STEM

5TH APSCE INTERNATIONAL
CONFERENCE ON COMPUTATIONAL
THINKING AND STEM EDUCATION

Conference
Proceedings
2nd - 4th June 2021

Organised by: ~ Hosted by: Supported by:

S
S
..... NIE
NATIONAL
INSTITUTE OF
EDUCATION
SINGAPORE

An Institute of

NANYANG school of .- R Loo/Thinkex
@ TECHNOLOGICAL —

UNIVERSITY

sssssssss

Computing .- T}’HEdgKt o n University % % E B ‘ﬁ%& E

FINUS
%

STEM

5TH APSCE INTERNATIONAL
CONFERENCE ON COMPUTATIONAL
THINKING AND STEM EDUCATION

Proceedings of Fifth APSCE International Conference on
Computational Thinking and STEM Education 2021

2nd - 4th June 2021

Singapore

Organized by
Asia-Pacific Society for Computers in Education
Hosted by
National Institute of Education

Nanyang Technological University, Singapore

Copyright 2021
All rights reserved
Publication of Asia Pacific Society for Computers in Education

ISSN 2664-5661

“\ﬁg{”

Preface

The 5th APSCE International Conference on Computational Thinking and STEM Education
2021 (CTE-STEM 2021) is organized by the Asia-Pacific Society for Computers in Education
(APSCE). CTE-STEM 2021 is hosted by the National Institute of Education, Nanyang
Technological University (NIE/NTU). This conference continues from the success of the
previous four international Computational Thinking conferences organised by the Education
University of Hong Kong (EdUHK) and JC@Coolthink in Hong Kong. In addition to
Computational Thinking, we will be expanding the conference to invite STEM researchers and
practitioners to share their findings, processes and outcomes in the context of computing
education or computational thinking.

CTE-STEM 2021 is a forum for worldwide sharing of ideas as well as dissemination of findings
and outcomes on the implementation of computational thinking and STEM development. The
conference will comprise keynote speeches, invited speeches, panel discussions, workshops
and paper presentations. All accepted papers will be published in ISSN-coded proceedings.

The International Teachers Forum is organized for teaching practitioners to share their
practices in teaching Computational Thinking, Computing and STEM in the classroom. We
believe bringing all these would create enriching experiences for educators and researchers to
share, learn and innovate approaches to learning through Computational Thinking and STEM
education. This year, teachers can participate in Lightning Talks to share ideas about teaching
and learning CT.

The Students Forum (BuildingBloCS) is organized by students, for students. It is Singapore’s
annual Computing education outreach programme. Started back in 2017, it is not only a
national computing education outreach programme, but also a platform for leadership
development, innovation programme, EVIA (Education & Values In Action) and student-
friendly social network. We have been very encouraged by the strong support given by
Ministry of Education (Singapore) and many other community and industry partners.

On behalf of APSCE and the Conference Organizing Committee, we would like to express
our gratitude towards all speakers, panelists, as well as paper presenters for their contribution
to the success of CTE-STEM 2021.

We sincerely hope everyone enjoys and get inspired from CTE-STEM 2021.

With Best Wishes,
Professor LOOI, Chee-Kit A/P WADHWA, Bimlesh Professor DAGIENE, Valentina

Conference Chair, Conference Co-Chair, Conference Co-Chair,
CTE-STEM 2021 CTE-STEM 2021 CTE-STEM 2021

National Institute of Education National University of Vilnius University, Lithuania
Nanyang Technological Singapore, Singapore

University, Singapore

Main Theme and Sub-themes

“Computational Thinking and STEM Education” is the main theme of CTE-STEM 2021
which aims to keep abreast of the latest development of how to facilitate students’
computational thinking abilities and STEM development, in the context of computing
education or computational thinking. The conference also aims to disseminate findings and
outcomes on the implementation of CT development in school and STEM education. There
are 19 sub-themes under CTE-STEM 2021, namely:

Computational Thinking and Coding Education in K-12
Computational Thinking and Unplugged Activities in K-12
Computational Thinking and Subject Learning and Teaching in K-12
Computational Thinking and Teacher Development
Computational Thinking and IoT

Computational Thinking and STEM/STEAM Education
Computational Thinking and Data Science

Computational Thinking and Artificial Intelligence Education
Computational Thinking Development in Higher Education
Computational Thinking and Special Education Needs
Computational Thinking and Evaluation

Computational Thinking and Non-formal Learning
Computational Thinking and Psychological Studies
Computational Thinking in Educational Policy

STEM Learning in the Classroom

STEM Activities in Informal Contexts

STEM Education Policies

STEM Pedagogies and Curriculum

STEM Teacher Education and Professional Development

Paper Submissions to CTE-STEM 2021

The conference received a total of 47 submissions (29 full papers, 14 short papers and 4 poster
papers) by 116 authors from 21 countries/regions (see Table 1)

Table 1: Distribution of Paper Submissions for CTE-STEM 2021

Country/ Region No. of Authors Country/Region No. of Authors
Canada 4 Lithuania 2
China 19 Malaysia 5
Cyprus 1 Mexico 4
Estonia 1 Netherlands 1
Finland 4 Peru 2
Greece 2 Singapore 11
Germany 2 Spain 1
Hong Kong 14 Sweden 5
India 4 Taiwan 9
Italy 4 United States 18
Japan 3 Total 116

The International Programme Committee (IPC) is formed by 74 members and 13 co-chairs
worldwide. Each paper with author identification anonymous was reviewed by at least three
IPC Members or co-chairs. Meta-reviewers then made recommendation on the acceptance of
papers based on IPC Members’ reviews. With the comprehensive review process, 35

accepted papers are presented (10 full papers, 15 short papers and 10 poster papers) (see

Table 2) at the conference.

Table 2: Paper Presented at CTE-STEM 2021

Sub-themes

Fu

1

Paper

Short | Poster
Paper | Paper

Total

K-12

Computational Thinking and Coding Education in

2

1 2

12

Computational Thinking and Unplugged Activities in K-

0

0 1

Teaching in K-12

Computational Thinking and Subject Learning and

Computational Thinking and Teacher Development

Computational Thinking and IoT

Computational Thinking and STEM/STEAM Education

Computational Thinking and Data Science

Education

Computational Thinking and Artificial Intelligence

o |Io oo

S|Io|o ||
SN~ OO

SN[

Education

Computational Thinking Development in Higher

\S}
—_

I

Computational Thinking and Special Education Needs

Computational Thinking and Evaluation

Computational Thinking and Non-formal Learning

Computational Thinking and Psychological Studies

Computational Thinking in Educational Policy

SO |—|O

SOOI
SO IC|Io|O

O | = DN = =

Sub-themes Full Short | Poster | Total
Paper | Paper | Paper

STEM Learning in the Classroom 0 3 0 3

STEM Activities in Informal Contexts 0 1 0 1

STEM Education Policies 0 1 0 1

STEM Pedagogies and Curriculum 0 2 1 3

STEM Teacher Education and Professional Development 0 0 2 2
Total 10 15 10 35

Editors

Chee Kit LOOI
Nanyang Technological University

Bimlesh WADHWA
National University of Singapore

Valentina DAGIENE
Vilnius University

Peter SEOW
Nanyang Technological University

Ying Hwa KEE
Nanyang Technological University

Long Kai WU
Nanyang Technological University

Table of Contents

COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12

Full Paper
Exploring the Effectiveness of Pair Programming in Developing Students’ Computational Thinking Skills
through Scratch

Wee Meng Frankie LEOW, Wendy HUANGccciiiiiiiiiiccec ettt sveeeveeseveeeaaeesevaesnsaaenenens 2

Achievement and Effort in Acquiring Computational Thinking Concepts: A Log- based Analysis in a Game-
based Learning Environment

Shuhan ZHANG, Gary K.W. WONG, Peter C.F. CHANccoiiiiiiieeeeeeete ettt ve v veevee 8

Short Paper
Cultivating Computational Thinking through Game-based Scratch Programming

Xiaoqian LI, Jing LI, JIanSheng LL...........cc.cooiiiiiiiiiie ittt et et e s re e sav e e s beeesaeeneraessreaenens 14
Poster Paper
Developing Girls' Computational Thinking by Playing Programming Games

JIng LI, JHANSNENE LIiiiiiiiiiiiiiieiecieeste sttt ettt set e et e et e e etaestaesaaessseesseasseessaesssesssesnsennseensesseens 18
Programming Socio-scientific Games: A Computational Thinking Approach to Real-world Problems

Marianthi GRIZIOTI, Chronis KYNIGOSooo it e e et e e e e e e e e e e e e s ennaarees 20

COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12
Poster Paper
Research on the Design of Unplugged Computer Science Teaching Activities in Elementary School—Taking the
Fruit Delivery Game Course as an Example

BINGQING YANG ... ctiieii ettt ettt e e tee st e e e teeestbeessteeessbeessseesssaeesssaeasseeessseasssaeessseessseeassaeasseessseeensns 23

COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12
Full Paper
A Hybrid Approach to Teaching Computational Thinking at a K-1 and K-2 Level

Damien ROMPAPAS, Steven YOON, Jonothan CHANooovioiiiiiiiieieeeeeeieeee ettt e e eeeaeeee e e e e s seeaaeees 26

Using the Beginners Computational Thinking Test to Measure Development on Computational Concepts Among
Preschoolers

Maria ZAPATA-CACERES, Nardie FANCHAMPS ... ee e s e ees s 32

Storytelling through Programming in Scratch: Interdisciplinary Integration in the Elementary English Language
Arts Classroom

Emrah PEKTAS, Florence R. SULLIVANccooiiiiiiiiiiiceetet ettt 38

Short Paper
Students’ Learning of Computational Thinking in Schools with Different Curriculum Approaches Including
Individual Student Characteristics

Amelie LABUSCH, Birgit EICKELMANNc..cciiitiiitiiini ettt st 43

A Standard Decomposition Process to Inform the Development of Game-Based Learning Environments Focused
on Computational Thinking

Elizabeth L. ADAMS, Ching-Yu TSENG, Paul FOSTER, Vinson LUO, Leanne R. KETTERLIN-GELLER,
Eric C. LARSON, and Corey CLARKcooiiiiiii ettt ettt st st stveeaveeve e beestaesesesaneesveesseenrenns 47

COMPUTATIONAL THINKING AND TEACHER DEVELOPMENT
Full Paper
Different Paths, Same Direction: How Teachers Learn Computational Thinking in STEM Practices through
Professional Development

Sally WU, Amanda PEEL, Connor BAIN, Michael HORN, Uri WILENSKYcccccovviiiiiiiiniinienie e 52

Short Paper
An Experience of Conducting Online Teacher Development for Computational Thinking Teaching in a Primary
School Context

STU-ChEUNG KONG.......ooiiiiiiiiieeiieeciee ettt ettt e et e st e e tv e e sbeesstaeessseesssaeessaessseeesssaassseeassseessseeansseesssesssseesssen 58

