols for how the 
teaching should take place are to be followed. 
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ABSTRACT 
More and more countries have regarded that STEM 
education is one of the best pathways to develop future 
citizens optimally equipped for the needs of future 
industries. Students can develop 21st century skills such as 
communication, collaboration, design thinking, and 
innovation through learning STEM-related subjects. 
However, few studies focus on combining STEM and social 
care education to enhance students’ empathy and STEM 
competencies. The present work aimed to design a social-
scientific STEM curriculum based on students’ abilities and 
backgrounds. Apart from that, it probed into the students’ 
changes in the areas of empathy, self-efficacy, and interest 
after learning the curriculum via a quantitative survey. The 
results showed that the students made positive changes in the 
areas concerned. 

 
KEYWORDS 
STEM, social care, interdisciplinary, empathy, self-efficacy 

 
1. INTRODUCTION 
In recent years, STEM education has been increasingly 
advocated and implemented in more and more countries and 
regions (Lee et al., 2019; Martín‐Páez et al., 2019). It is 
widely believed that STEM education can enhance students’ 
communication, cooperation, design thinking, innovation, 
and other skills needed in the 21st century (Honey et al., 
2014; Geng et al., 2019). Consequently, the number of 
studies on STEM has been growing, including those on 
STEM pedagogy (e.g., Simeon et al., 2020), learning 
effectiveness evaluation (e.g., Huang & Jong, 2020), teacher 
preparation and development (e.g., Chai et al., 2020; So et 
al., 2020), and others. Simultaneously, there is a growing 
awareness that empathy can be an important component of 
STEM teaching and learning, especially when teaching 
design thinking. Empathy is the ability to understand and 
respond adaptively to others’ feelings and sufferings, which 
is a vital step to compassionate actions (Preston & de Waal, 
2002; Riess, 2017). Enhancing people’s empathy will enable 
them to design products that are more attuned to users’ needs 
and optimize user experience (Carlson & Dobson, 2020). 
However, the existing literature shows little experimental 
research investigating STEM and empathy integration 
(Gunckel & Tolbert, 2018). 

In light of the lack of a robust body of literature in this 
regard, we designed an interdisciplinary social-scientific 
STEM curriculum that combines social care and STEM 
topics and evaluated its impact on empathy, self-efficacy, 
and interest in a secondary school. 

2. THEORETICAL FRAMEWORK 
2.1. Research background 
In contrast to traditional didactic approaches, STEM 
education emphasizes the integration of learning with real- 
life problems to develop students’ abilities to solve problems 
and build other skills needed in the 21st century (Nadelson 
& Seifert, 2017; Lee et al., 2019). Many efforts were made 
to study how different scientific disciplines, such as 
mathematics and technology, can be combined to promote 
the development of high-level thinking skills and the  
creation  of  high-quality  STEM  products  (Martín‐Páez et al., 
2019). Apart from integrating two or more science subjects 
to develop students’ abilities, it would be prudent to consider 
integrating these science subjects with some humanistic 
subjects, e.g., social care. Through the interdisciplinary 
learning process, students can learn to care for others and 
apply their STEM knowledge to design products that are 
suitable for addressing and fulfilling a full spectrum of 
potential user requirements. It would be interesting to 
explore whether students’ empathy, interest, and self-
efficacy improve after participating in such programs. 

 
2.2. The EDIPT design thinking model 
This curriculum’s design is informed by The EDIPT design 
thinking model proposed by the Hasso Plattner Institute of 
Design at Stanford University (Hasso Plattner Institute of 
Design [HPID], 2010). This model is a widely accepted 
design model in the STEM field. The model suggested that 
students can experience five stages in the design process: 
empathize, define, ideate, prototype, and test (HPID, 2010). 
In the empathize stage, students can visit and have a 
conversation with the users to understand their  thoughts and 
their needs. In the definition stage, students can synthesize 
and select the needs they think are important to meet and then 
determine the one they will strive to address in their design. 
In the ideate stage, learners practice divergent thinking and 
propose a range of possible solutions to choose from. Next, 
students build their proposed solutions and prototype them, 
which could bring them closer to the final solution. In the 
test stage, students present the prototypes to users, garner 
feedback, and then refine them. Thoring and Müller (2011) 
conducted a study to observe how the EDIPT model was 
practiced in the Hasso Plattner Institute in Potsdam, 
Germany, and developed a process model to describe the 
process steps in detail. Henrisken et al. (2018) applied the 
model in a teacher education course and found that this 
model promoted creativity and empathy. In the design 
industry, 
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Da Silva et al. (2020) integrated the design thinking model 
with another design thinking tool to improve new product 
development and identified it as an appropriate framework 
in guiding product design. 

 
3. METODS 
3.1. Design of the social-scientific curriculum 
We designed the course with reference to the EDIPT model. 
As the class time was limited, we focused on the first three 
aspects of the design process, empathize, define, and ideate. 
After ideating, we asked students to compile and present 
their written solutions. Then, expert and peer feedback were 
provided to help students know the direction for improving 
their work. The entire curriculum consists of three 
components: social care, STEM, and proposal writing. The 
duration of the interdisciplinary curriculum was six weeks. 

The theme of the curriculum was social housing and product 
design. In the STEM course, students learned the STEM 
knowledge and skills necessary for realizing the solutions, 
such as coding through Thunkable, and Internet of Things 
(IoT). At the same time, in the social care course, students 
experienced the complete process of problem identification, 
solution proposal, and expert feedback. Students watched 
the videos of interviews with people living in social houses 
to understand the users’ needs.  Then, they analyzed and 
identified the problems they want to help solve. Next, the 
students brainstormed together to come up with possible 
solutions. Afterward, the groups refined their ideas and 
developed a more specific solution after the class. Class 
presentations were organized during the course, and experts 
and peers were invited to provide suggestions for 
improvements. Concurrently, in the proposal writing course, 
students learned to present their design ideas in the form of 
a proposal. See Figure 1 for the interdisciplinary social-
scientific curriculum. 

interdisciplinary course and design social care products with 
their knowledge. All students underwent the curriculum. A 
total of 55 students and their parents co- signed the consent 
form. Only the students who signed the consent form were 
included in the analysis of this study. In order to track the 
changes in affective, the students were asked to complete a 
pre-questionnaire prior to the course. At the end of the 
course, students completed a post- questionnaire. 