COMPUTATIONAL THINKING AND STEM/STEAM EDUCATION
Poster Paper
ARTEC Logic Puzzle: The Role of Computational Thinking with Extension to Extended Logic

ChUNG-O1 KOK......coiiiiiiiieiie ettt ettt et e bt e bt e sseessaessseaaseasseesseesseesssessseanseenseenseesseesseesssesnsesnsennns 63

COMPUTATIONAL THINKING AND DATA SCIENCE

Poster Paper
Infusing Computational Thinking into the Accounting Practice Course

Tao WU, MaiZa CHANGccoiieiieeiet ettt stee et e et e e s te e e tbeessbeeessaeassseessseeessseesssaeessseessseesssasenssessssesensns 66
VizBlocks: A Data Visualization Literacy Education Tool

TRAVIS Jia Yea CHING, BimleSh WADHWAoooiiiiieee ettt st e s seaaee s 68

COMPUTATIONAL THINKING DEVELOPMENT IN HIGHER EDUCATION
Full Paper

Making the Thinking Results of Programming Visible and Traceable with a Multi-layer Board Game
YungYu ZHUANG, Andito SAPUTRO, Mahesh LIYANAWATTA, Jen-Hang WANG, Su-Hang YANG,

GWO-DONGZ CHENooiiiiiiiiiieii ettt ee et e et e e e bt e e tbaessbeeesaeeasseeassseessseesssaeasseesssseessseeassaeessesssseeensns 71
Short Paper
A Framework for Integrating Computational and Design Thinking Processes

Riccardo CHIANELLA, Diego REITANO, Ettore MORDENTI, George BARITSCH..........ccoooeviiiiiiienieennn, 77

The Effects of an AR Programming Game on Students’ Different Prior Computational Thinking Skills

Huai-Hsuan HUANG, Vandit SHARMA, Kaushal Kumar BHAGAT, Wen-Min HSIEH, Nian-Shing CHEN.. 81
Poster Paper
A Systematic Review of Distributed Pair Programming Based on the Team Effectiveness Model

Fan XU, Ana-Paula CORREIAoooiiiiiiiieeeee ettt e e e e e e e s s e e aaaa e e e e e e s sesssaaaaeeeeeeesennnnes 85

COMPUTATIONAL THINKING AND SPECIAL EDUCATION NEEDS
Short Paper
Proposal for the Production of Virtual Reality Environments in Elementary Education with a Constructivist
Approach

José E. GUZMAN-MENDOZA, Héctor CARDONA-REYES, M. Lorena BARBA-GONZALEZ, Klinge O.
VILLALBA-CONDORI, Dennis ARIAS-CHAVEZ, M. Luisa Fernanda RABAGO-GONZALEZ................. 88

COMPUTATIONAL THINKING AND EVALUATION
Full Paper
A Preliminary, Systematic Review of Teaching and Learning Computational Thinking in Early Childhood
Education

Anika SAXENA, GAry WONGooociiiiiieeiieeiieestteetteestteesteeseteessseesseeassesssseeassseesssaeassseessseesssesasssessssesansns 93

COMPUTATIONAL THINKING AND NON-FORMAL LEARNING
Full Paper
Bringing Physical Computing to an Underserved Community in an Informal Learning Space

Chin-Lee KER, Bimlesh WADHWA, Peter Sen-Kee SEOW, Chee-Kit LOOL..........ccooovviiiiiviiiiiiiieiiiieees 101

Combining Maker Technologies to Promote Computational Thinking and Heart- ware skills through Project-
based Activities: Design Considerations and Empirical Outputs

Ali HAMIDI, Sepideh TAVAJOH, Marcelo MILRADccccooiiiiiiiiiiiiiiiicccceeeeee e 107

COMPUTATIONAL THINKING AND PSYCHOLOGICAL STUDIES
Short Paper
Influential Factors of Hong Kong Secondary School Students’ Intrinsic Motivation to Coding Education during
the COVID-19 Epidemic: A Correlational Analysis

Xin ZHANG, Gary K.W. WONG, Qiaobing WU, Bill Y.P. TSANG........cccccectvimiminiiiiiiiiiiceeccee 114

STEM LEARNING IN THE CLASSROOM
Short Paper
An Evolving Definition of Computational Thinking in Science and Mathematics Classrooms

Amanda PEEL, Sugat DABHOLKAR, Sally WU, Michael HORN, Uri WILENSKYcccccoovevievienieniennn. 119
Action Research on Engineering Design-oriented and Project-based STEM Teaching Model

HONE YU, LU ZOU ...ttt ettt et e e te e et e e s steeetbeesstaasssaeessseesssaeessseeassaeansseessseesnsseensseessseeans 123
A Case Study of 7" Grade Students Learning Programming to Solve Mathematics Problems

Wendy HUANG, Chee-Kit LOOI, Mi SONZ KIM........coooiiiiiiiiiiieciieecieesiee ettt esveeeveeesive e veeeaneesnveeens 127

STEM ACTIVITIES IN INFORMAL CONTEXTS
Short Paper
Developing STEM Makers with Mentoring and Authentic Problem-Solving Strategies

Xiaojing WENG, Thomas K.F. CHIU, MorTis S.Y. JONG.......coooeiiiiiiiiieiiereeteesree sttt eveeveesve s sene e 132

STEM EDUCATION POLICIES
Short Paper
Euro-Asia Collaboration for Enhancing STEM Education

Anders BERGLUND, Valentina DAGIENE, Mats DANIELS, Vladimiras DOLOGOPOLOVAS, Siegfried
ROUVRAIS, Miriam TARDELL.......c..oooiiiiiie et ettt eae e et e et e e aeeeeaeeeenaeeeereeeeaneeenneeens 136

STEM PEDAGOGIES AND CURRICULUM

Short Paper
Designing an Interdisciplinary Social-scientific STEM Curriculum on Students’ Empathy, Efficacy, and Interest
Biyun HUANG, Morris Siu-Yung JONG, Ching Sing CHAIL Yun DAI, Darwin LAUccoeevevvenvennnnnen. 141

A Co-design Approach for Developing Computational Thinking Skills in Connection to STEM Related
Curriculum in Swedish Schools

Rafael ZEREGA, Ali HAMIDI, Sepideh TAVAJOH, Marcelo MILRADcccoociviniiiininieniceeeneeee 144
Poster Paper
Analysis of the Development Direction of STEM Curriculum in China

LIIUA PENG ..ottt et sttt bttt bt et b st e et sbe et saeeat e besbeeneeebeeanenes 148

STEM TEACHER EDUCATION AND PROFESSIONAL DEVELOPMENT
Poster Paper
Teacher Sensemaking on Computational Thinking in a Community of Math Teachers

Chung Yiu SIU, Mi Song KIM, Wendy HUANG, Chee-Kit LOOL..........ccccooovieiiiiiiiiieciece e 151
A Systematic Review of Teachers’ Preparedness towards Computational Thinking Integration in Mathematics
Shiau-Wei CHAN, Chee-Kit LOOI, Shivani MAHEDIRATA, Mi Song KIMccccoeviviieniieeiie e 153

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Computational Thinking
and Coding Education in
K-12

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Exploring the Effectiveness of Pair Programming in Developing Students’
Computational Thinking SKkills through Scratch

Wee Meng Frankie LEOW!, Wendy HUANG?
"Bedok Green Secondary School, Singapore
National Institute of Education, Nanyang Technological University, Singapore
leow _wee meng_frankie@moe.edu.sg, wendy.huang@nie.edu.sg

ABSTRACT

Pair programming (PP) is a useful strategy to promote
computational thinking (CT) among students. Studies have
shown that PP under appropriate conditions can enhance
student achievement and increase their motivation in
learning programming. Furthermore, studies have also
shown that Scratch, a graphical block-based programming
language, enables student learning in programming to
become more interesting, more challenging and more
creative. This study explored the effectiveness of PP in
developing students” CT skills through Scratch in a
Singapore secondary school. The findings suggest that PP
is more effective than the solo programming, both
in supporting and enhancing students’ learning
and understanding of basic programming concepts and CT
skills, as well as on improving students’ motivation
toward programming. Limitations of this study and
implications for teaching are also discussed.

KEYWORDS

Pair Programming, Scratch, Computational
Computer Applications, K-12

Thinking,

1. INTRODUCTION

To nurture students to be future-ready and contribute
effectively in an increasingly complex and interconnected
world shaped by computer technologies, the Singapore
Ministry of Education (MOE) has strengthened digital
literacy among students through the Smart Nation Initiative
(Smart Nation, 2014) and the National Digital Literacy
Programme (MOE, 2020). As developing computational
capabilities is one of the key enablers for these national
initiatives, secondary schools and junior colleges computer
education curriculum were also revised to introduce
computational thinking (CT) and its related concepts such as
abstraction, algorithmic thinking and decomposition to
students through programming in subjects such as Computer
Applications (CPA) and O-Level Computing (MOE, 2017,
2019). Secondary students who took CPA are introduced to
programming at secondary two through Scratch 2.0
(Scratch), a graphical block-based programming language,
using Scratch editor.

The secondary two CPA students in a typical public co-
educational school (it is called “School A” in this paper)
initially learned Scratch through solo programming. While
students worked independently to complete the Scratch
projects, the teachers observed that students struggled to
correctly apply the knowledge they have learned to create
the projects and got frustrated as a result when the codes did
not work as intended. Students may know the function of
each graphical block but they did not know how to combine
those blocks in order to produce valid and correct

programs. Students also faced difficulties in the use of
variables, operators blocks, event blocks and blocks
that encapsulate other blocks (e.g. loops). For example,
students commonly have misconceptions regarding
variable initialisation and loop conditions during the
creation of their scratch projects. Hence, despite the ease in
using Scratch to learn programming, many students tend to
find programming difficult to learn and get frustrated when
they are unable to get their programs to work as intended
(Choo et al., 2017; Rahmat et al., 2012).

To explore the effectiveness of PP in developing
students’ CT skills and in motivating students to learn
programming through Scratch, the secondary two CPA
students in School A attended three PP lessons. This
study explored the effectiveness of pair programming
(PP) in developing students’ CT skills, measured by their
learning achievement in PP. The study focused on
answering the following research questions:

1. What is the effectiveness of PP in developing students’
CT skills through Scratch?

2. How motivated are students to learn programming
through Scratch when using PP?

2. LITERATURE REVIEW

2.1 Pair Programming

PP involves two people working side by side each other at
one computer and collaborate closely to create a program.
One acts as the driver who is responsible for controlling the
shared resources (e.g., computer, mouse, keyboard) and
actively involved in the programming task such as using the
mouse to input the codes. The other acts as the navigator who
is responsible for observing the driver’s work and providing
support by pointing out errors in the codes and/or offering
suggestions on how to solve a problem (Williams & Kessler,
2002). During the program completion process, the driver
and navigator roles are switched after a period of time
(Williams & Kessler, 2002).