 
3.3. Instrument 
The questionnaire-based instrument consisted of three 
dimensions: empathy, self-efficacy, and interest (12 items in 
total, in a 6-point scale). In terms of empathy, we referred to 
the instrument of Vossen et al. (2015) for examining 
students’ willingness to understand and contribute to 
community services. For example, one of the questions was, 
“I would try to understand how others feel about community 
service.” In terms of self-efficacy, we referred to the 
instrument of Chen et al. (2001) for measuring students’ 
confidence in applying STEM knowledge to serve their 
communities. One of the  questions was, “I believe I can use 
STEM knowledge to come up with useful ideas for helping 
the community.” In terms of interest, we referred to the 
instrument of Luo et al. (2019) for examining students’ 
interest in STEM. For example, “I like to design products 
related to STEM.” To establish content validity, three 
experts were invited to provide feedback about the 
measurement tool. Modifications on the content were 
conducted based on their suggestions. 

 
4. RESULTS 
Forty-two students completed both the pre- and post- 
surveys. The reliability test showed that the Cronbach Alpha 
of the subscales of empathy, self-efficacy, and interest were 
0.83, 0.89, 0.79. The result indicated there was a high level 
of internal consistency for this instrument. Paired-sample t-
tests were conducted to compare if there were any 
differences between students’ pre- and post- survey scores. 
Results indicated that the post-survey scores were 
significantly higher than the post-survey scores in all the 
examined dimensions. For example, in the empathy 
dimension, there was a significant difference in the pre- 
survey score (M=4.29, SD=0.87) and post-test (M=4.69, 
SD=0.96), t (41) =-2.63, p=0.01. See Table 1. 

 
          Table 1. Paired-sample t-test results of the survey.         

Mean SD t value df Sig (two 
  tailed)      

Empathy 
Pre-test 

4.29 0.87 -2.63 41 0.01 

 
 

Figure 1. The interdisciplinary social-scientific curriculum. 

Post-test 4.69 0.96 
Self-efficacy 3.88 1.06 -2.63 41 0.001 
Pre-test 
Post-test 4.60 0.98 

3.2. Participants 
Interest 
Pre-test 

4.13 0.90 -3.04 41 0.004 

Two grade 8 classes from a secondary school participated Post-test 4.63 1.03 
in  this study.  Given  that grade  8  students had  laid some    
foundation in their STEM knowledge in the previous year 
(i.e., grade 7), it could be easier for them to adapt to the 

Note. n =42 
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5. DISCUSSION AND CONCLUSION 
This work explores how STEM and social-care education 
can be integrated for students to experience real-life 
problems and actively explore solutions by themselves. The 
study found that such a curriculum can potentially enhance 
students’ empathy, self-efficacy, and interest. The 
innovative curriculum demonstrated how interdisciplinary 
courses could be designed to enhance students’ social 
emotional competencies. As this study was implemented in 
a normal teaching environment, the practices are applicable 
in similar schools. A limitation of the study is that no control 
group was in the research setting. If possible, a control group 
could be introduced to size-up the effectiveness of using 
social-scientific curriculum and scientific-only curriculum 
on students’ empathy, efficacy, and interest. Another 
limitation is that the data collected so far have been mainly 
quantitative. In the next round, more data (e.g., interview 
data) will be collected to triangulate the results. 
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Computational thinking (CT) is a set of problem-solving 
methods which several scholars advocate for its inclusion in 
the educational curricula for K-12. Incorporating this 
knowledge into existing syllabuses is a challenge for both  the 
educational community and researchers within the field of 
STEM education. The focus of this study is on the importance 
of co-design and constructionism in the process of planning 
and designing teaching modules to introduce students to CT 
using both robotic constructions and programming. This paper 
presents and discusses the design process of a series of 
workshops conducted with a group of middle school students 
during the fall of 2020. The main goal of these workshops was 
to introduce students to the main concepts and practices of CT, 
thus addressing the goals defined by the Swedish Agency for 
Education (Skolverket). Our initial findings indicate that co-
designing educational activities (with a focus on 
constructionism and challenge- based learning) in close 
collaboration between teachers and researchers can lead to 
effective ways to foster the development of CT skills among 
students. 

KEYWORDS 
Computational Thinking, Co-design, STEM Education, K-12 
curricula, Challenge-based Learning, Constructionism. 

1. INTRODUCTION
Computational thinking (CT) is an approach to problem- 
solving which many researchers within the computer science 
education community advocate for its inclusion in the  current 
K-12 educational curriculum. One strong argument for such
recommendations is to provide students with the required
knowledge and necessary skills to face the challenges of our
modern society (Wing, 2006; Grover & Pea, 2018). As Wing
argued, we live in a society of ubiquitous computing,
however, we do not yet live in a society of CT (Wing, 2006).

During the last few years, Sweden has started a process of 
adapting the curriculum of different subject matters, including 
mathematics and technology, so that  K-12 students can 
acquire different skills for being able to produce creative and 
innovative solutions to solve authentic problems. Although 
the goals set by the Swedish National Agency for Education 
are clearly defined (Skolverket, 2018) in terms of the 
knowledge and skills that are to be developed by students in 
these particular subjects, it is, however, not 

specified  what  learning  strategies  and  methods  should be 
used to reach these goals and effectively teach CT concepts 
in the classroom (Kohen-Vacs & Milrad, 2019). One of the 
aims of this paper is to explore possible ways in which CT 
learning activities and teaching modules can be 
designed  in a collaborative way between teachers and 
researchers so that they can be integrated into the 
schools’ curriculum for elementary and middle 
education within STEM-related subjects aiming at 
reaching the goals established by the Swedish Agency 
for Education (Skolverket, 2018). 

This study is a continuation of the research activities we had 
started in the spring of 2020 related to validating 
different design approaches for teaching CT in Swedish 
schools taking into account the goals defined by 
Skolverket for the subject matter of technology. In order to 
reach this purpose, we are using the Engino® Robotics 
Platform (ERP)1 which is an educational tool specially 
designed for primary and secondary STEM education. 
Considering all the above, the main research question 
that guides our research efforts in the focus of this paper 
can be formulated as follows: How teaching modules for 
STEM related subjects in elementary and high schools 
should be designed and organized so that they can help 
students develop and practice CT concepts? 