Studies have shown that students regularly perform better
with PP than with solo programming in CT (Lye & Koh,
2014; Werner & Denning, 2009). Paired students were more
likely to hand in solutions for their programming tasks that
were of higher quality than students who programmed
independently (McDowell et al., 2002). Furthermore,
various studies have also shown that PP can

(1) improve individual programming skills (Braught, Eby, &
Wahls, 2008; Cliburn, 2003) and (2) reduces frustration
experienced by novice programmers, increases their
satisfaction, enjoyment; and promote positive attitudes in
programming in them (Bishop-Clark, Courte, Evans, &
Howard, 2006; Preston, 2005).

mailto:leow_wee_meng_frankie@moe.edu.sg
mailto:wendy.huang@nie.edu.sg

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

2.2, Computational Thinking

During programming, students are exposed to CT. Wing
(2017, p. 8) defines CT as the “thought processes involved
in formulating a problem and expressing the solution(s) in
ways that a computer—human or machine—can effectively
carry out.” The “computer” here refers to an information
processing agent that can be a human or a computer, or a
combination of both. Selby (2014) further elaborates that CT
as cognitive processes, involves thinking in abstractions,
algorithmically and in terms of decomposition,
generalization and evaluation. Binkley et al. (2012) and
Yadav et al. (2014) also posit that CT has the potential to
foster creativity and problem-solving skills among students.
Hence, CT is not just about problem formulation, but also
about problem solving where students are encouraged to
think in new ways to come up with solutions. Therefore, CT
equips and empowers the students with knowledge, skills
and programming competencies to move beyond being
consumers of technology to becoming creative thinkers and
problem-solvers in a tech-driven world.

3. METHODS

3.1 Participants

The participants were 40 secondary two CPA students in
School A. They were introduced to Scratch prior to the PP
lessons and had some basic knowledge and skills about
Scratch programming. 12 students were female and 28
students were male.

3.2 The Learning Platform: Scratch

Scratch is a graphical block-based programming language
suitable for students to learn programming because of its low
floor (easy for novice programmers to get started), high
ceiling (opportunities for expert programmers to create
complex projects) and wide walls (supporting different types
of projects that grow out of the programmers’ own interests
and learning profiles) (Resnick et al., 2009). Studies have
shown that using Scratch improves students’ motivation in
learning programming (Ouahbi et al., 2015) and
understanding of basic programming concepts (Saez-Lopez
et al., 2016).

Figure 1. Scratch user interface

Writing a program is done by dragging and dropping the
graphical Scratch blocks to connect them to each other
vertically. These blocks are color-coded and grouped into
different categories based on their functions (e.g., event
blocks, control blocks), thereby allowing programmers to
see the relationship between the different blocks easily.

Accordingly, students can create programs, which in Scratch
are called projects, such as stories, animations, games,
simulations, songs, etc. by connecting the blocks in the
correct sequence. Figure 1 shows the Scratch user interface
while Figure 2 shows an example of a program written using
Scratch blocks.

RV It is getting dark B{GTY 9 secs

Figure 2. Example of a program written using Scratch
blocks

3.3 Procedure

Prior to the intervention, students completed a solo
programming project over one hour and 30 minutes.
Thereafter, they attended three PP lessons (four hours thirty
minutes in total). In each PP lesson, students shared one
computer to work through the scenario, design and develop
their Scratch project, with one driving (controlling the mouse
and keyboard) and the other navigating (checking for errors
and bugs, and providing support and feedback). The pairs
must switch their roles every 10 minutes during PP.

Pairs were assigned based on student choice. All students
chose a same-gender classmate to work with for all the three
PP lessons. There was a total of 6 pairs of girls and 14 pairs
of boys. However, for each subsequent lesson, every student
was required to choose a new partner.

After students reviewed earlier lessons on Scratch
programming, they were introduced to the Scratch project
that they need to complete and the rubrics for the project as
well as PP and the accompanying PP expectations. Table 1
further shows a summary of the activities for each PP lesson.

3.4. The Scratch Programming Projects

Over the three classes, students were given two
programming projects to assess their programming
knowledge and capability during PP. They consisted of
students’ choice of two semi-open projects with a defined
outcome and an undefined process (see Table 2) and were to
be completed by the paired students within lesson one (for
PP project 1) and within lessons two and three (for PP project
2).

3.5. Data collection

In this paper, data was collected during PP by observing
students’ behaviors and interactions (including the questions
asked by students when seeking help, frequency of seeking
help from teachers, and verbatim comments by students
during PP) as they designed, coded and implemented their
Scratch projects. We observed how students applied CT
skills such as evaluation when they encountered bugs and
algorithmic thinking ~ when conceptualising and
implementing the projects. We also examined these projects
based on the rubrics and compared

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

their scores with the Scratch projects done earlier through
solo programming.

Table 1. Sample PP lesson

Lesson | Time/min Description of lesson activities

onto blocks to collect stars.

Game 3: A mouse appears at the start of the maze
and it is supposed to find the cheese. A cat will
forever chase after the mouse.

1 5 Revision of last Scratch lesson’s

concepts.

5 Students are introduced to PP
(includes the showing of PP video in
lesson 1. But the showing of PP video
will not be implemented in lessons 2
and 3) or reminded of PP expectations
in lessons 2 and 3.

5 Students get into pairs (each pair will
need to have a different partner for
each lesson) and are introduced to the
different scenarios for the Scratch
project that they need to complete

within the lesson (includes
implementation details and rubrics for
this project).

10 Each pair decides on their preferred task
scenario for the project. Thereafter,
the paired students will prepare the
script and storyboard for their Scratch
project.

60 The paired students carry out PP to
complete their project and will switch
roles after every 10 minutes.

5 Summary of the concepts learned in
the lesson.

Table 2. Overview of the pair programming project

Type Project

Solo Solo Project: Two sprites having a conversation at the
basketball court, with one sprite introducing
himself/herself to and having a conversation with
the other sprite to get to know him/her better.

PP | PP Project 1: Choose 1 out of 3 scenarios

Animation 1: Two sprites having a conversation,
with one sprite sharing a riddle with his/her friend.

Animation 2: Two sprites having a conversation,
with one sprite sharing his/her favourite Korean
drama and why he/she likes this Korean drama to
his/her friend.

Animation 3: Two sprites having a conversation,
with one sprite sharing his/her favourite game that
he/she plays with his/her friend.

PP Project 2: Choose 1 out of 3 scenarios

Game 1: A cat appears and it is supposed to catch
doughnuts as they fall from the sky.

Game 2: A cat appears and it is supposed to jump

4. FINDINGS AND DISCUSSIONS

4.1. Comparison of students’ scores for solo
programming and PP

To evaluate the effectiveness of PP in developing students’
CT skills, measured by their learning achievement in PP,
paired samples t-tests were conducted to determine whether
the mean of students’ scores for PP project 1 (M=9.48,
SD=7.542) and PP project 2 (M=6.65, SD=7.150)
significantly differed from the mean of students’ scores for
solo programming task (M=5.18, SD=7.542).

A pair programming session is considered effective to
enhance students’ performance if their mean score for either
PP projects 1 or 2 is higher than their score for a similar solo
programming project and the improvement is statistically
significant. In general, students working in pairs performed
better compared to programming alone as both the mean
scores for the PP projects were higher than the mean score
for the solo programming project.

The results for the paired t-tests indicated that the difference
between PP project 1 and solo programming project was
significant, #(39)=-3.61, p<.001. Therefore, this could mean
that PP may positively affect the students’ learning
performance.

However, results for the paired t-tests showed that the
difference between PP project 2 and solo programming
project was not significant, #(39)=-1.30, p>0.001. It may be
caused by three possible reasons.

Firstly, it may be due to the increasing difficulty on PP
project 2, which was a Scratch game in contrast to a Scratch
animation in PP project 1. Studies have shown that task
complexity influences the effectiveness of PP and in turn,
student learning (Hannay et. al., 2010).

Secondly, it may be due to a change in partners in PP project
2. Factors that had been identified to influence the effects of
PP include partners’ personalities and temperaments
(Hannay et al., 2010; Katira et al., 2004); and social factors
such as gender, partnership and culture (Zhong, Wang, &
Chen, 2016). As students had to change partners, this meant
that they may be paired with a less desirable partner and
therefore, having compatibility of pairs issues and resulted
in lower motivation to persevere and complete the project. In
this case, as the pairs were of the same gender, the social
factor that is likely to contribute to the insignificant
difference between PP project 2 and solo programming
project is partnership between the pairs being affected by the
partners’ personalities and temperaments.

Thirdly, it may be due to the partner’s skills, knowledge and
experiences (Hannay et al., 2010; Lui & Chan, 2006). For
example, if a low progress student is paired with another low
progress student, the improvement in the learning
achievement for both students may not be as

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

greater as the learning achievement of a pair that consists of
a high progress student and a low progress student. In the
latter, the high progress student will gain more knowledge
and competencies in the CT skills since each time he/she
teaches, he/she re-learns the materials while the low progress
student will benefit from peer teaching. Therefore, PP can be
beneficial even when partners bring different levels of prior
programming experience, but the improvement in learning
achievement may not always be the same for both partners.
This suggests that when students work with a partner who
has relatively more experience, they can still learn.

It can be therefore stated that PP may positively affect the
students’ academic performance. Results of these analyses
are shown in Table 3.

Table 3. Results of paired t-tests for the different tasks

and reflect. his/her reasoning.
Driver becomes
convinced and|
makes the changes,
then test the

game/animation.

Off-task One partner insistg
the other change the
sequence of
codes and nog
reason was given
The other ignoreg

partner.

Partner makes
decisions that
disregard/dismisses
the other partner’s
input, without any
explanation. Or
driver is
programming while
Navigator is not
tracking what is
happening on
monitor (e.g., leave
the computer
station).

Comparisons Mean t df Sig
between difference
tasks
Solo project 4.30 -3.61 39 0.0087
vs PP project
1
Solo project 1.48 -1.30 39 0.1997
vs PP project
"
4.2, Teachers’ Observations of Students’ Behaviors

and Interactions during PP
We observed three categories of pair behaviors during the
completion of the projects: collaborative, exploratory and
off-task. Pairs engaged collaboratively when they interact
verbally and non-verbally to share their thoughts and ideas
during the creation of their projects, and willingly switches
roles after each 10 minutes interval. Exploratory behavior

goes beyond students engaging collaboratively. Pairs
constructively challenge each other’s thoughts, ideas and
programming decisions. On the other hand, off-task
behavior involves pairs or individual student within the pairs
being disengaged and holds up the programming process.
For example, pairs engage in verbal or non-verbal exchanges
not about their Scratch project or programming. Further
description and examples are shown in Table 4.

Table 4. Pair behaviors during game interaction

Majority of the pairs did not engage in planning during the
10 minutes designated for the planning of the script and
drawing of the storyboard. Instead, they engaged directly
with Scratch Editor to plan and input the Scratch blocks for
their projects. To further explore what PP looks like, we
analysed the distribution of specific pair behaviors by gender
pairs that were happening most of the time during the
creation of the two PP projects. While collaborative behavior
was the most common across pairs; a few pairs spent their
time in off-task or exploratory behavior. The results are
shown in Table 5.