The paper is organized as follows; in the coming section we 
present the theoretical framework on which this study 
is grounded. In section three and four we describe the design  
of our research interventions and the main findings. Finally, 
the discussions and conclusions are presented in  sections 
five and six. 

2. THEORETICAL FOUNDATIONS
In this section we discuss some theoretical aspects and 
concepts related to CT and its integration into K-12 
STEM education. The concepts on which the learning 
theory of constructionism are based and on how children 
are builders of their own intellectual structures  (Papert,  
1980) have had a notable influence in the context of 
CT considering that learning to solve problems and to 
design solutions is a way of creating knowledge and a 
fundamental aspect of CT (Grover & Pea, 2018). These 
authors explain that the ultimate goal of CT is creating a 
computational artifact that could be a physical device, pure 
software or the combination of both. Another concept of 
importance within CT education is the use of learning 
challenges (Conde et al., 2019). Conde and 
colleagues argue that challenge-based learning is an 

1 https://www.engino.com/w/index.php/products/robotics 
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effective strategy for teaching CT because it allows students 
to learn to define and solve a problem, it promotes 
collaborative work, and it connects students with real world 
problems. 

Two additional concepts that we would like to highlight in the 
context of this study is the importance of using co-design 
(Spikol et al., 2009) as an approach to create a common 
ground between educational practitioners and researchers as 
well as the TPACK framework for technological education 
(Wong et al., 2014). Designing teaching modules is a complex 
process that requires the involvement of all stakeholders. 
Engaging in co-design is, therefore, an essential aspect when 
planning learning activities. By actively involving different 
stakeholders (teachers, researchers, IT-developers, etc.) and 
working in direct contact with one another and assigning them 
specific roles based on their area of expertise, it is possible to 
yield educational innovation (Spikol et al., 2009). Wong et al. 
(2014) describes how the TPACK framework can be used in 
combination with co-design so that practitioners and 
researchers can combine their knowledge and expertise to 
allow teachers to integrate technological tools with their 
pedagogical and content knowledge in an integral manner to 
create rich learning environments. 

 
3. RESEARCH DESIGN 
In this section we present the main aspects concerning the 
research design approach used for this study. 

3.1. Participants and Settings 

The workshops that are the central part in this study were 
conducted during the fall of 2020 at an international middle 
school in the south of Sweden. The activity took place as  part 
of the weekly schedule in the subject of technology defined in 
the study curriculum of the school with the participation of 
four researchers, three teachers, and 25 students from eighth 
grade aged 13-14 years old. In three workshops of three hours, 
one session per week, students were divided by the teachers 
into two main groups. Within these two groups students were 
free to team up in smaller groups of 2-3 for conducting the 
activities together. The data we have collected for the analysis 
of the activities comes from field notes and pictures taken 
during the workshops. In addition, the students had to fill in a 
questionnaire regarding their perceptions about the activities 
they did and the way in which they came up with solutions to 
carry out the different tasks during the workshops. 

3.2. Workshop Design Approach 
According to Mannila et al. (2014), there cannot be an 
appropriate development of CT-related ideas if teachers are 
not involved when designing learning activities. Likewise, 
Spikol et al. (2009) and Wu et al. (2020) highlight the 
importance of co-design when defining  educational strategies 
for STEM-related subjects in K-12 classrooms. Based on 
these concepts, a couple of months before 

 
conducting the workshops with the students, the research team 
met with the teachers during a series of sessions to introduce 
them to the ERP system and to plan together learning 
activities to bring CT concepts to their students. 

3.3. Workshop Activities with the Students 
The first workshop was focused on hands-on activities with 
the Engino building parts with two main goals in mind. The 
first was to make them get familiar with the ERP construction 
tools as they had never worked with it before. The second goal 
was to put into practice some CT concepts such as pattern 
recognition, which has major  relevance when engaging in 
construction activities. After receiving a brief instruction on 
how to work, students started building the models for the robot 
of their choice by using instructions printed on paper or a 3D 
interactive version of them that they could have on their 
computers. The second workshop, carried out one week after 
the first one, focused on programming in two different 
modalities: (1) manual programming, by using the physical 
buttons that the ERP robots have, to program basic functions 
only (Figure 1a),  and (2) a block-based programming with the 
KEIRO software for designing more advanced algorithms 
(Figure 1b). Thus, the students had the chance to work with 
mechanical construction combined with programming and 
algorithmic thinking, which is another important CT  concept. 
The main task here was to program the vehicles to move along 
a rectangular track that had been drawn on the floor. 

The third workshop was held two weeks after the previous one 
and it had a higher level of complexity in the tasks which were 
focused on programming the robot vehicles  and making use 
of infrared (IR) sensors that the students connected to the 
vehicles they had built in the previous workshop. The students 
were given a brief introduction where they learnt some basic 
concepts of programming such as using conditionals, loops 
and logical operators. The main task was to program the robot 
so that by using two IR sensors it would move along a track 
that was demarcated with dark tape (Figure 1b). 

 

 
(a) (b) 

Figure 1. Manual Programming (a) and Software 
Programming (b). 

The main goal with this task was to make students learn to 
calibrate the IR sensors and to acquire concepts of algorithm 
design. In addition, this workshop aimed to develop other 
relevant CT concepts and practices, such as logical thinking, 
problem decomposition, testing and debugging. 
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4. EMPIRICAL FINDINGS 
In the first workshop, which focused on the physical 
construction of the robot vehicles, students had to get familiar 
with the assembly method of the plastic pieces that the Engino 
ERP uses. At first, the students were very unfamiliar with this 
assembly method and it was especially difficult for them when 
they had to disassemble one piece from another. At times the 
students were frustrated when they had to struggle just to 
figure out how to disassemble a given piece. However, over 
time the students showed a clear improvement in their abilities 
to assemble and disassemble the pieces as they started to 
understand the method for assembling the pieces by trial and 
error. 

 
During the second workshop the students were given a pre- 
assembled chassis and they had to build the rest of the vehicle 
in any fashion they deemed appropriate.  The students showed 
great capacity for innovative design. When the students had to 
manually program the vehicles by using the physical buttons 
they have on the top (see Figure 1a) so that they would follow 
a rectangular track marked on the classroom’s floor, the 
students faced a series of challenges. To begin with, they had 
to figure out what was the underlying principle that made the 
vehicles turn to either  side and this required a lot of 
exploration as well as plenty  of trial and error efforts. The 
students had to figure out how to program the vehicle so that 
it would move forwards just the necessary distance and then 
turn at just the right point in order to accurately follow the 
track. The third workshop posed several additional challenges 
for the students in two main areas: learning to use the IR 
sensors and creating a functional algorithm. The first major 
challenge was to make the IR sensors scan the edge of the 
track effectively so that the vehicle would not cross it. This 
task required the students to solve many different problems 
that arose. One of them  had to do with the proper calibration 
of the IR sensor so that it would detect the edge of the track 
marked with a dark tape over a light-colored surface. The 
latter required the students figuring out how to place the 
sensor correctly so that it would effectively detect when the 
car was starting to trespass the dark colored tape that was 
marking the edge of the track. 

 
5. DISCUSSION 
In this section we will elaborate on our findings and focus the 
discussion around two main issues, namely, the design  of the 
teaching modules for CT skills development and how to 
incorporate CT education into the technology subject. 

5.1. Activity Design for CT Skills Development 
The three workshops that were described in this paper  have a 
strong theoretical foundation that rely on the principles of 
constructionism and CT concepts and practices (Kynigos, 
2015; Grover & Pea, 2018). We planned the activities putting 
emphasis on the entire process of building the robots, starting 
with the construction of the physical structure and followed 
by the design of the algorithms and programming. 

Teaching CT concepts does not necessarily require  explicitly 
referring to them. We used a strategy based on exploration and 
learning by doing, thus allowing  the students to acquire CT 
skills through their own practices. In the different activities, 
the teachers were only providing some general guidelines and 
serving as advisors when the students required their 
assistance. The activities we designed for the three workshops 
were based on a hands-on approach. The first workshop was 
designed with the goal of making  the learning process both 
enjoyable and challenging  to ensure a high level of 
engagement from the participants (Conde et al., 2019). This 
focus on constructionism and challenge-based tasks was 
essential for designing these activities. During the second and 
third workshops we added  a focus on programming. Table 1 
summarizes the main CT concepts and practices that were 
applied by students in the different workshops. 

Table 1. CT Concepts and Practices Used by Students in 
each Workshop 

 
5.2. Incorporating CT into Swedish STEM Education 
Looking at constructionism as a theory of learning and a 
theory of design (Kynigos, 2015), the suggested plans for 
integrating the educational practice of CT in the subject of 
mathematics and technology constitutes a relevant 
contribution towards reaching the goals defined by the 
Swedish National Agency for Education (Skolverket, 2018). 
According to the Swedish curricula for grades 7-9, the 
technology subject aims to develop students’ curiosity in 
technology and help them handle technical  problems through 
creative and innovative ways. The design approach used for 
this workshop series gives students the opportunity to learn 
by doing. The ideas described by Conde et al. (2019) focusing 
on the importance of challenge-based learning plays a 
relevant role when designing teaching instances where 
students have the chance to identify problems, propose 
solutions, and engage in an iterative process of design, testing 
and evaluation of the proposed solutions. 
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Another core content of the technology subject that is defined 
by Skolverekt has to do with working out innovative and 
creative methods for developing  technological  solutions. A 
good case of innovative solutions could be witnessed when the 
students were working on calibrating the IR sensors. We used 
black tape to mark on the floor the edge of the track where the 
vehicles should move  along. However, students had 
unsuccessful results when calibrating the IR sensors to detect 
the dark tape that marked the edge  of the track. After many 
attempts the students finally  realized that the problem was 
that the color of the floor was very similar to that of the tape 
and thus the IR sensor was  not able to detect the difference in 
color between the floor and the tape. The students had to figure 
out how to increase the contrast between the track’s surface 
and the dark tape marking its border to solve this unforeseen 
problem. 

Lastly, it is also important to reflect on the importance of 
collaborative practices between teachers and researchers in 
order to elaborate effective teaching modules through an 
approach based on co-design (Spikol et al., 2009). This is 
especially relevant when identifying and defining in which 
ways the technological knowledge can complement the 
pedagogical and content knowledge that is addressed by the 
TPACK framework (Wong et al., 2014) to co-design teaching 
modules aiming at fostering CT skills among students. 
Designing teaching modules grounded on the core ideas of 
constructionism and challenge-based learning, like the 
workshops we conducted, allowed students to develop and put 
into practice relevant CT skills. Co-designing these learning 
activities between researchers and practitioners  is an effective 
method to create learning instances where the technological 
knowledge can complement the pedagogical and content 
knowledge in a well-coordinated interplay. 

 
6. CONCLUSION 
CT is a thought process and an approach to problem-solving 
that is based on a set of concepts and practices that can provide 
students with the necessary skills to face the challenges of 
modern society. This study described our approach for 
designing teaching modules to introduce CT concepts and 
practices in STEM education for middle schools in Sweden. A 
strong emphasis was given to the exploration of these ideas in 
the subject of technology following the goals set by 
Skolverket. Constructionism and challenge-based learning are 
effective approaches to  promote CT development. One of our 
goals was to demonstrate that students applied CT concepts  
and principles when facing the different challenges that they 
encountered during their experience building and 
programming robots. The three workshop sessions we 
conducted offered the students the possibility to apply CT 
concepts and practices. In addition, co-design is an effective 
approach to actively involve researchers within computer 
science education and K-12 teachers in the process of planning 
and designing teaching modules that bring CT knowledge and 
skills to the classrooms. 
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ABSTRACT 
Due to the characteristics of interdisciplinary training of 
innovative talents, STEM education has been enriched in 
various countries from concept improvement to curriculum 
construction since it was put forward. Different countries 
also have different development modes. While China's 
STEM education has made some achievements, there is also 
room for some progress in STEM curriculum 
construction.This study searched the relevant literatures on 
the construction of STEM courses on CNKI(Chinese 
National Knowledge Infrastructure) and Web of Science, 
finding out the current status and trend of the development 
of STEM courses in China.Through an in-depth analysis on 
the basis of the differences between domestic and foreign 
studies, put forward the future research direction of STEM 
courses in China. 
 