Table 5. Distribution of pair behaviors by gender pairs
most of the time while completing PP projects 1 and 2

Category of pair Gender pair
behavior Girl-girl Boy-boy
Collaborative 4 10
Exploratory 1 2
Off-task 1 2

Category Description Example

Collaborative | Partner gives and | Driver adds certain
receives suggestions, | blocks of codes;
ask questions and | Navigator offers
responds by carrying | comments that
out the suggestions. identify ertors;
Switches roles | Driver makes the
willingly. changes.

Exploratory | Pair listens and | Navigator spots
engages errors and offers
constructively suggestions; Driver
around suggestions. | disagrees and
Verbalises reasons | navigator explains

We observed that during PP, students took the initiative to
ask the teachers questions on whether their suggested codes
are workable or whether their sequence of algorithmic
thinking or of decomposition is correct. This contrasted with
solo programming when more students either gave up or
asked the teachers what are the codes to input in order to
complete the solo project.

Furthermore, while most pairs spent most of their time in
collaborative behavior, we observed that most female pairs
spent proportionally more time on collaborative behavior
and a smaller proportion of their time in exploratory
behavior, while some male pairs spent a greater proportion
of their time in exploratory and off-task behaviors. This
suggests that gender can be an issue in PP context.
Although studies showed that males tend to be more

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

assertive in their views and focus on independence (Leaper
& Smith, 2004); and females try to avoid conflict and seek
support, consensus and suggestions (Sullivan et. al., 2015),
the issue of gender in PP in secondary school context needs
further exploration.

The findings showed that students behaviors and interactions
varied across pairs, and differences could be due to the level
of confidence (either individually or as a pair) in completing
the projects based on their knowledge and skills in Scratch
programming. Furthermore, the findings also showed that
majority of the students were more motivated to learn and
engage in programming through Scratch while doing PP.
Overall, the result of this paper is consistent with other
studies that PP could reduce frustration experienced,
enhance student enjoyment, and promote positive attitudes
in programming ((Bishop-Clark et al., 2006; McDowell et
al., 2002; Preston, 2005).

5. LIMITATIONS

The findings in this paper are limited in several ways. First,
we did not measure the quality of the relationship between
partners as a factor affecting the students’ behaviors and
interactions during PP. Studies have shown that one partner
can dominate the interactions (Deitrick, Shapiro, & Gravel,
2016). Second, we did not measure the class collaborative
culture and the extent to which collaboration supported PP.
Future work involving rich observational data could help
describe the classroom culture regarding collaboration.
Third, we did not have mixed gender pairing of students of
which may have yielded additional insight into pair
behaviors. Lastly, we did not investigate the time factor:
period of switching roles. The period of switching roles in
this study was a fixed time interval of 10 minutes. We did
not investigate whether if fixing a longer time interval of

15 to 20 minutes or having pairs switched their roles
according to their own needs as and when they chose, would
help in the learning of CT skills and achievement. This
would provide additional insights on the effect of period of
switching roles in PP on student learning.

6. CONCLUSION AND IMPLICATIONS
FOR TEACHING

Overall, our findings suggest that students who programmed
with a partner learned more than when they programmed
alone. PP also seemed to motivate students to acquire CT
skills. Hence, our finding supports prior studies that show
the benefits of PP for learning and provide some detail on
the factors that relate to those benefits.

The findings in this paper also have implications for
teaching. Firstly, the findings can help teachers understand
what PP looks like in a secondary school classroom and the
different variability in how pairs interact. Therefore,
teachers must plan to create effective pairs. When pairs
possess different levels of experience of programming
knowledge and skills, both students will benefit, but in
different ways. However, it is disadvantageous to pair
students possessing very different attitudes toward
collaboration together. For example, having a partner who
prefers to programme alone can undermine the more
collaborative student’s learning and lead to pair behaviors

that hold up the progress of their Scratch project completion.

Future research can examine the period of switching roles
between the driver and the navigator and how this impacts
the learning of CT skills and motivation in learning
programming through Scratch. Additional research is needed
in order to determine the extent to which the quality of the
relationship between partners affects the students’ behaviors
and interactions during PP, and in turn their learning
achievement in programming.

7. DECLARATION OF CONFLICTING
INTERESTS

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

8. REFERENCES

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M.,
Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-
first century skills. In P. Griffin, B. McGaw, & E. Care
(Eds.), Assessment and teaching of 21st century skills (pp.
17-66). Dordrecht, Netherlands: Springer.

Bishop-Clark, C., Courte, J., & Howard, E. V. (2006).
Programming in pairs with Alice to improve confidence,
enjoyment, and achievement. Journal of Educational
Computing Research, 34(2), 213-228.

Braught, G., Eby, L. M., & Wahls, T. (2008). The Effects of
pair-programming on individual programming skill. ACM
SIGCSE Bulletin, 40(1), 200-204.

Choo, G. K., Leow, W. M. F., Kaur, S., Yee, W. L. C.
(2017, October 31). Nurturing independent learners
through teaching debugging [Seminar session].
Computing Teachers Seminar 2017, Singapore.

Cliburn, D. C. (2003). Experiences with pair programming
at a small college. Journal of Computing Sciences in
Colleges, 19(1), 20-29.

Deitrick, E., Shapiro, R. B., & Gravel, B. (2016). How do we
assess equity in programming pairs? Singapore:
International Society of the Learning Sciences.

Hannay, J. E., Arisholm, E., Engvik, H., & Sjeberg, D. L
(2010). Effects of personality on pair programming. /EEE
Transactions on Software Engineering, 36(1), 61-80.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., &
Gehringer, E. (2004). On understanding compatibility of
student pair programmers. ACM SIGCSE Bulletin, 36(1),
7-11.

Leaper, C., & Smith, T. E. (2004). A meta-analytic review
of gender wvariations in children’s language use:
Talkativeness, affiliative speech, and assertive speech.
Developmental Psychology, 40(6), 993.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.

Lui, K. M., & Chan, K. C. (2006). Pair programming
productivity: Novice—novice vs. expert—expert.

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

International Journal of Human-computer studies, 64(9),
915-925.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002).
The effects of pair programming on performance in an
introductory programming course. Proceedings of the
Thirty-Third Technical Symposium on Computer Science
Education, (pp. 38-42). ACM Press.

MOE. (2020, March 4). Learn for Life — Ready for the
Future: Refreshing Our Curriculum and Skillsfuture for
Educators [Press release].
https://www.moe.gov.sg/news/press-releases/learn-for-
life--ready-for-the-future--refreshing-our-curriculum-and-
skillsfuture-for-educators

MOE. (2017). O-Level Computing Syllabus. Retrieved
December 20, 2020, from
https://www.moe.gov.sg/docs/default-
source/document/education/syllabuses/sciences/files/o-
level-computing-teaching-and-learning-syllabus.pdf

MOE. (2019). N-Level Computer Applications Syllabus.
Retrieved December 20, 2020, from
https://www.moe.gov.sg/docs/default-
source/document/education/syllabuses/sciences/files/201
9-computer-applications-syllabus.pdf

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., &
Lahmine, S. (2015). Learning basic programming concepts
by creating games with scratch programming environment.
Procedia-Social and Behavioral Sciences, 191, 1479—
1482.

Preston, D. (2005). Pair programming as a model of
collaborative learning: A Review of the research. Journal
of Computing Sciences in colleges, 20(4), 39-45.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N. F. M., Zainal,
N.F. A., & Rahman, R. A. (2012). Major problems in basic
programming that influence student performance.
Procedia— Social and Behavioral Sciences, 59, 287-296.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11),
60-67.

Saez-Lopez, J. M., Roman-Gonzalez, M., & Vazquez- Cano,
E. (2016). Visual programming languages integrated
across the curriculum in elementary school: A two year
case study using scratch in five schools. Computers &
Education, 97, 129-141.

Selby, C. (2014). How can the Teaching of Programming be
Used to Enhance Computational Thinking Skills? The
United Kingdom: University of Southampton.

Smart Nation. (2014). Why Smart Nation. Retrieved
December 07, 2020, from
https://www.smartnation.sg/about-smart-nation

Sullivan, F. R., Kapur, M., Madden, S., & Shipe, S. (2015).
Exploring the role of gendered’discourse styles in online

science discussions. International Journal of Science
Education, 37(3), 484-504.

Werner, L., & Denning, J. (2009). Pair programming in
middle school: What does it look like? Journal of Research
on Technology in Education, 42(1), 29-49.

Williams, L. A., & Kessler, R. R. (2002). Pair programming
illuminated. Boston, MA: Addison-Wesley Longman
Publishing Company.

Wing, J.M. (2017). Computational thinking’s influence on
research and education for all. Italian Journal of
Educational Technology, 25(2), 7-14.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,
J. T. (2014). Computational Thinking in Elementary and
Secondary Teacher Education. ACM Transactions on
Computing Education, 14(1), 1-16.

Zhong, B., Wang, Q., & Chen, J. (2016). The Impact of
social factors on pair programming in a primary school.
Computers in Human Behavior, 64, 423-431.

https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/news/press-releases/learn-for-life--ready-for-the-future--refreshing-our-curriculum-and-skillsfuture-for-educators
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/o-level-computing-teaching-and-learning-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.moe.gov.sg/docs/default-source/document/education/syllabuses/sciences/files/2019-computer-applications-syllabus.pdf
https://www.smartnation.sg/about-smart-nation

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Achievement and Effort in Acquiring Computational Thinking Concepts: A Log-
based Analysis in a Game-based Learning Environment

Shuhan ZHANG", Gary K. W. WONG?, Peter C. F. CHAN?
12 Faculty of Education, The University of Hong Kong, Hong Kong
3 NetDragon, Hong Kong
shuhan@connect.hku.hk, wongkwg@hku.hk, peterchan@edmodo.com

ABSTRACT

Numerous attempts have been made to apply coding games
in computational thinking (CT) education, and using log
data to explore CT learning is an emerging field. This paper
explored the acquirement of CT concepts (sequences, loops,
and conditionals) by primary and secondary school students
who used a digital coding game called Coding Galaxy. It
aims to investigate (1) whether secondary school students
outperform primary school students, and (2) whether
playing easy game missions is a scaffold for completing hard
missions. Participants (N=188) were sampled from local
schools in Hong Kong. Students were divided into three
groups (A, B, C). Primary school students constituted Group
A and B, while Group C consisted of secondary school
students. Group A was assigned with only hard missions
while easy missions were locked, whereas Group B and C
were given access to both easy and hard missions. Data were
extracted from students’ log files, and 6599 records were
analyzed using learning analytics techniques. Students’
performance was evaluated based on game achievements
and the effort they made to get the achievement. The results
indicate that (1) students performed best in sequences,
followed by loops and conditionals; (2) While secondary
students shared the same pattern with primary students
regarding the difficulty of acquiring CT concepts, secondary
students performed better; and (3) While Group A shared
similar game achievements with Group B, Group B made
less effort in getting the achievements, indicating that easy
missions can scaffold hard missions. The implications of the
findings to various educational stakeholders are discussed.

KEYWORDS

Computational thinking, K-12 education, game-based
learning, log data, learning analytics

1. INTRODUCTION

Computational thinking (CT) has become a heated topic
since 2006 when Jeanette Wing proposed the term as “an
approach to solving problems, designing systems, and
understanding human behavior, by drawing on the concepts
fundamental to computer science” (Wing, 2006, p. 33).
Later in 2014, Wing further gave a more descriptive
definition, stating that CT involves “formulating a problem
and expressing its solution(s) in such a way that a
computer-human or machine-can effectively carry out”
(Wing, 2014, p.1). Wing’s call for the importance of CT
has aroused great effort in incorporating CT into
educational practices (Martins-Pacheco et al., 2019), and
programming education has become the main context for
CT development (Grover & Pea, 2013).

Programming for young children was originated from the
term “Constructionism” (Papert, 1980) which argues that
students build knowledge more effectively when they
actively engage in creating their own projects. Papert
developed a constructionist programming environment, the
LOGO programming tool, to provide a place where
students can represent their abstract ideas through concrete
constructions (Papert 1980). With the popularity of CT
education, programming tools have become the vehicle for
numerous initiatives developed for supporting CT
education, among which visual programming tools,
represented by Scratch (Resnick et al., 2009), have widely
applied for its low complexities in programming syntax
(Zhao & Shute, 2019).

CT learning environment can be categorized regarding its
programming language and the nature of the task it
displays (Manske et al., 2019). Regrading programming
language, they can be classified into text-based
programming tools, block-based visual programming tools,
and arrow-based visual programming tools (Manske et al.,
2019; Moreno-Ledn, 2018). While text-based tools support
users to create programs in textual programming languages,
block-based programming platforms share the features of
“low floor” (easy to begin with) and “high ceiling” (allow
complex projects) (Grover & Pea, 2013). Further, to
support younger children to engage in programming
activities, arrow-based programming environment,
represented by Scratch Jr (Bers & Resnick, 2015), was
created, where representations that are analogous to objects
(eg. arrows) are used (Moreno-Ledn, 2018; Manske et al.,
2019). As for the nature of the task, CT learning
environments can be classified into open task environments
and goal-oriented environments (Manske et al., 2019). In
open task environments (eg. Scratch), users can author the
design of their projects, with the flexibility of creating their
own storyline, whereas goal-oriented platforms,
represented by digital games, impose constraints on
learning progression, providing explicit tasks for learners
to complete. (Manske et al., 2019).

For students, CT learning environments offer a playground
to practice CT skills (Lockwood & Mooney, 2017),
whereas for teachers, these tools provide a way to measure
students’ learning progression (Shute et al., 2017).
Students’ acquisition of CT concepts and skills can be
measured through evaluating their programming projects,
from which different levels of performance can be
indicated (Tang et al., 2020). Yet there are some main
concerns of this approach--the absence of an element does
not necessarily indicate that the students lack the
knowledge, while the presence of a code construct is not
always an accurate indicator of how much the students

mailto:shuhan@connect.hku.hk
mailto:wongkwg@hku.hk
mailto:peterchan@edmodo.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

grasp the concept (Kurland et al., 1985; Brennan &
Resnick, 2012). To tackle these challenges, digital games
can serve as an effective tool to assess concept acquisition.
As a goal-oriented learning tool, CT games are designed
with tasks that cover certain CT concepts, and learners’
knowledge can be assessed through evaluating their
performance in solving the task.

To ensure the CT games can effectively support learning,
appropriate instructional design is critical. Instructional
design of a game refers to how the game affords players’
learning and playing (Laporte & Zaman, 2018), of which
one important dimension is the organization of learning
tasks, represented by the sequencing of the tasks
(Merriénboer & Kirschner, 2017). Thus, for the design of
CT games, it is vital to consider the sequencing of
displaying tasks of different CT concepts and the
sequencing of implementing different knowledge points for
each concept. Although there have been numerous attempts
in exploring the content taught by CT games, limited is
known about how the concepts are delivered via game
tasks (Laporte & Zaman, 2018), and studies focusing on
the sequencing of CT concepts and knowledge points
within concepts are still scarce.

This paper will introduce a case study on K-12 students
using a coding game to learn CT concepts. It aims to
explore the sequencing of concept acquisition and
knowledge points within a concept. As this is the first
paper focusing on this particular coding tool, we start by
investigating the three fundamental CT concepts, which are
sequences, loops, and conditionals. The case study takes
place in a self-regulated learning context where students
were assigned game tasks to complete at home during the
COVID-19 pandemic, involving both primary and
secondary students. Students’ knowledge acquisition of CT
concepts was assessed based on game performance, and the
results of different cohorts were compared. The study aims
to answer the following research questions:

1. How does students’ game performance characterize the
difficulty of acquiring CT concepts (sequences, loops, and
conditionals)?

2. Do primary and secondary students share the same
order of difficulty of acquiring CT concepts?

3. Is completing easy missions a scaffold for completing
hard missions?

2. METHOD
2.1. Sample

Participants were selected from local schools in Hong
Kong. A total of 188 students consented to participate in
this study, with 101 from Grade 6 in primary school (age
10-12) and 87 from Grade 2 in secondary school (age 12-

14). According to the school curriculum, these groups of
students have learned the basic CT concepts at school, so
they were expected to be able to play the coding game
under a self-regulated learning context.

2.2. Apparatus

The game adopted by this study, Coding Galaxy (CG
hereafter), is designed based on an arrow-based visual

programming language where arrows are used as
commands for players to manipulate directly. This context
is developmentally appropriate for novice learners, because
it could prevent syntax errors and have no requirement on
children’s reading skills (Bers, 2018). Each mission is a
puzzle in which the learner can control the character (an
astronaut) to solve the puzzle using simple visual
programming language. In doing so, the learner must
identify viable routes and use available commands to work
out the solution (See Figure 1). Additionally, the learners
are encouraged to use the fewest commands for the
solution in order to obtain the mission reward.

Figure 1. Coding Galaxy Puzzle Map.

The mission reward is presented as one, two, or three stars
upon finishing a mission. Three stars are awarded for the
optimal solution to the puzzle, involving correct
identification of patterns and accurate use of commands, to
achieve the destination with the fewest commands while
collecting all crystals. Two stars are awarded for partially
fulfilling these criteria. One star is awarded for those who
only solve the puzzle but fail to fulfill other criteria. Also,
there is no limit on time spent on each task, and multiple
attempts are allowed for each mission.

2.3 Research Design

Participants were divided into three groups (see Table 1).
Primary school students constituted Group A and B, while
Group C consisted of secondary school students. All the
students were assigned game chapters of sequences, loops,
and conditionals. Group A was assigned with only hard
missions while easy missions were locked on the platform,
whereas Group B and C were given access to both easy and
hard missions. All students were given two weeks to
complete the tasks. Table 2 illustrate the design of game
missions in terms of knowledge points and the mapping
with easy and hard missions respectively.

Table 1. Information of Each Group.

Grade Task

Primary school Hard missions
Primary school Easy missions,
hard missions

Easy missions,
hard missions

Group A (n=50)
Group B (n=51)

Group C (n=87) Secondary school

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Table 2. Map of Game Missions and Knowledge Points

CT Concept | Knowledge point Description Easy* Hard*
Sequences Simple sequence Sequence with fewer than 10 commands \
Relative position Basic spatial awareness, tracking positions to move N N
with commands
Relative direction Basic spatial awareness, imagining relative directions | N
from the view of the character
Complex sequence Sequence with more than 10 commands \
Loops Apply preset loops A loop has already been completed in the solution, N
need to put it in with other commands to complete the
whole solution.
Loop preset commands | Some commands are already in the incomplete N
solution. Complete the loop by setting the loop time
or inserting new commands.
Loop one command Solution contains loop with 1 command \ \
Loop multiple Solution contains loop with more than 1 command N
commands
Nested loops Solution contains loop within loop \
Conditionals | Add action under The condition has been preset, only need to add action | V
condition through inserting commands
Create conditional Create conditional commands through selecting right N
command conditions and inserting related commands

*easy: easy missions, assigned to Group Band C *hard: hard missions, assigned to all groups

2.4 Data Analysis

Average number of stars

Two variables for assessing student knowledge acquisition
were defined and used for analysis, namely achievement,
and effort. Achievement refers to the average stars student
get in each game mission, and effort is reflected by the

1.82
1.59

number of attempts before achieving the highest number of 1
stars for each mission. As completion of each mission is
rewarded with three possibilities of number of stars, effort =

is presented in three dimensions, namely, 1-, 2-, and 3- star
attempts. To be more specific, if the highest achievement a
player reached in a mission is two stars, which is the third
attempt for trying, then the value of effort for this mission
is “2-star attempts equal to 3”.

sequences loops conditionals

Figure 2. Achievement of Each Concept.

Average number of attempts

Log files of each participant were extracted from the game 18
backstage, after which the dataset was processed based on
the defined variables. While achievement was calculated 16
with math formulas, data for effort was extracted with a 14
Python script. —
12 ————
3. RESULT AND DISCUSSION " ~
3.1 RQ1: How do students’ game performance 0'g
characterize the difficulty of acquiring CT concepts? sequences loops conditionals
A total of 6599 records were extracted. Students’ —e— | star —e— 2 star —o— 3 star

performance of each concept was compared. As for
achievement, students got the highest stars in sequences,
followed by loops and conditionals (see Figure 2),
indicating a growing difficulty level of the three concepts.
Yet regarding effort, the trend was mixed for three
dimensions (see Figure 3). For 1-star attempts, the same
order of difficulty was found, whereas the results of 3-star
attempts showed that players used the most attempts to get
the best solution in loops missions.

Figure 3. Effort of Each Concept.

These findings indicated that achievement and effort
reflected different trends in terms of the order of difficulty
of the three concepts. This may be explained by the order
students follow when they play the game. Since the game
missions are displayed in chapters, with each chapter
focusing on one CT concept, most students played the
game following the order of chapters, which is sequences,
loops, and conditionals, according to the timestamp from
the log files. Thus, it is likely that playing sequences and

10

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

loops familiarized them with how to solve the puzzles,
which can be a scaffold for playing conditionals chapters
afterward.

Further, both achievement and effort indicated that
sequences is the easiest to learn while loops is
comparatively difficult. This result is in line with the
findings reported by Israel-Fishelson & Hershkovitz (2019)
who used another coding game on primary school students.
Based on indicators of the concept achievement and the
number of attempts, they demonstrated that sequences was
generally easiest for students while loops tended to be
challenging. This provides some implications for
educational practitioners who intend to teach programming
to novices. It is recommended to start with introducing the
concept of sequences, and more room for practice can be
provided when teaching loops and conditionals .