KEYWORDS 
STEM education, STEM course, curriculum integration 

1. INTRODUCTION 
In the 1980s, faced with the shortage of scientific and 
technological talents, American proposed STEM education 
based on Science, Technology, Engineering  and 
Mathematics. STEM is different from traditional course, 
get rid of the knowledge system of single subject, focused 
on the tasks and projects. STEM guides students to 
interdisciplinary field using knowledge, integrate available 
resources, cooperation to complete learning tasks. Next 
Generation Science Standards points out that the goal of 
science education is to reflect the combination of practice 
and experience in the real world. 
 
Under the background of STEM education, Chinese 
science and technology education workers get into STEM 
field and carry out the education of science and technology 
education. Chinese integrated STEM curriculum 
concentrated in the 3d printing science, robot, visual 
programming and so on. It mainly in the form of a 
comprehensive practice course or Mak-er activities. Pay 
attention to the students' participation and experience. 
However,there are also some problems on the basis of 
emphasizing the position of students and the learning and 
application of multidisciplinary knowledge(Yang, 2020). 
 
Based on this, this study searches the relevant literatures on 
the construction of STEM courses, finding out the current 
status and trend of the development of STEM courses in 
China. Through the analysis on the differences between 
domestic and foreign studies, puts forward the future 
research directions of STEM Courses in China. 

2. RESEARCH DESIGN 
This study focus on CNKI and Web of Science,  using 
keywords STEM and STEM Curriculum, by artificial 
removal of relevance to the theme of literature, selected 30 
papers as the research samples.It aims to answer the 
following questions: 

(1) What is the current situation of STEM 
curriculum research in China? 

(2) What are the differences in STEM curriculum 
development at home and abroad? 

(3) What are the suggestions for the future 
development of Chinese STEM curriculum? 

3. FINDINGS 
China's basic education has been dominated by "exam-
oriented education" in form for a long time. Traditional 
teaching only focuses on the impart of knowledge and skills 
while neglecting the cultivation of students' innovative 
ability. The introduction of STEM education concepts is a 
good to China to improve  students' innovative ability.In 
recent years, the  research on STEM courses in China 
shows an increasing trend,  and STEM courses continue to 
attract the attention of more and more researchers and 
teachers.The development of STEM courses can be broadly 
divided into the following stages: 
 
Introduction stage. Before 2014, researchers begin to pay 
attention to STEM course.In 2014, Shanghai rely on 
Shanghai STEM cloud center and Shanghai international 
research center for science education, developed a high- 
quality curriculum and good topics for students in learning, 
introducing and drawing lessons from foreign curriculum 
resources. Beginning the experimental of teacher training 
and implementation of the pilot programs, Beijing, Jiangsu 
and other provinces follow.(Feng Hua, 2016) 
 
Exploratory stage. Around 2015, researches on STEM 
education focused more on the characteristics of STEM 
curriculum, considering the possibility and direction of its 
future development. Researchers put forward suggestions 
on the localization design of STEM curriculum on the basis 
of eliminating realistic obstacles. 
 
Booming development stage. After 2018, researchers 
gradually focused on course design strategies and structural 
framework, and effectively improved students' 
computational thinking and innovation ability through 
course design. 
 
At present, the related research of STEM curriculum 
mainly focuses on the primary and secondary 
education.Research topics tend to be mathematics courses 

mailto:1090537294@qq.com
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and engineering courses. In engineering, some researchers 
put forward the STEM course mode of "subject- 
engineering integration".In the early school years, STEM 
education focus on improving students' interest in learning 
and their ability to understanding.At the high school level, 
STEM education seeks application, integration of subject 
content and high-quality products.(Feng Hua, 2016) 

4. DIFFERENCES BETWEEN DOMESTIC 
AND FOREIGN STUDIES 
Abroad STEM education focus on design thinking, 
students' core skills and STEM literacy are cultivated.  The 
curriculum activity objectives correspond to educational 
standards.(Chen Peng, 2019) Compared with foreign 
countries, there is a lack of STEM curriculum standards in 
China, which leads to vague curriculum objectives and no 
standardized teaching materials. Using STEM courses to 
increase the capital of college entrance, it alienates the goal 
of developing students' core literacy.Compared with 
foreign research, there are more policy introduction and 
interpretation and theoretical discussion, and less practical 
research. 
 
America has developed the STEM teacher qualification 
and teacher training program,it can guarantee the 
standardization of teaching STEM courses.China has a 
vague image of qualified STEM teachers, which leads to 
the lack of a  systematic admission system for STEM 
teachers.In addition, domestic STEM teacher professional 
development trainings are unable to meet the number of 
teacher professional development needs.(McFadden, 2017) 
 
Foreign curriculum design has a certain theoretical 
support, the theoretical basis for the formulation of 
teaching objectives and learning outcomes in different 
grades. Domestic STEM courses lack the guidance of 
teaching theories. Existing STEM courses in schools 
usually attach importance to the integration of teaching 
forms or the use of technical tools to produce works, which 
fails to truly realize the integration of students' 
interdisciplinary knowledge and the improvement of their 
real problem-solving ability. 

5. CONCLUSION 
5.1       Improve the Standard System of STEM 
Curriculum 

The history of STEM education proves that the integrated 
STEM education with interdisciplinary and knowledge 
fusion will be ab inevitable trend in the future.Schools need 
to build subject standard and appropriately combining with 
STEM course standard, build STEM teacher practical 
community, encourage teachers' cooperation,(Roehrig, 
2021) Reasonably plan the development approach of 
subsubjects and comprehensive courses, and carry out 
STEM education in an orderly way based on the actual 
teaching situation. 