3.2 RQ2: Do primary and secondary students share the
same order of difficulty of acquiring CT concepts?

As Group B and C were assigned with the same game tasks,
the performance of the tasks generated from the groups
were compared regarding their achievement in the game
(see Figure 4). Results showed that primary students
(Group B) shared the same order of difficulty of concept
acquisition with secondary students (Group C), with
sequences as the easiest concept, followed by loops and
conditionals. Moreover, secondary students outperformed
primary students in all three concepts, with secondary
students getting more than two stars on average for each
concept, implying that the design of the arrow-based
programming language may be too easy for students
belong to this age bracket. Thus, for designers of CT
learning environments, it is suggested to consider the age
of potential users and their acceptance of different
programming languages.

Average number of stars

2.55

N

1.64

1.33
1.5 T

[y

0.5

conditionals

loops

sequences
M Primary ® Secondary

Figure 4. Achievement of Primary and Secondary students.

3.3 RQ3: Is completing easy missions a scaffold for
completing hard missions?

Students’ performance between Group A and B was
compared. Figure 5 displayed the results of game
achievement. It is indicated that the two groups performed
similarly regarding the average number of stars. Yet the
results for effort yielded different results (see Figure 6).
For each concept, Group A had a lower value in 3-star
attempts, implying that in cases where players were able to
solve the puzzles with the optimal solutions, fewer

attempts were made by those who played easy missions
beforehand. This indicates that playing easy missions could
possibly scaffold students to solve harder problems.

Average number of stars

25

1.5

sequences loops conditionals

== Group A == Group B
Figure 5. Achievement of Group A and Group B.

3-star attemps

2.5
2.04
2
1.54
15 1.39
1.34
1.24
1
1
0.5
sequences loops conditionals

== Group A == Group B

Figure 6. Effort of Group A and Group B.

These results can provide rich implications for the design
of programming games and CT learning environments.
Referring to Table 2, suggestions of the design of
programming tasks for novices are as follows.

*

For sequences, initial tasks can be designed with
solutions less than ten commands, accompanied with
come basic spacial awareness (relative position,
relative direction), after which more complex
sequence tasks can be introduced.

For loops (see Figure 7), learners can be exposed to
applying preset loops in the tasks first where they can
test how loops work. Also, loop preset commands can
be used to support novices. This can be reached by
giving the access to modifying a preset loop in terms
of either setting loop times or inserting new
commands inside a loop. This would help learners get
a deeper understanding of how loops can be applied
through trials and errors. After these warming-up
tasks, students can be given the opportunity to try
creating loop commands from single loops to nested
loops. These designs click with the model of “use-
modify-create” proposed by Lee et al. (2011) for
supporting the design of CT practical activities. The
model suggests a learning progression to lead students
to go from user to modifier to creator of programming
projects (Grover & Pea, 2013), and it has been
successfully applied in many CT learning platforms
(eg. Zhao & Shute, 2019).

11

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

2 Forward

. Y Collect

glo|lsflw|n

. C) Loop

1. Apply Preset Loops 3. Loop Preset Commands: Insert Commands

Figure 7. Designs for Loops Tasks for Novices.

* As for conditionals (see Figure 8), designers can start
with offering a conditional command with a preset
condition where players can add actions by inserting
commands. This can reduce the cognitive load caused
by choosing the right condition. In addition, to expose
students to learning how to implement the right
condition, some choices of conditions can be offered
first. After these practices, learners can be introduced
to tasks that require creating conditional commands
from scratch.

- (:)Loop ‘_

2. Loop Preset Commands: Set Loop Time

Good crystal

Can go left

Can go right

Can't go forward

1. Add Action Under a Condition 2. Choose the Correct Condition

Figure 8. Designs for Conditional Tasks for Novices.
4. CONCLUSION

This paper presented a case study on how students
performed in a programming game in a self-regulated
learning context during the COVID-19 pandemic. Results
indicated that sequences was the easiest concept to acquire,
while loops and conditionals were comparatively
challenging, suggesting that instructors can provide more
support when teaching these two concepts to novices.
While primary and secondary students displayed the same
order of difficulty in acquiring the three concepts
secondary students outperformed primary counterparts,
with an average of more than two stars throughout the
game, which indicates that arrow-based programming
language may be too easy for secondary students. Plus,
those who played both easy missions and hard missions
used less effort to achieve the same performance compared
to those who only had access to hard missions, implying
that some scaffolding task designs (eg. apply preset loops)
may lay a foundation for more challenging tasks (eg.
nested loops). Suggestions for CT game design for the
concept of sequences, loops, and conditionals were given,
which were elaborated with examples.

Limitations of the study are as follows. First, since playing
the game was not a compulsory assignment for these
students, it is likely that students’ motivation to complete
these tasks was driven by their interest in programming.
Thus, the results of performance may be more positive than
the reality, as those who were capable of completing the
tasks were probably more motivated to do so. For future
research, it is suggested that external forces (eg. rewards)

can be imposed to encourage more students to get involved.
Second, the background information we collected from
secondary students may not be enough to explain their
higher performance than primary students. As the
information was collected from their current secondary
schools, how much they have learned before entering their
current schools was unknown. Therefore, age may not be
the only factor that resulted in the difference in
performance. It would be more comprehensive if the
difference can also be explained from their previous
programming experience. For future research about CT
knowledge acquisition, it is recommended to collect
information about students’ prior programming knowledge
and extracurricular programming experience.

S. REFERENCES

Bers, M. U. (2018). Coding, playgrounds and literacy in
early childhood education: The development of KIBO
robotics and ScratchJr. Paper presented at the 2018 IEEE
Global Engineering Education Conference (EDUCON).

Bers, M. U., & Resnick, M. (2015). The official ScratchJr
book: Help your kids learn to code: No Starch Press.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Paper presented at the Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada.

Grover, S., & Pea, R. (2013). Computational thinking in
K-12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence
in a Game-Based Learning Environment: The Case of
Elementary School Students Learning Computational

Thinking. Journal of Educational Computing Research,
58(5), 718-918. doi:10.1177/0735633119887187

Kurland, D. M., & Pea, R. D. (1985). Children's mental
models of recursive LOGO programs. Journal of
Educational Computing Research, 1(2), 235-243.

Lee, 1., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., .. . Werner, L. (2011). Computational
thinking for youth in practice. Acm Inroads, 2(1), 32-37.

Manske, S., Werneburg, S., & Hoppe, H. U. (2019).
Learner Modeling and Learning Analytics in
Computational Thinking Games for Education. In Data
Analytics Approaches in Educational Games and
Gamification Systems (pp. 187-212): Springer.

Martins-Pacheco, L. H., von Wangenheim, C. A. G., & da
Cruz Alves, N. (2019). Assessment of Computational
Thinking in K-12 Context: Educational Practices, Limits
and Possibilities-A Systematic Mapping Study. Paper
presented at the Proceedings of the 11th International
Conference on Computer Supported Education (CSEDU
2019).

12

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Moreno-Leén, J. (2018). On the development of
computational thinking skills in schools through
computer programming with Scratch. Doctoral
dissertation

Laporte, L., & Zaman, B. (2018). A comparative analysis
of programming games, looking through the lens of an
instructional design model and a game attributes
taxonomy. Entertainment Computing, 25, 48-61.

Lockwood, J., & Mooney, A. (2017). Computational
Thinking in Education: Where does it fit? A systematic
literary review. arXiv preprint arXiv:1703.07659.

Papert, S. (1980). Children, computers and powerful ideas.
In: New York: Basic Books.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,
N., Eastmond, E., Brennan, K., . . . Silverman, B. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020).
Assessing computational thinking: A systematic review
of empirical studies. Computers & Education, 103798.

Van Merriénboer, J. J., & Kirschner, P. A. (2017). Ten
steps to complex learning: A systematic approach to
four-component instructional design: Routledge.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2014). Computational thinking benefits
society. 40th Anniversary Blog of Social Issues in
Computing, 2014, 26.

Zhao, W., & Shute, V. J. (2019). Can playing a video game
foster computational thinking skills? Computers &
Education, 141, 103633.

13

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Cultivating Computational Thinking through Game-based Scratch Programming

Xiaogian LI, Jing LI, Jiansheng LI*
1:23 Nanjing Normal University, China
2543404638@qq.com, 2587361612@qq.com, 2869753244@qq.com

ABSTRACT

Computational thinking has become a necessary skill for
students in the 21st century. Programming teaching is an
effective way to cultivate computational thinking. However,
programming is difficult and boring for some students. In
this paper, it is explored whether game-based Scratch
programming improves students’ computational thinking
and programming self-efficacy. In addition, the paper also
explores whether individual differences of students affect
computational thinking. The results showed that game-
based Scratch programming could effectively improve the
computational thinking skills, especially logical thinking.
Secondly, playing Scratch games could improve students'
programming self-efficacy. Finally, it was found that
students' preference for games and computer operation
skills would not affect the effect of programming games to
cultivate computational thinking.

KEYWORDS

computational thinking, game-based programming,
Scratch, self-efficacy, secondary vocational students

1. INTRODUCTION

Under the wave of artificial intelligence, computational
thinking, as a key ability of individuals in the artificial
intelligence society, has been paid attention to and has
become a necessary skill for students in the 21st century. In
recent years, the cultivation of computational thinking has
been incorporated into the instructional framework of
information technology and other courses. For example, the
UK has implemented a complete set of computational
thinking courses in all disciplines, including computer
science, information technology and digital literacy
(Brown, Sentance, Crick, & Humphreys,2014). Besides,
computational thinking has been set up in the primary and
secondary school courses as one of its national instructional
courses in Australia (Falkner, Vivian, & Falkner,2014).

Computer programming education was introduced into the
basic education more and more. The research found that the
computer teaching content of secondary vocational school
is single and traditional. Most of them stay in the teaching
of basic computer operation and common office software,
even though the computer major has been added Python or
other programming language. Due to the difficulty and
dullness of programming itself and the lack of basic
computer knowledge of secondary vocational students,
many students have a fear of programming. Therefore, the
training effect of computational thinking is not satisfactory.

Prensky (2003) pointed out that the mode of integrating
entertainment and teaching was really suitable for
teenagers. Game-based programming teaching can make
abstract problems vivid and let students master the use of

basic sentences of programming language in the process of
accomplishing practical tasks. In this process, students can
improve their programming ability and computational
thinking ability. In addition, it combines game elements and
game scenes, so it can help students be more interested and
motivated to complete programming tasks. As a graphical
programming software, Scratch programming has become a
powerful tool for game-based learning due to its
modularity, interactivity, entertainment. Therefore, this
paper attempts to apply Scratch programming game to
secondary vocational students to improve their
computational thinking ability and programming self-
efficacy. = Combined with students' personality
characteristics, such as students' preference for the games
and computer operation skills, this study puts forward the
following research questions:

(1) Can game-based Scratch programming significantly
improve computational thinking? If so, which sub
dimensions would be improved?

(2) Can game-based Scratch programming significantly
improve programming self-efficacy?