5.2    Strengthen the Theoretical Construction of STEM 
Curriculum Development 
Drawing lessons from foreign STEM curriculum 
development theories, the STEM curriculum will be more 

flexible and systematic throughout the whole teaching 
process.We should encourage innovativing teaching 
activities, project-driven teaching, pay attention to the 
creation of a learning community.Focusing on the 
cognitive and behavioral changes of students in the 
learning process, formative evaluation and summative 
evaluation are used to design the next step of learning to 
adapt to the development of students.(Hasani, 2021) 

5.3    Innovate the Teaching Mode of STEM Curriculum 
Engineering education should be integrated into the "gap" 
of school curriculum in a reasonable way, so as to provide 
engineering learning context and  opportunities for the 
integration of different courses.In the process of systematic 
knowledge imparting, focus on the individual learning 
needs of different students.With the support of various 
forces inside and outside the classroom, we integrate 
resources inside and outside the school to form an open, 
balanced and sustainable STEM learning ecosystem.(Gale, 
2020) 
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ABSTRACT 

For pedagogical innovation in innovative curriculum 
design, much attention has been paid to the importance of 
teachers’ attitudes and beliefs about teaching and learning. 
However, little research focuses on elucidating the 
thorough process of teachers’ sensemaking of pedagogical 
innovation such as integrating computational thinking 
(CT) into the school curriculum. Therefore, the aim of this 
study is to explore how mathematics teachers make sense 
of integrating CT into the mathematics curriculum.  This 
study employed a case-study design with 9 teachers during 
the 2019-2020 school year using observations of teacher 
professional development meetings, semi-structured 
interviews with the teachers, and teacher artifacts. Using 
Weick’s (1995) properties of sensemaking, our findings 
indicate that the most prevalent properties of sensemaking 
for the teachers in this study were social, ongoing, driven 
by plausibility rather than accuracy, and retrospective. 
These findings are important to support continuing 
professional development. 

KEYWORDS 
Teacher Sensemaking, Sensemaking Properties, Teacher- 
Led Curriculum Innovation 

1. INTRODUCTION
To respond to educational reforms, teachers are expected 
to support the increasingly sophisticated skills students 
need to learn for preparing further education and success at 
work in the 21st century. This is facilitated by continuing 
professional development where teachers learn and adjust 
the pedagogies needed to teach these skills (Darling- 
Hammond et al., 2017). For innovative curriculum design, 
much attention has been paid to the importance of 
teachers’ attitudes and beliefs about teaching and learning. 
However, little research focuses on elucidating the 
thorough process of teachers’ sensemaking of pedagogical 
innovation such as integrating computational thinking 
(CT) into the school curriculum. Therefore, the aim of this 
study is to explore how mathematics teachers make sense 
of integrating CT into the mathematics curriculum. Our 
research questions are: What are the patterns of teacher 
sensemaking? and How does the sensemaking perspective 
describe teacher-led curriculum innovation? 

2. LITERATURE REVIEW
Sensemaking has been frequently used in non-educational 
fields such as organizational research (Dervin, 1983). 
Although recently it has become a growing topic of science 
education research, teacher sensemaking is relatively new 
in teacher education, in particular in CT. Therefore, in this 
study, we make use on the notion of sensemaking from 
organizational studies to elucidate the process of teacher 
sensemaking on Computational 

Thinking in math lessons.   Sensemaking occurs ‘‘when the 
discrepancy between what one expects and what one 
experiences is great enough, and important enough, to cause 
individuals or groups to ask what is going on, and what they 
should do next’’ (Maitlis & Christianson, 2014, 
p. 70). Sensemaking depicts the path that people as actors 
‘‘structure the unknown’’ (Waterman, 1990, p. 41) and how 
people establish coherence, clarify situations, frame 
problems, make decisions, take actions, and justify their 
choices within organizational settings. For many teachers, 
the pedagogical innovations can be seen as something 
‘‘unknown’’ as they are new to them. According to  Coburn 
(2001), schools are also considered as organizational 
settings. Weick (1995) proposed seven properties of 
sensemaking: (a) grounded in identity construction, (b) 
retrospective, (c) enactive of sensible environments, (d) 
social, (e) ongoing, (f) focused on and  by extracted cues, 
and (g) driven by plausibility  rather than accuracy. The 
property of grounded in identity construction means that 
individuals make sense of a circumstance through their 
exceptional senses and self- identity and with their 
understanding of the influence of the circumstance on them. 
The ‘‘retrospective’’ refers to individuals’ reflection on the 
past events which affect their sense making of present 
events. For example, in our study, we consider the past 
events as the past CT experiences of teachers. The enactive 
of sensible environment means that sensemakers contribute 
to the environment and the  affected environment returns a 
kind of influence to sensemakers. The social property 
relates to the experience of shared collective action 
(Czarniawska-Joerges, 1992) beyond simply achieving 
shared meaning. The ongoing signifies that sensemakers 
perceive something as a disruption to their existing frame, 
seek to connect it to past experiences, and feel them. The 
focused on and by extracted cues denotes that a 
characteristic that the sensemakers recognizes as a crucial 
and representative  trait of the entire phenomenon. The 
driven by plausibility rather than accuracy entails that 
sensemaking is about taking ‘‘a relative approach to truth, 
predicting that people will believe what can account for 
sensory experience but what is also interesting, emotionally 
appealing, and goal relevant” (Weick, 1995, p. 879). These 
sensemaking properties provide an effective way to examine 
how mathematics teachers make sense of integrating CT 
into the mathematics curriculum.

3. THE STUDY
The study employed a qualitative case study to understand
how teachers make sense of Computational Thinking by
designing and implementing math lessons. In this study as
part of a larger design-based research project, our
participants were secondary mathematics teachers in
Singapore who intended to integrate CT in teaching
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mathematics Grade 7 to 10 students. Since 2018, a group of 
mathematics teachers has been co-planning and 
implementing CT lessons. Our research team  supported the 
participant teachers’ CT concepts for designing and 
implementing math lessons in classrooms. They observed or 
learned about a series of Math+CT lesson guided by a 
mathematics educator who is familiar with CT. The demo 
lessons have considerable curriculum-relevant teaching 
materials and activities such as how to use spreadsheet 
software to understand the computing concept of  recursion. 
Our case study with 5 teachers carried out during the 2019-
2020 school year using observations of teacher professional 
development meetings, semi- structured interviews with the 
teachers, and teacher artifacts. For this study, extensive 
amount of qualitative data from the audio- and video-
recordings of regular teacher meetings were transcribed in 
verbatim. 

4. FINDINGS 
Our findings indicate that the properties of sensemaking for 
the teachers were social, driven by plausibility rather than 
accuracy, retrospective, and ongoing. For the teachers in 
this study, social appeared as the most salient property when 
teachers made sense of CT. Teachers held meetings twice a 
month to share their collaborative lesson planning 
experiences and understanding of CT and practices of CT 
lessons. The meetings enabled them to acquire more sources 
to make sense of CT as their interactions in meetings. For 
example, Teacher A was new to CT and did not use any CT 
terminologies at first. However, he used more CT 
terminologies later such as the four-pillar cognitive 
processes of CT: decomposition, pattern recognition, 
abstraction and algorithmic and became one of the most 
enthusiastic members in generating ideas of planning CT 
lessons in the group. Through their social collaboration 
during teacher meetings, the experienced often shared their 
previous CT lesson plans and experiences with the teachers, 
in particular new teachers who joined the project later. 
Experienced teacher B shared his difficulties and struggling 
on designing the part of pattern recognition for worksheets. 
As a result, the new teachers could make  sense of CT with 
other experienced teachers. When they were making sense 
of CT, they were based on their status and situation to design 
and implement a CT lesson plan, driven by plausibility. As 
facing constant educational reform and extensive 
administrative work, the actions of teachers were often 
time-sensitive, subject to the speed/accuracy trade-off and 
responsive to new innovations. The scarcity of time led 
them to make plausible and sensible decisions for CT 
lessons rather than an accurate and comprehensive 
resolution. During the regular meetings, the experienced 
teacher participants often mention their retrospective 
experience in designing and implementing CT. Experienced 
teachers realized that the structure of the worksheets that 
ordered the four CT pillars did not encounter challenges. 
Other teachers were comfortable and agreeable to use 
previous teaching materials that were established by leaders 
in this project and successfully adopted them in lessons. 
Teachers made 

sense based on their ‘‘feeling.’’ Normally, this property 
allows people to make sense shortly and briefly as feeling is 
unstable and in a moment. 

5. DISCUSSION AND IMPLICATIONS 
We argue that teacher sensemaking properties contribute a 
practical framework to analyze how mathematics teachers 
make sense of integrating CT into the mathematics 
curriculum. These sensemaking properties provide an 
effective way to examine how math teachers contended with 
matter of coherence and dealt with the meaning from mostly 
conflicting messages they confronted in their local 
environment. Our findings showed that teachers made sense 
of CT through social, driven by plausibility rather than 
accuracy, retrospective and ongoing. This  reveals that a 
collaborative group is important for teachers to make sense 
of teacher-led curriculum innovation. The collaborative 
group, however, could not benefit teachers without regular 
meetings and teachers’ initiative. In our case, as CT 
integration was new to the participant teachers in this study, 
their experience and knowledge were insufficient initially. 
So, a group of proactive teachers and a platform were of 
utmost importance for them to share understanding of 
innovation and practices with one another. This also made 
them more confidence in implementing the innovation. 
Further, teacher-led curriculum innovation from teachers 
happened based on their feeling. As teachers were not 
familiar with the innovation, they tended to relate it to what 
they felt rather than what it is. Since innovation comes 
endlessly, feeling  it motivated them to take a path to 
comprehend new  things. Last, given that retrospective 
relates to past experience, the experience regards to teacher-
led curriculum innovation is crucial. The properties of 
sensemaking have shown that teachers need sources to make 
sense of innovation. Thus, it is important to establish 
teachers’ on-going professional development innovation 
that will provide references for them to make sense of it. 
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ABSTRACT 
As earlier studies highlighted the importance of teachers’ 
preparedness to develop computational thinking (CT) for 
students in school education, this study aims to explore the 
teaching areas involved in the mathematics teachers’ 
preparedness to integrate CT in classrooms, as well as to 
investigate the considerations for effective training or 
professional development activities to prepare mathematics 
teachers in teaching CT. A total of 16 journal articles from 
2015 to 2020 were reviewed in this study. The findings 
indicated that not all the teaching areas (i.e. classroom 
management, teaching methods, subject knowledge, 
technology, planned curriculum, assessing students, and 
choosing teaching materials) were involved in the teachers’ 
preparedness for each study. Several considerations for 
effective training or professional development had been 
proposed. The results can be utilized to inform initial teacher 
education plans and ongoing professional development 
opportunities to better prepare the teacher to teach CT in the 
mathematics classrooms. 

KEYWORDS 
Systematic review, teachers’ preparedness, computational 
thinking, mathematics 

1. INTRODUCTION
Teachers from all levels require educational experience to 
prepare them to teach CT concepts effectively (Rich, Yadav, 
& Schwarz, 2019). Chalmers (2018) findings maintain for 
teachers to be able to successfully integrate and teach CT in 
classrooms, they need to have increased knowledge and 
awareness of the subject and its concepts, only when the 
teachers are confident can they deliver meaningful 
knowledge to the students. This further highlights the 
importance of the preparedness of teachers. Thus, this study 
intends to conduct a systematic review of teachers’ 
preparedness towards CT integration in mathematics. Two 
following research questions guide this systematic review: 
a) What are the teaching areas involved in the
mathematics teachers’ preparedness to integrate CT in
classrooms?
b) What are the considerations for effective training or
professional development activities to prepare mathematics
teachers in teaching CT?

individual and collective knowledge, ability, skills, 
perceptions, and attitudes of teachers to support the 
enactment of curricula. The teacher’s level of preparation 
is measured according to the teacher’s views on the 
following seven teaching areas: (1) classroom 
management, (2) teaching methods, (3) subject knowledge, 
(4) technology, (5) planned curriculum, (6) assessing
students and (7) choosing teaching materials (Lu, 2005).