(3) Will individual differences such as students' preference
for games and computer operation skills affect the effect of
cultivating computational thinking?

2. CONCEPTS AND DIMENSIONS OF
COMPUTATIONAL THINKING

In 2006, Professor Wing first proposed the concept of
computational thinking (referred to as "CT"). She explained
that computational thinking is a series of thinking activities
covering the breadth of computer science, such as problem
solving, system design, and human behavior understanding,
using the basic concepts of computer science (Wing,2006).
There are many definitions about the dimensions of
computational thinking. International Society for
Technology in Education and Computer Science Teachers
Association defined computational thinking as abstraction,
algorithm design, automation, data representation, data
collection and data analysis (ISTE & CSTA ,2011); Shute,
Sun, & Asbell- Clarke (2017) defined computational
thinking as parallelism, algorithm thinking, problem
decomposition, debugging, iteration and generalization.
There is also a widely used way of classification. Romero,
Lepage, & Lille (2017) divided computational thinking into
five aspects: algorithmic thinking, abstraction,
decomposition, evaluation and generalization. In addition,
Brennan & Resnick (2012) defined computational thinking
as consisting of computational concepts, practices, and
perspectives from the perspective of practical activities,
which is also a highly operational definition in the
cultivation of computational thinking. Among them,
concepts refer to the concepts used in programming,
including: sequences, loops, events, parallelism,

14

mailto:2543404638@qq.com
mailto:2587361612@qq.com
mailto:2869753244@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

conditions, operators and data. Practices refer to the
behaviors carried out when creating a programming project,
including: increment and iteration, testing and debugging,
reuse and mixing, abstraction and modularity. Perspectives
refer to the understanding of oneself, the relationship with
others and the surrounding technological world, including
expression, connection and query.

3. COMPUTATIONAL THINKING AND
GAME-BASED PROGRAMMING

The earliest game programming language is logo language,
followed by Scratch, Hopscotch, Code Combat, APP
Inventor, Switch Playgrounds and so on. Based on the
unique advantages of game programming, it is often used in
the basic teaching of computational thinking. For example,
the Greek researcher used the educational game Run Marco
to teach basic programming concepts in primary school. The
results showed that the use of educational games can help
students understand basic programming concepts, and
students also showed strong enthusiasm in using this game
(Giannakoulas & Xinogalos,2018). P. Rose, Habgood, &
Jay (2020) developed a game based on Scratch
programming called "Pirate Pluser". It was found that
playing games can enhance the understanding of program
abstraction for children aged 10-11 effectively.
Furthermore, integrating Scratch into classroom activities
has been shown to improve students' attitudes towards
coding and computer programming (Korkmaz,2016). In
addition to video games, plug-in games are also a good
choice. For example, the board game code monkey is
developed for 8-year-old and above players. Players move
the monkey pattern on the board to the destination by
applying the computing concept. The game aims at helping
players learn computational concepts, such as conditional,
loops, boolean operators, logical operators, etc. In fact, in
order to make the game successful, players need to
decompose the problem to get the solution plan. Then via
testing various plans in the system, players find the most
effective strategy to overcome the challenge of the game.
Therefore, the game needs a series of skills, such as problem
decomposition, system testing and debugging, which are
also important parts of CT. In addition, Jiang & Huang
(2019) constructed a framework of children's programming
game based on the cultivation of computational thinking in
their research, which corresponded the steps of using
computer to solve problems with the game elements.
Combined with the dimensions of computational thinking,
the relationship among the dimensions of computational
thinking and game elements can correspond as shown in
Table 1.

Table 1. Correspondence between CT and programming
game elements

programming game

CT
elements

Problem decomposition and

. Core mechanism
representation

Algorithm construction Rule challenge

Debugging Game objectives

It can be found that game-based programming has an impact
on students' problem decomposition ability, programming
concepts, logic and abstraction, operation and debugging.
Because the participants are beginners, the researchers
divided the game into seven levels in this study. The process
of problem decomposition was weakened. Therefore,
combined with the definition of computational thinking and
the specific content of Scratch programming game, this
paper mainly reflects the development of students' cognitive
and non cognitive level of Computational Thinking from the
three elements of algorithm, logical thinking and debugging,
in which the algorithm contains the basic algorithm
concepts, namely sequences, conditions and loops.

4. METHODS

4.1 Participants

The participants of this study were 36 nursing students from
a secondary vocational college in Nanjing, Jiangsu
Province, China. The participants were all girls, and they
were all programming beginners. Before the experiment, the
operation of office software was still taught on the
information technology course.

4.2 Instructional Design

The researcher conducted a three-week tutorial on the
Scratch programming game. In the teaching process, the
teacher's explanation is the auxiliary, and the student's
operation is the main. After explaining the basic game
interface, the teacher gives the students the task to break
through. The teacher assigned a total of 1-7 levels to pass.
With the progress of the course, the difficulty of
breakthrough is constantly upgrading.Figure 1 shows the
interface of the fifth level breakthrough interface.

.
E— '
EECED
= ;
- > @ o]

Figure 1. Level 5 of Scratch game.

4.3 Measures and Tools

Combined with the definition of Computational Thinking
and the key dimensions of computational thinking, the
Computational Thinking test compiled by Korkmaz (2016)
is used in this paper. This set of test questions is based on
the basic concept of calculation and logic, grammar of
programming language. It consists of 28 single topics and is
suitable for students from Grade 5 to Grade 10. We have a
pretest and a post test before and after the teaching.

The computer programming self-efficacy scale was

adapted from Kukul & Karatas (2019) to evaluate the
programming self-efficacy of the experimental subjects.
The reliability coefficient for this questionnaire was 0.957.
The question "Do you like to play games" was used to

nn

divide students into three types: "like", "general" and "not
like". What’s more the computer basic ability test scores

15

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

were used to divide the students' computer operation skills
level. According to the average scores, the students were
divided into low level group and high level group.

S. RESULTS

After the experiment, 36 valid questionnaires were
collected, and the collected data were imported into
SPSS.19.0 for data analysis. According to the research
problems of this study, the analysis results are as follows:

5.1 After playing the game, the results of Computational
Thinking Test improved significantly

First of all, in order to verify the impact of playing Scratch
programming game on computational thinking
performance, a paired sample T-test was conducted on the
pretest and post test scores. The results showed that the
average score of computational thinking increased
significantly, and there was a significant difference between
pretest and post test (P<0.01), indicating that the overall
level of computational thinking improved after

playing Scratch game. Secondly, we continued to explore
how different elements of computational thinking were
improved. The algorithm dimension, logic dimension and
debugging dimension were tested by a paired sample T- test,
and the results were shown in Table 2. It can be seen that
students' algorithm performance, logic performance and
debugging performance have been significantly improved
after playing Scratch programming game(P<0.01).
According to the effect size (d), It was found that Scratch
programming game improved logical thinking most
obviously, followed by algorithm, and finally debugging.
This can be explained from the characteristics of Scratch
game. Beginners pay most attention to how to pass the game
when they play the game, so the training effect of
programming logic thinking is the most significant.
However, students can not master the programming
algorithm in a short time, and debugging errors need to be
completed on the basis of the algorithm

Table 2. Difference between pretest and post test of CT

Pretest Post test
Mean SD Mean SD T P d
CT 56.25 16.19 75.14 10.45 -6.77 0.000™
Algorithm 18.75 11.11 18.72 8.43 -10.49 0.000™ 2.12
Logic 21.81 8.96 39.03 6.19 -10.85 0.000™" 2.27
Debugging 10.42 5.65 16.39 5.43 -5.16 0.000™ 1.08
*p<.05.
**p<.01.

5.2 Playing Scratch programming game can effectively
improve programming self-efficacy

In order to accurately explore whether playing programming
games can improve students' programming self-efficacy, the
reliability analysis (alpha=0.096>0.9) KMO and Bartlett's
test (KMO=0.84>0.7) of the self- efficacy questionnaire
used in this paper were conducted. The results show that the
questionnaire has high reliability. Then, a paired sample t-
test was carried out on the pretest and post test results of self-
efficacy questionnaire, and the

results were shown in Table 3. As described in the table,
there was a significant difference in the scores of students'

programming self-efficacy between pretest and post test
(P<0.01). Due to the difficulty of programming, students
often have a fear of difficulties in programming, especially
for beginners. The results of this study show that Scratch
programming games can help students improve their
cognition of programming and increase their programming
confidence to a certain extent.

Table 3. Difference between pretest and post test of
programming self-efficacy

Mean N SD SE T P
Pretest 32.64 306 8.3/ 1.39 -
Posttest 3672 36 668 1.11 297 0.005
*p<.05.
%% p < 01,

5.3 The degree of game preference and computer
foundation will not affect the performance of
computational thinking

First of all, the degree of preference for game and
computational thinking post test results were tested. The
preference degree was divided into three levels, namely
"like", "not like" and "general". The results were shown in
Table 4. The relationship between the preference degree and
computational thinking performance was not significant.
One of the possible reasons is that the subjects are all girls,
and there is no great difference in their preference for games.

Table 4. The correlation between game liking and CT

Preference Post test
for game results
Pearson 1 .07
correlation
Preference Significance 71
for game _(double tail)
Number of 36 36
cases
Pearson 07 1
correlation
Post test Significance 71
results (double tail)
Number of 36 36
cases

Secondly, the computer skill level was divided into high
level group and low level group according to the average
score. A paired sample T-test was used to test the results of
the two groups. The results showed that there were
significant differences between pretest and post test of

16

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Computational Thinking Test of the two groups. In order to
further explore the influence of computer level on the post
test results of computational thinking, T-test was conducted
on the post test results of the two groups. Results were
shown in Table 5 and the level of computer had no
significant effect on the post test results of computational
thinking (P>0.05). This may be because Scratch
programming is a game based on block and does not need a
high level of computer operation.

Table 5. The correlation between computer level and CT

M SD T P
high level 76.50 10.40
low level 73.44 10.60 0.09 0.39

6. CONCLUSION AND DISCUSSION

With the advent of the era of artificial intelligence,
computational thinking is not a unique way of thinking in
the field of computer science, but has become a way of
thinking in all social fields. This requires reseraches and
teachers to shoulder the important task of cultivating
computational thinking, and constantly explore the methods
and strategies of cultivating computational thinking.

The results show that the game-based programming is an
effective method to cultivate computational thinking.
Besides, the results also show that the improvement of logic
is the most significant, followed by algorithm and
debugging. A study showed that Scratch users often produce
code with' code smells' such as duplicate blocks and long
scripts which impact how they understand and debug
projects (P. Rose, Habgood, & Jay,2020). Additionally,
debugging is to identify and repair errors when the algorithm
can not provide the expected solution, so debugging needs a
good algorithm foundation. Therefore, educators should
balance the entertainment and education of programming
games, and pay attention to the learning of sequence, loops,
conditionals and other algorithms. This study also explores
whether playing Scratch programming game can effectively
improve the secondary vocational students' programming
self-efficacy, and the result is positive. Scratch's graphical,
building block programming method shields the grammar
rules, algorithm structure and other learning obstacles,
greatly reducing the cognitive difficulty of students.
Therefore, to a certain extent, game-based Scratch
programming can improve the confidence of programming.
Finally, the study found that students' preference for the
game and computer operation skills will not affect the effect
of game-based programming to cultivate computational
thinking.

However, the cultivation of human thinking is a continuous

process. Limited by the research sample and cycle, the

conclusion of this study inevitably has some limitations.

Therefore, how to design the instruction and research of

computational thinking, and how to combine the proper

learning strategies with the subject are the problems worthy

of further study in the future.

7. REFERENCES

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational

thinking. Paper presented at the Proceedings of the 2012
annual meeting of the American educational research
association, Vancouver, Canada.

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S.
(2014). Restart: The resurgence of computer science in
UK schools. ACM Transactions on Computing Education
(TOCE), 14(2), 1-22

Falkner, K., Vivian, R., & Falkner, N. (2014). The
Australian digital technologies curriculum: challenge
and opportunity. Paper presented at the Proceedings of
the Sixteenth Australasian Computing Education

Conference-Volume 148.
Giannakoulas, A., & Xinogalos, S. (2018). A pilot study on

the effectiveness and acceptance of an educational game
for teaching programming concepts to primary school
students. Education and Information Technologies, 23(5),
2029-2052.

ISTE & CSTA. (2011). Operational Definition of
Computational Thinking for K-12 Education. Retrieved
January 1, 2021, from
http://www.iste.org/docs/pdfs/Operational-Definition-of-
Computational-Thinking.pdf

JIANG Xi-na, HUANG Xin-yuan (2019). The Design of
Programming Games for Kids Pointed to Cultivating
Computational Thinking Ability[J].Modern Educational
Technology,29(03):119-126.

Korkmaz, Z. (2016). The Effects of Scratch-Based Game
Activities on Students' Attitudes, Self-Efficacy and
Academic Achievement. International Journal of
Modern Education & Computer Science, 8(1), 16-23.

Kukul, V., & Karatas, S. (2019). Computational Thinking
Self-Efficacy Scale: Development, Validity and
Reliability. Informatics in Education, 18(1), 151-164

P. Rose, S., Habgood, M. P. J., & Jay, T. (2020). Designing
a Programming Game to Improve Children’ s

Procedural Abstraction Skills in Scratch. Journal of
Educational Computing Research, 58(7), 1372-1411.

Prensky, M. (2003). Digital game-based learning.
Computers in Entertainment (CIE), 1(1), 21.

Roman-Gonzalez, M., Pérez-Gonzalez, J., & Jiménez-
Fernandez, C. (2017). Which cognitive abilities underlie
computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human
Behavior, 72, 678-691. doi: 10.1016/j.chb.2016.08.047.

Romero, M., Lepage, A., & Lille, B. (2017).
Computational thinking development through creative
programming in higher education. International Journal
of Educational Technology in Higher Education, 14(1),
42,

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142-158.

Wing, J. M. (2006). Computational thinking.
Communications of the Acm, 49(3), 33-35.

http://www.iste.org/docs/pdfs/Operational-Definition-of-

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

Developing Girls' Computational Thinking by Playing Programming Games

Jing LI', Jiansheng LI**
12 Nanjing Normal University, China
2587361612@qq.com, 2869753244@qq.com

ABSTRACT

The purpose of this study is to explore the specific impact
of playing programming games on each dimension of girls'
computational thinking through playing Cat Eat Fish, a
game designed based Scratch. The results showed that
playing programming games can promote girl beginners'
computational concepts and perspectives, but the role of
playing programming games in promoting the girls’
computational practices did not be found.

KEYWORDS

computational thinking, game-based learning, girls

1. INTRODUCTION

Computational thinking (CT), a basic skill in the 21st
century, has been incorporated into K12 education and
higher education in many countries. According to Wing
(2006), computational thinking covers a series of thinking
activities in the field of computer science, specifically, it
refers to the use of basic concepts of computer science for
problem solving and system design. The dimensions of
computational thinking in this study are based on Brennan
and Resnick's definition (Brennan & Resnick,2012), in
which the concepts of computation include sequences,
repetitions, cycles, conditionals, and selection, the
computational practice is to solve practical computational
problems, and computational perspective involves the
attitude and perspectives of computational thinking.

It has been evidenced that the education of introductory
programming can be supported by playing games, but it
takes longer for girls to acquire the same computational
thinking skills as boys (Atmatzidou & Demetriadis,2016).
Playing games can promote students' understanding
computational concepts (Kazimoglu, Kiernan, Bacon, &
MacKinnon,2012). Some studies showed that playing
games can improve attitude toward computational thinking,
but others demonstrated that playing games had no effect on
computational perspectives (Zhao & Shute,2019).

There is an urgent need to explore whether playing games
can promote the computational thinking of beginners,
especially girls, and if the answer is yes, what aspects of
computational thinking can be advanced by playing

programming games. Thus, the research questions of this
study are as follows:(1) Which aspects of computational
concepts are more effective in playing games? (2) Can

playing games promote girls’ computational practice? (3)
Can playing games improve girls’ computational
perspectives? If the answer is yes, what dimensions of
computational perspectives would be improved?

2. METHOD

2.1. Participants and design

The participants were 48 secondary school students from
Nanjing Health School in China. They were all girls who
had no programming experience and the average age of
them was 16. The whole experiment lasted for 3 weeks.

2.2. Materials

2.2.1. Testing questionnaires

The Computational Thinking test (CTt; Moreno-Ledn, &
Robles,2018) were selected to measure students'
computational concepts. The testing questionnaire for
computing practice was selected from the International
Challenge on Informatics and Computational Thinking. The
Computational Thinking Scales (CTS; Korkmaz, Cakir, &
0Ozden,2017) was wused to survey computational
perspectives.

2.2.2. The Cat Eat Fish game

The game used in this study was designed based on Scratch
called Cat Eat Fish, in which students were asked to
combine the code blocks scattered in the code editing area
to make the cat eat the fish. It contained seven levels and the
one who took the least time and can successfully passes the
game won.

3. RESULTS

3.1. Which Aspects Of Computational Concepts Are More
Effective After Playing the Game?

The analysis results of the computational concepts scores,
presented in Table 1, revealed a significant difference
between pre-test scores and post-test scores. Cohen’s effect
size (d =1.39) suggested a large effect of playing the
programming game (Cohen,1988). Table 2 and Table 3
indicated that there were significant differences in the pre-
test and post-test results of sequences, cycles, repetitions,
conditions and selection, and the effect of cycles is the
largest.

Table 1. Results of paired t-test for girls’ computational

concepts.
Mean N SD SE t p
Pre-t 54.57 47 16.64 243 - 000
Post-t 74.04 47 1131 1.65 844 -

Table 2. Statistical description for each dimension of girls’
computational concepts.

Pretest Posttest

Mean SD Mean SD
sequences 15.74 4.30 18.72 2.20
cycles 18.51 5.61 21.49 4.65

18

mailto:2587361612@qq.com
mailto:2869753244@qq.com

Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5" APSCE International Computational
Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.

repetitions 7.66 4.65 14.04 4.38
conditions 4.47 3.79 9.04 3.99
selection 8.19 5.05 10.43 5.09

Table 3. Results of paired t-test and effects sizes for each
dimension of girls’ computational concepts.

t p d
sequences -4.95 0.000 0.92
cycles -3.33 0.002 1.72
repetitions -7.70 0.000 1.41
conditions -6.76 0.000 1.01
selection -2.33 0.024 0.44

3.2. Can Playing the Programming Game Promote Girls’
Computational Practices?

The results, shown in Table 4, presented that there was no
significant difference in the pre-test and post-test scores of
girls’ computational practices.

Table 4. Results of paired t-test for girls’ computational
practices.

Mean N SD SE t

t20.32479.17 1.34

Post-t 22.77 47 7.79 1.14 ~1-84 0.073

p_ Pre-

3.3. Can Playing the Programming Game Improve Girls’
Computational Perspectives?

A paired sample t-test was used to test the results of girls’
computational perspectives. The results, shown in Table 5,
presented that there were significant differences between
pre-test and post-test surveys. Table 6 and Table 7 showed
statistically significant differences in the means of
creativity, problem solving and critical thinking. From the
size of the effect, creativity (d=0.50) and problem-solving
(d=0.42) had a larger effect.

Table 5. Results of paired t-test for girls’ computational

perspectives.
Mean N SD SE t p
Pre-t 80.30 47 13.05 1.90 -
Post-t 87.47 47 12.12 1.77 4.52 .000

Table 6. Statistical description for each dimension of girls’
computational perspectives.

Pretest Posttest

Mean SD Mean SD
creativity 25.34 7.13 28.32 4.73
problem 17.87 5.16 19.89 4.47
solving
critical 17.28 4.65 18.34 3.22
thinking
algorithmic 19.81 5.17 20.91 4.25
thinking

Table 7. Results of paired t-test and effects sizes for each
dimension of girls’ computational perspectives.

t p d
creativity -2.88 0.006 0.50
problem solving -2.52 0.015 0.42

critical thinking -2.09 0.043 0.29
algorithmic -1.78 0.082 0.23
thinking

4. DICUSSION AND CONCLUSION

The results of this study indicated that playing

programming games can improve girls' computational

concepts in a short period of time, and it improves
girls' mastery of computational concepts such as
sequences, circulations, repetitions, conditions and

selection. Furthermore, the Cat Eat Fish game in this
study cannot promote girls' computational practices.
Girls' computational perspectives were significantly
improved after playing the Cat Eat Fish programming
game, especially creativity, problem-solving ability and
critical thinking ability, while the algorithm thinking
dimension of computational attitude was not
significantly improved. In practice, teachers can
design some simple programming games like Cat Eat
Fish to promote girl beginners to foster computational
thinking skills. Due to the short duration of this
study, future researches can further explore
whether playing programming games for a long time
can improve the computational practices dimension
of girls’ computational thinking.

5. REFERENCES

Atmatzidou, S., & Demetriadis, S. (2016). Advancing
students’ computational thinking skills through

educational robotics: A study on age and gender relevant
differences. Robotics and Autonomous Systems, 75, 661-
670.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. Paper presented at the
Proceedings of the 2012 annual meeting of the American
educational research association, Vancouver, Canada.

Cohen, J. (1988). Statistical Power Analysis for the
Behavioral Sciences. Journal of the American Statistical
Association, 31(334), 499-500.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L.
(2012). Learning Programming at the Computational
Thinking Level via Digital Game-Play. Procedia
Computer Science, 9, 522-531.

Korkmaz, O., Cakir, R., & Ozden, M. Y. (2017). A
validity and reliability study of the computational
thinking scales (CTS). Computers in Human Behavior,

72, 558-569.

Roman-Gonzalez, M., Pérez-Gonzalez, J., Moreno-Leon,
J., & Robles, G. (2018). Extending th