Courses or training are implemented to meet the need for 
teacher preparation. Earlier studies (e.g. Angeli and Jaipal-
Jamani, 2018) revealed that the training given to the pre-
service teachers was able to develop pre-service teachers’ 
CT skills and better prepare them to teach CT in the 
classrooms. Besides the teacher education courses or 
training, the CT professional development courses were 
also implemented for in-service teachers. For example, 
Yadav, Gretter, Good, and McLean (2017) executed a 
study with 76 in-service teachers in a program that 
included two 39-hour courses. The findings revealed that 
participants have a better understanding of CT concepts 
and practices, and have made improvements in three of the 
four knowledge-related dimensions related to technical 
knowledge content.  
3. METHOD
The method utilized in this systematic review was based on 
the method of performing systematic reviews in the social 
sciences by Petticrew and Roberts (2006). Five scientific 
databases were employed to execute systematic review, 
namely Scopus, Web of Science, Science Direct, 
LearnTechLib, and ProQuest Education database. We used 
several combinations of search terms to find the relevant 
articles for this systematic review, i.e. "computational 
thinking" AND ("math" OR "mathematics") AND 
("teacher"). The initial search resulted in a total of 156 
articles. 

The inclusion criteria for this systematic review were 
including (a) The article published in the last five years, i.e. 
between 1st January 2015 and 31st December 2020 as the 
field of CT in the mathematics teacher education was only 
being developed in recent years; (b) The article published 
in the peer-reviewed journals; (c) The article reported on 
the empirical evidence of the research, involving 
qualitative or quantitative, and mixed-method; (d) The 
article presented the CT in the mathematics teacher 
education; (e) The participants must be mathematics in-
service teachers or pre-service teachers; and (f) The article 
published in the English language. Meanwhile, the 
exclusion criteria were including (a) The article published 

2. LITERATURE REVIEW
Teachers’ preparedness was defined by Gonzales (2018) as 
“[t]he state of “being ready for some purpose, use or 
activity” (p. 15) before having to accomplish an activity. 
Ondimu (2018) described teachers’ preparedness as 
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in the book chapter, book series, and conference 
proceedings; (b) The article that only reported on the 
literature review, opinion, and framework or model; and 
(c) The article did not relate CT in the mathematics in-
service teachers or pre-service teacher education. Using the
above inclusion and exclusion criteria, 16 articles were
included in this systematic review.

4. FINDINGS
4.1 Teacher Preparation 
To review the math teachers’ preparation to integrate CT in 
classrooms, we adapted Lu’s (2005) seven teaching areas. 
It includes (1) classroom management, (2) teaching 
methods, (3) subject knowledge, (4) technology, (5) 
planned curriculum, (6) assessing students, and (7) 
choosing teaching materials (see Table 1).  

Table 1. Teacher preparedness in seven teaching areas in 
the reviewed articles 
No Authors & Year 1 2 3 4 5 6 
1 Li (2020) / 
2 Piedade, Dorotea, Pedro, & Matos 

(2020) 
/ / 

3 Reichert, Barone, & Kist (2020) / / 
4 Araujo, Floyd, & Gadanidis (2019) / / / / 

5 Papadakis & Kalogiannakis (2019) / / / 

6 Masfingatin, & Maharani (2019) / 

7 Rich, Yadav, & Schwarz (2019) / 

8 Tuhkala, Wagner, Iversen, & 
Kärkkäinen (2019) 

/ 

9 Yuan, Kim, Hill, & Kim (2019) / / 

10 Chalmers (2018) / / / / 

11 Günbatar, & Bakırcı (2018) / 

12 Valentine (2018) / / / 

13 Wang, 
Utemov,  Krivonozhkina,  Liu, & 
Galushkin (2018) 

/ 

14 Gadanidis (2017) / / / 

15 Gadanidis, Cendros, Floyd, & 
Namukasa (2017) 

/ / / / 

16 Leonard et al. (2017) / / / 

*(1) classroom management, (2) teaching methods, (3) subject 
knowledge, (4) technology, (5) planned curriculum, (6) assessing 
students and (7) choosing teaching materials 

4.2 Teacher Training and Professional Development       
Yadav et al. (2017) concluded that teacher training and 
professional development activities are vital as it was 
observed that teachers only had a basic understanding and 
knowledge of CT. They found that the current training 
being provided to teachers is not enough, so ‘training needs 
to begin early on in the teacher preparation programs to 
allow pre-service teachers to understand how 
computational thinking ideas are related to their content 
areas’ (p. 217). 

According to Chalmers (2018), a big part of the 
professional development practices should be, ‘a greater 
awareness of computational thinking concepts, practices, 
and perspectives would increase teachers’ understanding 
and confidence to embed computational thinking and 
robotics into primary school classrooms’ (p. 97). Wang et 
al. (2017) shed light on access methodological resources 
like flipped classrooms, as a driving force to increase the 
teachers’ motivation levels. 

Valentine (2018) discussed how increasing chances for 
pre-service teachers to experience and interact with 
concepts and tools of math and CT and viewing them as 
doers or makers is an important consideration for 
professional development training.  She adds that this lays 
a strong foundation and cultivates a habit of active thinking 
with respect to what to teach and how to teach those math 
and CT concepts in the classrooms. ‘Future work might 
consider creating opportunities for pre-service teachers to 
plan their own constructivist-oriented mathematics lessons 
and try these out with classmates and in their field 
placements’ (p. 16). Pre-service teachers would benefit 
significantly from STEM content courses taught in an 
integrated way since pre-service teachers tend to apply an 
integrated method to STEM teaching after they have been 
taught in such a way. 

5. CONCLUSION
Research question one explored the level of mathematics 
teachers’ preparedness to integrate CT in classrooms. The 
results revealed not all the seven teaching areas were 
covered for teachers’ preparedness in each study. Most of 
the studies (11 studies) investigated the use of technology, 
followed by subject knowledge (8 studies), planned 
curriculum (6 studies), teaching methods (5 studies), 
assessing students (5 studies), classroom management (1 
study), and choosing teaching materials (1 study).  

Research question two investigated the considerations for 
effective training or professional development activities to 
prepare mathematics teachers in teaching CT. Several 
considerations for effective training or professional 
development activities were including the importance of 
introducing the teacher preparation programs early, imbue 
in a greater awareness of CT concepts, practices, and 
perspectives, access methodological resources, as well as 
experience and interact with concepts and tools of math 
and CT.  

There is a need for teacher professional development and 
ongoing training for the pre-service and in-service teachers 
who integrate CT in their mathematics classrooms. This 
systematic review can be useful for teachers, educators, 
and researchers seeking to greatly improve the quality of 
training or professional development programs to enhance 
the teachers' preparedness of teaching CT in mathematics 
lessons.  
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